Home | History | Annotate | Download | only in CodeGen
      1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AggressiveAntiDepBreaker class, which
     11 // implements register anti-dependence breaking during post-RA
     12 // scheduling. It attempts to break all anti-dependencies within a
     13 // block.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "post-RA-sched"
     18 #include "AggressiveAntiDepBreaker.h"
     19 #include "RegisterClassInfo.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstr.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetMachine.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Target/TargetRegisterInfo.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 using namespace llvm;
     32 
     33 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
     34 static cl::opt<int>
     35 DebugDiv("agg-antidep-debugdiv",
     36          cl::desc("Debug control for aggressive anti-dep breaker"),
     37          cl::init(0), cl::Hidden);
     38 static cl::opt<int>
     39 DebugMod("agg-antidep-debugmod",
     40          cl::desc("Debug control for aggressive anti-dep breaker"),
     41          cl::init(0), cl::Hidden);
     42 
     43 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
     44                                                MachineBasicBlock *BB) :
     45   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
     46   GroupNodeIndices(TargetRegs, 0),
     47   KillIndices(TargetRegs, 0),
     48   DefIndices(TargetRegs, 0)
     49 {
     50   const unsigned BBSize = BB->size();
     51   for (unsigned i = 0; i < NumTargetRegs; ++i) {
     52     // Initialize all registers to be in their own group. Initially we
     53     // assign the register to the same-indexed GroupNode.
     54     GroupNodeIndices[i] = i;
     55     // Initialize the indices to indicate that no registers are live.
     56     KillIndices[i] = ~0u;
     57     DefIndices[i] = BBSize;
     58   }
     59 }
     60 
     61 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
     62   unsigned Node = GroupNodeIndices[Reg];
     63   while (GroupNodes[Node] != Node)
     64     Node = GroupNodes[Node];
     65 
     66   return Node;
     67 }
     68 
     69 void AggressiveAntiDepState::GetGroupRegs(
     70   unsigned Group,
     71   std::vector<unsigned> &Regs,
     72   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
     73 {
     74   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
     75     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
     76       Regs.push_back(Reg);
     77   }
     78 }
     79 
     80 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
     81 {
     82   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
     83   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
     84 
     85   // find group for each register
     86   unsigned Group1 = GetGroup(Reg1);
     87   unsigned Group2 = GetGroup(Reg2);
     88 
     89   // if either group is 0, then that must become the parent
     90   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
     91   unsigned Other = (Parent == Group1) ? Group2 : Group1;
     92   GroupNodes.at(Other) = Parent;
     93   return Parent;
     94 }
     95 
     96 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
     97 {
     98   // Create a new GroupNode for Reg. Reg's existing GroupNode must
     99   // stay as is because there could be other GroupNodes referring to
    100   // it.
    101   unsigned idx = GroupNodes.size();
    102   GroupNodes.push_back(idx);
    103   GroupNodeIndices[Reg] = idx;
    104   return idx;
    105 }
    106 
    107 bool AggressiveAntiDepState::IsLive(unsigned Reg)
    108 {
    109   // KillIndex must be defined and DefIndex not defined for a register
    110   // to be live.
    111   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
    112 }
    113 
    114 
    115 
    116 AggressiveAntiDepBreaker::
    117 AggressiveAntiDepBreaker(MachineFunction& MFi,
    118                          const RegisterClassInfo &RCI,
    119                          TargetSubtargetInfo::RegClassVector& CriticalPathRCs) :
    120   AntiDepBreaker(), MF(MFi),
    121   MRI(MF.getRegInfo()),
    122   TII(MF.getTarget().getInstrInfo()),
    123   TRI(MF.getTarget().getRegisterInfo()),
    124   RegClassInfo(RCI),
    125   State(NULL) {
    126   /* Collect a bitset of all registers that are only broken if they
    127      are on the critical path. */
    128   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
    129     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
    130     if (CriticalPathSet.none())
    131       CriticalPathSet = CPSet;
    132     else
    133       CriticalPathSet |= CPSet;
    134    }
    135 
    136   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
    137   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
    138              r = CriticalPathSet.find_next(r))
    139           dbgs() << " " << TRI->getName(r));
    140   DEBUG(dbgs() << '\n');
    141 }
    142 
    143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
    144   delete State;
    145 }
    146 
    147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
    148   assert(State == NULL);
    149   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
    150 
    151   bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
    152   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    153   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    154 
    155   // Determine the live-out physregs for this block.
