Home | History | Annotate | Download | only in ops
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrAAHairLinePathRenderer.h"
      9 #include "GrBuffer.h"
     10 #include "GrCaps.h"
     11 #include "GrClip.h"
     12 #include "GrContext.h"
     13 #include "GrDefaultGeoProcFactory.h"
     14 #include "GrDrawOpTest.h"
     15 #include "GrOpFlushState.h"
     16 #include "GrPathUtils.h"
     17 #include "GrProcessor.h"
     18 #include "GrResourceProvider.h"
     19 #include "GrSimpleMeshDrawOpHelper.h"
     20 #include "SkGeometry.h"
     21 #include "SkMatrixPriv.h"
     22 #include "SkPoint3.h"
     23 #include "SkPointPriv.h"
     24 #include "SkRectPriv.h"
     25 #include "SkStroke.h"
     26 #include "SkTemplates.h"
     27 #include "effects/GrBezierEffect.h"
     28 #include "ops/GrMeshDrawOp.h"
     29 
     30 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
     31 
     32 // quadratics are rendered as 5-sided polys in order to bound the
     33 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
     34 // bloat_quad. Quadratics and conics share an index buffer
     35 
     36 // lines are rendered as:
     37 //      *______________*
     38 //      |\ -_______   /|
     39 //      | \        \ / |
     40 //      |  *--------*  |
     41 //      | /  ______/ \ |
     42 //      */_-__________\*
     43 // For: 6 vertices and 18 indices (for 6 triangles)
     44 
     45 // Each quadratic is rendered as a five sided polygon. This poly bounds
     46 // the quadratic's bounding triangle but has been expanded so that the
     47 // 1-pixel wide area around the curve is inside the poly.
     48 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
     49 // that is rendered would look like this:
     50 //              b0
     51 //              b
     52 //
     53 //     a0              c0
     54 //      a            c
     55 //       a1       c1
     56 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
     57 // specified by these 9 indices:
     58 static const uint16_t kQuadIdxBufPattern[] = {
     59     0, 1, 2,
     60     2, 4, 3,
     61     1, 4, 2
     62 };
     63 
     64 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
     65 static const int kQuadNumVertices = 5;
     66 static const int kQuadsNumInIdxBuffer = 256;
     67 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     68 
     69 static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
     70     GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
     71     return resourceProvider->findOrCreatePatternedIndexBuffer(
     72         kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
     73         gQuadsIndexBufferKey);
     74 }
     75 
     76 
     77 // Each line segment is rendered as two quads and two triangles.
     78 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
     79 // The four external points are offset 1 pixel perpendicular to the
     80 // line and half a pixel parallel to the line.
     81 //
     82 // p4                  p5
     83 //      p0         p1
     84 // p2                  p3
     85 //
     86 // Each is drawn as six triangles specified by these 18 indices:
     87 
     88 static const uint16_t kLineSegIdxBufPattern[] = {
     89     0, 1, 3,
     90     0, 3, 2,
     91     0, 4, 5,
     92     0, 5, 1,
     93     0, 2, 4,
     94     1, 5, 3
     95 };
     96 
     97 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
     98 static const int kLineSegNumVertices = 6;
     99 static const int kLineSegsNumInIdxBuffer = 256;
    100 
    101 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    102 
    103 static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
    104     GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    105     return resourceProvider->findOrCreatePatternedIndexBuffer(
    106         kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
    107         gLinesIndexBufferKey);
    108 }
    109 
    110 // Takes 178th time of logf on Z600 / VC2010
    111 static int get_float_exp(float x) {
    112     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
    113 #ifdef SK_DEBUG
    114     static bool tested;
    115     if (!tested) {
    116         tested = true;
    117         SkASSERT(get_float_exp(0.25f) == -2);
    118         SkASSERT(get_float_exp(0.3f) == -2);
    119         SkASSERT(get_float_exp(0.5f) == -1);
    120         SkASSERT(get_float_exp(1.f) == 0);
    121         SkASSERT(get_float_exp(2.f) == 1);
    122         SkASSERT(get_float_exp(2.5f) == 1);
    123         SkASSERT(get_float_exp(8.f) == 3);
    124         SkASSERT(get_float_exp(100.f) == 6);
    125         SkASSERT(get_float_exp(1000.f) == 9);
    126         SkASSERT(get_float_exp(1024.f) == 10);
    127         SkASSERT(get_float_exp(3000000.f) == 21);
    128     }
    129 #endif
    130     const int* iptr = (const int*)&x;
    131     return (((*iptr) & 0x7f800000) >> 23) - 127;
    132 }
    133 
    134 // Uses the max curvature function for quads to estimate
    135 // where to chop the conic. If the max curvature is not
    136 // found along the curve segment it will return 1 and
    137 // dst[0] is the original conic. If it returns 2 the dst[0]
    138 // and dst[1] are the two new conics.
