Home | History | Annotate | Download | only in CodeGen
      1 //===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for the MachineTraceMetrics analysis pass
     11 // that estimates CPU resource usage and critical data dependency paths through
     12 // preferred traces. This is useful for super-scalar CPUs where execution speed
     13 // can be limited both by data dependencies and by limited execution resources.
     14 //
     15 // Out-of-order CPUs will often be executing instructions from multiple basic
     16 // blocks at the same time. This makes it difficult to estimate the resource
     17 // usage accurately in a single basic block. Resources can be estimated better
     18 // by looking at a trace through the current basic block.
     19 //
     20 // For every block, the MachineTraceMetrics pass will pick a preferred trace
     21 // that passes through the block. The trace is chosen based on loop structure,
     22 // branch probabilities, and resource usage. The intention is to pick likely
     23 // traces that would be the most affected by code transformations.
     24 //
     25 // It is expensive to compute a full arbitrary trace for every block, so to
     26 // save some computations, traces are chosen to be convergent. This means that
     27 // if the traces through basic blocks A and B ever cross when moving away from
     28 // A and B, they never diverge again. This applies in both directions - If the
     29 // traces meet above A and B, they won't diverge when going further back.
     30 //
     31 // Traces tend to align with loops. The trace through a block in an inner loop
     32 // will begin at the loop entry block and end at a back edge. If there are
     33 // nested loops, the trace may begin and end at those instead.
     34 //
     35 // For each trace, we compute the critical path length, which is the number of
     36 // cycles required to execute the trace when execution is limited by data
     37 // dependencies only. We also compute the resource height, which is the number
     38 // of cycles required to execute all instructions in the trace when ignoring
     39 // data dependencies.
     40 //
     41 // Every instruction in the current block has a slack - the number of cycles
     42 // execution of the instruction can be delayed without extending the critical
     43 // path.
     44 //
     45 //===----------------------------------------------------------------------===//
     46 
     47 #ifndef LLVM_CODEGEN_MACHINETRACEMETRICS_H
     48 #define LLVM_CODEGEN_MACHINETRACEMETRICS_H
     49 
     50 #include "llvm/ADT/SparseSet.h"
     51 #include "llvm/ADT/ArrayRef.h"
     52 #include "llvm/ADT/DenseMap.h"
     53 #include "llvm/ADT/None.h"
     54 #include "llvm/ADT/SmallVector.h"
     55 #include "llvm/CodeGen/MachineBasicBlock.h"
     56 #include "llvm/CodeGen/MachineFunctionPass.h"
     57 #include "llvm/CodeGen/TargetSchedule.h"
     58 
     59 namespace llvm {
     60 
     61 class AnalysisUsage;
     62 class MachineFunction;
     63 class MachineInstr;
     64 class MachineLoop;
     65 class MachineLoopInfo;
     66 class MachineRegisterInfo;
     67 struct MCSchedClassDesc;
     68 class raw_ostream;
     69 class TargetInstrInfo;
     70 class TargetRegisterInfo;
     71 
     72 // Keep track of physreg data dependencies by recording each live register unit.
     73 // Associate each regunit with an instruction operand. Depending on the
     74 // direction instructions are scanned, it could be the operand that defined the
     75 // regunit, or the highest operand to read the regunit.
     76 struct LiveRegUnit {
     77   unsigned RegUnit;
     78   unsigned Cycle = 0;
     79   const MachineInstr *MI = nullptr;
     80   unsigned Op = 0;
     81 
     82   unsigned getSparseSetIndex() const { return RegUnit; }
     83 
     84   LiveRegUnit(unsigned RU) : RegUnit(RU) {}
     85 };
     86 
     87 
     88 class MachineTraceMetrics : public MachineFunctionPass {
     89   const MachineFunction *MF = nullptr;
     90   const TargetInstrInfo *TII = nullptr;
     91   const TargetRegisterInfo *TRI = nullptr;
     92   const MachineRegisterInfo *MRI = nullptr;
     93   const MachineLoopInfo *Loops = nullptr;
     94   TargetSchedModel SchedModel;
     95 
     96 public:
     97   friend class Ensemble;
     98   friend class Trace;
     99 
    100   class Ensemble;
    101 
    102   static char ID;
    103 
    104   MachineTraceMetrics();
    105 
    106   void getAnalysisUsage(AnalysisUsage&) const override;
    107   bool runOnMachineFunction(MachineFunction&) override;
    108   void releaseMemory() override;
    109   void verifyAnalysis() const override;
    110 
    111   /// Per-basic block information that doesn't depend on the trace through the
    112   /// block.
    113   struct FixedBlockInfo {
    114     /// The number of non-trivial instructions in the block.
