Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the CCState and CCValAssign classes, used for lowering
     11 // and implementing calling conventions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
     16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
     17 
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/IR/CallingConv.h"
     22 #include "llvm/MC/MCRegisterInfo.h"
     23 #include "llvm/Target/TargetCallingConv.h"
     24 
     25 namespace llvm {
     26 
     27 class CCState;
     28 class MVT;
     29 class TargetMachine;
     30 class TargetRegisterInfo;
     31 
     32 /// CCValAssign - Represent assignment of one arg/retval to a location.
     33 class CCValAssign {
     34 public:
     35   enum LocInfo {
     36     Full,      // The value fills the full location.
     37     SExt,      // The value is sign extended in the location.
     38     ZExt,      // The value is zero extended in the location.
     39     AExt,      // The value is extended with undefined upper bits.
     40     SExtUpper, // The value is in the upper bits of the location and should be
     41                // sign extended when retrieved.
     42     ZExtUpper, // The value is in the upper bits of the location and should be
     43                // zero extended when retrieved.
     44     AExtUpper, // The value is in the upper bits of the location and should be
     45                // extended with undefined upper bits when retrieved.
     46     BCvt,      // The value is bit-converted in the location.
     47     VExt,      // The value is vector-widened in the location.
     48                // FIXME: Not implemented yet. Code that uses AExt to mean
     49                // vector-widen should be fixed to use VExt instead.
     50     FPExt,     // The floating-point value is fp-extended in the location.
     51     Indirect   // The location contains pointer to the value.
     52     // TODO: a subset of the value is in the location.
     53   };
     54 
     55 private:
     56   /// ValNo - This is the value number begin assigned (e.g. an argument number).
     57   unsigned ValNo;
     58 
     59   /// Loc is either a stack offset or a register number.
     60   unsigned Loc;
     61 
     62   /// isMem - True if this is a memory loc, false if it is a register loc.
     63   unsigned isMem : 1;
     64 
     65   /// isCustom - True if this arg/retval requires special handling.
     66   unsigned isCustom : 1;
     67 
     68   /// Information about how the value is assigned.
     69   LocInfo HTP : 6;
     70 
     71   /// ValVT - The type of the value being assigned.
     72   MVT ValVT;
     73 
     74   /// LocVT - The type of the location being assigned to.
     75   MVT LocVT;
     76 public:
     77 
     78   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
     79                             unsigned RegNo, MVT LocVT,
     80                             LocInfo HTP) {
     81     CCValAssign Ret;
     82     Ret.ValNo = ValNo;
     83     Ret.Loc = RegNo;
     84     Ret.isMem = false;
     85     Ret.isCustom = false;
     86     Ret.HTP = HTP;
     87     Ret.ValVT = ValVT;
     88     Ret.LocVT = LocVT;
     89     return Ret;
     90   }
     91 
     92   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
     93                                   unsigned RegNo, MVT LocVT,
     94                                   LocInfo HTP) {
     95     CCValAssign Ret;
     96     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
     97     Ret.isCustom = true;
     98     return Ret;
     99   }
    100 
    101   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
    102                             unsigned Offset, MVT LocVT,
    103                             LocInfo HTP) {
    104     CCValAssign Ret;
    105     Ret.ValNo = ValNo;
    106     Ret.Loc = Offset;
    107     Ret.isMem = true;
    108     Ret.isCustom = false;
    109     Ret.HTP = HTP;
    110     Ret.ValVT = ValVT;
    111     Ret.LocVT = LocVT;
    112     return Ret;
    113   }
    114 
    115   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
    116                                   unsigned Offset, MVT LocVT,
    117                                   LocInfo HTP) {
    118     CCValAssign Ret;
    119     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
    120     Ret.isCustom = true;
    121     return Ret;
    122   }
    123 
    124   // There is no need to differentiate between a pending CCValAssign and other
    125   // kinds, as they are stored in a different list.
