Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #define DEBUG_TYPE "twoaddrinstr"
     31 #include "llvm/CodeGen/Passes.h"
     32 #include "llvm/Function.h"
     33 #include "llvm/CodeGen/LiveVariables.h"
     34 #include "llvm/CodeGen/MachineFunctionPass.h"
     35 #include "llvm/CodeGen/MachineInstr.h"
     36 #include "llvm/CodeGen/MachineInstrBuilder.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "llvm/Target/TargetInstrInfo.h"
     41 #include "llvm/Target/TargetMachine.h"
     42 #include "llvm/Target/TargetOptions.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/ADT/BitVector.h"
     46 #include "llvm/ADT/DenseMap.h"
     47 #include "llvm/ADT/SmallSet.h"
     48 #include "llvm/ADT/Statistic.h"
     49 #include "llvm/ADT/STLExtras.h"
     50 using namespace llvm;
     51 
     52 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     53 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     54 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     55 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     56 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     57 STATISTIC(NumReMats,           "Number of instructions re-materialized");
     58 STATISTIC(NumDeletes,          "Number of dead instructions deleted");
     59 
     60 namespace {
     61   class TwoAddressInstructionPass : public MachineFunctionPass {
     62     const TargetInstrInfo *TII;
     63     const TargetRegisterInfo *TRI;
     64     MachineRegisterInfo *MRI;
     65     LiveVariables *LV;
     66     AliasAnalysis *AA;
     67 
     68     // DistanceMap - Keep track the distance of a MI from the start of the
     69     // current basic block.
     70     DenseMap<MachineInstr*, unsigned> DistanceMap;
     71 
     72     // SrcRegMap - A map from virtual registers to physical registers which
     73     // are likely targets to be coalesced to due to copies from physical
     74     // registers to virtual registers. e.g. v1024 = move r0.
     75     DenseMap<unsigned, unsigned> SrcRegMap;
     76 
     77     // DstRegMap - A map from virtual registers to physical registers which
     78     // are likely targets to be coalesced to due to copies to physical
     79     // registers from virtual registers. e.g. r1 = move v1024.
     80     DenseMap<unsigned, unsigned> DstRegMap;
     81 
     82     /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
     83     /// during the initial walk of the machine function.
     84     SmallVector<MachineInstr*, 16> RegSequences;
     85 
     86     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
     87                               unsigned Reg,
     88                               MachineBasicBlock::iterator OldPos);
     89 
     90     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
     91                              MachineInstr *MI, MachineInstr *DefMI,
     92                              MachineBasicBlock *MBB, unsigned Loc);
     93 
     94     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
     95                            unsigned &LastDef);
     96 
     97     MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
     98                                    unsigned Dist);
     99 
    100     bool isProfitableToCommute(unsigned regB, unsigned regC,
    101                                MachineInstr *MI, MachineBasicBlock *MBB,
    102                                unsigned Dist);
    103 
    104     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
    105                             MachineFunction::iterator &mbbi,
    106                             unsigned RegB, unsigned RegC, unsigned Dist);
    107 
    108     bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    109 
    110     bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
    111                             MachineBasicBlock::iterator &nmi,
    112                             MachineFunction::iterator &mbbi,
    113                             unsigned RegA, unsigned RegB, unsigned Dist);
    114 
    115     typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
    116     bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
    117                                SmallVector<NewKill, 4> &NewKills,
    118                                MachineBasicBlock *MBB, unsigned Dist);
    119     bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
    120                            MachineBasicBlock::iterator &nmi,
    121                            MachineFunction::iterator &mbbi, unsigned Dist);
    122 
    123     bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
    124                                  MachineBasicBlock::iterator &nmi,
    125                                  MachineFunction::iterator &mbbi,
    126                                  unsigned SrcIdx, unsigned DstIdx,
    127                                  unsigned Dist,
    128                                  SmallPtrSet<MachineInstr*, 8> &Processed);
    129 
    130     void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
    131                   SmallPtrSet<MachineInstr*, 8> &Processed);
    132 
    133     void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
    134                      SmallPtrSet<MachineInstr*, 8> &Processed);
    135 
    136     void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
    137 
    138     /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
    139     /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
    140     /// sub-register references of the register defined by REG_SEQUENCE.
    141     bool EliminateRegSequences();
    142 
    143   public:
    144     static char ID; // Pass identification, replacement for typeid
    145     TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    146       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    147     }
    148 
    149     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    150       AU.setPreservesCFG();
    151       AU.addRequired<AliasAnalysis>();
    152       AU.addPreserved<LiveVariables>();
    153       AU.addPreservedID(MachineLoopInfoID);
    154       AU.addPreservedID(MachineDominatorsID);
    155       AU.addPreservedID(PHIEliminationID);
    156       MachineFunctionPass::getAnalysisUsage(AU);
    157     }
    158 
    159     /// runOnMachineFunction - Pass entry point.
    160     bool runOnMachineFunction(MachineFunction&);
    161   };
    162 }
    163 
    164 char TwoAddressInstructionPass::ID = 0;
    165 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    166                 "Two-Address instruction pass", false, false)
    167 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    168 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    169                 "Two-Address instruction pass", false, false)
    170 
    171 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    172 
    173 /// Sink3AddrInstruction - A two-address instruction has been converted to a
    174 /// three-address instruction to avoid clobbering a register. Try to sink it
    175 /// past the instruction that would kill the above mentioned register to reduce
    176 /// register pressure.
    177 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
    178                                            MachineInstr *MI, unsigned SavedReg,
    179                                            MachineBasicBlock::iterator OldPos) {
    180   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    181   // instruction?  After this transformation is done, we no longer need
    182   // the instruction to be in three-address form.
    183 
    184   // Check if it's safe to move this instruction.
    185   bool SeenStore = true; // Be conservative.
    186   if (!MI->isSafeToMove(TII, AA, SeenStore))
    187     return false;
    188 
    189   unsigned DefReg = 0;
    190   SmallSet<unsigned, 4> UseRegs;
    191 
    192   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    193     const MachineOperand &MO = MI->getOperand(i);
    194     if (!MO.isReg())
    195       continue;
    196     unsigned MOReg = MO.getReg();
    197     if (!MOReg)
    198       continue;
    199     if (MO.isUse() && MOReg != SavedReg)
    200       UseRegs.insert(MO.getReg());
    201     if (!MO.isDef())
    202       continue;
    203     if (MO.isImplicit())
    204       // Don't try to move it if it implicitly defines a register.
    205       return false;
    206     if (DefReg)
    207       // For now, don't move any instructions that define multiple registers.
    208       return false;
    209     DefReg = MO.getReg();
    210   }
    211 
    212   // Find the instruction that kills SavedReg.
