Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SelectionDAG class, and transitively defines the
     11 // SDNode class and subclasses.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
     16 #define LLVM_CODEGEN_SELECTIONDAG_H
     17 
     18 #include "llvm/ADT/APFloat.h"
     19 #include "llvm/ADT/APInt.h"
     20 #include "llvm/ADT/ArrayRef.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/FoldingSet.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringMap.h"
     27 #include "llvm/ADT/ilist.h"
     28 #include "llvm/ADT/iterator.h"
     29 #include "llvm/ADT/iterator_range.h"
     30 #include "llvm/Analysis/AliasAnalysis.h"
     31 #include "llvm/CodeGen/DAGCombine.h"
     32 #include "llvm/CodeGen/ISDOpcodes.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineMemOperand.h"
     35 #include "llvm/CodeGen/MachineValueType.h"
     36 #include "llvm/CodeGen/SelectionDAGNodes.h"
     37 #include "llvm/CodeGen/ValueTypes.h"
     38 #include "llvm/IR/DebugLoc.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/Metadata.h"
     41 #include "llvm/Support/Allocator.h"
     42 #include "llvm/Support/ArrayRecycler.h"
     43 #include "llvm/Support/AtomicOrdering.h"
     44 #include "llvm/Support/Casting.h"
     45 #include "llvm/Support/CodeGen.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include "llvm/Support/RecyclingAllocator.h"
     48 #include <algorithm>
     49 #include <cassert>
     50 #include <cstdint>
     51 #include <functional>
     52 #include <map>
     53 #include <string>
     54 #include <tuple>
     55 #include <utility>
     56 #include <vector>
     57 
     58 namespace llvm {
     59 
     60 class BlockAddress;
     61 class Constant;
     62 class ConstantFP;
     63 class ConstantInt;
     64 class DataLayout;
     65 struct fltSemantics;
     66 class GlobalValue;
     67 struct KnownBits;
     68 class LLVMContext;
     69 class MachineBasicBlock;
     70 class MachineConstantPoolValue;
     71 class MCSymbol;
     72 class OptimizationRemarkEmitter;
     73 class SDDbgValue;
     74 class SelectionDAG;
     75 class SelectionDAGTargetInfo;
     76 class TargetLowering;
     77 class TargetMachine;
     78 class TargetSubtargetInfo;
     79 class Value;
     80 
     81 class SDVTListNode : public FoldingSetNode {
     82   friend struct FoldingSetTrait<SDVTListNode>;
     83 
     84   /// A reference to an Interned FoldingSetNodeID for this node.
     85   /// The Allocator in SelectionDAG holds the data.
     86   /// SDVTList contains all types which are frequently accessed in SelectionDAG.
     87   /// The size of this list is not expected to be big so it won't introduce
     88   /// a memory penalty.
     89   FoldingSetNodeIDRef FastID;
     90   const EVT *VTs;
     91   unsigned int NumVTs;
     92   /// The hash value for SDVTList is fixed, so cache it to avoid
     93   /// hash calculation.
     94   unsigned HashValue;
     95 
     96 public:
     97   SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
     98       FastID(ID), VTs(VT), NumVTs(Num) {
     99     HashValue = ID.ComputeHash();
    100   }
    101 
    102   SDVTList getSDVTList() {
    103     SDVTList result = {VTs, NumVTs};
    104     return result;
    105   }
    106 };
    107 
    108 /// Specialize FoldingSetTrait for SDVTListNode
    109 /// to avoid computing temp FoldingSetNodeID and hash value.
    110 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
    111   static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
    112     ID = X.FastID;
    113   }
    114 
    115   static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
    116                      unsigned IDHash, FoldingSetNodeID &TempID) {
    117     if (X.HashValue != IDHash)
    118       return false;
    119     return ID == X.FastID;
    120   }
    121 
    122   static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
    123     return X.HashValue;
    124   }
    125 };
    126 
    127 template <> struct ilist_alloc_traits<SDNode> {
    128   static void deleteNode(SDNode *) {
    129     llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
    130   }
    131 };
    132 
    133 /// Keeps track of dbg_value information through SDISel.  We do
    134 /// not build SDNodes for these so as not to perturb the generated code;
    135 /// instead the info is kept off to the side in this structure. Each SDNode may
    136 /// have one or more associated dbg_value entries. This information is kept in
    137 /// DbgValMap.
    138 /// Byval parameters are handled separately because they don't use alloca's,
    139 /// which busts the normal mechanism.  There is good reason for handling all
    140 /// parameters separately:  they may not have code generated for them, they
    141 /// should always go at the beginning of the function regardless of other code
    142 /// motion, and debug info for them is potentially useful even if the parameter
    143 /// is unused.  Right now only byval parameters are handled separately.
    144 class SDDbgInfo {
    145   BumpPtrAllocator Alloc;
    146   SmallVector<SDDbgValue*, 32> DbgValues;
    147   SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
    148   using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
    149   DbgValMapType DbgValMap;
    150 
    151 public:
    152   SDDbgInfo() = default;
    153   SDDbgInfo(const SDDbgInfo &) = delete;
    154   SDDbgInfo &operator=(const SDDbgInfo &) = delete;
    155 
    156   void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
    157     if (isParameter) {
    158       ByvalParmDbgValues.push_back(V);
    159     } else     DbgValues.push_back(V);
    160     if (Node)
    161       DbgValMap[Node].push_back(V);
    162   }
    163 
    164   /// \brief Invalidate all DbgValues attached to the node and remove
    165   /// it from the Node-to-DbgValues map.
    166   void erase(const SDNode *Node);
    167 
    168   void clear() {
    169     DbgValMap.clear();
    170     DbgValues.clear();
    171     ByvalParmDbgValues.clear();
    172     Alloc.Reset();
    173   }
    174 
    175   BumpPtrAllocator &getAlloc() { return Alloc; }
    176 
    177   bool empty() const {
    178     return DbgValues.empty() && ByvalParmDbgValues.empty();
    179   }
    180 
    181   ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
    182     DbgValMapType::iterator I = DbgValMap.find(Node);
    183     if (I != DbgValMap.end())
    184       return I->second;
    185     return ArrayRef<SDDbgValue*>();
    186   }
    187 
    188   using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
    189 
    190   DbgIterator DbgBegin() { return DbgValues.begin(); }
    191   DbgIterator DbgEnd()   { return DbgValues.end(); }
    192   DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
    193   DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
    194 };
    195 
    196 void checkForCycles(const SelectionDAG *DAG, bool force = false);
    197 
    198 /// This is used to represent a portion of an LLVM function in a low-level
    199 /// Data Dependence DAG representation suitable for instruction selection.
    200 /// This DAG is constructed as the first step of instruction selection in order
    201 /// to allow implementation of machine specific optimizations
    202 /// and code simplifications.
    203 ///
    204 /// The representation used by the SelectionDAG is a target-independent
    205 /// representation, which has some similarities to the GCC RTL representation,
    206 /// but is significantly more simple, powerful, and is a graph form instead of a
    207 /// linear form.
