Home | History | Annotate | Download | only in IPO
      1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms simple global variables that never have their address
     11 // taken.  If obviously true, it marks read/write globals as constant, deletes
     12 // variables only stored to, etc.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "globalopt"
     17 #include "llvm/Transforms/IPO.h"
     18 #include "llvm/CallingConv.h"
     19 #include "llvm/Constants.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/IntrinsicInst.h"
     23 #include "llvm/Module.h"
     24 #include "llvm/Operator.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Support/CallSite.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/GetElementPtrTypeIterator.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/SmallPtrSet.h"
     37 #include "llvm/ADT/SmallVector.h"
     38 #include "llvm/ADT/Statistic.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include <algorithm>
     41 using namespace llvm;
     42 
     43 STATISTIC(NumMarked    , "Number of globals marked constant");
     44 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
     45 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
     46 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
     47 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
     48 STATISTIC(NumDeleted   , "Number of globals deleted");
     49 STATISTIC(NumFnDeleted , "Number of functions deleted");
     50 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
     51 STATISTIC(NumLocalized , "Number of globals localized");
     52 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
     53 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
     54 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
     55 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
     56 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
     57 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
     58 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
     59 
     60 namespace {
     61   struct GlobalStatus;
     62   struct GlobalOpt : public ModulePass {
     63     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     64     }
     65     static char ID; // Pass identification, replacement for typeid
     66     GlobalOpt() : ModulePass(ID) {
     67       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
     68     }
     69 
     70     bool runOnModule(Module &M);
     71 
     72   private:
     73     GlobalVariable *FindGlobalCtors(Module &M);
     74     bool OptimizeFunctions(Module &M);
     75     bool OptimizeGlobalVars(Module &M);
     76     bool OptimizeGlobalAliases(Module &M);
     77     bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
     78     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
     79     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
     80                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
     81                                const GlobalStatus &GS);
     82     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
     83   };
     84 }
     85 
     86 char GlobalOpt::ID = 0;
     87 INITIALIZE_PASS(GlobalOpt, "globalopt",
     88                 "Global Variable Optimizer", false, false)
     89 
     90 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
     91 
     92 namespace {
     93 
     94 /// GlobalStatus - As we analyze each global, keep track of some information
     95 /// about it.  If we find out that the address of the global is taken, none of
     96 /// this info will be accurate.
     97 struct GlobalStatus {
     98   /// isCompared - True if the global's address is used in a comparison.
     99   bool isCompared;
    100 
    101   /// isLoaded - True if the global is ever loaded.  If the global isn't ever
    102   /// loaded it can be deleted.
    103   bool isLoaded;
    104 
    105   /// StoredType - Keep track of what stores to the global look like.
    106   ///
    107   enum StoredType {
    108     /// NotStored - There is no store to this global.  It can thus be marked
    109     /// constant.
    110     NotStored,
    111 
    112     /// isInitializerStored - This global is stored to, but the only thing
    113     /// stored is the constant it was initialized with.  This is only tracked
    114     /// for scalar globals.
    115     isInitializerStored,
    116 
    117     /// isStoredOnce - This global is stored to, but only its initializer and
    118     /// one other value is ever stored to it.  If this global isStoredOnce, we
    119     /// track the value stored to it in StoredOnceValue below.  This is only
    120     /// tracked for scalar globals.
    121     isStoredOnce,
    122 
    123     /// isStored - This global is stored to by multiple values or something else
    124     /// that we cannot track.
    125     isStored
    126   } StoredType;
    127 
    128   /// StoredOnceValue - If only one value (besides the initializer constant) is
    129   /// ever stored to this global, keep track of what value it is.
    130   Value *StoredOnceValue;
    131 
    132   /// AccessingFunction/HasMultipleAccessingFunctions - These start out
    133   /// null/false.  When the first accessing function is noticed, it is recorded.
    134   /// When a second different accessing function is noticed,
    135   /// HasMultipleAccessingFunctions is set to true.
    136   const Function *AccessingFunction;
    137   bool HasMultipleAccessingFunctions;
    138 
    139   /// HasNonInstructionUser - Set to true if this global has a user that is not
    140   /// an instruction (e.g. a constant expr or GV initializer).
    141   bool HasNonInstructionUser;
    142 
    143   /// HasPHIUser - Set to true if this global has a user that is a PHI node.
    144   bool HasPHIUser;
    145 
    146   GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
    147                    StoredOnceValue(0), AccessingFunction(0),
    148                    HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
    149                    HasPHIUser(false) {}
    150 };
    151 
    152 }
    153 
    154 // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
    155 // by constants itself.  Note that constants cannot be cyclic, so this test is
    156 // pretty easy to implement recursively.
    157 //
    158 static bool SafeToDestroyConstant(const Constant *C) {
    159   if (isa<GlobalValue>(C)) return false;
    160 
    161   for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
    162        ++UI)
    163     if (const Constant *CU = dyn_cast<Constant>(*UI)) {
    164       if (!SafeToDestroyConstant(CU)) return false;
    165     } else
    166       return false;
    167   return true;
    168 }
    169 
    170 
    171 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
    172 /// structure.  If the global has its address taken, return true to indicate we
    173 /// can't do anything with it.
    174 ///
    175 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
    176                           SmallPtrSet<const PHINode*, 16> &PHIUsers) {
    177   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
    178        ++UI) {
    179     const User *U = *UI;
    180     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    181       GS.HasNonInstructionUser = true;
    182 
    183       // If the result of the constantexpr isn't pointer type, then we won't
    184       // know to expect it in various places.  Just reject early.
    185       if (!isa<PointerType>(CE->getType())) return true;
    186 
    187       if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
    188     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
    189       if (!GS.HasMultipleAccessingFunctions) {
    190         const Function *F = I->getParent()->getParent();
    191         if (GS.AccessingFunction == 0)
    192           GS.AccessingFunction = F;
    193         else if (GS.AccessingFunction != F)
    194           GS.HasMultipleAccessingFunctions = true;
    195       }
    196       if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
    197         GS.isLoaded = true;
    198         // Don't hack on volatile/atomic loads.
    199         if (!LI->isSimple()) return true;
    200       } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
    201         // Don't allow a store OF the address, only stores TO the address.
    202         if (SI->getOperand(0) == V) return true;
    203 
    204         // Don't hack on volatile/atomic stores.
    205         if (!SI->isSimple()) return true;
    206 
    207         // If this is a direct store to the global (i.e., the global is a scalar
    208         // value, not an aggregate), keep more specific information about
    209         // stores.
    210         if (GS.StoredType != GlobalStatus::isStored) {
    211           if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
    212                                                            SI->getOperand(1))) {
    213             Value *StoredVal = SI->getOperand(0);
    214             if (StoredVal == GV->getInitializer()) {
    215               if (GS.StoredType < GlobalStatus::isInitializerStored)
    216                 GS.StoredType = GlobalStatus::isInitializerStored;
    217             } else if (isa<LoadInst>(StoredVal) &&
    218                        cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
    219               if (GS.StoredType < GlobalStatus::isInitializerStored)
    220                 GS.StoredType = GlobalStatus::isInitializerStored;
    221             } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
    222               GS.StoredType = GlobalStatus::isStoredOnce;
    223               GS.StoredOnceValue = StoredVal;
    224             } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
    225                        GS.StoredOnceValue == StoredVal) {
    226               // noop.
    227             } else {
    228               GS.StoredType = GlobalStatus::isStored;
    229             }
    230           } else {
    231             GS.StoredType = GlobalStatus::isStored;
    232           }
    233         }
    234       } else if (isa<GetElementPtrInst>(I)) {
    235         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    236       } else if (isa<SelectInst>(I)) {
    237         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    238       } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
    239         // PHI nodes we can check just like select or GEP instructions, but we
    240         // have to be careful about infinite recursion.
    241         if (PHIUsers.insert(PN))  // Not already visited.
    242           if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    243         GS.HasPHIUser = true;
    244       } else if (isa<CmpInst>(I)) {
    245         GS.isCompared = true;
    246       } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
    247         if (MTI->isVolatile()) return true;
    248         if (MTI->getArgOperand(0) == V)
    249           GS.StoredType = GlobalStatus::isStored;
    250         if (MTI->getArgOperand(1) == V)
    251           GS.isLoaded = true;
    252       } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
    253         assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
    254         if (MSI->isVolatile()) return true;
    255         GS.StoredType = GlobalStatus::isStored;
    256       } else {
    257         return true;  // Any other non-load instruction might take address!
    258       }
    259     } else if (const Constant *C = dyn_cast<Constant>(U)) {
    260       GS.HasNonInstructionUser = true;
    261       // We might have a dead and dangling constant hanging off of here.
    262       if (!SafeToDestroyConstant(C))
    263         return true;
    264     } else {
    265       GS.HasNonInstructionUser = true;
    266       // Otherwise must be some other user.
    267       return true;
    268     }
    269   }
    270 
    271   return false;
    272 }
    273 
    274 static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
    275   ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
    276   if (!CI) return 0;
    277   unsigned IdxV = CI->getZExtValue();
    278 
    279   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
    280     if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
    281   } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
    282     if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
    283   } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
    284     if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
    285   } else if (isa<ConstantAggregateZero>(Agg)) {
    286     if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
    287       if (IdxV < STy->getNumElements())
    288         return Constant::getNullValue(STy->getElementType(IdxV));
    289     } else if (SequentialType *STy =
    290                dyn_cast<SequentialType>(Agg->getType())) {
    291       return Constant::getNullValue(STy->getElementType());
    292     }
    293   } else if (isa<UndefValue>(Agg)) {
    294     if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
    295       if (IdxV < STy->getNumElements())
    296         return UndefValue::get(STy->getElementType(IdxV));
    297     } else if (SequentialType *STy =
    298                dyn_cast<SequentialType>(Agg->getType())) {
    299       return UndefValue::get(STy->getElementType());
    300     }
    301   }
    302   return 0;
    303 }
    304 
    305 
    306 /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
    307 /// users of the global, cleaning up the obvious ones.  This is largely just a
    308 /// quick scan over the use list to clean up the easy and obvious cruft.  This
    309 /// returns true if it made a change.
    310 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
    311   bool Changed = false;
    312   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
    313     User *U = *UI++;
    314 
    315     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    316       if (Init) {
    317         // Replace the load with the initializer.
    318         LI->replaceAllUsesWith(Init);
    319         LI->eraseFromParent();
    320         Changed = true;
    321       }
    322     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    323       // Store must be unreachable or storing Init into the global.
    324       SI->eraseFromParent();
    325       Changed = true;
    326     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    327       if (CE->getOpcode() == Instruction::GetElementPtr) {
    328         Constant *SubInit = 0;
    329         if (Init)
    330           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    331         Changed |= CleanupConstantGlobalUsers(CE, SubInit);
    332       } else if (CE->getOpcode() == Instruction::BitCast &&
    333                  CE->getType()->isPointerTy()) {
    334         // Pointer cast, delete any stores and memsets to the global.
    335         Changed |= CleanupConstantGlobalUsers(CE, 0);
    336       }
    337 
    338       if (CE->use_empty()) {
    339         CE->destroyConstant();
    340         Changed = true;
    341       }
    342     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    343       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
    344       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
    345       // and will invalidate our notion of what Init is.
    346       Constant *SubInit = 0;
    347       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
    348         ConstantExpr *CE =
    349           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
    350         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
    351           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    352       }
    353       Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
    354 
    355       if (GEP->use_empty()) {
    356         GEP->eraseFromParent();
    357         Changed = true;
    358       }
    359     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
    360       if (MI->getRawDest() == V) {
    361         MI->eraseFromParent();
    362         Changed = true;
    363       }
    364 
    365     } else if (Constant *C = dyn_cast<Constant>(U)) {
    366       // If we have a chain of dead constantexprs or other things dangling from
    367       // us, and if they are all dead, nuke them without remorse.
    368       if (SafeToDestroyConstant(C)) {
    369         C->destroyConstant();
    370         // This could have invalidated UI, start over from scratch.