    213   MachineInstr *KillMI = NULL;
    214   for (MachineRegisterInfo::use_nodbg_iterator
    215          UI = MRI->use_nodbg_begin(SavedReg),
    216          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    217     MachineOperand &UseMO = UI.getOperand();
    218     if (!UseMO.isKill())
    219       continue;
    220     KillMI = UseMO.getParent();
    221     break;
    222   }
    223 
    224   // If we find the instruction that kills SavedReg, and it is in an
    225   // appropriate location, we can try to sink the current instruction
    226   // past it.
    227   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    228       KillMI->getDesc().isTerminator())
    229     return false;
    230 
    231   // If any of the definitions are used by another instruction between the
    232   // position and the kill use, then it's not safe to sink it.
    233   //
    234   // FIXME: This can be sped up if there is an easy way to query whether an
    235   // instruction is before or after another instruction. Then we can use
    236   // MachineRegisterInfo def / use instead.
    237   MachineOperand *KillMO = NULL;
    238   MachineBasicBlock::iterator KillPos = KillMI;
    239   ++KillPos;
    240 
    241   unsigned NumVisited = 0;
    242   for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
    243     MachineInstr *OtherMI = I;
    244     // DBG_VALUE cannot be counted against the limit.
    245     if (OtherMI->isDebugValue())
    246       continue;
    247     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    248       return false;
    249     ++NumVisited;
    250     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    251       MachineOperand &MO = OtherMI->getOperand(i);
    252       if (!MO.isReg())
    253         continue;
    254       unsigned MOReg = MO.getReg();
    255       if (!MOReg)
    256         continue;
    257       if (DefReg == MOReg)
    258         return false;
    259 
    260       if (MO.isKill()) {
    261         if (OtherMI == KillMI && MOReg == SavedReg)
    262           // Save the operand that kills the register. We want to unset the kill
    263           // marker if we can sink MI past it.
    264           KillMO = &MO;
    265         else if (UseRegs.count(MOReg))
    266           // One of the uses is killed before the destination.
    267           return false;
    268       }
    269     }
    270   }
    271 
    272   // Update kill and LV information.
    273   KillMO->setIsKill(false);
    274   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    275   KillMO->setIsKill(true);
    276 
    277   if (LV)
    278     LV->replaceKillInstruction(SavedReg, KillMI, MI);
    279 
    280   // Move instruction to its destination.
    281   MBB->remove(MI);
    282   MBB->insert(KillPos, MI);
    283 
    284   ++Num3AddrSunk;
    285   return true;
    286 }
    287 
    288 /// isTwoAddrUse - Return true if the specified MI is using the specified
    289 /// register as a two-address operand.
    290 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
    291   const MCInstrDesc &MCID = UseMI->getDesc();
    292   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
    293     MachineOperand &MO = UseMI->getOperand(i);
    294     if (MO.isReg() && MO.getReg() == Reg &&
    295         (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
    296       // Earlier use is a two-address one.
    297       return true;
    298   }
    299   return false;
    300 }
    301 
    302 /// isProfitableToReMat - Return true if the heuristics determines it is likely
    303 /// to be profitable to re-materialize the definition of Reg rather than copy
    304 /// the register.
    305 bool
    306 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
    307                                          const TargetRegisterClass *RC,
    308                                          MachineInstr *MI, MachineInstr *DefMI,
    309                                          MachineBasicBlock *MBB, unsigned Loc) {
    310   bool OtherUse = false;
    311   for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
    312          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    313     MachineOperand &UseMO = UI.getOperand();
    314     MachineInstr *UseMI = UseMO.getParent();
    315     MachineBasicBlock *UseMBB = UseMI->getParent();
    316     if (UseMBB == MBB) {
    317       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    318       if (DI != DistanceMap.end() && DI->second == Loc)
    319         continue;  // Current use.
    320       OtherUse = true;
    321       // There is at least one other use in the MBB that will clobber the
    322       // register.
    323       if (isTwoAddrUse(UseMI, Reg))
    324         return true;
    325     }
    326   }
    327 
    328   // If other uses in MBB are not two-address uses, then don't remat.
    329   if (OtherUse)
    330     return false;
    331 
    332   // No other uses in the same block, remat if it's defined in the same
    333   // block so it does not unnecessarily extend the live range.
    334   return MBB == DefMI->getParent();
    335 }
    336 
    337 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
    338 /// last instruction in the MBB that defines the specified register and the
    339 /// two-address instruction which is being processed. It also returns the last
    340 /// def location by reference
    341 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
    342                                            MachineBasicBlock *MBB, unsigned Dist,
    343                                            unsigned &LastDef) {
    344   LastDef = 0;
    345   unsigned LastUse = Dist;
    346   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
    347          E = MRI->reg_end(); I != E; ++I) {
    348     MachineOperand &MO = I.getOperand();
    349     MachineInstr *MI = MO.getParent();
    350     if (MI->getParent() != MBB || MI->isDebugValue())
    351       continue;
    352     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    353     if (DI == DistanceMap.end())
    354       continue;
    355     if (MO.isUse() && DI->second < LastUse)
    356       LastUse = DI->second;
    357     if (MO.isDef() && DI->second > LastDef)
    358       LastDef = DI->second;
    359   }
    360 
    361   return !(LastUse > LastDef && LastUse < Dist);
    362 }
    363 
    364 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
    365                                                          MachineBasicBlock *MBB,
    366                                                          unsigned Dist) {
    367   unsigned LastUseDist = 0;
    368   MachineInstr *LastUse = 0;
    369   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
    370          E = MRI->reg_end(); I != E; ++I) {
    371     MachineOperand &MO = I.getOperand();
    372     MachineInstr *MI = MO.getParent();
    373     if (MI->getParent() != MBB || MI->isDebugValue())
    374       continue;
    375     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    376     if (DI == DistanceMap.end())
    377       continue;
    378     if (DI->second >= Dist)
    379       continue;
    380 
    381     if (MO.isUse() && DI->second > LastUseDist) {
    382       LastUse = DI->first;
    383       LastUseDist = DI->second;
    384     }
    385   }
    386   return LastUse;
    387 }
    388 
    389 /// isCopyToReg - Return true if the specified MI is a copy instruction or
    390 /// a extract_subreg instruction. It also returns the source and destination
    391 /// registers and whether they are physical registers by reference.
    392 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    393                         unsigned &SrcReg, unsigned &DstReg,
    394                         bool &IsSrcPhys, bool &IsDstPhys) {
    395   SrcReg = 0;
    396   DstReg = 0;
    397   if (MI.isCopy()) {
    398     DstReg = MI.getOperand(0).getReg();
    399     SrcReg = MI.getOperand(1).getReg();
    400   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    401     DstReg = MI.getOperand(0).getReg();
    402     SrcReg = MI.getOperand(2).getReg();
    403   } else
    404     return false;
    405 
    406   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    407   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    408   return true;
    409 }
    410 
    411 /// isKilled - Test if the given register value, which is used by the given
    412 /// instruction, is killed by the given instruction. This looks through
    413 /// coalescable copies to see if the original value is potentially not killed.