    115     /// Doesn't count PHI and COPY instructions that are likely to be removed.
    116     unsigned InstrCount = ~0u;
    117 
    118     /// True when the block contains calls.
    119     bool HasCalls = false;
    120 
    121     FixedBlockInfo() = default;
    122 
    123     /// Returns true when resource information for this block has been computed.
    124     bool hasResources() const { return InstrCount != ~0u; }
    125 
    126     /// Invalidate resource information.
    127     void invalidate() { InstrCount = ~0u; }
    128   };
    129 
    130   /// Get the fixed resource information about MBB. Compute it on demand.
    131   const FixedBlockInfo *getResources(const MachineBasicBlock*);
    132 
    133   /// Get the scaled number of cycles used per processor resource in MBB.
    134   /// This is an array with SchedModel.getNumProcResourceKinds() entries.
    135   /// The getResources() function above must have been called first.
    136   ///
    137   /// These numbers have already been scaled by SchedModel.getResourceFactor().
    138   ArrayRef<unsigned> getProcResourceCycles(unsigned MBBNum) const;
    139 
    140   /// A virtual register or regunit required by a basic block or its trace
    141   /// successors.
    142   struct LiveInReg {
    143     /// The virtual register required, or a register unit.
    144     unsigned Reg;
    145 
    146     /// For virtual registers: Minimum height of the defining instruction.
    147     /// For regunits: Height of the highest user in the trace.
    148     unsigned Height;
    149 
    150     LiveInReg(unsigned Reg, unsigned Height = 0) : Reg(Reg), Height(Height) {}
    151   };
    152 
    153   /// Per-basic block information that relates to a specific trace through the
    154   /// block. Convergent traces means that only one of these is required per
    155   /// block in a trace ensemble.
    156   struct TraceBlockInfo {
    157     /// Trace predecessor, or NULL for the first block in the trace.
    158     /// Valid when hasValidDepth().
    159     const MachineBasicBlock *Pred = nullptr;
    160 
    161     /// Trace successor, or NULL for the last block in the trace.
    162     /// Valid when hasValidHeight().
    163     const MachineBasicBlock *Succ = nullptr;
    164 
    165     /// The block number of the head of the trace. (When hasValidDepth()).
    166     unsigned Head;
    167 
    168     /// The block number of the tail of the trace. (When hasValidHeight()).
    169     unsigned Tail;
    170 
    171     /// Accumulated number of instructions in the trace above this block.
    172     /// Does not include instructions in this block.
    173     unsigned InstrDepth = ~0u;
    174 
    175     /// Accumulated number of instructions in the trace below this block.
    176     /// Includes instructions in this block.
    177     unsigned InstrHeight = ~0u;
    178 
    179     TraceBlockInfo() = default;
    180 
    181     /// Returns true if the depth resources have been computed from the trace
    182     /// above this block.
    183     bool hasValidDepth() const { return InstrDepth != ~0u; }
    184 
    185     /// Returns true if the height resources have been computed from the trace
    186     /// below this block.
    187     bool hasValidHeight() const { return InstrHeight != ~0u; }
    188 
    189     /// Invalidate depth resources when some block above this one has changed.
    190     void invalidateDepth() { InstrDepth = ~0u; HasValidInstrDepths = false; }
    191 
    192     /// Invalidate height resources when a block below this one has changed.
    193     void invalidateHeight() { InstrHeight = ~0u; HasValidInstrHeights = false; }
    194 
    195     /// Assuming that this is a dominator of TBI, determine if it contains
    196     /// useful instruction depths. A dominating block can be above the current
    197     /// trace head, and any dependencies from such a far away dominator are not
    198     /// expected to affect the critical path.
    199     ///
    200     /// Also returns true when TBI == this.
    201     bool isUsefulDominator(const TraceBlockInfo &TBI) const {
    202       // The trace for TBI may not even be calculated yet.
    203       if (!hasValidDepth() || !TBI.hasValidDepth())
    204         return false;
    205       // Instruction depths are only comparable if the traces share a head.
    206       if (Head != TBI.Head)
    207         return false;
    208       // It is almost always the case that TBI belongs to the same trace as
    209       // this block, but rare convoluted cases involving irreducible control
    210       // flow, a dominator may share a trace head without actually being on the
    211       // same trace as TBI. This is not a big problem as long as it doesn't
    212       // increase the instruction depth.
    213       return HasValidInstrDepths && InstrDepth <= TBI.InstrDepth;
    214     }
    215 
    216     // Data-dependency-related information. Per-instruction depth and height
    217     // are computed from data dependencies in the current trace, using
    218     // itinerary data.
    219 
    220     /// Instruction depths have been computed. This implies hasValidDepth().