    139 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    140     SkScalar t = SkFindQuadMaxCurvature(src);
    141     if (t == 0) {
    142         if (dst) {
    143             dst[0].set(src, weight);
    144         }
    145         return 1;
    146     } else {
    147         if (dst) {
    148             SkConic conic;
    149             conic.set(src, weight);
    150             if (!conic.chopAt(t, dst)) {
    151                 dst[0].set(src, weight);
    152                 return 1;
    153             }
    154         }
    155         return 2;
    156     }
    157 }
    158 
    159 // Calls split_conic on the entire conic and then once more on each subsection.
    160 // Most cases will result in either 1 conic (chop point is not within t range)
    161 // or 3 points (split once and then one subsection is split again).
    162 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    163     SkConic dstTemp[2];
    164     int conicCnt = split_conic(src, dstTemp, weight);
    165     if (2 == conicCnt) {
    166         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
    167         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    168     } else {
    169         dst[0] = dstTemp[0];
    170     }
    171     return conicCnt;
    172 }
    173 
    174 // returns 0 if quad/conic is degen or close to it
    175 // in this case approx the path with lines
    176 // otherwise returns 1
    177 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
    178     static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
    179     static const SkScalar gDegenerateToLineTolSqd =
    180         gDegenerateToLineTol * gDegenerateToLineTol;
    181 
    182     if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
    183         SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
    184         return 1;
    185     }
    186 
    187     *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
    188     if (*dsqd < gDegenerateToLineTolSqd) {
    189         return 1;
    190     }
    191 
    192     if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
    193         return 1;
    194     }
    195     return 0;
    196 }
    197 
    198 static int is_degen_quad_or_conic(const SkPoint p[3]) {
    199     SkScalar dsqd;
    200     return is_degen_quad_or_conic(p, &dsqd);
    201 }
    202 
    203 // we subdivide the quads to avoid huge overfill
    204 // if it returns -1 then should be drawn as lines
    205 static int num_quad_subdivs(const SkPoint p[3]) {
    206     SkScalar dsqd;
    207     if (is_degen_quad_or_conic(p, &dsqd)) {
    208         return -1;
    209     }
    210 
    211     // tolerance of triangle height in pixels
    212     // tuned on windows  Quadro FX 380 / Z600
    213     // trade off of fill vs cpu time on verts
    214     // maybe different when do this using gpu (geo or tess shaders)
    215     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
    216 
    217     if (dsqd <= gSubdivTol * gSubdivTol) {
    218         return 0;
    219     } else {
    220         static const int kMaxSub = 4;
    221         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
    222         // = log4(d*d/tol*tol)/2
    223         // = log2(d*d/tol*tol)
    224 
    225         // +1 since we're ignoring the mantissa contribution.
    226         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
    227         log = SkTMin(SkTMax(0, log), kMaxSub);
    228         return log;
    229     }
    230 }
    231 
    232 /**
    233  * Generates the lines and quads to be rendered. Lines are always recorded in
    234  * device space. We will do a device space bloat to account for the 1pixel
    235  * thickness.
    236  * Quads are recorded in device space unless m contains
    237  * perspective, then in they are in src space. We do this because we will
    238  * subdivide large quads to reduce over-fill. This subdivision has to be
    239  * performed before applying the perspective matrix.
    240  */
    241 static int gather_lines_and_quads(const SkPath& path,
    242                                   const SkMatrix& m,
    243                                   const SkIRect& devClipBounds,
    244                                   SkScalar capLength,
    245                                   GrAAHairLinePathRenderer::PtArray* lines,
    246                                   GrAAHairLinePathRenderer::PtArray* quads,
    247                                   GrAAHairLinePathRenderer::PtArray* conics,
    248                                   GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
    249                                   GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    250     SkPath::Iter iter(path, false);
    251 
    252     int totalQuadCount = 0;
    253     SkRect bounds;
    254     SkIRect ibounds;
    255 
    256     bool persp = m.hasPerspective();
    257 
    258     // Whenever a degenerate, zero-length contour is encountered, this code will insert a
    259     // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
    260     // suffice for AA square & circle capping.
    261     int verbsInContour = 0; // Does not count moves
    262     bool seenZeroLengthVerb = false;
    263     SkPoint zeroVerbPt;
    264 
    265     for (;;) {
    266         SkPoint pathPts[4];
    267         SkPoint devPts[4];
    268         SkPath::Verb verb = iter.next(pathPts, false);
    269         switch (verb) {
    270             case SkPath::kConic_Verb: {
    271                 SkConic dst[4];
    272                 // We chop the conics to create tighter clipping to hide error
    273                 // that appears near max curvature of very thin conics. Thin
    274                 // hyperbolas with high weight still show error.
