Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a fast scheduler.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "pre-RA-sched"
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "llvm/InlineAsm.h"
     17 #include "llvm/CodeGen/SchedulerRegistry.h"
     18 #include "llvm/CodeGen/SelectionDAGISel.h"
     19 #include "llvm/Target/TargetRegisterInfo.h"
     20 #include "llvm/Target/TargetData.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 using namespace llvm;
     29 
     30 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     31 STATISTIC(NumDups,       "Number of duplicated nodes");
     32 STATISTIC(NumPRCopies,   "Number of physical copies");
     33 
     34 static RegisterScheduler
     35   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
     36                    createFastDAGScheduler);
     37 
     38 namespace {
     39   /// FastPriorityQueue - A degenerate priority queue that considers
     40   /// all nodes to have the same priority.
     41   ///
     42   struct FastPriorityQueue {
     43     SmallVector<SUnit *, 16> Queue;
     44 
     45     bool empty() const { return Queue.empty(); }
     46 
     47     void push(SUnit *U) {
     48       Queue.push_back(U);
     49     }
     50 
     51     SUnit *pop() {
     52       if (empty()) return NULL;
     53       SUnit *V = Queue.back();
     54       Queue.pop_back();
     55       return V;
     56     }
     57   };
     58 
     59 //===----------------------------------------------------------------------===//
     60 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
     61 ///
     62 class ScheduleDAGFast : public ScheduleDAGSDNodes {
     63 private:
     64   /// AvailableQueue - The priority queue to use for the available SUnits.
     65   FastPriorityQueue AvailableQueue;
     66 
     67   /// LiveRegDefs - A set of physical registers and their definition
     68   /// that are "live". These nodes must be scheduled before any other nodes that
     69   /// modifies the registers can be scheduled.
     70   unsigned NumLiveRegs;
     71   std::vector<SUnit*> LiveRegDefs;
     72   std::vector<unsigned> LiveRegCycles;
     73 
     74 public:
     75   ScheduleDAGFast(MachineFunction &mf)
     76     : ScheduleDAGSDNodes(mf) {}
     77 
     78   void Schedule();
     79 
     80   /// AddPred - adds a predecessor edge to SUnit SU.
     81   /// This returns true if this is a new predecessor.
     82   void AddPred(SUnit *SU, const SDep &D) {
     83     SU->addPred(D);
     84   }
     85 
     86   /// RemovePred - removes a predecessor edge from SUnit SU.
     87   /// This returns true if an edge was removed.
     88   void RemovePred(SUnit *SU, const SDep &D) {
     89     SU->removePred(D);
     90   }
     91 
     92 private:
     93   void ReleasePred(SUnit *SU, SDep *PredEdge);
     94   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
     95   void ScheduleNodeBottomUp(SUnit*, unsigned);
     96   SUnit *CopyAndMoveSuccessors(SUnit*);
     97   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
     98                                 const TargetRegisterClass*,
     99                                 const TargetRegisterClass*,
    100                                 SmallVector<SUnit*, 2>&);
    101   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
    102   void ListScheduleBottomUp();
    103 
    104   /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
    105   bool ForceUnitLatencies() const { return true; }
    106 };
    107 }  // end anonymous namespace
    108 
    109 
    110 /// Schedule - Schedule the DAG using list scheduling.
    111 void ScheduleDAGFast::Schedule() {
    112   DEBUG(dbgs() << "********** List Scheduling **********\n");
    113 
    114   NumLiveRegs = 0;
    115   LiveRegDefs.resize(TRI->getNumRegs(), NULL);
    116   LiveRegCycles.resize(TRI->getNumRegs(), 0);
    117 
    118   // Build the scheduling graph.
    119   BuildSchedGraph(NULL);
    120 
    121   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    122           SUnits[su].dumpAll(this));
    123 
    124   // Execute the actual scheduling loop.
