Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonBlockRanges.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "hbr"
     11 
     12 #include "HexagonBlockRanges.h"
     13 #include "HexagonInstrInfo.h"
     14 #include "HexagonSubtarget.h"
     15 
     16 #include "llvm/ADT/BitVector.h"
     17 #include "llvm/CodeGen/MachineBasicBlock.h"
     18 #include "llvm/CodeGen/MachineInstr.h"
     19 #include "llvm/CodeGen/MachineRegisterInfo.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetRegisterInfo.h"
     25 
     26 #include <map>
     27 
     28 using namespace llvm;
     29 
     30 bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const {
     31   // If A contains start(), or "this" contains A.start(), then overlap.
     32   IndexType S = start(), E = end(), AS = A.start(), AE = A.end();
     33   if (AS == S)
     34     return true;
     35   bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE.
     36   bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E.
     37   if ((AS < S && SbAE) || (S < AS && ASbE))
     38     return true;
     39   // Otherwise no overlap.
     40   return false;
     41 }
     42 
     43 
     44 bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const {
     45   if (start() <= A.start()) {
     46     // Treat "None" in the range end as equal to the range start.
     47     IndexType E = (end() != IndexType::None) ? end() : start();
     48     IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start();
     49     if (AE <= E)
     50       return true;
     51   }
     52   return false;
     53 }
     54 
     55 
     56 void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) {
     57   // Allow merging adjacent ranges.
     58   assert(end() == A.start() || overlaps(A));
     59   IndexType AS = A.start(), AE = A.end();
     60   if (AS < start() || start() == IndexType::None)
     61     setStart(AS);
     62   if (end() < AE || end() == IndexType::None) {
     63     setEnd(AE);
     64     TiedEnd = A.TiedEnd;
     65   } else {
     66     if (end() == AE)
     67       TiedEnd |= A.TiedEnd;
     68   }
     69   if (A.Fixed)
     70     Fixed = true;
     71 }
     72 
     73 
     74 void HexagonBlockRanges::RangeList::include(const RangeList &RL) {
     75   for (auto &R : RL)
     76     if (std::find(begin(), end(), R) == end())
     77       push_back(R);
     78 }
     79 
     80 
     81 // Merge all overlapping ranges in the list, so that all that remains
     82 // is a list of disjoint ranges.
     83 void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) {
     84   if (empty())
     85     return;
     86 
     87   std::sort(begin(), end());
     88   iterator Iter = begin();
     89 
     90   while (Iter != end()-1) {
     91     iterator Next = std::next(Iter);
     92     // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start.
     93     // This allows merging dead ranges, but is not valid for live ranges.
     94     bool Merge = MergeAdjacent && (Iter->end() == Next->start());
     95     if (Merge || Iter->overlaps(*Next)) {
     96       Iter->merge(*Next);
     97       erase(Next);
     98       continue;
     99     }
    100     ++Iter;
    101   }
    102 }
    103 
    104 
    105 // Compute a range A-B and add it to the list.
    106 void HexagonBlockRanges::RangeList::addsub(const IndexRange &A,
    107       const IndexRange &B) {
    108   // Exclusion of non-overlapping ranges makes some checks simpler
    109   // later in this function.
    110   if (!A.overlaps(B)) {
    111     // A - B = A.
    112     add(A);
    113     return;
    114   }
    115 
    116   IndexType AS = A.start(), AE = A.end();
    117   IndexType BS = B.start(), BE = B.end();
    118 
    119   // If AE is None, then A is included in B, since A and B overlap.
    120   // The result of subtraction if empty, so just return.
    121   if (AE == IndexType::None)
    122     return;
    123 
    124   if (AS < BS) {
    125     // A starts before B.
    126     // AE cannot be None since A and B overlap.
    127     assert(AE != IndexType::None);
    128     // Add the part of A that extends on the "less" side of B.
    129     add(AS, BS, A.Fixed, false);
    130   }
    131 
    132   if (BE < AE) {
    133     // BE cannot be Exit here.