    414 ///
    415 /// For example, in this code:
    416 ///
    417 ///   %reg1034 = copy %reg1024
    418 ///   %reg1035 = copy %reg1025<kill>
    419 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    420 ///
    421 /// %reg1034 is not considered to be killed, since it is copied from a
    422 /// register which is not killed. Treating it as not killed lets the
    423 /// normal heuristics commute the (two-address) add, which lets
    424 /// coalescing eliminate the extra copy.
    425 ///
    426 static bool isKilled(MachineInstr &MI, unsigned Reg,
    427                      const MachineRegisterInfo *MRI,
    428                      const TargetInstrInfo *TII) {
    429   MachineInstr *DefMI = &MI;
    430   for (;;) {
    431     if (!DefMI->killsRegister(Reg))
    432       return false;
    433     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    434       return true;
    435     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    436     // If there are multiple defs, we can't do a simple analysis, so just
    437     // go with what the kill flag says.
    438     if (llvm::next(Begin) != MRI->def_end())
    439       return true;
    440     DefMI = &*Begin;
    441     bool IsSrcPhys, IsDstPhys;
    442     unsigned SrcReg,  DstReg;
    443     // If the def is something other than a copy, then it isn't going to
    444     // be coalesced, so follow the kill flag.
    445     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    446       return true;
    447     Reg = SrcReg;
    448   }
    449 }
    450 
    451 /// isTwoAddrUse - Return true if the specified MI uses the specified register
    452 /// as a two-address use. If so, return the destination register by reference.
    453 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    454   const MCInstrDesc &MCID = MI.getDesc();
    455   unsigned NumOps = MI.isInlineAsm()
    456     ? MI.getNumOperands() : MCID.getNumOperands();
    457   for (unsigned i = 0; i != NumOps; ++i) {
    458     const MachineOperand &MO = MI.getOperand(i);
    459     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    460       continue;
    461     unsigned ti;
    462     if (MI.isRegTiedToDefOperand(i, &ti)) {
    463       DstReg = MI.getOperand(ti).getReg();
    464       return true;
    465     }
    466   }
    467   return false;
    468 }
    469 
    470 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
    471 /// use, return the use instruction if it's a copy or a two-address use.
    472 static
    473 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    474                                      MachineRegisterInfo *MRI,
    475                                      const TargetInstrInfo *TII,
    476                                      bool &IsCopy,
    477                                      unsigned &DstReg, bool &IsDstPhys) {
    478   if (!MRI->hasOneNonDBGUse(Reg))
    479     // None or more than one use.
    480     return 0;
    481   MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
    482   if (UseMI.getParent() != MBB)
    483     return 0;
    484   unsigned SrcReg;
    485   bool IsSrcPhys;
    486   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    487     IsCopy = true;
    488     return &UseMI;
    489   }
    490   IsDstPhys = false;
    491   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    492     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    493     return &UseMI;
    494   }
    495   return 0;
    496 }
    497 
    498 /// getMappedReg - Return the physical register the specified virtual register
    499 /// might be mapped to.
    500 static unsigned
    501 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    502   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    503     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    504     if (SI == RegMap.end())
    505       return 0;
    506     Reg = SI->second;
    507   }
    508   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    509     return Reg;
    510   return 0;
    511 }
    512 
    513 /// regsAreCompatible - Return true if the two registers are equal or aliased.
    514 ///
    515 static bool
    516 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    517   if (RegA == RegB)
    518     return true;
    519   if (!RegA || !RegB)
    520     return false;
    521   return TRI->regsOverlap(RegA, RegB);
    522 }
    523 
    524 
    525 /// isProfitableToReMat - Return true if it's potentially profitable to commute
    526 /// the two-address instruction that's being processed.
    527 bool
    528 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
    529                                        MachineInstr *MI, MachineBasicBlock *MBB,
    530                                        unsigned Dist) {
    531   // Determine if it's profitable to commute this two address instruction. In
    532   // general, we want no uses between this instruction and the definition of
    533   // the two-address register.
    534   // e.g.
    535   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    536   // %reg1029<def> = MOV8rr %reg1028
    537   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    538   // insert => %reg1030<def> = MOV8rr %reg1028
    539   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    540   // In this case, it might not be possible to coalesce the second MOV8rr
    541   // instruction if the first one is coalesced. So it would be profitable to
    542   // commute it:
    543   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    544   // %reg1029<def> = MOV8rr %reg1028
    545   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    546   // insert => %reg1030<def> = MOV8rr %reg1029
    547   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    548 
    549   if (!MI->killsRegister(regC))
    550     return false;
    551 
    552   // Ok, we have something like:
    553   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    554   // let's see if it's worth commuting it.
    555 
    556   // Look for situations like this:
    557   // %reg1024<def> = MOV r1
    558   // %reg1025<def> = MOV r0
    559   // %reg1026<def> = ADD %reg1024, %reg1025
    560   // r0            = MOV %reg1026
    561   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    562   unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    563   unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    564   unsigned ToRegB = getMappedReg(regB, DstRegMap);
    565   unsigned ToRegC = getMappedReg(regC, DstRegMap);
    566   if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
    567       ((!FromRegC && !ToRegC) ||
    568        regsAreCompatible(FromRegB, ToRegC, TRI) ||
    569        regsAreCompatible(FromRegC, ToRegB, TRI)))
    570     return true;
    571 
    572   // If there is a use of regC between its last def (could be livein) and this
    573   // instruction, then bail.
    574   unsigned LastDefC = 0;
    575   if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
    576     return false;
    577 
    578   // If there is a use of regB between its last def (could be livein) and this
    579   // instruction, then go ahead and make this transformation.
    580   unsigned LastDefB = 0;
    581   if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
    582     return true;
    583 
    584   // Since there are no intervening uses for both registers, then commute
    585   // if the def of regC is closer. Its live interval is shorter.
    586   return LastDefB && LastDefC && LastDefC > LastDefB;
    587 }
    588 
    589 /// CommuteInstruction - Commute a two-address instruction and update the basic
    590 /// block, distance map, and live variables if needed. Return true if it is
    591 /// successful.
    592 bool
    593 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
    594                                MachineFunction::iterator &mbbi,
    595                                unsigned RegB, unsigned RegC, unsigned Dist) {
    596   MachineInstr *MI = mi;
    597   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    598   MachineInstr *NewMI = TII->commuteInstruction(MI);
    599 
    600   if (NewMI == 0) {
    601     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    602     return false;
    603   }
    604 
    605   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    606   // If the instruction changed to commute it, update livevar.