    208 ///
    209 class SelectionDAG {
    210   const TargetMachine &TM;
    211   const SelectionDAGTargetInfo *TSI = nullptr;
    212   const TargetLowering *TLI = nullptr;
    213   MachineFunction *MF;
    214   LLVMContext *Context;
    215   CodeGenOpt::Level OptLevel;
    216 
    217   /// The function-level optimization remark emitter.  Used to emit remarks
    218   /// whenever manipulating the DAG.
    219   OptimizationRemarkEmitter *ORE;
    220 
    221   /// The starting token.
    222   SDNode EntryNode;
    223 
    224   /// The root of the entire DAG.
    225   SDValue Root;
    226 
    227   /// A linked list of nodes in the current DAG.
    228   ilist<SDNode> AllNodes;
    229 
    230   /// The AllocatorType for allocating SDNodes. We use
    231   /// pool allocation with recycling.
    232   using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
    233                                                sizeof(LargestSDNode),
    234                                                alignof(MostAlignedSDNode)>;
    235 
    236   /// Pool allocation for nodes.
    237   NodeAllocatorType NodeAllocator;
    238 
    239   /// This structure is used to memoize nodes, automatically performing
    240   /// CSE with existing nodes when a duplicate is requested.
    241   FoldingSet<SDNode> CSEMap;
    242 
    243   /// Pool allocation for machine-opcode SDNode operands.
    244   BumpPtrAllocator OperandAllocator;
    245   ArrayRecycler<SDUse> OperandRecycler;
    246 
    247   /// Pool allocation for misc. objects that are created once per SelectionDAG.
    248   BumpPtrAllocator Allocator;
    249 
    250   /// Tracks dbg_value information through SDISel.
    251   SDDbgInfo *DbgInfo;
    252 
    253   uint16_t NextPersistentId = 0;
    254 
    255 public:
    256   /// Clients of various APIs that cause global effects on
    257   /// the DAG can optionally implement this interface.  This allows the clients
    258   /// to handle the various sorts of updates that happen.
    259   ///
    260   /// A DAGUpdateListener automatically registers itself with DAG when it is
    261   /// constructed, and removes itself when destroyed in RAII fashion.
    262   struct DAGUpdateListener {
    263     DAGUpdateListener *const Next;
    264     SelectionDAG &DAG;
    265 
    266     explicit DAGUpdateListener(SelectionDAG &D)
    267       : Next(D.UpdateListeners), DAG(D) {
    268       DAG.UpdateListeners = this;
    269     }
    270 
    271     virtual ~DAGUpdateListener() {
    272       assert(DAG.UpdateListeners == this &&
    273              "DAGUpdateListeners must be destroyed in LIFO order");
    274       DAG.UpdateListeners = Next;
    275     }
    276 
    277     /// The node N that was deleted and, if E is not null, an
    278     /// equivalent node E that replaced it.
    279     virtual void NodeDeleted(SDNode *N, SDNode *E);
    280 
    281     /// The node N that was updated.
    282     virtual void NodeUpdated(SDNode *N);
    283   };
    284 
    285   struct DAGNodeDeletedListener : public DAGUpdateListener {
    286     std::function<void(SDNode *, SDNode *)> Callback;
    287 
    288     DAGNodeDeletedListener(SelectionDAG &DAG,
    289                            std::function<void(SDNode *, SDNode *)> Callback)
    290         : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
    291 
    292     void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
    293   };
    294 
    295   /// When true, additional steps are taken to
    296   /// ensure that getConstant() and similar functions return DAG nodes that
    297   /// have legal types. This is important after type legalization since
    298   /// any illegally typed nodes generated after this point will not experience
    299   /// type legalization.
    300   bool NewNodesMustHaveLegalTypes = false;
    301 
    302 private:
    303   /// DAGUpdateListener is a friend so it can manipulate the listener stack.
    304   friend struct DAGUpdateListener;
    305 
    306   /// Linked list of registered DAGUpdateListener instances.
    307   /// This stack is maintained by DAGUpdateListener RAII.
    308   DAGUpdateListener *UpdateListeners = nullptr;
    309 
    310   /// Implementation of setSubgraphColor.
    311   /// Return whether we had to truncate the search.
    312   bool setSubgraphColorHelper(SDNode *N, const char *Color,
    313                               DenseSet<SDNode *> &visited,
    314                               int level, bool &printed);
    315 
    316   template <typename SDNodeT, typename... ArgTypes>
    317   SDNodeT *newSDNode(ArgTypes &&... Args) {
    318     return new (NodeAllocator.template Allocate<SDNodeT>())
    319         SDNodeT(std::forward<ArgTypes>(Args)...);
    320   }
    321 
    322   /// Build a synthetic SDNodeT with the given args and extract its subclass
    323   /// data as an integer (e.g. for use in a folding set).
    324   ///
    325   /// The args to this function are the same as the args to SDNodeT's
    326   /// constructor, except the second arg (assumed to be a const DebugLoc&) is
    327   /// omitted.
    328   template <typename SDNodeT, typename... ArgTypes>
    329   static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
    330                                                ArgTypes &&... Args) {
    331     // The compiler can reduce this expression to a constant iff we pass an
    332     // empty DebugLoc.  Thankfully, the debug location doesn't have any bearing
    333     // on the subclass data.
    334     return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
    335         .getRawSubclassData();
    336   }
    337 
    338   void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
    339     assert(!Node->OperandList && "Node already has operands");
    340     SDUse *Ops = OperandRecycler.allocate(
    341         ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
    342 
    343     for (unsigned I = 0; I != Vals.size(); ++I) {
    344       Ops[I].setUser(Node);
    345       Ops[I].setInitial(Vals[I]);
    346     }
    347     Node->NumOperands = Vals.size();
    348     Node->OperandList = Ops;
    349     checkForCycles(Node);
    350   }
    351 
    352   void removeOperands(SDNode *Node) {
    353     if (!Node->OperandList)
    354       return;
    355     OperandRecycler.deallocate(
    356         ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
    357         Node->OperandList);
    358     Node->NumOperands = 0;
    359     Node->OperandList = nullptr;
    360   }
    361 
    362 public:
    363   explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
    364   SelectionDAG(const SelectionDAG &) = delete;
    365   SelectionDAG &operator=(const SelectionDAG &) = delete;
    366   ~SelectionDAG();
    367 
    368   /// Prepare this SelectionDAG to process code in the given MachineFunction.
    369   void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE);
    370 
    371   /// Clear state and free memory necessary to make this
    372   /// SelectionDAG ready to process a new block.
    373   void clear();
    374 
    375   MachineFunction &getMachineFunction() const { return *MF; }
    376   const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
    377   const TargetMachine &getTarget() const { return TM; }
    378   const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
    379   const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
    380   const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
    381   LLVMContext *getContext() const {return Context; }
    382   OptimizationRemarkEmitter &getORE() const { return *ORE; }
    383 
    384   /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
    385   void viewGraph(const std::string &Title);
    386   void viewGraph();
    387 
    388 #ifndef NDEBUG
    389   std::map<const SDNode *, std::string> NodeGraphAttrs;
    390 #endif
    391 
    392   /// Clear all previously defined node graph attributes.
    393   /// Intended to be used from a debugging tool (eg. gdb).
    394   void clearGraphAttrs();
    395 
    396   /// Set graph attributes for a node. (eg. "color=red".)
    397   void setGraphAttrs(const SDNode *N, const char *Attrs);
    398 
    399   /// Get graph attributes for a node. (eg. "color=red".)
