Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a pattern matching instruction selector for PowerPC,
     11 // converting from a legalized dag to a PPC dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "MCTargetDesc/PPCMCTargetDesc.h"
     16 #include "MCTargetDesc/PPCPredicates.h"
     17 #include "PPC.h"
     18 #include "PPCISelLowering.h"
     19 #include "PPCMachineFunctionInfo.h"
     20 #include "PPCSubtarget.h"
     21 #include "PPCTargetMachine.h"
     22 #include "llvm/ADT/APInt.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/Analysis/BranchProbabilityInfo.h"
     29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     30 #include "llvm/CodeGen/ISDOpcodes.h"
     31 #include "llvm/CodeGen/MachineBasicBlock.h"
     32 #include "llvm/CodeGen/MachineFunction.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/SelectionDAG.h"
     36 #include "llvm/CodeGen/SelectionDAGISel.h"
     37 #include "llvm/CodeGen/SelectionDAGNodes.h"
     38 #include "llvm/CodeGen/TargetInstrInfo.h"
     39 #include "llvm/CodeGen/TargetRegisterInfo.h"
     40 #include "llvm/CodeGen/ValueTypes.h"
     41 #include "llvm/IR/BasicBlock.h"
     42 #include "llvm/IR/DebugLoc.h"
     43 #include "llvm/IR/Function.h"
     44 #include "llvm/IR/GlobalValue.h"
     45 #include "llvm/IR/InlineAsm.h"
     46 #include "llvm/IR/InstrTypes.h"
     47 #include "llvm/IR/Module.h"
     48 #include "llvm/Support/Casting.h"
     49 #include "llvm/Support/CodeGen.h"
     50 #include "llvm/Support/CommandLine.h"
     51 #include "llvm/Support/Compiler.h"
     52 #include "llvm/Support/Debug.h"
     53 #include "llvm/Support/ErrorHandling.h"
     54 #include "llvm/Support/KnownBits.h"
     55 #include "llvm/Support/MachineValueType.h"
     56 #include "llvm/Support/MathExtras.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include <algorithm>
     59 #include <cassert>
     60 #include <cstdint>
     61 #include <iterator>
     62 #include <limits>
     63 #include <memory>
     64 #include <new>
     65 #include <tuple>
     66 #include <utility>
     67 
     68 using namespace llvm;
     69 
     70 #define DEBUG_TYPE "ppc-codegen"
     71 
     72 STATISTIC(NumSextSetcc,
     73           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
     74 STATISTIC(NumZextSetcc,
     75           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
     76 STATISTIC(SignExtensionsAdded,
     77           "Number of sign extensions for compare inputs added.");
     78 STATISTIC(ZeroExtensionsAdded,
     79           "Number of zero extensions for compare inputs added.");
     80 STATISTIC(NumLogicOpsOnComparison,
     81           "Number of logical ops on i1 values calculated in GPR.");
     82 STATISTIC(OmittedForNonExtendUses,
     83           "Number of compares not eliminated as they have non-extending uses.");
     84 
     85 // FIXME: Remove this once the bug has been fixed!
     86 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
     87 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
     88 
     89 static cl::opt<bool>
     90     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
     91                        cl::desc("use aggressive ppc isel for bit permutations"),
     92                        cl::Hidden);
     93 static cl::opt<bool> BPermRewriterNoMasking(
     94     "ppc-bit-perm-rewriter-stress-rotates",
     95     cl::desc("stress rotate selection in aggressive ppc isel for "
     96              "bit permutations"),
     97     cl::Hidden);
     98 
     99 static cl::opt<bool> EnableBranchHint(
    100   "ppc-use-branch-hint", cl::init(true),
    101     cl::desc("Enable static hinting of branches on ppc"),
    102     cl::Hidden);
    103 
    104 static cl::opt<bool> EnableTLSOpt(
    105   "ppc-tls-opt", cl::init(true),
    106     cl::desc("Enable tls optimization peephole"),
    107     cl::Hidden);
    108 
    109 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
    110   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
    111   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
    112 
    113 static cl::opt<ICmpInGPRType> CmpInGPR(
    114   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
    115   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
    116   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
    117              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
    118              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
    119              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
    120              clEnumValN(ICGPR_NonExtIn, "nonextin",
    121                         "Only comparisons where inputs don't need [sz]ext."),
    122              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
    123              clEnumValN(ICGPR_ZextI32, "zexti32",
    124                         "Only i32 comparisons with zext result."),
    125              clEnumValN(ICGPR_ZextI64, "zexti64",
    126                         "Only i64 comparisons with zext result."),
    127              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
    128              clEnumValN(ICGPR_SextI32, "sexti32",
    129                         "Only i32 comparisons with sext result."),
    130              clEnumValN(ICGPR_SextI64, "sexti64",
    131                         "Only i64 comparisons with sext result.")));
    132 namespace {
    133 
    134   //===--------------------------------------------------------------------===//
    135   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
    136   /// instructions for SelectionDAG operations.
    137   ///
    138   class PPCDAGToDAGISel : public SelectionDAGISel {
    139     const PPCTargetMachine &TM;
    140     const PPCSubtarget *PPCSubTarget;
    141     const PPCTargetLowering *PPCLowering;
    142     unsigned GlobalBaseReg;
    143 
    144   public:
    145     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
    146         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
    147 
    148     bool runOnMachineFunction(MachineFunction &MF) override {
    149       // Make sure we re-emit a set of the global base reg if necessary
    150       GlobalBaseReg = 0;
    151       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
    152       PPCLowering = PPCSubTarget->getTargetLowering();
    153       SelectionDAGISel::runOnMachineFunction(MF);
    154 
    155       if (!PPCSubTarget->isSVR4ABI())
    156         InsertVRSaveCode(MF);
    157 
    158       return true;
    159     }
    160 
    161     void PreprocessISelDAG() override;
    162     void PostprocessISelDAG() override;
    163 
    164     /// getI16Imm - Return a target constant with the specified value, of type
    165     /// i16.
    166     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
    167       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
    168     }
    169 
    170     /// getI32Imm - Return a target constant with the specified value, of type
    171     /// i32.
    172     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
    173       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    174     }
    175 
    176     /// getI64Imm - Return a target constant with the specified value, of type
    177     /// i64.
    178     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
    179       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
    180     }
    181 
    182     /// getSmallIPtrImm - Return a target constant of pointer type.
    183     inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
    184       return CurDAG->getTargetConstant(
    185           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
    186     }
    187 
    188     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    189     /// rotate and mask opcode and mask operation.
    190     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
    191                                 unsigned &SH, unsigned &MB, unsigned &ME);
    192 
    193     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    194     /// base register.  Return the virtual register that holds this value.
    195     SDNode *getGlobalBaseReg();
    196 
    197     void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
    198 
    199     // Select - Convert the specified operand from a target-independent to a
    200     // target-specific node if it hasn't already been changed.
    201     void Select(SDNode *N) override;
    202 
    203     bool tryBitfieldInsert(SDNode *N);
    204     bool tryBitPermutation(SDNode *N);
    205     bool tryIntCompareInGPR(SDNode *N);
    206 
    207     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
    208     // an X-Form load instruction with the offset being a relocation coming from
    209     // the PPCISD::ADD_TLS.
    210     bool tryTLSXFormLoad(LoadSDNode *N);
    211     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
    212     // an X-Form store instruction with the offset being a relocation coming from
    213     // the PPCISD::ADD_TLS.
    214     bool tryTLSXFormStore(StoreSDNode *N);
    215     /// SelectCC - Select a comparison of the specified values with the
    216     /// specified condition code, returning the CR# of the expression.
    217     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
    218                      const SDLoc &dl);
    219 
    220     /// SelectAddrImm - Returns true if the address N can be represented by
    221     /// a base register plus a signed 16-bit displacement [r+imm].
    222     bool SelectAddrImm(SDValue N, SDValue &Disp,
    223                        SDValue &Base) {
    224       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
    225     }
    226 
    227     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    228     /// immediate field.  Note that the operand at this point is already the
    229     /// result of a prior SelectAddressRegImm call.
    230     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
    231       if (N.getOpcode() == ISD::TargetConstant ||
    232           N.getOpcode() == ISD::TargetGlobalAddress) {
    233         Out = N;
    234         return true;
    235       }
    236 
    237       return false;
    238     }
    239 
    240     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    241     /// represented as an indexed [r+r] operation.  Returns false if it can
    242     /// be represented by [r+imm], which are preferred.
    243     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
    244       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
    245     }
    246 
    247     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    248     /// represented as an indexed [r+r] operation.
    249     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
    250       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    251     }
    252 
    253     /// SelectAddrImmX4 - Returns true if the address N can be represented by
    254     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
    255     /// Suitable for use by STD and friends.
    256     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
    257       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
    258     }
    259 
    260     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
    261       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
    262     }
    263 
    264     // Select an address into a single register.
    265     bool SelectAddr(SDValue N, SDValue &Base) {
    266       Base = N;
    267       return true;
    268     }
    269 
    270     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    271     /// inline asm expressions.  It is always correct to compute the value into
    272     /// a register.  The case of adding a (possibly relocatable) constant to a
    273     /// register can be improved, but it is wrong to substitute Reg+Reg for
    274     /// Reg in an asm, because the load or store opcode would have to change.
    275     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    276                                       unsigned ConstraintID,
    277                                       std::vector<SDValue> &OutOps) override {
    278       switch(ConstraintID) {
    279       default:
    280         errs() << "ConstraintID: " << ConstraintID << "\n";
    281         llvm_unreachable("Unexpected asm memory constraint");
    282       case InlineAsm::Constraint_es:
    283       case InlineAsm::Constraint_i:
    284       case InlineAsm::Constraint_m:
    285       case InlineAsm::Constraint_o:
    286       case InlineAsm::Constraint_Q:
    287       case InlineAsm::Constraint_Z:
    288       case InlineAsm::Constraint_Zy:
    289         // We need to make sure that this one operand does not end up in r0
    290         // (because we might end up lowering this as 0(%op)).
    291         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
    292         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
    293         SDLoc dl(Op);
    294         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
    295         SDValue NewOp =
    296           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
    297                                          dl, Op.getValueType(),
    298                                          Op, RC), 0);
    299 
    300         OutOps.push_back(NewOp);
    301         return false;
    302       }
    303       return true;
    304     }
    305 
    306     void InsertVRSaveCode(MachineFunction &MF);
    307 
    308     StringRef getPassName() const override {
    309       return "PowerPC DAG->DAG Pattern Instruction Selection";
    310     }
    311 
    312 // Include the pieces autogenerated from the target description.
    313 #include "PPCGenDAGISel.inc"
    314 
    315 private:
    316     bool trySETCC(SDNode *N);
    317 
    318     void PeepholePPC64();
    319     void PeepholePPC64ZExt();
    320     void PeepholeCROps();
    321 
    322     SDValue combineToCMPB(SDNode *N);
    323     void foldBoolExts(SDValue &Res, SDNode *&N);
    324 
    325     bool AllUsersSelectZero(SDNode *N);
    326     void SwapAllSelectUsers(SDNode *N);
    327 
    328     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
    329     void transferMemOperands(SDNode *N, SDNode *Result);
    330     MachineSDNode *flipSignBit(const SDValue &N, SDNode **SignBit = nullptr);
    331   };
    332 
    333 } // end anonymous namespace
    334 
    335 /// InsertVRSaveCode - Once the entire function has been instruction selected,
    336 /// all virtual registers are created and all machine instructions are built,
    337 /// check to see if we need to save/restore VRSAVE.  If so, do it.
    338 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
    339   // Check to see if this function uses vector registers, which means we have to
    340   // save and restore the VRSAVE register and update it with the regs we use.
    341   //
    342   // In this case, there will be virtual registers of vector type created
    343   // by the scheduler.  Detect them now.
    344   bool HasVectorVReg = false;
    345   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
    346     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    347     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
    348       HasVectorVReg = true;
    349       break;
    350     }
    351   }
    352   if (!HasVectorVReg) return;  // nothing to do.
    353 
    354   // If we have a vector register, we want to emit code into the entry and exit
    355   // blocks to save and restore the VRSAVE register.  We do this here (instead
    356   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
    357   //
    358   // 1. This (trivially) reduces the load on the register allocator, by not
    359   //    having to represent the live range of the VRSAVE register.