    371         CleanupConstantGlobalUsers(V, Init);
    372         return true;
    373       }
    374     }
    375   }
    376   return Changed;
    377 }
    378 
    379 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
    380 /// user of a derived expression from a global that we want to SROA.
    381 static bool isSafeSROAElementUse(Value *V) {
    382   // We might have a dead and dangling constant hanging off of here.
    383   if (Constant *C = dyn_cast<Constant>(V))
    384     return SafeToDestroyConstant(C);
    385 
    386   Instruction *I = dyn_cast<Instruction>(V);
    387   if (!I) return false;
    388 
    389   // Loads are ok.
    390   if (isa<LoadInst>(I)) return true;
    391 
    392   // Stores *to* the pointer are ok.
    393   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    394     return SI->getOperand(0) != V;
    395 
    396   // Otherwise, it must be a GEP.
    397   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
    398   if (GEPI == 0) return false;
    399 
    400   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
    401       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    402     return false;
    403 
    404   for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
    405        I != E; ++I)
    406     if (!isSafeSROAElementUse(*I))
    407       return false;
    408   return true;
    409 }
    410 
    411 
    412 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
    413 /// Look at it and its uses and decide whether it is safe to SROA this global.
    414 ///
    415 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
    416   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    417   if (!isa<GetElementPtrInst>(U) &&
    418       (!isa<ConstantExpr>(U) ||
    419        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    420     return false;
    421 
    422   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
    423   // don't like < 3 operand CE's, and we don't like non-constant integer
    424   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
    425   // value of C.
    426   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
    427       !cast<Constant>(U->getOperand(1))->isNullValue() ||
    428       !isa<ConstantInt>(U->getOperand(2)))
    429     return false;
    430 
    431   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
    432   ++GEPI;  // Skip over the pointer index.
    433 
    434   // If this is a use of an array allocation, do a bit more checking for sanity.
    435   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
    436     uint64_t NumElements = AT->getNumElements();
    437     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
    438 
    439     // Check to make sure that index falls within the array.  If not,
    440     // something funny is going on, so we won't do the optimization.
    441     //
    442     if (Idx->getZExtValue() >= NumElements)
    443       return false;
    444 
    445     // We cannot scalar repl this level of the array unless any array
    446     // sub-indices are in-range constants.  In particular, consider:
    447     // A[0][i].  We cannot know that the user isn't doing invalid things like
    448     // allowing i to index an out-of-range subscript that accesses A[1].
    449     //
    450     // Scalar replacing *just* the outer index of the array is probably not
    451     // going to be a win anyway, so just give up.
    452     for (++GEPI; // Skip array index.
    453          GEPI != E;
    454          ++GEPI) {
    455       uint64_t NumElements;
    456       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
    457         NumElements = SubArrayTy->getNumElements();
    458       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
    459         NumElements = SubVectorTy->getNumElements();
    460       else {
    461         assert((*GEPI)->isStructTy() &&
    462                "Indexed GEP type is not array, vector, or struct!");
    463         continue;
    464       }
    465 
    466       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    467       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
    468         return false;
    469     }
    470   }
    471 
    472   for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
    473     if (!isSafeSROAElementUse(*I))
    474       return false;
    475   return true;
    476 }
    477 
    478 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
    479 /// is safe for us to perform this transformation.
    480 ///
    481 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
    482   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
    483        UI != E; ++UI) {
    484     if (!IsUserOfGlobalSafeForSRA(*UI, GV))
    485       return false;
    486   }
    487   return true;
    488 }
    489 
    490 
    491 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
    492 /// variable.  This opens the door for other optimizations by exposing the
    493 /// behavior of the program in a more fine-grained way.  We have determined that
    494 /// this transformation is safe already.  We return the first global variable we
    495 /// insert so that the caller can reprocess it.
    496 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
    497   // Make sure this global only has simple uses that we can SRA.
    498   if (!GlobalUsersSafeToSRA(GV))
    499     return 0;
    500 
    501   assert(GV->hasLocalLinkage() && !GV->isConstant());
    502   Constant *Init = GV->getInitializer();
    503   Type *Ty = Init->getType();
    504 
    505   std::vector<GlobalVariable*> NewGlobals;
    506   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
    507 
    508   // Get the alignment of the global, either explicit or target-specific.
    509   unsigned StartAlignment = GV->getAlignment();
    510   if (StartAlignment == 0)
    511     StartAlignment = TD.getABITypeAlignment(GV->getType());
    512 
    513   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    514     NewGlobals.reserve(STy->getNumElements());
    515     const StructLayout &Layout = *TD.getStructLayout(STy);
    516     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    517       Constant *In = getAggregateConstantElement(Init,
    518                     ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
    519       assert(In && "Couldn't get element of initializer?");
    520       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
    521                                                GlobalVariable::InternalLinkage,
    522                                                In, GV->getName()+"."+Twine(i),
    523                                                GV->isThreadLocal(),
    524                                               GV->getType()->getAddressSpace());
    525       Globals.insert(GV, NGV);
    526       NewGlobals.push_back(NGV);
    527 
    528       // Calculate the known alignment of the field.  If the original aggregate
    529       // had 256 byte alignment for example, something might depend on that:
    530       // propagate info to each field.
    531       uint64_t FieldOffset = Layout.getElementOffset(i);
    532       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
    533       if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
    534         NGV->setAlignment(NewAlign);
    535     }
    536   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    537     unsigned NumElements = 0;
    538     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
    539       NumElements = ATy->getNumElements();
    540     else
    541       NumElements = cast<VectorType>(STy)->getNumElements();
    542 
    543     if (NumElements > 16 && GV->hasNUsesOrMore(16))
    544       return 0; // It's not worth it.
    545     NewGlobals.reserve(NumElements);
    546 
    547     uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
    548     unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
    549     for (unsigned i = 0, e = NumElements; i != e; ++i) {
    550       Constant *In = getAggregateConstantElement(Init,
    551                     ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
    552       assert(In && "Couldn't get element of initializer?");
    553 
    554       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
    555                                                GlobalVariable::InternalLinkage,
    556                                                In, GV->getName()+"."+Twine(i),
    557                                                GV->isThreadLocal(),
    558                                               GV->getType()->getAddressSpace());
    559       Globals.insert(GV, NGV);
    560       NewGlobals.push_back(NGV);
    561 
    562       // Calculate the known alignment of the field.  If the original aggregate
    563       // had 256 byte alignment for example, something might depend on that:
    564       // propagate info to each field.
    565       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
    566       if (NewAlign > EltAlign)
    567         NGV->setAlignment(NewAlign);
    568     }
    569   }
    570 
    571   if (NewGlobals.empty())
    572     return 0;
    573 
    574   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
    575 
    576   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
    577 
    578   // Loop over all of the uses of the global, replacing the constantexpr geps,
    579   // with smaller constantexpr geps or direct references.
    580   while (!GV->use_empty()) {
    581     User *GEP = GV->use_back();
    582     assert(((isa<ConstantExpr>(GEP) &&
    583              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
    584             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
    585 
    586     // Ignore the 1th operand, which has to be zero or else the program is quite
    587     // broken (undefined).  Get the 2nd operand, which is the structure or array
    588     // index.
    589     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    590     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
    591 
    592     Value *NewPtr = NewGlobals[Val];
    593 
    594     // Form a shorter GEP if needed.
    595     if (GEP->getNumOperands() > 3) {
    596       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
    597         SmallVector<Constant*, 8> Idxs;
    598         Idxs.push_back(NullInt);
    599         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
    600           Idxs.push_back(CE->getOperand(i));
    601         NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
    602       } else {
    603         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
    604         SmallVector<Value*, 8> Idxs;
    605         Idxs.push_back(NullInt);
    606         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
    607           Idxs.push_back(GEPI->getOperand(i));
    608         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
    609                                            GEPI->getName()+"."+Twine(Val),GEPI);
    610       }
    611     }
    612     GEP->replaceAllUsesWith(NewPtr);
    613 
    614     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
    615       GEPI->eraseFromParent();
    616     else
    617       cast<ConstantExpr>(GEP)->destroyConstant();
    618   }
    619 
    620   // Delete the old global, now that it is dead.
    621   Globals.erase(GV);
    622   ++NumSRA;
    623 
    624   // Loop over the new globals array deleting any globals that are obviously
    625   // dead.  This can arise due to scalarization of a structure or an array that
    626   // has elements that are dead.
    627   unsigned FirstGlobal = 0;
    628   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    629     if (NewGlobals[i]->use_empty()) {
    630       Globals.erase(NewGlobals[i]);
    631       if (FirstGlobal == i) ++FirstGlobal;
    632     }
    633 
    634   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
    635 }
    636 
    637 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
    638 /// value will trap if the value is dynamically null.  PHIs keeps track of any
    639 /// phi nodes we've seen to avoid reprocessing them.
    640 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
    641                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
    642   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
    643        ++UI) {
    644     const User *U = *UI;
    645 
    646     if (isa<LoadInst>(U)) {
    647       // Will trap.
    648     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    649       if (SI->getOperand(0) == V) {
    650         //cerr << "NONTRAPPING USE: " << *U;
    651         return false;  // Storing the value.
    652       }
    653     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    654       if (CI->getCalledValue() != V) {
    655         //cerr << "NONTRAPPING USE: " << *U;
    656         return false;  // Not calling the ptr
    657       }
    658     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    659       if (II->getCalledValue() != V) {
    660         //cerr << "NONTRAPPING USE: " << *U;
    661         return false;  // Not calling the ptr
    662       }
    663     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
    664       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    665     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    666       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    667     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    668       // If we've already seen this phi node, ignore it, it has already been
    669       // checked.
    670       if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
    671         return false;
    672     } else if (isa<ICmpInst>(U) &&
    673                isa<ConstantPointerNull>(UI->getOperand(1))) {
    674       // Ignore icmp X, null
    675     } else {
    676       //cerr << "NONTRAPPING USE: " << *U;
    677       return false;
    678     }
    679   }
    680   return true;
    681 }
    682 
    683 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
    684 /// from GV will trap if the loaded value is null.  Note that this also permits
    685 /// comparisons of the loaded value against null, as a special case.
    686 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
    687   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
    688        UI != E; ++UI) {
    689     const User *U = *UI;
    690 
    691     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
    692       SmallPtrSet<const PHINode*, 8> PHIs;
    693       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
    694         return false;
    695     } else if (isa<StoreInst>(U)) {
    696       // Ignore stores to the global.
    697     } else {
    698       // We don't know or understand this user, bail out.
    699       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
    700       return false;
    701     }
    702   }
    703   return true;
    704 }
    705 
    706 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
    707   bool Changed = false;
    708   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
    709     Instruction *I = cast<Instruction>(*UI++);
    710     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    711       LI->setOperand(0, NewV);
    712       Changed = true;
    713     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    714       if (SI->getOperand(1) == V) {
    715         SI->setOperand(1, NewV);
    716         Changed = true;
    717       }
    718     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    719       CallSite CS(I);
    720       if (CS.getCalledValue() == V) {
    721         // Calling through the pointer!  Turn into a direct call, but be careful
    722         // that the pointer is not also being passed as an argument.
    723         CS.setCalledFunction(NewV);
    724         Changed = true;
    725         bool PassedAsArg = false;
    726         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    727           if (CS.getArgument(i) == V) {
    728             PassedAsArg = true;
    729             CS.setArgument(i, NewV);
    730           }
    731 
    732         if (PassedAsArg) {
    733           // Being passed as an argument also.  Be careful to not invalidate UI!
    734           UI = V->use_begin();
    735         }
    736       }
    737     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    738       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
    739                                 ConstantExpr::getCast(CI->getOpcode(),
    740                                                       NewV, CI->getType()));
    741       if (CI->use_empty()) {
    742         Changed = true;
    743         CI->eraseFromParent();
    744       }
    745     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    746       // Should handle GEP here.