    400   /// Used from getNodeAttributes.
    401   const std::string getGraphAttrs(const SDNode *N) const;
    402 
    403   /// Convenience for setting node color attribute.
    404   void setGraphColor(const SDNode *N, const char *Color);
    405 
    406   /// Convenience for setting subgraph color attribute.
    407   void setSubgraphColor(SDNode *N, const char *Color);
    408 
    409   using allnodes_const_iterator = ilist<SDNode>::const_iterator;
    410 
    411   allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
    412   allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
    413 
    414   using allnodes_iterator = ilist<SDNode>::iterator;
    415 
    416   allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
    417   allnodes_iterator allnodes_end() { return AllNodes.end(); }
    418 
    419   ilist<SDNode>::size_type allnodes_size() const {
    420     return AllNodes.size();
    421   }
    422 
    423   iterator_range<allnodes_iterator> allnodes() {
    424     return make_range(allnodes_begin(), allnodes_end());
    425   }
    426   iterator_range<allnodes_const_iterator> allnodes() const {
    427     return make_range(allnodes_begin(), allnodes_end());
    428   }
    429 
    430   /// Return the root tag of the SelectionDAG.
    431   const SDValue &getRoot() const { return Root; }
    432 
    433   /// Return the token chain corresponding to the entry of the function.
    434   SDValue getEntryNode() const {
    435     return SDValue(const_cast<SDNode *>(&EntryNode), 0);
    436   }
    437 
    438   /// Set the current root tag of the SelectionDAG.
    439   ///
    440   const SDValue &setRoot(SDValue N) {
    441     assert((!N.getNode() || N.getValueType() == MVT::Other) &&
    442            "DAG root value is not a chain!");
    443     if (N.getNode())
    444       checkForCycles(N.getNode(), this);
    445     Root = N;
    446     if (N.getNode())
    447       checkForCycles(this);
    448     return Root;
    449   }
    450 
    451   /// This iterates over the nodes in the SelectionDAG, folding
    452   /// certain types of nodes together, or eliminating superfluous nodes.  The
    453   /// Level argument controls whether Combine is allowed to produce nodes and
    454   /// types that are illegal on the target.
    455   void Combine(CombineLevel Level, AliasAnalysis *AA,
    456                CodeGenOpt::Level OptLevel);
    457 
    458   /// This transforms the SelectionDAG into a SelectionDAG that
    459   /// only uses types natively supported by the target.
    460   /// Returns "true" if it made any changes.
    461   ///
    462   /// Note that this is an involved process that may invalidate pointers into
    463   /// the graph.
    464   bool LegalizeTypes();
    465 
    466   /// This transforms the SelectionDAG into a SelectionDAG that is
    467   /// compatible with the target instruction selector, as indicated by the
    468   /// TargetLowering object.
    469   ///
    470   /// Note that this is an involved process that may invalidate pointers into
    471   /// the graph.
    472   void Legalize();
    473 
    474   /// \brief Transforms a SelectionDAG node and any operands to it into a node
    475   /// that is compatible with the target instruction selector, as indicated by
    476   /// the TargetLowering object.
    477   ///
    478   /// \returns true if \c N is a valid, legal node after calling this.
    479   ///
    480   /// This essentially runs a single recursive walk of the \c Legalize process
    481   /// over the given node (and its operands). This can be used to incrementally
    482   /// legalize the DAG. All of the nodes which are directly replaced,
    483   /// potentially including N, are added to the output parameter \c
    484   /// UpdatedNodes so that the delta to the DAG can be understood by the
    485   /// caller.
    486   ///
    487   /// When this returns false, N has been legalized in a way that make the
    488   /// pointer passed in no longer valid. It may have even been deleted from the
    489   /// DAG, and so it shouldn't be used further. When this returns true, the
    490   /// N passed in is a legal node, and can be immediately processed as such.
    491   /// This may still have done some work on the DAG, and will still populate
    492   /// UpdatedNodes with any new nodes replacing those originally in the DAG.
    493   bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
    494 
    495   /// This transforms the SelectionDAG into a SelectionDAG
    496   /// that only uses vector math operations supported by the target.  This is
    497   /// necessary as a separate step from Legalize because unrolling a vector
    498   /// operation can introduce illegal types, which requires running
    499   /// LegalizeTypes again.
    500   ///
    501   /// This returns true if it made any changes; in that case, LegalizeTypes
    502   /// is called again before Legalize.
    503   ///
    504   /// Note that this is an involved process that may invalidate pointers into
    505   /// the graph.
    506   bool LegalizeVectors();
    507 
    508   /// This method deletes all unreachable nodes in the SelectionDAG.
    509   void RemoveDeadNodes();
    510 
    511   /// Remove the specified node from the system.  This node must
    512   /// have no referrers.
    513   void DeleteNode(SDNode *N);
    514 
    515   /// Return an SDVTList that represents the list of values specified.
    516   SDVTList getVTList(EVT VT);
    517   SDVTList getVTList(EVT VT1, EVT VT2);
    518   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
    519   SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
    520   SDVTList getVTList(ArrayRef<EVT> VTs);
    521 
    522   //===--------------------------------------------------------------------===//
    523   // Node creation methods.
    524 
    525   /// \brief Create a ConstantSDNode wrapping a constant value.
    526   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    527   ///
    528   /// If only legal types can be produced, this does the necessary
    529   /// transformations (e.g., if the vector element type is illegal).
    530   /// @{
    531   SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    532                       bool isTarget = false, bool isOpaque = false);
    533   SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    534                       bool isTarget = false, bool isOpaque = false);
    535 
    536   SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
    537                              bool IsOpaque = false) {
    538     return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
    539                        VT, IsTarget, IsOpaque);
    540   }
    541 
    542   SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    543                       bool isTarget = false, bool isOpaque = false);
    544   SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
    545                             bool isTarget = false);
    546   SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
    547                             bool isOpaque = false) {
    548     return getConstant(Val, DL, VT, true, isOpaque);
    549   }
    550   SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
    551                             bool isOpaque = false) {
    552     return getConstant(Val, DL, VT, true, isOpaque);
    553   }
    554   SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
    555                             bool isOpaque = false) {
    556     return getConstant(Val, DL, VT, true, isOpaque);
    557   }
    558   /// @}
    559 
    560   /// \brief Create a ConstantFPSDNode wrapping a constant value.
    561   /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
    562   ///
    563   /// If only legal types can be produced, this does the necessary
    564   /// transformations (e.g., if the vector element type is illegal).
    565   /// The forms that take a double should only be used for simple constants
    566   /// that can be exactly represented in VT.  No checks are made.