    360   // 2. This (more significantly) allows us to create a temporary virtual
    361   //    register to hold the saved VRSAVE value, allowing this temporary to be
    362   //    register allocated, instead of forcing it to be spilled to the stack.
    363 
    364   // Create two vregs - one to hold the VRSAVE register that is live-in to the
    365   // function and one for the value after having bits or'd into it.
    366   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    367   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    368 
    369   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    370   MachineBasicBlock &EntryBB = *Fn.begin();
    371   DebugLoc dl;
    372   // Emit the following code into the entry block:
    373   // InVRSAVE = MFVRSAVE
    374   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
    375   // MTVRSAVE UpdatedVRSAVE
    376   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
    377   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
    378   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
    379           UpdatedVRSAVE).addReg(InVRSAVE);
    380   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
    381 
    382   // Find all return blocks, outputting a restore in each epilog.
    383   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    384     if (BB->isReturnBlock()) {
    385       IP = BB->end(); --IP;
    386 
    387       // Skip over all terminator instructions, which are part of the return
    388       // sequence.
    389       MachineBasicBlock::iterator I2 = IP;
    390       while (I2 != BB->begin() && (--I2)->isTerminator())
    391         IP = I2;
    392 
    393       // Emit: MTVRSAVE InVRSave
    394       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    395     }
    396   }
    397 }
    398 
    399 /// getGlobalBaseReg - Output the instructions required to put the
    400 /// base address to use for accessing globals into a register.
    401 ///
    402 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
    403   if (!GlobalBaseReg) {
    404     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    405     // Insert the set of GlobalBaseReg into the first MBB of the function
    406     MachineBasicBlock &FirstMBB = MF->front();
    407     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    408     const Module *M = MF->getFunction().getParent();
    409     DebugLoc dl;
    410 
    411     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
    412       if (PPCSubTarget->isTargetELF()) {
    413         GlobalBaseReg = PPC::R30;
    414         if (M->getPICLevel() == PICLevel::SmallPIC) {
    415           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
    416           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    417           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    418         } else {
    419           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    420           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    421           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    422           BuildMI(FirstMBB, MBBI, dl,
    423                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
    424                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
    425           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    426         }
    427       } else {
    428         GlobalBaseReg =
    429           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
    430         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    431         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    432       }
    433     } else {
    434       // We must ensure that this sequence is dominated by the prologue.
    435       // FIXME: This is a bit of a big hammer since we don't get the benefits
    436       // of shrink-wrapping whenever we emit this instruction. Considering
    437       // this is used in any function where we emit a jump table, this may be
    438       // a significant limitation. We should consider inserting this in the
    439       // block where it is used and then commoning this sequence up if it
    440       // appears in multiple places.
    441       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
    442       // MovePCtoLR8.
    443       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
    444       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
    445       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
    446       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
    447     }
    448   }
    449   return CurDAG->getRegister(GlobalBaseReg,
    450                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
    451       .getNode();
    452 }
    453 
    454 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    455 /// operand. If so Imm will receive the 32-bit value.
    456 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    457   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    458     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    459     return true;
    460   }
    461   return false;
    462 }
    463 
    464 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
    465 /// operand.  If so Imm will receive the 64-bit value.
    466 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
    467   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    468     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    469     return true;
    470   }
    471   return false;
    472 }
    473 
    474 // isInt32Immediate - This method tests to see if a constant operand.
    475 // If so Imm will receive the 32 bit value.
    476 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    477   return isInt32Immediate(N.getNode(), Imm);
    478 }
    479 
    480 /// isInt64Immediate - This method tests to see if the value is a 64-bit
    481 /// constant operand. If so Imm will receive the 64-bit value.
    482 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
    483   return isInt64Immediate(N.getNode(), Imm);
    484 }
    485 
    486 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
    487                               const SDValue &DestMBB) {
    488   assert(isa<BasicBlockSDNode>(DestMBB));
    489 
    490   if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
    491 
    492   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
    493   const TerminatorInst *BBTerm = BB->getTerminator();
    494 
    495   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
    496 
    497   const BasicBlock *TBB = BBTerm->getSuccessor(0);
    498   const BasicBlock *FBB = BBTerm->getSuccessor(1);
    499 
    500   auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
    501   auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
    502 
    503   // We only want to handle cases which are easy to predict at static time, e.g.
    504   // C++ throw statement, that is very likely not taken, or calling never
    505   // returned function, e.g. stdlib exit(). So we set Threshold to filter
    506   // unwanted cases.
    507   //
    508   // Below is LLVM branch weight table, we only want to handle case 1, 2
    509   //
    510   // Case                  Taken:Nontaken  Example
    511   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
    512   // 2. Invoke-terminating 1:1048575
    513   // 3. Coldblock          4:64            __builtin_expect
    514   // 4. Loop Branch        124:4           For loop
    515   // 5. PH/ZH/FPH          20:12
    516   const uint32_t Threshold = 10000;
    517 
    518   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
    519     return PPC::BR_NO_HINT;
    520 
    521   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName()
    522                     << "::" << BB->getName() << "'\n"
    523                     << " -> " << TBB->getName() << ": " << TProb << "\n"
    524                     << " -> " << FBB->getName() << ": " << FProb << "\n");
    525 
    526   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
    527 
    528   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
    529   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
    530   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
    531     std::swap(TProb, FProb);
    532 
    533   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
    534 }
    535 
    536 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    537 // opcode and that it has a immediate integer right operand.
    538 // If so Imm will receive the 32 bit value.
    539 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    540   return N->getOpcode() == Opc
    541          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
    542 }
    543 
    544 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
    545   SDLoc dl(SN);
    546   int FI = cast<FrameIndexSDNode>(N)->getIndex();
    547   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
    548   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    549   if (SN->hasOneUse())
    550     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
    551                          getSmallIPtrImm(Offset, dl));
    552   else
    553     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
    554                                            getSmallIPtrImm(Offset, dl)));
    555 }
    556 
    557 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
    558                                       bool isShiftMask, unsigned &SH,
    559                                       unsigned &MB, unsigned &ME) {
    560   // Don't even go down this path for i64, since different logic will be
    561   // necessary for rldicl/rldicr/rldimi.
    562   if (N->getValueType(0) != MVT::i32)
    563     return false;
    564 
    565   unsigned Shift  = 32;
    566   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
    567   unsigned Opcode = N->getOpcode();
    568   if (N->getNumOperands() != 2 ||
    569       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
    570     return false;
    571 
    572   if (Opcode == ISD::SHL) {
    573     // apply shift left to mask if it comes first
    574     if (isShiftMask) Mask = Mask << Shift;
    575     // determine which bits are made indeterminant by shift
    576     Indeterminant = ~(0xFFFFFFFFu << Shift);
    577   } else if (Opcode == ISD::SRL) {
    578     // apply shift right to mask if it comes first
    579     if (isShiftMask) Mask = Mask >> Shift;
    580     // determine which bits are made indeterminant by shift
    581     Indeterminant = ~(0xFFFFFFFFu >> Shift);
    582     // adjust for the left rotate
    583     Shift = 32 - Shift;
    584   } else if (Opcode == ISD::ROTL) {
    585     Indeterminant = 0;
    586   } else {
    587     return false;
    588   }
    589 
    590   // if the mask doesn't intersect any Indeterminant bits
    591   if (Mask && !(Mask & Indeterminant)) {
    592     SH = Shift & 31;
    593     // make sure the mask is still a mask (wrap arounds may not be)
    594     return isRunOfOnes(Mask, MB, ME);
    595   }
    596   return false;
    597 }
    598 
    599 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
    600   SDValue Base = ST->getBasePtr();
    601   if (Base.getOpcode() != PPCISD::ADD_TLS)
    602     return false;
    603   SDValue Offset = ST->getOffset();
    604   if (!Offset.isUndef())
    605     return false;
    606 
    607   SDLoc dl(ST);
    608   EVT MemVT = ST->getMemoryVT();
    609   EVT RegVT = ST->getValue().getValueType();
    610 
    611   unsigned Opcode;
    612   switch (MemVT.getSimpleVT().SimpleTy) {
    613     default:
    614       return false;
    615     case MVT::i8: {
    616       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
    617       break;
    618     }
    619     case MVT::i16: {
    620       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
    621       break;
    622     }
    623     case MVT::i32: {
    624       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
    625       break;
    626     }
    627     case MVT::i64: {
    628       Opcode = PPC::STDXTLS;
    629       break;
    630     }
    631   }
    632   SDValue Chain = ST->getChain();
    633   SDVTList VTs = ST->getVTList();
    634   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
    635                    Chain};
    636   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
    637   transferMemOperands(ST, MN);
    638   ReplaceNode(ST, MN);
    639   return true;
    640 }
    641 
    642 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
    643   SDValue Base = LD->getBasePtr();
    644   if (Base.getOpcode() != PPCISD::ADD_TLS)
    645     return false;
    646   SDValue Offset = LD->getOffset();
    647   if (!Offset.isUndef())
    648     return false;
    649 
    650   SDLoc dl(LD);
    651   EVT MemVT = LD->getMemoryVT();
    652   EVT RegVT = LD->getValueType(0);
    653   unsigned Opcode;
    654   switch (MemVT.getSimpleVT().SimpleTy) {
    655     default:
    656       return false;
    657     case MVT::i8: {
    658       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
    659       break;
    660     }
    661     case MVT::i16: {
    662       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
    663       break;
    664     }
    665     case MVT::i32: {
    666       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
    667       break;
    668     }
    669     case MVT::i64: {
    670       Opcode = PPC::LDXTLS;
    671       break;
    672     }
    673   }
    674   SDValue Chain = LD->getChain();
    675   SDVTList VTs = LD->getVTList();
    676   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
    677   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
    678   transferMemOperands(LD, MN);
    679   ReplaceNode(LD, MN);
    680   return true;
    681 }
    682 
    683 /// Turn an or of two masked values into the rotate left word immediate then
    684 /// mask insert (rlwimi) instruction.
    685 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
    686   SDValue Op0 = N->getOperand(0);
    687   SDValue Op1 = N->getOperand(1);
    688   SDLoc dl(N);
    689 
    690   KnownBits LKnown, RKnown;
    691   CurDAG->computeKnownBits(Op0, LKnown);
    692   CurDAG->computeKnownBits(Op1, RKnown);
    693 
    694   unsigned TargetMask = LKnown.Zero.getZExtValue();
    695   unsigned InsertMask = RKnown.Zero.getZExtValue();
    696 
    697   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    698     unsigned Op0Opc = Op0.getOpcode();
    699     unsigned Op1Opc = Op1.getOpcode();
    700     unsigned Value, SH = 0;
    701     TargetMask = ~TargetMask;
    702     InsertMask = ~InsertMask;
    703 
    704     // If the LHS has a foldable shift and the RHS does not, then swap it to the
    705     // RHS so that we can fold the shift into the insert.
    706     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
    707       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
    708           Op0.getOperand(0).getOpcode() == ISD::SRL) {
    709         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
    710             Op1.getOperand(0).getOpcode() != ISD::SRL) {
    711           std::swap(Op0, Op1);
    712           std::swap(Op0Opc, Op1Opc);
    713           std::swap(TargetMask, InsertMask);
    714         }
    715       }
    716     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
    717       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
    718           Op1.getOperand(0).getOpcode() != ISD::SRL) {
    719         std::swap(Op0, Op1);
    720         std::swap(Op0Opc, Op1Opc);
    721         std::swap(TargetMask, InsertMask);
    722       }
    723     }
    724 
    725     unsigned MB, ME;
    726     if (isRunOfOnes(InsertMask, MB, ME)) {
    727       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
    728           isInt32Immediate(Op1.getOperand(1), Value)) {
    729         Op1 = Op1.getOperand(0);
    730         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
    731       }
    732       if (Op1Opc == ISD::AND) {
    733        // The AND mask might not be a constant, and we need to make sure that
    734        // if we're going to fold the masking with the insert, all bits not
    735        // know to be zero in the mask are known to be one.
    736         KnownBits MKnown;
    737         CurDAG->computeKnownBits(Op1.getOperand(1), MKnown);
    738         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
    739 
    740         unsigned SHOpc = Op1.getOperand(0).getOpcode();
    741         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
    742             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
    743           // Note that Value must be in range here (less than 32) because
    744           // otherwise there would not be any bits set in InsertMask.