    275                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
    276                 for (int i = 0; i < conicCnt; ++i) {
    277                     SkPoint* chopPnts = dst[i].fPts;
    278                     m.mapPoints(devPts, chopPnts, 3);
    279                     bounds.setBounds(devPts, 3);
    280                     bounds.outset(SK_Scalar1, SK_Scalar1);
    281                     bounds.roundOut(&ibounds);
    282                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    283                         if (is_degen_quad_or_conic(devPts)) {
    284                             SkPoint* pts = lines->push_back_n(4);
    285                             pts[0] = devPts[0];
    286                             pts[1] = devPts[1];
    287                             pts[2] = devPts[1];
    288                             pts[3] = devPts[2];
    289                             if (verbsInContour == 0 && i == 0 &&
    290                                     pts[0] == pts[1] && pts[2] == pts[3]) {
    291                                 seenZeroLengthVerb = true;
    292                                 zeroVerbPt = pts[0];
    293                             }
    294                         } else {
    295                             // when in perspective keep conics in src space
    296                             SkPoint* cPts = persp ? chopPnts : devPts;
    297                             SkPoint* pts = conics->push_back_n(3);
    298                             pts[0] = cPts[0];
    299                             pts[1] = cPts[1];
    300                             pts[2] = cPts[2];
    301                             conicWeights->push_back() = dst[i].fW;
    302                         }
    303                     }
    304                 }
    305                 verbsInContour++;
    306                 break;
    307             }
    308             case SkPath::kMove_Verb:
    309                 // New contour (and last one was unclosed). If it was just a zero length drawing
    310                 // operation, and we're supposed to draw caps, then add a tiny line.
    311                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
    312                     SkPoint* pts = lines->push_back_n(2);
    313                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    314                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    315                 }
    316                 verbsInContour = 0;
    317                 seenZeroLengthVerb = false;
    318                 break;
    319             case SkPath::kLine_Verb:
    320                 m.mapPoints(devPts, pathPts, 2);
    321                 bounds.setBounds(devPts, 2);
    322                 bounds.outset(SK_Scalar1, SK_Scalar1);
    323                 bounds.roundOut(&ibounds);
    324                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    325                     SkPoint* pts = lines->push_back_n(2);
    326                     pts[0] = devPts[0];
    327                     pts[1] = devPts[1];
    328                     if (verbsInContour == 0 && pts[0] == pts[1]) {
    329                         seenZeroLengthVerb = true;
    330                         zeroVerbPt = pts[0];
    331                     }
    332                 }
    333                 verbsInContour++;
    334                 break;
    335             case SkPath::kQuad_Verb: {
    336                 SkPoint choppedPts[5];
    337                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
    338                 // When it is degenerate it allows the approximation with lines to work since the
    339                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
    340                 // degenerate the QuadUVMatrix computed for the points is almost singular which
    341                 // can cause rendering artifacts.
    342                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
    343                 for (int i = 0; i < n; ++i) {
    344                     SkPoint* quadPts = choppedPts + i * 2;
    345                     m.mapPoints(devPts, quadPts, 3);
    346                     bounds.setBounds(devPts, 3);
    347                     bounds.outset(SK_Scalar1, SK_Scalar1);
    348                     bounds.roundOut(&ibounds);
    349 
    350                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    351                         int subdiv = num_quad_subdivs(devPts);
    352                         SkASSERT(subdiv >= -1);
    353                         if (-1 == subdiv) {
    354                             SkPoint* pts = lines->push_back_n(4);
    355                             pts[0] = devPts[0];
    356                             pts[1] = devPts[1];
    357                             pts[2] = devPts[1];
    358                             pts[3] = devPts[2];
    359                             if (verbsInContour == 0 && i == 0 &&
    360                                     pts[0] == pts[1] && pts[2] == pts[3]) {
    361                                 seenZeroLengthVerb = true;
    362                                 zeroVerbPt = pts[0];
    363                             }
    364                         } else {
    365                             // when in perspective keep quads in src space
    366                             SkPoint* qPts = persp ? quadPts : devPts;
    367                             SkPoint* pts = quads->push_back_n(3);
    368                             pts[0] = qPts[0];
    369                             pts[1] = qPts[1];
    370                             pts[2] = qPts[2];
    371                             quadSubdivCnts->push_back() = subdiv;
    372                             totalQuadCount += 1 << subdiv;
    373                         }
    374                     }
    375                 }
    376                 verbsInContour++;
    377                 break;
    378             }
    379             case SkPath::kCubic_Verb:
    380                 m.mapPoints(devPts, pathPts, 4);
    381                 bounds.setBounds(devPts, 4);
    382                 bounds.outset(SK_Scalar1, SK_Scalar1);
    383                 bounds.roundOut(&ibounds);
    384                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    385                     PREALLOC_PTARRAY(32) q;
    386                     // We convert cubics to quadratics (for now).
    387                     // In perspective have to do conversion in src space.
