Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef  V8_MIPS_CONSTANTS_H_
      6 #define  V8_MIPS_CONSTANTS_H_
      7 
      8 #include "src/base/logging.h"
      9 #include "src/base/macros.h"
     10 #include "src/globals.h"
     11 
     12 // UNIMPLEMENTED_ macro for MIPS.
     13 #ifdef DEBUG
     14 #define UNIMPLEMENTED_MIPS()                                                  \
     15   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
     16                        __FILE__, __LINE__, __func__)
     17 #else
     18 #define UNIMPLEMENTED_MIPS()
     19 #endif
     20 
     21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
     22 
     23 enum ArchVariants {
     24   kMips64r2,
     25   kMips64r6
     26 };
     27 
     28 
     29 #ifdef _MIPS_ARCH_MIPS64R2
     30   static const ArchVariants kArchVariant = kMips64r2;
     31 #elif  _MIPS_ARCH_MIPS64R6
     32   static const ArchVariants kArchVariant = kMips64r6;
     33 #else
     34   static const ArchVariants kArchVariant = kMips64r2;
     35 #endif
     36 
     37 
     38   enum Endianness { kLittle, kBig };
     39 
     40 #if defined(V8_TARGET_LITTLE_ENDIAN)
     41   static const Endianness kArchEndian = kLittle;
     42 #elif defined(V8_TARGET_BIG_ENDIAN)
     43   static const Endianness kArchEndian = kBig;
     44 #else
     45 #error Unknown endianness
     46 #endif
     47 
     48 
     49 // TODO(plind): consider renaming these ...
     50 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
     51 // Use floating-point coprocessor instructions. This flag is raised when
     52 // -mhard-float is passed to the compiler.
     53 const bool IsMipsSoftFloatABI = false;
     54 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
     55 // This flag is raised when -msoft-float is passed to the compiler.
     56 // Although FPU is a base requirement for v8, soft-float ABI is used
     57 // on soft-float systems with FPU kernel emulation.
     58 const bool IsMipsSoftFloatABI = true;
     59 #else
     60 const bool IsMipsSoftFloatABI = true;
     61 #endif
     62 
     63 #if defined(V8_TARGET_LITTLE_ENDIAN)
     64 const uint32_t kMipsLwrOffset = 0;
     65 const uint32_t kMipsLwlOffset = 3;
     66 const uint32_t kMipsSwrOffset = 0;
     67 const uint32_t kMipsSwlOffset = 3;
     68 const uint32_t kMipsLdrOffset = 0;
     69 const uint32_t kMipsLdlOffset = 7;
     70 const uint32_t kMipsSdrOffset = 0;
     71 const uint32_t kMipsSdlOffset = 7;
     72 #elif defined(V8_TARGET_BIG_ENDIAN)
     73 const uint32_t kMipsLwrOffset = 3;
     74 const uint32_t kMipsLwlOffset = 0;
     75 const uint32_t kMipsSwrOffset = 3;
     76 const uint32_t kMipsSwlOffset = 0;
     77 const uint32_t kMipsLdrOffset = 7;
     78 const uint32_t kMipsLdlOffset = 0;
     79 const uint32_t kMipsSdrOffset = 7;
     80 const uint32_t kMipsSdlOffset = 0;
     81 #else
     82 #error Unknown endianness
     83 #endif
     84 
     85 #ifndef __STDC_FORMAT_MACROS
     86 #define __STDC_FORMAT_MACROS
     87 #endif
     88 #include <inttypes.h>
     89 
     90 
     91 // Defines constants and accessor classes to assemble, disassemble and
     92 // simulate MIPS32 instructions.
     93 //
     94 // See: MIPS32 Architecture For Programmers
     95 //      Volume II: The MIPS32 Instruction Set
     96 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
     97 
     98 namespace v8 {
     99 namespace internal {
    100 
    101 // -----------------------------------------------------------------------------
    102 // Registers and FPURegisters.
    103 
    104 // Number of general purpose registers.
    105 const int kNumRegisters = 32;
    106 const int kInvalidRegister = -1;
    107 
    108 // Number of registers with HI, LO, and pc.
    109 const int kNumSimuRegisters = 35;
    110 
    111 // In the simulator, the PC register is simulated as the 34th register.
    112 const int kPCRegister = 34;
    113 
    114 // Number coprocessor registers.
    115 const int kNumFPURegisters = 32;
    116 const int kInvalidFPURegister = -1;
    117 
    118 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
    119 const int kFCSRRegister = 31;
    120 const int kInvalidFPUControlRegister = -1;
    121 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
    122 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1 << 31);
    123 const uint64_t kFPU64InvalidResult =
    124     static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
    125 const int64_t kFPU64InvalidResultNegative =
    126     static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
    127 
    128 // FCSR constants.
    129 const uint32_t kFCSRInexactFlagBit = 2;
    130 const uint32_t kFCSRUnderflowFlagBit = 3;
    131 const uint32_t kFCSROverflowFlagBit = 4;
    132 const uint32_t kFCSRDivideByZeroFlagBit = 5;
    133 const uint32_t kFCSRInvalidOpFlagBit = 6;
    134 const uint32_t kFCSRNaN2008FlagBit = 18;
    135 
    136 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
    137 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
    138 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
    139 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
    140 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
    141 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
    142 
    143 const uint32_t kFCSRFlagMask =
    144     kFCSRInexactFlagMask |
    145     kFCSRUnderflowFlagMask |
    146     kFCSROverflowFlagMask |
    147     kFCSRDivideByZeroFlagMask |
    148     kFCSRInvalidOpFlagMask;
    149 
    150 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
    151 
    152 // 'pref' instruction hints
    153 const int32_t kPrefHintLoad = 0;
    154 const int32_t kPrefHintStore = 1;
    155 const int32_t kPrefHintLoadStreamed = 4;
    156 const int32_t kPrefHintStoreStreamed = 5;
    157 const int32_t kPrefHintLoadRetained = 6;
    158 const int32_t kPrefHintStoreRetained = 7;
    159 const int32_t kPrefHintWritebackInvalidate = 25;
    160 const int32_t kPrefHintPrepareForStore = 30;
    161 
    162 // Helper functions for converting between register numbers and names.
    163 class Registers {
    164  public:
    165   // Return the name of the register.
    166   static const char* Name(int reg);
    167 
    168   // Lookup the register number for the name provided.
    169   static int Number(const char* name);
    170 
    171   struct RegisterAlias {
    172     int reg;
    173     const char* name;
    174   };
    175 
    176   static const int64_t kMaxValue = 0x7fffffffffffffffl;
    177   static const int64_t kMinValue = 0x8000000000000000l;
    178 
    179  private:
    180   static const char* names_[kNumSimuRegisters];
    181   static const RegisterAlias aliases_[];
    182 };
    183 
    184 // Helper functions for converting between register numbers and names.