    747       SmallVector<Constant*, 8> Idxs;
    748       Idxs.reserve(GEPI->getNumOperands()-1);
    749       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
    750            i != e; ++i)
    751         if (Constant *C = dyn_cast<Constant>(*i))
    752           Idxs.push_back(C);
    753         else
    754           break;
    755       if (Idxs.size() == GEPI->getNumOperands()-1)
    756         Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
    757                           ConstantExpr::getGetElementPtr(NewV, Idxs));
    758       if (GEPI->use_empty()) {
    759         Changed = true;
    760         GEPI->eraseFromParent();
    761       }
    762     }
    763   }
    764 
    765   return Changed;
    766 }
    767 
    768 
    769 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
    770 /// value stored into it.  If there are uses of the loaded value that would trap
    771 /// if the loaded value is dynamically null, then we know that they cannot be
    772 /// reachable with a null optimize away the load.
    773 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
    774   bool Changed = false;
    775 
    776   // Keep track of whether we are able to remove all the uses of the global
    777   // other than the store that defines it.
    778   bool AllNonStoreUsesGone = true;
    779 
    780   // Replace all uses of loads with uses of uses of the stored value.
    781   for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
    782     User *GlobalUser = *GUI++;
    783     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
    784       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    785       // If we were able to delete all uses of the loads
    786       if (LI->use_empty()) {
    787         LI->eraseFromParent();
    788         Changed = true;
    789       } else {
    790         AllNonStoreUsesGone = false;
    791       }
    792     } else if (isa<StoreInst>(GlobalUser)) {
    793       // Ignore the store that stores "LV" to the global.
    794       assert(GlobalUser->getOperand(1) == GV &&
    795              "Must be storing *to* the global");
    796     } else {
    797       AllNonStoreUsesGone = false;
    798 
    799       // If we get here we could have other crazy uses that are transitively
    800       // loaded.
    801       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
    802               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
    803              "Only expect load and stores!");
    804     }
    805   }
    806 
    807   if (Changed) {
    808     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
    809     ++NumGlobUses;
    810   }
    811 
    812   // If we nuked all of the loads, then none of the stores are needed either,
    813   // nor is the global.
    814   if (AllNonStoreUsesGone) {
    815     DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
    816     CleanupConstantGlobalUsers(GV, 0);
    817     if (GV->use_empty()) {
    818       GV->eraseFromParent();
    819       ++NumDeleted;
    820     }
    821     Changed = true;
    822   }
    823   return Changed;
    824 }
    825 
    826 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
    827 /// instructions that are foldable.
    828 static void ConstantPropUsersOf(Value *V) {
    829   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
    830     if (Instruction *I = dyn_cast<Instruction>(*UI++))
    831       if (Constant *NewC = ConstantFoldInstruction(I)) {
    832         I->replaceAllUsesWith(NewC);
    833 
    834         // Advance UI to the next non-I use to avoid invalidating it!
    835         // Instructions could multiply use V.
    836         while (UI != E && *UI == I)
    837           ++UI;
    838         I->eraseFromParent();
    839       }
    840 }
    841 
    842 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
    843 /// variable, and transforms the program as if it always contained the result of
    844 /// the specified malloc.  Because it is always the result of the specified
    845 /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
    846 /// malloc into a global, and any loads of GV as uses of the new global.
    847 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
    848                                                      CallInst *CI,
    849                                                      Type *AllocTy,
    850                                                      ConstantInt *NElements,
    851                                                      TargetData* TD) {
    852   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
    853 
    854   Type *GlobalType;
    855   if (NElements->getZExtValue() == 1)
    856     GlobalType = AllocTy;
    857   else
    858     // If we have an array allocation, the global variable is of an array.
    859     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
    860 
    861   // Create the new global variable.  The contents of the malloc'd memory is
    862   // undefined, so initialize with an undef value.
    863   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
    864                                              GlobalType, false,
    865                                              GlobalValue::InternalLinkage,
    866                                              UndefValue::get(GlobalType),
    867                                              GV->getName()+".body",
    868                                              GV,
    869                                              GV->isThreadLocal());
    870 
    871   // If there are bitcast users of the malloc (which is typical, usually we have
    872   // a malloc + bitcast) then replace them with uses of the new global.  Update
    873   // other users to use the global as well.
    874   BitCastInst *TheBC = 0;
    875   while (!CI->use_empty()) {
    876     Instruction *User = cast<Instruction>(CI->use_back());
    877     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    878       if (BCI->getType() == NewGV->getType()) {
    879         BCI->replaceAllUsesWith(NewGV);
    880         BCI->eraseFromParent();
    881       } else {
    882         BCI->setOperand(0, NewGV);
    883       }
    884     } else {
    885       if (TheBC == 0)
    886         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
    887       User->replaceUsesOfWith(CI, TheBC);
    888     }
    889   }
    890 
    891   Constant *RepValue = NewGV;
    892   if (NewGV->getType() != GV->getType()->getElementType())
    893     RepValue = ConstantExpr::getBitCast(RepValue,
    894                                         GV->getType()->getElementType());
    895 
    896   // If there is a comparison against null, we will insert a global bool to
    897   // keep track of whether the global was initialized yet or not.
    898   GlobalVariable *InitBool =
    899     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
    900                        GlobalValue::InternalLinkage,
    901                        ConstantInt::getFalse(GV->getContext()),
    902                        GV->getName()+".init", GV->isThreadLocal());
    903   bool InitBoolUsed = false;
    904 
    905   // Loop over all uses of GV, processing them in turn.
    906   while (!GV->use_empty()) {
    907     if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
    908       // The global is initialized when the store to it occurs.
    909       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
    910       SI->eraseFromParent();
    911       continue;
    912     }
    913 
    914     LoadInst *LI = cast<LoadInst>(GV->use_back());
    915     while (!LI->use_empty()) {
    916       Use &LoadUse = LI->use_begin().getUse();
    917       if (!isa<ICmpInst>(LoadUse.getUser())) {
    918         LoadUse = RepValue;
    919         continue;
    920       }
    921 
    922       ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
    923       // Replace the cmp X, 0 with a use of the bool value.
    924       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
    925       InitBoolUsed = true;
    926       switch (ICI->getPredicate()) {
    927       default: llvm_unreachable("Unknown ICmp Predicate!");
    928       case ICmpInst::ICMP_ULT:
    929       case ICmpInst::ICMP_SLT:   // X < null -> always false
    930         LV = ConstantInt::getFalse(GV->getContext());
    931         break;
    932       case ICmpInst::ICMP_ULE:
    933       case ICmpInst::ICMP_SLE:
    934       case ICmpInst::ICMP_EQ:
    935         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
    936         break;
    937       case ICmpInst::ICMP_NE:
    938       case ICmpInst::ICMP_UGE:
    939       case ICmpInst::ICMP_SGE:
    940       case ICmpInst::ICMP_UGT:
    941       case ICmpInst::ICMP_SGT:
    942         break;  // no change.
    943       }
    944       ICI->replaceAllUsesWith(LV);
    945       ICI->eraseFromParent();
    946     }
    947     LI->eraseFromParent();
    948   }
    949 
    950   // If the initialization boolean was used, insert it, otherwise delete it.
    951   if (!InitBoolUsed) {
    952     while (!InitBool->use_empty())  // Delete initializations
    953       cast<StoreInst>(InitBool->use_back())->eraseFromParent();
    954     delete InitBool;
    955   } else
    956     GV->getParent()->getGlobalList().insert(GV, InitBool);
    957 
    958   // Now the GV is dead, nuke it and the malloc..
    959   GV->eraseFromParent();
    960   CI->eraseFromParent();
    961 
    962   // To further other optimizations, loop over all users of NewGV and try to
    963   // constant prop them.  This will promote GEP instructions with constant
    964   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
    965   ConstantPropUsersOf(NewGV);
    966   if (RepValue != NewGV)
    967     ConstantPropUsersOf(RepValue);
    968 
    969   return NewGV;
    970 }
    971 
    972 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
    973 /// to make sure that there are no complex uses of V.  We permit simple things
    974 /// like dereferencing the pointer, but not storing through the address, unless
    975 /// it is to the specified global.
    976 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
    977                                                       const GlobalVariable *GV,
    978                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
    979   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
    980        UI != E; ++UI) {
    981     const Instruction *Inst = cast<Instruction>(*UI);
    982 
    983     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
    984       continue; // Fine, ignore.
    985     }
    986 
    987     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    988       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
    989         return false;  // Storing the pointer itself... bad.
    990       continue; // Otherwise, storing through it, or storing into GV... fine.
    991     }
    992 
    993     // Must index into the array and into the struct.
    994     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
    995       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
    996         return false;
    997       continue;
    998     }
    999 
   1000     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
   1001       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
   1002       // cycles.
   1003       if (PHIs.insert(PN))
   1004         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
   1005           return false;
   1006       continue;
   1007     }
   1008 
   1009     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
   1010       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
   1011         return false;
   1012       continue;
   1013     }
   1014 
   1015     return false;
   1016   }
   1017   return true;
   1018 }
   1019 
   1020 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
   1021 /// somewhere.  Transform all uses of the allocation into loads from the
   1022 /// global and uses of the resultant pointer.  Further, delete the store into
   1023 /// GV.  This assumes that these value pass the
   1024 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
   1025 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
   1026                                           GlobalVariable *GV) {
   1027   while (!Alloc->use_empty()) {
   1028     Instruction *U = cast<Instruction>(*Alloc->use_begin());
   1029     Instruction *InsertPt = U;
   1030     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1031       // If this is the store of the allocation into the global, remove it.
   1032       if (SI->getOperand(1) == GV) {
   1033         SI->eraseFromParent();
   1034         continue;
   1035       }
   1036     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1037       // Insert the load in the corresponding predecessor, not right before the
   1038       // PHI.
   1039       InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
   1040     } else if (isa<BitCastInst>(U)) {
   1041       // Must be bitcast between the malloc and store to initialize the global.
   1042       ReplaceUsesOfMallocWithGlobal(U, GV);
   1043       U->eraseFromParent();
   1044       continue;
   1045     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
   1046       // If this is a "GEP bitcast" and the user is a store to the global, then
   1047       // just process it as a bitcast.
   1048       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
   1049         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
   1050           if (SI->getOperand(1) == GV) {
   1051             // Must be bitcast GEP between the malloc and store to initialize
   1052             // the global.
   1053             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
   1054             GEPI->eraseFromParent();
   1055             continue;
   1056           }
   1057     }
   1058 
   1059     // Insert a load from the global, and use it instead of the malloc.
   1060     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
   1061     U->replaceUsesOfWith(Alloc, NL);
   1062   }
   1063 }
   1064 
   1065 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
   1066 /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
   1067 /// that index through the array and struct field, icmps of null, and PHIs.
   1068 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
   1069                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
   1070                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
   1071   // We permit two users of the load: setcc comparing against the null
   1072   // pointer, and a getelementptr of a specific form.
   1073   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
   1074        ++UI) {
   1075     const Instruction *User = cast<Instruction>(*UI);
   1076 
   1077     // Comparison against null is ok.
   1078     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
   1079       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
   1080         return false;
   1081       continue;
   1082     }
   1083 
   1084     // getelementptr is also ok, but only a simple form.
   1085     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1086       // Must index into the array and into the struct.
   1087       if (GEPI->getNumOperands() < 3)
   1088         return false;
   1089 
   1090       // Otherwise the GEP is ok.
   1091       continue;
   1092     }
   1093 
   1094     if (const PHINode *PN = dyn_cast<PHINode>(User)) {
   1095       if (!LoadUsingPHIsPerLoad.insert(PN))
   1096         // This means some phi nodes are dependent on each other.
   1097         // Avoid infinite looping!
   1098         return false;
   1099       if (!LoadUsingPHIs.insert(PN))
   1100         // If we have already analyzed this PHI, then it is safe.
   1101         continue;
   1102 
   1103       // Make sure all uses of the PHI are simple enough to transform.
   1104       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
   1105                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
   1106         return false;
   1107 
   1108       continue;
   1109     }
   1110 
   1111     // Otherwise we don't know what this is, not ok.
   1112     return false;
   1113   }
   1114 
   1115   return true;
   1116 }
   1117 
   1118 
   1119 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
   1120 /// GV are simple enough to perform HeapSRA, return true.
