Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "function-lowering-info"
     16 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/LLVMContext.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Analysis/DebugInfo.h"
     24 #include "llvm/CodeGen/Analysis.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include "llvm/Target/TargetData.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 #include "llvm/Target/TargetLowering.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include <algorithm>
     39 using namespace llvm;
     40 
     41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     42 /// PHI nodes or outside of the basic block that defines it, or used by a
     43 /// switch or atomic instruction, which may expand to multiple basic blocks.
     44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     45   if (I->use_empty()) return false;
     46   if (isa<PHINode>(I)) return true;
     47   const BasicBlock *BB = I->getParent();
     48   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
     49         UI != E; ++UI) {
     50     const User *U = *UI;
     51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     52       return true;
     53   }
     54   return false;
     55 }
     56 
     57 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
     58   : TLI(tli) {
     59 }
     60 
     61 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
     62   Fn = &fn;
     63   MF = &mf;
     64   RegInfo = &MF->getRegInfo();
     65 
     66   // Check whether the function can return without sret-demotion.
     67   SmallVector<ISD::OutputArg, 4> Outs;
     68   GetReturnInfo(Fn->getReturnType(),
     69                 Fn->getAttributes().getRetAttributes(), Outs, TLI);
     70   CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF,
     71 				      Fn->isVarArg(),
     72                                       Outs, Fn->getContext());
     73 
     74   // Initialize the mapping of values to registers.  This is only set up for
     75   // instruction values that are used outside of the block that defines
     76   // them.
     77   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
     78   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
     79     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
     80       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
     81         Type *Ty = AI->getAllocatedType();
     82         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
     83         unsigned Align =
     84           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
     85                    AI->getAlignment());
     86 
     87         TySize *= CUI->getZExtValue();   // Get total allocated size.
     88         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
     89 
     90         // The object may need to be placed onto the stack near the stack
     91         // protector if one exists. Determine here if this object is a suitable
     92         // candidate. I.e., it would trigger the creation of a stack protector.
     93         bool MayNeedSP =
     94           (AI->isArrayAllocation() ||
     95            (TySize > 8 && isa<ArrayType>(Ty) &&
     96             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
     97         StaticAllocaMap[AI] =
     98           MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP);
     99       }
    100 
    101   for (; BB != EB; ++BB)
    102     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    103       // Mark values used outside their block as exported, by allocating
    104       // a virtual register for them.
    105       if (isUsedOutsideOfDefiningBlock(I))
    106         if (!isa<AllocaInst>(I) ||
    107             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    108           InitializeRegForValue(I);
    109 
    110       // Collect llvm.dbg.declare information. This is done now instead of
    111       // during the initial isel pass through the IR so that it is done
    112       // in a predictable order.
    113       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    114         MachineModuleInfo &MMI = MF->getMMI();
    115         if (MMI.hasDebugInfo() &&
    116             DIVariable(DI->getVariable()).Verify() &&
    117             !DI->getDebugLoc().isUnknown()) {
    118           // Don't handle byval struct arguments or VLAs, for example.
    119           // Non-byval arguments are handled here (they refer to the stack
    120           // temporary alloca at this point).
    121           const Value *Address = DI->getAddress();
    122           if (Address) {
    123             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    124               Address = BCI->getOperand(0);
    125             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    126               DenseMap<const AllocaInst *, int>::iterator SI =
    127                 StaticAllocaMap.find(AI);
    128               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    129                 int FI = SI->second;
    130                 MMI.setVariableDbgInfo(DI->getVariable(),
    131                                        FI, DI->getDebugLoc());
    132               }
    133             }
    134           }
    135         }
    136       }
    137     }
    138 
    139   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    140   // also creates the initial PHI MachineInstrs, though none of the input
    141   // operands are populated.
    142   for (BB = Fn->begin(); BB != EB; ++BB) {
    143     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    144     MBBMap[BB] = MBB;
    145     MF->push_back(MBB);
    146 
    147     // Transfer the address-taken flag. This is necessary because there could
    148     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    149     // the first one should be marked.
    150     if (BB->hasAddressTaken())
    151       MBB->setHasAddressTaken();
    152 
    153     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    154     // appropriate.
    155     for (BasicBlock::const_iterator I = BB->begin();
    156          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    157       if (PN->use_empty()) continue;
    158 
    159       // Skip empty types
    160       if (PN->getType()->isEmptyTy())
    161         continue;
    162 
    163       DebugLoc DL = PN->getDebugLoc();
    164       unsigned PHIReg = ValueMap[PN];
    165       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    166 
    167       SmallVector<EVT, 4> ValueVTs;
    168       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
    169       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    170         EVT VT = ValueVTs[vti];
    171         unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
    172         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    173         for (unsigned i = 0; i != NumRegisters; ++i)
    174           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    175         PHIReg += NumRegisters;
    176       }
    177     }
    178   }
    179 
    180   // Mark landing pad blocks.