    185 class FPURegisters {
    186  public:
    187   // Return the name of the register.
    188   static const char* Name(int reg);
    189 
    190   // Lookup the register number for the name provided.
    191   static int Number(const char* name);
    192 
    193   struct RegisterAlias {
    194     int creg;
    195     const char* name;
    196   };
    197 
    198  private:
    199   static const char* names_[kNumFPURegisters];
    200   static const RegisterAlias aliases_[];
    201 };
    202 
    203 
    204 // -----------------------------------------------------------------------------
    205 // Instructions encoding constants.
    206 
    207 // On MIPS all instructions are 32 bits.
    208 typedef int32_t Instr;
    209 
    210 // Special Software Interrupt codes when used in the presence of the MIPS
    211 // simulator.
    212 enum SoftwareInterruptCodes {
    213   // Transition to C code.
    214   call_rt_redirected = 0xfffff
    215 };
    216 
    217 // On MIPS Simulator breakpoints can have different codes:
    218 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
    219 //   the simulator will run through them and print the registers.
    220 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
    221 //   instructions (see Assembler::stop()).
    222 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
    223 //   debugger.
    224 const uint32_t kMaxWatchpointCode = 31;
    225 const uint32_t kMaxStopCode = 127;
    226 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
    227 
    228 
    229 // ----- Fields offset and length.
    230 const int kOpcodeShift   = 26;
    231 const int kOpcodeBits    = 6;
    232 const int kRsShift       = 21;
    233 const int kRsBits        = 5;
    234 const int kRtShift       = 16;
    235 const int kRtBits        = 5;
    236 const int kRdShift       = 11;
    237 const int kRdBits        = 5;
    238 const int kSaShift       = 6;
    239 const int kSaBits        = 5;
    240 const int kLsaSaBits = 2;
    241 const int kFunctionShift = 0;
    242 const int kFunctionBits  = 6;
    243 const int kLuiShift      = 16;
    244 const int kBp2Shift = 6;
    245 const int kBp2Bits = 2;
    246 const int kBp3Shift = 6;
    247 const int kBp3Bits = 3;
    248 
    249 const int kImm16Shift = 0;
    250 const int kImm16Bits  = 16;
    251 const int kImm18Shift = 0;
    252 const int kImm18Bits = 18;
    253 const int kImm19Shift = 0;
    254 const int kImm19Bits = 19;
    255 const int kImm21Shift = 0;
    256 const int kImm21Bits  = 21;
    257 const int kImm26Shift = 0;
    258 const int kImm26Bits  = 26;
    259 const int kImm28Shift = 0;
    260 const int kImm28Bits  = 28;
    261 const int kImm32Shift = 0;
    262 const int kImm32Bits  = 32;
    263 
    264 // In branches and jumps immediate fields point to words, not bytes,
    265 // and are therefore shifted by 2.
    266 const int kImmFieldShift = 2;
    267 
    268 const int kFrBits        = 5;
    269 const int kFrShift       = 21;
    270 const int kFsShift       = 11;
    271 const int kFsBits        = 5;
    272 const int kFtShift       = 16;
    273 const int kFtBits        = 5;
    274 const int kFdShift       = 6;
    275 const int kFdBits        = 5;
    276 const int kFCccShift     = 8;
    277 const int kFCccBits      = 3;
    278 const int kFBccShift     = 18;
    279 const int kFBccBits      = 3;
    280 const int kFBtrueShift   = 16;
    281 const int kFBtrueBits    = 1;
    282 
    283 // ----- Miscellaneous useful masks.
    284 // Instruction bit masks.
    285 const int  kOpcodeMask   = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
    286 const int  kImm16Mask    = ((1 << kImm16Bits) - 1) << kImm16Shift;
    287 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
    288 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
    289 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
    290 const int  kImm26Mask    = ((1 << kImm26Bits) - 1) << kImm26Shift;
    291 const int  kImm28Mask    = ((1 << kImm28Bits) - 1) << kImm28Shift;
    292 const int  kRsFieldMask  = ((1 << kRsBits) - 1) << kRsShift;
    293 const int  kRtFieldMask  = ((1 << kRtBits) - 1) << kRtShift;
    294 const int  kRdFieldMask  = ((1 << kRdBits) - 1) << kRdShift;
    295 const int  kSaFieldMask  = ((1 << kSaBits) - 1) << kSaShift;
    296 const int  kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
    297 // Misc masks.
    298 const int  kHiMask       =   0xffff << 16;
    299 const int  kLoMask       =   0xffff;
    300 const int  kSignMask     =   0x80000000;
    301 const int  kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
    302 const int64_t  kHi16MaskOf64 =   (int64_t)0xffff << 48;
    303 const int64_t  kSe16MaskOf64 =   (int64_t)0xffff << 32;
    304 const int64_t  kTh16MaskOf64 =   (int64_t)0xffff << 16;
    305 const int32_t kJalRawMark = 0x00000000;
    306 const int32_t kJRawMark = 0xf0000000;
    307 const int32_t kJumpRawMask = 0xf0000000;
    308 
    309 // ----- MIPS Opcodes and Function Fields.