   1121 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
   1122                                                     Instruction *StoredVal) {
   1123   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
   1124   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
   1125   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1126        UI != E; ++UI)
   1127     if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
   1128       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
   1129                                           LoadUsingPHIsPerLoad))
   1130         return false;
   1131       LoadUsingPHIsPerLoad.clear();
   1132     }
   1133 
   1134   // If we reach here, we know that all uses of the loads and transitive uses
   1135   // (through PHI nodes) are simple enough to transform.  However, we don't know
   1136   // that all inputs the to the PHI nodes are in the same equivalence sets.
   1137   // Check to verify that all operands of the PHIs are either PHIS that can be
   1138   // transformed, loads from GV, or MI itself.
   1139   for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
   1140        , E = LoadUsingPHIs.end(); I != E; ++I) {
   1141     const PHINode *PN = *I;
   1142     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
   1143       Value *InVal = PN->getIncomingValue(op);
   1144 
   1145       // PHI of the stored value itself is ok.
   1146       if (InVal == StoredVal) continue;
   1147 
   1148       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
   1149         // One of the PHIs in our set is (optimistically) ok.
   1150         if (LoadUsingPHIs.count(InPN))
   1151           continue;
   1152         return false;
   1153       }
   1154 
   1155       // Load from GV is ok.
   1156       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
   1157         if (LI->getOperand(0) == GV)
   1158           continue;
   1159 
   1160       // UNDEF? NULL?
   1161 
   1162       // Anything else is rejected.
   1163       return false;
   1164     }
   1165   }
   1166 
   1167   return true;
   1168 }
   1169 
   1170 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
   1171                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1172                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1173   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
   1174 
   1175   if (FieldNo >= FieldVals.size())
   1176     FieldVals.resize(FieldNo+1);
   1177 
   1178   // If we already have this value, just reuse the previously scalarized
   1179   // version.
   1180   if (Value *FieldVal = FieldVals[FieldNo])
   1181     return FieldVal;
   1182 
   1183   // Depending on what instruction this is, we have several cases.
   1184   Value *Result;
   1185   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
   1186     // This is a scalarized version of the load from the global.  Just create
   1187     // a new Load of the scalarized global.
   1188     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
   1189                                            InsertedScalarizedValues,
   1190                                            PHIsToRewrite),
   1191                           LI->getName()+".f"+Twine(FieldNo), LI);
   1192   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1193     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
   1194     // field.
   1195     StructType *ST =
   1196       cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
   1197 
   1198     PHINode *NewPN =
   1199      PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
   1200                      PN->getNumIncomingValues(),
   1201                      PN->getName()+".f"+Twine(FieldNo), PN);
   1202     Result = NewPN;
   1203     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   1204   } else {
   1205     llvm_unreachable("Unknown usable value");
   1206     Result = 0;
   1207   }
   1208 
   1209   return FieldVals[FieldNo] = Result;
   1210 }
   1211 
   1212 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
   1213 /// the load, rewrite the derived value to use the HeapSRoA'd load.
   1214 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
   1215              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1216                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1217   // If this is a comparison against null, handle it.
   1218   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
   1219     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
   1220     // If we have a setcc of the loaded pointer, we can use a setcc of any
   1221     // field.
   1222     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
   1223                                    InsertedScalarizedValues, PHIsToRewrite);
   1224 
   1225     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
   1226                               Constant::getNullValue(NPtr->getType()),
   1227                               SCI->getName());
   1228     SCI->replaceAllUsesWith(New);
   1229     SCI->eraseFromParent();
   1230     return;
   1231   }
   1232 
   1233   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   1234   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
   1235     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
   1236            && "Unexpected GEPI!");
   1237 
   1238     // Load the pointer for this field.
   1239     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
   1240     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
   1241                                      InsertedScalarizedValues, PHIsToRewrite);
   1242 
   1243     // Create the new GEP idx vector.
   1244     SmallVector<Value*, 8> GEPIdx;
   1245     GEPIdx.push_back(GEPI->getOperand(1));
   1246     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
   1247 
   1248     Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
   1249                                              GEPI->getName(), GEPI);
   1250     GEPI->replaceAllUsesWith(NGEPI);
   1251     GEPI->eraseFromParent();
   1252     return;
   1253   }
   1254 
   1255   // Recursively transform the users of PHI nodes.  This will lazily create the
   1256   // PHIs that are needed for individual elements.  Keep track of what PHIs we
   1257   // see in InsertedScalarizedValues so that we don't get infinite loops (very
   1258   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
   1259   // already been seen first by another load, so its uses have already been
   1260   // processed.
   1261   PHINode *PN = cast<PHINode>(LoadUser);
   1262   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
   1263                                               std::vector<Value*>())).second)
   1264     return;
   1265 
   1266   // If this is the first time we've seen this PHI, recursively process all
   1267   // users.
   1268   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
   1269     Instruction *User = cast<Instruction>(*UI++);
   1270     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1271   }
   1272 }
   1273 
   1274 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
   1275 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
   1276 /// use FieldGlobals instead.  All uses of loaded values satisfy
   1277 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
   1278 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
   1279                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1280                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1281   for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
   1282        UI != E; ) {
   1283     Instruction *User = cast<Instruction>(*UI++);
   1284     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1285   }
   1286 
   1287   if (Load->use_empty()) {
   1288     Load->eraseFromParent();
   1289     InsertedScalarizedValues.erase(Load);
   1290   }
   1291 }
   1292 
   1293 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
   1294 /// it up into multiple allocations of arrays of the fields.
   1295 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
   1296                                             Value* NElems, TargetData *TD) {
   1297   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   1298   Type* MAT = getMallocAllocatedType(CI);
   1299   StructType *STy = cast<StructType>(MAT);
   1300 
   1301   // There is guaranteed to be at least one use of the malloc (storing
   1302   // it into GV).  If there are other uses, change them to be uses of
   1303   // the global to simplify later code.  This also deletes the store
   1304   // into GV.
   1305   ReplaceUsesOfMallocWithGlobal(CI, GV);
   1306 
   1307   // Okay, at this point, there are no users of the malloc.  Insert N
   1308   // new mallocs at the same place as CI, and N globals.
   1309   std::vector<Value*> FieldGlobals;
   1310   std::vector<Value*> FieldMallocs;
   1311 
   1312   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
   1313     Type *FieldTy = STy->getElementType(FieldNo);
   1314     PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
   1315 
   1316     GlobalVariable *NGV =
   1317       new GlobalVariable(*GV->getParent(),
   1318                          PFieldTy, false, GlobalValue::InternalLinkage,
   1319                          Constant::getNullValue(PFieldTy),
   1320                          GV->getName() + ".f" + Twine(FieldNo), GV,
   1321                          GV->isThreadLocal());
   1322     FieldGlobals.push_back(NGV);
   1323 
   1324     unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
   1325     if (StructType *ST = dyn_cast<StructType>(FieldTy))
   1326       TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
   1327     Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
   1328     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
   1329                                         ConstantInt::get(IntPtrTy, TypeSize),
   1330                                         NElems, 0,
   1331                                         CI->getName() + ".f" + Twine(FieldNo));
   1332     FieldMallocs.push_back(NMI);
   1333     new StoreInst(NMI, NGV, CI);
   1334   }
   1335 
   1336   // The tricky aspect of this transformation is handling the case when malloc
   1337   // fails.  In the original code, malloc failing would set the result pointer
   1338   // of malloc to null.  In this case, some mallocs could succeed and others
   1339   // could fail.  As such, we emit code that looks like this:
   1340   //    F0 = malloc(field0)
   1341   //    F1 = malloc(field1)
   1342   //    F2 = malloc(field2)
   1343   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
   1344   //      if (F0) { free(F0); F0 = 0; }
   1345   //      if (F1) { free(F1); F1 = 0; }
   1346   //      if (F2) { free(F2); F2 = 0; }
   1347   //    }
   1348   // The malloc can also fail if its argument is too large.
   1349   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
   1350   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
   1351                                   ConstantZero, "isneg");
   1352   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
   1353     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
   1354                              Constant::getNullValue(FieldMallocs[i]->getType()),
   1355                                "isnull");
   1356     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
   1357   }
   1358 
   1359   // Split the basic block at the old malloc.
   1360   BasicBlock *OrigBB = CI->getParent();
   1361   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
   1362 
   1363   // Create the block to check the first condition.  Put all these blocks at the
   1364   // end of the function as they are unlikely to be executed.
   1365   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
   1366                                                 "malloc_ret_null",
   1367                                                 OrigBB->getParent());
   1368 
   1369   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   1370   // branch on RunningOr.
   1371   OrigBB->getTerminator()->eraseFromParent();
   1372   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
   1373 
   1374   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   1375   // pointer, because some may be null while others are not.
   1376   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1377     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
   1378     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
   1379                               Constant::getNullValue(GVVal->getType()));
   1380     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
   1381                                                OrigBB->getParent());
   1382     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
   1383                                                OrigBB->getParent());
   1384     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
   1385                                          Cmp, NullPtrBlock);
   1386 
   1387     // Fill in FreeBlock.
   1388     CallInst::CreateFree(GVVal, BI);
   1389     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
   1390                   FreeBlock);
   1391     BranchInst::Create(NextBlock, FreeBlock);
   1392 
   1393     NullPtrBlock = NextBlock;
   1394   }
   1395 
   1396   BranchInst::Create(ContBB, NullPtrBlock);
   1397 
   1398   // CI is no longer needed, remove it.
   1399   CI->eraseFromParent();
   1400 
   1401   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
   1402   /// update all uses of the load, keep track of what scalarized loads are
   1403   /// inserted for a given load.
   1404   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   1405   InsertedScalarizedValues[GV] = FieldGlobals;
   1406 
   1407   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
   1408 
   1409   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   1410   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   1411   // of the per-field globals instead.
   1412   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
   1413     Instruction *User = cast<Instruction>(*UI++);
   1414 
   1415     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1416       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
   1417       continue;
   1418     }
   1419 
   1420     // Must be a store of null.
   1421     StoreInst *SI = cast<StoreInst>(User);
   1422     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
   1423            "Unexpected heap-sra user!");
   1424 
   1425     // Insert a store of null into each global.
   1426     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1427       PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
   1428       Constant *Null = Constant::getNullValue(PT->getElementType());
   1429       new StoreInst(Null, FieldGlobals[i], SI);
   1430     }
   1431     // Erase the original store.
   1432     SI->eraseFromParent();
   1433   }
   1434 
   1435   // While we have PHIs that are interesting to rewrite, do it.
   1436   while (!PHIsToRewrite.empty()) {
   1437     PHINode *PN = PHIsToRewrite.back().first;
   1438     unsigned FieldNo = PHIsToRewrite.back().second;
   1439     PHIsToRewrite.pop_back();
   1440     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
   1441     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
   1442 
   1443     // Add all the incoming values.  This can materialize more phis.
   1444     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1445       Value *InVal = PN->getIncomingValue(i);
   1446       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
   1447                                PHIsToRewrite);
   1448       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
   1449     }
   1450   }
   1451 
   1452   // Drop all inter-phi links and any loads that made it this far.
   1453   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1454        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1455        I != E; ++I) {
   1456     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1457       PN->dropAllReferences();
   1458     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1459       LI->dropAllReferences();
   1460   }
   1461 
   1462   // Delete all the phis and loads now that inter-references are dead.
   1463   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1464        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1465        I != E; ++I) {
   1466     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1467       PN->eraseFromParent();
   1468     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1469       LI->eraseFromParent();
   1470   }
   1471 
   1472   // The old global is now dead, remove it.
   1473   GV->eraseFromParent();
   1474 
   1475   ++NumHeapSRA;
   1476   return cast<GlobalVariable>(FieldGlobals[0]);
   1477 }
   1478 
   1479 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
   1480 /// pointer global variable with a single value stored it that is a malloc or
   1481 /// cast of malloc.
   1482 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
   1483                                                CallInst *CI,
   1484                                                Type *AllocTy,
   1485                                                Module::global_iterator &GVI,
   1486                                                TargetData *TD) {
   1487   if (!TD)
   1488     return false;
   1489 
   1490   // If this is a malloc of an abstract type, don't touch it.
