Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CallingConvLower.h - Calling Conventions -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the CCState and CCValAssign classes, used for lowering
     11 // and implementing calling conventions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
     16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
     17 
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/IR/CallingConv.h"
     22 #include "llvm/MC/MCRegisterInfo.h"
     23 #include "llvm/Target/TargetCallingConv.h"
     24 
     25 namespace llvm {
     26 class CCState;
     27 class MVT;
     28 class TargetMachine;
     29 class TargetRegisterInfo;
     30 
     31 /// CCValAssign - Represent assignment of one arg/retval to a location.
     32 class CCValAssign {
     33 public:
     34   enum LocInfo {
     35     Full,      // The value fills the full location.
     36     SExt,      // The value is sign extended in the location.
     37     ZExt,      // The value is zero extended in the location.
     38     AExt,      // The value is extended with undefined upper bits.
     39     SExtUpper, // The value is in the upper bits of the location and should be
     40                // sign extended when retrieved.
     41     ZExtUpper, // The value is in the upper bits of the location and should be
     42                // zero extended when retrieved.
     43     AExtUpper, // The value is in the upper bits of the location and should be
     44                // extended with undefined upper bits when retrieved.
     45     BCvt,      // The value is bit-converted in the location.
     46     VExt,      // The value is vector-widened in the location.
     47                // FIXME: Not implemented yet. Code that uses AExt to mean
     48                // vector-widen should be fixed to use VExt instead.
     49     FPExt,     // The floating-point value is fp-extended in the location.
     50     Indirect   // The location contains pointer to the value.
     51     // TODO: a subset of the value is in the location.
     52   };
     53 
     54 private:
     55   /// ValNo - This is the value number begin assigned (e.g. an argument number).
     56   unsigned ValNo;
     57 
     58   /// Loc is either a stack offset or a register number.
     59   unsigned Loc;
     60 
     61   /// isMem - True if this is a memory loc, false if it is a register loc.
     62   unsigned isMem : 1;
     63 
     64   /// isCustom - True if this arg/retval requires special handling.
     65   unsigned isCustom : 1;
     66 
     67   /// Information about how the value is assigned.
     68   LocInfo HTP : 6;
     69 
     70   /// ValVT - The type of the value being assigned.
     71   MVT ValVT;
     72 
     73   /// LocVT - The type of the location being assigned to.
     74   MVT LocVT;
     75 public:
     76 
     77   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
     78                             unsigned RegNo, MVT LocVT,
     79                             LocInfo HTP) {
     80     CCValAssign Ret;
     81     Ret.ValNo = ValNo;
     82     Ret.Loc = RegNo;
     83     Ret.isMem = false;
     84     Ret.isCustom = false;
     85     Ret.HTP = HTP;
     86     Ret.ValVT = ValVT;
     87     Ret.LocVT = LocVT;
     88     return Ret;
     89   }
     90 
     91   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
     92                                   unsigned RegNo, MVT LocVT,
     93                                   LocInfo HTP) {
     94     CCValAssign Ret;
     95     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
     96     Ret.isCustom = true;
     97     return Ret;
     98   }
     99 
    100   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
    101                             unsigned Offset, MVT LocVT,
    102                             LocInfo HTP) {
    103     CCValAssign Ret;
    104     Ret.ValNo = ValNo;
    105     Ret.Loc = Offset;
    106     Ret.isMem = true;
    107     Ret.isCustom = false;
    108     Ret.HTP = HTP;
    109     Ret.ValVT = ValVT;
    110     Ret.LocVT = LocVT;
    111     return Ret;
    112   }
    113 
    114   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
    115                                   unsigned Offset, MVT LocVT,
    116                                   LocInfo HTP) {
    117     CCValAssign Ret;
    118     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
    119     Ret.isCustom = true;
    120     return Ret;
    121   }
    122 
    123   // There is no need to differentiate between a pending CCValAssign and other
    124   // kinds, as they are stored in a different list.