    310 // We use this presentation to stay close to the table representation in
    311 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
    312 enum Opcode : uint32_t {
    313   SPECIAL = 0U << kOpcodeShift,
    314   REGIMM = 1U << kOpcodeShift,
    315 
    316   J = ((0U << 3) + 2) << kOpcodeShift,
    317   JAL = ((0U << 3) + 3) << kOpcodeShift,
    318   BEQ = ((0U << 3) + 4) << kOpcodeShift,
    319   BNE = ((0U << 3) + 5) << kOpcodeShift,
    320   BLEZ = ((0U << 3) + 6) << kOpcodeShift,
    321   BGTZ = ((0U << 3) + 7) << kOpcodeShift,
    322 
    323   ADDI = ((1U << 3) + 0) << kOpcodeShift,
    324   ADDIU = ((1U << 3) + 1) << kOpcodeShift,
    325   SLTI = ((1U << 3) + 2) << kOpcodeShift,
    326   SLTIU = ((1U << 3) + 3) << kOpcodeShift,
    327   ANDI = ((1U << 3) + 4) << kOpcodeShift,
    328   ORI = ((1U << 3) + 5) << kOpcodeShift,
    329   XORI = ((1U << 3) + 6) << kOpcodeShift,
    330   LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
    331   DAUI = ((3U << 3) + 5) << kOpcodeShift,
    332 
    333   BEQC = ((2U << 3) + 0) << kOpcodeShift,
    334   COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
    335   BEQL = ((2U << 3) + 4) << kOpcodeShift,
    336   BNEL = ((2U << 3) + 5) << kOpcodeShift,
    337   BLEZL = ((2U << 3) + 6) << kOpcodeShift,
    338   BGTZL = ((2U << 3) + 7) << kOpcodeShift,
    339 
    340   DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
    341   DADDIU = ((3U << 3) + 1) << kOpcodeShift,
    342   LDL = ((3U << 3) + 2) << kOpcodeShift,
    343   LDR = ((3U << 3) + 3) << kOpcodeShift,
    344   SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
    345   SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
    346 
    347   LB = ((4U << 3) + 0) << kOpcodeShift,
    348   LH = ((4U << 3) + 1) << kOpcodeShift,
    349   LWL = ((4U << 3) + 2) << kOpcodeShift,
    350   LW = ((4U << 3) + 3) << kOpcodeShift,
    351   LBU = ((4U << 3) + 4) << kOpcodeShift,
    352   LHU = ((4U << 3) + 5) << kOpcodeShift,
    353   LWR = ((4U << 3) + 6) << kOpcodeShift,
    354   LWU = ((4U << 3) + 7) << kOpcodeShift,
    355 
    356   SB = ((5U << 3) + 0) << kOpcodeShift,
    357   SH = ((5U << 3) + 1) << kOpcodeShift,
    358   SWL = ((5U << 3) + 2) << kOpcodeShift,
    359   SW = ((5U << 3) + 3) << kOpcodeShift,
    360   SDL = ((5U << 3) + 4) << kOpcodeShift,
    361   SDR = ((5U << 3) + 5) << kOpcodeShift,
    362   SWR = ((5U << 3) + 6) << kOpcodeShift,
    363 
    364   LWC1 = ((6U << 3) + 1) << kOpcodeShift,
    365   BC = ((6U << 3) + 2) << kOpcodeShift,
    366   LLD = ((6U << 3) + 4) << kOpcodeShift,
    367   LDC1 = ((6U << 3) + 5) << kOpcodeShift,
    368   POP66 = ((6U << 3) + 6) << kOpcodeShift,
    369   LD = ((6U << 3) + 7) << kOpcodeShift,
    370 
    371   PREF = ((6U << 3) + 3) << kOpcodeShift,
    372 
    373   SWC1 = ((7U << 3) + 1) << kOpcodeShift,
    374   BALC = ((7U << 3) + 2) << kOpcodeShift,
    375   PCREL = ((7U << 3) + 3) << kOpcodeShift,
    376   SCD = ((7U << 3) + 4) << kOpcodeShift,
    377   SDC1 = ((7U << 3) + 5) << kOpcodeShift,
    378   POP76 = ((7U << 3) + 6) << kOpcodeShift,
    379   SD = ((7U << 3) + 7) << kOpcodeShift,
    380 
    381   COP1X = ((1U << 4) + 3) << kOpcodeShift,
    382 
    383   // New r6 instruction.
    384   POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
    385   POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
    386   POP10 = ADDI,   // beqzalc, bovc, beqc
    387   POP26 = BLEZL,  // bgezc, blezc, bgec/blec
    388   POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
    389   POP30 = DADDI,  // bnezalc, bnvc, bnec
    390 };
    391 
    392 enum SecondaryField : uint32_t {
    393   // SPECIAL Encoding of Function Field.
    394   SLL = ((0U << 3) + 0),
    395   MOVCI = ((0U << 3) + 1),
    396   SRL = ((0U << 3) + 2),
    397   SRA = ((0U << 3) + 3),
    398   SLLV = ((0U << 3) + 4),
    399   LSA = ((0U << 3) + 5),
    400   SRLV = ((0U << 3) + 6),
    401   SRAV = ((0U << 3) + 7),
    402 
    403   JR = ((1U << 3) + 0),
    404   JALR = ((1U << 3) + 1),
    405   MOVZ = ((1U << 3) + 2),
    406   MOVN = ((1U << 3) + 3),
    407   BREAK = ((1U << 3) + 5),
    408   SYNC = ((1U << 3) + 7),
    409 
    410   MFHI = ((2U << 3) + 0),
    411   CLZ_R6 = ((2U << 3) + 0),
    412   CLO_R6 = ((2U << 3) + 1),
    413   MFLO = ((2U << 3) + 2),
    414   DCLZ_R6 = ((2U << 3) + 2),
    415   DCLO_R6 = ((2U << 3) + 3),
    416   DSLLV = ((2U << 3) + 4),
    417   DLSA = ((2U << 3) + 5),
    418   DSRLV = ((2U << 3) + 6),
    419   DSRAV = ((2U << 3) + 7),
    420 
    421   MULT = ((3U << 3) + 0),
    422   MULTU = ((3U << 3) + 1),
    423   DIV = ((3U << 3) + 2),
    424   DIVU = ((3U << 3) + 3),
    425   DMULT = ((3U << 3) + 4),
    426   DMULTU = ((3U << 3) + 5),
    427   DDIV = ((3U << 3) + 6),
    428   DDIVU = ((3U << 3) + 7),
    429 
    430   ADD = ((4U << 3) + 0),
    431   ADDU = ((4U << 3) + 1),
    432   SUB = ((4U << 3) + 2),
    433   SUBU = ((4U << 3) + 3),
    434   AND = ((4U << 3) + 4),
    435   OR = ((4U << 3) + 5),
    436   XOR = ((4U << 3) + 6),
    437   NOR = ((4U << 3) + 7),
    438 
    439   SLT = ((5U << 3) + 2),
    440   SLTU = ((5U << 3) + 3),
    441   DADD = ((5U << 3) + 4),
    442   DADDU = ((5U << 3) + 5),
    443   DSUB = ((5U << 3) + 6),
    444   DSUBU = ((5U << 3) + 7),
    445 
    446   TGE = ((6U << 3) + 0),
    447   TGEU = ((6U << 3) + 1),
    448   TLT = ((6U << 3) + 2),
    449   TLTU = ((6U << 3) + 3),
    450   TEQ = ((6U << 3) + 4),
    451   SELEQZ_S = ((6U << 3) + 5),
    452   TNE = ((6U << 3) + 6),
    453   SELNEZ_S = ((6U << 3) + 7),
    454 
    455   DSLL = ((7U << 3) + 0),
    456   DSRL = ((7U << 3) + 2),
    457   DSRA = ((7U << 3) + 3),
    458   DSLL32 = ((7U << 3) + 4),
    459   DSRL32 = ((7U << 3) + 6),
    460   DSRA32 = ((7U << 3) + 7),
    461 
    462   // Multiply integers in r6.