    126   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
    127                                 LocInfo HTP, unsigned ExtraInfo = 0) {
    128     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
    129   }
    130 
    131   void convertToReg(unsigned RegNo) {
    132     Loc = RegNo;
    133     isMem = false;
    134   }
    135 
    136   void convertToMem(unsigned Offset) {
    137     Loc = Offset;
    138     isMem = true;
    139   }
    140 
    141   unsigned getValNo() const { return ValNo; }
    142   MVT getValVT() const { return ValVT; }
    143 
    144   bool isRegLoc() const { return !isMem; }
    145   bool isMemLoc() const { return isMem; }
    146 
    147   bool needsCustom() const { return isCustom; }
    148 
    149   unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
    150   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
    151   unsigned getExtraInfo() const { return Loc; }
    152   MVT getLocVT() const { return LocVT; }
    153 
    154   LocInfo getLocInfo() const { return HTP; }
    155   bool isExtInLoc() const {
    156     return (HTP == AExt || HTP == SExt || HTP == ZExt);
    157   }
    158 
    159   bool isUpperBitsInLoc() const {
    160     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
    161   }
    162 };
    163 
    164 /// Describes a register that needs to be forwarded from the prologue to a
    165 /// musttail call.
    166 struct ForwardedRegister {
    167   ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
    168       : VReg(VReg), PReg(PReg), VT(VT) {}
    169   unsigned VReg;
    170   MCPhysReg PReg;
    171   MVT VT;
    172 };
    173 
    174 /// CCAssignFn - This function assigns a location for Val, updating State to
    175 /// reflect the change.  It returns 'true' if it failed to handle Val.
    176 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
    177                         MVT LocVT, CCValAssign::LocInfo LocInfo,
    178                         ISD::ArgFlagsTy ArgFlags, CCState &State);
    179 
    180 /// CCCustomFn - This function assigns a location for Val, possibly updating
    181 /// all args to reflect changes and indicates if it handled it. It must set
    182 /// isCustom if it handles the arg and returns true.
    183 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
    184                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
    185                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
    186 
    187 /// CCState - This class holds information needed while lowering arguments and
    188 /// return values.  It captures which registers are already assigned and which
    189 /// stack slots are used.  It provides accessors to allocate these values.
    190 class CCState {
    191 private:
    192   CallingConv::ID CallingConv;
    193   bool IsVarArg;
    194   bool AnalyzingMustTailForwardedRegs = false;
    195   MachineFunction &MF;
    196   const TargetRegisterInfo &TRI;
    197   SmallVectorImpl<CCValAssign> &Locs;
    198   LLVMContext &Context;
    199 
    200   unsigned StackOffset;
    201   unsigned MaxStackArgAlign;
    202   SmallVector<uint32_t, 16> UsedRegs;
    203   SmallVector<CCValAssign, 4> PendingLocs;
    204 
    205   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
    206   //
    207   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
    208   // tracking.
    209   // Or, in another words it tracks byval parameters that are stored in
    210   // general purpose registers.
    211   //
    212   // For 4 byte stack alignment,
    213   // instance index means byval parameter number in formal
    214   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
    215   // then, for function "foo":
    216   //
    217   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
    218   //
    219   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
    220   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
    221   //
    222   // In case of 8 bytes stack alignment,
    223   // ByValRegs may also contain information about wasted registers.
    224   // In function shown above, r3 would be wasted according to AAPCS rules.
    225   // And in that case ByValRegs[1].Waste would be "true".
    226   // ByValRegs vector size still would be 2,
    227   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
    228   //
    229   // Supposed use-case for this collection:
    230   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
    231   // 2. HandleByVal fillups ByValRegs.
    232   // 3. Argument analysis (LowerFormatArguments, for example). After
    233   // some byval argument was analyzed, InRegsParamsProcessed is increased.
    234   struct ByValInfo {
    235     ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
    236       Begin(B), End(E), Waste(IsWaste) {}
    237     // First register allocated for current parameter.
    238     unsigned Begin;
    239 
    240     // First after last register allocated for current parameter.