    388                     if (persp) {
    389                         SkScalar tolScale =
    390                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
    391                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
    392                     } else {
    393                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
    394                     }
    395                     for (int i = 0; i < q.count(); i += 3) {
    396                         SkPoint* qInDevSpace;
    397                         // bounds has to be calculated in device space, but q is
    398                         // in src space when there is perspective.
    399                         if (persp) {
    400                             m.mapPoints(devPts, &q[i], 3);
    401                             bounds.setBounds(devPts, 3);
    402                             qInDevSpace = devPts;
    403                         } else {
    404                             bounds.setBounds(&q[i], 3);
    405                             qInDevSpace = &q[i];
    406                         }
    407                         bounds.outset(SK_Scalar1, SK_Scalar1);
    408                         bounds.roundOut(&ibounds);
    409                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    410                             int subdiv = num_quad_subdivs(qInDevSpace);
    411                             SkASSERT(subdiv >= -1);
    412                             if (-1 == subdiv) {
    413                                 SkPoint* pts = lines->push_back_n(4);
    414                                 // lines should always be in device coords
    415                                 pts[0] = qInDevSpace[0];
    416                                 pts[1] = qInDevSpace[1];
    417                                 pts[2] = qInDevSpace[1];
    418                                 pts[3] = qInDevSpace[2];
    419                                 if (verbsInContour == 0 && i == 0 &&
    420                                         pts[0] == pts[1] && pts[2] == pts[3]) {
    421                                     seenZeroLengthVerb = true;
    422                                     zeroVerbPt = pts[0];
    423                                 }
    424                             } else {
    425                                 SkPoint* pts = quads->push_back_n(3);
    426                                 // q is already in src space when there is no
    427                                 // perspective and dev coords otherwise.
    428                                 pts[0] = q[0 + i];
    429                                 pts[1] = q[1 + i];
    430                                 pts[2] = q[2 + i];
    431                                 quadSubdivCnts->push_back() = subdiv;
    432                                 totalQuadCount += 1 << subdiv;
    433                             }
    434                         }
    435                     }
    436                 }
    437                 verbsInContour++;
    438                 break;
    439             case SkPath::kClose_Verb:
    440                 // Contour is closed, so we don't need to grow the starting line, unless it's
    441                 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
    442                 if (capLength > 0) {
    443                     if (seenZeroLengthVerb && verbsInContour == 1) {
    444                         SkPoint* pts = lines->push_back_n(2);
    445                         pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    446                         pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    447                     } else if (verbsInContour == 0) {
    448                         // Contour was (moveTo, close). Add a line.
    449                         m.mapPoints(devPts, pathPts, 1);
    450                         devPts[1] = devPts[0];
    451                         bounds.setBounds(devPts, 2);
    452                         bounds.outset(SK_Scalar1, SK_Scalar1);
    453                         bounds.roundOut(&ibounds);
    454                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    455                             SkPoint* pts = lines->push_back_n(2);
    456                             pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
    457                             pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
    458                         }
    459                     }
    460                 }
    461                 break;
    462             case SkPath::kDone_Verb:
    463                 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
    464                     // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
    465                     // degenerate, we need to draw a line.
    466                     SkPoint* pts = lines->push_back_n(2);
    467                     pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
    468                     pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
    469                 }
    470                 return totalQuadCount;
    471         }
    472     }
    473 }
    474 
    475 struct LineVertex {
    476     SkPoint fPos;
    477     float fCoverage;
    478 };
    479 
    480 struct BezierVertex {
    481     SkPoint fPos;
    482     union {
    483         struct {
    484             SkScalar fKLM[3];
    485         } fConic;
    486         SkVector   fQuadCoord;
    487         struct {
    488             SkScalar fBogus[4];
    489         };
    490     };
    491 };
    492 
    493 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
    494 
    495 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
    496                             const SkPoint& ptB, const SkVector& normB,
    497                             SkPoint* result) {
    498 
    499     SkScalar lineAW = -normA.dot(ptA);
    500     SkScalar lineBW = -normB.dot(ptB);
    501 
    502     SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    503     wInv = SkScalarInvert(wInv);
    504 
    505     result->fX = normA.fY * lineBW - lineAW * normB.fY;
    506     result->fX *= wInv;
    507 
    508     result->fY = lineAW * normB.fX - normA.fX * lineBW;
    509     result->fY *= wInv;
    510 }
    511 
    512 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
    513     // this should be in the src space, not dev coords, when we have perspective
    514     GrPathUtils::QuadUVMatrix DevToUV(qpts);
    515     DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
    516 }
    517 
    518 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
    519                        const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    520     SkASSERT(!toDevice == !toSrc);
    521     // original quad is specified by tri a,b,c
    522     SkPoint a = qpts[0];
    523     SkPoint b = qpts[1];
    524     SkPoint c = qpts[2];
    525 
    526     if (toDevice) {
    527         toDevice->mapPoints(&a, 1);
    528         toDevice->mapPoints(&b, 1);
    529         toDevice->mapPoints(&c, 1);
    530     }
    531     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    532     // to edges ab and bc:
    533     //
    534     //   before       |        after
    535     //                |              b0
    536     //         b      |
    537     //                |
    538     //                |     a0            c0
    539     // a         c    |        a1       c1
    540     //
    541     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    542     // respectively.