    125   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
    126                                 LocInfo HTP, unsigned ExtraInfo = 0) {
    127     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
    128   }
    129 
    130   void convertToReg(unsigned RegNo) {
    131     Loc = RegNo;
    132     isMem = false;
    133   }
    134 
    135   void convertToMem(unsigned Offset) {
    136     Loc = Offset;
    137     isMem = true;
    138   }
    139 
    140   unsigned getValNo() const { return ValNo; }
    141   MVT getValVT() const { return ValVT; }
    142 
    143   bool isRegLoc() const { return !isMem; }
    144   bool isMemLoc() const { return isMem; }
    145 
    146   bool needsCustom() const { return isCustom; }
    147 
    148   unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
    149   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
    150   unsigned getExtraInfo() const { return Loc; }
    151   MVT getLocVT() const { return LocVT; }
    152 
    153   LocInfo getLocInfo() const { return HTP; }
    154   bool isExtInLoc() const {
    155     return (HTP == AExt || HTP == SExt || HTP == ZExt);
    156   }
    157 
    158   bool isUpperBitsInLoc() const {
    159     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
    160   }
    161 };
    162 
    163 /// Describes a register that needs to be forwarded from the prologue to a
    164 /// musttail call.
    165 struct ForwardedRegister {
    166   ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
    167       : VReg(VReg), PReg(PReg), VT(VT) {}
    168   unsigned VReg;
    169   MCPhysReg PReg;
    170   MVT VT;
    171 };
    172 
    173 /// CCAssignFn - This function assigns a location for Val, updating State to
    174 /// reflect the change.  It returns 'true' if it failed to handle Val.
    175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
    176                         MVT LocVT, CCValAssign::LocInfo LocInfo,
    177                         ISD::ArgFlagsTy ArgFlags, CCState &State);
    178 
    179 /// CCCustomFn - This function assigns a location for Val, possibly updating
    180 /// all args to reflect changes and indicates if it handled it. It must set
    181 /// isCustom if it handles the arg and returns true.
    182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
    183                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
    184                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
    185 
    186 /// CCState - This class holds information needed while lowering arguments and
    187 /// return values.  It captures which registers are already assigned and which
    188 /// stack slots are used.  It provides accessors to allocate these values.
    189 class CCState {
    190 private:
    191   CallingConv::ID CallingConv;
    192   bool IsVarArg;
    193   bool AnalyzingMustTailForwardedRegs = false;
    194   MachineFunction &MF;
    195   const TargetRegisterInfo &TRI;
    196   SmallVectorImpl<CCValAssign> &Locs;
    197   LLVMContext &Context;
    198 
    199   unsigned StackOffset;
    200   unsigned MaxStackArgAlign;
    201   SmallVector<uint32_t, 16> UsedRegs;
    202   SmallVector<CCValAssign, 4> PendingLocs;
    203 
    204   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
    205   //
    206   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
    207   // tracking.
    208   // Or, in another words it tracks byval parameters that are stored in
    209   // general purpose registers.
    210   //
    211   // For 4 byte stack alignment,
    212   // instance index means byval parameter number in formal
    213   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
    214   // then, for function "foo":
    215   //
    216   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
    217   //
    218   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
    219   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
    220   //
    221   // In case of 8 bytes stack alignment,
    222   // ByValRegs may also contain information about wasted registers.
    223   // In function shown above, r3 would be wasted according to AAPCS rules.
    224   // And in that case ByValRegs[1].Waste would be "true".
    225   // ByValRegs vector size still would be 2,
    226   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
    227   //
    228   // Supposed use-case for this collection:
    229   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
    230   // 2. HandleByVal fillups ByValRegs.
    231   // 3. Argument analysis (LowerFormatArguments, for example). After
    232   // some byval argument was analyzed, InRegsParamsProcessed is increased.
    233   struct ByValInfo {
    234     ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
    235       Begin(B), End(E), Waste(IsWaste) {}
    236     // First register allocated for current parameter.
    237     unsigned Begin;
    238 
    239     // First after last register allocated for current parameter.