    567   /// @{
    568   SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
    569                         bool isTarget = false);
    570   SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
    571                         bool isTarget = false);
    572   SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
    573                         bool isTarget = false);
    574   SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
    575     return getConstantFP(Val, DL, VT, true);
    576   }
    577   SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
    578     return getConstantFP(Val, DL, VT, true);
    579   }
    580   SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
    581     return getConstantFP(Val, DL, VT, true);
    582   }
    583   /// @}
    584 
    585   SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    586                            int64_t offset = 0, bool isTargetGA = false,
    587                            unsigned char TargetFlags = 0);
    588   SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
    589                                  int64_t offset = 0,
    590                                  unsigned char TargetFlags = 0) {
    591     return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
    592   }
    593   SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
    594   SDValue getTargetFrameIndex(int FI, EVT VT) {
    595     return getFrameIndex(FI, VT, true);
    596   }
    597   SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
    598                        unsigned char TargetFlags = 0);
    599   SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
    600     return getJumpTable(JTI, VT, true, TargetFlags);
    601   }
    602   SDValue getConstantPool(const Constant *C, EVT VT,
    603                           unsigned Align = 0, int Offs = 0, bool isT=false,
    604                           unsigned char TargetFlags = 0);
    605   SDValue getTargetConstantPool(const Constant *C, EVT VT,
    606                                 unsigned Align = 0, int Offset = 0,
    607                                 unsigned char TargetFlags = 0) {
    608     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    609   }
    610   SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
    611                           unsigned Align = 0, int Offs = 0, bool isT=false,
    612                           unsigned char TargetFlags = 0);
    613   SDValue getTargetConstantPool(MachineConstantPoolValue *C,
    614                                   EVT VT, unsigned Align = 0,
    615                                   int Offset = 0, unsigned char TargetFlags=0) {
    616     return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
    617   }
    618   SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
    619                          unsigned char TargetFlags = 0);
    620   // When generating a branch to a BB, we don't in general know enough
    621   // to provide debug info for the BB at that time, so keep this one around.
    622   SDValue getBasicBlock(MachineBasicBlock *MBB);
    623   SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
    624   SDValue getExternalSymbol(const char *Sym, EVT VT);
    625   SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
    626   SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
    627                                   unsigned char TargetFlags = 0);
    628   SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
    629 
    630   SDValue getValueType(EVT);
    631   SDValue getRegister(unsigned Reg, EVT VT);
    632   SDValue getRegisterMask(const uint32_t *RegMask);
    633   SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
    634   SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
    635                           int64_t Offset = 0, bool isTarget = false,
    636                           unsigned char TargetFlags = 0);
    637   SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
    638                                 int64_t Offset = 0,
    639                                 unsigned char TargetFlags = 0) {
    640     return getBlockAddress(BA, VT, Offset, true, TargetFlags);
    641   }
    642 
    643   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
    644                        SDValue N) {
    645     return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
    646                    getRegister(Reg, N.getValueType()), N);
    647   }
    648 
    649   // This version of the getCopyToReg method takes an extra operand, which
    650   // indicates that there is potentially an incoming glue value (if Glue is not
    651   // null) and that there should be a glue result.
    652   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
    653                        SDValue Glue) {
    654     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    655     SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
    656     return getNode(ISD::CopyToReg, dl, VTs,
    657                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    658   }
    659 
    660   // Similar to last getCopyToReg() except parameter Reg is a SDValue
    661   SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
    662                        SDValue Glue) {
    663     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    664     SDValue Ops[] = { Chain, Reg, N, Glue };
    665     return getNode(ISD::CopyToReg, dl, VTs,
    666                    makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
    667   }
    668 
    669   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
    670     SDVTList VTs = getVTList(VT, MVT::Other);
    671     SDValue Ops[] = { Chain, getRegister(Reg, VT) };
    672     return getNode(ISD::CopyFromReg, dl, VTs, Ops);
    673   }
    674 
    675   // This version of the getCopyFromReg method takes an extra operand, which
    676   // indicates that there is potentially an incoming glue value (if Glue is not
    677   // null) and that there should be a glue result.
    678   SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
    679                          SDValue Glue) {
    680     SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
    681     SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
    682     return getNode(ISD::CopyFromReg, dl, VTs,
    683                    makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
    684   }
    685 
    686   SDValue getCondCode(ISD::CondCode Cond);
    687 
    688   /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
    689   /// which must be a vector type, must match the number of mask elements
    690   /// NumElts. An integer mask element equal to -1 is treated as undefined.
    691   SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
    692                            ArrayRef<int> Mask);
    693 
    694   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    695   /// which must be a vector type, must match the number of operands in Ops.
    696   /// The operands must have the same type as (or, for integers, a type wider
    697   /// than) VT's element type.
    698   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
    699     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    700     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    701   }
    702 
    703   /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
    704   /// which must be a vector type, must match the number of operands in Ops.
    705   /// The operands must have the same type as (or, for integers, a type wider
    706   /// than) VT's element type.
    707   SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
    708     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    709     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    710   }
    711 
    712   /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
    713   /// elements. VT must be a vector type. Op's type must be the same as (or,
    714   /// for integers, a type wider than) VT's element type.
    715   SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
    716     // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    717     if (Op.getOpcode() == ISD::UNDEF) {
    718       assert((VT.getVectorElementType() == Op.getValueType() ||
    719               (VT.isInteger() &&
    720                VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
    721              "A splatted value must have a width equal or (for integers) "
    722              "greater than the vector element type!");
    723       return getNode(ISD::UNDEF, SDLoc(), VT);
    724     }
    725 
    726     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
    727     return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
    728   }
    729 
    730   /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
    731   /// the shuffle node in input but with swapped operands.
    732   ///
    733   /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
    734   SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
    735 
    736   /// Convert Op, which must be of float type, to the
    737   /// float type VT, by either extending or rounding (by truncation).
    738   SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
    739 
    740   /// Convert Op, which must be of integer type, to the
    741   /// integer type VT, by either any-extending or truncating it.
    742   SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    743 
    744   /// Convert Op, which must be of integer type, to the
    745   /// integer type VT, by either sign-extending or truncating it.
    746   SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    747 
    748   /// Convert Op, which must be of integer type, to the
    749   /// integer type VT, by either zero-extending or truncating it.
    750   SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
    751 
    752   /// Return the expression required to zero extend the Op
    753   /// value assuming it was the smaller SrcTy value.
    754   SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);
    755 
    756   /// Return an operation which will any-extend the low lanes of the operand
    757   /// into the specified vector type. For example,
    758   /// this can convert a v16i8 into a v4i32 by any-extending the low four
    759   /// lanes of the operand from i8 to i32.
    760   SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    761 
    762   /// Return an operation which will sign extend the low lanes of the operand
    763   /// into the specified vector type. For example,
    764   /// this can convert a v16i8 into a v4i32 by sign extending the low four
    765   /// lanes of the operand from i8 to i32.
    766   SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    767 
    768   /// Return an operation which will zero extend the low lanes of the operand
    769   /// into the specified vector type. For example,
    770   /// this can convert a v16i8 into a v4i32 by zero extending the low four
    771   /// lanes of the operand from i8 to i32.
    772   SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
    773 
    774   /// Convert Op, which must be of integer type, to the integer type VT,
    775   /// by using an extension appropriate for the target's
    776   /// BooleanContent for type OpVT or truncating it.
    777   SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
    778 
    779   /// Create a bitwise NOT operation as (XOR Val, -1).
    780   SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
    781 
    782   /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
    783   SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
    784 
    785   /// Return a new CALLSEQ_START node, that starts new call frame, in which
    786   /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
    787   /// OutSize specifies part of the frame set up prior to the sequence.