    156   if (IsReturnBlock) {
    157     // In a return block, examine the function live-out regs.
    158     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
    159          E = MRI.liveout_end(); I != E; ++I) {
    160       for (const unsigned *Alias = TRI->getOverlaps(*I);
    161            unsigned Reg = *Alias; ++Alias) {
    162         State->UnionGroups(Reg, 0);
    163         KillIndices[Reg] = BB->size();
    164         DefIndices[Reg] = ~0u;
    165       }
    166     }
    167   }
    168 
    169   // In a non-return block, examine the live-in regs of all successors.
    170   // Note a return block can have successors if the return instruction is
    171   // predicated.
    172   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    173          SE = BB->succ_end(); SI != SE; ++SI)
    174     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    175            E = (*SI)->livein_end(); I != E; ++I) {
    176       for (const unsigned *Alias = TRI->getOverlaps(*I);
    177            unsigned Reg = *Alias; ++Alias) {
    178         State->UnionGroups(Reg, 0);
    179         KillIndices[Reg] = BB->size();
    180         DefIndices[Reg] = ~0u;
    181       }
    182     }
    183 
    184   // Mark live-out callee-saved registers. In a return block this is
    185   // all callee-saved registers. In non-return this is any
    186   // callee-saved register that is not saved in the prolog.
    187   const MachineFrameInfo *MFI = MF.getFrameInfo();
    188   BitVector Pristine = MFI->getPristineRegs(BB);
    189   for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
    190     unsigned Reg = *I;
    191     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
    192     for (const unsigned *Alias = TRI->getOverlaps(Reg);
    193          unsigned AliasReg = *Alias; ++Alias) {
    194       State->UnionGroups(AliasReg, 0);
    195       KillIndices[AliasReg] = BB->size();
    196       DefIndices[AliasReg] = ~0u;
    197     }
    198   }
    199 }
    200 
    201 void AggressiveAntiDepBreaker::FinishBlock() {
    202   delete State;
    203   State = NULL;
    204 }
    205 
    206 void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
    207                                        unsigned InsertPosIndex) {
    208   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    209 
    210   std::set<unsigned> PassthruRegs;
    211   GetPassthruRegs(MI, PassthruRegs);
    212   PrescanInstruction(MI, Count, PassthruRegs);
    213   ScanInstruction(MI, Count);
    214 
    215   DEBUG(dbgs() << "Observe: ");
    216   DEBUG(MI->dump());
    217   DEBUG(dbgs() << "\tRegs:");
    218 
    219   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    220   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    221     // If Reg is current live, then mark that it can't be renamed as
    222     // we don't know the extent of its live-range anymore (now that it
    223     // has been scheduled). If it is not live but was defined in the
    224     // previous schedule region, then set its def index to the most
    225     // conservative location (i.e. the beginning of the previous
    226     // schedule region).
    227     if (State->IsLive(Reg)) {
    228       DEBUG(if (State->GetGroup(Reg) != 0)
    229               dbgs() << " " << TRI->getName(Reg) << "=g" <<
    230                 State->GetGroup(Reg) << "->g0(region live-out)");
    231       State->UnionGroups(Reg, 0);
    232     } else if ((DefIndices[Reg] < InsertPosIndex)
    233                && (DefIndices[Reg] >= Count)) {
    234       DefIndices[Reg] = Count;
    235     }
    236   }
    237   DEBUG(dbgs() << '\n');
    238 }
    239 
    240 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI,
    241                                                 MachineOperand& MO)
    242 {
    243   if (!MO.isReg() || !MO.isImplicit())
    244     return false;
    245 
    246   unsigned Reg = MO.getReg();
    247   if (Reg == 0)
    248     return false;
    249 
    250   MachineOperand *Op = NULL;
    251   if (MO.isDef())
    252     Op = MI->findRegisterUseOperand(Reg, true);
    253   else
    254     Op = MI->findRegisterDefOperand(Reg);
    255 
    256   return((Op != NULL) && Op->isImplicit());
    257 }
    258 
    259 void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI,
    260                                            std::set<unsigned>& PassthruRegs) {
    261   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    262     MachineOperand &MO = MI->getOperand(i);
    263     if (!MO.isReg()) continue;
    264     if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
    265         IsImplicitDefUse(MI, MO)) {
    266       const unsigned Reg = MO.getReg();
    267       PassthruRegs.insert(Reg);
    268       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    269            *Subreg; ++Subreg) {
    270         PassthruRegs.insert(*Subreg);
    271       }
    272     }
    273   }
    274 }
    275 
    276 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
    277 /// in SU that we want to consider for breaking.