    745           Op1 = Op1.getOperand(0).getOperand(0);
    746           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
    747         }
    748       }
    749 
    750       SH &= 31;
    751       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
    752                           getI32Imm(ME, dl) };
    753       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
    754       return true;
    755     }
    756   }
    757   return false;
    758 }
    759 
    760 // Predict the number of instructions that would be generated by calling
    761 // selectI64Imm(N).
    762 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
    763   // Assume no remaining bits.
    764   unsigned Remainder = 0;
    765   // Assume no shift required.
    766   unsigned Shift = 0;
    767 
    768   // If it can't be represented as a 32 bit value.
    769   if (!isInt<32>(Imm)) {
    770     Shift = countTrailingZeros<uint64_t>(Imm);
    771     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    772 
    773     // If the shifted value fits 32 bits.
    774     if (isInt<32>(ImmSh)) {
    775       // Go with the shifted value.
    776       Imm = ImmSh;
    777     } else {
    778       // Still stuck with a 64 bit value.
    779       Remainder = Imm;
    780       Shift = 32;
    781       Imm >>= 32;
    782     }
    783   }
    784 
    785   // Intermediate operand.
    786   unsigned Result = 0;
    787 
    788   // Handle first 32 bits.
    789   unsigned Lo = Imm & 0xFFFF;
    790 
    791   // Simple value.
    792   if (isInt<16>(Imm)) {
    793     // Just the Lo bits.
    794     ++Result;
    795   } else if (Lo) {
    796     // Handle the Hi bits and Lo bits.
    797     Result += 2;
    798   } else {
    799     // Just the Hi bits.
    800     ++Result;
    801   }
    802 
    803   // If no shift, we're done.
    804   if (!Shift) return Result;
    805 
    806   // If Hi word == Lo word,
    807   // we can use rldimi to insert the Lo word into Hi word.
    808   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
    809     ++Result;
    810     return Result;
    811   }
    812 
    813   // Shift for next step if the upper 32-bits were not zero.
    814   if (Imm)
    815     ++Result;
    816 
    817   // Add in the last bits as required.
    818   if ((Remainder >> 16) & 0xFFFF)
    819     ++Result;
    820   if (Remainder & 0xFFFF)
    821     ++Result;
    822 
    823   return Result;
    824 }
    825 
    826 static uint64_t Rot64(uint64_t Imm, unsigned R) {
    827   return (Imm << R) | (Imm >> (64 - R));
    828 }
    829 
    830 static unsigned selectI64ImmInstrCount(int64_t Imm) {
    831   unsigned Count = selectI64ImmInstrCountDirect(Imm);
    832 
    833   // If the instruction count is 1 or 2, we do not need further analysis
    834   // since rotate + load constant requires at least 2 instructions.
    835   if (Count <= 2)
    836     return Count;
    837 
    838   for (unsigned r = 1; r < 63; ++r) {
    839     uint64_t RImm = Rot64(Imm, r);
    840     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
    841     Count = std::min(Count, RCount);
    842 
    843     // See comments in selectI64Imm for an explanation of the logic below.
    844     unsigned LS = findLastSet(RImm);
    845     if (LS != r-1)
    846       continue;
    847 
    848     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    849     uint64_t RImmWithOnes = RImm | OnesMask;
    850 
    851     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
    852     Count = std::min(Count, RCount);
    853   }
    854 
    855   return Count;
    856 }
    857 
    858 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
    859 // (above) needs to be kept in sync with this function.
    860 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
    861                                   int64_t Imm) {
    862   // Assume no remaining bits.
    863   unsigned Remainder = 0;
    864   // Assume no shift required.
    865   unsigned Shift = 0;
    866 
    867   // If it can't be represented as a 32 bit value.
    868   if (!isInt<32>(Imm)) {
    869     Shift = countTrailingZeros<uint64_t>(Imm);
    870     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    871 
    872     // If the shifted value fits 32 bits.
    873     if (isInt<32>(ImmSh)) {
    874       // Go with the shifted value.
    875       Imm = ImmSh;
    876     } else {
    877       // Still stuck with a 64 bit value.
    878       Remainder = Imm;
    879       Shift = 32;
    880       Imm >>= 32;
    881     }
    882   }
    883 
    884   // Intermediate operand.
    885   SDNode *Result;
    886 
    887   // Handle first 32 bits.
    888   unsigned Lo = Imm & 0xFFFF;
    889   unsigned Hi = (Imm >> 16) & 0xFFFF;
    890 
    891   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
    892       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    893   };
    894 
    895   // Simple value.
    896   if (isInt<16>(Imm)) {
    897     uint64_t SextImm = SignExtend64(Lo, 16);
    898     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
    899     // Just the Lo bits.
    900     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
    901   } else if (Lo) {
    902     // Handle the Hi bits.
    903     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
    904     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
    905     // And Lo bits.
    906     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    907                                     SDValue(Result, 0), getI32Imm(Lo));
    908   } else {
    909     // Just the Hi bits.
    910     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
    911   }
    912 
    913   // If no shift, we're done.
    914   if (!Shift) return Result;
    915 
    916   // If Hi word == Lo word,
    917   // we can use rldimi to insert the Lo word into Hi word.
    918   if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
    919     SDValue Ops[] =
    920       { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
    921     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
    922   }
    923 
    924   // Shift for next step if the upper 32-bits were not zero.
    925   if (Imm) {
    926     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
    927                                     SDValue(Result, 0),
    928                                     getI32Imm(Shift),
    929                                     getI32Imm(63 - Shift));
    930   }
    931 
    932   // Add in the last bits as required.
    933   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    934     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
    935                                     SDValue(Result, 0), getI32Imm(Hi));
    936   }
    937   if ((Lo = Remainder & 0xFFFF)) {
    938     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    939                                     SDValue(Result, 0), getI32Imm(Lo));
    940   }
    941 
    942   return Result;
    943 }
    944 
    945 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
    946                             int64_t Imm) {
    947   unsigned Count = selectI64ImmInstrCountDirect(Imm);
    948 
    949   // If the instruction count is 1 or 2, we do not need further analysis
    950   // since rotate + load constant requires at least 2 instructions.
    951   if (Count <= 2)
    952     return selectI64ImmDirect(CurDAG, dl, Imm);
    953 
    954   unsigned RMin = 0;
    955 
    956   int64_t MatImm;
    957   unsigned MaskEnd;
    958 
    959   for (unsigned r = 1; r < 63; ++r) {
    960     uint64_t RImm = Rot64(Imm, r);
    961     unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
    962     if (RCount < Count) {
    963       Count = RCount;
    964       RMin = r;
    965       MatImm = RImm;
    966       MaskEnd = 63;
    967     }
    968 
    969     // If the immediate to generate has many trailing zeros, it might be
    970     // worthwhile to generate a rotated value with too many leading ones
    971     // (because that's free with li/lis's sign-extension semantics), and then
    972     // mask them off after rotation.
    973 
    974     unsigned LS = findLastSet(RImm);
    975     // We're adding (63-LS) higher-order ones, and we expect to mask them off
    976     // after performing the inverse rotation by (64-r). So we need that:
    977     //   63-LS == 64-r => LS == r-1
    978     if (LS != r-1)
    979       continue;
    980 
    981     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    982     uint64_t RImmWithOnes = RImm | OnesMask;
    983 
    984     RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
    985     if (RCount < Count) {
    986       Count = RCount;
    987       RMin = r;
    988       MatImm = RImmWithOnes;
    989       MaskEnd = LS;
    990     }
    991   }
    992 
    993   if (!RMin)
    994     return selectI64ImmDirect(CurDAG, dl, Imm);
    995 
    996   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
    997       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    998   };
    999 
   1000   SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
   1001   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
   1002                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
   1003 }
   1004 
   1005 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
   1006   unsigned MaxTruncation = 0;
   1007   // Cannot use range-based for loop here as we need the actual use (i.e. we
   1008   // need the operand number corresponding to the use). A range-based for
   1009   // will unbox the use and provide an SDNode*.
   1010   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
   1011        Use != UseEnd; ++Use) {
   1012     unsigned Opc =
   1013       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
   1014     switch (Opc) {
   1015     default: return 0;
   1016     case ISD::TRUNCATE:
   1017       if (Use->isMachineOpcode())
   1018         return 0;
   1019       MaxTruncation =
   1020         std::max(MaxTruncation, Use->getValueType(0).getSizeInBits());
   1021       continue;
   1022     case ISD::STORE: {
   1023       if (Use->isMachineOpcode())
   1024         return 0;
   1025       StoreSDNode *STN = cast<StoreSDNode>(*Use);
   1026       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
   1027       if (MemVTSize == 64 || Use.getOperandNo() != 0)
   1028         return 0;
   1029       MaxTruncation = std::max(MaxTruncation, MemVTSize);
   1030       continue;
   1031     }
   1032     case PPC::STW8:
   1033     case PPC::STWX8:
   1034     case PPC::STWU8:
   1035     case PPC::STWUX8:
   1036       if (Use.getOperandNo() != 0)
   1037         return 0;
   1038       MaxTruncation = std::max(MaxTruncation, 32u);
   1039       continue;
   1040     case PPC::STH8:
   1041     case PPC::STHX8:
   1042     case PPC::STHU8:
   1043     case PPC::STHUX8:
   1044       if (Use.getOperandNo() != 0)
   1045         return 0;
   1046       MaxTruncation = std::max(MaxTruncation, 16u);
   1047       continue;
   1048     case PPC::STB8:
   1049     case PPC::STBX8:
   1050     case PPC::STBU8:
   1051     case PPC::STBUX8:
   1052       if (Use.getOperandNo() != 0)
   1053         return 0;
   1054       MaxTruncation = std::max(MaxTruncation, 8u);
   1055       continue;
   1056     }
   1057   }
   1058   return MaxTruncation;
   1059 }
   1060 
   1061 // Select a 64-bit constant.
   1062 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
   1063   SDLoc dl(N);
   1064 
   1065   // Get 64 bit value.
   1066   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
   1067   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
   1068     uint64_t SextImm = SignExtend64(Imm, MinSize);
   1069     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
   1070     if (isInt<16>(SextImm))
   1071       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
   1072   }
   1073   return selectI64Imm(CurDAG, dl, Imm);
   1074 }
   1075 
   1076 namespace {
   1077 
   1078 class BitPermutationSelector {
   1079   struct ValueBit {
   1080     SDValue V;
   1081 
   1082     // The bit number in the value, using a convention where bit 0 is the
   1083     // lowest-order bit.
   1084     unsigned Idx;
   1085 
   1086     enum Kind {
   1087       ConstZero,
   1088       Variable
   1089     } K;
   1090 
   1091     ValueBit(SDValue V, unsigned I, Kind K = Variable)
   1092       : V(V), Idx(I), K(K) {}
   1093     ValueBit(Kind K = Variable)
   1094       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
   1095 
   1096     bool isZero() const {
   1097       return K == ConstZero;
   1098     }
   1099 
   1100     bool hasValue() const {
   1101       return K == Variable;
   1102     }
   1103 
   1104     SDValue getValue() const {
   1105       assert(hasValue() && "Cannot get the value of a constant bit");
   1106       return V;
   1107     }
   1108 
   1109     unsigned getValueBitIndex() const {
   1110       assert(hasValue() && "Cannot get the value bit index of a constant bit");
   1111       return Idx;
   1112     }
   1113   };
   1114 
   1115   // A bit group has the same underlying value and the same rotate factor.
   1116   struct BitGroup {
   1117     SDValue V;
   1118     unsigned RLAmt;
   1119     unsigned StartIdx, EndIdx;
   1120 
   1121     // This rotation amount assumes that the lower 32 bits of the quantity are
   1122     // replicated in the high 32 bits by the rotation operator (which is done
   1123     // by rlwinm and friends in 64-bit mode).
   1124     bool Repl32;
   1125     // Did converting to Repl32 == true change the rotation factor? If it did,
   1126     // it decreased it by 32.
   1127     bool Repl32CR;
   1128     // Was this group coalesced after setting Repl32 to true?
   1129     bool Repl32Coalesced;
   1130 
   1131     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
   1132       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
   1133         Repl32Coalesced(false) {
   1134       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
   1135                         << " [" << S << ", " << E << "]\n");
   1136     }
   1137   };
   1138 
   1139   // Information on each (Value, RLAmt) pair (like the number of groups
   1140   // associated with each) used to choose the lowering method.