   1491   if (!AllocTy->isSized())
   1492     return false;
   1493 
   1494   // We can't optimize this global unless all uses of it are *known* to be
   1495   // of the malloc value, not of the null initializer value (consider a use
   1496   // that compares the global's value against zero to see if the malloc has
   1497   // been reached).  To do this, we check to see if all uses of the global
   1498   // would trap if the global were null: this proves that they must all
   1499   // happen after the malloc.
   1500   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
   1501     return false;
   1502 
   1503   // We can't optimize this if the malloc itself is used in a complex way,
   1504   // for example, being stored into multiple globals.  This allows the
   1505   // malloc to be stored into the specified global, loaded setcc'd, and
   1506   // GEP'd.  These are all things we could transform to using the global
   1507   // for.
   1508   SmallPtrSet<const PHINode*, 8> PHIs;
   1509   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
   1510     return false;
   1511 
   1512   // If we have a global that is only initialized with a fixed size malloc,
   1513   // transform the program to use global memory instead of malloc'd memory.
   1514   // This eliminates dynamic allocation, avoids an indirection accessing the
   1515   // data, and exposes the resultant global to further GlobalOpt.
   1516   // We cannot optimize the malloc if we cannot determine malloc array size.
   1517   Value *NElems = getMallocArraySize(CI, TD, true);
   1518   if (!NElems)
   1519     return false;
   1520 
   1521   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
   1522     // Restrict this transformation to only working on small allocations
   1523     // (2048 bytes currently), as we don't want to introduce a 16M global or
   1524     // something.
   1525     if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
   1526       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
   1527       return true;
   1528     }
   1529 
   1530   // If the allocation is an array of structures, consider transforming this
   1531   // into multiple malloc'd arrays, one for each field.  This is basically
   1532   // SRoA for malloc'd memory.
   1533 
   1534   // If this is an allocation of a fixed size array of structs, analyze as a
   1535   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   1536   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
   1537     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
   1538       AllocTy = AT->getElementType();
   1539 
   1540   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
   1541   if (!AllocSTy)
   1542     return false;
   1543 
   1544   // This the structure has an unreasonable number of fields, leave it
   1545   // alone.
   1546   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
   1547       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
   1548 
   1549     // If this is a fixed size array, transform the Malloc to be an alloc of
   1550     // structs.  malloc [100 x struct],1 -> malloc struct, 100
   1551     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
   1552       Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
   1553       unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
   1554       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
   1555       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
   1556       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
   1557                                                    AllocSize, NumElements,
   1558                                                    0, CI->getName());
   1559       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
   1560       CI->replaceAllUsesWith(Cast);
   1561       CI->eraseFromParent();
   1562       CI = dyn_cast<BitCastInst>(Malloc) ?
   1563         extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
   1564     }
   1565 
   1566     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
   1567     return true;
   1568   }
   1569 
   1570   return false;
   1571 }
   1572 
   1573 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
   1574 // that only one value (besides its initializer) is ever stored to the global.
   1575 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
   1576                                      Module::global_iterator &GVI,
   1577                                      TargetData *TD) {
   1578   // Ignore no-op GEPs and bitcasts.
   1579   StoredOnceVal = StoredOnceVal->stripPointerCasts();
   1580 
   1581   // If we are dealing with a pointer global that is initialized to null and
   1582   // only has one (non-null) value stored into it, then we can optimize any
   1583   // users of the loaded value (often calls and loads) that would trap if the
   1584   // value was null.
   1585   if (GV->getInitializer()->getType()->isPointerTy() &&
   1586       GV->getInitializer()->isNullValue()) {
   1587     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
   1588       if (GV->getInitializer()->getType() != SOVC->getType())
   1589         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
   1590 
   1591       // Optimize away any trapping uses of the loaded value.
   1592       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
   1593         return true;
   1594     } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
   1595       Type* MallocType = getMallocAllocatedType(CI);
   1596       if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
   1597                                                            GVI, TD))
   1598         return true;
   1599     }
   1600   }
   1601 
   1602   return false;
   1603 }
   1604 
   1605 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
   1606 /// two values ever stored into GV are its initializer and OtherVal.  See if we
   1607 /// can shrink the global into a boolean and select between the two values
   1608 /// whenever it is used.  This exposes the values to other scalar optimizations.
   1609 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
   1610   Type *GVElType = GV->getType()->getElementType();
   1611 
   1612   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   1613   // an FP value, pointer or vector, don't do this optimization because a select
   1614   // between them is very expensive and unlikely to lead to later
   1615   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
   1616   // where v1 and v2 both require constant pool loads, a big loss.
   1617   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
   1618       GVElType->isFloatingPointTy() ||
   1619       GVElType->isPointerTy() || GVElType->isVectorTy())
   1620     return false;
   1621 
   1622   // Walk the use list of the global seeing if all the uses are load or store.
   1623   // If there is anything else, bail out.
   1624   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
   1625     User *U = *I;
   1626     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
   1627       return false;
   1628   }
   1629 
   1630   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
   1631 
   1632   // Create the new global, initializing it to false.
   1633   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
   1634                                              false,
   1635                                              GlobalValue::InternalLinkage,
   1636                                         ConstantInt::getFalse(GV->getContext()),
   1637                                              GV->getName()+".b",
   1638                                              GV->isThreadLocal());
   1639   GV->getParent()->getGlobalList().insert(GV, NewGV);
   1640 
   1641   Constant *InitVal = GV->getInitializer();
   1642   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
   1643          "No reason to shrink to bool!");
   1644 
   1645   // If initialized to zero and storing one into the global, we can use a cast
   1646   // instead of a select to synthesize the desired value.
   1647   bool IsOneZero = false;
   1648   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
   1649     IsOneZero = InitVal->isNullValue() && CI->isOne();
   1650 
   1651   while (!GV->use_empty()) {
   1652     Instruction *UI = cast<Instruction>(GV->use_back());
   1653     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
   1654       // Change the store into a boolean store.
   1655       bool StoringOther = SI->getOperand(0) == OtherVal;
   1656       // Only do this if we weren't storing a loaded value.
   1657       Value *StoreVal;
   1658       if (StoringOther || SI->getOperand(0) == InitVal)
   1659         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
   1660                                     StoringOther);
   1661       else {
   1662         // Otherwise, we are storing a previously loaded copy.  To do this,
   1663         // change the copy from copying the original value to just copying the
   1664         // bool.
   1665         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
   1666 
   1667         // If we've already replaced the input, StoredVal will be a cast or
   1668         // select instruction.  If not, it will be a load of the original
   1669         // global.
   1670         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
   1671           assert(LI->getOperand(0) == GV && "Not a copy!");
   1672           // Insert a new load, to preserve the saved value.
   1673           StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
   1674         } else {
   1675           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
   1676                  "This is not a form that we understand!");
   1677           StoreVal = StoredVal->getOperand(0);
   1678           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
   1679         }
   1680       }
   1681       new StoreInst(StoreVal, NewGV, SI);
   1682     } else {
   1683       // Change the load into a load of bool then a select.
   1684       LoadInst *LI = cast<LoadInst>(UI);
   1685       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
   1686       Value *NSI;
   1687       if (IsOneZero)
   1688         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
   1689       else
   1690         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
   1691       NSI->takeName(LI);
   1692       LI->replaceAllUsesWith(NSI);
   1693     }
   1694     UI->eraseFromParent();
   1695   }
   1696 
   1697   GV->eraseFromParent();
   1698   return true;
   1699 }
   1700 
   1701 
   1702 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
   1703 /// it if possible.  If we make a change, return true.
   1704 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
   1705                               Module::global_iterator &GVI) {
   1706   if (!GV->hasLocalLinkage())
   1707     return false;
   1708 
   1709   // Do more involved optimizations if the global is internal.
   1710   GV->removeDeadConstantUsers();
   1711 
   1712   if (GV->use_empty()) {
   1713     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
   1714     GV->eraseFromParent();
   1715     ++NumDeleted;
   1716     return true;
   1717   }
   1718 
   1719   SmallPtrSet<const PHINode*, 16> PHIUsers;
   1720   GlobalStatus GS;
   1721 
   1722   if (AnalyzeGlobal(GV, GS, PHIUsers))
   1723     return false;
   1724 
   1725   if (!GS.isCompared && !GV->hasUnnamedAddr()) {
   1726     GV->setUnnamedAddr(true);
   1727     NumUnnamed++;
   1728   }
   1729 
   1730   if (GV->isConstant() || !GV->hasInitializer())
   1731     return false;
   1732 
   1733   return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
   1734 }
   1735 
   1736 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
   1737 /// it if possible.  If we make a change, return true.
   1738 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
   1739                                       Module::global_iterator &GVI,
   1740                                       const SmallPtrSet<const PHINode*, 16> &PHIUsers,
   1741                                       const GlobalStatus &GS) {
   1742   // If this is a first class global and has only one accessing function
   1743   // and this function is main (which we know is not recursive we can make
   1744   // this global a local variable) we replace the global with a local alloca
   1745   // in this function.
   1746   //
   1747   // NOTE: It doesn't make sense to promote non single-value types since we
   1748   // are just replacing static memory to stack memory.
   1749   //
   1750   // If the global is in different address space, don't bring it to stack.
   1751   if (!GS.HasMultipleAccessingFunctions &&
   1752       GS.AccessingFunction && !GS.HasNonInstructionUser &&
   1753       GV->getType()->getElementType()->isSingleValueType() &&
   1754       GS.AccessingFunction->getName() == "main" &&
   1755       GS.AccessingFunction->hasExternalLinkage() &&
   1756       GV->getType()->getAddressSpace() == 0) {
   1757     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
   1758     Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
   1759                                                    ->getEntryBlock().begin());
   1760     Type* ElemTy = GV->getType()->getElementType();
   1761     // FIXME: Pass Global's alignment when globals have alignment
   1762     AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
   1763     if (!isa<UndefValue>(GV->getInitializer()))
   1764       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
   1765 
   1766     GV->replaceAllUsesWith(Alloca);
   1767     GV->eraseFromParent();
   1768     ++NumLocalized;
   1769     return true;
   1770   }
   1771 
   1772   // If the global is never loaded (but may be stored to), it is dead.
   1773   // Delete it now.
   1774   if (!GS.isLoaded) {
   1775     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
   1776 
   1777     // Delete any stores we can find to the global.  We may not be able to
   1778     // make it completely dead though.
   1779     bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
   1780 
   1781     // If the global is dead now, delete it.
   1782     if (GV->use_empty()) {
   1783       GV->eraseFromParent();
   1784       ++NumDeleted;
   1785       Changed = true;
   1786     }
   1787     return Changed;
   1788 
   1789   } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
   1790     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
   1791     GV->setConstant(true);
   1792 
   1793     // Clean up any obviously simplifiable users now.
   1794     CleanupConstantGlobalUsers(GV, GV->getInitializer());
   1795 
   1796     // If the global is dead now, just nuke it.
   1797     if (GV->use_empty()) {
   1798       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
   1799             << "all users and delete global!\n");
   1800       GV->eraseFromParent();
   1801       ++NumDeleted;
   1802     }
   1803 
   1804     ++NumMarked;
   1805     return true;
   1806   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
   1807     if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
   1808       if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
   1809         GVI = FirstNewGV;  // Don't skip the newly produced globals!
   1810         return true;
   1811       }
   1812   } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
   1813     // If the initial value for the global was an undef value, and if only
   1814     // one other value was stored into it, we can just change the
   1815     // initializer to be the stored value, then delete all stores to the
   1816     // global.  This allows us to mark it constant.
   1817     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   1818       if (isa<UndefValue>(GV->getInitializer())) {
   1819         // Change the initial value here.
   1820         GV->setInitializer(SOVConstant);
   1821 
   1822         // Clean up any obviously simplifiable users now.
   1823         CleanupConstantGlobalUsers(GV, GV->getInitializer());
   1824 
   1825         if (GV->use_empty()) {
   1826           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
   1827                 << "simplify all users and delete global!\n");
   1828           GV->eraseFromParent();
   1829           ++NumDeleted;
   1830         } else {
   1831           GVI = GV;
   1832         }
   1833         ++NumSubstitute;
   1834         return true;
   1835       }
   1836 
   1837     // Try to optimize globals based on the knowledge that only one value
   1838     // (besides its initializer) is ever stored to the global.