    181   for (BB = Fn->begin(); BB != EB; ++BB)
    182     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    183       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    184 }
    185 
    186 /// clear - Clear out all the function-specific state. This returns this
    187 /// FunctionLoweringInfo to an empty state, ready to be used for a
    188 /// different function.
    189 void FunctionLoweringInfo::clear() {
    190   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    191          "Not all catch info was assigned to a landing pad!");
    192 
    193   MBBMap.clear();
    194   ValueMap.clear();
    195   StaticAllocaMap.clear();
    196 #ifndef NDEBUG
    197   CatchInfoLost.clear();
    198   CatchInfoFound.clear();
    199 #endif
    200   LiveOutRegInfo.clear();
    201   VisitedBBs.clear();
    202   ArgDbgValues.clear();
    203   ByValArgFrameIndexMap.clear();
    204   RegFixups.clear();
    205 }
    206 
    207 /// CreateReg - Allocate a single virtual register for the given type.
    208 unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
    209   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
    210 }
    211 
    212 /// CreateRegs - Allocate the appropriate number of virtual registers of
    213 /// the correctly promoted or expanded types.  Assign these registers
    214 /// consecutive vreg numbers and return the first assigned number.
    215 ///
    216 /// In the case that the given value has struct or array type, this function
    217 /// will assign registers for each member or element.
    218 ///
    219 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    220   SmallVector<EVT, 4> ValueVTs;
    221   ComputeValueVTs(TLI, Ty, ValueVTs);
    222 
    223   unsigned FirstReg = 0;
    224   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    225     EVT ValueVT = ValueVTs[Value];
    226     EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
    227 
    228     unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
    229     for (unsigned i = 0; i != NumRegs; ++i) {
    230       unsigned R = CreateReg(RegisterVT);
    231       if (!FirstReg) FirstReg = R;
    232     }
    233   }
    234   return FirstReg;
    235 }
    236 
    237 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    238 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    239 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    240 /// the larger bit width by zero extension. The bit width must be no smaller
    241 /// than the LiveOutInfo's existing bit width.
    242 const FunctionLoweringInfo::LiveOutInfo *
    243 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    244   if (!LiveOutRegInfo.inBounds(Reg))
    245     return NULL;
    246 
    247   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    248   if (!LOI->IsValid)
    249     return NULL;
    250 
    251   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    252     LOI->NumSignBits = 1;
    253     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    254     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    255   }
    256 
    257   return LOI;
    258 }
    259 
    260 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    261 /// register based on the LiveOutInfo of its operands.
    262 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    263   Type *Ty = PN->getType();
    264   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    265     return;
    266 
    267   SmallVector<EVT, 1> ValueVTs;
    268   ComputeValueVTs(TLI, Ty, ValueVTs);
    269   assert(ValueVTs.size() == 1 &&
    270          "PHIs with non-vector integer types should have a single VT.");
    271   EVT IntVT = ValueVTs[0];
    272 
    273   if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
    274     return;
    275   IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
    276   unsigned BitWidth = IntVT.getSizeInBits();
    277 
    278   unsigned DestReg = ValueMap[PN];
    279   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    280     return;
    281   LiveOutRegInfo.grow(DestReg);
    282   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    283 
    284   Value *V = PN->getIncomingValue(0);
    285   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    286     DestLOI.NumSignBits = 1;
    287     APInt Zero(BitWidth, 0);
    288     DestLOI.KnownZero = Zero;
    289     DestLOI.KnownOne = Zero;
    290     return;
    291   }
    292 
    293   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    294     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    295     DestLOI.NumSignBits = Val.getNumSignBits();
    296     DestLOI.KnownZero = ~Val;
    297     DestLOI.KnownOne = Val;
    298   } else {
    299     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    300                                 "CopyToReg node was created.");
    301     unsigned SrcReg = ValueMap[V];
    302     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    303       DestLOI.IsValid = false;
    304       return;
    305     }
    306     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    307     if (!SrcLOI) {
    308       DestLOI.IsValid = false;
    309       return;
    310     }
    311     DestLOI = *SrcLOI;
    312   }
    313 
    314   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    315          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    316          "Masks should have the same bit width as the type.");
    317 
    318   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    319     Value *V = PN->getIncomingValue(i);
    320     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    321       DestLOI.NumSignBits = 1;
    322       APInt Zero(BitWidth, 0);
    323       DestLOI.KnownZero = Zero;
    324       DestLOI.KnownOne = Zero;
    325       return;
    326     }
    327 
    328     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    329       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    330       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    331       DestLOI.KnownZero &= ~Val;
    332       DestLOI.KnownOne &= Val;
    333       continue;
    334     }
    335 
    336     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    337                                 "its CopyToReg node was created.");
    338     unsigned SrcReg = ValueMap[V];
    339     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    340       DestLOI.IsValid = false;
    341       return;
    342     }
    343     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    344     if (!SrcLOI) {
    345       DestLOI.IsValid = false;
    346       return;
    347     }
    348     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    349     DestLOI.KnownZero &= SrcLOI->KnownZero;
    350     DestLOI.KnownOne &= SrcLOI->KnownOne;
    351   }
    352 }
    353 
    354 /// setArgumentFrameIndex - Record frame index for the byval
    355 /// argument. This overrides previous frame index entry for this argument,
    356 /// if any.