    278 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
    279   SmallSet<unsigned, 4> RegSet;
    280   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    281        P != PE; ++P) {
    282     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
    283       unsigned Reg = P->getReg();
    284       if (RegSet.count(Reg) == 0) {
    285         Edges.push_back(&*P);
    286         RegSet.insert(Reg);
    287       }
    288     }
    289   }
    290 }
    291 
    292 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    293 /// critical path.
    294 static const SUnit *CriticalPathStep(const SUnit *SU) {
    295   const SDep *Next = 0;
    296   unsigned NextDepth = 0;
    297   // Find the predecessor edge with the greatest depth.
    298   if (SU != 0) {
    299     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    300          P != PE; ++P) {
    301       const SUnit *PredSU = P->getSUnit();
    302       unsigned PredLatency = P->getLatency();
    303       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    304       // In the case of a latency tie, prefer an anti-dependency edge over
    305       // other types of edges.
    306       if (NextDepth < PredTotalLatency ||
    307           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    308         NextDepth = PredTotalLatency;
    309         Next = &*P;
    310       }
    311     }
    312   }
    313 
    314   return (Next) ? Next->getSUnit() : 0;
    315 }
    316 
    317 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
    318                                              const char *tag,
    319                                              const char *header,
    320                                              const char *footer) {
    321   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    322   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    323   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    324     RegRefs = State->GetRegRefs();
    325 
    326   if (!State->IsLive(Reg)) {
    327     KillIndices[Reg] = KillIdx;
    328     DefIndices[Reg] = ~0u;
    329     RegRefs.erase(Reg);
    330     State->LeaveGroup(Reg);
    331     DEBUG(if (header != NULL) {
    332         dbgs() << header << TRI->getName(Reg); header = NULL; });
    333     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
    334   }
    335   // Repeat for subregisters.
    336   for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
    337        *Subreg; ++Subreg) {
    338     unsigned SubregReg = *Subreg;
    339     if (!State->IsLive(SubregReg)) {
    340       KillIndices[SubregReg] = KillIdx;
    341       DefIndices[SubregReg] = ~0u;
    342       RegRefs.erase(SubregReg);
    343       State->LeaveGroup(SubregReg);
    344       DEBUG(if (header != NULL) {
    345           dbgs() << header << TRI->getName(Reg); header = NULL; });
    346       DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
    347             State->GetGroup(SubregReg) << tag);
    348     }
    349   }
    350 
    351   DEBUG(if ((header == NULL) && (footer != NULL)) dbgs() << footer);
    352 }
    353 
    354 void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
    355                                                   unsigned Count,
    356                                              std::set<unsigned>& PassthruRegs) {
    357   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    358   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    359     RegRefs = State->GetRegRefs();
    360 
    361   // Handle dead defs by simulating a last-use of the register just
    362   // after the def. A dead def can occur because the def is truly
    363   // dead, or because only a subregister is live at the def. If we
    364   // don't do this the dead def will be incorrectly merged into the
    365   // previous def.
    366   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    367     MachineOperand &MO = MI->getOperand(i);
    368     if (!MO.isReg() || !MO.isDef()) continue;
    369     unsigned Reg = MO.getReg();
    370     if (Reg == 0) continue;
    371 
    372     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
    373   }
    374 
    375   DEBUG(dbgs() << "\tDef Groups:");
    376   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    377     MachineOperand &MO = MI->getOperand(i);
    378     if (!MO.isReg() || !MO.isDef()) continue;
    379     unsigned Reg = MO.getReg();
    380     if (Reg == 0) continue;
    381 
    382     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
    383 
    384     // If MI's defs have a special allocation requirement, don't allow
    385     // any def registers to be changed. Also assume all registers
    386     // defined in a call must not be changed (ABI).