    788   SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
    789                            const SDLoc &DL) {
    790     SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    791     SDValue Ops[] = { Chain,
    792                       getIntPtrConstant(InSize, DL, true),
    793                       getIntPtrConstant(OutSize, DL, true) };
    794     return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
    795   }
    796 
    797   /// Return a new CALLSEQ_END node, which always must have a
    798   /// glue result (to ensure it's not CSE'd).
    799   /// CALLSEQ_END does not have a useful SDLoc.
    800   SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
    801                          SDValue InGlue, const SDLoc &DL) {
    802     SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
    803     SmallVector<SDValue, 4> Ops;
    804     Ops.push_back(Chain);
    805     Ops.push_back(Op1);
    806     Ops.push_back(Op2);
    807     if (InGlue.getNode())
    808       Ops.push_back(InGlue);
    809     return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
    810   }
    811 
    812   /// Return true if the result of this operation is always undefined.
    813   bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
    814 
    815   /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
    816   SDValue getUNDEF(EVT VT) {
    817     return getNode(ISD::UNDEF, SDLoc(), VT);
    818   }
    819 
    820   /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
    821   SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
    822     return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
    823   }
    824 
    825   /// Gets or creates the specified node.
    826   ///
    827   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    828                   ArrayRef<SDUse> Ops);
    829   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
    830                   ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
    831   SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
    832                   ArrayRef<SDValue> Ops);
    833   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
    834                   ArrayRef<SDValue> Ops);
    835 
    836   // Specialize based on number of operands.
    837   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
    838   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N,
    839                   const SDNodeFlags Flags = SDNodeFlags());
    840   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    841                   SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
    842   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    843                   SDValue N2, SDValue N3);
    844   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    845                   SDValue N2, SDValue N3, SDValue N4);
    846   SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
    847                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    848 
    849   // Specialize again based on number of operands for nodes with a VTList
    850   // rather than a single VT.
    851   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
    852   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
    853   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    854                   SDValue N2);
    855   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    856                   SDValue N2, SDValue N3);
    857   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    858                   SDValue N2, SDValue N3, SDValue N4);
    859   SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
    860                   SDValue N2, SDValue N3, SDValue N4, SDValue N5);
    861 
    862   /// Compute a TokenFactor to force all the incoming stack arguments to be
    863   /// loaded from the stack. This is used in tail call lowering to protect
    864   /// stack arguments from being clobbered.
    865   SDValue getStackArgumentTokenFactor(SDValue Chain);
    866 
    867   SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    868                     SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
    869                     bool isTailCall, MachinePointerInfo DstPtrInfo,
    870                     MachinePointerInfo SrcPtrInfo);
    871 
    872   SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    873                      SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    874                      MachinePointerInfo DstPtrInfo,
    875                      MachinePointerInfo SrcPtrInfo);
    876 
    877   SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
    878                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
    879                     MachinePointerInfo DstPtrInfo);
    880 
    881   /// Helper function to make it easier to build SetCC's if you just
    882   /// have an ISD::CondCode instead of an SDValue.
    883   ///
    884   SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
    885                    ISD::CondCode Cond) {
    886     assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
    887       "Cannot compare scalars to vectors");
    888     assert(LHS.getValueType().isVector() == VT.isVector() &&
    889       "Cannot compare scalars to vectors");
    890     assert(Cond != ISD::SETCC_INVALID &&
    891         "Cannot create a setCC of an invalid node.");
    892     return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
    893   }
    894 
    895   /// Helper function to make it easier to build Select's if you just
    896   /// have operands and don't want to check for vector.
    897   SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
    898                     SDValue RHS) {
    899     assert(LHS.getValueType() == RHS.getValueType() &&
    900            "Cannot use select on differing types");
    901     assert(VT.isVector() == LHS.getValueType().isVector() &&
    902            "Cannot mix vectors and scalars");
    903     return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
    904                    Cond, LHS, RHS);
    905   }
    906 
    907   /// Helper function to make it easier to build SelectCC's if you
    908   /// just have an ISD::CondCode instead of an SDValue.
    909   ///
    910   SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
    911                       SDValue False, ISD::CondCode Cond) {
    912     return getNode(ISD::SELECT_CC, DL, True.getValueType(),
    913                    LHS, RHS, True, False, getCondCode(Cond));
    914   }
    915 
    916   /// VAArg produces a result and token chain, and takes a pointer
    917   /// and a source value as input.
    918   SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    919                    SDValue SV, unsigned Align);
    920 
    921   /// Gets a node for an atomic cmpxchg op. There are two
    922   /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
    923   /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
    924   /// a success flag (initially i1), and a chain.
    925   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    926                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    927                            SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
    928                            unsigned Alignment, AtomicOrdering SuccessOrdering,
    929                            AtomicOrdering FailureOrdering,
    930                            SynchronizationScope SynchScope);
    931   SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    932                            SDVTList VTs, SDValue Chain, SDValue Ptr,
    933                            SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
    934 
    935   /// Gets a node for an atomic op, produces result (if relevant)
    936   /// and chain and takes 2 operands.
    937   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    938                     SDValue Ptr, SDValue Val, const Value *PtrVal,
    939                     unsigned Alignment, AtomicOrdering Ordering,
    940                     SynchronizationScope SynchScope);
    941   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
    942                     SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
    943 
    944   /// Gets a node for an atomic op, produces result and chain and
    945   /// takes 1 operand.
    946   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
    947                     SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
    948 
    949   /// Gets a node for an atomic op, produces result and chain and takes N
    950   /// operands.
    951   SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
    952                     SDVTList VTList, ArrayRef<SDValue> Ops,
    953                     MachineMemOperand *MMO);
    954 
    955   /// Creates a MemIntrinsicNode that may produce a
    956   /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
    957   /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
    958   /// less than FIRST_TARGET_MEMORY_OPCODE.
    959   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    960                               ArrayRef<SDValue> Ops, EVT MemVT,
    961                               MachinePointerInfo PtrInfo, unsigned Align = 0,
    962                               bool Vol = false, bool ReadMem = true,
    963                               bool WriteMem = true, unsigned Size = 0);
    964 
    965   SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
    966                               ArrayRef<SDValue> Ops, EVT MemVT,
    967                               MachineMemOperand *MMO);
    968 
    969   /// Create a MERGE_VALUES node from the given operands.
    970   SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
    971 
    972   /// Loads are not normal binary operators: their result type is not
    973   /// determined by their operands, and they produce a value AND a token chain.
    974   ///
    975   /// This function will set the MOLoad flag on MMOFlags, but you can set it if
    976   /// you want.  The MOStore flag must not be set.
    977   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    978                   MachinePointerInfo PtrInfo, unsigned Alignment = 0,
    979                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    980                   const AAMDNodes &AAInfo = AAMDNodes(),
    981                   const MDNode *Ranges = nullptr);
    982   SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
    983                   MachineMemOperand *MMO);
    984   SDValue
    985   getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
    986              SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
    987              unsigned Alignment = 0,
    988              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    989              const AAMDNodes &AAInfo = AAMDNodes());
    990   SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
    991                      SDValue Chain, SDValue Ptr, EVT MemVT,
    992                      MachineMemOperand *MMO);
    993   SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
    994                          SDValue Offset, ISD::MemIndexedMode AM);
    995   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
    996                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
    997                   MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
    998                   MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
    999                   const AAMDNodes &AAInfo = AAMDNodes(),
   1000                   const MDNode *Ranges = nullptr);
   1001   SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
   1002                   const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
   1003                   EVT MemVT, MachineMemOperand *MMO);
   1004 
   1005   /// Helper function to build ISD::STORE nodes.