    607   if (NewMI != MI) {
    608     if (LV)
    609       // Update live variables
    610       LV->replaceKillInstruction(RegC, MI, NewMI);
    611 
    612     mbbi->insert(mi, NewMI);           // Insert the new inst
    613     mbbi->erase(mi);                   // Nuke the old inst.
    614     mi = NewMI;
    615     DistanceMap.insert(std::make_pair(NewMI, Dist));
    616   }
    617 
    618   // Update source register map.
    619   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    620   if (FromRegC) {
    621     unsigned RegA = MI->getOperand(0).getReg();
    622     SrcRegMap[RegA] = FromRegC;
    623   }
    624 
    625   return true;
    626 }
    627 
    628 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
    629 /// given 2-address instruction to a 3-address one.
    630 bool
    631 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    632   // Look for situations like this:
    633   // %reg1024<def> = MOV r1
    634   // %reg1025<def> = MOV r0
    635   // %reg1026<def> = ADD %reg1024, %reg1025
    636   // r2            = MOV %reg1026
    637   // Turn ADD into a 3-address instruction to avoid a copy.
    638   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    639   if (!FromRegB)
    640     return false;
    641   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    642   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    643 }
    644 
    645 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
    646 /// three address one. Return true if this transformation was successful.
    647 bool
    648 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
    649                                               MachineBasicBlock::iterator &nmi,
    650                                               MachineFunction::iterator &mbbi,
    651                                               unsigned RegA, unsigned RegB,
    652                                               unsigned Dist) {
    653   MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
    654   if (NewMI) {
    655     DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    656     DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    657     bool Sunk = false;
    658 
    659     if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    660       // FIXME: Temporary workaround. If the new instruction doesn't
    661       // uses RegB, convertToThreeAddress must have created more
    662       // then one instruction.
    663       Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
    664 
    665     mbbi->erase(mi); // Nuke the old inst.
    666 
    667     if (!Sunk) {
    668       DistanceMap.insert(std::make_pair(NewMI, Dist));
    669       mi = NewMI;
    670       nmi = llvm::next(mi);
    671     }
    672 
    673     // Update source and destination register maps.
    674     SrcRegMap.erase(RegA);
    675     DstRegMap.erase(RegB);
    676     return true;
    677   }
    678 
    679   return false;
    680 }
    681 
    682 /// ScanUses - Scan forward recursively for only uses, update maps if the use
    683 /// is a copy or a two-address instruction.
    684 void
    685 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
    686                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
    687   SmallVector<unsigned, 4> VirtRegPairs;
    688   bool IsDstPhys;
    689   bool IsCopy = false;
    690   unsigned NewReg = 0;
    691   unsigned Reg = DstReg;
    692   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    693                                                       NewReg, IsDstPhys)) {
    694     if (IsCopy && !Processed.insert(UseMI))
    695       break;
    696 
    697     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    698     if (DI != DistanceMap.end())
    699       // Earlier in the same MBB.Reached via a back edge.
    700       break;
    701 
    702     if (IsDstPhys) {
    703       VirtRegPairs.push_back(NewReg);
    704       break;
    705     }
    706     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    707     if (!isNew)
    708       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    709     VirtRegPairs.push_back(NewReg);
    710     Reg = NewReg;
    711   }
    712 
    713   if (!VirtRegPairs.empty()) {
    714     unsigned ToReg = VirtRegPairs.back();
    715     VirtRegPairs.pop_back();
    716     while (!VirtRegPairs.empty()) {
    717       unsigned FromReg = VirtRegPairs.back();
    718       VirtRegPairs.pop_back();
    719       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    720       if (!isNew)
    721         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    722       ToReg = FromReg;
    723     }
    724     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    725     if (!isNew)
    726       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    727   }
    728 }
    729 
    730 /// ProcessCopy - If the specified instruction is not yet processed, process it
    731 /// if it's a copy. For a copy instruction, we find the physical registers the
    732 /// source and destination registers might be mapped to. These are kept in
    733 /// point-to maps used to determine future optimizations. e.g.
    734 /// v1024 = mov r0
    735 /// v1025 = mov r1
    736 /// v1026 = add v1024, v1025
    737 /// r1    = mov r1026
    738 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    739 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    740 /// potentially joined with r1 on the output side. It's worthwhile to commute
    741 /// 'add' to eliminate a copy.
    742 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
    743                                      MachineBasicBlock *MBB,
    744                                      SmallPtrSet<MachineInstr*, 8> &Processed) {
    745   if (Processed.count(MI))
    746     return;
    747 
    748   bool IsSrcPhys, IsDstPhys;
    749   unsigned SrcReg, DstReg;
    750   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    751     return;
    752 
    753   if (IsDstPhys && !IsSrcPhys)
    754     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    755   else if (!IsDstPhys && IsSrcPhys) {
    756     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    757     if (!isNew)
    758       assert(SrcRegMap[DstReg] == SrcReg &&
    759              "Can't map to two src physical registers!");
    760 
    761     ScanUses(DstReg, MBB, Processed);
    762   }
    763 
    764   Processed.insert(MI);
    765   return;
    766 }
    767 
    768 /// isSafeToDelete - If the specified instruction does not produce any side
    769 /// effects and all of its defs are dead, then it's safe to delete.
    770 static bool isSafeToDelete(MachineInstr *MI,
    771                            const TargetInstrInfo *TII,
    772                            SmallVector<unsigned, 4> &Kills) {
    773   const MCInstrDesc &MCID = MI->getDesc();
    774   if (MCID.mayStore() || MCID.isCall())
    775     return false;
    776   if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
    777     return false;
    778 
    779   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    780     MachineOperand &MO = MI->getOperand(i);
    781     if (!MO.isReg())
    782       continue;
    783     if (MO.isDef() && !MO.isDead())
    784       return false;
    785     if (MO.isUse() && MO.isKill())
    786       Kills.push_back(MO.getReg());
    787   }
    788   return true;
    789 }
    790 
    791 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
    792 /// killed by instructions in MBB preceding the current instruction at
    793 /// position Dist.  If so, return true and record information about the
    794 /// preceding kills in NewKills.
    795 bool TwoAddressInstructionPass::
    796 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
    797                       SmallVector<NewKill, 4> &NewKills,
    798                       MachineBasicBlock *MBB, unsigned Dist) {
    799   while (!Kills.empty()) {
    800     unsigned Kill = Kills.back();
    801     Kills.pop_back();
    802     if (TargetRegisterInfo::isPhysicalRegister(Kill))
    803       return false;
    804 
    805     MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
    806     if (!LastKill)
    807       return false;
    808 
    809     bool isModRef = LastKill->definesRegister(Kill);
    810     NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
    811                                       LastKill));
    812   }
    813   return true;
    814 }
    815 
    816 /// DeleteUnusedInstr - If an instruction with a tied register operand can
    817 /// be safely deleted, just delete it.
