Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SelectionDAG class, and transitively defines the
     11 // SDNode class and subclasses.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
     16 #define LLVM_CODEGEN_SELECTIONDAG_H
     17 
     18 #include "llvm/ADT/DenseSet.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/ADT/StringMap.h"
     21 #include "llvm/ADT/ilist.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/DAGCombine.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/SelectionDAGNodes.h"
     26 #include "llvm/Support/ArrayRecycler.h"
     27 #include "llvm/Support/RecyclingAllocator.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 #include <cassert>
     30 #include <map>
     31 #include <string>
     32 #include <vector>
     33 
     34 namespace llvm {
     35 
     36 class MachineConstantPoolValue;
     37 class MachineFunction;
     38 class MDNode;
     39 class OptimizationRemarkEmitter;
     40 class SDDbgValue;
     41 class TargetLowering;
     42 class SelectionDAGTargetInfo;
     43 
     44 class SDVTListNode : public FoldingSetNode {
     45   friend struct FoldingSetTrait<SDVTListNode>;
     46   /// A reference to an Interned FoldingSetNodeID for this node.
     47   /// The Allocator in SelectionDAG holds the data.
     48   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
     49   /// The size of this list is not expected to be big so it won't introduce
     50   /// a memory penalty.
     51   FoldingSetNodeIDRef FastID;
     52   const EVT *VTs;
     53   unsigned int NumVTs;
     54   /// The hash value for SDVTList is fixed, so cache it to avoid
     55   /// hash calculation.
     56   unsigned HashValue;
     57 public:
     58   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
     59       FastID(ID), VTs(VT), NumVTs(Num) {
     60     HashValue = ID.ComputeHash();
     61   }
     62   SDVTList getSDVTList() {
     63     SDVTList result = {VTs, NumVTs};
     64     return result;
     65   }
     66 };
     67 
     68 /// Specialize FoldingSetTrait for SDVTListNode
     69 /// to avoid computing temp FoldingSetNodeID and hash value.
     70 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
     71   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
     72     ID = X.FastID;
     73   }
     74   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
     75                      unsigned IDHash, FoldingSetNodeID &TempID) {
     76     if (X.HashValue != IDHash)
     77       return false;
     78     return ID == X.FastID;
     79   }
     80   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
     81     return X.HashValue;
     82   }
     83 };
     84 
     85 template <> struct ilist_alloc_traits<SDNode> {
     86   static void deleteNode(SDNode *) {
     87     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
     88   }
     89 };
     90 
     91 /// Keeps track of dbg_value information through SDISel.  We do
     92 /// not build SDNodes for these so as not to perturb the generated code;
     93 /// instead the info is kept off to the side in this structure. Each SDNode may
     94 /// have one or more associated dbg_value entries. This information is kept in
     95 /// DbgValMap.
     96 /// Byval parameters are handled separately because they don't use alloca's,
     97 /// which busts the normal mechanism.  There is good reason for handling all
     98 /// parameters separately:  they may not have code generated for them, they
     99 /// should always go at the beginning of the function regardless of other code
    100 /// motion, and debug info for them is potentially useful even if the parameter
    101 /// is unused.  Right now only byval parameters are handled separately.
    102 class SDDbgInfo {
    103   BumpPtrAllocator Alloc;
    104   SmallVector<SDDbgValue*, 32> DbgValues;
    105   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
    106   typedef DenseMap<const SDNode*, SmallVector<SDDbgValue*, 2> > DbgValMapType;
    107   DbgValMapType DbgValMap;
    108 
    109   void operator=(const SDDbgInfo&) = delete;
    110   SDDbgInfo(const SDDbgInfo&) = delete;
    111 public:
    112   SDDbgInfo() {}
    113 
    114   void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
    115     if (isParameter) {
    116       ByvalParmDbgValues.push_back(V);
    117     } else     DbgValues.push_back(V);
    118     if (Node)
    119       DbgValMap[Node].push_back(V);
    120   }
    121 
    122   /// \brief Invalidate all DbgValues attached to the node and remove
    123   /// it from the Node-to-DbgValues map.
    124   void erase(const SDNode *Node);
    125 
    126   void clear() {
    127     DbgValMap.clear();
    128     DbgValues.clear();
    129     ByvalParmDbgValues.clear();
    130     Alloc.Reset();
    131   }
    132 
    133   BumpPtrAllocator &getAlloc() { return Alloc; }
    134 
    135   bool empty() const {
    136     return DbgValues.empty() && ByvalParmDbgValues.empty();
    137   }
    138 
    139   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
    140     DbgValMapType::iterator I = DbgValMap.find(Node);
    141     if (I != DbgValMap.end())
    142       return I->second;
    143     return ArrayRef<SDDbgValue*>();
    144   }
    145 
    146   typedef SmallVectorImpl<SDDbgValue*>::iterator DbgIterator;
    147   DbgIterator DbgBegin() { return DbgValues.begin(); }
    148   DbgIterator DbgEnd()   { return DbgValues.end(); }
    149   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
    150   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
    151 };
    152 
    153 class SelectionDAG;
    154 void checkForCycles(const SelectionDAG *DAG, bool force = false);
    155 
    156 /// This is used to represent a portion of an LLVM function in a low-level
    157 /// Data Dependence DAG representation suitable for instruction selection.
    158 /// This DAG is constructed as the first step of instruction selection in order
    159 /// to allow implementation of machine specific optimizations
    160 /// and code simplifications.
    161 ///
    162 /// The representation used by the SelectionDAG is a target-independent
    163 /// representation, which has some similarities to the GCC RTL representation,
    164 /// but is significantly more simple, powerful, and is a graph form instead of a
    165 /// linear form.
    166 ///
    167 class SelectionDAG {
    168   const TargetMachine &TM;
    169   const SelectionDAGTargetInfo *TSI;
    170   const TargetLowering *TLI;
    171   MachineFunction *MF;
    172   LLVMContext *Context;
    173   CodeGenOpt::Level OptLevel;
    174 
    175   /// The function-level optimization remark emitter.  Used to emit remarks
    176   /// whenever manipulating the DAG.
    177   OptimizationRemarkEmitter *ORE;
    178 
    179   /// The starting token.
    180   SDNode EntryNode;
    181 
    182   /// The root of the entire DAG.
    183   SDValue Root;
    184 
    185   /// A linked list of nodes in the current DAG.
    186   ilist<SDNode> AllNodes;
    187 
    188   /// The AllocatorType for allocating SDNodes. We use
    189   /// pool allocation with recycling.
    190   typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
    191                              alignof(MostAlignedSDNode)>
    192       NodeAllocatorType;
    193 
    194   /// Pool allocation for nodes.
    195   NodeAllocatorType NodeAllocator;
    196 
    197   /// This structure is used to memoize nodes, automatically performing
    198   /// CSE with existing nodes when a duplicate is requested.