    387     if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
    388         TII->isPredicated(MI)) {
    389       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
    390       State->UnionGroups(Reg, 0);
    391     }
    392 
    393     // Any aliased that are live at this point are completely or
    394     // partially defined here, so group those aliases with Reg.
    395     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    396       unsigned AliasReg = *Alias;
    397       if (State->IsLive(AliasReg)) {
    398         State->UnionGroups(Reg, AliasReg);
    399         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
    400               TRI->getName(AliasReg) << ")");
    401       }
    402     }
    403 
    404     // Note register reference...
    405     const TargetRegisterClass *RC = NULL;
    406     if (i < MI->getDesc().getNumOperands())
    407       RC = TII->getRegClass(MI->getDesc(), i, TRI);
    408     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    409     RegRefs.insert(std::make_pair(Reg, RR));
    410   }
    411 
    412   DEBUG(dbgs() << '\n');
    413 
    414   // Scan the register defs for this instruction and update
    415   // live-ranges.
    416   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    417     MachineOperand &MO = MI->getOperand(i);
    418     if (!MO.isReg() || !MO.isDef()) continue;
    419     unsigned Reg = MO.getReg();
    420     if (Reg == 0) continue;
    421     // Ignore KILLs and passthru registers for liveness...
    422     if (MI->isKill() || (PassthruRegs.count(Reg) != 0))
    423       continue;
    424 
    425     // Update def for Reg and aliases.
    426     for (const unsigned *Alias = TRI->getOverlaps(Reg);
    427          unsigned AliasReg = *Alias; ++Alias)
    428       DefIndices[AliasReg] = Count;
    429   }
    430 }
    431 
    432 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
    433                                                unsigned Count) {
    434   DEBUG(dbgs() << "\tUse Groups:");
    435   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    436     RegRefs = State->GetRegRefs();
    437 
    438   // If MI's uses have special allocation requirement, don't allow
    439   // any use registers to be changed. Also assume all registers
    440   // used in a call must not be changed (ABI).
    441   // FIXME: The issue with predicated instruction is more complex. We are being
    442   // conservatively here because the kill markers cannot be trusted after
    443   // if-conversion:
    444   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    445   // ...
    446   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    447   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    448   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    449   //
    450   // The first R6 kill is not really a kill since it's killed by a predicated
    451   // instruction which may not be executed. The second R6 def may or may not
    452   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    453   // changed.
    454   bool Special = MI->getDesc().isCall() ||
    455     MI->getDesc().hasExtraSrcRegAllocReq() ||
    456     TII->isPredicated(MI);
    457 
    458   // Scan the register uses for this instruction and update
    459   // live-ranges, groups and RegRefs.
    460   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    461     MachineOperand &MO = MI->getOperand(i);
    462     if (!MO.isReg() || !MO.isUse()) continue;
    463     unsigned Reg = MO.getReg();
    464     if (Reg == 0) continue;
    465 
    466     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
    467           State->GetGroup(Reg));
    468 
    469     // It wasn't previously live but now it is, this is a kill. Forget
    470     // the previous live-range information and start a new live-range
    471     // for the register.
    472     HandleLastUse(Reg, Count, "(last-use)");
    473 
    474     if (Special) {
    475       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
    476       State->UnionGroups(Reg, 0);
    477     }
    478 
    479     // Note register reference...
    480     const TargetRegisterClass *RC = NULL;
    481     if (i < MI->getDesc().getNumOperands())
    482       RC = TII->getRegClass(MI->getDesc(), i, TRI);
    483     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
    484     RegRefs.insert(std::make_pair(Reg, RR));
    485   }
    486 
    487   DEBUG(dbgs() << '\n');
    488 
    489   // Form a group of all defs and uses of a KILL instruction to ensure
    490   // that all registers are renamed as a group.