    818 bool
    819 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
    820                                              MachineBasicBlock::iterator &nmi,
    821                                              MachineFunction::iterator &mbbi,
    822                                              unsigned Dist) {
    823   // Check if the instruction has no side effects and if all its defs are dead.
    824   SmallVector<unsigned, 4> Kills;
    825   if (!isSafeToDelete(mi, TII, Kills))
    826     return false;
    827 
    828   // If this instruction kills some virtual registers, we need to
    829   // update the kill information. If it's not possible to do so,
    830   // then bail out.
    831   SmallVector<NewKill, 4> NewKills;
    832   if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
    833     return false;
    834 
    835   if (LV) {
    836     while (!NewKills.empty()) {
    837       MachineInstr *NewKill = NewKills.back().second;
    838       unsigned Kill = NewKills.back().first.first;
    839       bool isDead = NewKills.back().first.second;
    840       NewKills.pop_back();
    841       if (LV->removeVirtualRegisterKilled(Kill, mi)) {
    842         if (isDead)
    843           LV->addVirtualRegisterDead(Kill, NewKill);
    844         else
    845           LV->addVirtualRegisterKilled(Kill, NewKill);
    846       }
    847     }
    848   }
    849 
    850   mbbi->erase(mi); // Nuke the old inst.
    851   mi = nmi;
    852   return true;
    853 }
    854 
    855 /// TryInstructionTransform - For the case where an instruction has a single
    856 /// pair of tied register operands, attempt some transformations that may
    857 /// either eliminate the tied operands or improve the opportunities for
    858 /// coalescing away the register copy.  Returns true if the tied operands
    859 /// are eliminated altogether.
    860 bool TwoAddressInstructionPass::
    861 TryInstructionTransform(MachineBasicBlock::iterator &mi,
    862                         MachineBasicBlock::iterator &nmi,
    863                         MachineFunction::iterator &mbbi,
    864                         unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
    865                         SmallPtrSet<MachineInstr*, 8> &Processed) {
    866   const MCInstrDesc &MCID = mi->getDesc();
    867   unsigned regA = mi->getOperand(DstIdx).getReg();
    868   unsigned regB = mi->getOperand(SrcIdx).getReg();
    869 
    870   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
    871          "cannot make instruction into two-address form");
    872 
    873   // If regA is dead and the instruction can be deleted, just delete
    874   // it so it doesn't clobber regB.
    875   bool regBKilled = isKilled(*mi, regB, MRI, TII);
    876   if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
    877       DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
    878     ++NumDeletes;
    879     return true; // Done with this instruction.
    880   }
    881 
    882   // Check if it is profitable to commute the operands.
    883   unsigned SrcOp1, SrcOp2;
    884   unsigned regC = 0;
    885   unsigned regCIdx = ~0U;
    886   bool TryCommute = false;
    887   bool AggressiveCommute = false;
    888   if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
    889       TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
    890     if (SrcIdx == SrcOp1)
    891       regCIdx = SrcOp2;
    892     else if (SrcIdx == SrcOp2)
    893       regCIdx = SrcOp1;
    894 
    895     if (regCIdx != ~0U) {
    896       regC = mi->getOperand(regCIdx).getReg();
    897       if (!regBKilled && isKilled(*mi, regC, MRI, TII))
    898         // If C dies but B does not, swap the B and C operands.
    899         // This makes the live ranges of A and C joinable.
    900         TryCommute = true;
    901       else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
    902         TryCommute = true;
    903         AggressiveCommute = true;
    904       }
    905     }
    906   }
    907 
    908   // If it's profitable to commute, try to do so.
    909   if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
    910     ++NumCommuted;
    911     if (AggressiveCommute)
    912       ++NumAggrCommuted;
    913     return false;
    914   }
    915 
    916   if (TargetRegisterInfo::isVirtualRegister(regA))
    917     ScanUses(regA, &*mbbi, Processed);
    918 
    919   if (MCID.isConvertibleTo3Addr()) {
    920     // This instruction is potentially convertible to a true
    921     // three-address instruction.  Check if it is profitable.
    922     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
    923       // Try to convert it.
    924       if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
    925         ++NumConvertedTo3Addr;
    926         return true; // Done with this instruction.
    927       }
    928     }
    929   }
    930 
    931   // If this is an instruction with a load folded into it, try unfolding
    932   // the load, e.g. avoid this:
    933   //   movq %rdx, %rcx
    934   //   addq (%rax), %rcx
    935   // in favor of this:
    936   //   movq (%rax), %rcx
    937   //   addq %rdx, %rcx
    938   // because it's preferable to schedule a load than a register copy.
    939   if (MCID.mayLoad() && !regBKilled) {
    940     // Determine if a load can be unfolded.
    941     unsigned LoadRegIndex;
    942     unsigned NewOpc =
    943       TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
    944                                       /*UnfoldLoad=*/true,
    945                                       /*UnfoldStore=*/false,
    946                                       &LoadRegIndex);
    947     if (NewOpc != 0) {
    948       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
    949       if (UnfoldMCID.getNumDefs() == 1) {
    950         MachineFunction &MF = *mbbi->getParent();
    951 
    952         // Unfold the load.
    953         DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
    954         const TargetRegisterClass *RC =
    955           TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
    956         unsigned Reg = MRI->createVirtualRegister(RC);
    957         SmallVector<MachineInstr *, 2> NewMIs;
    958         if (!TII->unfoldMemoryOperand(MF, mi, Reg,
    959                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
    960                                       NewMIs)) {
    961           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
    962           return false;
    963         }
    964         assert(NewMIs.size() == 2 &&
    965                "Unfolded a load into multiple instructions!");
    966         // The load was previously folded, so this is the only use.
    967         NewMIs[1]->addRegisterKilled(Reg, TRI);
    968 
    969         // Tentatively insert the instructions into the block so that they
    970         // look "normal" to the transformation logic.
    971         mbbi->insert(mi, NewMIs[0]);
    972         mbbi->insert(mi, NewMIs[1]);
    973 
    974         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
    975                      << "2addr:    NEW INST: " << *NewMIs[1]);
    976 
    977         // Transform the instruction, now that it no longer has a load.
    978         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
    979         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
    980         MachineBasicBlock::iterator NewMI = NewMIs[1];
    981         bool TransformSuccess =
    982           TryInstructionTransform(NewMI, mi, mbbi,
    983                                   NewSrcIdx, NewDstIdx, Dist, Processed);
    984         if (TransformSuccess ||
    985             NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
    986           // Success, or at least we made an improvement. Keep the unfolded
    987           // instructions and discard the original.