    199   FoldingSet<SDNode> CSEMap;
    200 
    201   /// Pool allocation for machine-opcode SDNode operands.
    202   BumpPtrAllocator OperandAllocator;
    203   ArrayRecycler<SDUse> OperandRecycler;
    204 
    205   /// Pool allocation for misc. objects that are created once per SelectionDAG.
    206   BumpPtrAllocator Allocator;
    207 
    208   /// Tracks dbg_value information through SDISel.
    209   SDDbgInfo *DbgInfo;
    210 
    211   uint16_t NextPersistentId = 0;
    212 
    213 public:
    214   /// Clients of various APIs that cause global effects on
    215   /// the DAG can optionally implement this interface.  This allows the clients
    216   /// to handle the various sorts of updates that happen.
    217   ///
    218   /// A DAGUpdateListener automatically registers itself with DAG when it is
    219   /// constructed, and removes itself when destroyed in RAII fashion.
    220   struct DAGUpdateListener {
    221     DAGUpdateListener *const Next;
    222     SelectionDAG &DAG;
    223 
    224     explicit DAGUpdateListener(SelectionDAG &D)
    225       : Next(D.UpdateListeners), DAG(D) {
    226       DAG.UpdateListeners = this;
    227     }
    228 
    229     virtual ~DAGUpdateListener() {
    230       assert(DAG.UpdateListeners == this &&
    231              "DAGUpdateListeners must be destroyed in LIFO order");
    232       DAG.UpdateListeners = Next;
    233     }
    234 
    235     /// The node N that was deleted and, if E is not null, an
    236     /// equivalent node E that replaced it.
    237     virtual void NodeDeleted(SDNode *N, SDNode *E);
    238 
    239     /// The node N that was updated.
    240     virtual void NodeUpdated(SDNode *N);
    241   };
    242 
    243   struct DAGNodeDeletedListener : public DAGUpdateListener {
    244     std::function<void(SDNode *, SDNode *)> Callback;
    245     DAGNodeDeletedListener(SelectionDAG &DAG,
    246                            std::function<void(SDNode *, SDNode *)> Callback)
    247         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
    248     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
    249   };
    250 
    251   /// When true, additional steps are taken to
    252   /// ensure that getConstant() and similar functions return DAG nodes that
    253   /// have legal types. This is important after type legalization since
    254   /// any illegally typed nodes generated after this point will not experience
    255   /// type legalization.
    256   bool NewNodesMustHaveLegalTypes;
    257 
    258 private:
    259   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
    260   friend struct DAGUpdateListener;
    261 
    262   /// Linked list of registered DAGUpdateListener instances.
    263   /// This stack is maintained by DAGUpdateListener RAII.
    264   DAGUpdateListener *UpdateListeners;
    265 
    266   /// Implementation of setSubgraphColor.
    267   /// Return whether we had to truncate the search.
    268   bool setSubgraphColorHelper(SDNode *N, const char *Color,
    269                               DenseSet<SDNode *> &visited,
    270                               int level, bool &printed);
    271 
    272   template <typename SDNodeT, typename... ArgTypes>
    273   SDNodeT *newSDNode(ArgTypes &&... Args) {
    274     return new (NodeAllocator.template Allocate<SDNodeT>())
    275         SDNodeT(std::forward<ArgTypes>(Args)...);
    276   }
    277 
    278   /// Build a synthetic SDNodeT with the given args and extract its subclass
    279   /// data as an integer (e.g. for use in a folding set).
    280   ///
    281   /// The args to this function are the same as the args to SDNodeT's
    282   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
    283   /// omitted.
    284   template <typename SDNodeT, typename... ArgTypes>
    285   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
    286                                                ArgTypes &&... Args) {
    287     // The compiler can reduce this expression to a constant iff we pass an
    288     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
    289     // on the subclass data.
    290     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
    291         .getRawSubclassData();
    292   }
    293 
    294   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
    295     assert(!Node->OperandList && "Node already has operands");
    296     SDUse *Ops = OperandRecycler.allocate(
    297         ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
    298 
    299     for (unsigned I = 0; I != Vals.size(); ++I) {
    300       Ops[I].setUser(Node);
    301       Ops[I].setInitial(Vals[I]);
    302     }
    303     Node->NumOperands = Vals.size();
    304     Node->OperandList = Ops;
    305     checkForCycles(Node);
    306   }
    307 
    308   void removeOperands(SDNode *Node) {
    309     if (!Node->OperandList)
    310       return;
    311     OperandRecycler.deallocate(
    312         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
    313         Node->OperandList);
    314     Node->NumOperands = 0;
    315     Node->OperandList = nullptr;
    316   }
    317 
    318   void operator=(const SelectionDAG&) = delete;
    319   SelectionDAG(const SelectionDAG&) = delete;
    320 
    321 public:
    322   explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level);
    323   ~SelectionDAG();
    324 
    325   /// Prepare this SelectionDAG to process code in the given MachineFunction.
    326   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE);
    327 
    328   /// Clear state and free memory necessary to make this
    329   /// SelectionDAG ready to process a new block.
    330   void clear();
    331 
    332   MachineFunction &getMachineFunction() const { return *MF; }
    333   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
    334   const TargetMachine &getTarget() const { return TM; }
    335   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
    336   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
    337   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
    338   LLVMContext *getContext() const {return Context; }
    339   OptimizationRemarkEmitter &getORE() const { return *ORE; }
    340 
    341   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
    342   void viewGraph(const std::string &Title);
    343   void viewGraph();
    344 
    345 #ifndef NDEBUG
    346   std::map<const SDNode *, std::string> NodeGraphAttrs;
    347 #endif
    348 
    349   /// Clear all previously defined node graph attributes.
    350   /// Intended to be used from a debugging tool (eg. gdb).
    351   void clearGraphAttrs();
    352 
    353   /// Set graph attributes for a node. (eg. "color=red".)
    354   void setGraphAttrs(const SDNode *N, const char *Attrs);
    355 
    356   /// Get graph attributes for a node. (eg. "color=red".)
    357   /// Used from getNodeAttributes.
    358   const std::string getGraphAttrs(const SDNode *N) const;
    359 
    360   /// Convenience for setting node color attribute.
    361   void setGraphColor(const SDNode *N, const char *Color);
    362 
    363   /// Convenience for setting subgraph color attribute.
    364   void setSubgraphColor(SDNode *N, const char *Color);
    365 
    366   typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
    367   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
    368   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
    369   typedef ilist<SDNode>::iterator allnodes_iterator;
    370   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
    371   allnodes_iterator allnodes_end() { return AllNodes.end(); }
    372   ilist<SDNode>::size_type allnodes_size() const {
    373     return AllNodes.size();
    374   }
    375 
    376   iterator_range<allnodes_iterator> allnodes() {
    377     return make_range(allnodes_begin(), allnodes_end());
    378   }
    379   iterator_range<allnodes_const_iterator> allnodes() const {
    380     return make_range(allnodes_begin(), allnodes_end());
    381   }
    382 
    383   /// Return the root tag of the SelectionDAG.