   1141   struct ValueRotInfo {
   1142     SDValue V;
   1143     unsigned RLAmt = std::numeric_limits<unsigned>::max();
   1144     unsigned NumGroups = 0;
   1145     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
   1146     bool Repl32 = false;
   1147 
   1148     ValueRotInfo() = default;
   1149 
   1150     // For sorting (in reverse order) by NumGroups, and then by
   1151     // FirstGroupStartIdx.
   1152     bool operator < (const ValueRotInfo &Other) const {
   1153       // We need to sort so that the non-Repl32 come first because, when we're
   1154       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
   1155       // masking operation.
   1156       if (Repl32 < Other.Repl32)
   1157         return true;
   1158       else if (Repl32 > Other.Repl32)
   1159         return false;
   1160       else if (NumGroups > Other.NumGroups)
   1161         return true;
   1162       else if (NumGroups < Other.NumGroups)
   1163         return false;
   1164       else if (RLAmt == 0 && Other.RLAmt != 0)
   1165         return true;
   1166       else if (RLAmt != 0 && Other.RLAmt == 0)
   1167         return false;
   1168       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
   1169         return true;
   1170       return false;
   1171     }
   1172   };
   1173 
   1174   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
   1175   using ValueBitsMemoizer =
   1176       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
   1177   ValueBitsMemoizer Memoizer;
   1178 
   1179   // Return a pair of bool and a SmallVector pointer to a memoization entry.
   1180   // The bool is true if something interesting was deduced, otherwise if we're
   1181   // providing only a generic representation of V (or something else likewise
   1182   // uninteresting for instruction selection) through the SmallVector.
   1183   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
   1184                                                             unsigned NumBits) {
   1185     auto &ValueEntry = Memoizer[V];
   1186     if (ValueEntry)
   1187       return std::make_pair(ValueEntry->first, &ValueEntry->second);
   1188     ValueEntry.reset(new ValueBitsMemoizedValue());
   1189     bool &Interesting = ValueEntry->first;
   1190     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
   1191     Bits.resize(NumBits);
   1192 
   1193     switch (V.getOpcode()) {
   1194     default: break;
   1195     case ISD::ROTL:
   1196       if (isa<ConstantSDNode>(V.getOperand(1))) {
   1197         unsigned RotAmt = V.getConstantOperandVal(1);
   1198 
   1199         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
   1200 
   1201         for (unsigned i = 0; i < NumBits; ++i)
   1202           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
   1203 
   1204         return std::make_pair(Interesting = true, &Bits);
   1205       }
   1206       break;
   1207     case ISD::SHL:
   1208       if (isa<ConstantSDNode>(V.getOperand(1))) {
   1209         unsigned ShiftAmt = V.getConstantOperandVal(1);
   1210 
   1211         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
   1212 
   1213         for (unsigned i = ShiftAmt; i < NumBits; ++i)
   1214           Bits[i] = LHSBits[i - ShiftAmt];
   1215 
   1216         for (unsigned i = 0; i < ShiftAmt; ++i)
   1217           Bits[i] = ValueBit(ValueBit::ConstZero);
   1218 
   1219         return std::make_pair(Interesting = true, &Bits);
   1220       }
   1221       break;
   1222     case ISD::SRL:
   1223       if (isa<ConstantSDNode>(V.getOperand(1))) {
   1224         unsigned ShiftAmt = V.getConstantOperandVal(1);
   1225 
   1226         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
   1227 
   1228         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
   1229           Bits[i] = LHSBits[i + ShiftAmt];
   1230 
   1231         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
   1232           Bits[i] = ValueBit(ValueBit::ConstZero);
   1233 
   1234         return std::make_pair(Interesting = true, &Bits);
   1235       }
   1236       break;
   1237     case ISD::AND:
   1238       if (isa<ConstantSDNode>(V.getOperand(1))) {
   1239         uint64_t Mask = V.getConstantOperandVal(1);
   1240 
   1241         const SmallVector<ValueBit, 64> *LHSBits;
   1242         // Mark this as interesting, only if the LHS was also interesting. This
   1243         // prevents the overall procedure from matching a single immediate 'and'
   1244         // (which is non-optimal because such an and might be folded with other
   1245         // things if we don't select it here).
   1246         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
   1247 
   1248         for (unsigned i = 0; i < NumBits; ++i)
   1249           if (((Mask >> i) & 1) == 1)
   1250             Bits[i] = (*LHSBits)[i];
   1251           else
   1252             Bits[i] = ValueBit(ValueBit::ConstZero);
   1253 
   1254         return std::make_pair(Interesting, &Bits);
   1255       }
   1256       break;
   1257     case ISD::OR: {
   1258       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
   1259       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
   1260 
   1261       bool AllDisjoint = true;
   1262       for (unsigned i = 0; i < NumBits; ++i)
   1263         if (LHSBits[i].isZero())
   1264           Bits[i] = RHSBits[i];
   1265         else if (RHSBits[i].isZero())
   1266           Bits[i] = LHSBits[i];
   1267         else {
   1268           AllDisjoint = false;
   1269           break;
   1270         }
   1271 
   1272       if (!AllDisjoint)
   1273         break;
   1274 
   1275       return std::make_pair(Interesting = true, &Bits);
   1276     }
   1277     case ISD::ZERO_EXTEND: {
   1278       // We support only the case with zero extension from i32 to i64 so far.
   1279       if (V.getValueType() != MVT::i64 ||
   1280           V.getOperand(0).getValueType() != MVT::i32)
   1281         break;
   1282 
   1283       const SmallVector<ValueBit, 64> *LHSBits;
   1284       const unsigned NumOperandBits = 32;
   1285       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
   1286                                                     NumOperandBits);
   1287 
   1288       for (unsigned i = 0; i < NumOperandBits; ++i)
   1289         Bits[i] = (*LHSBits)[i];
   1290 
   1291       for (unsigned i = NumOperandBits; i < NumBits; ++i)
   1292         Bits[i] = ValueBit(ValueBit::ConstZero);
   1293 
   1294       return std::make_pair(Interesting, &Bits);
   1295     }
   1296     }
   1297 
   1298     for (unsigned i = 0; i < NumBits; ++i)
   1299       Bits[i] = ValueBit(V, i);
   1300 
   1301     return std::make_pair(Interesting = false, &Bits);
   1302   }
   1303 
   1304   // For each value (except the constant ones), compute the left-rotate amount
   1305   // to get it from its original to final position.
   1306   void computeRotationAmounts() {
   1307     HasZeros = false;
   1308     RLAmt.resize(Bits.size());
   1309     for (unsigned i = 0; i < Bits.size(); ++i)
   1310       if (Bits[i].hasValue()) {
   1311         unsigned VBI = Bits[i].getValueBitIndex();
   1312         if (i >= VBI)
   1313           RLAmt[i] = i - VBI;
   1314         else
   1315           RLAmt[i] = Bits.size() - (VBI - i);
   1316       } else if (Bits[i].isZero()) {
   1317         HasZeros = true;
   1318         RLAmt[i] = UINT32_MAX;
   1319       } else {
   1320         llvm_unreachable("Unknown value bit type");
   1321       }
   1322   }
   1323 
   1324   // Collect groups of consecutive bits with the same underlying value and
   1325   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
   1326   // they break up groups.
   1327   void collectBitGroups(bool LateMask) {
   1328     BitGroups.clear();
   1329 
   1330     unsigned LastRLAmt = RLAmt[0];
   1331     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
   1332     unsigned LastGroupStartIdx = 0;
   1333     for (unsigned i = 1; i < Bits.size(); ++i) {
   1334       unsigned ThisRLAmt = RLAmt[i];
   1335       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
   1336       if (LateMask && !ThisValue) {
   1337         ThisValue = LastValue;
   1338         ThisRLAmt = LastRLAmt;
   1339         // If we're doing late masking, then the first bit group always starts
   1340         // at zero (even if the first bits were zero).
   1341         if (BitGroups.empty())
   1342           LastGroupStartIdx = 0;
   1343       }
   1344 
   1345       // If this bit has the same underlying value and the same rotate factor as
   1346       // the last one, then they're part of the same group.
   1347       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
   1348         continue;
   1349 
   1350       if (LastValue.getNode())
   1351         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1352                                      i-1));
   1353       LastRLAmt = ThisRLAmt;
   1354       LastValue = ThisValue;
   1355       LastGroupStartIdx = i;
   1356     }
   1357     if (LastValue.getNode())
   1358       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1359                                    Bits.size()-1));
   1360 
   1361     if (BitGroups.empty())
   1362       return;
   1363 
   1364     // We might be able to combine the first and last groups.
   1365     if (BitGroups.size() > 1) {
   1366       // If the first and last groups are the same, then remove the first group
   1367       // in favor of the last group, making the ending index of the last group
   1368       // equal to the ending index of the to-be-removed first group.
   1369       if (BitGroups[0].StartIdx == 0 &&
   1370           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
   1371           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
   1372           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
   1373         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
   1374         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
   1375         BitGroups.erase(BitGroups.begin());
   1376       }
   1377     }
   1378   }
   1379 
   1380   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
   1381   // associated with each. If the number of groups are same, we prefer a group
   1382   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
   1383   // instruction. If there is a degeneracy, pick the one that occurs
   1384   // first (in the final value).
   1385   void collectValueRotInfo() {
   1386     ValueRots.clear();
   1387 
   1388     for (auto &BG : BitGroups) {
   1389       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
   1390       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
   1391       VRI.V = BG.V;
   1392       VRI.RLAmt = BG.RLAmt;
   1393       VRI.Repl32 = BG.Repl32;
   1394       VRI.NumGroups += 1;
   1395       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
   1396     }
   1397 
   1398     // Now that we've collected the various ValueRotInfo instances, we need to
   1399     // sort them.
   1400     ValueRotsVec.clear();
   1401     for (auto &I : ValueRots) {
   1402       ValueRotsVec.push_back(I.second);
   1403     }
   1404     llvm::sort(ValueRotsVec.begin(), ValueRotsVec.end());
   1405   }
   1406 
   1407   // In 64-bit mode, rlwinm and friends have a rotation operator that
   1408   // replicates the low-order 32 bits into the high-order 32-bits. The mask
   1409   // indices of these instructions can only be in the lower 32 bits, so they
   1410   // can only represent some 64-bit bit groups. However, when they can be used,
   1411   // the 32-bit replication can be used to represent, as a single bit group,
   1412   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
   1413   // groups when possible. Returns true if any of the bit groups were
   1414   // converted.
   1415   void assignRepl32BitGroups() {
   1416     // If we have bits like this:
   1417     //
   1418     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
   1419     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
   1420     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
   1421     //
   1422     // But, making use of a 32-bit operation that replicates the low-order 32
   1423     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
   1424     // of 8.
   1425 
   1426     auto IsAllLow32 = [this](BitGroup & BG) {
   1427       if (BG.StartIdx <= BG.EndIdx) {
   1428         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
   1429           if (!Bits[i].hasValue())
   1430             continue;
   1431           if (Bits[i].getValueBitIndex() >= 32)
   1432             return false;
   1433         }
   1434       } else {
   1435         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
   1436           if (!Bits[i].hasValue())
   1437             continue;
   1438           if (Bits[i].getValueBitIndex() >= 32)
   1439             return false;
   1440         }
   1441         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
   1442           if (!Bits[i].hasValue())
   1443             continue;
   1444           if (Bits[i].getValueBitIndex() >= 32)
   1445             return false;
   1446         }
   1447       }
   1448 
   1449       return true;
   1450     };
   1451 
   1452     for (auto &BG : BitGroups) {
   1453       // If this bit group has RLAmt of 0 and will not be merged with
   1454       // another bit group, we don't benefit from Repl32. We don't mark
   1455       // such group to give more freedom for later instruction selection.
   1456       if (BG.RLAmt == 0) {
   1457         auto PotentiallyMerged = [this](BitGroup & BG) {
   1458           for (auto &BG2 : BitGroups)
   1459             if (&BG != &BG2 && BG.V == BG2.V &&
   1460                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
   1461               return true;
   1462           return false;
   1463         };
   1464         if (!PotentiallyMerged(BG))
   1465           continue;
   1466       }
   1467       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
   1468         if (IsAllLow32(BG)) {
   1469           if (BG.RLAmt >= 32) {
   1470             BG.RLAmt -= 32;
   1471             BG.Repl32CR = true;
   1472           }
   1473 
   1474           BG.Repl32 = true;
   1475 
   1476           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
   1477                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
   1478                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
   1479         }
   1480       }
   1481     }
   1482 
   1483     // Now walk through the bit groups, consolidating where possible.