   1006   ///
   1007   /// This function will set the MOStore flag on MMOFlags, but you can set it if
   1008   /// you want.  The MOLoad and MOInvariant flags must not be set.
   1009   SDValue
   1010   getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1011            MachinePointerInfo PtrInfo, unsigned Alignment = 0,
   1012            MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1013            const AAMDNodes &AAInfo = AAMDNodes());
   1014   SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1015                    MachineMemOperand *MMO);
   1016   SDValue
   1017   getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
   1018                 MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
   1019                 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
   1020                 const AAMDNodes &AAInfo = AAMDNodes());
   1021   SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
   1022                         SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
   1023   SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
   1024                           SDValue Offset, ISD::MemIndexedMode AM);
   1025 
   1026   /// Returns sum of the base pointer and offset.
   1027   SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
   1028 
   1029   SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
   1030                         SDValue Mask, SDValue Src0, EVT MemVT,
   1031                         MachineMemOperand *MMO, ISD::LoadExtType,
   1032                         bool IsExpanding = false);
   1033   SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
   1034                          SDValue Ptr, SDValue Mask, EVT MemVT,
   1035                          MachineMemOperand *MMO, bool IsTruncating = false,
   1036                          bool IsCompressing = false);
   1037   SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
   1038                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
   1039   SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
   1040                            ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
   1041 
   1042   /// Return (create a new or find existing) a target-specific node.
   1043   /// TargetMemSDNode should be derived class from MemSDNode.
   1044   template <class TargetMemSDNode>
   1045   SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
   1046                              const SDLoc &dl, EVT MemVT,
   1047                              MachineMemOperand *MMO);
   1048 
   1049   /// Construct a node to track a Value* through the backend.
   1050   SDValue getSrcValue(const Value *v);
   1051 
   1052   /// Return an MDNodeSDNode which holds an MDNode.
   1053   SDValue getMDNode(const MDNode *MD);
   1054 
   1055   /// Return a bitcast using the SDLoc of the value operand, and casting to the
   1056   /// provided type. Use getNode to set a custom SDLoc.
   1057   SDValue getBitcast(EVT VT, SDValue V);
   1058 
   1059   /// Return an AddrSpaceCastSDNode.
   1060   SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
   1061                            unsigned DestAS);
   1062 
   1063   /// Return the specified value casted to
   1064   /// the target's desired shift amount type.
   1065   SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
   1066 
   1067   /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
   1068   SDValue expandVAArg(SDNode *Node);
   1069 
   1070   /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
   1071   SDValue expandVACopy(SDNode *Node);
   1072 
   1073   /// *Mutate* the specified node in-place to have the
   1074   /// specified operands.  If the resultant node already exists in the DAG,
   1075   /// this does not modify the specified node, instead it returns the node that
   1076   /// already exists.  If the resultant node does not exist in the DAG, the
   1077   /// input node is returned.  As a degenerate case, if you specify the same
   1078   /// input operands as the node already has, the input node is returned.
   1079   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
   1080   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
   1081   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1082                                SDValue Op3);
   1083   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1084                                SDValue Op3, SDValue Op4);
   1085   SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   1086                                SDValue Op3, SDValue Op4, SDValue Op5);
   1087   SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
   1088 
   1089   /// These are used for target selectors to *mutate* the
   1090   /// specified node to have the specified return type, Target opcode, and
   1091   /// operands.  Note that target opcodes are stored as
   1092   /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
   1093   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
   1094   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
   1095   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1096                        SDValue Op1, SDValue Op2);
   1097   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1098                        SDValue Op1, SDValue Op2, SDValue Op3);
   1099   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
   1100                        ArrayRef<SDValue> Ops);
   1101   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
   1102   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1103                        EVT VT2, ArrayRef<SDValue> Ops);
   1104   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1105                        EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1106   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1107                        EVT VT2, SDValue Op1);
   1108   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
   1109                        EVT VT2, SDValue Op1, SDValue Op2);
   1110   SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
   1111                        ArrayRef<SDValue> Ops);
   1112 
   1113   /// This *mutates* the specified node to have the specified
   1114   /// return type, opcode, and operands.
   1115   SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
   1116                       ArrayRef<SDValue> Ops);
   1117 
   1118   /// Mutate the specified strict FP node to its non-strict equivalent,
   1119   /// unlinking the node from its chain and dropping the metadata arguments.
   1120   /// The node must be a strict FP node.
   1121   SDNode *mutateStrictFPToFP(SDNode *Node);
   1122 
   1123   /// These are used for target selectors to create a new node
   1124   /// with specified return type(s), MachineInstr opcode, and operands.
   1125   ///
   1126   /// Note that getMachineNode returns the resultant node.  If there is already
   1127   /// a node of the specified opcode and operands, it returns that node instead
   1128   /// of the current one.
   1129   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
   1130   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1131                                 SDValue Op1);
   1132   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1133                                 SDValue Op1, SDValue Op2);
   1134   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1135                                 SDValue Op1, SDValue Op2, SDValue Op3);
   1136   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
   1137                                 ArrayRef<SDValue> Ops);
   1138   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1139                                 EVT VT2, SDValue Op1, SDValue Op2);
   1140   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1141                                 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
   1142   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1143                                 EVT VT2, ArrayRef<SDValue> Ops);
   1144   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1145                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
   1146   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1147                                 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
   1148                                 SDValue Op3);
   1149   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
   1150                                 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
   1151   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
   1152                                 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
   1153   MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
   1154                                 ArrayRef<SDValue> Ops);
   1155 
   1156   /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
   1157   SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1158                                  SDValue Operand);
   1159 
   1160   /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
   1161   SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
   1162                                 SDValue Operand, SDValue Subreg);
   1163 
   1164   /// Get the specified node if it's already available, or else return NULL.
   1165   SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
   1166                           const SDNodeFlags Flags = SDNodeFlags());
   1167 
   1168   /// Creates a SDDbgValue node.
   1169   SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
   1170                           bool IsIndirect, uint64_t Off, const DebugLoc &DL,
   1171                           unsigned O);
   1172 
   1173   /// Constant
   1174   SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
   1175                                   uint64_t Off, const DebugLoc &DL, unsigned O);
   1176 
   1177   /// FrameIndex
   1178   SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
   1179                                     uint64_t Off, const DebugLoc &DL,
   1180                                     unsigned O);
   1181 
   1182   /// Remove the specified node from the system. If any of its
   1183   /// operands then becomes dead, remove them as well. Inform UpdateListener
   1184   /// for each node deleted.
   1185   void RemoveDeadNode(SDNode *N);
   1186 
   1187   /// This method deletes the unreachable nodes in the
   1188   /// given list, and any nodes that become unreachable as a result.
   1189   void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
   1190 
   1191   /// Modify anything using 'From' to use 'To' instead.
   1192   /// This can cause recursive merging of nodes in the DAG.  Use the first
   1193   /// version if 'From' is known to have a single result, use the second
   1194   /// if you have two nodes with identical results (or if 'To' has a superset
   1195   /// of the results of 'From'), use the third otherwise.