    988           if (LV) {
    989             for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
    990               MachineOperand &MO = mi->getOperand(i);
    991               if (MO.isReg() &&
    992                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    993                 if (MO.isUse()) {
    994                   if (MO.isKill()) {
    995                     if (NewMIs[0]->killsRegister(MO.getReg()))
    996                       LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
    997                     else {
    998                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
    999                              "Kill missing after load unfold!");
   1000                       LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
   1001                     }
   1002                   }
   1003                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
   1004                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1005                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
   1006                   else {
   1007                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1008                            "Dead flag missing after load unfold!");
   1009                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
   1010                   }
   1011                 }
   1012               }
   1013             }
   1014             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
   1015           }
   1016           mi->eraseFromParent();
   1017           mi = NewMIs[1];
   1018           if (TransformSuccess)
   1019             return true;
   1020         } else {
   1021           // Transforming didn't eliminate the tie and didn't lead to an
   1022           // improvement. Clean up the unfolded instructions and keep the
   1023           // original.
   1024           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1025           NewMIs[0]->eraseFromParent();
   1026           NewMIs[1]->eraseFromParent();
   1027         }
   1028       }
   1029     }
   1030   }
   1031 
   1032   return false;
   1033 }
   1034 
   1035 /// runOnMachineFunction - Reduce two-address instructions to two operands.
   1036 ///
   1037 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
   1038   DEBUG(dbgs() << "Machine Function\n");
   1039   const TargetMachine &TM = MF.getTarget();
   1040   MRI = &MF.getRegInfo();
   1041   TII = TM.getInstrInfo();
   1042   TRI = TM.getRegisterInfo();
   1043   LV = getAnalysisIfAvailable<LiveVariables>();
   1044   AA = &getAnalysis<AliasAnalysis>();
   1045 
   1046   bool MadeChange = false;
   1047 
   1048   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1049   DEBUG(dbgs() << "********** Function: "
   1050         << MF.getFunction()->getName() << '\n');
   1051 
   1052   // This pass takes the function out of SSA form.
   1053   MRI->leaveSSA();
   1054 
   1055   // ReMatRegs - Keep track of the registers whose def's are remat'ed.
   1056   BitVector ReMatRegs(MRI->getNumVirtRegs());
   1057 
   1058   typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
   1059     TiedOperandMap;
   1060   TiedOperandMap TiedOperands(4);
   1061 
   1062   SmallPtrSet<MachineInstr*, 8> Processed;
   1063   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
   1064        mbbi != mbbe; ++mbbi) {
   1065     unsigned Dist = 0;
   1066     DistanceMap.clear();
   1067     SrcRegMap.clear();
   1068     DstRegMap.clear();
   1069     Processed.clear();
   1070     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
   1071          mi != me; ) {
   1072       MachineBasicBlock::iterator nmi = llvm::next(mi);
   1073       if (mi->isDebugValue()) {
   1074         mi = nmi;
   1075         continue;
   1076       }
   1077 
   1078       // Remember REG_SEQUENCE instructions, we'll deal with them later.
   1079       if (mi->isRegSequence())
   1080         RegSequences.push_back(&*mi);
   1081 
   1082       const MCInstrDesc &MCID = mi->getDesc();
   1083       bool FirstTied = true;
   1084 
   1085       DistanceMap.insert(std::make_pair(mi, ++Dist));
   1086 
   1087       ProcessCopy(&*mi, &*mbbi, Processed);
   1088 
   1089       // First scan through all the tied register uses in this instruction
   1090       // and record a list of pairs of tied operands for each register.
   1091       unsigned NumOps = mi->isInlineAsm()
   1092         ? mi->getNumOperands() : MCID.getNumOperands();
   1093       for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1094         unsigned DstIdx = 0;
   1095         if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1096           continue;
   1097 
   1098         if (FirstTied) {
   1099           FirstTied = false;
   1100           ++NumTwoAddressInstrs;
   1101           DEBUG(dbgs() << '\t' << *mi);
   1102         }
   1103 
   1104         assert(mi->getOperand(SrcIdx).isReg() &&
   1105                mi->getOperand(SrcIdx).getReg() &&
   1106                mi->getOperand(SrcIdx).isUse() &&
   1107                "two address instruction invalid");
   1108 
   1109         unsigned regB = mi->getOperand(SrcIdx).getReg();
   1110         TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
   1111       }
   1112 
   1113       // Now iterate over the information collected above.
   1114       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
   1115              OE = TiedOperands.end(); OI != OE; ++OI) {
   1116         SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
   1117 
   1118         // If the instruction has a single pair of tied operands, try some
   1119         // transformations that may either eliminate the tied operands or
   1120         // improve the opportunities for coalescing away the register copy.
   1121         if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
   1122           unsigned SrcIdx = TiedPairs[0].first;
   1123           unsigned DstIdx = TiedPairs[0].second;
   1124 
   1125           // If the registers are already equal, nothing needs to be done.
   1126           if (mi->getOperand(SrcIdx).getReg() ==
   1127               mi->getOperand(DstIdx).getReg())
   1128             break; // Done with this instruction.
   1129 
   1130           if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
   1131                                       Processed))
   1132             break; // The tied operands have been eliminated.
   1133         }
   1134 
   1135         bool IsEarlyClobber = false;
   1136         bool RemovedKillFlag = false;
   1137         bool AllUsesCopied = true;
   1138         unsigned LastCopiedReg = 0;
   1139         unsigned regB = OI->first;
   1140         for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1141           unsigned SrcIdx = TiedPairs[tpi].first;
   1142           unsigned DstIdx = TiedPairs[tpi].second;
   1143 
   1144           const MachineOperand &DstMO = mi->getOperand(DstIdx);
   1145           unsigned regA = DstMO.getReg();
   1146           IsEarlyClobber |= DstMO.isEarlyClobber();
   1147 
   1148           // Grab regB from the instruction because it may have changed if the
   1149           // instruction was commuted.
   1150           regB = mi->getOperand(SrcIdx).getReg();
   1151 
   1152           if (regA == regB) {
   1153             // The register is tied to multiple destinations (or else we would
   1154             // not have continued this far), but this use of the register
   1155             // already matches the tied destination.  Leave it.
   1156             AllUsesCopied = false;
   1157             continue;
   1158           }
   1159           LastCopiedReg = regA;
   1160 
   1161           assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1162                  "cannot make instruction into two-address form");
   1163 
   1164 #ifndef NDEBUG
   1165           // First, verify that we don't have a use of "a" in the instruction
   1166           // (a = b + a for example) because our transformation will not
   1167           // work. This should never occur because we are in SSA form.