    240     unsigned End;
    241 
    242     // Means that current range of registers doesn't belong to any
    243     // parameters. It was wasted due to stack alignment rules.
    244     // For more information see:
    245     // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
    246     bool Waste;
    247   };
    248   SmallVector<ByValInfo, 4 > ByValRegs;
    249 
    250   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
    251   // during argument analysis.
    252   unsigned InRegsParamsProcessed;
    253 
    254 public:
    255   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
    256           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
    257 
    258   void addLoc(const CCValAssign &V) {
    259     Locs.push_back(V);
    260   }
    261 
    262   LLVMContext &getContext() const { return Context; }
    263   MachineFunction &getMachineFunction() const { return MF; }
    264   CallingConv::ID getCallingConv() const { return CallingConv; }
    265   bool isVarArg() const { return IsVarArg; }
    266 
    267   /// getNextStackOffset - Return the next stack offset such that all stack
    268   /// slots satisfy their alignment requirements.
    269   unsigned getNextStackOffset() const {
    270     return StackOffset;
    271   }
    272 
    273   /// getAlignedCallFrameSize - Return the size of the call frame needed to
    274   /// be able to store all arguments and such that the alignment requirement
    275   /// of each of the arguments is satisfied.
    276   unsigned getAlignedCallFrameSize() const {
    277     return alignTo(StackOffset, MaxStackArgAlign);
    278   }
    279 
    280   /// isAllocated - Return true if the specified register (or an alias) is
    281   /// allocated.
    282   bool isAllocated(unsigned Reg) const {
    283     return UsedRegs[Reg/32] & (1 << (Reg&31));
    284   }
    285 
    286   /// AnalyzeFormalArguments - Analyze an array of argument values,
    287   /// incorporating info about the formals into this state.
    288   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
    289                               CCAssignFn Fn);
    290 
    291   /// The function will invoke AnalyzeFormalArguments.
    292   void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
    293                         CCAssignFn Fn) {
    294     AnalyzeFormalArguments(Ins, Fn);
    295   }
    296 
    297   /// AnalyzeReturn - Analyze the returned values of a return,
    298   /// incorporating info about the result values into this state.
    299   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
    300                      CCAssignFn Fn);
    301 
    302   /// CheckReturn - Analyze the return values of a function, returning
    303   /// true if the return can be performed without sret-demotion, and
    304   /// false otherwise.
    305   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
    306                    CCAssignFn Fn);
    307 
    308   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
    309   /// incorporating info about the passed values into this state.
    310   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
    311                            CCAssignFn Fn);
    312 
    313   /// AnalyzeCallOperands - Same as above except it takes vectors of types
    314   /// and argument flags.
    315   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
    316                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
    317                            CCAssignFn Fn);
    318 
    319   /// The function will invoke AnalyzeCallOperands.
    320   void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
    321                         CCAssignFn Fn) {
    322     AnalyzeCallOperands(Outs, Fn);
    323   }
    324 
    325   /// AnalyzeCallResult - Analyze the return values of a call,
    326   /// incorporating info about the passed values into this state.
    327   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
    328                          CCAssignFn Fn);
    329 
    330   /// A shadow allocated register is a register that was allocated
    331   /// but wasn't added to the location list (Locs).
    332   /// \returns true if the register was allocated as shadow or false otherwise.
    333   bool IsShadowAllocatedReg(unsigned Reg) const;
    334 
    335   /// AnalyzeCallResult - Same as above except it's specialized for calls which
    336   /// produce a single value.
    337   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
    338 
    339   /// getFirstUnallocated - Return the index of the first unallocated register
    340   /// in the set, or Regs.size() if they are all allocated.
    341   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
    342     for (unsigned i = 0; i < Regs.size(); ++i)
    343       if (!isAllocated(Regs[i]))
    344         return i;
    345     return Regs.size();
    346   }
    347 
    348   /// AllocateReg - Attempt to allocate one register.  If it is not available,
    349   /// return zero.  Otherwise, return the register, marking it and any aliases
    350   /// as allocated.