   1196   ///
   1197   /// These methods all take an optional UpdateListener, which (if not null) is
   1198   /// informed about nodes that are deleted and modified due to recursive
   1199   /// changes in the dag.
   1200   ///
   1201   /// These functions only replace all existing uses. It's possible that as
   1202   /// these replacements are being performed, CSE may cause the From node
   1203   /// to be given new uses. These new uses of From are left in place, and
   1204   /// not automatically transferred to To.
   1205   ///
   1206   void ReplaceAllUsesWith(SDValue From, SDValue Op);
   1207   void ReplaceAllUsesWith(SDNode *From, SDNode *To);
   1208   void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
   1209 
   1210   /// Replace any uses of From with To, leaving
   1211   /// uses of other values produced by From.Val alone.
   1212   void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
   1213 
   1214   /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
   1215   /// This correctly handles the case where
   1216   /// there is an overlap between the From values and the To values.
   1217   void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
   1218                                   unsigned Num);
   1219 
   1220   /// If an existing load has uses of its chain, create a token factor node with
   1221   /// that chain and the new memory node's chain and update users of the old
   1222   /// chain to the token factor. This ensures that the new memory node will have
   1223   /// the same relative memory dependency position as the old load.
   1224   void makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
   1225 
   1226   /// Topological-sort the AllNodes list and a
   1227   /// assign a unique node id for each node in the DAG based on their
   1228   /// topological order. Returns the number of nodes.
   1229   unsigned AssignTopologicalOrder();
   1230 
   1231   /// Move node N in the AllNodes list to be immediately
   1232   /// before the given iterator Position. This may be used to update the
   1233   /// topological ordering when the list of nodes is modified.
   1234   void RepositionNode(allnodes_iterator Position, SDNode *N) {
   1235     AllNodes.insert(Position, AllNodes.remove(N));
   1236   }
   1237 
   1238   /// Returns an APFloat semantics tag appropriate for the given type. If VT is
   1239   /// a vector type, the element semantics are returned.
   1240   static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
   1241     switch (VT.getScalarType().getSimpleVT().SimpleTy) {
   1242     default: llvm_unreachable("Unknown FP format");
   1243     case MVT::f16:     return APFloat::IEEEhalf();
   1244     case MVT::f32:     return APFloat::IEEEsingle();
   1245     case MVT::f64:     return APFloat::IEEEdouble();
   1246     case MVT::f80:     return APFloat::x87DoubleExtended();
   1247     case MVT::f128:    return APFloat::IEEEquad();
   1248     case MVT::ppcf128: return APFloat::PPCDoubleDouble();
   1249     }
   1250   }
   1251 
   1252   /// Add a dbg_value SDNode. If SD is non-null that means the
   1253   /// value is produced by SD.
   1254   void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
   1255 
   1256   /// Get the debug values which reference the given SDNode.
   1257   ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
   1258     return DbgInfo->getSDDbgValues(SD);
   1259   }
   1260 
   1261 private:
   1262   /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
   1263   void TransferDbgValues(SDValue From, SDValue To);
   1264 
   1265 public:
   1266   /// Return true if there are any SDDbgValue nodes associated
   1267   /// with this SelectionDAG.
   1268   bool hasDebugValues() const { return !DbgInfo->empty(); }
   1269 
   1270   SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
   1271   SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
   1272 
   1273   SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
   1274     return DbgInfo->ByvalParmDbgBegin();
   1275   }
   1276 
   1277   SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
   1278     return DbgInfo->ByvalParmDbgEnd();
   1279   }
   1280 
   1281   void dump() const;
   1282 
   1283   /// Create a stack temporary, suitable for holding the specified value type.
   1284   /// If minAlign is specified, the slot size will have at least that alignment.
   1285   SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
   1286 
   1287   /// Create a stack temporary suitable for holding either of the specified
   1288   /// value types.
   1289   SDValue CreateStackTemporary(EVT VT1, EVT VT2);
   1290 
   1291   SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
   1292                            const GlobalAddressSDNode *GA,
   1293                            const SDNode *N2);
   1294 
   1295   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1296                                  SDNode *Cst1, SDNode *Cst2);
   1297 
   1298   SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1299                                  const ConstantSDNode *Cst1,
   1300                                  const ConstantSDNode *Cst2);
   1301 
   1302   SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
   1303                                        ArrayRef<SDValue> Ops,
   1304                                        const SDNodeFlags Flags = SDNodeFlags());
   1305 
   1306   /// Constant fold a setcc to true or false.
   1307   SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
   1308                     const SDLoc &dl);
   1309 
   1310   /// Return true if the sign bit of Op is known to be zero.
   1311   /// We use this predicate to simplify operations downstream.
   1312   bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
   1313 
   1314   /// Return true if 'Op & Mask' is known to be zero.  We
   1315   /// use this predicate to simplify operations downstream.  Op and Mask are
   1316   /// known to be the same type.
   1317   bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
   1318     const;
   1319 
   1320   /// Determine which bits of Op are known to be either zero or one and return
   1321   /// them in Known. For vectors, the known bits are those that are shared by
   1322   /// every vector element.
   1323   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1324   /// TargetLowering class to allow target nodes to be understood.
   1325   void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
   1326 
   1327   /// Determine which bits of Op are known to be either zero or one and return
   1328   /// them in Known. The DemandedElts argument allows us to only collect the
   1329   /// known bits that are shared by the requested vector elements.
   1330   /// Targets can implement the computeKnownBitsForTargetNode method in the
   1331   /// TargetLowering class to allow target nodes to be understood.
   1332   void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
   1333                         unsigned Depth = 0) const;
   1334 
   1335   /// Used to represent the possible overflow behavior of an operation.
   1336   /// Never: the operation cannot overflow.
   1337   /// Always: the operation will always overflow.
   1338   /// Sometime: the operation may or may not overflow.
   1339   enum OverflowKind {
   1340     OFK_Never,
   1341     OFK_Sometime,
   1342     OFK_Always,
   1343   };
   1344 
   1345   /// Determine if the result of the addition of 2 node can overflow.
   1346   OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
   1347 
   1348   /// Test if the given value is known to have exactly one bit set. This differs
   1349   /// from computeKnownBits in that it doesn't necessarily determine which bit
   1350   /// is set.
   1351   bool isKnownToBeAPowerOfTwo(SDValue Val) const;
   1352 
   1353   /// Return the number of times the sign bit of the register is replicated into
   1354   /// the other bits. We know that at least 1 bit is always equal to the sign
   1355   /// bit (itself), but other cases can give us information. For example,
   1356   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1357   /// to each other, so we return 3. Targets can implement the
   1358   /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
   1359   /// target nodes to be understood.
   1360   unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
   1361 
   1362   /// Return the number of times the sign bit of the register is replicated into
   1363   /// the other bits. We know that at least 1 bit is always equal to the sign
   1364   /// bit (itself), but other cases can give us information. For example,
   1365   /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
   1366   /// to each other, so we return 3. The DemandedElts argument allows
   1367   /// us to only collect the minimum sign bits of the requested vector elements.