    134     if (BE == IndexType::None)
    135       add(BS, AE, A.Fixed, false);
    136     else
    137       add(BE, AE, A.Fixed, false);
    138   }
    139 }
    140 
    141 
    142 // Subtract a given range from each element in the list.
    143 void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) {
    144   // Cannot assume that the list is unionized (i.e. contains only non-
    145   // overlapping ranges.
    146   RangeList T;
    147   for (iterator Next, I = begin(); I != end(); I = Next) {
    148     IndexRange &Rg = *I;
    149     if (Rg.overlaps(Range)) {
    150       T.addsub(Rg, Range);
    151       Next = this->erase(I);
    152     } else {
    153       Next = std::next(I);
    154     }
    155   }
    156   include(T);
    157 }
    158 
    159 
    160 HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B)
    161     : Block(B) {
    162   IndexType Idx = IndexType::First;
    163   First = Idx;
    164   for (auto &In : B) {
    165     if (In.isDebugValue())
    166       continue;
    167     assert(getIndex(&In) == IndexType::None && "Instruction already in map");
    168     Map.insert(std::make_pair(Idx, &In));
    169     ++Idx;
    170   }
    171   Last = B.empty() ? IndexType::None : unsigned(Idx)-1;
    172 }
    173 
    174 
    175 MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const {
    176   auto F = Map.find(Idx);
    177   return (F != Map.end()) ? F->second : 0;
    178 }
    179 
    180 
    181 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex(
    182       MachineInstr *MI) const {
    183   for (auto &I : Map)
    184     if (I.second == MI)
    185       return I.first;
    186   return IndexType::None;
    187 }
    188 
    189 
    190 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex(
    191       IndexType Idx) const {
    192   assert (Idx != IndexType::None);
    193   if (Idx == IndexType::Entry)
    194     return IndexType::None;
    195   if (Idx == IndexType::Exit)
    196     return Last;
    197   if (Idx == First)
    198     return IndexType::Entry;
    199   return unsigned(Idx)-1;
    200 }
    201 
    202 
    203 HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex(
    204       IndexType Idx) const {
    205   assert (Idx != IndexType::None);
    206   if (Idx == IndexType::Entry)
    207     return IndexType::First;
    208   if (Idx == IndexType::Exit || Idx == Last)
    209     return IndexType::None;
    210   return unsigned(Idx)+1;
    211 }
    212 
    213 
    214 void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI,
    215       MachineInstr *NewMI) {
    216   for (auto &I : Map) {
    217     if (I.second != OldMI)
    218       continue;
    219     if (NewMI != nullptr)
    220       I.second = NewMI;
    221     else
    222       Map.erase(I.first);
    223     break;
    224   }
    225 }
    226 
    227 
    228 HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf)
    229   : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()),
    230     TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()),
    231     Reserved(TRI.getReservedRegs(mf)) {
    232   // Consider all non-allocatable registers as reserved.
    233   for (auto I = TRI.regclass_begin(), E = TRI.regclass_end(); I != E; ++I) {
    234     auto *RC = *I;
    235     if (RC->isAllocatable())
    236       continue;
    237     for (unsigned R : *RC)
    238       Reserved[R] = true;
    239   }
    240 }
    241 
    242 
    243 HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns(
    244       const MachineBasicBlock &B) {
    245   RegisterSet LiveIns;
    246   for (auto I : B.liveins())
    247     if (!Reserved[I.PhysReg])
    248       LiveIns.insert({I.PhysReg, 0});
    249   return LiveIns;
    250 }
    251 
    252 
    253 HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs(
    254       RegisterRef R, const MachineRegisterInfo &MRI,
    255       const TargetRegisterInfo &TRI) {
    256   RegisterSet SRs;
    257 
    258   if (R.Sub != 0) {
    259     SRs.insert(R);
    260     return SRs;
    261   }
    262 
    263   if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) {
    264     MCSubRegIterator I(R.Reg, &TRI);
    265     if (!I.isValid())
    266       SRs.insert({R.Reg, 0});
    267     for (; I.isValid(); ++I)
    268       SRs.insert({*I, 0});
    269   } else {
    270     assert(TargetRegisterInfo::isVirtualRegister(R.Reg));
    271     auto &RC = *MRI.getRegClass(R.Reg);