    491   if (MI->isKill()) {
    492     DEBUG(dbgs() << "\tKill Group:");
    493 
    494     unsigned FirstReg = 0;
    495     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    496       MachineOperand &MO = MI->getOperand(i);
    497       if (!MO.isReg()) continue;
    498       unsigned Reg = MO.getReg();
    499       if (Reg == 0) continue;
    500 
    501       if (FirstReg != 0) {
    502         DEBUG(dbgs() << "=" << TRI->getName(Reg));
    503         State->UnionGroups(FirstReg, Reg);
    504       } else {
    505         DEBUG(dbgs() << " " << TRI->getName(Reg));
    506         FirstReg = Reg;
    507       }
    508     }
    509 
    510     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
    511   }
    512 }
    513 
    514 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
    515   BitVector BV(TRI->getNumRegs(), false);
    516   bool first = true;
    517 
    518   // Check all references that need rewriting for Reg. For each, use
    519   // the corresponding register class to narrow the set of registers
    520   // that are appropriate for renaming.
    521   std::pair<std::multimap<unsigned,
    522                      AggressiveAntiDepState::RegisterReference>::iterator,
    523             std::multimap<unsigned,
    524                      AggressiveAntiDepState::RegisterReference>::iterator>
    525     Range = State->GetRegRefs().equal_range(Reg);
    526   for (std::multimap<unsigned,
    527        AggressiveAntiDepState::RegisterReference>::iterator Q = Range.first,
    528        QE = Range.second; Q != QE; ++Q) {
    529     const TargetRegisterClass *RC = Q->second.RC;
    530     if (RC == NULL) continue;
    531 
    532     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
    533     if (first) {
    534       BV |= RCBV;
    535       first = false;
    536     } else {
    537       BV &= RCBV;
    538     }
    539 
    540     DEBUG(dbgs() << " " << RC->getName());
    541   }
    542 
    543   return BV;
    544 }
    545 
    546 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
    547                                 unsigned AntiDepGroupIndex,
    548                                 RenameOrderType& RenameOrder,
    549                                 std::map<unsigned, unsigned> &RenameMap) {
    550   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    551   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    552   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    553     RegRefs = State->GetRegRefs();
    554 
    555   // Collect all referenced registers in the same group as
    556   // AntiDepReg. These all need to be renamed together if we are to
    557   // break the anti-dependence.
    558   std::vector<unsigned> Regs;
    559   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
    560   assert(Regs.size() > 0 && "Empty register group!");
    561   if (Regs.size() == 0)
    562     return false;
    563 
    564   // Find the "superest" register in the group. At the same time,
    565   // collect the BitVector of registers that can be used to rename
    566   // each register.
    567   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
    568         << ":\n");
    569   std::map<unsigned, BitVector> RenameRegisterMap;
    570   unsigned SuperReg = 0;
    571   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    572     unsigned Reg = Regs[i];
    573     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
    574       SuperReg = Reg;
    575 
    576     // If Reg has any references, then collect possible rename regs
    577     if (RegRefs.count(Reg) > 0) {
    578       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
    579 
    580       BitVector BV = GetRenameRegisters(Reg);
    581       RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV));
    582 
    583       DEBUG(dbgs() << " ::");
    584       DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
    585               dbgs() << " " << TRI->getName(r));
    586       DEBUG(dbgs() << "\n");
    587     }
    588   }
    589 
    590   // All group registers should be a subreg of SuperReg.
    591   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    592     unsigned Reg = Regs[i];
    593     if (Reg == SuperReg) continue;
    594     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
    595     assert(IsSub && "Expecting group subregister");
    596     if (!IsSub)
    597       return false;
    598   }
    599 
    600 #ifndef NDEBUG
    601   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
    602   if (DebugDiv > 0) {
    603     static int renamecnt = 0;
    604     if (renamecnt++ % DebugDiv != DebugMod)
    605       return false;
    606 
    607     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
    608       " for debug ***\n";
    609   }
    610 #endif
    611 
    612   // Check each possible rename register for SuperReg in round-robin
    613   // order. If that register is available, and the corresponding
    614   // registers are available for the other group subregisters, then we
    615   // can use those registers to rename.
    616 
    617   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
    618   // check every use of the register and find the largest register class
    619   // that can be used in all of them.