    384   const SDValue &getRoot() const { return Root; }
    385 
    386   /// Return the token chain corresponding to the entry of the function.
    387   SDValue getEntryNode() const {
    388     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
    389   }
    390 
    391   /// Set the current root tag of the SelectionDAG.
    392   ///
    393   const SDValue &setRoot(SDValue N) {
    394     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
    395            "DAG root value is not a chain!");
    396     if (N.getNode())
    397       checkForCycles(N.getNode(), this);
    398     Root = N;
    399     if (N.getNode())
    400       checkForCycles(this);
    401     return Root;
    402   }
    403 
    404   /// This iterates over the nodes in the SelectionDAG, folding
    405   /// certain types of nodes together, or eliminating superfluous nodes.  The
    406   /// Level argument controls whether Combine is allowed to produce nodes and
    407   /// types that are illegal on the target.
    408   void Combine(CombineLevel Level, AliasAnalysis &AA,
    409                CodeGenOpt::Level OptLevel);
    410 
    411   /// This transforms the SelectionDAG into a SelectionDAG that
    412   /// only uses types natively supported by the target.
    413   /// Returns "true" if it made any changes.
    414   ///
    415   /// Note that this is an involved process that may invalidate pointers into
    416   /// the graph.
    417   bool LegalizeTypes();
    418 
    419   /// This transforms the SelectionDAG into a SelectionDAG that is
    420   /// compatible with the target instruction selector, as indicated by the
    421   /// TargetLowering object.
    422   ///
    423   /// Note that this is an involved process that may invalidate pointers into
    424   /// the graph.
    425   void Legalize();
    426 
    427   /// \brief Transforms a SelectionDAG node and any operands to it into a node
    428   /// that is compatible with the target instruction selector, as indicated by
    429   /// the TargetLowering object.
    430   ///
    431   /// \returns true if \c N is a valid, legal node after calling this.
    432   ///
    433   /// This essentially runs a single recursive walk of the \c Legalize process
    434   /// over the given node (and its operands). This can be used to incrementally
    435   /// legalize the DAG. All of the nodes which are directly replaced,
    436   /// potentially including N, are added to the output parameter \c
    437   /// UpdatedNodes so that the delta to the DAG can be understood by the
    438   /// caller.
    439   ///
    440   /// When this returns false, N has been legalized in a way that make the
    441   /// pointer passed in no longer valid. It may have even been deleted from the
    442   /// DAG, and so it shouldn't be used further. When this returns true, the
    443   /// N passed in is a legal node, and can be immediately processed as such.
    444   /// This may still have done some work on the DAG, and will still populate
    445   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
    446   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
    447 
    448   /// This transforms the SelectionDAG into a SelectionDAG
    449   /// that only uses vector math operations supported by the target.  This is
    450   /// necessary as a separate step from Legalize because unrolling a vector
    451   /// operation can introduce illegal types, which requires running
    452   /// LegalizeTypes again.
    453   ///
    454   /// This returns true if it made any changes; in that case, LegalizeTypes
    455   /// is called again before Legalize.
    456   ///
    457   /// Note that this is an involved process that may invalidate pointers into
    458   /// the graph.
    459   bool LegalizeVectors();
    460 
    461   /// This method deletes all unreachable nodes in the SelectionDAG.
    462   void RemoveDeadNodes();
    463 
    464   /// Remove the specified node from the system.  This node must
    465   /// have no referrers.
    466   void DeleteNode(SDNode *N);
    467 
    468   /// Return an SDVTList that represents the list of values specified.
    469   SDVTList getVTList(EVT VT);
    470   SDVTList getVTList(EVT VT1, EVT VT2);
    471   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
    472   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
    473   SDVTList getVTList(ArrayRef<EVT> VTs);
    474 
    475   //===--------------------------------------------------------------------===//
    476   // Node creation methods.
    477   //
    478 
    479   /// \brief Create a ConstantSDNode wrapping a constant value.
    480   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    481   ///
    482   /// If only legal types can be produced, this does the necessary
    483   /// transformations (e.g., if the vector element type is illegal).
    484   /// @{
    485   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    486                       bool isTarget = false, bool isOpaque = false);
    487   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    488                       bool isTarget = false, bool isOpaque = false);
    489 
    490   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
    491                              bool IsOpaque = false) {
    492     return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
    493                        VT, IsTarget, IsOpaque);
    494   }
    495 
    496   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    497                       bool isTarget = false, bool isOpaque = false);
    498   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
    499                             bool isTarget = false);
    500   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    501                             bool isOpaque = false) {
    502     return getConstant(Val, DL, VT, true, isOpaque);
    503   }
    504   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    505                             bool isOpaque = false) {
    506     return getConstant(Val, DL, VT, true, isOpaque);
    507   }
    508   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    509                             bool isOpaque = false) {
    510     return getConstant(Val, DL, VT, true, isOpaque);
    511   }
    512   /// @}
    513 
    514   /// \brief Create a ConstantFPSDNode wrapping a constant value.
    515   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    516   ///
    517   /// If only legal types can be produced, this does the necessary
    518   /// transformations (e.g., if the vector element type is illegal).
    519   /// The forms that take a double should only be used for simple constants
    520   /// that can be exactly represented in VT.  No checks are made.
    521   /// @{
    522   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
    523                         bool isTarget = false);
    524   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
    525                         bool isTarget = false);
    526   SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
    527                         bool isTarget = false);
    528   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
    529     return getConstantFP(Val, DL, VT, true);
    530   }
    531   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
    532     return getConstantFP(Val, DL, VT, true);
    533   }
    534   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
    535     return getConstantFP(Val, DL, VT, true);
    536   }
    537   /// @}
    538 
    539   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    540                            int64_t offset = 0, bool isTargetGA = false,
    541                            unsigned char TargetFlags = 0);
    542   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    543                                  int64_t offset = 0,
    544                                  unsigned char TargetFlags = 0) {
    545     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
    546   }
    547   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
    548   SDValue getTargetFrameIndex(int FI, EVT VT) {
    549     return getFrameIndex(FI, VT, true);
    550   }
    551   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
    552                        unsigned char TargetFlags = 0);
    553   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
    554     return getJumpTable(JTI, VT, true, TargetFlags);
    555   }
    556   SDValue getConstantPool(const Constant *C, EVT VT,
    557                           unsigned Align = 0, int Offs = 0, bool isT=false,
    558                           unsigned char TargetFlags = 0);
    559   SDValue getTargetConstantPool(const Constant *C, EVT VT,
    560                                 unsigned Align = 0, int Offset = 0,
    561                                 unsigned char TargetFlags = 0) {
    562     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    563   }
    564   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
    565                           unsigned Align = 0, int Offs = 0, bool isT=false,
    566                           unsigned char TargetFlags = 0);
    567   SDValue getTargetConstantPool(MachineConstantPoolValue *C,
    568                                   EVT VT, unsigned Align = 0,
    569                                   int Offset = 0, unsigned char TargetFlags=0) {
    570     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    571   }
    572   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
    573                          unsigned char TargetFlags = 0);
    574   // When generating a branch to a BB, we don't in general know enough
    575   // to provide debug info for the BB at that time, so keep this one around.