    272     unsigned PReg = *RC.begin();
    273     MCSubRegIndexIterator I(PReg, &TRI);
    274     if (!I.isValid())
    275       SRs.insert({R.Reg, 0});
    276     for (; I.isValid(); ++I)
    277       SRs.insert({R.Reg, I.getSubRegIndex()});
    278   }
    279   return SRs;
    280 }
    281 
    282 
    283 void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap,
    284       RegToRangeMap &LiveMap) {
    285   std::map<RegisterRef,IndexType> LastDef, LastUse;
    286   RegisterSet LiveOnEntry;
    287   MachineBasicBlock &B = IndexMap.getBlock();
    288   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
    289 
    290   for (auto R : getLiveIns(B))
    291     for (auto S : expandToSubRegs(R, MRI, TRI))
    292       LiveOnEntry.insert(S);
    293 
    294   for (auto R : LiveOnEntry)
    295     LastDef[R] = IndexType::Entry;
    296 
    297   auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void {
    298     auto LD = LastDef[R], LU = LastUse[R];
    299     if (LD == IndexType::None)
    300       LD = IndexType::Entry;
    301     if (LU == IndexType::None)
    302       LU = IndexType::Exit;
    303     LiveMap[R].add(LD, LU, false, false);
    304     LastUse[R] = LastDef[R] = IndexType::None;
    305   };
    306 
    307   for (auto &In : B) {
    308     if (In.isDebugValue())
    309       continue;
    310     IndexType Index = IndexMap.getIndex(&In);
    311     // Process uses first.
    312     for (auto &Op : In.operands()) {
    313       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
    314         continue;
    315       RegisterRef R = { Op.getReg(), Op.getSubReg() };
    316       if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
    317         continue;
    318       bool IsKill = Op.isKill();
    319       for (auto S : expandToSubRegs(R, MRI, TRI)) {
    320         LastUse[S] = Index;
    321         if (IsKill)
    322           closeRange(S);
    323       }
    324     }
    325     // Process defs.
    326     for (auto &Op : In.operands()) {
    327       if (!Op.isReg() || !Op.isDef() || Op.isUndef())
    328         continue;
    329       RegisterRef R = { Op.getReg(), Op.getSubReg() };
    330       if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg])
    331         continue;
    332       for (auto S : expandToSubRegs(R, MRI, TRI)) {
    333         if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None)
    334           closeRange(S);
    335         LastDef[S] = Index;
    336       }
    337     }
    338   }
    339 
    340   // Collect live-on-exit.
    341   RegisterSet LiveOnExit;
    342   for (auto *SB : B.successors())
    343     for (auto R : getLiveIns(*SB))
    344       for (auto S : expandToSubRegs(R, MRI, TRI))
    345         LiveOnExit.insert(S);
    346 
    347   for (auto R : LiveOnExit)
    348     LastUse[R] = IndexType::Exit;
    349 
    350   // Process remaining registers.
    351   RegisterSet Left;
    352   for (auto &I : LastUse)
    353     if (I.second != IndexType::None)
    354       Left.insert(I.first);
    355   for (auto &I : LastDef)
    356     if (I.second != IndexType::None)
    357       Left.insert(I.first);
    358   for (auto R : Left)
    359     closeRange(R);
    360 
    361   // Finalize the live ranges.
    362   for (auto &P : LiveMap)
    363     P.second.unionize();
    364 }
    365 
    366 
    367 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap(
    368       InstrIndexMap &IndexMap) {
    369   RegToRangeMap LiveMap;
    370   DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": index map\n" << IndexMap << '\n');
    371   computeInitialLiveRanges(IndexMap, LiveMap);
    372   DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": live map\n"
    373                << PrintRangeMap(LiveMap, TRI) << '\n');
    374   return LiveMap;
    375 }
    376 
    377 
    378 HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap(
    379       InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) {
    380   RegToRangeMap DeadMap;
    381 
    382   auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void {
    383     auto F = LiveMap.find(R);
    384     if (F == LiveMap.end() || F->second.empty()) {
    385       DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false);
    386       return;
    387     }
    388 
    389     RangeList &RL = F->second;
    390     RangeList::iterator A = RL.begin(), Z = RL.end()-1;
    391 
    392     // Try to create the initial range.