    221     bool HasValidInstrDepths = false;
    222 
    223     /// Instruction heights have been computed. This implies hasValidHeight().
    224     bool HasValidInstrHeights = false;
    225 
    226     /// Critical path length. This is the number of cycles in the longest data
    227     /// dependency chain through the trace. This is only valid when both
    228     /// HasValidInstrDepths and HasValidInstrHeights are set.
    229     unsigned CriticalPath;
    230 
    231     /// Live-in registers. These registers are defined above the current block
    232     /// and used by this block or a block below it.
    233     /// This does not include PHI uses in the current block, but it does
    234     /// include PHI uses in deeper blocks.
    235     SmallVector<LiveInReg, 4> LiveIns;
    236 
    237     void print(raw_ostream&) const;
    238   };
    239 
    240   /// InstrCycles represents the cycle height and depth of an instruction in a
    241   /// trace.
    242   struct InstrCycles {
    243     /// Earliest issue cycle as determined by data dependencies and instruction
    244     /// latencies from the beginning of the trace. Data dependencies from
    245     /// before the trace are not included.
    246     unsigned Depth;
    247 
    248     /// Minimum number of cycles from this instruction is issued to the of the
    249     /// trace, as determined by data dependencies and instruction latencies.
    250     unsigned Height;
    251   };
    252 
    253   /// A trace represents a plausible sequence of executed basic blocks that
    254   /// passes through the current basic block one. The Trace class serves as a
    255   /// handle to internal cached data structures.
    256   class Trace {
    257     Ensemble &TE;
    258     TraceBlockInfo &TBI;
    259 
    260     unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; }
    261 
    262   public:
    263     explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
    264 
    265     void print(raw_ostream&) const;
    266 
    267     /// Compute the total number of instructions in the trace.
    268     unsigned getInstrCount() const {
    269       return TBI.InstrDepth + TBI.InstrHeight;
    270     }
    271 
    272     /// Return the resource depth of the top/bottom of the trace center block.
    273     /// This is the number of cycles required to execute all instructions from
    274     /// the trace head to the trace center block. The resource depth only
    275     /// considers execution resources, it ignores data dependencies.
    276     /// When Bottom is set, instructions in the trace center block are included.
    277     unsigned getResourceDepth(bool Bottom) const;
    278 
    279     /// Return the resource length of the trace. This is the number of cycles
    280     /// required to execute the instructions in the trace if they were all
    281     /// independent, exposing the maximum instruction-level parallelism.
    282     ///
    283     /// Any blocks in Extrablocks are included as if they were part of the
    284     /// trace. Likewise, extra resources required by the specified scheduling
    285     /// classes are included. For the caller to account for extra machine
    286     /// instructions, it must first resolve each instruction's scheduling class.
    287     unsigned getResourceLength(
    288         ArrayRef<const MachineBasicBlock *> Extrablocks = None,
    289         ArrayRef<const MCSchedClassDesc *> ExtraInstrs = None,
    290         ArrayRef<const MCSchedClassDesc *> RemoveInstrs = None) const;
    291 
    292     /// Return the length of the (data dependency) critical path through the
    293     /// trace.
    294     unsigned getCriticalPath() const { return TBI.CriticalPath; }
    295 
    296     /// Return the depth and height of MI. The depth is only valid for
    297     /// instructions in or above the trace center block. The height is only
    298     /// valid for instructions in or below the trace center block.
    299     InstrCycles getInstrCycles(const MachineInstr &MI) const {
    300       return TE.Cycles.lookup(&MI);
    301     }
    302 
    303     /// Return the slack of MI. This is the number of cycles MI can be delayed
    304     /// before the critical path becomes longer.
    305     /// MI must be an instruction in the trace center block.
    306     unsigned getInstrSlack(const MachineInstr &MI) const;
    307 
    308     /// Return the Depth of a PHI instruction in a trace center block successor.
    309     /// The PHI does not have to be part of the trace.
    310     unsigned getPHIDepth(const MachineInstr &PHI) const;
    311 
    312     /// A dependence is useful if the basic block of the defining instruction
    313     /// is part of the trace of the user instruction. It is assumed that DefMI
    314     /// dominates UseMI (see also isUsefulDominator).
    315     bool isDepInTrace(const MachineInstr &DefMI,
    316                       const MachineInstr &UseMI) const;
    317   };
    318 
    319   /// A trace ensemble is a collection of traces selected using the same
    320   /// strategy, for example 'minimum resource height'. There is one trace for
    321   /// every block in the function.