    351   unsigned AllocateReg(unsigned Reg) {
    352     if (isAllocated(Reg)) return 0;
    353     MarkAllocated(Reg);
    354     return Reg;
    355   }
    356 
    357   /// Version of AllocateReg with extra register to be shadowed.
    358   unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
    359     if (isAllocated(Reg)) return 0;
    360     MarkAllocated(Reg);
    361     MarkAllocated(ShadowReg);
    362     return Reg;
    363   }
    364 
    365   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
    366   /// are available, return zero.  Otherwise, return the first one available,
    367   /// marking it and any aliases as allocated.
    368   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
    369     unsigned FirstUnalloc = getFirstUnallocated(Regs);
    370     if (FirstUnalloc == Regs.size())
    371       return 0;    // Didn't find the reg.
    372 
    373     // Mark the register and any aliases as allocated.
    374     unsigned Reg = Regs[FirstUnalloc];
    375     MarkAllocated(Reg);
    376     return Reg;
    377   }
    378 
    379   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
    380   /// registers. If this is not possible, return zero. Otherwise, return the first
    381   /// register of the block that were allocated, marking the entire block as allocated.
    382   unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
    383     if (RegsRequired > Regs.size())
    384       return 0;
    385 
    386     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
    387          ++StartIdx) {
    388       bool BlockAvailable = true;
    389       // Check for already-allocated regs in this block
    390       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
    391         if (isAllocated(Regs[StartIdx + BlockIdx])) {
    392           BlockAvailable = false;
    393           break;
    394         }
    395       }
    396       if (BlockAvailable) {
    397         // Mark the entire block as allocated
    398         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
    399           MarkAllocated(Regs[StartIdx + BlockIdx]);
    400         }
    401         return Regs[StartIdx];
    402       }
    403     }
    404     // No block was available
    405     return 0;
    406   }
    407 
    408   /// Version of AllocateReg with list of registers to be shadowed.
    409   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
    410     unsigned FirstUnalloc = getFirstUnallocated(Regs);
    411     if (FirstUnalloc == Regs.size())
    412       return 0;    // Didn't find the reg.
    413 
    414     // Mark the register and any aliases as allocated.
    415     unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
    416     MarkAllocated(Reg);
    417     MarkAllocated(ShadowReg);
    418     return Reg;
    419   }
    420 
    421   /// AllocateStack - Allocate a chunk of stack space with the specified size
    422   /// and alignment.
    423   unsigned AllocateStack(unsigned Size, unsigned Align) {
    424     assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
    425     StackOffset = alignTo(StackOffset, Align);
    426     unsigned Result = StackOffset;
    427     StackOffset += Size;
    428     MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
    429     ensureMaxAlignment(Align);
    430     return Result;
    431   }
    432 
    433   void ensureMaxAlignment(unsigned Align) {
    434     if (!AnalyzingMustTailForwardedRegs)
    435       MF.getFrameInfo().ensureMaxAlignment(Align);
    436   }
    437 
    438   /// Version of AllocateStack with extra register to be shadowed.
    439   unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
    440     MarkAllocated(ShadowReg);
    441     return AllocateStack(Size, Align);
    442   }
    443 
    444   /// Version of AllocateStack with list of extra registers to be shadowed.
    445   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
    446   unsigned AllocateStack(unsigned Size, unsigned Align,
    447                          ArrayRef<MCPhysReg> ShadowRegs) {
    448     for (unsigned i = 0; i < ShadowRegs.size(); ++i)
    449       MarkAllocated(ShadowRegs[i]);
    450     return AllocateStack(Size, Align);
    451   }
    452 
    453   // HandleByVal - Allocate a stack slot large enough to pass an argument by
    454   // value. The size and alignment information of the argument is encoded in its
    455   // parameter attribute.
    456   void HandleByVal(unsigned ValNo, MVT ValVT,
    457                    MVT LocVT, CCValAssign::LocInfo LocInfo,
    458                    int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
    459 
    460   // Returns count of byval arguments that are to be stored (even partly)
    461   // in registers.