    576   SDValue getBasicBlock(MachineBasicBlock *MBB);
    577   SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
    578   SDValue getExternalSymbol(const char *Sym, EVT VT);
    579   SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
    580   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
    581                                   unsigned char TargetFlags = 0);
    582   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
    583 
    584   SDValue getValueType(EVT);
    585   SDValue getRegister(unsigned Reg, EVT VT);
    586   SDValue getRegisterMask(const uint32_t *RegMask);
    587   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
    588   SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
    589                           int64_t Offset = 0, bool isTarget = false,
    590                           unsigned char TargetFlags = 0);
    591   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
    592                                 int64_t Offset = 0,
    593                                 unsigned char TargetFlags = 0) {
    594     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
    595   }
    596 
    597   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
    598                        SDValue N) {
    599     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
    600                    getRegister(Reg, N.getValueType()), N);
    601   }
    602 
    603   // This version of the getCopyToReg method takes an extra operand, which
    604   // indicates that there is potentially an incoming glue value (if Glue is not
    605   // null) and that there should be a glue result.
    606   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
    607                        SDValue Glue) {
    608     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    609     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
    610     return getNode(ISD::CopyToReg, dl, VTs,
    611                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    612   }
    613 
    614   // Similar to last getCopyToReg() except parameter Reg is a SDValue
    615   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
    616                        SDValue Glue) {
    617     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    618     SDValue Ops[] = { Chain, Reg, N, Glue };
    619     return getNode(ISD::CopyToReg, dl, VTs,
    620                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    621   }
    622 
    623   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
    624     SDVTList VTs = getVTList(VT, MVT::Other);
    625     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
    626     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
    627   }
    628 
    629   // This version of the getCopyFromReg method takes an extra operand, which
    630   // indicates that there is potentially an incoming glue value (if Glue is not
    631   // null) and that there should be a glue result.
    632   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
    633                          SDValue Glue) {
    634     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
    635     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
    636     return getNode(ISD::CopyFromReg, dl, VTs,
    637                    makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
    638   }
    639 
    640   SDValue getCondCode(ISD::CondCode Cond);
    641 
    642   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
    643   /// which must be a vector type, must match the number of mask elements
    644   /// NumElts. An integer mask element equal to -1 is treated as undefined.
    645   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
    646                            ArrayRef<int> Mask);
    647 
    648   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    649   /// which must be a vector type, must match the number of operands in Ops.
    650   /// The operands must have the same type as (or, for integers, a type wider
    651   /// than) VT's element type.
    652   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
    653     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    654     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    655   }
    656 
    657   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
    658   /// elements. VT must be a vector type. Op's type must be the same as (or,
    659   /// for integers, a type wider than) VT's element type.
    660   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
    661     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    662     if (Op.getOpcode() == ISD::UNDEF) {
    663       assert((VT.getVectorElementType() == Op.getValueType() ||
    664               (VT.isInteger() &&
    665                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
    666              "A splatted value must have a width equal or (for integers) "
    667              "greater than the vector element type!");
    668       return getNode(ISD::UNDEF, SDLoc(), VT);
    669     }
    670 
    671     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
    672     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    673   }
    674 
    675   /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
    676   /// the shuffle node in input but with swapped operands.
    677   ///
    678   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
    679   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
    680 
    681   /// Convert Op, which must be of integer type, to the
    682   /// integer type VT, by either any-extending or truncating it.
    683   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    684 
    685   /// Convert Op, which must be of integer type, to the
    686   /// integer type VT, by either sign-extending or truncating it.
    687   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    688 
    689   /// Convert Op, which must be of integer type, to the
    690   /// integer type VT, by either zero-extending or truncating it.
    691   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    692 
    693   /// Return the expression required to zero extend the Op
    694   /// value assuming it was the smaller SrcTy value.
    695   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
    696 
    697   /// Return an operation which will any-extend the low lanes of the operand
    698   /// into the specified vector type. For example,
    699   /// this can convert a v16i8 into a v4i32 by any-extending the low four
    700   /// lanes of the operand from i8 to i32.
    701   SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    702 
    703   /// Return an operation which will sign extend the low lanes of the operand
    704   /// into the specified vector type. For example,
    705   /// this can convert a v16i8 into a v4i32 by sign extending the low four
    706   /// lanes of the operand from i8 to i32.
    707   SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    708 
    709   /// Return an operation which will zero extend the low lanes of the operand
    710   /// into the specified vector type. For example,
    711   /// this can convert a v16i8 into a v4i32 by zero extending the low four
    712   /// lanes of the operand from i8 to i32.
    713   SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    714 
    715   /// Convert Op, which must be of integer type, to the integer type VT,
    716   /// by using an extension appropriate for the target's
    717   /// BooleanContent for type OpVT or truncating it.
    718   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
    719 
    720   /// Create a bitwise NOT operation as (XOR Val, -1).
    721   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
    722 
    723   /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
    724   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
    725 
    726   /// Return a new CALLSEQ_START node, which always must have a glue result
    727   /// (to ensure it's not CSE'd).  CALLSEQ_START does not have a useful SDLoc.
    728   SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, const SDLoc &DL) {
    729     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    730     SDValue Ops[] = { Chain,  Op };
    731     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
    732   }
    733 
    734   /// Return a new CALLSEQ_END node, which always must have a
    735   /// glue result (to ensure it's not CSE'd).
    736   /// CALLSEQ_END does not have a useful SDLoc.
    737   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
    738                          SDValue InGlue, const SDLoc &DL) {
    739     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
    740     SmallVector<SDValue, 4> Ops;
    741     Ops.push_back(Chain);
    742     Ops.push_back(Op1);
    743     Ops.push_back(Op2);
    744     if (InGlue.getNode())
    745       Ops.push_back(InGlue);
    746     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
    747   }
    748 
    749   /// Return true if the result of this operation is always undefined.
    750   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
    751 
    752   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
    753   SDValue getUNDEF(EVT VT) {
    754     return getNode(ISD::UNDEF, SDLoc(), VT);
    755   }
    756 
    757   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
    758   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
    759     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
    760   }
    761 
    762   /// Gets or creates the specified node.
    763   ///
    764   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    765                   ArrayRef<SDUse> Ops);
    766   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    767                   ArrayRef<SDValue> Ops, const SDNodeFlags *Flags = nullptr);
    768   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
    769                   ArrayRef<SDValue> Ops);
    770   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
    771                   ArrayRef<SDValue> Ops);
    772 
    773   // Specialize based on number of operands.