    620   const TargetRegisterClass *SuperRC =
    621     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
    622 
    623   ArrayRef<unsigned> Order = RegClassInfo.getOrder(SuperRC);
    624   if (Order.empty()) {
    625     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
    626     return false;
    627   }
    628 
    629   DEBUG(dbgs() << "\tFind Registers:");
    630 
    631   if (RenameOrder.count(SuperRC) == 0)
    632     RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
    633 
    634   unsigned OrigR = RenameOrder[SuperRC];
    635   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
    636   unsigned R = OrigR;
    637   do {
    638     if (R == 0) R = Order.size();
    639     --R;
    640     const unsigned NewSuperReg = Order[R];
    641     // Don't consider non-allocatable registers
    642     if (!RegClassInfo.isAllocatable(NewSuperReg)) continue;
    643     // Don't replace a register with itself.
    644     if (NewSuperReg == SuperReg) continue;
    645 
    646     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
    647     RenameMap.clear();
    648 
    649     // For each referenced group register (which must be a SuperReg or
    650     // a subregister of SuperReg), find the corresponding subregister
    651     // of NewSuperReg and make sure it is free to be renamed.
    652     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    653       unsigned Reg = Regs[i];
    654       unsigned NewReg = 0;
    655       if (Reg == SuperReg) {
    656         NewReg = NewSuperReg;
    657       } else {
    658         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
    659         if (NewSubRegIdx != 0)
    660           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
    661       }
    662 
    663       DEBUG(dbgs() << " " << TRI->getName(NewReg));
    664 
    665       // Check if Reg can be renamed to NewReg.
    666       BitVector BV = RenameRegisterMap[Reg];
    667       if (!BV.test(NewReg)) {
    668         DEBUG(dbgs() << "(no rename)");
    669         goto next_super_reg;
    670       }
    671 
    672       // If NewReg is dead and NewReg's most recent def is not before
    673       // Regs's kill, it's safe to replace Reg with NewReg. We
    674       // must also check all aliases of NewReg, because we can't define a
    675       // register when any sub or super is already live.
    676       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
    677         DEBUG(dbgs() << "(live)");
    678         goto next_super_reg;
    679       } else {
    680         bool found = false;
    681         for (const unsigned *Alias = TRI->getAliasSet(NewReg);
    682              *Alias; ++Alias) {
    683           unsigned AliasReg = *Alias;
    684           if (State->IsLive(AliasReg) ||
    685               (KillIndices[Reg] > DefIndices[AliasReg])) {
    686             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
    687             found = true;
    688             break;
    689           }
    690         }
    691         if (found)
    692           goto next_super_reg;
    693       }
    694 
    695       // Record that 'Reg' can be renamed to 'NewReg'.
    696       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
    697     }
    698 
    699     // If we fall-out here, then every register in the group can be
    700     // renamed, as recorded in RenameMap.
    701     RenameOrder.erase(SuperRC);
    702     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
    703     DEBUG(dbgs() << "]\n");
    704     return true;
    705 
    706   next_super_reg:
    707     DEBUG(dbgs() << ']');
    708   } while (R != EndR);
    709 
    710   DEBUG(dbgs() << '\n');
    711 
    712   // No registers are free and available!
    713   return false;
    714 }
    715 
    716 /// BreakAntiDependencies - Identifiy anti-dependencies within the
    717 /// ScheduleDAG and break them by renaming registers.
    718 ///
    719 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
    720                               const std::vector<SUnit>& SUnits,
    721                               MachineBasicBlock::iterator Begin,
    722                               MachineBasicBlock::iterator End,
    723                               unsigned InsertPosIndex,
    724                               DbgValueVector &DbgValues) {
    725 
    726   std::vector<unsigned> &KillIndices = State->GetKillIndices();
    727   std::vector<unsigned> &DefIndices = State->GetDefIndices();
    728   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
    729     RegRefs = State->GetRegRefs();
    730 
    731   // The code below assumes that there is at least one instruction,
    732   // so just duck out immediately if the block is empty.
    733   if (SUnits.empty()) return 0;
    734 
    735   // For each regclass the next register to use for renaming.
    736   RenameOrderType RenameOrder;
    737 
    738   // ...need a map from MI to SUnit.
    739   std::map<MachineInstr *, const SUnit *> MISUnitMap;
    740   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    741     const SUnit *SU = &SUnits[i];
    742     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
    743                                                                SU));
    744   }
    745 
    746   // Track progress along the critical path through the SUnit graph as
    747   // we walk the instructions. This is needed for regclasses that only
    748   // break critical-path anti-dependencies.