    241     unsigned End;
    242 
    243     // Means that current range of registers doesn't belong to any
    244     // parameters. It was wasted due to stack alignment rules.
    245     // For more information see:
    246     // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
    247     bool Waste;
    248   };
    249   SmallVector<ByValInfo, 4 > ByValRegs;
    250 
    251   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
    252   // during argument analysis.
    253   unsigned InRegsParamsProcessed;
    254 
    255 public:
    256   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
    257           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
    258 
    259   void addLoc(const CCValAssign &V) {
    260     Locs.push_back(V);
    261   }
    262 
    263   LLVMContext &getContext() const { return Context; }
    264   MachineFunction &getMachineFunction() const { return MF; }
    265   CallingConv::ID getCallingConv() const { return CallingConv; }
    266   bool isVarArg() const { return IsVarArg; }
    267 
    268   /// getNextStackOffset - Return the next stack offset such that all stack
    269   /// slots satisfy their alignment requirements.
    270   unsigned getNextStackOffset() const {
    271     return StackOffset;
    272   }
    273 
    274   /// getAlignedCallFrameSize - Return the size of the call frame needed to
    275   /// be able to store all arguments and such that the alignment requirement
    276   /// of each of the arguments is satisfied.
    277   unsigned getAlignedCallFrameSize() const {
    278     return alignTo(StackOffset, MaxStackArgAlign);
    279   }
    280 
    281   /// isAllocated - Return true if the specified register (or an alias) is
    282   /// allocated.
    283   bool isAllocated(unsigned Reg) const {
    284     return UsedRegs[Reg/32] & (1 << (Reg&31));
    285   }
    286 
    287   /// AnalyzeFormalArguments - Analyze an array of argument values,
    288   /// incorporating info about the formals into this state.
    289   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
    290                               CCAssignFn Fn);
    291 
    292   /// The function will invoke AnalyzeFormalArguments.
    293   void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
    294                         CCAssignFn Fn) {
    295     AnalyzeFormalArguments(Ins, Fn);
    296   }
    297 
    298   /// AnalyzeReturn - Analyze the returned values of a return,
    299   /// incorporating info about the result values into this state.
    300   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
    301                      CCAssignFn Fn);
    302 
    303   /// CheckReturn - Analyze the return values of a function, returning
    304   /// true if the return can be performed without sret-demotion, and
    305   /// false otherwise.
    306   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
    307                    CCAssignFn Fn);
    308 
    309   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
    310   /// incorporating info about the passed values into this state.
    311   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
    312                            CCAssignFn Fn);
    313 
    314   /// AnalyzeCallOperands - Same as above except it takes vectors of types
    315   /// and argument flags.
    316   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
    317                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
    318                            CCAssignFn Fn);
    319 
    320   /// The function will invoke AnalyzeCallOperands.
    321   void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
    322                         CCAssignFn Fn) {
    323     AnalyzeCallOperands(Outs, Fn);
    324   }
    325 
    326   /// AnalyzeCallResult - Analyze the return values of a call,
    327   /// incorporating info about the passed values into this state.
    328   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
    329                          CCAssignFn Fn);
    330 
    331   /// A shadow allocated register is a register that was allocated
    332   /// but wasn't added to the location list (Locs).
    333   /// \returns true if the register was allocated as shadow or false otherwise.
    334   bool IsShadowAllocatedReg(unsigned Reg) const;
    335 
    336   /// AnalyzeCallResult - Same as above except it's specialized for calls which
    337   /// produce a single value.
    338   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
    339 
    340   /// getFirstUnallocated - Return the index of the first unallocated register
    341   /// in the set, or Regs.size() if they are all allocated.
    342   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
    343     for (unsigned i = 0; i < Regs.size(); ++i)
    344       if (!isAllocated(Regs[i]))
    345         return i;
    346     return Regs.size();
    347   }
    348 
    349   /// AllocateReg - Attempt to allocate one register.  If it is not available,
    350   /// return zero.  Otherwise, return the register, marking it and any aliases
    351   /// as allocated.