   1839     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
   1840                                  getAnalysisIfAvailable<TargetData>()))
   1841       return true;
   1842 
   1843     // Otherwise, if the global was not a boolean, we can shrink it to be a
   1844     // boolean.
   1845     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   1846       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
   1847         ++NumShrunkToBool;
   1848         return true;
   1849       }
   1850   }
   1851 
   1852   return false;
   1853 }
   1854 
   1855 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
   1856 /// function, changing them to FastCC.
   1857 static void ChangeCalleesToFastCall(Function *F) {
   1858   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
   1859     CallSite User(cast<Instruction>(*UI));
   1860     User.setCallingConv(CallingConv::Fast);
   1861   }
   1862 }
   1863 
   1864 static AttrListPtr StripNest(const AttrListPtr &Attrs) {
   1865   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   1866     if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
   1867       continue;
   1868 
   1869     // There can be only one.
   1870     return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
   1871   }
   1872 
   1873   return Attrs;
   1874 }
   1875 
   1876 static void RemoveNestAttribute(Function *F) {
   1877   F->setAttributes(StripNest(F->getAttributes()));
   1878   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
   1879     CallSite User(cast<Instruction>(*UI));
   1880     User.setAttributes(StripNest(User.getAttributes()));
   1881   }
   1882 }
   1883 
   1884 bool GlobalOpt::OptimizeFunctions(Module &M) {
   1885   bool Changed = false;
   1886   // Optimize functions.
   1887   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
   1888     Function *F = FI++;
   1889     // Functions without names cannot be referenced outside this module.
   1890     if (!F->hasName() && !F->isDeclaration())
   1891       F->setLinkage(GlobalValue::InternalLinkage);
   1892     F->removeDeadConstantUsers();
   1893     if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
   1894       F->eraseFromParent();
   1895       Changed = true;
   1896       ++NumFnDeleted;
   1897     } else if (F->hasLocalLinkage()) {
   1898       if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
   1899           !F->hasAddressTaken()) {
   1900         // If this function has C calling conventions, is not a varargs
   1901         // function, and is only called directly, promote it to use the Fast
   1902         // calling convention.
   1903         F->setCallingConv(CallingConv::Fast);
   1904         ChangeCalleesToFastCall(F);
   1905         ++NumFastCallFns;
   1906         Changed = true;
   1907       }
   1908 
   1909       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
   1910           !F->hasAddressTaken()) {
   1911         // The function is not used by a trampoline intrinsic, so it is safe
   1912         // to remove the 'nest' attribute.
   1913         RemoveNestAttribute(F);
   1914         ++NumNestRemoved;
   1915         Changed = true;
   1916       }
   1917     }
   1918   }
   1919   return Changed;
   1920 }
   1921 
   1922 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
   1923   bool Changed = false;
   1924   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
   1925        GVI != E; ) {
   1926     GlobalVariable *GV = GVI++;
   1927     // Global variables without names cannot be referenced outside this module.
   1928     if (!GV->hasName() && !GV->isDeclaration())
   1929       GV->setLinkage(GlobalValue::InternalLinkage);
   1930     // Simplify the initializer.
   1931     if (GV->hasInitializer())
   1932       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
   1933         TargetData *TD = getAnalysisIfAvailable<TargetData>();
   1934         Constant *New = ConstantFoldConstantExpression(CE, TD);
   1935         if (New && New != CE)
   1936           GV->setInitializer(New);
   1937       }
   1938 
   1939     Changed |= ProcessGlobal(GV, GVI);
   1940   }
   1941   return Changed;
   1942 }
   1943 
   1944 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
   1945 /// initializers have an init priority of 65535.
   1946 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
   1947   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
   1948   if (GV == 0) return 0;
   1949 
   1950   // Verify that the initializer is simple enough for us to handle. We are
   1951   // only allowed to optimize the initializer if it is unique.
   1952   if (!GV->hasUniqueInitializer()) return 0;
   1953 
   1954   if (isa<ConstantAggregateZero>(GV->getInitializer()))
   1955     return GV;
   1956   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   1957 
   1958   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
   1959     if (isa<ConstantAggregateZero>(*i))
   1960       continue;
   1961     ConstantStruct *CS = cast<ConstantStruct>(*i);
   1962     if (isa<ConstantPointerNull>(CS->getOperand(1)))
   1963       continue;
   1964 
   1965     // Must have a function or null ptr.
   1966     if (!isa<Function>(CS->getOperand(1)))
   1967       return 0;
   1968 
   1969     // Init priority must be standard.
   1970     ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
   1971     if (CI->getZExtValue() != 65535)
   1972       return 0;
   1973   }
   1974 
   1975   return GV;
   1976 }
   1977 
   1978 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
   1979 /// return a list of the functions and null terminator as a vector.
   1980 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
   1981   if (GV->getInitializer()->isNullValue())
   1982     return std::vector<Function*>();
   1983   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   1984   std::vector<Function*> Result;
   1985   Result.reserve(CA->getNumOperands());
   1986   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
   1987     ConstantStruct *CS = cast<ConstantStruct>(*i);
   1988     Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
   1989   }
   1990   return Result;
   1991 }
   1992 
   1993 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
   1994 /// specified array, returning the new global to use.
   1995 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
   1996                                           const std::vector<Function*> &Ctors) {
   1997   // If we made a change, reassemble the initializer list.
   1998   Constant *CSVals[2];
   1999   CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
   2000   CSVals[1] = 0;
   2001 
   2002   StructType *StructTy =
   2003     cast <StructType>(
   2004     cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
   2005 
   2006   // Create the new init list.
   2007   std::vector<Constant*> CAList;
   2008   for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
   2009     if (Ctors[i]) {
   2010       CSVals[1] = Ctors[i];
   2011     } else {
   2012       Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
   2013                                           false);
   2014       PointerType *PFTy = PointerType::getUnqual(FTy);
   2015       CSVals[1] = Constant::getNullValue(PFTy);
   2016       CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
   2017                                    0x7fffffff);
   2018     }
   2019     CAList.push_back(ConstantStruct::get(StructTy, CSVals));
   2020   }
   2021 
   2022   // Create the array initializer.
   2023   Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
   2024                                                    CAList.size()), CAList);
   2025 
   2026   // If we didn't change the number of elements, don't create a new GV.
   2027   if (CA->getType() == GCL->getInitializer()->getType()) {
   2028     GCL->setInitializer(CA);
   2029     return GCL;
   2030   }
   2031 
   2032   // Create the new global and insert it next to the existing list.
   2033   GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
   2034                                            GCL->getLinkage(), CA, "",
   2035                                            GCL->isThreadLocal());
   2036   GCL->getParent()->getGlobalList().insert(GCL, NGV);
   2037   NGV->takeName(GCL);
   2038 
   2039   // Nuke the old list, replacing any uses with the new one.
   2040   if (!GCL->use_empty()) {
   2041     Constant *V = NGV;
   2042     if (V->getType() != GCL->getType())
   2043       V = ConstantExpr::getBitCast(V, GCL->getType());
   2044     GCL->replaceAllUsesWith(V);
   2045   }
   2046   GCL->eraseFromParent();
   2047 
   2048   if (Ctors.size())
   2049     return NGV;
   2050   else
   2051     return 0;
   2052 }
   2053 
   2054 
   2055 static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
   2056   if (Constant *CV = dyn_cast<Constant>(V)) return CV;
   2057   Constant *R = ComputedValues[V];
   2058   assert(R && "Reference to an uncomputed value!");
   2059   return R;
   2060 }
   2061 
   2062 static inline bool
   2063 isSimpleEnoughValueToCommit(Constant *C,
   2064                             SmallPtrSet<Constant*, 8> &SimpleConstants);
   2065 
   2066 
   2067 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
   2068 /// handled by the code generator.  We don't want to generate something like:
   2069 ///   void *X = &X/42;
   2070 /// because the code generator doesn't have a relocation that can handle that.
   2071 ///
   2072 /// This function should be called if C was not found (but just got inserted)
   2073 /// in SimpleConstants to avoid having to rescan the same constants all the
   2074 /// time.
   2075 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
   2076                                    SmallPtrSet<Constant*, 8> &SimpleConstants) {
   2077   // Simple integer, undef, constant aggregate zero, global addresses, etc are
   2078   // all supported.
   2079   if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
   2080       isa<GlobalValue>(C))
   2081     return true;
   2082 
   2083   // Aggregate values are safe if all their elements are.
   2084   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
   2085       isa<ConstantVector>(C)) {
   2086     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
   2087       Constant *Op = cast<Constant>(C->getOperand(i));
   2088       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
   2089         return false;
   2090     }
   2091     return true;
   2092   }
   2093 
   2094   // We don't know exactly what relocations are allowed in constant expressions,
   2095   // so we allow &global+constantoffset, which is safe and uniformly supported
   2096   // across targets.
   2097   ConstantExpr *CE = cast<ConstantExpr>(C);
   2098   switch (CE->getOpcode()) {
   2099   case Instruction::BitCast:
   2100   case Instruction::IntToPtr:
   2101   case Instruction::PtrToInt:
   2102     // These casts are always fine if the casted value is.
   2103     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
   2104 
   2105   // GEP is fine if it is simple + constant offset.
   2106   case Instruction::GetElementPtr:
   2107     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
   2108       if (!isa<ConstantInt>(CE->getOperand(i)))
   2109         return false;
   2110     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
   2111 
   2112   case Instruction::Add:
   2113     // We allow simple+cst.
   2114     if (!isa<ConstantInt>(CE->getOperand(1)))
   2115       return false;
   2116     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
   2117   }
   2118   return false;
   2119 }
   2120 
   2121 static inline bool
   2122 isSimpleEnoughValueToCommit(Constant *C,
   2123                             SmallPtrSet<Constant*, 8> &SimpleConstants) {
   2124   // If we already checked this constant, we win.
   2125   if (!SimpleConstants.insert(C)) return true;
   2126   // Check the constant.
   2127   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
   2128 }
   2129 
   2130 
   2131 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
   2132 /// enough for us to understand.  In particular, if it is a cast to anything
   2133 /// other than from one pointer type to another pointer type, we punt.
   2134 /// We basically just support direct accesses to globals and GEP's of
   2135 /// globals.  This should be kept up to date with CommitValueTo.
   2136 static bool isSimpleEnoughPointerToCommit(Constant *C) {
   2137   // Conservatively, avoid aggregate types. This is because we don't
   2138   // want to worry about them partially overlapping other stores.
   2139   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
   2140     return false;
   2141 
   2142   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
   2143     // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2144     // external globals.
   2145     return GV->hasUniqueInitializer();
   2146 
   2147   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2148     // Handle a constantexpr gep.
   2149     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2150         isa<GlobalVariable>(CE->getOperand(0)) &&
   2151         cast<GEPOperator>(CE)->isInBounds()) {
   2152       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2153       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2154       // external globals.
   2155       if (!GV->hasUniqueInitializer())
   2156         return false;
   2157 
   2158       // The first index must be zero.
   2159       ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
   2160       if (!CI || !CI->isZero()) return false;
   2161 
   2162       // The remaining indices must be compile-time known integers within the
   2163       // notional bounds of the corresponding static array types.
   2164       if (!CE->isGEPWithNoNotionalOverIndexing())
   2165         return false;
   2166 
   2167       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2168 
   2169     // A constantexpr bitcast from a pointer to another pointer is a no-op,
   2170     // and we know how to evaluate it by moving the bitcast from the pointer
   2171     // operand to the value operand.
   2172     } else if (CE->getOpcode() == Instruction::BitCast &&
   2173                isa<GlobalVariable>(CE->getOperand(0))) {
   2174       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2175       // external globals.
   2176       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
   2177     }
   2178   }
   2179 
   2180   return false;
   2181 }
   2182 
   2183 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
   2184 /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
   2185 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
   2186 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
   2187                                    ConstantExpr *Addr, unsigned OpNo) {
   2188   // Base case of the recursion.