   1368   /// Targets can implement the ComputeNumSignBitsForTarget method in the
   1369   /// TargetLowering class to allow target nodes to be understood.
   1370   unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
   1371                               unsigned Depth = 0) const;
   1372 
   1373   /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
   1374   /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
   1375   /// is guaranteed to have the same semantics as an ADD. This handles the
   1376   /// equivalence:
   1377   ///     X|Cst == X+Cst iff X&Cst = 0.
   1378   bool isBaseWithConstantOffset(SDValue Op) const;
   1379 
   1380   /// Test whether the given SDValue is known to never be NaN.
   1381   bool isKnownNeverNaN(SDValue Op) const;
   1382 
   1383   /// Test whether the given SDValue is known to never be positive or negative
   1384   /// zero.
   1385   bool isKnownNeverZero(SDValue Op) const;
   1386 
   1387   /// Test whether two SDValues are known to compare equal. This
   1388   /// is true if they are the same value, or if one is negative zero and the
   1389   /// other positive zero.
   1390   bool isEqualTo(SDValue A, SDValue B) const;
   1391 
   1392   /// Return true if A and B have no common bits set. As an example, this can
   1393   /// allow an 'add' to be transformed into an 'or'.
   1394   bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
   1395 
   1396   /// Utility function used by legalize and lowering to
   1397   /// "unroll" a vector operation by splitting out the scalars and operating
   1398   /// on each element individually.  If the ResNE is 0, fully unroll the vector
   1399   /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
   1400   /// If the  ResNE is greater than the width of the vector op, unroll the
   1401   /// vector op and fill the end of the resulting vector with UNDEFS.
   1402   SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
   1403 
   1404   /// Return true if loads are next to each other and can be
   1405   /// merged. Check that both are nonvolatile and if LD is loading
   1406   /// 'Bytes' bytes from a location that is 'Dist' units away from the
   1407   /// location that the 'Base' load is loading from.
   1408   bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
   1409                                       unsigned Bytes, int Dist) const;
   1410 
   1411   /// Infer alignment of a load / store address. Return 0 if
   1412   /// it cannot be inferred.
   1413   unsigned InferPtrAlignment(SDValue Ptr) const;
   1414 
   1415   /// Compute the VTs needed for the low/hi parts of a type
   1416   /// which is split (or expanded) into two not necessarily identical pieces.
   1417   std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
   1418 
   1419   /// Split the vector with EXTRACT_SUBVECTOR using the provides
   1420   /// VTs and return the low/high part.
   1421   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
   1422                                           const EVT &LoVT, const EVT &HiVT);
   1423 
   1424   /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
   1425   std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
   1426     EVT LoVT, HiVT;
   1427     std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
   1428     return SplitVector(N, DL, LoVT, HiVT);
   1429   }
   1430 
   1431   /// Split the node's operand with EXTRACT_SUBVECTOR and
   1432   /// return the low/high part.
   1433   std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
   1434   {
   1435     return SplitVector(N->getOperand(OpNo), SDLoc(N));
   1436   }
   1437 
   1438   /// Append the extracted elements from Start to Count out of the vector Op
   1439   /// in Args. If Count is 0, all of the elements will be extracted.
   1440   void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
   1441                              unsigned Start = 0, unsigned Count = 0);
   1442 
   1443   /// Compute the default alignment value for the given type.
   1444   unsigned getEVTAlignment(EVT MemoryVT) const;
   1445 
   1446   /// Test whether the given value is a constant int or similar node.
   1447   SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
   1448 
   1449   /// Test whether the given value is a constant FP or similar node.
   1450   SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
   1451 
   1452   /// \returns true if \p N is any kind of constant or build_vector of
   1453   /// constants, int or float. If a vector, it may not necessarily be a splat.
   1454   inline bool isConstantValueOfAnyType(SDValue N) {
   1455     return isConstantIntBuildVectorOrConstantInt(N) ||
   1456            isConstantFPBuildVectorOrConstantFP(N);
   1457   }
   1458 
   1459 private:
   1460   void InsertNode(SDNode *N);
   1461   bool RemoveNodeFromCSEMaps(SDNode *N);
   1462   void AddModifiedNodeToCSEMaps(SDNode *N);
   1463   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
   1464   SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
   1465                                void *&InsertPos);
   1466   SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
   1467                                void *&InsertPos);
   1468   SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
   1469 
   1470   void DeleteNodeNotInCSEMaps(SDNode *N);
   1471   void DeallocateNode(SDNode *N);
   1472 
   1473   void allnodes_clear();
   1474 
   1475   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1476   /// not, return the insertion token that will make insertion faster.  This
   1477   /// overload is for nodes other than Constant or ConstantFP, use the other one
   1478   /// for those.
   1479   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
   1480 
   1481   /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
   1482   /// not, return the insertion token that will make insertion faster.  Performs
   1483   /// additional processing for constant nodes.
   1484   SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
   1485                               void *&InsertPos);
   1486 
   1487   /// List of non-single value types.
   1488   FoldingSet<SDVTListNode> VTListMap;
   1489 
   1490   /// Maps to auto-CSE operations.
   1491   std::vector<CondCodeSDNode*> CondCodeNodes;
   1492 
   1493   std::vector<SDNode*> ValueTypeNodes;
   1494   std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
   1495   StringMap<SDNode*> ExternalSymbols;
   1496 
   1497   std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
   1498   DenseMap<MCSymbol *, SDNode *> MCSymbols;
   1499 };
   1500 
   1501 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
   1502   using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
   1503 
   1504   static nodes_iterator nodes_begin(SelectionDAG *G) {
   1505     return nodes_iterator(G->allnodes_begin());
   1506   }
   1507 
   1508   static nodes_iterator nodes_end(SelectionDAG *G) {
   1509     return nodes_iterator(G->allnodes_end());
   1510   }
   1511 };
   1512 
   1513 template <class TargetMemSDNode>
   1514 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
   1515                                          ArrayRef<SDValue> Ops,
   1516                                          const SDLoc &dl, EVT MemVT,
   1517                                          MachineMemOperand *MMO) {
   1518   /// Compose node ID and try to find an existing node.
   1519   FoldingSetNodeID ID;
   1520   unsigned Opcode =
   1521     TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
   1522   ID.AddInteger(Opcode);
   1523   ID.AddPointer(VTs.VTs);
   1524   for (auto& Op : Ops) {
   1525     ID.AddPointer(Op.getNode());
   1526     ID.AddInteger(Op.getResNo());
   1527   }
   1528   ID.AddInteger(MemVT.getRawBits());
   1529   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
   1530   ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
   1531     dl.getIROrder(), VTs, MemVT, MMO));
   1532 
   1533   void *IP = nullptr;
   1534   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
   1535     cast<TargetMemSDNode>(E)->refineAlignment(MMO);
   1536     return SDValue(E, 0);
   1537   }
   1538 
   1539   /// Existing node was not found. Create a new one.
   1540   auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
   1541                                        MemVT, MMO);
   1542   createOperands(N, Ops);
   1543   CSEMap.InsertNode(N, IP);
   1544   InsertNode(N);
   1545   return SDValue(N, 0);
   1546 }
   1547 
   1548 } // end namespace llvm
   1549 
   1550 #endif // LLVM_CODEGEN_SELECTIONDAG_H
   1551