    463   MUL_MUH = ((3U << 3) + 0),      // MUL, MUH.
    464   MUL_MUH_U = ((3U << 3) + 1),    // MUL_U, MUH_U.
    465   D_MUL_MUH = ((7U << 2) + 0),    // DMUL, DMUH.
    466   D_MUL_MUH_U = ((7U << 2) + 1),  // DMUL_U, DMUH_U.
    467   RINT = ((3U << 3) + 2),
    468 
    469   MUL_OP = ((0U << 3) + 2),
    470   MUH_OP = ((0U << 3) + 3),
    471   DIV_OP = ((0U << 3) + 2),
    472   MOD_OP = ((0U << 3) + 3),
    473 
    474   DIV_MOD = ((3U << 3) + 2),
    475   DIV_MOD_U = ((3U << 3) + 3),
    476   D_DIV_MOD = ((3U << 3) + 6),
    477   D_DIV_MOD_U = ((3U << 3) + 7),
    478 
    479   // drotr in special4?
    480 
    481   // SPECIAL2 Encoding of Function Field.
    482   MUL = ((0U << 3) + 2),
    483   CLZ = ((4U << 3) + 0),
    484   CLO = ((4U << 3) + 1),
    485   DCLZ = ((4U << 3) + 4),
    486   DCLO = ((4U << 3) + 5),
    487 
    488   // SPECIAL3 Encoding of Function Field.
    489   EXT = ((0U << 3) + 0),
    490   DEXTM = ((0U << 3) + 1),
    491   DEXTU = ((0U << 3) + 2),
    492   DEXT = ((0U << 3) + 3),
    493   INS = ((0U << 3) + 4),
    494   DINSM = ((0U << 3) + 5),
    495   DINSU = ((0U << 3) + 6),
    496   DINS = ((0U << 3) + 7),
    497 
    498   BSHFL = ((4U << 3) + 0),
    499   DBSHFL = ((4U << 3) + 4),
    500 
    501   // SPECIAL3 Encoding of sa Field.
    502   BITSWAP = ((0U << 3) + 0),
    503   ALIGN = ((0U << 3) + 2),
    504   WSBH = ((0U << 3) + 2),
    505   SEB = ((2U << 3) + 0),
    506   SEH = ((3U << 3) + 0),
    507 
    508   DBITSWAP = ((0U << 3) + 0),
    509   DALIGN = ((0U << 3) + 1),
    510   DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
    511   DSBH = ((0U << 3) + 2),
    512   DSHD = ((0U << 3) + 5),
    513 
    514   // REGIMM  encoding of rt Field.
    515   BLTZ = ((0U << 3) + 0) << 16,
    516   BGEZ = ((0U << 3) + 1) << 16,
    517   BLTZAL = ((2U << 3) + 0) << 16,
    518   BGEZAL = ((2U << 3) + 1) << 16,
    519   BGEZALL = ((2U << 3) + 3) << 16,
    520   DAHI = ((0U << 3) + 6) << 16,
    521   DATI = ((3U << 3) + 6) << 16,
    522 
    523   // COP1 Encoding of rs Field.
    524   MFC1 = ((0U << 3) + 0) << 21,
    525   DMFC1 = ((0U << 3) + 1) << 21,
    526   CFC1 = ((0U << 3) + 2) << 21,
    527   MFHC1 = ((0U << 3) + 3) << 21,
    528   MTC1 = ((0U << 3) + 4) << 21,
    529   DMTC1 = ((0U << 3) + 5) << 21,
    530   CTC1 = ((0U << 3) + 6) << 21,
    531   MTHC1 = ((0U << 3) + 7) << 21,
    532   BC1 = ((1U << 3) + 0) << 21,
    533   S = ((2U << 3) + 0) << 21,
    534   D = ((2U << 3) + 1) << 21,
    535   W = ((2U << 3) + 4) << 21,
    536   L = ((2U << 3) + 5) << 21,
    537   PS = ((2U << 3) + 6) << 21,
    538   // COP1 Encoding of Function Field When rs=S.
    539 
    540   ADD_S = ((0U << 3) + 0),
    541   SUB_S = ((0U << 3) + 1),
    542   MUL_S = ((0U << 3) + 2),
    543   DIV_S = ((0U << 3) + 3),
    544   ABS_S = ((0U << 3) + 5),
    545   SQRT_S = ((0U << 3) + 4),
    546   MOV_S = ((0U << 3) + 6),
    547   NEG_S = ((0U << 3) + 7),
    548   ROUND_L_S = ((1U << 3) + 0),
    549   TRUNC_L_S = ((1U << 3) + 1),
    550   CEIL_L_S = ((1U << 3) + 2),
    551   FLOOR_L_S = ((1U << 3) + 3),
    552   ROUND_W_S = ((1U << 3) + 4),
    553   TRUNC_W_S = ((1U << 3) + 5),
    554   CEIL_W_S = ((1U << 3) + 6),
    555   FLOOR_W_S = ((1U << 3) + 7),
    556   RECIP_S = ((2U << 3) + 5),
    557   RSQRT_S = ((2U << 3) + 6),
    558   MADDF_S = ((3U << 3) + 0),
    559   MSUBF_S = ((3U << 3) + 1),
    560   CLASS_S = ((3U << 3) + 3),
    561   CVT_D_S = ((4U << 3) + 1),
    562   CVT_W_S = ((4U << 3) + 4),
    563   CVT_L_S = ((4U << 3) + 5),
    564   CVT_PS_S = ((4U << 3) + 6),
    565   // COP1 Encoding of Function Field When rs=D.
    566   ADD_D = ((0U << 3) + 0),
    567   SUB_D = ((0U << 3) + 1),
    568   MUL_D = ((0U << 3) + 2),
    569   DIV_D = ((0U << 3) + 3),
    570   SQRT_D = ((0U << 3) + 4),
    571   ABS_D = ((0U << 3) + 5),
    572   MOV_D = ((0U << 3) + 6),
    573   NEG_D = ((0U << 3) + 7),
    574   ROUND_L_D = ((1U << 3) + 0),
    575   TRUNC_L_D = ((1U << 3) + 1),
    576   CEIL_L_D = ((1U << 3) + 2),
    577   FLOOR_L_D = ((1U << 3) + 3),
    578   ROUND_W_D = ((1U << 3) + 4),
    579   TRUNC_W_D = ((1U << 3) + 5),
    580   CEIL_W_D = ((1U << 3) + 6),
    581   FLOOR_W_D = ((1U << 3) + 7),
    582   RECIP_D = ((2U << 3) + 5),
    583   RSQRT_D = ((2U << 3) + 6),
    584   MADDF_D = ((3U << 3) + 0),
    585   MSUBF_D = ((3U << 3) + 1),
    586   CLASS_D = ((3U << 3) + 3),
    587   MIN = ((3U << 3) + 4),
    588   MINA = ((3U << 3) + 5),
    589   MAX = ((3U << 3) + 6),
    590   MAXA = ((3U << 3) + 7),
    591   CVT_S_D = ((4U << 3) + 0),
    592   CVT_W_D = ((4U << 3) + 4),
    593   CVT_L_D = ((4U << 3) + 5),
    594   C_F_D = ((6U << 3) + 0),
    595   C_UN_D = ((6U << 3) + 1),
    596   C_EQ_D = ((6U << 3) + 2),
    597   C_UEQ_D = ((6U << 3) + 3),
    598   C_OLT_D = ((6U << 3) + 4),
    599   C_ULT_D = ((6U << 3) + 5),
    600   C_OLE_D = ((6U << 3) + 6),
    601   C_ULE_D = ((6U << 3) + 7),
    602 
    603   // COP1 Encoding of Function Field When rs=W or L.