    357 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    358                                                       int FI) {
    359   ByValArgFrameIndexMap[A] = FI;
    360 }
    361 
    362 /// getArgumentFrameIndex - Get frame index for the byval argument.
    363 /// If the argument does not have any assigned frame index then 0 is
    364 /// returned.
    365 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    366   DenseMap<const Argument *, int>::iterator I =
    367     ByValArgFrameIndexMap.find(A);
    368   if (I != ByValArgFrameIndexMap.end())
    369     return I->second;
    370   DEBUG(dbgs() << "Argument does not have assigned frame index!");
    371   return 0;
    372 }
    373 
    374 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
    375 /// call, and add them to the specified machine basic block.
    376 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
    377                         MachineBasicBlock *MBB) {
    378   // Inform the MachineModuleInfo of the personality for this landing pad.
    379   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
    380   assert(CE->getOpcode() == Instruction::BitCast &&
    381          isa<Function>(CE->getOperand(0)) &&
    382          "Personality should be a function");
    383   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
    384 
    385   // Gather all the type infos for this landing pad and pass them along to
    386   // MachineModuleInfo.
    387   std::vector<const GlobalVariable *> TyInfo;
    388   unsigned N = I.getNumArgOperands();
    389 
    390   for (unsigned i = N - 1; i > 1; --i) {
    391     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
    392       unsigned FilterLength = CI->getZExtValue();
    393       unsigned FirstCatch = i + FilterLength + !FilterLength;
    394       assert(FirstCatch <= N && "Invalid filter length");
    395 
    396       if (FirstCatch < N) {
    397         TyInfo.reserve(N - FirstCatch);
    398         for (unsigned j = FirstCatch; j < N; ++j)
    399           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    400         MMI->addCatchTypeInfo(MBB, TyInfo);
    401         TyInfo.clear();
    402       }
    403 
    404       if (!FilterLength) {
    405         // Cleanup.
    406         MMI->addCleanup(MBB);
    407       } else {
    408         // Filter.
    409         TyInfo.reserve(FilterLength - 1);
    410         for (unsigned j = i + 1; j < FirstCatch; ++j)
    411           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    412         MMI->addFilterTypeInfo(MBB, TyInfo);
    413         TyInfo.clear();
    414       }
    415 
    416       N = i;
    417     }
    418   }
    419 
    420   if (N > 2) {
    421     TyInfo.reserve(N - 2);
    422     for (unsigned j = 2; j < N; ++j)
    423       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    424     MMI->addCatchTypeInfo(MBB, TyInfo);
    425   }
    426 }
    427 
    428 void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad,
    429                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
    430   SmallPtrSet<const BasicBlock*, 4> Visited;
    431 
    432   // The 'eh.selector' call may not be in the direct successor of a basic block,
    433   // but could be several successors deeper. If we don't find it, try going one
    434   // level further. <rdar://problem/8824861>
    435   while (Visited.insert(SuccBB)) {
    436     for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end();
    437          I != E; ++I)
    438       if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
    439         // Apply the catch info to LPad.
    440         AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]);
    441 #ifndef NDEBUG
    442         if (!FLI.MBBMap[SuccBB]->isLandingPad())
    443           FLI.CatchInfoFound.insert(EHSel);
    444 #endif
    445         return;
    446       }
    447 
    448     const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator());
    449     if (Br && Br->isUnconditional())
    450       SuccBB = Br->getSuccessor(0);
    451     else
    452       break;
    453   }
    454 }
    455 
    456 /// AddLandingPadInfo - Extract the exception handling information from the
    457 /// landingpad instruction and add them to the specified machine module info.
    458 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    459                              MachineBasicBlock *MBB) {
    460   MMI.addPersonality(MBB,
    461                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    462 
    463   if (I.isCleanup())
    464     MMI.addCleanup(MBB);
    465 
    466   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    467   //        but we need to do it this way because of how the DWARF EH emitter
    468   //        processes the clauses.
    469   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    470     Value *Val = I.getClause(i - 1);
    471     if (I.isCatch(i - 1)) {
    472       MMI.addCatchTypeInfo(MBB,
    473                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
    474     } else {
    475       // Add filters in a list.
    476       Constant *CVal = cast<Constant>(Val);
    477       SmallVector<const GlobalVariable*, 4> FilterList;
    478       for (User::op_iterator
    479              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    480         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
    481 
    482       MMI.addFilterTypeInfo(MBB, FilterList);
    483     }
    484   }
    485 }
    486