    543     BezierVertex& a0 = verts[0];
    544     BezierVertex& a1 = verts[1];
    545     BezierVertex& b0 = verts[2];
    546     BezierVertex& c0 = verts[3];
    547     BezierVertex& c1 = verts[4];
    548 
    549     SkVector ab = b;
    550     ab -= a;
    551     SkVector ac = c;
    552     ac -= a;
    553     SkVector cb = b;
    554     cb -= c;
    555 
    556     // We should have already handled degenerates
    557     SkASSERT(ab.length() > 0 && cb.length() > 0);
    558 
    559     ab.normalize();
    560     SkVector abN;
    561     SkPointPriv::SetOrthog(&abN, ab, SkPointPriv::kLeft_Side);
    562     if (abN.dot(ac) > 0) {
    563         abN.negate();
    564     }
    565 
    566     cb.normalize();
    567     SkVector cbN;
    568     SkPointPriv::SetOrthog(&cbN, cb, SkPointPriv::kLeft_Side);
    569     if (cbN.dot(ac) < 0) {
    570         cbN.negate();
    571     }
    572 
    573     a0.fPos = a;
    574     a0.fPos += abN;
    575     a1.fPos = a;
    576     a1.fPos -= abN;
    577 
    578     c0.fPos = c;
    579     c0.fPos += cbN;
    580     c1.fPos = c;
    581     c1.fPos -= cbN;
    582 
    583     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
    584 
    585     if (toSrc) {
    586         SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
    587                                           kQuadNumVertices);
    588     }
    589 }
    590 
    591 // Equations based off of Loop-Blinn Quadratic GPU Rendering
    592 // Input Parametric:
    593 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
    594 // Output Implicit:
    595 // f(x, y, w) = f(P) = K^2 - LM
    596 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
    597 // k, l, m are calculated in function GrPathUtils::getConicKLM
    598 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
    599                              const SkScalar weight) {
    600     SkMatrix klm;
    601 
    602     GrPathUtils::getConicKLM(p, weight, &klm);
    603 
    604     for (int i = 0; i < kQuadNumVertices; ++i) {
    605         const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
    606         klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
    607     }
    608 }
    609 
    610 static void add_conics(const SkPoint p[3],
    611                        const SkScalar weight,
    612                        const SkMatrix* toDevice,
    613                        const SkMatrix* toSrc,
    614                        BezierVertex** vert) {
    615     bloat_quad(p, toDevice, toSrc, *vert);
    616     set_conic_coeffs(p, *vert, weight);
    617     *vert += kQuadNumVertices;
    618 }
    619 
    620 static void add_quads(const SkPoint p[3],
    621                       int subdiv,
    622                       const SkMatrix* toDevice,
    623                       const SkMatrix* toSrc,
    624                       BezierVertex** vert) {
    625     SkASSERT(subdiv >= 0);
    626     if (subdiv) {
    627         SkPoint newP[5];
    628         SkChopQuadAtHalf(p, newP);
    629         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
    630         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
    631     } else {
    632         bloat_quad(p, toDevice, toSrc, *vert);
    633         set_uv_quad(p, *vert);
    634         *vert += kQuadNumVertices;
    635     }
    636 }
    637 
    638 static void add_line(const SkPoint p[2],
    639                      const SkMatrix* toSrc,
    640                      uint8_t coverage,
    641                      LineVertex** vert) {
    642     const SkPoint& a = p[0];
    643     const SkPoint& b = p[1];
    644 
    645     SkVector ortho, vec = b;
    646     vec -= a;
    647 
    648     SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
    649 
    650     if (vec.setLength(SK_ScalarHalf)) {
    651         // Create a vector orthogonal to 'vec' and of unit length
    652         ortho.fX = 2.0f * vec.fY;
    653         ortho.fY = -2.0f * vec.fX;
    654 
    655         float floatCoverage = GrNormalizeByteToFloat(coverage);
    656 
    657         if (lengthSqd >= 1.0f) {
    658             // Relative to points a and b:
    659             // The inner vertices are inset half a pixel along the line a,b
    660             (*vert)[0].fPos = a + vec;
    661             (*vert)[0].fCoverage = floatCoverage;
    662             (*vert)[1].fPos = b - vec;
    663             (*vert)[1].fCoverage = floatCoverage;
    664         } else {
    665             // The inner vertices are inset a distance of length(a,b) from the outer edge of
    666             // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
    667             // The coverage is then modulated by the length. This gives us the correct
    668             // coverage for rects shorter than a pixel as they get translated subpixel amounts
    669             // inside of a pixel.