    393     if (A->start() != IndexType::Entry) {
    394       IndexType DE = IndexMap.getPrevIndex(A->start());
    395       if (DE != IndexType::Entry)
    396         DeadMap[R].add(IndexType::Entry, DE, false, false);
    397     }
    398 
    399     while (A != Z) {
    400       // Creating a dead range that follows A.  Pay attention to empty
    401       // ranges (i.e. those ending with "None").
    402       IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end();
    403       IndexType DS = IndexMap.getNextIndex(AE);
    404       ++A;
    405       IndexType DE = IndexMap.getPrevIndex(A->start());
    406       if (DS < DE)
    407         DeadMap[R].add(DS, DE, false, false);
    408     }
    409 
    410     // Try to create the final range.
    411     if (Z->end() != IndexType::Exit) {
    412       IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end();
    413       IndexType DS = IndexMap.getNextIndex(ZE);
    414       if (DS < IndexType::Exit)
    415         DeadMap[R].add(DS, IndexType::Exit, false, false);
    416     }
    417   };
    418 
    419   MachineFunction &MF = *IndexMap.getBlock().getParent();
    420   auto &MRI = MF.getRegInfo();
    421   unsigned NumRegs = TRI.getNumRegs();
    422   BitVector Visited(NumRegs);
    423   for (unsigned R = 1; R < NumRegs; ++R) {
    424     for (auto S : expandToSubRegs({R,0}, MRI, TRI)) {
    425       if (Reserved[S.Reg] || Visited[S.Reg])
    426         continue;
    427       addDeadRanges(S);
    428       Visited[S.Reg] = true;
    429     }
    430   }
    431   for (auto &P : LiveMap)
    432     if (TargetRegisterInfo::isVirtualRegister(P.first.Reg))
    433       addDeadRanges(P.first);
    434 
    435   DEBUG(dbgs() << LLVM_FUNCTION_NAME << ": dead map\n"
    436                << PrintRangeMap(DeadMap, TRI) << '\n');
    437   return DeadMap;
    438 }
    439 
    440 raw_ostream &llvm::operator<<(raw_ostream &OS,
    441                               HexagonBlockRanges::IndexType Idx) {
    442   if (Idx == HexagonBlockRanges::IndexType::None)
    443     return OS << '-';
    444   if (Idx == HexagonBlockRanges::IndexType::Entry)
    445     return OS << 'n';
    446   if (Idx == HexagonBlockRanges::IndexType::Exit)
    447     return OS << 'x';
    448   return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1;
    449 }
    450 
    451 // A mapping to translate between instructions and their indices.
    452 raw_ostream &llvm::operator<<(raw_ostream &OS,
    453                               const HexagonBlockRanges::IndexRange &IR) {
    454   OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']');
    455   if (IR.Fixed)
    456     OS << '!';
    457   return OS;
    458 }
    459 
    460 raw_ostream &llvm::operator<<(raw_ostream &OS,
    461                               const HexagonBlockRanges::RangeList &RL) {
    462   for (auto &R : RL)
    463     OS << R << " ";
    464   return OS;
    465 }
    466 
    467 raw_ostream &llvm::operator<<(raw_ostream &OS,
    468                               const HexagonBlockRanges::InstrIndexMap &M) {
    469   for (auto &In : M.Block) {
    470     HexagonBlockRanges::IndexType Idx = M.getIndex(&In);
    471     OS << Idx << (Idx == M.Last ? ". " : "  ") << In;
    472   }
    473   return OS;
    474 }
    475 
    476 raw_ostream &llvm::operator<<(raw_ostream &OS,
    477                               const HexagonBlockRanges::PrintRangeMap &P) {
    478   for (auto &I : P.Map) {
    479     const HexagonBlockRanges::RangeList &RL = I.second;
    480     OS << PrintReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n";
    481   }
    482   return OS;
    483 }
    484