   1168           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
   1169             assert(i == DstIdx ||
   1170                    !mi->getOperand(i).isReg() ||
   1171                    mi->getOperand(i).getReg() != regA);
   1172 #endif
   1173 
   1174           // Emit a copy or rematerialize the definition.
   1175           const TargetRegisterClass *rc = MRI->getRegClass(regB);
   1176           MachineInstr *DefMI = MRI->getVRegDef(regB);
   1177           // If it's safe and profitable, remat the definition instead of
   1178           // copying it.
   1179           if (DefMI &&
   1180               DefMI->getDesc().isAsCheapAsAMove() &&
   1181               DefMI->isSafeToReMat(TII, AA, regB) &&
   1182               isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
   1183             DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
   1184             unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
   1185             TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
   1186             ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
   1187             ++NumReMats;
   1188           } else {
   1189             BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
   1190                     regA).addReg(regB);
   1191           }
   1192 
   1193           MachineBasicBlock::iterator prevMI = prior(mi);
   1194           // Update DistanceMap.
   1195           DistanceMap.insert(std::make_pair(prevMI, Dist));
   1196           DistanceMap[mi] = ++Dist;
   1197 
   1198           DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
   1199 
   1200           MachineOperand &MO = mi->getOperand(SrcIdx);
   1201           assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
   1202                  "inconsistent operand info for 2-reg pass");
   1203           if (MO.isKill()) {
   1204             MO.setIsKill(false);
   1205             RemovedKillFlag = true;
   1206           }
   1207           MO.setReg(regA);
   1208         }
   1209 
   1210         if (AllUsesCopied) {
   1211           if (!IsEarlyClobber) {
   1212             // Replace other (un-tied) uses of regB with LastCopiedReg.
   1213             for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
   1214               MachineOperand &MO = mi->getOperand(i);
   1215               if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
   1216                 if (MO.isKill()) {
   1217                   MO.setIsKill(false);
   1218                   RemovedKillFlag = true;
   1219                 }
   1220                 MO.setReg(LastCopiedReg);
   1221               }
   1222             }
   1223           }
   1224 
   1225           // Update live variables for regB.
   1226           if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
   1227             LV->addVirtualRegisterKilled(regB, prior(mi));
   1228 
   1229         } else if (RemovedKillFlag) {
   1230           // Some tied uses of regB matched their destination registers, so
   1231           // regB is still used in this instruction, but a kill flag was
   1232           // removed from a different tied use of regB, so now we need to add
   1233           // a kill flag to one of the remaining uses of regB.
   1234           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
   1235             MachineOperand &MO = mi->getOperand(i);
   1236             if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
   1237               MO.setIsKill(true);
   1238               break;
   1239             }
   1240           }
   1241         }
   1242 
   1243         // Schedule the source copy / remat inserted to form two-address
   1244         // instruction. FIXME: Does it matter the distance map may not be
   1245         // accurate after it's scheduled?
   1246         TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
   1247 
   1248         MadeChange = true;
   1249 
   1250         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1251       }
   1252 
   1253       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1254       if (mi->isInsertSubreg()) {
   1255         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1256         // To   %reg:subidx = COPY %subreg
   1257         unsigned SubIdx = mi->getOperand(3).getImm();
   1258         mi->RemoveOperand(3);
   1259         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1260         mi->getOperand(0).setSubReg(SubIdx);
   1261         mi->RemoveOperand(1);
   1262         mi->setDesc(TII->get(TargetOpcode::COPY));
   1263         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1264       }
   1265 
   1266       // Clear TiedOperands here instead of at the top of the loop
   1267       // since most instructions do not have tied operands.
   1268       TiedOperands.clear();
   1269       mi = nmi;
   1270     }
   1271   }
   1272 
   1273   // Some remat'ed instructions are dead.
   1274   for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
   1275     unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
   1276     if (MRI->use_nodbg_empty(VReg)) {
   1277       MachineInstr *DefMI = MRI->getVRegDef(VReg);
   1278       DefMI->eraseFromParent();
   1279     }
   1280   }
   1281 
   1282   // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
   1283   // SSA form. It's now safe to de-SSA.
   1284   MadeChange |= EliminateRegSequences();
   1285 
   1286   return MadeChange;
   1287 }
   1288 
   1289 static void UpdateRegSequenceSrcs(unsigned SrcReg,
   1290                                   unsigned DstReg, unsigned SubIdx,
   1291                                   MachineRegisterInfo *MRI,
   1292                                   const TargetRegisterInfo &TRI) {
   1293   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
   1294          RE = MRI->reg_end(); RI != RE; ) {
   1295     MachineOperand &MO = RI.getOperand();
   1296     ++RI;
   1297     MO.substVirtReg(DstReg, SubIdx, TRI);
   1298   }
   1299 }
   1300 
   1301 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
   1302 /// EXTRACT_SUBREG from the same register and to the same virtual register
   1303 /// with different sub-register indices, attempt to combine the
   1304 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
   1305 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
   1306 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
   1307 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
   1308 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
   1309 /// reg1026 to reg1029.
   1310 void
   1311 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
   1312                                               unsigned DstReg) {
   1313   SmallSet<unsigned, 4> Seen;
   1314   for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
   1315     unsigned SrcReg = Srcs[i];
   1316     if (!Seen.insert(SrcReg))
   1317       continue;
   1318 
   1319     // Check that the instructions are all in the same basic block.
   1320     MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
   1321     MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
   1322     if (SrcDefMI->getParent() != DstDefMI->getParent())
   1323       continue;
   1324 
   1325     // If there are no other uses than copies which feed into
   1326     // the reg_sequence, then we might be able to coalesce them.
   1327     bool CanCoalesce = true;
   1328     SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
   1329     for (MachineRegisterInfo::use_nodbg_iterator
   1330            UI = MRI->use_nodbg_begin(SrcReg),
   1331            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
   1332       MachineInstr *UseMI = &*UI;
   1333       if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
   1334         CanCoalesce = false;
   1335         break;
   1336       }
   1337       SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
   1338       DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
   1339     }
   1340 
   1341     if (!CanCoalesce || SrcSubIndices.size() < 2)
   1342       continue;
   1343 
   1344     // Check that the source subregisters can be combined.
   1345     std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
   1346     unsigned NewSrcSubIdx = 0;
   1347     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
   1348                                       NewSrcSubIdx))
   1349       continue;
   1350 
   1351     // Check that the destination subregisters can also be combined.
   1352     std::sort(DstSubIndices.begin(), DstSubIndices.end());
   1353     unsigned NewDstSubIdx = 0;
   1354     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
   1355                                       NewDstSubIdx))
   1356       continue;
   1357 
   1358     // If neither source nor destination can be combined to the full register,
   1359     // just give up.  This could be improved if it ever matters.