    774   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
    775   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N);
    776   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    777                   SDValue N2, const SDNodeFlags *Flags = nullptr);
    778   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    779                   SDValue N2, SDValue N3);
    780   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    781                   SDValue N2, SDValue N3, SDValue N4);
    782   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    783                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    784 
    785   // Specialize again based on number of operands for nodes with a VTList
    786   // rather than a single VT.
    787   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
    788   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
    789   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    790                   SDValue N2);
    791   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    792                   SDValue N2, SDValue N3);
    793   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    794                   SDValue N2, SDValue N3, SDValue N4);
    795   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    796                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    797 
    798   /// Compute a TokenFactor to force all the incoming stack arguments to be
    799   /// loaded from the stack. This is used in tail call lowering to protect
    800   /// stack arguments from being clobbered.
    801   SDValue getStackArgumentTokenFactor(SDValue Chain);
    802 
    803   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    804                     SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
    805                     bool isTailCall, MachinePointerInfo DstPtrInfo,
    806                     MachinePointerInfo SrcPtrInfo);
    807 
    808   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    809                      SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    810                      MachinePointerInfo DstPtrInfo,
    811                      MachinePointerInfo SrcPtrInfo);
    812 
    813   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    814                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    815                     MachinePointerInfo DstPtrInfo);
    816 
    817   /// Helper function to make it easier to build SetCC's if you just
    818   /// have an ISD::CondCode instead of an SDValue.
    819   ///
    820   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
    821                    ISD::CondCode Cond) {
    822     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
    823       "Cannot compare scalars to vectors");
    824     assert(LHS.getValueType().isVector() == VT.isVector() &&
    825       "Cannot compare scalars to vectors");
    826     assert(Cond != ISD::SETCC_INVALID &&
    827         "Cannot create a setCC of an invalid node.");
    828     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
    829   }
    830 
    831   /// Helper function to make it easier to build Select's if you just
    832   /// have operands and don't want to check for vector.
    833   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
    834                     SDValue RHS) {
    835     assert(LHS.getValueType() == RHS.getValueType() &&
    836            "Cannot use select on differing types");
    837     assert(VT.isVector() == LHS.getValueType().isVector() &&
    838            "Cannot mix vectors and scalars");
    839     return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
    840                    Cond, LHS, RHS);
    841   }
    842 
    843   /// Helper function to make it easier to build SelectCC's if you
    844   /// just have an ISD::CondCode instead of an SDValue.
    845   ///
    846   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
    847                       SDValue False, ISD::CondCode Cond) {
    848     return getNode(ISD::SELECT_CC, DL, True.getValueType(),
    849                    LHS, RHS, True, False, getCondCode(Cond));
    850   }
    851 
    852   /// VAArg produces a result and token chain, and takes a pointer
    853   /// and a source value as input.
    854   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    855                    SDValue SV, unsigned Align);
    856 
    857   /// Gets a node for an atomic cmpxchg op. There are two
    858   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
    859   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
    860   /// a success flag (initially i1), and a chain.
    861   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    862                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    863                            SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
    864                            unsigned Alignment, AtomicOrdering SuccessOrdering,
    865                            AtomicOrdering FailureOrdering,
    866                            SynchronizationScope SynchScope);
    867   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    868                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    869                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
    870 
    871   /// Gets a node for an atomic op, produces result (if relevant)
    872   /// and chain and takes 2 operands.
    873   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    874                     SDValue Ptr, SDValue Val, const Value *PtrVal,
    875                     unsigned Alignment, AtomicOrdering Ordering,
    876                     SynchronizationScope SynchScope);
    877   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    878                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
    879 
    880   /// Gets a node for an atomic op, produces result and chain and
    881   /// takes 1 operand.
    882   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
    883                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
    884 
    885   /// Gets a node for an atomic op, produces result and chain and takes N
    886   /// operands.
    887   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    888                     SDVTList VTList, ArrayRef<SDValue> Ops,
    889                     MachineMemOperand *MMO);
    890 
    891   /// Creates a MemIntrinsicNode that may produce a
    892   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
    893   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
    894   /// less than FIRST_TARGET_MEMORY_OPCODE.
    895   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    896                               ArrayRef<SDValue> Ops, EVT MemVT,
    897                               MachinePointerInfo PtrInfo, unsigned Align = 0,
    898                               bool Vol = false, bool ReadMem = true,
    899                               bool WriteMem = true, unsigned Size = 0);
    900 
    901   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    902                               ArrayRef<SDValue> Ops, EVT MemVT,
    903                               MachineMemOperand *MMO);
    904 
    905   /// Create a MERGE_VALUES node from the given operands.
    906   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
    907 
    908   /// Loads are not normal binary operators: their result type is not
    909   /// determined by their operands, and they produce a value AND a token chain.
    910   ///
    911   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
    912   /// you want.  The MOStore flag must not be set.
    913   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    914                   MachinePointerInfo PtrInfo, unsigned Alignment = 0,
    915                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    916                   const AAMDNodes &AAInfo = AAMDNodes(),
    917                   const MDNode *Ranges = nullptr);
    918   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    919                   MachineMemOperand *MMO);
    920   SDValue
    921   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
    922              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
    923              unsigned Alignment = 0,
    924              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    925              const AAMDNodes &AAInfo = AAMDNodes());
    926   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
    927                      SDValue Chain, SDValue Ptr, EVT MemVT,
    928                      MachineMemOperand *MMO);
    929   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
    930                          SDValue Offset, ISD::MemIndexedMode AM);
    931   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
    932                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
    933                   MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
    934                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    935                   const AAMDNodes &AAInfo = AAMDNodes(),
    936                   const MDNode *Ranges = nullptr);
    937   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
    938                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
    939                   EVT MemVT, MachineMemOperand *MMO);
    940 
    941   /// Helper function to build ISD::STORE nodes.
    942   ///
    943   /// This function will set the MOStore flag on MMOFlags, but you can set it if
    944   /// you want.  The MOLoad and MOInvariant flags must not be set.
    945   SDValue
    946   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
    947            MachinePointerInfo PtrInfo, unsigned Alignment = 0,
    948            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    949            const AAMDNodes &AAInfo = AAMDNodes());
    950   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
    951                    MachineMemOperand *MMO);
    952   SDValue
    953   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
    954                 MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
    955                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    956                 const AAMDNodes &AAInfo = AAMDNodes());
    957   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
    958                         SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
    959   SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
    960                           SDValue Offset, ISD::MemIndexedMode AM);
    961 
    962   /// Returns sum of the base pointer and offset.