   1484     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1485       // We might want to remove this bit group by merging it with the previous
   1486       // group (which might be the ending group).
   1487       auto IP = (I == BitGroups.begin()) ?
   1488                 std::prev(BitGroups.end()) : std::prev(I);
   1489       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
   1490           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
   1491 
   1492         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
   1493                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
   1494                           << I->StartIdx << ", " << I->EndIdx
   1495                           << "] with group with range [" << IP->StartIdx << ", "
   1496                           << IP->EndIdx << "]\n");
   1497 
   1498         IP->EndIdx = I->EndIdx;
   1499         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
   1500         IP->Repl32Coalesced = true;
   1501         I = BitGroups.erase(I);
   1502         continue;
   1503       } else {
   1504         // There is a special case worth handling: If there is a single group
   1505         // covering the entire upper 32 bits, and it can be merged with both
   1506         // the next and previous groups (which might be the same group), then
   1507         // do so. If it is the same group (so there will be only one group in
   1508         // total), then we need to reverse the order of the range so that it
   1509         // covers the entire 64 bits.
   1510         if (I->StartIdx == 32 && I->EndIdx == 63) {
   1511           assert(std::next(I) == BitGroups.end() &&
   1512                  "bit group ends at index 63 but there is another?");
   1513           auto IN = BitGroups.begin();
   1514 
   1515           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
   1516               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
   1517               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
   1518               IsAllLow32(*I)) {
   1519 
   1520             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
   1521                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
   1522                               << ", " << I->EndIdx
   1523                               << "] with 32-bit replicated groups with ranges ["
   1524                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
   1525                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
   1526 
   1527             if (IP == IN) {
   1528               // There is only one other group; change it to cover the whole
   1529               // range (backward, so that it can still be Repl32 but cover the
   1530               // whole 64-bit range).
   1531               IP->StartIdx = 31;
   1532               IP->EndIdx = 30;
   1533               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
   1534               IP->Repl32Coalesced = true;
   1535               I = BitGroups.erase(I);
   1536             } else {
   1537               // There are two separate groups, one before this group and one
   1538               // after us (at the beginning). We're going to remove this group,
   1539               // but also the group at the very beginning.
   1540               IP->EndIdx = IN->EndIdx;
   1541               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
   1542               IP->Repl32Coalesced = true;
   1543               I = BitGroups.erase(I);
   1544               BitGroups.erase(BitGroups.begin());
   1545             }
   1546 
   1547             // This must be the last group in the vector (and we might have
   1548             // just invalidated the iterator above), so break here.
   1549             break;
   1550           }
   1551         }
   1552       }
   1553 
   1554       ++I;
   1555     }
   1556   }
   1557 
   1558   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
   1559     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
   1560   }
   1561 
   1562   uint64_t getZerosMask() {
   1563     uint64_t Mask = 0;
   1564     for (unsigned i = 0; i < Bits.size(); ++i) {
   1565       if (Bits[i].hasValue())
   1566         continue;
   1567       Mask |= (UINT64_C(1) << i);
   1568     }
   1569 
   1570     return ~Mask;
   1571   }
   1572 
   1573   // This method extends an input value to 64 bit if input is 32-bit integer.
   1574   // While selecting instructions in BitPermutationSelector in 64-bit mode,
   1575   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
   1576   // In such case, we extend it to 64 bit to be consistent with other values.
   1577   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
   1578     if (V.getValueSizeInBits() == 64)
   1579       return V;
   1580 
   1581     assert(V.getValueSizeInBits() == 32);
   1582     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
   1583     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
   1584                                                    MVT::i64), 0);
   1585     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
   1586                                                     MVT::i64, ImDef, V,
   1587                                                     SubRegIdx), 0);
   1588     return ExtVal;
   1589   }
   1590 
   1591   // Depending on the number of groups for a particular value, it might be
   1592   // better to rotate, mask explicitly (using andi/andis), and then or the
   1593   // result. Select this part of the result first.
   1594   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
   1595     if (BPermRewriterNoMasking)
   1596       return;
   1597 
   1598     for (ValueRotInfo &VRI : ValueRotsVec) {
   1599       unsigned Mask = 0;
   1600       for (unsigned i = 0; i < Bits.size(); ++i) {
   1601         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
   1602           continue;
   1603         if (RLAmt[i] != VRI.RLAmt)
   1604           continue;
   1605         Mask |= (1u << i);
   1606       }
   1607 
   1608       // Compute the masks for andi/andis that would be necessary.
   1609       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1610       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1611              "No set bits in mask for value bit groups");
   1612       bool NeedsRotate = VRI.RLAmt != 0;
   1613 
   1614       // We're trying to minimize the number of instructions. If we have one
   1615       // group, using one of andi/andis can break even.  If we have three
   1616       // groups, we can use both andi and andis and break even (to use both
   1617       // andi and andis we also need to or the results together). We need four
   1618       // groups if we also need to rotate. To use andi/andis we need to do more
   1619       // than break even because rotate-and-mask instructions tend to be easier
   1620       // to schedule.
   1621 
   1622       // FIXME: We've biased here against using andi/andis, which is right for
   1623       // POWER cores, but not optimal everywhere. For example, on the A2,
   1624       // andi/andis have single-cycle latency whereas the rotate-and-mask
   1625       // instructions take two cycles, and it would be better to bias toward
   1626       // andi/andis in break-even cases.
   1627 
   1628       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1629                              (unsigned) (ANDIMask != 0) +
   1630                              (unsigned) (ANDISMask != 0) +
   1631                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
   1632                              (unsigned) (bool) Res;
   1633 
   1634       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
   1635                         << " RL: " << VRI.RLAmt << ":"
   1636                         << "\n\t\t\tisel using masking: " << NumAndInsts
   1637                         << " using rotates: " << VRI.NumGroups << "\n");
   1638 
   1639       if (NumAndInsts >= VRI.NumGroups)
   1640         continue;
   1641 
   1642       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   1643 
   1644       if (InstCnt) *InstCnt += NumAndInsts;
   1645 
   1646       SDValue VRot;
   1647       if (VRI.RLAmt) {
   1648         SDValue Ops[] =
   1649           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
   1650             getI32Imm(31, dl) };
   1651         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   1652                                               Ops), 0);
   1653       } else {
   1654         VRot = VRI.V;
   1655       }
   1656 
   1657       SDValue ANDIVal, ANDISVal;
   1658       if (ANDIMask != 0)
   1659         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1660                             VRot, getI32Imm(ANDIMask, dl)), 0);
   1661       if (ANDISMask != 0)
   1662         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1663                              VRot, getI32Imm(ANDISMask, dl)), 0);
   1664 
   1665       SDValue TotalVal;
   1666       if (!ANDIVal)
   1667         TotalVal = ANDISVal;
   1668       else if (!ANDISVal)
   1669         TotalVal = ANDIVal;
   1670       else
   1671         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1672                              ANDIVal, ANDISVal), 0);
   1673 
   1674       if (!Res)
   1675         Res = TotalVal;
   1676       else
   1677         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1678                         Res, TotalVal), 0);
   1679 
   1680       // Now, remove all groups with this underlying value and rotation
   1681       // factor.
   1682       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   1683         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
   1684       });
   1685     }
   1686   }
   1687 
   1688   // Instruction selection for the 32-bit case.
   1689   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
   1690     SDLoc dl(N);
   1691     SDValue Res;
   1692 
   1693     if (InstCnt) *InstCnt = 0;
   1694 
   1695     // Take care of cases that should use andi/andis first.
   1696     SelectAndParts32(dl, Res, InstCnt);
   1697 
   1698     // If we've not yet selected a 'starting' instruction, and we have no zeros
   1699     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   1700     // number of groups), and start with this rotated value.
   1701     if ((!HasZeros || LateMask) && !Res) {
   1702       ValueRotInfo &VRI = ValueRotsVec[0];
   1703       if (VRI.RLAmt) {
   1704         if (InstCnt) *InstCnt += 1;
   1705         SDValue Ops[] =
   1706           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
   1707             getI32Imm(31, dl) };
   1708         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
   1709                       0);
   1710       } else {
   1711         Res = VRI.V;
   1712       }
   1713 
   1714       // Now, remove all groups with this underlying value and rotation factor.
   1715       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   1716         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
   1717       });
   1718     }
   1719 
   1720     if (InstCnt) *InstCnt += BitGroups.size();
   1721 
   1722     // Insert the other groups (one at a time).
   1723     for (auto &BG : BitGroups) {
   1724       if (!Res) {
   1725         SDValue Ops[] =
   1726           { BG.V, getI32Imm(BG.RLAmt, dl),
   1727             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
   1728             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
   1729         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   1730       } else {
   1731         SDValue Ops[] =
   1732           { Res, BG.V, getI32Imm(BG.RLAmt, dl),
   1733               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
   1734             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
   1735         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
   1736       }
   1737     }
   1738 
   1739     if (LateMask) {
   1740       unsigned Mask = (unsigned) getZerosMask();
   1741 
   1742       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1743       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1744              "No set bits in zeros mask?");
   1745 
   1746       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   1747                                (unsigned) (ANDISMask != 0) +
   1748                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1749 
   1750       SDValue ANDIVal, ANDISVal;
   1751       if (ANDIMask != 0)
   1752         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1753                             Res, getI32Imm(ANDIMask, dl)), 0);
   1754       if (ANDISMask != 0)
   1755         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1756                              Res, getI32Imm(ANDISMask, dl)), 0);
   1757 
   1758       if (!ANDIVal)
   1759         Res = ANDISVal;
   1760       else if (!ANDISVal)
   1761         Res = ANDIVal;
   1762       else
   1763         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1764                         ANDIVal, ANDISVal), 0);
   1765     }
   1766 
   1767     return Res.getNode();
   1768   }
   1769 
   1770   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
   1771                                 unsigned MaskStart, unsigned MaskEnd,
   1772                                 bool IsIns) {
   1773     // In the notation used by the instructions, 'start' and 'end' are reversed
   1774     // because bits are counted from high to low order.
   1775     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1776              InstMaskEnd   = 64 - MaskStart - 1;
   1777 
   1778     if (Repl32)
   1779       return 1;
   1780 
   1781     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
   1782         InstMaskEnd == 63 - RLAmt)
   1783       return 1;
   1784 
   1785     return 2;
   1786   }
   1787 
   1788   // For 64-bit values, not all combinations of rotates and masks are
   1789   // available. Produce one if it is available.
   1790   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
   1791                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
   1792                           unsigned *InstCnt = nullptr) {
   1793     // In the notation used by the instructions, 'start' and 'end' are reversed
   1794     // because bits are counted from high to low order.
   1795     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1796              InstMaskEnd   = 64 - MaskStart - 1;
   1797 
   1798     if (InstCnt) *InstCnt += 1;
   1799 
   1800     if (Repl32) {
   1801       // This rotation amount assumes that the lower 32 bits of the quantity
   1802       // are replicated in the high 32 bits by the rotation operator (which is
   1803       // done by rlwinm and friends).
   1804       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1805       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1806       SDValue Ops[] =
   1807         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1808           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
   1809       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
   1810                                             Ops), 0);
   1811     }
   1812 
   1813     if (InstMaskEnd == 63) {
   1814       SDValue Ops[] =
   1815         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1816           getI32Imm(InstMaskStart, dl) };
   1817       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
   1818     }
   1819 
   1820     if (InstMaskStart == 0) {
   1821       SDValue Ops[] =
   1822         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1823           getI32Imm(InstMaskEnd, dl) };
   1824       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
   1825     }
   1826 
   1827     if (InstMaskEnd == 63 - RLAmt) {
   1828       SDValue Ops[] =
   1829         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1830           getI32Imm(InstMaskStart, dl) };
   1831       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
   1832     }
   1833 
   1834     // We cannot do this with a single instruction, so we'll use two. The
   1835     // problem is that we're not free to choose both a rotation amount and mask
   1836     // start and end independently. We can choose an arbitrary mask start and
   1837     // end, but then the rotation amount is fixed. Rotation, however, can be
   1838     // inverted, and so by applying an "inverse" rotation first, we can get the
   1839     // desired result.