    749   const SUnit *CriticalPathSU = 0;
    750   MachineInstr *CriticalPathMI = 0;
    751   if (CriticalPathSet.any()) {
    752     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    753       const SUnit *SU = &SUnits[i];
    754       if (!CriticalPathSU ||
    755           ((SU->getDepth() + SU->Latency) >
    756            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
    757         CriticalPathSU = SU;
    758       }
    759     }
    760 
    761     CriticalPathMI = CriticalPathSU->getInstr();
    762   }
    763 
    764 #ifndef NDEBUG
    765   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
    766   DEBUG(dbgs() << "Available regs:");
    767   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    768     if (!State->IsLive(Reg))
    769       DEBUG(dbgs() << " " << TRI->getName(Reg));
    770   }
    771   DEBUG(dbgs() << '\n');
    772 #endif
    773 
    774   // Attempt to break anti-dependence edges. Walk the instructions
    775   // from the bottom up, tracking information about liveness as we go
    776   // to help determine which registers are available.
    777   unsigned Broken = 0;
    778   unsigned Count = InsertPosIndex - 1;
    779   for (MachineBasicBlock::iterator I = End, E = Begin;
    780        I != E; --Count) {
    781     MachineInstr *MI = --I;
    782 
    783     DEBUG(dbgs() << "Anti: ");
    784     DEBUG(MI->dump());
    785 
    786     std::set<unsigned> PassthruRegs;
    787     GetPassthruRegs(MI, PassthruRegs);
    788 
    789     // Process the defs in MI...
    790     PrescanInstruction(MI, Count, PassthruRegs);
    791 
    792     // The dependence edges that represent anti- and output-
    793     // dependencies that are candidates for breaking.
    794     std::vector<const SDep *> Edges;
    795     const SUnit *PathSU = MISUnitMap[MI];
    796     AntiDepEdges(PathSU, Edges);
    797 
    798     // If MI is not on the critical path, then we don't rename
    799     // registers in the CriticalPathSet.
    800     BitVector *ExcludeRegs = NULL;
    801     if (MI == CriticalPathMI) {
    802       CriticalPathSU = CriticalPathStep(CriticalPathSU);
    803       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : 0;
    804     } else {
    805       ExcludeRegs = &CriticalPathSet;
    806     }
    807 
    808     // Ignore KILL instructions (they form a group in ScanInstruction
    809     // but don't cause any anti-dependence breaking themselves)
    810     if (!MI->isKill()) {
    811       // Attempt to break each anti-dependency...
    812       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
    813         const SDep *Edge = Edges[i];
    814         SUnit *NextSU = Edge->getSUnit();
    815 
    816         if ((Edge->getKind() != SDep::Anti) &&
    817             (Edge->getKind() != SDep::Output)) continue;
    818 
    819         unsigned AntiDepReg = Edge->getReg();
    820         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
    821         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    822 
    823         if (!RegClassInfo.isAllocatable(AntiDepReg)) {
    824           // Don't break anti-dependencies on non-allocatable registers.
    825           DEBUG(dbgs() << " (non-allocatable)\n");
    826           continue;
    827         } else if ((ExcludeRegs != NULL) && ExcludeRegs->test(AntiDepReg)) {
    828           // Don't break anti-dependencies for critical path registers
    829           // if not on the critical path
    830           DEBUG(dbgs() << " (not critical-path)\n");
    831           continue;
    832         } else if (PassthruRegs.count(AntiDepReg) != 0) {
    833           // If the anti-dep register liveness "passes-thru", then
    834           // don't try to change it. It will be changed along with
    835           // the use if required to break an earlier antidep.
    836           DEBUG(dbgs() << " (passthru)\n");
    837           continue;
    838         } else {
    839           // No anti-dep breaking for implicit deps
    840           MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg);
    841           assert(AntiDepOp != NULL &&
    842                  "Can't find index for defined register operand");
    843           if ((AntiDepOp == NULL) || AntiDepOp->isImplicit()) {
    844             DEBUG(dbgs() << " (implicit)\n");
    845             continue;
    846           }
    847 
    848           // If the SUnit has other dependencies on the SUnit that
    849           // it anti-depends on, don't bother breaking the
    850           // anti-dependency since those edges would prevent such
    851           // units from being scheduled past each other
    852           // regardless.