    963   SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
    964 
    965   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    966                         SDValue Mask, SDValue Src0, EVT MemVT,
    967                         MachineMemOperand *MMO, ISD::LoadExtType,
    968                         bool IsExpanding = false);
    969   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
    970                          SDValue Ptr, SDValue Mask, EVT MemVT,
    971                          MachineMemOperand *MMO, bool IsTruncating = false,
    972                          bool IsCompressing = false);
    973   SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
    974                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
    975   SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
    976                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
    977 
    978   /// Return (create a new or find existing) a target-specific node.
    979   /// TargetMemSDNode should be derived class from MemSDNode.
    980   template <class TargetMemSDNode>
    981   SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
    982                              const SDLoc &dl, EVT MemVT,
    983                              MachineMemOperand *MMO);
    984 
    985   /// Construct a node to track a Value* through the backend.
    986   SDValue getSrcValue(const Value *v);
    987 
    988   /// Return an MDNodeSDNode which holds an MDNode.
    989   SDValue getMDNode(const MDNode *MD);
    990 
    991   /// Return a bitcast using the SDLoc of the value operand, and casting to the
    992   /// provided type. Use getNode to set a custom SDLoc.
    993   SDValue getBitcast(EVT VT, SDValue V);
    994 
    995   /// Return an AddrSpaceCastSDNode.
    996   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
    997                            unsigned DestAS);
    998 
    999   /// Return the specified value casted to
   1000   /// the target's desired shift amount type.
   1001   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
   1002 
   1003   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
   1004   SDValue expandVAArg(SDNode *Node);
   1005 
   1006   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
   1007   SDValue expandVACopy(SDNode *Node);
   1008 
   1009   /// *Mutate* the specified node in-place to have the
   1010   /// specified operands.  If the resultant node already exists in the DAG,
   1011   /// this does not modify the specified node, instead it returns the node that
   1012   /// already exists.  If the resultant node does not exist in the DAG, the
   1013   /// input node is returned.  As a degenerate case, if you specify the same
   1014   /// input operands as the node already has, the input node is returned.
   1015   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
   1016   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
   1017   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1018                                SDValue Op3);
   1019   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1020                                SDValue Op3, SDValue Op4);
   1021   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1022                                SDValue Op3, SDValue Op4, SDValue Op5);
   1023   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
   1024 
   1025   /// These are used for target selectors to *mutate* the
   1026   /// specified node to have the specified return type, Target opcode, and
   1027   /// operands.  Note that target opcodes are stored as
   1028   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
   1029   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
   1030   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
   1031   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1032                        SDValue Op1, SDValue Op2);
   1033   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1034                        SDValue Op1, SDValue Op2, SDValue Op3);
   1035   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1036                        ArrayRef<SDValue> Ops);
   1037   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
   1038   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1039                        EVT VT2, ArrayRef<SDValue> Ops);
   1040   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1041                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1042   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1043                        EVT VT2, SDValue Op1);
   1044   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1045                        EVT VT2, SDValue Op1, SDValue Op2);
   1046   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
   1047                        ArrayRef<SDValue> Ops);
   1048 
   1049   /// This *mutates* the specified node to have the specified
   1050   /// return type, opcode, and operands.
   1051   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
   1052                       ArrayRef<SDValue> Ops);
   1053 
   1054   /// These are used for target selectors to create a new node
   1055   /// with specified return type(s), MachineInstr opcode, and operands.
   1056   ///
   1057   /// Note that getMachineNode returns the resultant node.  If there is already
   1058   /// a node of the specified opcode and operands, it returns that node instead
   1059   /// of the current one.
   1060   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
   1061   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1062                                 SDValue Op1);
   1063   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1064                                 SDValue Op1, SDValue Op2);
   1065   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1066                                 SDValue Op1, SDValue Op2, SDValue Op3);
   1067   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1068                                 ArrayRef<SDValue> Ops);
   1069   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1070                                 EVT VT2, SDValue Op1, SDValue Op2);
   1071   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1072                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
   1073   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1074                                 EVT VT2, ArrayRef<SDValue> Ops);
   1075   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1076                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
   1077   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1078                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
   1079                                 SDValue Op3);
   1080   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1081                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1082   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
   1083                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
   1084   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
   1085                                 ArrayRef<SDValue> Ops);
   1086 
   1087   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
   1088   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1089                                  SDValue Operand);
   1090 
   1091   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
   1092   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1093                                 SDValue Operand, SDValue Subreg);
   1094 
   1095   /// Get the specified node if it's already available, or else return NULL.
   1096   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
   1097                           const SDNodeFlags *Flags = nullptr);
   1098 
   1099   /// Creates a SDDbgValue node.
   1100   SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
   1101                           bool IsIndirect, uint64_t Off, const DebugLoc &DL,
   1102                           unsigned O);
   1103 
   1104   /// Constant
   1105   SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
   1106                                   uint64_t Off, const DebugLoc &DL, unsigned O);
   1107 
   1108   /// FrameIndex
   1109   SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
   1110                                     uint64_t Off, const DebugLoc &DL,
   1111                                     unsigned O);
   1112 
   1113   /// Remove the specified node from the system. If any of its
   1114   /// operands then becomes dead, remove them as well. Inform UpdateListener
   1115   /// for each node deleted.
   1116   void RemoveDeadNode(SDNode *N);
   1117 
   1118   /// This method deletes the unreachable nodes in the
   1119   /// given list, and any nodes that become unreachable as a result.
   1120   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
   1121 
   1122   /// Modify anything using 'From' to use 'To' instead.
   1123   /// This can cause recursive merging of nodes in the DAG.  Use the first
   1124   /// version if 'From' is known to have a single result, use the second
   1125   /// if you have two nodes with identical results (or if 'To' has a superset
   1126   /// of the results of 'From'), use the third otherwise.
   1127   ///
   1128   /// These methods all take an optional UpdateListener, which (if not null) is
   1129   /// informed about nodes that are deleted and modified due to recursive
   1130   /// changes in the dag.
   1131   ///
   1132   /// These functions only replace all existing uses. It's possible that as
   1133   /// these replacements are being performed, CSE may cause the From node
   1134   /// to be given new uses. These new uses of From are left in place, and
   1135   /// not automatically transferred to To.
   1136   ///
   1137   void ReplaceAllUsesWith(SDValue From, SDValue Op);
   1138   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
   1139   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
   1140 
   1141   /// Replace any uses of From with To, leaving
   1142   /// uses of other values produced by From.Val alone.
   1143   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
   1144 
   1145   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
   1146   /// This correctly handles the case where
   1147   /// there is an overlap between the From values and the To values.
   1148   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
   1149                                   unsigned Num);
   1150 
   1151   /// Topological-sort the AllNodes list and a
   1152   /// assign a unique node id for each node in the DAG based on their
   1153   /// topological order. Returns the number of nodes.
   1154   unsigned AssignTopologicalOrder();
   1155 
   1156   /// Move node N in the AllNodes list to be immediately
   1157   /// before the given iterator Position. This may be used to update the
   1158   /// topological ordering when the list of nodes is modified.