   1840     if (InstCnt) *InstCnt += 1;
   1841 
   1842     // The rotation mask for the second instruction must be MaskStart.
   1843     unsigned RLAmt2 = MaskStart;
   1844     // The first instruction must rotate V so that the overall rotation amount
   1845     // is RLAmt.
   1846     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1847     if (RLAmt1)
   1848       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1849     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1850   }
   1851 
   1852   // For 64-bit values, not all combinations of rotates and masks are
   1853   // available. Produce a rotate-mask-and-insert if one is available.
   1854   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
   1855                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
   1856                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
   1857     // In the notation used by the instructions, 'start' and 'end' are reversed
   1858     // because bits are counted from high to low order.
   1859     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1860              InstMaskEnd   = 64 - MaskStart - 1;
   1861 
   1862     if (InstCnt) *InstCnt += 1;
   1863 
   1864     if (Repl32) {
   1865       // This rotation amount assumes that the lower 32 bits of the quantity
   1866       // are replicated in the high 32 bits by the rotation operator (which is
   1867       // done by rlwinm and friends).
   1868       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1869       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1870       SDValue Ops[] =
   1871         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1872           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
   1873       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
   1874                                             Ops), 0);
   1875     }
   1876 
   1877     if (InstMaskEnd == 63 - RLAmt) {
   1878       SDValue Ops[] =
   1879         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
   1880           getI32Imm(InstMaskStart, dl) };
   1881       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
   1882     }
   1883 
   1884     // We cannot do this with a single instruction, so we'll use two. The
   1885     // problem is that we're not free to choose both a rotation amount and mask
   1886     // start and end independently. We can choose an arbitrary mask start and
   1887     // end, but then the rotation amount is fixed. Rotation, however, can be
   1888     // inverted, and so by applying an "inverse" rotation first, we can get the
   1889     // desired result.
   1890     if (InstCnt) *InstCnt += 1;
   1891 
   1892     // The rotation mask for the second instruction must be MaskStart.
   1893     unsigned RLAmt2 = MaskStart;
   1894     // The first instruction must rotate V so that the overall rotation amount
   1895     // is RLAmt.
   1896     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1897     if (RLAmt1)
   1898       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1899     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1900   }
   1901 
   1902   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
   1903     if (BPermRewriterNoMasking)
   1904       return;
   1905 
   1906     // The idea here is the same as in the 32-bit version, but with additional
   1907     // complications from the fact that Repl32 might be true. Because we
   1908     // aggressively convert bit groups to Repl32 form (which, for small
   1909     // rotation factors, involves no other change), and then coalesce, it might
   1910     // be the case that a single 64-bit masking operation could handle both
   1911     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
   1912     // form allowed coalescing, then we must use a 32-bit rotaton in order to
   1913     // completely capture the new combined bit group.
   1914 
   1915     for (ValueRotInfo &VRI : ValueRotsVec) {
   1916       uint64_t Mask = 0;
   1917 
   1918       // We need to add to the mask all bits from the associated bit groups.
   1919       // If Repl32 is false, we need to add bits from bit groups that have
   1920       // Repl32 true, but are trivially convertable to Repl32 false. Such a
   1921       // group is trivially convertable if it overlaps only with the lower 32
   1922       // bits, and the group has not been coalesced.
   1923       auto MatchingBG = [VRI](const BitGroup &BG) {
   1924         if (VRI.V != BG.V)
   1925           return false;
   1926 
   1927         unsigned EffRLAmt = BG.RLAmt;
   1928         if (!VRI.Repl32 && BG.Repl32) {
   1929           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
   1930               !BG.Repl32Coalesced) {
   1931             if (BG.Repl32CR)
   1932               EffRLAmt += 32;
   1933           } else {
   1934             return false;
   1935           }
   1936         } else if (VRI.Repl32 != BG.Repl32) {
   1937           return false;
   1938         }
   1939 
   1940         return VRI.RLAmt == EffRLAmt;
   1941       };
   1942 
   1943       for (auto &BG : BitGroups) {
   1944         if (!MatchingBG(BG))
   1945           continue;
   1946 
   1947         if (BG.StartIdx <= BG.EndIdx) {
   1948           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
   1949             Mask |= (UINT64_C(1) << i);
   1950         } else {
   1951           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
   1952             Mask |= (UINT64_C(1) << i);
   1953           for (unsigned i = 0; i <= BG.EndIdx; ++i)
   1954             Mask |= (UINT64_C(1) << i);
   1955         }
   1956       }
   1957 
   1958       // We can use the 32-bit andi/andis technique if the mask does not
   1959       // require any higher-order bits. This can save an instruction compared
   1960       // to always using the general 64-bit technique.
   1961       bool Use32BitInsts = isUInt<32>(Mask);
   1962       // Compute the masks for andi/andis that would be necessary.
   1963       unsigned ANDIMask = (Mask & UINT16_MAX),
   1964                ANDISMask = (Mask >> 16) & UINT16_MAX;
   1965 
   1966       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
   1967 
   1968       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1969                              (unsigned) (bool) Res;
   1970       if (Use32BitInsts)
   1971         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
   1972                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1973       else
   1974         NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
   1975 
   1976       unsigned NumRLInsts = 0;
   1977       bool FirstBG = true;
   1978       bool MoreBG = false;
   1979       for (auto &BG : BitGroups) {
   1980         if (!MatchingBG(BG)) {
   1981           MoreBG = true;
   1982           continue;
   1983         }
   1984         NumRLInsts +=
   1985           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
   1986                                !FirstBG);
   1987         FirstBG = false;
   1988       }
   1989 
   1990       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
   1991                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
   1992                         << "\n\t\t\tisel using masking: " << NumAndInsts
   1993                         << " using rotates: " << NumRLInsts << "\n");
   1994 
   1995       // When we'd use andi/andis, we bias toward using the rotates (andi only
   1996       // has a record form, and is cracked on POWER cores). However, when using
   1997       // general 64-bit constant formation, bias toward the constant form,
   1998       // because that exposes more opportunities for CSE.
   1999       if (NumAndInsts > NumRLInsts)
   2000         continue;
   2001       // When merging multiple bit groups, instruction or is used.
   2002       // But when rotate is used, rldimi can inert the rotated value into any
   2003       // register, so instruction or can be avoided.
   2004       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
   2005         continue;
   2006 
   2007       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   2008 
   2009       if (InstCnt) *InstCnt += NumAndInsts;
   2010 
   2011       SDValue VRot;
   2012       // We actually need to generate a rotation if we have a non-zero rotation
   2013       // factor or, in the Repl32 case, if we care about any of the
   2014       // higher-order replicated bits. In the latter case, we generate a mask
   2015       // backward so that it actually includes the entire 64 bits.
   2016       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
   2017         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   2018                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
   2019       else
   2020         VRot = VRI.V;
   2021 
   2022       SDValue TotalVal;
   2023       if (Use32BitInsts) {
   2024         assert((ANDIMask != 0 || ANDISMask != 0) &&
   2025                "No set bits in mask when using 32-bit ands for 64-bit value");
   2026 
   2027         SDValue ANDIVal, ANDISVal;
   2028         if (ANDIMask != 0)
   2029           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   2030                                                    ExtendToInt64(VRot, dl),
   2031                                                    getI32Imm(ANDIMask, dl)),
   2032                             0);
   2033         if (ANDISMask != 0)
   2034           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   2035                                                     ExtendToInt64(VRot, dl),
   2036                                                     getI32Imm(ANDISMask, dl)),
   2037                              0);
   2038 
   2039         if (!ANDIVal)
   2040           TotalVal = ANDISVal;
   2041         else if (!ANDISVal)
   2042           TotalVal = ANDIVal;
   2043         else
   2044           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   2045                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
   2046       } else {
   2047         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
   2048         TotalVal =
   2049           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   2050                                          ExtendToInt64(VRot, dl), TotalVal),
   2051                   0);
   2052      }
   2053 
   2054       if (!Res)
   2055         Res = TotalVal;
   2056       else
   2057         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   2058                                              ExtendToInt64(Res, dl), TotalVal),
   2059                       0);
   2060 
   2061       // Now, remove all groups with this underlying value and rotation
   2062       // factor.
   2063       eraseMatchingBitGroups(MatchingBG);
   2064     }
   2065   }
   2066 
   2067   // Instruction selection for the 64-bit case.
   2068   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
   2069     SDLoc dl(N);
   2070     SDValue Res;
   2071 
   2072     if (InstCnt) *InstCnt = 0;
   2073 
   2074     // Take care of cases that should use andi/andis first.
   2075     SelectAndParts64(dl, Res, InstCnt);
   2076 
   2077     // If we've not yet selected a 'starting' instruction, and we have no zeros
   2078     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   2079     // number of groups), and start with this rotated value.
   2080     if ((!HasZeros || LateMask) && !Res) {
   2081       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
   2082       // groups will come first, and so the VRI representing the largest number
   2083       // of groups might not be first (it might be the first Repl32 groups).
   2084       unsigned MaxGroupsIdx = 0;
   2085       if (!ValueRotsVec[0].Repl32) {
   2086         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
   2087           if (ValueRotsVec[i].Repl32) {
   2088             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
   2089               MaxGroupsIdx = i;
   2090             break;
   2091           }
   2092       }
   2093 
   2094       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
   2095       bool NeedsRotate = false;
   2096       if (VRI.RLAmt) {
   2097         NeedsRotate = true;
   2098       } else if (VRI.Repl32) {
   2099         for (auto &BG : BitGroups) {
   2100           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
   2101               BG.Repl32 != VRI.Repl32)
   2102             continue;
   2103 
   2104           // We don't need a rotate if the bit group is confined to the lower
   2105           // 32 bits.
   2106           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
   2107             continue;
   2108 
   2109           NeedsRotate = true;
   2110           break;
   2111         }
   2112       }
   2113 
   2114       if (NeedsRotate)
   2115         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   2116                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
   2117                               InstCnt);
   2118       else
   2119         Res = VRI.V;
   2120 
   2121       // Now, remove all groups with this underlying value and rotation factor.
   2122       if (Res)
   2123         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   2124           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
   2125                  BG.Repl32 == VRI.Repl32;
   2126         });
   2127     }
   2128 
   2129     // Because 64-bit rotates are more flexible than inserts, we might have a
   2130     // preference regarding which one we do first (to save one instruction).
   2131     if (!Res)
   2132       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
   2133         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   2134                                 false) <
   2135             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   2136                                 true)) {
   2137           if (I != BitGroups.begin()) {
   2138             BitGroup BG = *I;
   2139             BitGroups.erase(I);
   2140             BitGroups.insert(BitGroups.begin(), BG);
   2141           }
   2142 
   2143           break;
   2144         }
   2145       }
   2146 
   2147     // Insert the other groups (one at a time).
   2148     for (auto &BG : BitGroups) {
   2149       if (!Res)
   2150         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
   2151                               BG.EndIdx, InstCnt);
   2152       else
   2153         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
   2154                                  BG.StartIdx, BG.EndIdx, InstCnt);
   2155     }
   2156 
   2157     if (LateMask) {
   2158       uint64_t Mask = getZerosMask();
   2159 
   2160       // We can use the 32-bit andi/andis technique if the mask does not
   2161       // require any higher-order bits. This can save an instruction compared
   2162       // to always using the general 64-bit technique.
   2163       bool Use32BitInsts = isUInt<32>(Mask);
   2164       // Compute the masks for andi/andis that would be necessary.
   2165       unsigned ANDIMask = (Mask & UINT16_MAX),
   2166                ANDISMask = (Mask >> 16) & UINT16_MAX;
   2167 
   2168       if (Use32BitInsts) {
   2169         assert((ANDIMask != 0 || ANDISMask != 0) &&
   2170                "No set bits in mask when using 32-bit ands for 64-bit value");
   2171 
   2172         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   2173                                  (unsigned) (ANDISMask != 0) +
   2174                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   2175 
   2176         SDValue ANDIVal, ANDISVal;
   2177         if (ANDIMask != 0)
   2178           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   2179                               ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0);
   2180         if (ANDISMask != 0)
   2181           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   2182                                ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0);
   2183 
   2184         if (!ANDIVal)
   2185           Res = ANDISVal;
   2186         else if (!ANDISVal)
   2187           Res = ANDIVal;
   2188         else
   2189           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   2190                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
   2191       } else {
   2192         if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
   2193 
   2194         SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
   2195         Res =
   2196           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   2197                                          ExtendToInt64(Res, dl), MaskVal), 0);
   2198       }
   2199     }
   2200 
   2201     return Res.getNode();
   2202   }
   2203 
   2204   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
   2205     // Fill in BitGroups.