    322   class Ensemble {
    323     friend class Trace;
    324 
    325     SmallVector<TraceBlockInfo, 4> BlockInfo;
    326     DenseMap<const MachineInstr*, InstrCycles> Cycles;
    327     SmallVector<unsigned, 0> ProcResourceDepths;
    328     SmallVector<unsigned, 0> ProcResourceHeights;
    329 
    330     void computeTrace(const MachineBasicBlock*);
    331     void computeDepthResources(const MachineBasicBlock*);
    332     void computeHeightResources(const MachineBasicBlock*);
    333     unsigned computeCrossBlockCriticalPath(const TraceBlockInfo&);
    334     void computeInstrDepths(const MachineBasicBlock*);
    335     void computeInstrHeights(const MachineBasicBlock*);
    336     void addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
    337                     ArrayRef<const MachineBasicBlock*> Trace);
    338 
    339   protected:
    340     MachineTraceMetrics &MTM;
    341 
    342     explicit Ensemble(MachineTraceMetrics*);
    343 
    344     virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0;
    345     virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0;
    346     const MachineLoop *getLoopFor(const MachineBasicBlock*) const;
    347     const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const;
    348     const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const;
    349     ArrayRef<unsigned> getProcResourceDepths(unsigned MBBNum) const;
    350     ArrayRef<unsigned> getProcResourceHeights(unsigned MBBNum) const;
    351 
    352   public:
    353     virtual ~Ensemble();
    354 
    355     virtual const char *getName() const = 0;
    356     void print(raw_ostream&) const;
    357     void invalidate(const MachineBasicBlock *MBB);
    358     void verify() const;
    359 
    360     /// Get the trace that passes through MBB.
    361     /// The trace is computed on demand.
    362     Trace getTrace(const MachineBasicBlock *MBB);
    363 
    364     /// Updates the depth of an machine instruction, given RegUnits.
    365     void updateDepth(TraceBlockInfo &TBI, const MachineInstr&,
    366                      SparseSet<LiveRegUnit> &RegUnits);
    367     void updateDepth(const MachineBasicBlock *, const MachineInstr&,
    368                      SparseSet<LiveRegUnit> &RegUnits);
    369 
    370     /// Updates the depth of the instructions from Start to End.
    371     void updateDepths(MachineBasicBlock::iterator Start,
    372                       MachineBasicBlock::iterator End,
    373                       SparseSet<LiveRegUnit> &RegUnits);
    374 
    375   };
    376 
    377   /// Strategies for selecting traces.
    378   enum Strategy {
    379     /// Select the trace through a block that has the fewest instructions.
    380     TS_MinInstrCount,
    381 
    382     TS_NumStrategies
    383   };
    384 
    385   /// Get the trace ensemble representing the given trace selection strategy.
    386   /// The returned Ensemble object is owned by the MachineTraceMetrics analysis,
    387   /// and valid for the lifetime of the analysis pass.
    388   Ensemble *getEnsemble(Strategy);
    389 
    390   /// Invalidate cached information about MBB. This must be called *before* MBB
    391   /// is erased, or the CFG is otherwise changed.
    392   ///
    393   /// This invalidates per-block information about resource usage for MBB only,
    394   /// and it invalidates per-trace information for any trace that passes
    395   /// through MBB.
    396   ///
    397   /// Call Ensemble::getTrace() again to update any trace handles.
    398   void invalidate(const MachineBasicBlock *MBB);
    399 
    400 private:
    401   // One entry per basic block, indexed by block number.
    402   SmallVector<FixedBlockInfo, 4> BlockInfo;
    403 
    404   // Cycles consumed on each processor resource per block.
    405   // The number of processor resource kinds is constant for a given subtarget,
    406   // but it is not known at compile time. The number of cycles consumed by
    407   // block B on processor resource R is at ProcResourceCycles[B*Kinds + R]
    408   // where Kinds = SchedModel.getNumProcResourceKinds().
    409   SmallVector<unsigned, 0> ProcResourceCycles;
    410 
    411   // One ensemble per strategy.
    412   Ensemble* Ensembles[TS_NumStrategies];
    413 
    414   // Convert scaled resource usage to a cycle count that can be compared with
    415   // latencies.
    416   unsigned getCycles(unsigned Scaled) {
    417     unsigned Factor = SchedModel.getLatencyFactor();
    418     return (Scaled + Factor - 1) / Factor;
    419   }
    420 };
    421 
    422 inline raw_ostream &operator<<(raw_ostream &OS,
    423                                const MachineTraceMetrics::Trace &Tr) {
    424   Tr.print(OS);
    425   return OS;
    426 }
    427 
    428 inline raw_ostream &operator<<(raw_ostream &OS,
    429                                const MachineTraceMetrics::Ensemble &En) {
    430   En.print(OS);
    431   return OS;
    432 }
    433 
    434 } // end namespace llvm
    435 
    436 #endif // LLVM_CODEGEN_MACHINETRACEMETRICS_H
    437