    604   CVT_S_W = ((4U << 3) + 0),
    605   CVT_D_W = ((4U << 3) + 1),
    606   CVT_S_L = ((4U << 3) + 0),
    607   CVT_D_L = ((4U << 3) + 1),
    608   BC1EQZ = ((2U << 2) + 1) << 21,
    609   BC1NEZ = ((3U << 2) + 1) << 21,
    610   // COP1 CMP positive predicates Bit 5..4 = 00.
    611   CMP_AF = ((0U << 3) + 0),
    612   CMP_UN = ((0U << 3) + 1),
    613   CMP_EQ = ((0U << 3) + 2),
    614   CMP_UEQ = ((0U << 3) + 3),
    615   CMP_LT = ((0U << 3) + 4),
    616   CMP_ULT = ((0U << 3) + 5),
    617   CMP_LE = ((0U << 3) + 6),
    618   CMP_ULE = ((0U << 3) + 7),
    619   CMP_SAF = ((1U << 3) + 0),
    620   CMP_SUN = ((1U << 3) + 1),
    621   CMP_SEQ = ((1U << 3) + 2),
    622   CMP_SUEQ = ((1U << 3) + 3),
    623   CMP_SSLT = ((1U << 3) + 4),
    624   CMP_SSULT = ((1U << 3) + 5),
    625   CMP_SLE = ((1U << 3) + 6),
    626   CMP_SULE = ((1U << 3) + 7),
    627   // COP1 CMP negative predicates Bit 5..4 = 01.
    628   CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
    629   CMP_OR = ((2U << 3) + 1),
    630   CMP_UNE = ((2U << 3) + 2),
    631   CMP_NE = ((2U << 3) + 3),
    632   CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
    633   CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
    634   CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
    635   CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
    636   CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
    637   CMP_SOR = ((3U << 3) + 1),
    638   CMP_SUNE = ((3U << 3) + 2),
    639   CMP_SNE = ((3U << 3) + 3),
    640   CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
    641   CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
    642   CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
    643   CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
    644 
    645   SEL = ((2U << 3) + 0),
    646   MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
    647   MOVZ_C = ((2U << 3) + 2),    // COP1 on FPR registers.
    648   MOVN_C = ((2U << 3) + 3),    // COP1 on FPR registers.
    649   SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
    650   SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
    651 
    652   // COP1 Encoding of Function Field When rs=PS.
    653 
    654   // COP1X Encoding of Function Field.
    655   MADD_S = ((4U << 3) + 0),
    656   MADD_D = ((4U << 3) + 1),
    657   MSUB_S = ((5U << 3) + 0),
    658   MSUB_D = ((5U << 3) + 1),
    659 
    660   // PCREL Encoding of rt Field.
    661   ADDIUPC = ((0U << 2) + 0),
    662   LWPC = ((0U << 2) + 1),
    663   LWUPC = ((0U << 2) + 2),
    664   LDPC = ((0U << 3) + 6),
    665   // reserved ((1U << 3) + 6),
    666   AUIPC = ((3U << 3) + 6),
    667   ALUIPC = ((3U << 3) + 7),
    668 
    669   // POP66 Encoding of rs Field.
    670   JIC = ((0U << 5) + 0),
    671 
    672   // POP76 Encoding of rs Field.
    673   JIALC = ((0U << 5) + 0),
    674 
    675   NULLSF = 0U
    676 };
    677 
    678 // ----- Emulated conditions.
    679 // On MIPS we use this enum to abstract from conditional branch instructions.
    680 // The 'U' prefix is used to specify unsigned comparisons.
    681 // Opposite conditions must be paired as odd/even numbers
    682 // because 'NegateCondition' function flips LSB to negate condition.
    683 enum Condition {
    684   // Any value < 0 is considered no_condition.
    685   kNoCondition = -1,
    686   overflow = 0,
    687   no_overflow = 1,
    688   Uless = 2,
    689   Ugreater_equal = 3,
    690   Uless_equal = 4,
    691   Ugreater = 5,
    692   equal = 6,
    693   not_equal = 7,  // Unordered or Not Equal.
    694   negative = 8,
    695   positive = 9,
    696   parity_even = 10,
    697   parity_odd = 11,
    698   less = 12,
    699   greater_equal = 13,
    700   less_equal = 14,
    701   greater = 15,
    702   ueq = 16,  // Unordered or Equal.
    703   ogl = 17,  // Ordered and Not Equal.
    704   cc_always = 18,
    705 
    706   // Aliases.
    707   carry = Uless,
    708   not_carry = Ugreater_equal,
    709   zero = equal,
    710   eq = equal,
    711   not_zero = not_equal,
    712   ne = not_equal,
    713   nz = not_equal,
    714   sign = negative,
    715   not_sign = positive,
    716   mi = negative,
    717   pl = positive,
    718   hi = Ugreater,
    719   ls = Uless_equal,
    720   ge = greater_equal,
    721   lt = less,
    722   gt = greater,
    723   le = less_equal,
    724   hs = Ugreater_equal,
    725   lo = Uless,
    726   al = cc_always,
    727   ult = Uless,
    728   uge = Ugreater_equal,
    729   ule = Uless_equal,
    730   ugt = Ugreater,
    731   cc_default = kNoCondition
    732 };
    733 
    734 
    735 // Returns the equivalent of !cc.
    736 // Negation of the default kNoCondition (-1) results in a non-default
    737 // no_condition value (-2). As long as tests for no_condition check
    738 // for condition < 0, this will work as expected.
    739 inline Condition NegateCondition(Condition cc) {
    740   DCHECK(cc != cc_always);
    741   return static_cast<Condition>(cc ^ 1);
    742 }
    743 
    744 
    745 inline Condition NegateFpuCondition(Condition cc) {
    746   DCHECK(cc != cc_always);
    747   switch (cc) {
    748     case ult:
    749       return ge;
    750     case ugt:
    751       return le;
    752     case uge:
    753       return lt;
    754     case ule:
    755       return gt;
    756     case lt:
    757       return uge;
    758     case gt:
    759       return ule;
    760     case ge:
    761       return ult;
    762     case le:
    763       return ugt;
    764     case eq:
    765       return ne;
    766     case ne:
    767       return eq;
    768     case ueq:
    769       return ogl;
    770     case ogl:
    771       return ueq;
    772     default:
    773       return cc;
    774   }
    775 }
    776 
    777 
    778 // Commute a condition such that {a cond b == b cond' a}.