    125   ListScheduleBottomUp();
    126 }
    127 
    128 //===----------------------------------------------------------------------===//
    129 //  Bottom-Up Scheduling
    130 //===----------------------------------------------------------------------===//
    131 
    132 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    133 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    134 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
    135   SUnit *PredSU = PredEdge->getSUnit();
    136 
    137 #ifndef NDEBUG
    138   if (PredSU->NumSuccsLeft == 0) {
    139     dbgs() << "*** Scheduling failed! ***\n";
    140     PredSU->dump(this);
    141     dbgs() << " has been released too many times!\n";
    142     llvm_unreachable(0);
    143   }
    144 #endif
    145   --PredSU->NumSuccsLeft;
    146 
    147   // If all the node's successors are scheduled, this node is ready
    148   // to be scheduled. Ignore the special EntrySU node.
    149   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    150     PredSU->isAvailable = true;
    151     AvailableQueue.push(PredSU);
    152   }
    153 }
    154 
    155 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
    156   // Bottom up: release predecessors
    157   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    158        I != E; ++I) {
    159     ReleasePred(SU, &*I);
    160     if (I->isAssignedRegDep()) {
    161       // This is a physical register dependency and it's impossible or
    162       // expensive to copy the register. Make sure nothing that can
    163       // clobber the register is scheduled between the predecessor and
    164       // this node.
    165       if (!LiveRegDefs[I->getReg()]) {
    166         ++NumLiveRegs;
    167         LiveRegDefs[I->getReg()] = I->getSUnit();
    168         LiveRegCycles[I->getReg()] = CurCycle;
    169       }
    170     }
    171   }
    172 }
    173 
    174 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    175 /// count of its predecessors. If a predecessor pending count is zero, add it to
    176 /// the Available queue.
    177 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
    178   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    179   DEBUG(SU->dump(this));
    180 
    181   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
    182   SU->setHeightToAtLeast(CurCycle);
    183   Sequence.push_back(SU);
    184 
    185   ReleasePredecessors(SU, CurCycle);
    186 
    187   // Release all the implicit physical register defs that are live.
    188   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    189        I != E; ++I) {
    190     if (I->isAssignedRegDep()) {
    191       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
    192         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    193         assert(LiveRegDefs[I->getReg()] == SU &&
    194                "Physical register dependency violated?");
    195         --NumLiveRegs;
    196         LiveRegDefs[I->getReg()] = NULL;
    197         LiveRegCycles[I->getReg()] = 0;
    198       }
    199     }
    200   }
    201 
    202   SU->isScheduled = true;
    203 }
    204 
    205 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    206 /// successors to the newly created node.
    207 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
    208   if (SU->getNode()->getGluedNode())
    209     return NULL;
    210 
    211   SDNode *N = SU->getNode();
    212   if (!N)
    213     return NULL;
    214 
    215   SUnit *NewSU;
    216   bool TryUnfold = false;
    217   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    218     EVT VT = N->getValueType(i);
    219     if (VT == MVT::Glue)
    220       return NULL;
    221     else if (VT == MVT::Other)
    222       TryUnfold = true;
    223   }
    224   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    225     const SDValue &Op = N->getOperand(i);
    226     EVT VT = Op.getNode()->getValueType(Op.getResNo());
    227     if (VT == MVT::Glue)
    228       return NULL;
    229   }
    230 
    231   if (TryUnfold) {
    232     SmallVector<SDNode*, 2> NewNodes;
    233     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    234       return NULL;
    235 
    236     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
    237     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    238 
    239     N = NewNodes[1];
    240     SDNode *LoadNode = NewNodes[0];
    241     unsigned NumVals = N->getNumValues();
    242     unsigned OldNumVals = SU->getNode()->getNumValues();
    243     for (unsigned i = 0; i != NumVals; ++i)
    244       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    245     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    246                                    SDValue(LoadNode, 1));
    247 
    248     SUnit *NewSU = NewSUnit(N);
    249     assert(N->getNodeId() == -1 && "Node already inserted!");
    250     N->setNodeId(NewSU->NodeNum);
    251 
    252     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    253     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    254       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    255         NewSU->isTwoAddress = true;
    256         break;
    257       }
    258     }
    259     if (MCID.isCommutable())
    260       NewSU->isCommutable = true;
    261 
    262     // LoadNode may already exist. This can happen when there is another
    263     // load from the same location and producing the same type of value
    264     // but it has different alignment or volatileness.
