Home | History | Annotate | Download | only in Hexagon
      1 //===--- RDFDeadCode.cpp --------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // RDF-based generic dead code elimination.
     11 
     12 #include "RDFGraph.h"
     13 #include "RDFLiveness.h"
     14 #include "RDFDeadCode.h"
     15 
     16 #include "llvm/ADT/SetVector.h"
     17 #include "llvm/CodeGen/MachineBasicBlock.h"
     18 #include "llvm/CodeGen/MachineFunction.h"
     19 #include "llvm/CodeGen/MachineRegisterInfo.h"
     20 
     21 #include <queue>
     22 
     23 using namespace llvm;
     24 using namespace rdf;
     25 
     26 // This drastically improves execution time in "collect" over using
     27 // SetVector as a work queue, and popping the first element from it.
     28 template<typename T> struct DeadCodeElimination::SetQueue {
     29   SetQueue() : Set(), Queue() {}
     30 
     31   bool empty() const {
     32     return Queue.empty();
     33   }
     34   T pop_front() {
     35     T V = Queue.front();
     36     Queue.pop();
     37     Set.erase(V);
     38     return V;
     39   }
     40   void push_back(T V) {
     41     if (Set.count(V))
     42       return;
     43     Queue.push(V);
     44     Set.insert(V);
     45   }
     46 
     47 private:
     48   DenseSet<T> Set;
     49   std::queue<T> Queue;
     50 };
     51 
     52 
     53 // Check if the given instruction has observable side-effects, i.e. if
     54 // it should be considered "live". It is safe for this function to be
     55 // overly conservative (i.e. return "true" for all instructions), but it
     56 // is not safe to return "false" for an instruction that should not be
     57 // considered removable.
     58 bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
     59   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
     60     return true;
     61   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects())
     62     return true;
     63   if (MI->isPHI())
     64     return false;
     65   for (auto &Op : MI->operands())
     66     if (Op.isReg() && MRI.isReserved(Op.getReg()))
     67       return true;
     68   return false;
     69 }
     70 
     71 void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
     72       SetQueue<NodeId> &WorkQ) {
     73   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
     74     return;
     75   if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
     76     return;
     77   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
     78     if (!LiveNodes.count(RA.Id))
     79       WorkQ.push_back(RA.Id);
     80   }
     81 }
     82 
     83 void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
     84       SetQueue<NodeId> &WorkQ) {
     85   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
     86   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
     87     if (!LiveNodes.count(UA.Id))
     88       WorkQ.push_back(UA.Id);
     89   }
     90   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
     91     LiveNodes.insert(TA.Id);
     92 }
     93 
     94 void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
     95       SetQueue<NodeId> &WorkQ) {
     96   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
     97     if (!LiveNodes.count(DA.Id))
     98       WorkQ.push_back(DA.Id);
     99   }
    100 }
    101 
    102 // Traverse the DFG and collect the set dead RefNodes and the set of
    103 // dead instructions. Return "true" if any of these sets is non-empty,
    104 // "false" otherwise.
    105 bool DeadCodeElimination::collect() {
    106   // This function works by first finding all live nodes. The dead nodes
    107   // are then the complement of the set of live nodes.
    108   //
    109   // Assume that all nodes are dead. Identify instructions which must be
    110   // considered live, i.e. instructions with observable side-effects, such
    111   // as calls and stores. All arguments of such instructions are considered
    112   // live. For each live def, all operands used in the corresponding
    113   // instruction are considered live. For each live use, all its reaching
    114   // defs are considered live.
    115   LiveNodes.clear();
    116   SetQueue<NodeId> WorkQ;
    117   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
    118     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
    119       scanInstr(IA, WorkQ);
    120 
    121   while (!WorkQ.empty()) {
    122     NodeId N = WorkQ.pop_front();
    123     LiveNodes.insert(N);
    124     auto RA = DFG.addr<RefNode*>(N);
    125     if (DFG.IsDef(RA))
    126       processDef(RA, WorkQ);
    127     else
    128       processUse(RA, WorkQ);
    129   }
    130 
    131   if (trace()) {
    132     dbgs() << "Live nodes:\n";
    133     for (NodeId N : LiveNodes) {
    134       auto RA = DFG.addr<RefNode*>(N);
    135       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
    136     }
    137   }
    138 
    139   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
    140     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
    141       if (LiveNodes.count(DA.Id))
    142         return false;
    143     return true;
    144   };
    145 
    146   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
    147     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
    148       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
    149         if (!LiveNodes.count(RA.Id))
    150           DeadNodes.insert(RA.Id);
    151       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
    152         if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
    153           continue;
    154       if (IsDead(IA)) {
    155         DeadInstrs.insert(IA.Id);
    156         if (trace())
    157           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
    158       }
    159     }
    160   }
    161 
    162   return !DeadNodes.empty();
    163 }
    164 
    165 // Erase the nodes given in the Nodes set from DFG. In addition to removing
    166 // them from the DFG, if a node corresponds to a statement, the corresponding
    167 // machine instruction is erased from the function.
    168 bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
    169   if (Nodes.empty())
    170     return false;
    171 
    172   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
    173   // are included directly, for each InstrNode in Nodes, include the set
    174   // of all RefNodes from it.
    175   NodeList DRNs, DINs;
    176   for (auto I : Nodes) {
    177     auto BA = DFG.addr<NodeBase*>(I);
    178     uint16_t Type = BA.Addr->getType();
    179     if (Type == NodeAttrs::Ref) {
    180       DRNs.push_back(DFG.addr<RefNode*>(I));
    181       continue;
    182     }
    183 
    184     // If it's a code node, add all ref nodes from it.
    185     uint16_t Kind = BA.Addr->getKind();
    186     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
    187       for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
    188         DRNs.push_back(N);
    189       DINs.push_back(DFG.addr<InstrNode*>(I));
    190     } else {
    191       llvm_unreachable("Unexpected code node");
    192       return false;
    193     }
    194   }
    195 
    196   // Sort the list so that use nodes are removed first. This makes the
    197   // "unlink" functions a bit faster.
    198   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
    199     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
    200     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
    201       return true;
    202     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
    203       return false;
    204     return A.Id < B.Id;
    205   };
    206   std::sort(DRNs.begin(), DRNs.end(), UsesFirst);
    207 
    208   if (trace())
    209     dbgs() << "Removing dead ref nodes:\n";
    210   for (NodeAddr<RefNode*> RA : DRNs) {
    211     if (trace())
    212       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
    213     if (DFG.IsUse(RA))
    214       DFG.unlinkUse(RA, true);
    215     else if (DFG.IsDef(RA))
    216       DFG.unlinkDef(RA, true);
    217   }
    218 
    219   // Now, remove all dead instruction nodes.
    220   for (NodeAddr<InstrNode*> IA : DINs) {
    221     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
    222     BA.Addr->removeMember(IA, DFG);
    223     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
    224       continue;
    225 
    226     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
    227     if (trace())
    228       dbgs() << "erasing: " << *MI;
    229     MI->eraseFromParent();
    230   }
    231   return true;
    232 }
    233