    779 inline Condition CommuteCondition(Condition cc) {
    780   switch (cc) {
    781     case Uless:
    782       return Ugreater;
    783     case Ugreater:
    784       return Uless;
    785     case Ugreater_equal:
    786       return Uless_equal;
    787     case Uless_equal:
    788       return Ugreater_equal;
    789     case less:
    790       return greater;
    791     case greater:
    792       return less;
    793     case greater_equal:
    794       return less_equal;
    795     case less_equal:
    796       return greater_equal;
    797     default:
    798       return cc;
    799   }
    800 }
    801 
    802 
    803 // ----- Coprocessor conditions.
    804 enum FPUCondition {
    805   kNoFPUCondition = -1,
    806 
    807   F = 0x00,    // False.
    808   UN = 0x01,   // Unordered.
    809   EQ = 0x02,   // Equal.
    810   UEQ = 0x03,  // Unordered or Equal.
    811   OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
    812   LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
    813   ULT = 0x05,  // Unordered or Less Than.
    814   OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
    815   LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
    816   ULE = 0x07,  // Unordered or Less Than or Equal.
    817 
    818   // Following constants are available on Mips release >= 6 only.
    819   ORD = 0x11,  // Ordered, on Mips release >= 6.
    820   UNE = 0x12,  // Not equal, on Mips release >= 6.
    821   NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
    822 };
    823 
    824 
    825 // FPU rounding modes.
    826 enum FPURoundingMode {
    827   RN = 0 << 0,  // Round to Nearest.
    828   RZ = 1 << 0,  // Round towards zero.
    829   RP = 2 << 0,  // Round towards Plus Infinity.
    830   RM = 3 << 0,  // Round towards Minus Infinity.
    831 
    832   // Aliases.
    833   kRoundToNearest = RN,
    834   kRoundToZero = RZ,
    835   kRoundToPlusInf = RP,
    836   kRoundToMinusInf = RM,
    837 
    838   mode_round = RN,
    839   mode_ceil = RP,
    840   mode_floor = RM,
    841   mode_trunc = RZ
    842 };
    843 
    844 const uint32_t kFPURoundingModeMask = 3 << 0;
    845 
    846 enum CheckForInexactConversion {
    847   kCheckForInexactConversion,
    848   kDontCheckForInexactConversion
    849 };
    850 
    851 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
    852 
    853 // -----------------------------------------------------------------------------
    854 // Hints.
    855 
    856 // Branch hints are not used on the MIPS.  They are defined so that they can
    857 // appear in shared function signatures, but will be ignored in MIPS
    858 // implementations.
    859 enum Hint {
    860   no_hint = 0
    861 };
    862 
    863 
    864 inline Hint NegateHint(Hint hint) {
    865   return no_hint;
    866 }
    867 
    868 
    869 // -----------------------------------------------------------------------------
    870 // Specific instructions, constants, and masks.
    871 // These constants are declared in assembler-mips.cc, as they use named
    872 // registers and other constants.
    873 
    874 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
    875 // operations as post-increment of sp.
    876 extern const Instr kPopInstruction;
    877 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
    878 extern const Instr kPushInstruction;
    879 // sw(r, MemOperand(sp, 0))
    880 extern const Instr kPushRegPattern;
    881 // lw(r, MemOperand(sp, 0))
    882 extern const Instr kPopRegPattern;
    883 extern const Instr kLwRegFpOffsetPattern;
    884 extern const Instr kSwRegFpOffsetPattern;
    885 extern const Instr kLwRegFpNegOffsetPattern;
    886 extern const Instr kSwRegFpNegOffsetPattern;
    887 // A mask for the Rt register for push, pop, lw, sw instructions.
    888 extern const Instr kRtMask;
    889 extern const Instr kLwSwInstrTypeMask;
    890 extern const Instr kLwSwInstrArgumentMask;
    891 extern const Instr kLwSwOffsetMask;
    892 
    893 // Break 0xfffff, reserved for redirected real time call.
    894 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
    895 // A nop instruction. (Encoding of sll 0 0 0).
    896 const Instr nopInstr = 0;
    897 
    898 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
    899   return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
    900 }
    901 
    902 class InstructionBase {
    903  public:
    904   enum {
    905     kInstrSize = 4,
    906     kInstrSizeLog2 = 2,
    907     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    908     // always the value of the current instruction being executed.
    909     kPCReadOffset = 0
    910   };
    911 
    912   // Instruction type.
    913   enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
    914 
    915   // Get the raw instruction bits.
    916   inline Instr InstructionBits() const {
    917     return *reinterpret_cast<const Instr*>(this);
    918   }
    919 
    920   // Set the raw instruction bits to value.
    921   inline void SetInstructionBits(Instr value) {
    922     *reinterpret_cast<Instr*>(this) = value;
    923   }
    924 
    925   // Read one particular bit out of the instruction bits.
    926   inline int Bit(int nr) const {
    927     return (InstructionBits() >> nr) & 1;
    928   }
    929 
    930   // Read a bit field out of the instruction bits.
    931   inline int Bits(int hi, int lo) const {
    932     return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
    933   }
    934 
    935   static constexpr uint64_t kOpcodeImmediateTypeMask =
    936       OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
    937       OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
    938       OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
    939       OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
    940       OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
    941       OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
    942       OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
    943       OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
    944       OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
    945       OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
    946       OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
    947       OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
    948       OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
    949       OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
    950       OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
    951       OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
    952       OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
    953       OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
    954       OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
    955       OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
    956       OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
    957 
    958 #define FunctionFieldToBitNumber(function) (1ULL << function)
    959 
    960   // On r6, DCLZ_R6 aliases to existing MFLO.
    961   static const uint64_t kFunctionFieldRegisterTypeMask =
    962       FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
    963       FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
    964       FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
    965       FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
    966       FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
    967       FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
    968       FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
    969       FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
    970       FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
    971       FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
    972       FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
    973       FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
    974       FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
    975       FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
    976       FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
    977       FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
    978       FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
    979       FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
    980       FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
    981       FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
    982       FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
    983       FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
    984       FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
    985       FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
    986       FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
    987       FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
    988       FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
    989       FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
    990 
    991 
    992   // Accessors for the different named fields used in the MIPS encoding.
    993   inline Opcode OpcodeValue() const {
    994     return static_cast<Opcode>(
    995         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
    996   }
    997 
    998   inline int FunctionFieldRaw() const {
    999     return InstructionBits() & kFunctionFieldMask;
   1000   }
   1001 
   1002   // Return the fields at their original place in the instruction encoding.