    670             SkScalar length = SkScalarSqrt(lengthSqd);
    671             (*vert)[0].fPos = b - vec;
    672             (*vert)[0].fCoverage = floatCoverage * length;
    673             (*vert)[1].fPos = a + vec;
    674             (*vert)[1].fCoverage = floatCoverage * length;
    675         }
    676         // Relative to points a and b:
    677         // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
    678         // orthogonally.
    679         (*vert)[2].fPos = a - vec + ortho;
    680         (*vert)[2].fCoverage = 0;
    681         (*vert)[3].fPos = b + vec + ortho;
    682         (*vert)[3].fCoverage = 0;
    683         (*vert)[4].fPos = a - vec - ortho;
    684         (*vert)[4].fCoverage = 0;
    685         (*vert)[5].fPos = b + vec - ortho;
    686         (*vert)[5].fCoverage = 0;
    687 
    688         if (toSrc) {
    689             SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
    690                                               kLineSegNumVertices);
    691         }
    692     } else {
    693         // just make it degenerate and likely offscreen
    694         for (int i = 0; i < kLineSegNumVertices; ++i) {
    695             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
    696         }
    697     }
    698 
    699     *vert += kLineSegNumVertices;
    700 }
    701 
    702 ///////////////////////////////////////////////////////////////////////////////
    703 
    704 GrPathRenderer::CanDrawPath
    705 GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    706     if (GrAAType::kCoverage != args.fAAType) {
    707         return CanDrawPath::kNo;
    708     }
    709 
    710     if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
    711         return CanDrawPath::kNo;
    712     }
    713 
    714     // We don't currently handle dashing in this class though perhaps we should.
    715     if (args.fShape->style().pathEffect()) {
    716         return CanDrawPath::kNo;
    717     }
    718 
    719     if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
    720         args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
    721         return CanDrawPath::kYes;
    722     }
    723 
    724     return CanDrawPath::kNo;
    725 }
    726 
    727 template <class VertexType>
    728 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
    729 {
    730     SkRect tolDevBounds = devBounds;
    731     // The bounds ought to be tight, but in perspective the below code runs the verts
    732     // through the view matrix to get back to dev coords, which can introduce imprecision.
    733     if (viewMatrix.hasPerspective()) {
    734         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    735     } else {
    736         // Non-persp matrices cause this path renderer to draw in device space.
    737         SkASSERT(viewMatrix.isIdentity());
    738     }
    739     SkRect actualBounds;
    740 
    741     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    742     bool first = true;
    743     for (int i = 0; i < vCount; ++i) {
    744         SkPoint pos = verts[i].fPos;
    745         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
    746         if (SK_ScalarMax == pos.fX) {
    747             continue;
    748         }
    749         viewMatrix.mapPoints(&pos, 1);
    750         if (first) {
    751             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
    752             first = false;
    753         } else {
    754             SkRectPriv::GrowToInclude(&actualBounds, pos);
    755         }
    756     }
    757     if (!first) {
    758         return tolDevBounds.contains(actualBounds);
    759     }
    760 
    761     return true;
    762 }
    763 
    764 namespace {
    765 
    766 class AAHairlineOp final : public GrMeshDrawOp {
    767 private:
    768     using Helper = GrSimpleMeshDrawOpHelperWithStencil;
    769 
    770 public:
    771     DEFINE_OP_CLASS_ID
    772 
    773     static std::unique_ptr<GrDrawOp> Make(GrPaint&& paint,
    774                                           const SkMatrix& viewMatrix,
    775                                           const SkPath& path,
    776                                           const GrStyle& style,
    777                                           const SkIRect& devClipBounds,
    778                                           const GrUserStencilSettings* stencilSettings) {
    779         SkScalar hairlineCoverage;
    780         uint8_t newCoverage = 0xff;
    781         if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
    782             newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
    783         }
    784 
    785         const SkStrokeRec& stroke = style.strokeRec();
    786         SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
    787 
    788         return Helper::FactoryHelper<AAHairlineOp>(std::move(paint), newCoverage, viewMatrix, path,
    789                                                    devClipBounds, capLength, stencilSettings);
    790     }
    791 