   2189   if (OpNo == Addr->getNumOperands()) {
   2190     assert(Val->getType() == Init->getType() && "Type mismatch!");
   2191     return Val;
   2192   }
   2193 
   2194   std::vector<Constant*> Elts;
   2195   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   2196 
   2197     // Break up the constant into its elements.
   2198     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
   2199       for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
   2200         Elts.push_back(cast<Constant>(*i));
   2201     } else if (isa<ConstantAggregateZero>(Init)) {
   2202       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2203         Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
   2204     } else if (isa<UndefValue>(Init)) {
   2205       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2206         Elts.push_back(UndefValue::get(STy->getElementType(i)));
   2207     } else {
   2208       llvm_unreachable("This code is out of sync with "
   2209              " ConstantFoldLoadThroughGEPConstantExpr");
   2210     }
   2211 
   2212     // Replace the element that we are supposed to.
   2213     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
   2214     unsigned Idx = CU->getZExtValue();
   2215     assert(Idx < STy->getNumElements() && "Struct index out of range!");
   2216     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
   2217 
   2218     // Return the modified struct.
   2219     return ConstantStruct::get(STy, Elts);
   2220   }
   2221 
   2222   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
   2223   SequentialType *InitTy = cast<SequentialType>(Init->getType());
   2224 
   2225   uint64_t NumElts;
   2226   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
   2227     NumElts = ATy->getNumElements();
   2228   else
   2229     NumElts = cast<VectorType>(InitTy)->getNumElements();
   2230 
   2231   // Break up the array into elements.
   2232   if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
   2233     for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
   2234       Elts.push_back(cast<Constant>(*i));
   2235   } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
   2236     for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
   2237       Elts.push_back(cast<Constant>(*i));
   2238   } else if (isa<ConstantAggregateZero>(Init)) {
   2239     Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
   2240   } else {
   2241     assert(isa<UndefValue>(Init) && "This code is out of sync with "
   2242            " ConstantFoldLoadThroughGEPConstantExpr");
   2243     Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
   2244   }
   2245 
   2246   assert(CI->getZExtValue() < NumElts);
   2247   Elts[CI->getZExtValue()] =
   2248     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
   2249 
   2250   if (Init->getType()->isArrayTy())
   2251     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
   2252   return ConstantVector::get(Elts);
   2253 }
   2254 
   2255 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
   2256 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
   2257 static void CommitValueTo(Constant *Val, Constant *Addr) {
   2258   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
   2259     assert(GV->hasInitializer());
   2260     GV->setInitializer(Val);
   2261     return;
   2262   }
   2263 
   2264   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   2265   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2266   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
   2267 }
   2268 
   2269 /// ComputeLoadResult - Return the value that would be computed by a load from
   2270 /// P after the stores reflected by 'memory' have been performed.  If we can't
   2271 /// decide, return null.
   2272 static Constant *ComputeLoadResult(Constant *P,
   2273                                 const DenseMap<Constant*, Constant*> &Memory) {
   2274   // If this memory location has been recently stored, use the stored value: it
   2275   // is the most up-to-date.
   2276   DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
   2277   if (I != Memory.end()) return I->second;
   2278 
   2279   // Access it.
   2280   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
   2281     if (GV->hasDefinitiveInitializer())
   2282       return GV->getInitializer();
   2283     return 0;
   2284   }
   2285 
   2286   // Handle a constantexpr getelementptr.
   2287   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
   2288     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2289         isa<GlobalVariable>(CE->getOperand(0))) {
   2290       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2291       if (GV->hasDefinitiveInitializer())
   2292         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2293     }
   2294 
   2295   return 0;  // don't know how to evaluate.
   2296 }
   2297 
   2298 /// EvaluateFunction - Evaluate a call to function F, returning true if
   2299 /// successful, false if we can't evaluate it.  ActualArgs contains the formal
   2300 /// arguments for the function.
   2301 static bool EvaluateFunction(Function *F, Constant *&RetVal,
   2302                              const SmallVectorImpl<Constant*> &ActualArgs,
   2303                              std::vector<Function*> &CallStack,
   2304                              DenseMap<Constant*, Constant*> &MutatedMemory,
   2305                              std::vector<GlobalVariable*> &AllocaTmps,
   2306                              SmallPtrSet<Constant*, 8> &SimpleConstants,
   2307                              const TargetData *TD) {
   2308   // Check to see if this function is already executing (recursion).  If so,
   2309   // bail out.  TODO: we might want to accept limited recursion.
   2310   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
   2311     return false;
   2312 
   2313   CallStack.push_back(F);
   2314 
   2315   /// Values - As we compute SSA register values, we store their contents here.
   2316   DenseMap<Value*, Constant*> Values;
   2317 
   2318   // Initialize arguments to the incoming values specified.
   2319   unsigned ArgNo = 0;
   2320   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
   2321        ++AI, ++ArgNo)
   2322     Values[AI] = ActualArgs[ArgNo];
   2323 
   2324   /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
   2325   /// we can only evaluate any one basic block at most once.  This set keeps
   2326   /// track of what we have executed so we can detect recursive cases etc.
   2327   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
   2328 
   2329   // CurInst - The current instruction we're evaluating.
   2330   BasicBlock::iterator CurInst = F->begin()->begin();
   2331 
   2332   // This is the main evaluation loop.
   2333   while (1) {
   2334     Constant *InstResult = 0;
   2335 
   2336     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
   2337       if (!SI->isSimple()) return false;  // no volatile/atomic accesses.
   2338       Constant *Ptr = getVal(Values, SI->getOperand(1));
   2339       if (!isSimpleEnoughPointerToCommit(Ptr))
   2340         // If this is too complex for us to commit, reject it.
   2341         return false;
   2342 
   2343       Constant *Val = getVal(Values, SI->getOperand(0));
   2344 
   2345       // If this might be too difficult for the backend to handle (e.g. the addr
   2346       // of one global variable divided by another) then we can't commit it.
   2347       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
   2348         return false;
   2349 
   2350       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2351         if (CE->getOpcode() == Instruction::BitCast) {
   2352           // If we're evaluating a store through a bitcast, then we need
   2353           // to pull the bitcast off the pointer type and push it onto the
   2354           // stored value.
   2355           Ptr = CE->getOperand(0);
   2356 
   2357           Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
   2358 
   2359           // In order to push the bitcast onto the stored value, a bitcast
   2360           // from NewTy to Val's type must be legal.  If it's not, we can try
   2361           // introspecting NewTy to find a legal conversion.
   2362           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
   2363             // If NewTy is a struct, we can convert the pointer to the struct
   2364             // into a pointer to its first member.
   2365             // FIXME: This could be extended to support arrays as well.
   2366             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
   2367               NewTy = STy->getTypeAtIndex(0U);
   2368 
   2369               IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
   2370               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
   2371               Constant * const IdxList[] = {IdxZero, IdxZero};
   2372 
   2373               Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
   2374 
   2375             // If we can't improve the situation by introspecting NewTy,
   2376             // we have to give up.
   2377             } else {
   2378               return 0;
   2379             }
   2380           }
   2381 
   2382           // If we found compatible types, go ahead and push the bitcast
   2383           // onto the stored value.
   2384           Val = ConstantExpr::getBitCast(Val, NewTy);
   2385         }
   2386 
   2387       MutatedMemory[Ptr] = Val;
   2388     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
   2389       InstResult = ConstantExpr::get(BO->getOpcode(),
   2390                                      getVal(Values, BO->getOperand(0)),
   2391                                      getVal(Values, BO->getOperand(1)));
   2392     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
   2393       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
   2394                                             getVal(Values, CI->getOperand(0)),
   2395                                             getVal(Values, CI->getOperand(1)));
   2396     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
   2397       InstResult = ConstantExpr::getCast(CI->getOpcode(),
   2398                                          getVal(Values, CI->getOperand(0)),
   2399                                          CI->getType());
   2400     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
   2401       InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
   2402                                            getVal(Values, SI->getOperand(1)),
   2403                                            getVal(Values, SI->getOperand(2)));
   2404     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
   2405       Constant *P = getVal(Values, GEP->getOperand(0));
   2406       SmallVector<Constant*, 8> GEPOps;
   2407       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
   2408            i != e; ++i)
   2409         GEPOps.push_back(getVal(Values, *i));
   2410       InstResult =
   2411         ConstantExpr::getGetElementPtr(P, GEPOps,
   2412                                        cast<GEPOperator>(GEP)->isInBounds());
   2413     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
   2414       if (!LI->isSimple()) return false;  // no volatile/atomic accesses.
   2415       InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
   2416                                      MutatedMemory);
   2417       if (InstResult == 0) return false; // Could not evaluate load.
   2418     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
   2419       if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
   2420       Type *Ty = AI->getType()->getElementType();
   2421       AllocaTmps.push_back(new GlobalVariable(Ty, false,
   2422                                               GlobalValue::InternalLinkage,
   2423                                               UndefValue::get(Ty),
   2424                                               AI->getName()));
   2425       InstResult = AllocaTmps.back();
   2426     } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
   2427 
   2428       // Debug info can safely be ignored here.
   2429       if (isa<DbgInfoIntrinsic>(CI)) {
   2430         ++CurInst;
   2431         continue;
   2432       }
   2433 
   2434       // Cannot handle inline asm.
   2435       if (isa<InlineAsm>(CI->getCalledValue())) return false;
   2436 
   2437       if (MemSetInst *MSI = dyn_cast<MemSetInst>(CI)) {
   2438         if (MSI->isVolatile()) return false;
   2439         Constant *Ptr = getVal(Values, MSI->getDest());
   2440         Constant *Val = getVal(Values, MSI->getValue());
   2441         Constant *DestVal = ComputeLoadResult(getVal(Values, Ptr),
   2442                                               MutatedMemory);
   2443         if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
   2444           // This memset is a no-op.
   2445           ++CurInst;
   2446           continue;
   2447         }
   2448         return false;
   2449       }
   2450 
   2451       // Resolve function pointers.
   2452       Function *Callee = dyn_cast<Function>(getVal(Values,
   2453                                                    CI->getCalledValue()));
   2454       if (!Callee) return false;  // Cannot resolve.
   2455 
   2456       SmallVector<Constant*, 8> Formals;
   2457       CallSite CS(CI);
   2458       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
   2459            i != e; ++i)
   2460         Formals.push_back(getVal(Values, *i));
   2461 
   2462       if (Callee->isDeclaration()) {
   2463         // If this is a function we can constant fold, do it.
   2464         if (Constant *C = ConstantFoldCall(Callee, Formals)) {
   2465           InstResult = C;
   2466         } else {
   2467           return false;
   2468         }
   2469       } else {
   2470         if (Callee->getFunctionType()->isVarArg())
   2471           return false;
   2472 
   2473         Constant *RetVal;
   2474         // Execute the call, if successful, use the return value.
   2475         if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
   2476                               MutatedMemory, AllocaTmps, SimpleConstants, TD))
   2477           return false;
   2478         InstResult = RetVal;
   2479       }
   2480     } else if (isa<TerminatorInst>(CurInst)) {
   2481       BasicBlock *NewBB = 0;
   2482       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
   2483         if (BI->isUnconditional()) {
   2484           NewBB = BI->getSuccessor(0);
   2485         } else {
   2486           ConstantInt *Cond =
   2487             dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
   2488           if (!Cond) return false;  // Cannot determine.
   2489 
   2490           NewBB = BI->getSuccessor(!Cond->getZExtValue());
   2491         }
   2492       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
   2493         ConstantInt *Val =
   2494           dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
   2495         if (!Val) return false;  // Cannot determine.
   2496         NewBB = SI->getSuccessor(SI->findCaseValue(Val));
   2497       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
   2498         Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
   2499         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
   2500           NewBB = BA->getBasicBlock();
   2501         else
   2502           return false;  // Cannot determine.
   2503       } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
   2504         if (RI->getNumOperands())
   2505           RetVal = getVal(Values, RI->getOperand(0));
   2506 
   2507         CallStack.pop_back();  // return from fn.
   2508         return true;  // We succeeded at evaluating this ctor!
   2509       } else {
   2510         // invoke, unwind, resume, unreachable.