   1003   inline Opcode OpcodeFieldRaw() const {
   1004     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
   1005   }
   1006 
   1007   // Safe to call within InstructionType().
   1008   inline int RsFieldRawNoAssert() const {
   1009     return InstructionBits() & kRsFieldMask;
   1010   }
   1011 
   1012   inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
   1013 
   1014   // Get the encoding type of the instruction.
   1015   inline Type InstructionType() const;
   1016 
   1017  protected:
   1018   InstructionBase() {}
   1019 };
   1020 
   1021 template <class T>
   1022 class InstructionGetters : public T {
   1023  public:
   1024   inline int RsValue() const {
   1025     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
   1026            this->InstructionType() == InstructionBase::kImmediateType);
   1027     return this->Bits(kRsShift + kRsBits - 1, kRsShift);
   1028   }
   1029 
   1030   inline int RtValue() const {
   1031     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
   1032            this->InstructionType() == InstructionBase::kImmediateType);
   1033     return this->Bits(kRtShift + kRtBits - 1, kRtShift);
   1034   }
   1035 
   1036   inline int RdValue() const {
   1037     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1038     return this->Bits(kRdShift + kRdBits - 1, kRdShift);
   1039   }
   1040 
   1041   inline int SaValue() const {
   1042     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1043     return this->Bits(kSaShift + kSaBits - 1, kSaShift);
   1044   }
   1045 
   1046   inline int LsaSaValue() const {
   1047     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1048     return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
   1049   }
   1050 
   1051   inline int FunctionValue() const {
   1052     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
   1053            this->InstructionType() == InstructionBase::kImmediateType);
   1054     return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
   1055   }
   1056 
   1057   inline int FdValue() const {
   1058     return this->Bits(kFdShift + kFdBits - 1, kFdShift);
   1059   }
   1060 
   1061   inline int FsValue() const {
   1062     return this->Bits(kFsShift + kFsBits - 1, kFsShift);
   1063   }
   1064 
   1065   inline int FtValue() const {
   1066     return this->Bits(kFtShift + kFtBits - 1, kFtShift);
   1067   }
   1068 
   1069   inline int FrValue() const {
   1070     return this->Bits(kFrShift + kFrBits - 1, kFrShift);
   1071   }
   1072 
   1073   inline int Bp2Value() const {
   1074     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1075     return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
   1076   }
   1077 
   1078   inline int Bp3Value() const {
   1079     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1080     return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
   1081   }
   1082 
   1083   // Float Compare condition code instruction bits.
   1084   inline int FCccValue() const {
   1085     return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
   1086   }
   1087 
   1088   // Float Branch condition code instruction bits.
   1089   inline int FBccValue() const {
   1090     return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
   1091   }
   1092 
   1093   // Float Branch true/false instruction bit.
   1094   inline int FBtrueValue() const {
   1095     return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
   1096   }
   1097 
   1098   // Return the fields at their original place in the instruction encoding.
   1099   inline Opcode OpcodeFieldRaw() const {
   1100     return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
   1101   }
   1102 
   1103   inline int RsFieldRaw() const {
   1104     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
   1105            this->InstructionType() == InstructionBase::kImmediateType);
   1106     return this->InstructionBits() & kRsFieldMask;
   1107   }
   1108 
   1109   // Same as above function, but safe to call within InstructionType().
   1110   inline int RsFieldRawNoAssert() const {
   1111     return this->InstructionBits() & kRsFieldMask;
   1112   }
   1113 
   1114   inline int RtFieldRaw() const {
   1115     DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
   1116            this->InstructionType() == InstructionBase::kImmediateType);
   1117     return this->InstructionBits() & kRtFieldMask;
   1118   }
   1119 
   1120   inline int RdFieldRaw() const {
   1121     DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
   1122     return this->InstructionBits() & kRdFieldMask;
   1123   }
   1124 
   1125   inline int SaFieldRaw() const {
   1126     return this->InstructionBits() & kSaFieldMask;
   1127   }
   1128 
   1129   inline int FunctionFieldRaw() const {
   1130     return this->InstructionBits() & kFunctionFieldMask;
   1131   }
   1132 
   1133   // Get the secondary field according to the opcode.
   1134   inline int SecondaryValue() const {
   1135     Opcode op = this->OpcodeFieldRaw();
   1136     switch (op) {
   1137       case SPECIAL:
   1138       case SPECIAL2:
   1139         return FunctionValue();
   1140       case COP1:
   1141         return RsValue();
   1142       case REGIMM:
   1143         return RtValue();
   1144       default:
   1145         return NULLSF;
   1146     }
   1147   }
   1148 
   1149   inline int32_t ImmValue(int bits) const {
   1150     DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
   1151     return this->Bits(bits - 1, 0);
   1152   }
   1153 
   1154   inline int32_t Imm16Value() const {
   1155     DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
   1156     return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
   1157   }
   1158 
   1159   inline int32_t Imm18Value() const {
   1160     DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
   1161     return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
   1162   }
   1163 
   1164   inline int32_t Imm19Value() const {
   1165     DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
   1166     return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
   1167   }
   1168 
   1169   inline int32_t Imm21Value() const {
   1170     DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
   1171     return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
   1172   }
   1173 
   1174   inline int32_t Imm26Value() const {
   1175     DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
   1176            (this->InstructionType() == InstructionBase::kImmediateType));
   1177     return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
   1178   }
   1179 
   1180   static bool IsForbiddenAfterBranchInstr(Instr instr);
   1181 
   1182   // Say if the instruction should not be used in a branch delay slot or
   1183   // immediately after a compact branch.
   1184   inline bool IsForbiddenAfterBranch() const {
   1185     return IsForbiddenAfterBranchInstr(this->InstructionBits());
   1186   }
   1187 
   1188   inline bool IsForbiddenInBranchDelay() const {
   1189     return IsForbiddenAfterBranch();
   1190   }
   1191 
   1192   // Say if the instruction 'links'. e.g. jal, bal.
   1193   bool IsLinkingInstruction() const;
   1194   // Say if the instruction is a break or a trap.
   1195   bool IsTrap() const;
   1196 };
   1197 
   1198 class Instruction : public InstructionGetters<InstructionBase> {
   1199  public:
   1200   // Instructions are read of out a code stream. The only way to get a
   1201   // reference to an instruction is to convert a pointer. There is no way
   1202   // to allocate or create instances of class Instruction.
   1203   // Use the At(pc) function to create references to Instruction.
   1204   static Instruction* At(byte* pc) {
   1205     return reinterpret_cast<Instruction*>(pc);
   1206   }
   1207 
   1208  private:
   1209   // We need to prevent the creation of instances of class Instruction.