    792     AAHairlineOp(const Helper::MakeArgs& helperArgs,
    793                  GrColor color,
    794                  uint8_t coverage,
    795                  const SkMatrix& viewMatrix,
    796                  const SkPath& path,
    797                  SkIRect devClipBounds,
    798                  SkScalar capLength,
    799                  const GrUserStencilSettings* stencilSettings)
    800             : INHERITED(ClassID())
    801             , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
    802             , fColor(color)
    803             , fCoverage(coverage) {
    804         fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
    805 
    806         this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
    807                                    IsZeroArea::kYes);
    808     }
    809 
    810     const char* name() const override { return "AAHairlineOp"; }
    811 
    812     void visitProxies(const VisitProxyFunc& func) const override {
    813         fHelper.visitProxies(func);
    814     }
    815 
    816     SkString dumpInfo() const override {
    817         SkString string;
    818         string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
    819                        fPaths.count());
    820         string += INHERITED::dumpInfo();
    821         string += fHelper.dumpInfo();
    822         return string;
    823     }
    824 
    825     FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
    826 
    827     RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
    828                                 GrPixelConfigIsClamped dstIsClamped) override {
    829         return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped,
    830                                             GrProcessorAnalysisCoverage::kSingleChannel, &fColor);
    831     }
    832 
    833 private:
    834     void onPrepareDraws(Target*) override;
    835 
    836     typedef SkTArray<SkPoint, true> PtArray;
    837     typedef SkTArray<int, true> IntArray;
    838     typedef SkTArray<float, true> FloatArray;
    839 
    840     bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
    841         AAHairlineOp* that = t->cast<AAHairlineOp>();
    842 
    843         if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
    844             return false;
    845         }
    846 
    847         if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
    848             return false;
    849         }
    850 
    851         // We go to identity if we don't have perspective
    852         if (this->viewMatrix().hasPerspective() &&
    853             !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    854             return false;
    855         }
    856 
    857         // TODO we can actually combine hairlines if they are the same color in a kind of bulk
    858         // method but we haven't implemented this yet
    859         // TODO investigate going to vertex color and coverage?
    860         if (this->coverage() != that->coverage()) {
    861             return false;
    862         }
    863 
    864         if (this->color() != that->color()) {
    865             return false;
    866         }
    867 
    868         if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
    869             return false;
    870         }
    871 
    872         fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
    873         this->joinBounds(*that);
    874         return true;
    875     }
    876 
    877     GrColor color() const { return fColor; }
    878     uint8_t coverage() const { return fCoverage; }
    879     const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
    880 
    881     struct PathData {
    882         SkMatrix fViewMatrix;
    883         SkPath fPath;
    884         SkIRect fDevClipBounds;
    885         SkScalar fCapLength;
    886     };
    887 
    888     SkSTArray<1, PathData, true> fPaths;
    889     Helper fHelper;
    890     GrColor fColor;
    891     uint8_t fCoverage;
    892 
    893     typedef GrMeshDrawOp INHERITED;
    894 };
    895 
    896 }  // anonymous namespace
    897 
    898 void AAHairlineOp::onPrepareDraws(Target* target) {
    899     // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    900     SkMatrix invert;
    901     if (!this->viewMatrix().invert(&invert)) {
    902         return;
    903     }
    904 
    905     // we will transform to identity space if the viewmatrix does not have perspective
    906     bool hasPerspective = this->viewMatrix().hasPerspective();
    907     const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    908     const SkMatrix* geometryProcessorLocalM = &invert;
    909     const SkMatrix* toDevice = nullptr;
    910     const SkMatrix* toSrc = nullptr;
    911     if (hasPerspective) {
    912         geometryProcessorViewM = &this->viewMatrix();
    913         geometryProcessorLocalM = &SkMatrix::I();
    914         toDevice = &this->viewMatrix();
    915         toSrc = &invert;
    916     }
    917 
    918     // This is hand inlined for maximum performance.