   2511         return false;  // Cannot handle this terminator.
   2512       }
   2513 
   2514       // Okay, we succeeded in evaluating this control flow.  See if we have
   2515       // executed the new block before.  If so, we have a looping function,
   2516       // which we cannot evaluate in reasonable time.
   2517       if (!ExecutedBlocks.insert(NewBB))
   2518         return false;  // looped!
   2519 
   2520       // Okay, we have never been in this block before.  Check to see if there
   2521       // are any PHI nodes.  If so, evaluate them with information about where
   2522       // we came from.
   2523       BasicBlock *OldBB = CurInst->getParent();
   2524       CurInst = NewBB->begin();
   2525       PHINode *PN;
   2526       for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
   2527         Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
   2528 
   2529       // Do NOT increment CurInst.  We know that the terminator had no value.
   2530       continue;
   2531     } else {
   2532       // Did not know how to evaluate this!
   2533       return false;
   2534     }
   2535 
   2536     if (!CurInst->use_empty()) {
   2537       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
   2538         InstResult = ConstantFoldConstantExpression(CE, TD);
   2539 
   2540       Values[CurInst] = InstResult;
   2541     }
   2542 
   2543     // Advance program counter.
   2544     ++CurInst;
   2545   }
   2546 }
   2547 
   2548 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
   2549 /// we can.  Return true if we can, false otherwise.
   2550 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
   2551   /// MutatedMemory - For each store we execute, we update this map.  Loads
   2552   /// check this to get the most up-to-date value.  If evaluation is successful,
   2553   /// this state is committed to the process.
   2554   DenseMap<Constant*, Constant*> MutatedMemory;
   2555 
   2556   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
   2557   /// to represent its body.  This vector is needed so we can delete the
   2558   /// temporary globals when we are done.
   2559   std::vector<GlobalVariable*> AllocaTmps;
   2560 
   2561   /// CallStack - This is used to detect recursion.  In pathological situations
   2562   /// we could hit exponential behavior, but at least there is nothing
   2563   /// unbounded.
   2564   std::vector<Function*> CallStack;
   2565 
   2566   /// SimpleConstants - These are constants we have checked and know to be
   2567   /// simple enough to live in a static initializer of a global.
   2568   SmallPtrSet<Constant*, 8> SimpleConstants;
   2569 
   2570   // Call the function.
   2571   Constant *RetValDummy;
   2572   bool EvalSuccess = EvaluateFunction(F, RetValDummy,
   2573                                       SmallVector<Constant*, 0>(), CallStack,
   2574                                       MutatedMemory, AllocaTmps,
   2575                                       SimpleConstants, TD);
   2576 
   2577   if (EvalSuccess) {
   2578     // We succeeded at evaluation: commit the result.
   2579     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
   2580           << F->getName() << "' to " << MutatedMemory.size()
   2581           << " stores.\n");
   2582     for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
   2583          E = MutatedMemory.end(); I != E; ++I)
   2584       CommitValueTo(I->second, I->first);
   2585   }
   2586 
   2587   // At this point, we are done interpreting.  If we created any 'alloca'
   2588   // temporaries, release them now.
   2589   while (!AllocaTmps.empty()) {
   2590     GlobalVariable *Tmp = AllocaTmps.back();
   2591     AllocaTmps.pop_back();
   2592 
   2593     // If there are still users of the alloca, the program is doing something
   2594     // silly, e.g. storing the address of the alloca somewhere and using it
   2595     // later.  Since this is undefined, we'll just make it be null.
   2596     if (!Tmp->use_empty())
   2597       Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
   2598     delete Tmp;
   2599   }
   2600 
   2601   return EvalSuccess;
   2602 }
   2603 
   2604 
   2605 
   2606 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
   2607 /// Return true if anything changed.
   2608 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
   2609   std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
   2610   bool MadeChange = false;
   2611   if (Ctors.empty()) return false;
   2612 
   2613   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
   2614   // Loop over global ctors, optimizing them when we can.
   2615   for (unsigned i = 0; i != Ctors.size(); ++i) {
   2616     Function *F = Ctors[i];
   2617     // Found a null terminator in the middle of the list, prune off the rest of
   2618     // the list.
   2619     if (F == 0) {
   2620       if (i != Ctors.size()-1) {
   2621         Ctors.resize(i+1);
   2622         MadeChange = true;
   2623       }
   2624       break;
   2625     }
   2626 
   2627     // We cannot simplify external ctor functions.
   2628     if (F->empty()) continue;
   2629 
   2630     // If we can evaluate the ctor at compile time, do.
   2631     if (EvaluateStaticConstructor(F, TD)) {
   2632       Ctors.erase(Ctors.begin()+i);
   2633       MadeChange = true;
   2634       --i;
   2635       ++NumCtorsEvaluated;
   2636       continue;
   2637     }
   2638   }
   2639 
   2640   if (!MadeChange) return false;
   2641 
   2642   GCL = InstallGlobalCtors(GCL, Ctors);
   2643   return true;
   2644 }
   2645 
   2646 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
   2647   bool Changed = false;
   2648 
   2649   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
   2650        I != E;) {
   2651     Module::alias_iterator J = I++;
   2652     // Aliases without names cannot be referenced outside this module.
   2653     if (!J->hasName() && !J->isDeclaration())
   2654       J->setLinkage(GlobalValue::InternalLinkage);
   2655     // If the aliasee may change at link time, nothing can be done - bail out.
   2656     if (J->mayBeOverridden())
   2657       continue;
   2658 
   2659     Constant *Aliasee = J->getAliasee();
   2660     GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
   2661     Target->removeDeadConstantUsers();
   2662     bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
   2663 
   2664     // Make all users of the alias use the aliasee instead.
   2665     if (!J->use_empty()) {
   2666       J->replaceAllUsesWith(Aliasee);
   2667       ++NumAliasesResolved;
   2668       Changed = true;
   2669     }
   2670 
   2671     // If the alias is externally visible, we may still be able to simplify it.
   2672     if (!J->hasLocalLinkage()) {
   2673       // If the aliasee has internal linkage, give it the name and linkage
   2674       // of the alias, and delete the alias.  This turns:
   2675       //   define internal ... @f(...)
   2676       //   @a = alias ... @f
   2677       // into:
   2678       //   define ... @a(...)
   2679       if (!Target->hasLocalLinkage())
   2680         continue;
   2681 
   2682       // Do not perform the transform if multiple aliases potentially target the
   2683       // aliasee. This check also ensures that it is safe to replace the section
   2684       // and other attributes of the aliasee with those of the alias.
   2685       if (!hasOneUse)
   2686         continue;
   2687 
   2688       // Give the aliasee the name, linkage and other attributes of the alias.
   2689       Target->takeName(J);
   2690       Target->setLinkage(J->getLinkage());
   2691       Target->GlobalValue::copyAttributesFrom(J);
   2692     }
   2693 
   2694     // Delete the alias.
   2695     M.getAliasList().erase(J);
   2696     ++NumAliasesRemoved;
   2697     Changed = true;
   2698   }
   2699 
   2700   return Changed;
   2701 }
   2702 
   2703 static Function *FindCXAAtExit(Module &M) {
   2704   Function *Fn = M.getFunction("__cxa_atexit");
   2705 
   2706   if (!Fn)
   2707     return 0;
   2708 
   2709   FunctionType *FTy = Fn->getFunctionType();
   2710 
   2711   // Checking that the function has the right return type, the right number of
   2712   // parameters and that they all have pointer types should be enough.
   2713   if (!FTy->getReturnType()->isIntegerTy() ||
   2714       FTy->getNumParams() != 3 ||
   2715       !FTy->getParamType(0)->isPointerTy() ||
   2716       !FTy->getParamType(1)->isPointerTy() ||
   2717       !FTy->getParamType(2)->isPointerTy())
   2718     return 0;
   2719 
   2720   return Fn;
   2721 }
   2722 
   2723 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
   2724 /// destructor and can therefore be eliminated.
   2725 /// Note that we assume that other optimization passes have already simplified
   2726 /// the code so we only look for a function with a single basic block, where
   2727 /// the only allowed instructions are 'ret' or 'call' to empty C++ dtor.
   2728 static bool cxxDtorIsEmpty(const Function &Fn,
   2729                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
   2730   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
   2731   // nounwind, but that doesn't seem worth doing.
   2732   if (Fn.isDeclaration())
   2733     return false;
   2734 
   2735   if (++Fn.begin() != Fn.end())
   2736     return false;
   2737 
   2738   const BasicBlock &EntryBlock = Fn.getEntryBlock();
   2739   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
   2740        I != E; ++I) {
   2741     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
   2742       // Ignore debug intrinsics.
   2743       if (isa<DbgInfoIntrinsic>(CI))
   2744         continue;
   2745 
   2746       const Function *CalledFn = CI->getCalledFunction();
   2747 
   2748       if (!CalledFn)
   2749         return false;
   2750 
   2751       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
   2752 
   2753       // Don't treat recursive functions as empty.
   2754       if (!NewCalledFunctions.insert(CalledFn))
   2755         return false;
   2756 
   2757       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
   2758         return false;
   2759     } else if (isa<ReturnInst>(*I))
   2760       return true;
   2761     else
   2762       return false;
   2763   }
   2764 
   2765   return false;
   2766 }
   2767 
   2768 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
   2769   /// Itanium C++ ABI p3.3.5:
   2770   ///
   2771   ///   After constructing a global (or local static) object, that will require
   2772   ///   destruction on exit, a termination function is registered as follows:
   2773   ///
   2774   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
   2775   ///
   2776   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
   2777   ///   call f(p) when DSO d is unloaded, before all such termination calls
   2778   ///   registered before this one. It returns zero if registration is
   2779   ///   successful, nonzero on failure.
   2780 
   2781   // This pass will look for calls to __cxa_atexit where the function is trivial
   2782   // and remove them.
   2783   bool Changed = false;
   2784 
   2785   for (Function::use_iterator I = CXAAtExitFn->use_begin(),
   2786        E = CXAAtExitFn->use_end(); I != E;) {
   2787     // We're only interested in calls. Theoretically, we could handle invoke
   2788     // instructions as well, but neither llvm-gcc nor clang generate invokes
   2789     // to __cxa_atexit.
   2790     CallInst *CI = dyn_cast<CallInst>(*I++);
   2791     if (!CI)
   2792       continue;
   2793 
   2794     Function *DtorFn =
   2795       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
   2796     if (!DtorFn)
   2797       continue;
   2798 
   2799     SmallPtrSet<const Function *, 8> CalledFunctions;
   2800     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
   2801       continue;
   2802 
   2803     // Just remove the call.
   2804     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
   2805     CI->eraseFromParent();
   2806 
   2807     ++NumCXXDtorsRemoved;
   2808 
   2809     Changed |= true;
   2810   }
   2811 
   2812   return Changed;
   2813 }
   2814 
   2815 bool GlobalOpt::runOnModule(Module &M) {
   2816   bool Changed = false;
   2817 
   2818   // Try to find the llvm.globalctors list.
   2819   GlobalVariable *GlobalCtors = FindGlobalCtors(M);
   2820 
   2821   Function *CXAAtExitFn = FindCXAAtExit(M);
   2822 
   2823   bool LocalChange = true;
   2824   while (LocalChange) {
   2825     LocalChange = false;
   2826 
   2827     // Delete functions that are trivially dead, ccc -> fastcc
   2828     LocalChange |= OptimizeFunctions(M);
   2829 
   2830     // Optimize global_ctors list.
   2831     if (GlobalCtors)
   2832       LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
   2833 
   2834     // Optimize non-address-taken globals.
   2835     LocalChange |= OptimizeGlobalVars(M);
   2836 
   2837     // Resolve aliases, when possible.
   2838     LocalChange |= OptimizeGlobalAliases(M);
   2839 
   2840     // Try to remove trivial global destructors.
   2841     if (CXAAtExitFn)
   2842       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
   2843 
   2844     Changed |= LocalChange;
   2845   }
   2846 
   2847   // TODO: Move all global ctors functions to the end of the module for code
   2848   // layout.
   2849 
   2850   return Changed;
   2851 }
   2852