    853           //
    854           // Also, if there are dependencies on other SUnits with the
    855           // same register as the anti-dependency, don't attempt to
    856           // break it.
    857           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
    858                  PE = PathSU->Preds.end(); P != PE; ++P) {
    859             if (P->getSUnit() == NextSU ?
    860                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    861                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    862               AntiDepReg = 0;
    863               break;
    864             }
    865           }
    866           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
    867                  PE = PathSU->Preds.end(); P != PE; ++P) {
    868             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
    869                 (P->getKind() != SDep::Output)) {
    870               DEBUG(dbgs() << " (real dependency)\n");
    871               AntiDepReg = 0;
    872               break;
    873             } else if ((P->getSUnit() != NextSU) &&
    874                        (P->getKind() == SDep::Data) &&
    875                        (P->getReg() == AntiDepReg)) {
    876               DEBUG(dbgs() << " (other dependency)\n");
    877               AntiDepReg = 0;
    878               break;
    879             }
    880           }
    881 
    882           if (AntiDepReg == 0) continue;
    883         }
    884 
    885         assert(AntiDepReg != 0);
    886         if (AntiDepReg == 0) continue;
    887 
    888         // Determine AntiDepReg's register group.
    889         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
    890         if (GroupIndex == 0) {
    891           DEBUG(dbgs() << " (zero group)\n");
    892           continue;
    893         }
    894 
    895         DEBUG(dbgs() << '\n');
    896 
    897         // Look for a suitable register to use to break the anti-dependence.
    898         std::map<unsigned, unsigned> RenameMap;
    899         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
    900           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
    901                 << TRI->getName(AntiDepReg) << ":");
    902 
    903           // Handle each group register...
    904           for (std::map<unsigned, unsigned>::iterator
    905                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
    906             unsigned CurrReg = S->first;
    907             unsigned NewReg = S->second;
    908 
    909             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
    910                   TRI->getName(NewReg) << "(" <<
    911                   RegRefs.count(CurrReg) << " refs)");
    912 
    913             // Update the references to the old register CurrReg to
    914             // refer to the new register NewReg.
    915             std::pair<std::multimap<unsigned,
    916                            AggressiveAntiDepState::RegisterReference>::iterator,
    917                       std::multimap<unsigned,
    918                            AggressiveAntiDepState::RegisterReference>::iterator>
    919               Range = RegRefs.equal_range(CurrReg);
    920             for (std::multimap<unsigned,
    921                  AggressiveAntiDepState::RegisterReference>::iterator
    922                    Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    923               Q->second.Operand->setReg(NewReg);
    924               // If the SU for the instruction being updated has debug
    925               // information related to the anti-dependency register, make
    926               // sure to update that as well.
    927               const SUnit *SU = MISUnitMap[Q->second.Operand->getParent()];
    928               if (!SU) continue;
    929               for (DbgValueVector::iterator DVI = DbgValues.begin(),
    930                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
    931                 if (DVI->second == Q->second.Operand->getParent())
    932                   UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
    933             }
    934 
    935             // We just went back in time and modified history; the
    936             // liveness information for CurrReg is now inconsistent. Set
    937             // the state as if it were dead.
    938             State->UnionGroups(NewReg, 0);
    939             RegRefs.erase(NewReg);
    940             DefIndices[NewReg] = DefIndices[CurrReg];
    941             KillIndices[NewReg] = KillIndices[CurrReg];
    942 
    943             State->UnionGroups(CurrReg, 0);
    944             RegRefs.erase(CurrReg);
    945             DefIndices[CurrReg] = KillIndices[CurrReg];
    946             KillIndices[CurrReg] = ~0u;
    947             assert(((KillIndices[CurrReg] == ~0u) !=
    948                     (DefIndices[CurrReg] == ~0u)) &&
    949                    "Kill and Def maps aren't consistent for AntiDepReg!");
    950           }
    951 
    952           ++Broken;
    953           DEBUG(dbgs() << '\n');
    954         }
    955       }
    956     }
    957 
    958     ScanInstruction(MI, Count);
    959   }
    960 
    961   return Broken;
    962 }
    963