    919     PREALLOC_PTARRAY(128) lines;
    920     PREALLOC_PTARRAY(128) quads;
    921     PREALLOC_PTARRAY(128) conics;
    922     IntArray qSubdivs;
    923     FloatArray cWeights;
    924     int quadCount = 0;
    925 
    926     int instanceCount = fPaths.count();
    927     for (int i = 0; i < instanceCount; i++) {
    928         const PathData& args = fPaths[i];
    929         quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
    930                                             args.fCapLength, &lines, &quads, &conics, &qSubdivs,
    931                                             &cWeights);
    932     }
    933 
    934     int lineCount = lines.count() / 2;
    935     int conicCount = conics.count() / 3;
    936 
    937     const GrPipeline* pipeline = fHelper.makePipeline(target);
    938     // do lines first
    939     if (lineCount) {
    940         sk_sp<GrGeometryProcessor> lineGP;
    941         {
    942             using namespace GrDefaultGeoProcFactory;
    943 
    944             Color color(this->color());
    945             LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
    946                                                               : LocalCoords::kUnused_Type);
    947             localCoords.fMatrix = geometryProcessorLocalM;
    948             lineGP = GrDefaultGeoProcFactory::Make(color, Coverage::kAttribute_Type, localCoords,
    949                                                    *geometryProcessorViewM);
    950         }
    951 
    952         sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
    953 
    954         const GrBuffer* vertexBuffer;
    955         int firstVertex;
    956 
    957         size_t vertexStride = lineGP->getVertexStride();
    958         int vertexCount = kLineSegNumVertices * lineCount;
    959         LineVertex* verts = reinterpret_cast<LineVertex*>(
    960             target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
    961 
    962         if (!verts|| !linesIndexBuffer) {
    963             SkDebugf("Could not allocate vertices\n");
    964             return;
    965         }
    966 
    967         SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
    968 
    969         for (int i = 0; i < lineCount; ++i) {
    970             add_line(&lines[2*i], toSrc, this->coverage(), &verts);
    971         }
    972 
    973         GrMesh mesh(GrPrimitiveType::kTriangles);
    974         mesh.setIndexedPatterned(linesIndexBuffer.get(), kIdxsPerLineSeg, kLineSegNumVertices,
    975                                  lineCount, kLineSegsNumInIdxBuffer);
    976         mesh.setVertexData(vertexBuffer, firstVertex);
    977         target->draw(lineGP.get(), pipeline, mesh);
    978     }
    979 
    980     if (quadCount || conicCount) {
    981         sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
    982                                                              *geometryProcessorViewM,
    983                                                              GrClipEdgeType::kHairlineAA,
    984                                                              target->caps(),
    985                                                              *geometryProcessorLocalM,
    986                                                              fHelper.usesLocalCoords(),
    987                                                              this->coverage()));
    988 
    989         sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
    990                                                                *geometryProcessorViewM,
    991                                                                GrClipEdgeType::kHairlineAA,
    992                                                                target->caps(),
    993                                                                *geometryProcessorLocalM,
    994                                                                fHelper.usesLocalCoords(),
    995                                                                this->coverage()));
    996 
    997         const GrBuffer* vertexBuffer;
    998         int firstVertex;
    999 
   1000         sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
   1001 
   1002         size_t vertexStride = sizeof(BezierVertex);
   1003         int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
   1004         void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
   1005                                                  &vertexBuffer, &firstVertex);
   1006 
   1007         if (!vertices || !quadsIndexBuffer) {
   1008             SkDebugf("Could not allocate vertices\n");
   1009             return;
   1010         }
   1011 
   1012         // Setup vertices
   1013         BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
   1014 
   1015         int unsubdivQuadCnt = quads.count() / 3;
   1016         for (int i = 0; i < unsubdivQuadCnt; ++i) {
   1017             SkASSERT(qSubdivs[i] >= 0);
   1018             add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
   1019         }
   1020 
   1021         // Start Conics
   1022         for (int i = 0; i < conicCount; ++i) {
   1023             add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
   1024         }
   1025 
   1026         if (quadCount > 0) {
   1027             GrMesh mesh(GrPrimitiveType::kTriangles);
   1028             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
   1029                                      quadCount, kQuadsNumInIdxBuffer);
   1030             mesh.setVertexData(vertexBuffer, firstVertex);
   1031             target->draw(quadGP.get(), pipeline, mesh);
   1032             firstVertex += quadCount * kQuadNumVertices;
   1033         }
   1034 
   1035         if (conicCount > 0) {
   1036             GrMesh mesh(GrPrimitiveType::kTriangles);
   1037             mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
   1038                                      conicCount, kQuadsNumInIdxBuffer);
   1039             mesh.setVertexData(vertexBuffer, firstVertex);
   1040             target->draw(conicGP.get(), pipeline, mesh);
   1041         }
   1042     }
   1043 }
   1044 
   1045 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
   1046     GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
   1047                               "GrAAHairlinePathRenderer::onDrawPath");
   1048     SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
   1049 
   1050     SkIRect devClipBounds;
   1051     args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
   1052                                       args.fRenderTargetContext->height(),
   1053                                       &devClipBounds);
   1054     SkPath path;
   1055     args.fShape->asPath(&path);
   1056     std::unique_ptr<GrDrawOp> op =
   1057             AAHairlineOp::Make(std::move(args.fPaint), *args.fViewMatrix, path,
   1058                                args.fShape->style(), devClipBounds, args.fUserStencilSettings);
   1059     args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
   1060     return true;
   1061 }
   1062 
   1063 ///////////////////////////////////////////////////////////////////////////////////////////////////
   1064 
   1065 #if GR_TEST_UTILS
   1066 
   1067 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
   1068     SkMatrix viewMatrix = GrTest::TestMatrix(random);
   1069     SkPath path = GrTest::TestPath(random);
   1070     SkIRect devClipBounds;
   1071     devClipBounds.setEmpty();
   1072     return AAHairlineOp::Make(std::move(paint), viewMatrix, path, GrStyle::SimpleHairline(),
   1073                               devClipBounds, GrGetRandomStencil(random, context));
   1074 }
   1075 
   1076 #endif
   1077