   1159   void RepositionNode(allnodes_iterator Position, SDNode *N) {
   1160     AllNodes.insert(Position, AllNodes.remove(N));
   1161   }
   1162 
   1163   /// Returns true if the opcode is a commutative binary operation.
   1164   static bool isCommutativeBinOp(unsigned Opcode) {
   1165     // FIXME: This should get its info from the td file, so that we can include
   1166     // target info.
   1167     switch (Opcode) {
   1168     case ISD::ADD:
   1169     case ISD::SMIN:
   1170     case ISD::SMAX:
   1171     case ISD::UMIN:
   1172     case ISD::UMAX:
   1173     case ISD::MUL:
   1174     case ISD::MULHU:
   1175     case ISD::MULHS:
   1176     case ISD::SMUL_LOHI:
   1177     case ISD::UMUL_LOHI:
   1178     case ISD::FADD:
   1179     case ISD::FMUL:
   1180     case ISD::AND:
   1181     case ISD::OR:
   1182     case ISD::XOR:
   1183     case ISD::SADDO:
   1184     case ISD::UADDO:
   1185     case ISD::ADDC:
   1186     case ISD::ADDE:
   1187     case ISD::FMINNUM:
   1188     case ISD::FMAXNUM:
   1189     case ISD::FMINNAN:
   1190     case ISD::FMAXNAN:
   1191       return true;
   1192     default: return false;
   1193     }
   1194   }
   1195 
   1196   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
   1197   /// a vector type, the element semantics are returned.
   1198   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
   1199     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
   1200     default: llvm_unreachable("Unknown FP format");
   1201     case MVT::f16:     return APFloat::IEEEhalf();
   1202     case MVT::f32:     return APFloat::IEEEsingle();
   1203     case MVT::f64:     return APFloat::IEEEdouble();
   1204     case MVT::f80:     return APFloat::x87DoubleExtended();
   1205     case MVT::f128:    return APFloat::IEEEquad();
   1206     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
   1207     }
   1208   }
   1209 
   1210   /// Add a dbg_value SDNode. If SD is non-null that means the
   1211   /// value is produced by SD.
   1212   void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
   1213 
   1214   /// Get the debug values which reference the given SDNode.
   1215   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
   1216     return DbgInfo->getSDDbgValues(SD);
   1217   }
   1218 
   1219 private:
   1220   /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
   1221   void TransferDbgValues(SDValue From, SDValue To);
   1222 
   1223 public:
   1224   /// Return true if there are any SDDbgValue nodes associated
   1225   /// with this SelectionDAG.
   1226   bool hasDebugValues() const { return !DbgInfo->empty(); }
   1227 
   1228   SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
   1229   SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
   1230   SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
   1231     return DbgInfo->ByvalParmDbgBegin();
   1232   }
   1233   SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
   1234     return DbgInfo->ByvalParmDbgEnd();
   1235   }
   1236 
   1237   void dump() const;
   1238 
   1239   /// Create a stack temporary, suitable for holding the specified value type.
   1240   /// If minAlign is specified, the slot size will have at least that alignment.
   1241   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
   1242 
   1243   /// Create a stack temporary suitable for holding either of the specified
   1244   /// value types.
   1245   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
   1246 
   1247   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
   1248                            const GlobalAddressSDNode *GA,
   1249                            const SDNode *N2);
   1250 
   1251   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1252                                  SDNode *Cst1, SDNode *Cst2);
   1253 
   1254   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1255                                  const ConstantSDNode *Cst1,
   1256                                  const ConstantSDNode *Cst2);
   1257 
   1258   SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1259                                        ArrayRef<SDValue> Ops,
   1260                                        const SDNodeFlags *Flags = nullptr);
   1261 
   1262   /// Constant fold a setcc to true or false.
   1263   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
   1264                     const SDLoc &dl);
   1265 
   1266   /// Return true if the sign bit of Op is known to be zero.
   1267   /// We use this predicate to simplify operations downstream.
   1268   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
   1269 
   1270   /// Return true if 'Op & Mask' is known to be zero.  We
   1271   /// use this predicate to simplify operations downstream.  Op and Mask are
   1272   /// known to be the same type.
   1273   bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
   1274     const;
   1275 
   1276   /// Determine which bits of Op are known to be either zero or one and return
   1277   /// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
   1278   /// those that are shared by every vector element.
   1279   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1280   /// TargetLowering class to allow target nodes to be understood.
   1281   void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
   1282                         unsigned Depth = 0) const;
   1283 
   1284   /// Determine which bits of Op are known to be either zero or one and return
   1285   /// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
   1286   /// us to only collect the known bits that are shared by the requested vector
   1287   /// elements.
   1288   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1289   /// TargetLowering class to allow target nodes to be understood.
   1290   void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
   1291                         const APInt &DemandedElts, unsigned Depth = 0) const;
   1292 
   1293   /// Used to represent the possible overflow behavior of an operation.
   1294   /// Never: the operation cannot overflow.
   1295   /// Always: the operation will always overflow.
   1296   /// Sometime: the operation may or may not overflow.
   1297   enum OverflowKind {
   1298     OFK_Never,
   1299     OFK_Sometime,
   1300     OFK_Always,
   1301   };
   1302 
   1303   /// Determine if the result of the addition of 2 node can overflow.
   1304   OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
   1305 
   1306   /// Test if the given value is known to have exactly one bit set. This differs
   1307   /// from computeKnownBits in that it doesn't necessarily determine which bit
   1308   /// is set.
   1309   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
   1310 
   1311   /// Return the number of times the sign bit of the register is replicated into
   1312   /// the other bits. We know that at least 1 bit is always equal to the sign
   1313   /// bit (itself), but other cases can give us information. For example,
   1314   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1315   /// to each other, so we return 3. Targets can implement the
   1316   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
   1317   /// target nodes to be understood.
   1318   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
   1319 
   1320   /// Return the number of times the sign bit of the register is replicated into
   1321   /// the other bits. We know that at least 1 bit is always equal to the sign
   1322   /// bit (itself), but other cases can give us information. For example,
   1323   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1324   /// to each other, so we return 3. The DemandedElts argument allows
   1325   /// us to only collect the minimum sign bits of the requested vector elements.
   1326   /// Targets can implement the ComputeNumSignBitsForTarget method in the
   1327   /// TargetLowering class to allow target nodes to be understood.
   1328   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
   1329                               unsigned Depth = 0) const;
   1330 
   1331   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
   1332   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
   1333   /// is guaranteed to have the same semantics as an ADD. This handles the
   1334   /// equivalence:
   1335   ///     X|Cst == X+Cst iff X&Cst = 0.
   1336   bool isBaseWithConstantOffset(SDValue Op) const;
   1337 
   1338   /// Test whether the given SDValue is known to never be NaN.