    352   unsigned AllocateReg(unsigned Reg) {
    353     if (isAllocated(Reg)) return 0;
    354     MarkAllocated(Reg);
    355     return Reg;
    356   }
    357 
    358   /// Version of AllocateReg with extra register to be shadowed.
    359   unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
    360     if (isAllocated(Reg)) return 0;
    361     MarkAllocated(Reg);
    362     MarkAllocated(ShadowReg);
    363     return Reg;
    364   }
    365 
    366   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
    367   /// are available, return zero.  Otherwise, return the first one available,
    368   /// marking it and any aliases as allocated.
    369   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
    370     unsigned FirstUnalloc = getFirstUnallocated(Regs);
    371     if (FirstUnalloc == Regs.size())
    372       return 0;    // Didn't find the reg.
    373 
    374     // Mark the register and any aliases as allocated.
    375     unsigned Reg = Regs[FirstUnalloc];
    376     MarkAllocated(Reg);
    377     return Reg;
    378   }
    379 
    380   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
    381   /// registers. If this is not possible, return zero. Otherwise, return the first
    382   /// register of the block that were allocated, marking the entire block as allocated.
    383   unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
    384     if (RegsRequired > Regs.size())
    385       return 0;
    386 
    387     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
    388          ++StartIdx) {
    389       bool BlockAvailable = true;
    390       // Check for already-allocated regs in this block
    391       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
    392         if (isAllocated(Regs[StartIdx + BlockIdx])) {
    393           BlockAvailable = false;
    394           break;
    395         }
    396       }
    397       if (BlockAvailable) {
    398         // Mark the entire block as allocated
    399         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
    400           MarkAllocated(Regs[StartIdx + BlockIdx]);
    401         }
    402         return Regs[StartIdx];
    403       }
    404     }
    405     // No block was available
    406     return 0;
    407   }
    408 
    409   /// Version of AllocateReg with list of registers to be shadowed.
    410   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
    411     unsigned FirstUnalloc = getFirstUnallocated(Regs);
    412     if (FirstUnalloc == Regs.size())
    413       return 0;    // Didn't find the reg.
    414 
    415     // Mark the register and any aliases as allocated.
    416     unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
    417     MarkAllocated(Reg);
    418     MarkAllocated(ShadowReg);
    419     return Reg;
    420   }
    421 
    422   /// AllocateStack - Allocate a chunk of stack space with the specified size
    423   /// and alignment.
    424   unsigned AllocateStack(unsigned Size, unsigned Align) {
    425     assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
    426     StackOffset = alignTo(StackOffset, Align);
    427     unsigned Result = StackOffset;
    428     StackOffset += Size;
    429     MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
    430     ensureMaxAlignment(Align);
    431     return Result;
    432   }
    433 
    434   void ensureMaxAlignment(unsigned Align) {
    435     if (!AnalyzingMustTailForwardedRegs)
    436       MF.getFrameInfo().ensureMaxAlignment(Align);
    437   }
    438 
    439   /// Version of AllocateStack with extra register to be shadowed.
    440   unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
    441     MarkAllocated(ShadowReg);
    442     return AllocateStack(Size, Align);
    443   }
    444 
    445   /// Version of AllocateStack with list of extra registers to be shadowed.
    446   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
    447   unsigned AllocateStack(unsigned Size, unsigned Align,
    448                          ArrayRef<MCPhysReg> ShadowRegs) {
    449     for (unsigned i = 0; i < ShadowRegs.size(); ++i)
    450       MarkAllocated(ShadowRegs[i]);
    451     return AllocateStack(Size, Align);
    452   }
    453 
    454   // HandleByVal - Allocate a stack slot large enough to pass an argument by
    455   // value. The size and alignment information of the argument is encoded in its
    456   // parameter attribute.
    457   void HandleByVal(unsigned ValNo, MVT ValVT,
    458                    MVT LocVT, CCValAssign::LocInfo LocInfo,
    459                    int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
    460 
    461   // Returns count of byval arguments that are to be stored (even partly)
    462   // in registers.