   2206     collectBitGroups(LateMask);
   2207     if (BitGroups.empty())
   2208       return nullptr;
   2209 
   2210     // For 64-bit values, figure out when we can use 32-bit instructions.
   2211     if (Bits.size() == 64)
   2212       assignRepl32BitGroups();
   2213 
   2214     // Fill in ValueRotsVec.
   2215     collectValueRotInfo();
   2216 
   2217     if (Bits.size() == 32) {
   2218       return Select32(N, LateMask, InstCnt);
   2219     } else {
   2220       assert(Bits.size() == 64 && "Not 64 bits here?");
   2221       return Select64(N, LateMask, InstCnt);
   2222     }
   2223 
   2224     return nullptr;
   2225   }
   2226 
   2227   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
   2228     BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
   2229   }
   2230 
   2231   SmallVector<ValueBit, 64> Bits;
   2232 
   2233   bool HasZeros;
   2234   SmallVector<unsigned, 64> RLAmt;
   2235 
   2236   SmallVector<BitGroup, 16> BitGroups;
   2237 
   2238   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
   2239   SmallVector<ValueRotInfo, 16> ValueRotsVec;
   2240 
   2241   SelectionDAG *CurDAG;
   2242 
   2243 public:
   2244   BitPermutationSelector(SelectionDAG *DAG)
   2245     : CurDAG(DAG) {}
   2246 
   2247   // Here we try to match complex bit permutations into a set of
   2248   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
   2249   // known to produce optimial code for common cases (like i32 byte swapping).
   2250   SDNode *Select(SDNode *N) {
   2251     Memoizer.clear();
   2252     auto Result =
   2253         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
   2254     if (!Result.first)
   2255       return nullptr;
   2256     Bits = std::move(*Result.second);
   2257 
   2258     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
   2259                          " selection for:    ");
   2260     LLVM_DEBUG(N->dump(CurDAG));
   2261 
   2262     // Fill it RLAmt and set HasZeros.
   2263     computeRotationAmounts();
   2264 
   2265     if (!HasZeros)
   2266       return Select(N, false);
   2267 
   2268     // We currently have two techniques for handling results with zeros: early
   2269     // masking (the default) and late masking. Late masking is sometimes more
   2270     // efficient, but because the structure of the bit groups is different, it
   2271     // is hard to tell without generating both and comparing the results. With
   2272     // late masking, we ignore zeros in the resulting value when inserting each
   2273     // set of bit groups, and then mask in the zeros at the end. With early
   2274     // masking, we only insert the non-zero parts of the result at every step.
   2275 
   2276     unsigned InstCnt = 0, InstCntLateMask = 0;
   2277     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
   2278     SDNode *RN = Select(N, false, &InstCnt);
   2279     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
   2280 
   2281     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
   2282     SDNode *RNLM = Select(N, true, &InstCntLateMask);
   2283     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
   2284                       << " instructions\n");
   2285 
   2286     if (InstCnt <= InstCntLateMask) {
   2287       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
   2288       return RN;
   2289     }
   2290 
   2291     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
   2292     return RNLM;
   2293   }
   2294 };
   2295 
   2296 class IntegerCompareEliminator {
   2297   SelectionDAG *CurDAG;
   2298   PPCDAGToDAGISel *S;
   2299   // Conversion type for interpreting results of a 32-bit instruction as
   2300   // a 64-bit value or vice versa.
   2301   enum ExtOrTruncConversion { Ext, Trunc };
   2302 
   2303   // Modifiers to guide how an ISD::SETCC node's result is to be computed
   2304   // in a GPR.
   2305   // ZExtOrig - use the original condition code, zero-extend value
   2306   // ZExtInvert - invert the condition code, zero-extend value
   2307   // SExtOrig - use the original condition code, sign-extend value
   2308   // SExtInvert - invert the condition code, sign-extend value
   2309   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
   2310 
   2311   // Comparisons against zero to emit GPR code sequences for. Each of these
   2312   // sequences may need to be emitted for two or more equivalent patterns.
   2313   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
   2314   // matters as well as the extension type: sext (-1/0), zext (1/0).
   2315   // GEZExt - (zext (LHS >= 0))
   2316   // GESExt - (sext (LHS >= 0))
   2317   // LEZExt - (zext (LHS <= 0))
   2318   // LESExt - (sext (LHS <= 0))
   2319   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
   2320 
   2321   SDNode *tryEXTEND(SDNode *N);
   2322   SDNode *tryLogicOpOfCompares(SDNode *N);
   2323   SDValue computeLogicOpInGPR(SDValue LogicOp);
   2324   SDValue signExtendInputIfNeeded(SDValue Input);
   2325   SDValue zeroExtendInputIfNeeded(SDValue Input);
   2326   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
   2327   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
   2328                                         ZeroCompare CmpTy);
   2329   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2330                               int64_t RHSValue, SDLoc dl);
   2331  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2332                               int64_t RHSValue, SDLoc dl);
   2333   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2334                               int64_t RHSValue, SDLoc dl);
   2335   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2336                               int64_t RHSValue, SDLoc dl);
   2337   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
   2338 
   2339 public:
   2340   IntegerCompareEliminator(SelectionDAG *DAG,
   2341                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
   2342     assert(CurDAG->getTargetLoweringInfo()
   2343            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
   2344            "Only expecting to use this on 64 bit targets.");
   2345   }
   2346   SDNode *Select(SDNode *N) {
   2347     if (CmpInGPR == ICGPR_None)
   2348       return nullptr;
   2349     switch (N->getOpcode()) {
   2350     default: break;
   2351     case ISD::ZERO_EXTEND:
   2352       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
   2353           CmpInGPR == ICGPR_SextI64)
   2354         return nullptr;
   2355       LLVM_FALLTHROUGH;
   2356     case ISD::SIGN_EXTEND:
   2357       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
   2358           CmpInGPR == ICGPR_ZextI64)
   2359         return nullptr;
   2360       return tryEXTEND(N);
   2361     case ISD::AND:
   2362     case ISD::OR:
   2363     case ISD::XOR:
   2364       return tryLogicOpOfCompares(N);
   2365     }
   2366     return nullptr;
   2367   }
   2368 };
   2369 
   2370 static bool isLogicOp(unsigned Opc) {
   2371   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
   2372 }
   2373 // The obvious case for wanting to keep the value in a GPR. Namely, the
   2374 // result of the comparison is actually needed in a GPR.
   2375 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
   2376   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
   2377           N->getOpcode() == ISD::SIGN_EXTEND) &&
   2378          "Expecting a zero/sign extend node!");
   2379   SDValue WideRes;
   2380   // If we are zero-extending the result of a logical operation on i1
   2381   // values, we can keep the values in GPRs.
   2382   if (isLogicOp(N->getOperand(0).getOpcode()) &&
   2383       N->getOperand(0).getValueType() == MVT::i1 &&
   2384       N->getOpcode() == ISD::ZERO_EXTEND)
   2385     WideRes = computeLogicOpInGPR(N->getOperand(0));
   2386   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
   2387     return nullptr;
   2388   else
   2389     WideRes =
   2390       getSETCCInGPR(N->getOperand(0),
   2391                     N->getOpcode() == ISD::SIGN_EXTEND ?
   2392                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
   2393 
   2394   if (!WideRes)
   2395     return nullptr;
   2396 
   2397   SDLoc dl(N);
   2398   bool Input32Bit = WideRes.getValueType() == MVT::i32;
   2399   bool Output32Bit = N->getValueType(0) == MVT::i32;
   2400 
   2401   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
   2402   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
   2403 
   2404   SDValue ConvOp = WideRes;
   2405   if (Input32Bit != Output32Bit)
   2406     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
   2407                            ExtOrTruncConversion::Trunc);
   2408   return ConvOp.getNode();
   2409 }
   2410 
   2411 // Attempt to perform logical operations on the results of comparisons while
   2412 // keeping the values in GPRs. Without doing so, these would end up being
   2413 // lowered to CR-logical operations which suffer from significant latency and
   2414 // low ILP.
   2415 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
   2416   if (N->getValueType(0) != MVT::i1)
   2417     return nullptr;
   2418   assert(isLogicOp(N->getOpcode()) &&
   2419          "Expected a logic operation on setcc results.");
   2420   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
   2421   if (!LoweredLogical)
   2422     return nullptr;
   2423 
   2424   SDLoc dl(N);
   2425   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
   2426   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
   2427   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
   2428   SDValue LHS = LoweredLogical.getOperand(0);
   2429   SDValue RHS = LoweredLogical.getOperand(1);
   2430   SDValue WideOp;
   2431   SDValue OpToConvToRecForm;
   2432 
   2433   // Look through any 32-bit to 64-bit implicit extend nodes to find the
   2434   // opcode that is input to the XORI.
   2435   if (IsBitwiseNegate &&
   2436       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
   2437     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
   2438   else if (IsBitwiseNegate)
   2439     // If the input to the XORI isn't an extension, that's what we're after.
   2440     OpToConvToRecForm = LoweredLogical.getOperand(0);
   2441   else
   2442     // If this is not an XORI, it is a reg-reg logical op and we can convert
   2443     // it to record-form.
   2444     OpToConvToRecForm = LoweredLogical;
   2445 
   2446   // Get the record-form version of the node we're looking to use to get the
   2447   // CR result from.
   2448   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
   2449   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
   2450 
   2451   // Convert the right node to record-form. This is either the logical we're
   2452   // looking at or it is the input node to the negation (if we're looking at
   2453   // a bitwise negation).
   2454   if (NewOpc != -1 && IsBitwiseNegate) {
   2455     // The input to the XORI has a record-form. Use it.
   2456     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
   2457            "Expected a PPC::XORI8 only for bitwise negation.");
   2458     // Emit the record-form instruction.
   2459     std::vector<SDValue> Ops;
   2460     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
   2461       Ops.push_back(OpToConvToRecForm.getOperand(i));
   2462 
   2463     WideOp =
   2464       SDValue(CurDAG->getMachineNode(NewOpc, dl,
   2465                                      OpToConvToRecForm.getValueType(),
   2466                                      MVT::Glue, Ops), 0);
   2467   } else {
   2468     assert((NewOpc != -1 || !IsBitwiseNegate) &&
   2469            "No record form available for AND8/OR8/XOR8?");
   2470     WideOp =
   2471       SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
   2472                                      MVT::i64, MVT::Glue, LHS, RHS), 0);
   2473   }
   2474 
   2475   // Select this node to a single bit from CR0 set by the record-form node
   2476   // just created. For bitwise negation, use the EQ bit which is the equivalent
   2477   // of negating the result (i.e. it is a bit set when the result of the
   2478   // operation is zero).
   2479   SDValue SRIdxVal =
   2480     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
   2481   SDValue CRBit =
   2482     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
   2483                                    MVT::i1, CR0Reg, SRIdxVal,
   2484                                    WideOp.getValue(1)), 0);
   2485   return CRBit.getNode();
   2486 }
   2487 
   2488 // Lower a logical operation on i1 values into a GPR sequence if possible.
   2489 // The result can be kept in a GPR if requested.
   2490 // Three types of inputs can be handled:
   2491 // - SETCC
   2492 // - TRUNCATE
   2493 // - Logical operation (AND/OR/XOR)
   2494 // There is also a special case that is handled (namely a complement operation
   2495 // achieved with xor %a, -1).
   2496 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
   2497   assert(isLogicOp(LogicOp.getOpcode()) &&
   2498         "Can only handle logic operations here.");
   2499   assert(LogicOp.getValueType() == MVT::i1 &&
   2500          "Can only handle logic operations on i1 values here.");
   2501   SDLoc dl(LogicOp);
   2502   SDValue LHS, RHS;
   2503 
   2504  // Special case: xor %a, -1
   2505   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
   2506 
   2507   // Produces a GPR sequence for each operand of the binary logic operation.