    462   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
    463 
    464   // Returns count of byval in-regs arguments proceed.
    465   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
    466 
    467   // Get information about N-th byval parameter that is stored in registers.
    468   // Here "ByValParamIndex" is N.
    469   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
    470                           unsigned& BeginReg, unsigned& EndReg) const {
    471     assert(InRegsParamRecordIndex < ByValRegs.size() &&
    472            "Wrong ByVal parameter index");
    473 
    474     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
    475     BeginReg = info.Begin;
    476     EndReg = info.End;
    477   }
    478 
    479   // Add information about parameter that is kept in registers.
    480   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
    481     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
    482   }
    483 
    484   // Goes either to next byval parameter (excluding "waste" record), or
    485   // to the end of collection.
    486   // Returns false, if end is reached.
    487   bool nextInRegsParam() {
    488     unsigned e = ByValRegs.size();
    489     if (InRegsParamsProcessed < e)
    490       ++InRegsParamsProcessed;
    491     return InRegsParamsProcessed < e;
    492   }
    493 
    494   // Clear byval registers tracking info.
    495   void clearByValRegsInfo() {
    496     InRegsParamsProcessed = 0;
    497     ByValRegs.clear();
    498   }
    499 
    500   // Rewind byval registers tracking info.
    501   void rewindByValRegsInfo() {
    502     InRegsParamsProcessed = 0;
    503   }
    504 
    505   // Get list of pending assignments
    506   SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() {
    507     return PendingLocs;
    508   }
    509 
    510   /// Compute the remaining unused register parameters that would be used for
    511   /// the given value type. This is useful when varargs are passed in the
    512   /// registers that normal prototyped parameters would be passed in, or for
    513   /// implementing perfect forwarding.
    514   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
    515                                    CCAssignFn Fn);
    516 
    517   /// Compute the set of registers that need to be preserved and forwarded to
    518   /// any musttail calls.
    519   void analyzeMustTailForwardedRegisters(
    520       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
    521       CCAssignFn Fn);
    522 
    523   /// Returns true if the results of the two calling conventions are compatible.
    524   /// This is usually part of the check for tailcall eligibility.
    525   static bool resultsCompatible(CallingConv::ID CalleeCC,
    526                                 CallingConv::ID CallerCC, MachineFunction &MF,
    527                                 LLVMContext &C,
    528                                 const SmallVectorImpl<ISD::InputArg> &Ins,
    529                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
    530 
    531   /// The function runs an additional analysis pass over function arguments.
    532   /// It will mark each argument with the attribute flag SecArgPass.
    533   /// After running, it will sort the locs list.
    534   template <class T>
    535   void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
    536                                   CCAssignFn Fn) {
    537     unsigned NumFirstPassLocs = Locs.size();
    538 
    539     /// Creates similar argument list to \p Args in which each argument is
    540     /// marked using SecArgPass flag.
    541     SmallVector<T, 16> SecPassArg;
    542     // SmallVector<ISD::InputArg, 16> SecPassArg;
    543     for (auto Arg : Args) {
    544       Arg.Flags.setSecArgPass();
    545       SecPassArg.push_back(Arg);
    546     }
    547 
    548     // Run the second argument pass
    549     AnalyzeArguments(SecPassArg, Fn);
    550 
    551     // Sort the locations of the arguments according to their original position.
    552     SmallVector<CCValAssign, 16> TmpArgLocs;
    553     std::swap(TmpArgLocs, Locs);
    554     auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
    555     std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
    556                std::back_inserter(Locs),
    557                [](const CCValAssign &A, const CCValAssign &B) -> bool {
    558                  return A.getValNo() < B.getValNo();
    559                });
    560   }
    561 
    562 private:
    563   /// MarkAllocated - Mark a register and all of its aliases as allocated.
    564   void MarkAllocated(unsigned Reg);
    565 };
    566 
    567 
    568 
    569 } // end namespace llvm
    570 
    571 #endif
    572