   1210   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
   1211 };
   1212 
   1213 
   1214 // -----------------------------------------------------------------------------
   1215 // MIPS assembly various constants.
   1216 
   1217 // C/C++ argument slots size.
   1218 const int kCArgSlotCount = 0;
   1219 
   1220 // TODO(plind): below should be based on kPointerSize
   1221 // TODO(plind): find all usages and remove the needless instructions for n64.
   1222 const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize * 2;
   1223 
   1224 const int kInvalidStackOffset = -1;
   1225 const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
   1226 
   1227 InstructionBase::Type InstructionBase::InstructionType() const {
   1228   switch (OpcodeFieldRaw()) {
   1229     case SPECIAL:
   1230       if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
   1231           kFunctionFieldRegisterTypeMask) {
   1232         return kRegisterType;
   1233       }
   1234       return kUnsupported;
   1235     case SPECIAL2:
   1236       switch (FunctionFieldRaw()) {
   1237         case MUL:
   1238         case CLZ:
   1239         case DCLZ:
   1240           return kRegisterType;
   1241         default:
   1242           return kUnsupported;
   1243       }
   1244       break;
   1245     case SPECIAL3:
   1246       switch (FunctionFieldRaw()) {
   1247         case INS:
   1248         case DINS:
   1249         case EXT:
   1250         case DEXT:
   1251         case DEXTM:
   1252         case DEXTU:
   1253           return kRegisterType;
   1254         case BSHFL: {
   1255           int sa = SaFieldRaw() >> kSaShift;
   1256           switch (sa) {
   1257             case BITSWAP:
   1258             case WSBH:
   1259             case SEB:
   1260             case SEH:
   1261               return kRegisterType;
   1262           }
   1263           sa >>= kBp2Bits;
   1264           switch (sa) {
   1265             case ALIGN:
   1266               return kRegisterType;
   1267             default:
   1268               return kUnsupported;
   1269           }
   1270         }
   1271         case DBSHFL: {
   1272           int sa = SaFieldRaw() >> kSaShift;
   1273           switch (sa) {
   1274             case DBITSWAP:
   1275             case DSBH:
   1276             case DSHD:
   1277               return kRegisterType;
   1278           }
   1279           sa = SaFieldRaw() >> kSaShift;
   1280           sa >>= kBp3Bits;
   1281           switch (sa) {
   1282             case DALIGN:
   1283               return kRegisterType;
   1284             default:
   1285               return kUnsupported;
   1286           }
   1287         }
   1288         default:
   1289           return kUnsupported;
   1290       }
   1291       break;
   1292     case COP1:  // Coprocessor instructions.
   1293       switch (RsFieldRawNoAssert()) {
   1294         case BC1:  // Branch on coprocessor condition.
   1295         case BC1EQZ:
   1296         case BC1NEZ:
   1297           return kImmediateType;
   1298         default:
   1299           return kRegisterType;
   1300       }
   1301       break;
   1302     case COP1X:
   1303       return kRegisterType;
   1304 
   1305     // 26 bits immediate type instructions. e.g.: j imm26.
   1306     case J:
   1307     case JAL:
   1308       return kJumpType;
   1309 
   1310     default:
   1311       return kImmediateType;
   1312   }
   1313   return kUnsupported;
   1314 }
   1315 #undef OpcodeToBitNumber
   1316 #undef FunctionFieldToBitNumber
   1317 
   1318 // -----------------------------------------------------------------------------
   1319 // Instructions.
   1320 
   1321 template <class P>
   1322 bool InstructionGetters<P>::IsLinkingInstruction() const {
   1323   switch (OpcodeFieldRaw()) {
   1324     case JAL:
   1325       return true;
   1326     case POP76:
   1327       if (RsFieldRawNoAssert() == JIALC)
   1328         return true;  // JIALC
   1329       else
   1330         return false;  // BNEZC
   1331     case REGIMM:
   1332       switch (RtFieldRaw()) {
   1333         case BGEZAL:
   1334         case BLTZAL:
   1335           return true;
   1336         default:
   1337           return false;
   1338       }
   1339     case SPECIAL:
   1340       switch (FunctionFieldRaw()) {
   1341         case JALR:
   1342           return true;
   1343         default:
   1344           return false;
   1345       }
   1346     default:
   1347       return false;
   1348   }
   1349 }
   1350 
   1351 template <class P>
   1352 bool InstructionGetters<P>::IsTrap() const {
   1353   if (OpcodeFieldRaw() != SPECIAL) {
   1354     return false;
   1355   } else {
   1356     switch (FunctionFieldRaw()) {
   1357       case BREAK:
   1358       case TGE:
   1359       case TGEU:
   1360       case TLT:
   1361       case TLTU:
   1362       case TEQ:
   1363       case TNE:
   1364         return true;
   1365       default:
   1366         return false;
   1367     }
   1368   }
   1369 }
   1370 
   1371 // static
   1372 template <class T>
   1373 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
   1374   Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
   1375   switch (opcode) {
   1376     case J:
   1377     case JAL:
   1378     case BEQ:
   1379     case BNE:
   1380     case BLEZ:  // POP06 bgeuc/bleuc, blezalc, bgezalc
   1381     case BGTZ:  // POP07 bltuc/bgtuc, bgtzalc, bltzalc
   1382     case BEQL:
   1383     case BNEL:
   1384     case BLEZL:  // POP26 bgezc, blezc, bgec/blec
   1385     case BGTZL:  // POP27 bgtzc, bltzc, bltc/bgtc
   1386     case BC:
   1387     case BALC:
   1388     case POP10:  // beqzalc, bovc, beqc
   1389     case POP30:  // bnezalc, bnvc, bnec
   1390     case POP66:  // beqzc, jic
   1391     case POP76:  // bnezc, jialc
   1392       return true;
   1393     case REGIMM:
   1394       switch (instr & kRtFieldMask) {
   1395         case BLTZ:
   1396         case BGEZ:
   1397         case BLTZAL:
   1398         case BGEZAL:
   1399           return true;
   1400         default:
   1401           return false;
   1402       }
   1403       break;
   1404     case SPECIAL:
   1405       switch (instr & kFunctionFieldMask) {
   1406         case JR:
   1407         case JALR:
   1408           return true;
   1409         default:
   1410           return false;
   1411       }
   1412       break;
   1413     case COP1:
   1414       switch (instr & kRsFieldMask) {
   1415         case BC1:
   1416         case BC1EQZ:
   1417         case BC1NEZ:
   1418           return true;
   1419           break;
   1420         default:
   1421           return false;
   1422       }
   1423       break;
   1424     default:
   1425       return false;
   1426   }
   1427 }
   1428 }  // namespace internal
   1429 }  // namespace v8
   1430 
   1431 #endif    // #ifndef V8_MIPS_CONSTANTS_H_
   1432