    265     bool isNewLoad = true;
    266     SUnit *LoadSU;
    267     if (LoadNode->getNodeId() != -1) {
    268       LoadSU = &SUnits[LoadNode->getNodeId()];
    269       isNewLoad = false;
    270     } else {
    271       LoadSU = NewSUnit(LoadNode);
    272       LoadNode->setNodeId(LoadSU->NodeNum);
    273     }
    274 
    275     SDep ChainPred;
    276     SmallVector<SDep, 4> ChainSuccs;
    277     SmallVector<SDep, 4> LoadPreds;
    278     SmallVector<SDep, 4> NodePreds;
    279     SmallVector<SDep, 4> NodeSuccs;
    280     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    281          I != E; ++I) {
    282       if (I->isCtrl())
    283         ChainPred = *I;
    284       else if (I->getSUnit()->getNode() &&
    285                I->getSUnit()->getNode()->isOperandOf(LoadNode))
    286         LoadPreds.push_back(*I);
    287       else
    288         NodePreds.push_back(*I);
    289     }
    290     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    291          I != E; ++I) {
    292       if (I->isCtrl())
    293         ChainSuccs.push_back(*I);
    294       else
    295         NodeSuccs.push_back(*I);
    296     }
    297 
    298     if (ChainPred.getSUnit()) {
    299       RemovePred(SU, ChainPred);
    300       if (isNewLoad)
    301         AddPred(LoadSU, ChainPred);
    302     }
    303     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
    304       const SDep &Pred = LoadPreds[i];
    305       RemovePred(SU, Pred);
    306       if (isNewLoad) {
    307         AddPred(LoadSU, Pred);
    308       }
    309     }
    310     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
    311       const SDep &Pred = NodePreds[i];
    312       RemovePred(SU, Pred);
    313       AddPred(NewSU, Pred);
    314     }
    315     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
    316       SDep D = NodeSuccs[i];
    317       SUnit *SuccDep = D.getSUnit();
    318       D.setSUnit(SU);
    319       RemovePred(SuccDep, D);
    320       D.setSUnit(NewSU);
    321       AddPred(SuccDep, D);
    322     }
    323     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
    324       SDep D = ChainSuccs[i];
    325       SUnit *SuccDep = D.getSUnit();
    326       D.setSUnit(SU);
    327       RemovePred(SuccDep, D);
    328       if (isNewLoad) {
    329         D.setSUnit(LoadSU);
    330         AddPred(SuccDep, D);
    331       }
    332     }
    333     if (isNewLoad) {
    334       AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
    335     }
    336 
    337     ++NumUnfolds;
    338 
    339     if (NewSU->NumSuccsLeft == 0) {
    340       NewSU->isAvailable = true;
    341       return NewSU;
    342     }
    343     SU = NewSU;
    344   }
    345 
    346   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
    347   NewSU = Clone(SU);
    348 
    349   // New SUnit has the exact same predecessors.
    350   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    351        I != E; ++I)
    352     if (!I->isArtificial())
    353       AddPred(NewSU, *I);
    354 
    355   // Only copy scheduled successors. Cut them from old node's successor
    356   // list and move them over.
    357   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    358   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    359        I != E; ++I) {
    360     if (I->isArtificial())
    361       continue;
    362     SUnit *SuccSU = I->getSUnit();
    363     if (SuccSU->isScheduled) {
    364       SDep D = *I;
    365       D.setSUnit(NewSU);
    366       AddPred(SuccSU, D);
    367       D.setSUnit(SU);
    368       DelDeps.push_back(std::make_pair(SuccSU, D));
    369     }
    370   }
    371   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    372     RemovePred(DelDeps[i].first, DelDeps[i].second);
    373 
    374   ++NumDups;
    375   return NewSU;
    376 }
    377 
    378 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
    379 /// scheduled successors of the given SUnit to the last copy.
    380 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
    381                                               const TargetRegisterClass *DestRC,
    382                                               const TargetRegisterClass *SrcRC,
    383                                                SmallVector<SUnit*, 2> &Copies) {
    384   SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
    385   CopyFromSU->CopySrcRC = SrcRC;
    386   CopyFromSU->CopyDstRC = DestRC;
    387 
    388   SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
    389   CopyToSU->CopySrcRC = DestRC;
    390   CopyToSU->CopyDstRC = SrcRC;
    391 
    392   // Only copy scheduled successors. Cut them from old node's successor
    393   // list and move them over.