   1339   bool isKnownNeverNaN(SDValue Op) const;
   1340 
   1341   /// Test whether the given SDValue is known to never be positive or negative
   1342   /// zero.
   1343   bool isKnownNeverZero(SDValue Op) const;
   1344 
   1345   /// Test whether two SDValues are known to compare equal. This
   1346   /// is true if they are the same value, or if one is negative zero and the
   1347   /// other positive zero.
   1348   bool isEqualTo(SDValue A, SDValue B) const;
   1349 
   1350   /// Return true if A and B have no common bits set. As an example, this can
   1351   /// allow an 'add' to be transformed into an 'or'.
   1352   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
   1353 
   1354   /// Utility function used by legalize and lowering to
   1355   /// "unroll" a vector operation by splitting out the scalars and operating
   1356   /// on each element individually.  If the ResNE is 0, fully unroll the vector
   1357   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
   1358   /// If the  ResNE is greater than the width of the vector op, unroll the
   1359   /// vector op and fill the end of the resulting vector with UNDEFS.
   1360   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
   1361 
   1362   /// Return true if loads are next to each other and can be
   1363   /// merged. Check that both are nonvolatile and if LD is loading
   1364   /// 'Bytes' bytes from a location that is 'Dist' units away from the
   1365   /// location that the 'Base' load is loading from.
   1366   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
   1367                                       unsigned Bytes, int Dist) const;
   1368 
   1369   /// Infer alignment of a load / store address. Return 0 if
   1370   /// it cannot be inferred.
   1371   unsigned InferPtrAlignment(SDValue Ptr) const;
   1372 
   1373   /// Compute the VTs needed for the low/hi parts of a type
   1374   /// which is split (or expanded) into two not necessarily identical pieces.
   1375   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
   1376 
   1377   /// Split the vector with EXTRACT_SUBVECTOR using the provides
   1378   /// VTs and return the low/high part.
   1379   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
   1380                                           const EVT &LoVT, const EVT &HiVT);
   1381 
   1382   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
   1383   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
   1384     EVT LoVT, HiVT;
   1385     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
   1386     return SplitVector(N, DL, LoVT, HiVT);
   1387   }
   1388 
   1389   /// Split the node's operand with EXTRACT_SUBVECTOR and
   1390   /// return the low/high part.
   1391   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
   1392   {
   1393     return SplitVector(N->getOperand(OpNo), SDLoc(N));
   1394   }
   1395 
   1396   /// Append the extracted elements from Start to Count out of the vector Op
   1397   /// in Args. If Count is 0, all of the elements will be extracted.
   1398   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
   1399                              unsigned Start = 0, unsigned Count = 0);
   1400 
   1401   /// Compute the default alignment value for the given type.
   1402   unsigned getEVTAlignment(EVT MemoryVT) const;
   1403 
   1404   /// Test whether the given value is a constant int or similar node.
   1405   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
   1406 
   1407   /// Test whether the given value is a constant FP or similar node.
   1408   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
   1409 
   1410   /// \returns true if \p N is any kind of constant or build_vector of
   1411   /// constants, int or float. If a vector, it may not necessarily be a splat.
   1412   inline bool isConstantValueOfAnyType(SDValue N) {
   1413     return isConstantIntBuildVectorOrConstantInt(N) ||
   1414            isConstantFPBuildVectorOrConstantFP(N);
   1415   }
   1416 
   1417 private:
   1418   void InsertNode(SDNode *N);
   1419   bool RemoveNodeFromCSEMaps(SDNode *N);
   1420   void AddModifiedNodeToCSEMaps(SDNode *N);
   1421   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
   1422   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
   1423                                void *&InsertPos);
   1424   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
   1425                                void *&InsertPos);
   1426   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
   1427 
   1428   void DeleteNodeNotInCSEMaps(SDNode *N);
   1429   void DeallocateNode(SDNode *N);
   1430 
   1431   void allnodes_clear();
   1432 
   1433   SDNode *GetBinarySDNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
   1434                           SDValue N1, SDValue N2,
   1435                           const SDNodeFlags *Flags = nullptr);
   1436 
   1437   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1438   /// not, return the insertion token that will make insertion faster.  This
   1439   /// overload is for nodes other than Constant or ConstantFP, use the other one
   1440   /// for those.
   1441   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
   1442 
   1443   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1444   /// not, return the insertion token that will make insertion faster.  Performs
   1445   /// additional processing for constant nodes.
   1446   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
   1447                               void *&InsertPos);
   1448 
   1449   /// List of non-single value types.
   1450   FoldingSet<SDVTListNode> VTListMap;
   1451 
   1452   /// Maps to auto-CSE operations.
   1453   std::vector<CondCodeSDNode*> CondCodeNodes;
   1454 
   1455   std::vector<SDNode*> ValueTypeNodes;
   1456   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
   1457   StringMap<SDNode*> ExternalSymbols;
   1458 
   1459   std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
   1460   DenseMap<MCSymbol *, SDNode *> MCSymbols;
   1461 };
   1462 
   1463 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
   1464   typedef pointer_iterator<SelectionDAG::allnodes_iterator> nodes_iterator;
   1465   static nodes_iterator nodes_begin(SelectionDAG *G) {
   1466     return nodes_iterator(G->allnodes_begin());
   1467   }
   1468   static nodes_iterator nodes_end(SelectionDAG *G) {
   1469     return nodes_iterator(G->allnodes_end());
   1470   }
   1471 };
   1472 
   1473 template <class TargetMemSDNode>
   1474 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
   1475                                          ArrayRef<SDValue> Ops,
   1476                                          const SDLoc &dl, EVT MemVT,
   1477                                          MachineMemOperand *MMO) {
   1478 
   1479   /// Compose node ID and try to find an existing node.
   1480   FoldingSetNodeID ID;
   1481   unsigned Opcode =
   1482     TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
   1483   ID.AddInteger(Opcode);
   1484   ID.AddPointer(VTs.VTs);
   1485   for (auto& Op : Ops) {
   1486     ID.AddPointer(Op.getNode());
   1487     ID.AddInteger(Op.getResNo());
   1488   }
   1489   ID.AddInteger(MemVT.getRawBits());
   1490   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
   1491   ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
   1492     dl.getIROrder(), VTs, MemVT, MMO));
   1493 
   1494   void *IP = nullptr;
   1495   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
   1496     cast<TargetMemSDNode>(E)->refineAlignment(MMO);
   1497     return SDValue(E, 0);
   1498   }
   1499 
   1500   /// Existing node was not found. Create a new one.
   1501   auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
   1502                                        MemVT, MMO);
   1503   createOperands(N, Ops);
   1504   CSEMap.InsertNode(N, IP);
   1505   InsertNode(N);
   1506   return SDValue(N, 0);
   1507 }
   1508 
   1509 }  // end namespace llvm
   1510 
   1511 #endif
   1512