    463   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
    464 
    465   // Returns count of byval in-regs arguments proceed.
    466   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
    467 
    468   // Get information about N-th byval parameter that is stored in registers.
    469   // Here "ByValParamIndex" is N.
    470   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
    471                           unsigned& BeginReg, unsigned& EndReg) const {
    472     assert(InRegsParamRecordIndex < ByValRegs.size() &&
    473            "Wrong ByVal parameter index");
    474 
    475     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
    476     BeginReg = info.Begin;
    477     EndReg = info.End;
    478   }
    479 
    480   // Add information about parameter that is kept in registers.
    481   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
    482     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
    483   }
    484 
    485   // Goes either to next byval parameter (excluding "waste" record), or
    486   // to the end of collection.
    487   // Returns false, if end is reached.
    488   bool nextInRegsParam() {
    489     unsigned e = ByValRegs.size();
    490     if (InRegsParamsProcessed < e)
    491       ++InRegsParamsProcessed;
    492     return InRegsParamsProcessed < e;
    493   }
    494 
    495   // Clear byval registers tracking info.
    496   void clearByValRegsInfo() {
    497     InRegsParamsProcessed = 0;
    498     ByValRegs.clear();
    499   }
    500 
    501   // Rewind byval registers tracking info.
    502   void rewindByValRegsInfo() {
    503     InRegsParamsProcessed = 0;
    504   }
    505 
    506   // Get list of pending assignments
    507   SmallVectorImpl<CCValAssign> &getPendingLocs() {
    508     return PendingLocs;
    509   }
    510 
    511   /// Compute the remaining unused register parameters that would be used for
    512   /// the given value type. This is useful when varargs are passed in the
    513   /// registers that normal prototyped parameters would be passed in, or for
    514   /// implementing perfect forwarding.
    515   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
    516                                    CCAssignFn Fn);
    517 
    518   /// Compute the set of registers that need to be preserved and forwarded to
    519   /// any musttail calls.
    520   void analyzeMustTailForwardedRegisters(
    521       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
    522       CCAssignFn Fn);
    523 
    524   /// Returns true if the results of the two calling conventions are compatible.
    525   /// This is usually part of the check for tailcall eligibility.
    526   static bool resultsCompatible(CallingConv::ID CalleeCC,
    527                                 CallingConv::ID CallerCC, MachineFunction &MF,
    528                                 LLVMContext &C,
    529                                 const SmallVectorImpl<ISD::InputArg> &Ins,
    530                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
    531 
    532   /// The function runs an additional analysis pass over function arguments.
    533   /// It will mark each argument with the attribute flag SecArgPass.
    534   /// After running, it will sort the locs list.
    535   template <class T>
    536   void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
    537                                   CCAssignFn Fn) {
    538     unsigned NumFirstPassLocs = Locs.size();
    539 
    540     /// Creates similar argument list to \p Args in which each argument is
    541     /// marked using SecArgPass flag.
    542     SmallVector<T, 16> SecPassArg;
    543     // SmallVector<ISD::InputArg, 16> SecPassArg;
    544     for (auto Arg : Args) {
    545       Arg.Flags.setSecArgPass();
    546       SecPassArg.push_back(Arg);
    547     }
    548 
    549     // Run the second argument pass
    550     AnalyzeArguments(SecPassArg, Fn);
    551 
    552     // Sort the locations of the arguments according to their original position.
    553     SmallVector<CCValAssign, 16> TmpArgLocs;
    554     std::swap(TmpArgLocs, Locs);
    555     auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
    556     std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
    557                std::back_inserter(Locs),
    558                [](const CCValAssign &A, const CCValAssign &B) -> bool {
    559                  return A.getValNo() < B.getValNo();
    560                });
    561   }
    562 
    563 private:
    564   /// MarkAllocated - Mark a register and all of its aliases as allocated.
    565   void MarkAllocated(unsigned Reg);
    566 };
    567 
    568 } // end namespace llvm
    569 
    570 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H
    571