    394   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
    395   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    396        I != E; ++I) {
    397     if (I->isArtificial())
    398       continue;
    399     SUnit *SuccSU = I->getSUnit();
    400     if (SuccSU->isScheduled) {
    401       SDep D = *I;
    402       D.setSUnit(CopyToSU);
    403       AddPred(SuccSU, D);
    404       DelDeps.push_back(std::make_pair(SuccSU, *I));
    405     }
    406   }
    407   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
    408     RemovePred(DelDeps[i].first, DelDeps[i].second);
    409   }
    410 
    411   AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
    412   AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
    413 
    414   Copies.push_back(CopyFromSU);
    415   Copies.push_back(CopyToSU);
    416 
    417   ++NumPRCopies;
    418 }
    419 
    420 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
    421 /// definition of the specified node.
    422 /// FIXME: Move to SelectionDAG?
    423 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
    424                                  const TargetInstrInfo *TII) {
    425   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    426   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
    427   unsigned NumRes = MCID.getNumDefs();
    428   for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
    429     if (Reg == *ImpDef)
    430       break;
    431     ++NumRes;
    432   }
    433   return N->getValueType(NumRes);
    434 }
    435 
    436 /// CheckForLiveRegDef - Return true and update live register vector if the
    437 /// specified register def of the specified SUnit clobbers any "live" registers.
    438 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
    439                                std::vector<SUnit*> &LiveRegDefs,
    440                                SmallSet<unsigned, 4> &RegAdded,
    441                                SmallVector<unsigned, 4> &LRegs,
    442                                const TargetRegisterInfo *TRI) {
    443   bool Added = false;
    444   if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
    445     if (RegAdded.insert(Reg)) {
    446       LRegs.push_back(Reg);
    447       Added = true;
    448     }
    449   }
    450   for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
    451     if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
    452       if (RegAdded.insert(*Alias)) {
    453         LRegs.push_back(*Alias);
    454         Added = true;
    455       }
    456     }
    457   return Added;
    458 }
    459 
    460 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
    461 /// scheduling of the given node to satisfy live physical register dependencies.
    462 /// If the specific node is the last one that's available to schedule, do
    463 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
    464 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
    465                                                SmallVector<unsigned, 4> &LRegs){
    466   if (NumLiveRegs == 0)
    467     return false;
    468 
    469   SmallSet<unsigned, 4> RegAdded;
    470   // If this node would clobber any "live" register, then it's not ready.
    471   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    472        I != E; ++I) {
    473     if (I->isAssignedRegDep()) {
    474       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
    475                          RegAdded, LRegs, TRI);
    476     }
    477   }
    478 
    479   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    480     if (Node->getOpcode() == ISD::INLINEASM) {
    481       // Inline asm can clobber physical defs.
    482       unsigned NumOps = Node->getNumOperands();
    483       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
    484         --NumOps;  // Ignore the glue operand.
    485 
    486       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    487         unsigned Flags =
    488           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
    489         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    490 
    491         ++i; // Skip the ID value.
    492         if (InlineAsm::isRegDefKind(Flags) ||
    493             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
    494             InlineAsm::isClobberKind(Flags)) {
    495           // Check for def of register or earlyclobber register.
    496           for (; NumVals; --NumVals, ++i) {
    497             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
    498             if (TargetRegisterInfo::isPhysicalRegister(Reg))
    499               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    500           }
    501         } else
    502           i += NumVals;
    503       }
    504       continue;
    505     }
    506     if (!Node->isMachineOpcode())
    507       continue;
    508     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    509     if (!MCID.ImplicitDefs)
    510       continue;
    511     for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg) {
    512       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
    513     }
    514   }
    515   return !LRegs.empty();
    516 }
    517 
    518 
    519 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
    520 /// schedulers.
    521 void ScheduleDAGFast::ListScheduleBottomUp() {
    522   unsigned CurCycle = 0;
    523 
    524   // Release any predecessors of the special Exit node.
    525   ReleasePredecessors(&ExitSU, CurCycle);
    526 
    527   // Add root to Available queue.
    528   if (!SUnits.empty()) {
    529     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    530     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    531     RootSU->isAvailable = true;
    532     AvailableQueue.push(RootSU);
    533   }
    534 
    535   // While Available queue is not empty, grab the node with the highest
    536   // priority. If it is not ready put it back.  Schedule the node.