   1360     if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
   1361       continue;
   1362 
   1363     // Now that we know that all the uses are extract_subregs and that those
   1364     // subregs can somehow be combined, scan all the extract_subregs again to
   1365     // make sure the subregs are in the right order and can be composed.
   1366     MachineInstr *SomeMI = 0;
   1367     CanCoalesce = true;
   1368     for (MachineRegisterInfo::use_nodbg_iterator
   1369            UI = MRI->use_nodbg_begin(SrcReg),
   1370            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
   1371       MachineInstr *UseMI = &*UI;
   1372       assert(UseMI->isCopy());
   1373       unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
   1374       unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
   1375       assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
   1376       if ((NewDstSubIdx == 0 &&
   1377            TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
   1378           (NewSrcSubIdx == 0 &&
   1379            TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
   1380         CanCoalesce = false;
   1381         break;
   1382       }
   1383       // Keep track of one of the uses.
   1384       SomeMI = UseMI;
   1385     }
   1386     if (!CanCoalesce)
   1387       continue;
   1388 
   1389     // Insert a copy to replace the original.
   1390     MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
   1391                                    SomeMI->getDebugLoc(),
   1392                                    TII->get(TargetOpcode::COPY))
   1393       .addReg(DstReg, RegState::Define, NewDstSubIdx)
   1394       .addReg(SrcReg, 0, NewSrcSubIdx);
   1395 
   1396     // Remove all the old extract instructions.
   1397     for (MachineRegisterInfo::use_nodbg_iterator
   1398            UI = MRI->use_nodbg_begin(SrcReg),
   1399            UE = MRI->use_nodbg_end(); UI != UE; ) {
   1400       MachineInstr *UseMI = &*UI;
   1401       ++UI;
   1402       if (UseMI == CopyMI)
   1403         continue;
   1404       assert(UseMI->isCopy());
   1405       // Move any kills to the new copy or extract instruction.
   1406       if (UseMI->getOperand(1).isKill()) {
   1407         CopyMI->getOperand(1).setIsKill();
   1408         if (LV)
   1409           // Update live variables
   1410           LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
   1411       }
   1412       UseMI->eraseFromParent();
   1413     }
   1414   }
   1415 }
   1416 
   1417 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
   1418                                     MachineRegisterInfo *MRI) {
   1419   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
   1420          UE = MRI->use_end(); UI != UE; ++UI) {
   1421     MachineInstr *UseMI = &*UI;
   1422     if (UseMI != RegSeq && UseMI->isRegSequence())
   1423       return true;
   1424   }
   1425   return false;
   1426 }
   1427 
   1428 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
   1429 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
   1430 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
   1431 ///
   1432 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
   1433 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
   1434 /// =>
   1435 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
   1436 bool TwoAddressInstructionPass::EliminateRegSequences() {
   1437   if (RegSequences.empty())
   1438     return false;
   1439 
   1440   for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
   1441     MachineInstr *MI = RegSequences[i];
   1442     unsigned DstReg = MI->getOperand(0).getReg();
   1443     if (MI->getOperand(0).getSubReg() ||
   1444         TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1445         !(MI->getNumOperands() & 1)) {
   1446       DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1447       llvm_unreachable(0);
   1448     }
   1449 
   1450     bool IsImpDef = true;
   1451     SmallVector<unsigned, 4> RealSrcs;
   1452     SmallSet<unsigned, 4> Seen;
   1453     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1454       unsigned SrcReg = MI->getOperand(i).getReg();
   1455       unsigned SubIdx = MI->getOperand(i+1).getImm();
   1456       if (MI->getOperand(i).getSubReg() ||
   1457           TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   1458         DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1459         llvm_unreachable(0);
   1460       }
   1461 
   1462       MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
   1463       if (DefMI->isImplicitDef()) {
   1464         DefMI->eraseFromParent();
   1465         continue;
   1466       }
   1467       IsImpDef = false;
   1468 
   1469       // Remember COPY sources. These might be candidate for coalescing.
   1470       if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
   1471         RealSrcs.push_back(DefMI->getOperand(1).getReg());
   1472 
   1473       bool isKill = MI->getOperand(i).isKill();
   1474       if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
   1475           !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
   1476           !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
   1477                                          MRI->getRegClass(SrcReg), SubIdx)) {
   1478         // REG_SEQUENCE cannot have duplicated operands, add a copy.
   1479         // Also add an copy if the source is live-in the block. We don't want
   1480         // to end up with a partial-redef of a livein, e.g.
   1481         // BB0:
   1482         // reg1051:10<def> =
   1483         // ...
   1484         // BB1:
   1485         // ... = reg1051:10
   1486         // BB2:
   1487         // reg1051:9<def> =
   1488         // LiveIntervalAnalysis won't like it.
   1489         //
   1490         // If the REG_SEQUENCE doesn't kill its source, keeping live variables
   1491         // correctly up to date becomes very difficult. Insert a copy.
   1492 
   1493         // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1494         // might insert a COPY that uses SrcReg after is was killed.
   1495         if (isKill)
   1496           for (unsigned j = i + 2; j < e; j += 2)
   1497             if (MI->getOperand(j).getReg() == SrcReg) {
   1498               MI->getOperand(j).setIsKill();
   1499               isKill = false;
   1500               break;
   1501             }
   1502 
   1503         MachineBasicBlock::iterator InsertLoc = MI;
   1504         MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
   1505                                 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
   1506             .addReg(DstReg, RegState::Define, SubIdx)
   1507             .addReg(SrcReg, getKillRegState(isKill));
   1508         MI->getOperand(i).setReg(0);
   1509         if (LV && isKill)
   1510           LV->replaceKillInstruction(SrcReg, MI, CopyMI);
   1511         DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1512       }
   1513     }
   1514 
   1515     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1516       unsigned SrcReg = MI->getOperand(i).getReg();
   1517       if (!SrcReg) continue;
   1518       unsigned SubIdx = MI->getOperand(i+1).getImm();
   1519       UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
   1520     }
   1521 
   1522     if (IsImpDef) {
   1523       DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
   1524       MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1525       for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
   1526         MI->RemoveOperand(j);
   1527     } else {
   1528       DEBUG(dbgs() << "Eliminated: " << *MI);
   1529       MI->eraseFromParent();
   1530     }
   1531 
   1532     // Try coalescing some EXTRACT_SUBREG instructions. This can create
   1533     // INSERT_SUBREG instructions that must have <undef> flags added by
   1534     // LiveIntervalAnalysis, so only run it when LiveVariables is available.
   1535     if (LV)
   1536       CoalesceExtSubRegs(RealSrcs, DstReg);
   1537   }
   1538 
   1539   RegSequences.clear();
   1540   return true;
   1541 }
   1542