    537   SmallVector<SUnit*, 4> NotReady;
    538   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
    539   Sequence.reserve(SUnits.size());
    540   while (!AvailableQueue.empty()) {
    541     bool Delayed = false;
    542     LRegsMap.clear();
    543     SUnit *CurSU = AvailableQueue.pop();
    544     while (CurSU) {
    545       SmallVector<unsigned, 4> LRegs;
    546       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
    547         break;
    548       Delayed = true;
    549       LRegsMap.insert(std::make_pair(CurSU, LRegs));
    550 
    551       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
    552       NotReady.push_back(CurSU);
    553       CurSU = AvailableQueue.pop();
    554     }
    555 
    556     // All candidates are delayed due to live physical reg dependencies.
    557     // Try code duplication or inserting cross class copies
    558     // to resolve it.
    559     if (Delayed && !CurSU) {
    560       if (!CurSU) {
    561         // Try duplicating the nodes that produces these
    562         // "expensive to copy" values to break the dependency. In case even
    563         // that doesn't work, insert cross class copies.
    564         SUnit *TrySU = NotReady[0];
    565         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
    566         assert(LRegs.size() == 1 && "Can't handle this yet!");
    567         unsigned Reg = LRegs[0];
    568         SUnit *LRDef = LiveRegDefs[Reg];
    569         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    570         const TargetRegisterClass *RC =
    571           TRI->getMinimalPhysRegClass(Reg, VT);
    572         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
    573 
    574         // If cross copy register class is the same as RC, then it must be
    575         // possible copy the value directly. Do not try duplicate the def.
    576         // If cross copy register class is not the same as RC, then it's
    577         // possible to copy the value but it require cross register class copies
    578         // and it is expensive.
    579         // If cross copy register class is null, then it's not possible to copy
    580         // the value at all.
    581         SUnit *NewDef = 0;
    582         if (DestRC != RC) {
    583           NewDef = CopyAndMoveSuccessors(LRDef);
    584           if (!DestRC && !NewDef)
    585             report_fatal_error("Can't handle live physical "
    586                                "register dependency!");
    587         }
    588         if (!NewDef) {
    589           // Issue copies, these can be expensive cross register class copies.
    590           SmallVector<SUnit*, 2> Copies;
    591           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
    592           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
    593                        << " to SU #" << Copies.front()->NodeNum << "\n");
    594           AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
    595                               /*Reg=*/0, /*isNormalMemory=*/false,
    596                               /*isMustAlias=*/false, /*isArtificial=*/true));
    597           NewDef = Copies.back();
    598         }
    599 
    600         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
    601                      << " to SU #" << TrySU->NodeNum << "\n");
    602         LiveRegDefs[Reg] = NewDef;
    603         AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
    604                              /*Reg=*/0, /*isNormalMemory=*/false,
    605                              /*isMustAlias=*/false, /*isArtificial=*/true));
    606         TrySU->isAvailable = false;
    607         CurSU = NewDef;
    608       }
    609 
    610       if (!CurSU) {
    611         llvm_unreachable("Unable to resolve live physical register dependencies!");
    612       }
    613     }
    614 
    615     // Add the nodes that aren't ready back onto the available list.
    616     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
    617       NotReady[i]->isPending = false;
    618       // May no longer be available due to backtracking.
    619       if (NotReady[i]->isAvailable)
    620         AvailableQueue.push(NotReady[i]);
    621     }
    622     NotReady.clear();
    623 
    624     if (CurSU)
    625       ScheduleNodeBottomUp(CurSU, CurCycle);
    626     ++CurCycle;
    627   }
    628 
    629   // Reverse the order since it is bottom up.
    630   std::reverse(Sequence.begin(), Sequence.end());
    631 
    632 #ifndef NDEBUG
    633   VerifySchedule(/*isBottomUp=*/true);
    634 #endif
    635 }
    636 
    637 //===----------------------------------------------------------------------===//
    638 //                         Public Constructor Functions
    639 //===----------------------------------------------------------------------===//
    640 
    641 llvm::ScheduleDAGSDNodes *
    642 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
    643   return new ScheduleDAGFast(*IS->MF);
    644 }
    645