   2508   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
   2509   // the value in a GPR and for logic operations, it will recursively produce
   2510   // a GPR sequence for the operation.
   2511  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
   2512     unsigned OperandOpcode = Operand.getOpcode();
   2513     if (OperandOpcode == ISD::SETCC)
   2514       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
   2515     else if (OperandOpcode == ISD::TRUNCATE) {
   2516       SDValue InputOp = Operand.getOperand(0);
   2517      EVT InVT = InputOp.getValueType();
   2518       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
   2519                                             PPC::RLDICL, dl, InVT, InputOp,
   2520                                             S->getI64Imm(0, dl),
   2521                                             S->getI64Imm(63, dl)), 0);
   2522     } else if (isLogicOp(OperandOpcode))
   2523       return computeLogicOpInGPR(Operand);
   2524     return SDValue();
   2525   };
   2526   LHS = getLogicOperand(LogicOp.getOperand(0));
   2527   RHS = getLogicOperand(LogicOp.getOperand(1));
   2528 
   2529   // If a GPR sequence can't be produced for the LHS we can't proceed.
   2530   // Not producing a GPR sequence for the RHS is only a problem if this isn't
   2531   // a bitwise negation operation.
   2532   if (!LHS || (!RHS && !IsBitwiseNegation))
   2533     return SDValue();
   2534 
   2535   NumLogicOpsOnComparison++;
   2536 
   2537   // We will use the inputs as 64-bit values.
   2538   if (LHS.getValueType() == MVT::i32)
   2539     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
   2540   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
   2541     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
   2542 
   2543   unsigned NewOpc;
   2544   switch (LogicOp.getOpcode()) {
   2545   default: llvm_unreachable("Unknown logic operation.");
   2546   case ISD::AND: NewOpc = PPC::AND8; break;
   2547   case ISD::OR:  NewOpc = PPC::OR8;  break;
   2548   case ISD::XOR: NewOpc = PPC::XOR8; break;
   2549   }
   2550 
   2551   if (IsBitwiseNegation) {
   2552     RHS = S->getI64Imm(1, dl);
   2553     NewOpc = PPC::XORI8;
   2554   }
   2555 
   2556   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
   2557 
   2558 }
   2559 
   2560 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
   2561 /// Otherwise just reinterpret it as a 64-bit value.
   2562 /// Useful when emitting comparison code for 32-bit values without using
   2563 /// the compare instruction (which only considers the lower 32-bits).
   2564 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
   2565   assert(Input.getValueType() == MVT::i32 &&
   2566          "Can only sign-extend 32-bit values here.");
   2567   unsigned Opc = Input.getOpcode();
   2568 
   2569   // The value was sign extended and then truncated to 32-bits. No need to
   2570   // sign extend it again.
   2571   if (Opc == ISD::TRUNCATE &&
   2572       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
   2573        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
   2574     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2575 
   2576   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
   2577   // The input is a sign-extending load. All ppc sign-extending loads
   2578   // sign-extend to the full 64-bits.
   2579   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
   2580     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2581 
   2582   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
   2583   // We don't sign-extend constants.
   2584   if (InputConst)
   2585     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2586 
   2587   SDLoc dl(Input);
   2588   SignExtensionsAdded++;
   2589   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
   2590                                         MVT::i64, Input), 0);
   2591 }
   2592 
   2593 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
   2594 /// Otherwise just reinterpret it as a 64-bit value.
   2595 /// Useful when emitting comparison code for 32-bit values without using
   2596 /// the compare instruction (which only considers the lower 32-bits).
   2597 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
   2598   assert(Input.getValueType() == MVT::i32 &&
   2599          "Can only zero-extend 32-bit values here.");
   2600   unsigned Opc = Input.getOpcode();
   2601 
   2602   // The only condition under which we can omit the actual extend instruction:
   2603   // - The value is a positive constant
   2604   // - The value comes from a load that isn't a sign-extending load
   2605   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
   2606   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
   2607     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
   2608      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
   2609   if (IsTruncateOfZExt)
   2610     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2611 
   2612   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
   2613   if (InputConst && InputConst->getSExtValue() >= 0)
   2614     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2615 
   2616   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
   2617   // The input is a load that doesn't sign-extend (it will be zero-extended).
   2618   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
   2619     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
   2620 
   2621   // None of the above, need to zero-extend.
   2622   SDLoc dl(Input);
   2623   ZeroExtensionsAdded++;
   2624   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
   2625                                         S->getI64Imm(0, dl),
   2626                                         S->getI64Imm(32, dl)), 0);
   2627 }
   2628 
   2629 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
   2630 // course not actual zero/sign extensions that will generate machine code,
   2631 // they're just a way to reinterpret a 32 bit value in a register as a
   2632 // 64 bit value and vice-versa.
   2633 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
   2634                                                 ExtOrTruncConversion Conv) {
   2635   SDLoc dl(NatWidthRes);
   2636 
   2637   // For reinterpreting 32-bit values as 64 bit values, we generate
   2638   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
   2639   if (Conv == ExtOrTruncConversion::Ext) {
   2640     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
   2641     SDValue SubRegIdx =
   2642       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
   2643     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
   2644                                           ImDef, NatWidthRes, SubRegIdx), 0);
   2645   }
   2646 
   2647   assert(Conv == ExtOrTruncConversion::Trunc &&
   2648          "Unknown convertion between 32 and 64 bit values.");
   2649   // For reinterpreting 64-bit values as 32-bit values, we just need to
   2650   // EXTRACT_SUBREG (i.e. extract the low word).
   2651   SDValue SubRegIdx =
   2652     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
   2653   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
   2654                                         NatWidthRes, SubRegIdx), 0);
   2655 }
   2656 
   2657 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
   2658 // Handle both zero-extensions and sign-extensions.
   2659 SDValue
   2660 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
   2661                                                          ZeroCompare CmpTy) {
   2662   EVT InVT = LHS.getValueType();
   2663   bool Is32Bit = InVT == MVT::i32;
   2664   SDValue ToExtend;
   2665 
   2666   // Produce the value that needs to be either zero or sign extended.
   2667   switch (CmpTy) {
   2668   case ZeroCompare::GEZExt:
   2669   case ZeroCompare::GESExt:
   2670     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
   2671                                               dl, InVT, LHS, LHS), 0);
   2672     break;
   2673   case ZeroCompare::LEZExt:
   2674   case ZeroCompare::LESExt: {
   2675     if (Is32Bit) {
   2676       // Upper 32 bits cannot be undefined for this sequence.
   2677       LHS = signExtendInputIfNeeded(LHS);
   2678       SDValue Neg =
   2679         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
   2680       ToExtend =
   2681         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2682                                        Neg, S->getI64Imm(1, dl),
   2683                                        S->getI64Imm(63, dl)), 0);
   2684     } else {
   2685       SDValue Addi =
   2686         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
   2687                                        S->getI64Imm(~0ULL, dl)), 0);
   2688       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   2689                                                 Addi, LHS), 0);
   2690     }
   2691     break;
   2692   }
   2693   }
   2694 
   2695   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
   2696   if (!Is32Bit &&
   2697       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
   2698     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2699                                           ToExtend, S->getI64Imm(1, dl),
   2700                                           S->getI64Imm(63, dl)), 0);
   2701   if (!Is32Bit &&
   2702       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
   2703     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
   2704                                           S->getI64Imm(63, dl)), 0);
   2705 
   2706   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
   2707   // For 32-bit sequences, the extensions differ between GE/LE cases.
   2708   switch (CmpTy) {
   2709   case ZeroCompare::GEZExt: {
   2710     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
   2711                            S->getI32Imm(31, dl) };
   2712     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   2713                                           ShiftOps), 0);
   2714   }
   2715   case ZeroCompare::GESExt:
   2716     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
   2717                                           S->getI32Imm(31, dl)), 0);
   2718   case ZeroCompare::LEZExt:
   2719     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
   2720                                           S->getI32Imm(1, dl)), 0);
   2721   case ZeroCompare::LESExt:
   2722     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
   2723                                           S->getI32Imm(-1, dl)), 0);
   2724   }
   2725 
   2726   // The above case covers all the enumerators so it can't have a default clause
   2727   // to avoid compiler warnings.
   2728   llvm_unreachable("Unknown zero-comparison type.");
   2729 }
   2730 
   2731 /// Produces a zero-extended result of comparing two 32-bit values according to
   2732 /// the passed condition code.
   2733 SDValue
   2734 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
   2735                                               ISD::CondCode CC,
   2736                                               int64_t RHSValue, SDLoc dl) {
   2737   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
   2738       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
   2739     return SDValue();
   2740   bool IsRHSZero = RHSValue == 0;
   2741   bool IsRHSOne = RHSValue == 1;
   2742   bool IsRHSNegOne = RHSValue == -1LL;
   2743   switch (CC) {
   2744   default: return SDValue();
   2745   case ISD::SETEQ: {
   2746     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
   2747     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
   2748     SDValue Xor = IsRHSZero ? LHS :
   2749       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
   2750     SDValue Clz =
   2751       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
   2752     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
   2753       S->getI32Imm(31, dl) };
   2754     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   2755                                           ShiftOps), 0);
   2756   }
   2757   case ISD::SETNE: {
   2758     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
   2759     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
   2760     SDValue Xor = IsRHSZero ? LHS :
   2761       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
   2762     SDValue Clz =
   2763       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
   2764     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
   2765       S->getI32Imm(31, dl) };
   2766     SDValue Shift =
   2767       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
   2768     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
   2769                                           S->getI32Imm(1, dl)), 0);
   2770   }
   2771   case ISD::SETGE: {
   2772     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
   2773     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
   2774     if(IsRHSZero)
   2775       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
   2776 
   2777     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
   2778     // by swapping inputs and falling through.
   2779     std::swap(LHS, RHS);
   2780     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   2781     IsRHSZero = RHSConst && RHSConst->isNullValue();
   2782     LLVM_FALLTHROUGH;
   2783   }
   2784   case ISD::SETLE: {
   2785     if (CmpInGPR == ICGPR_NonExtIn)
   2786       return SDValue();
   2787     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
   2788     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
   2789     if(IsRHSZero) {
   2790       if (CmpInGPR == ICGPR_NonExtIn)
   2791         return SDValue();
   2792       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
   2793     }
   2794 
   2795     // The upper 32-bits of the register can't be undefined for this sequence.
   2796     LHS = signExtendInputIfNeeded(LHS);
   2797     RHS = signExtendInputIfNeeded(RHS);
   2798     SDValue Sub =
   2799       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
   2800     SDValue Shift =
   2801       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
   2802                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
   2803               0);
   2804     return
   2805       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
   2806                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
   2807   }
   2808   case ISD::SETGT: {
   2809     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
   2810     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
   2811     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
   2812     // Handle SETLT -1 (which is equivalent to SETGE 0).
   2813     if (IsRHSNegOne)
   2814       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
   2815 
   2816     if (IsRHSZero) {
   2817       if (CmpInGPR == ICGPR_NonExtIn)
   2818         return SDValue();
   2819       // The upper 32-bits of the register can't be undefined for this sequence.
   2820       LHS = signExtendInputIfNeeded(LHS);
   2821       RHS = signExtendInputIfNeeded(RHS);
   2822       SDValue Neg =
   2823         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
   2824       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2825                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
   2826     }
   2827     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
   2828     // (%b < %a) by swapping inputs and falling through.
   2829     std::swap(LHS, RHS);
   2830     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   2831     IsRHSZero = RHSConst && RHSConst->isNullValue();
   2832     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
   2833     LLVM_FALLTHROUGH;
   2834   }
   2835   case ISD::SETLT: {
   2836     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
   2837     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
   2838     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
   2839     // Handle SETLT 1 (which is equivalent to SETLE 0).
   2840     if (IsRHSOne) {
   2841       if (CmpInGPR == ICGPR_NonExtIn)
   2842         return SDValue();
   2843       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
   2844     }
   2845 
   2846     if (IsRHSZero) {
   2847       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
   2848                              S->getI32Imm(31, dl) };
   2849       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   2850                                             ShiftOps), 0);
   2851     }
   2852 
   2853     if (CmpInGPR == ICGPR_NonExtIn)
   2854       return SDValue();
   2855     // The upper 32-bits of the register can't be undefined for this sequence.
   2856     LHS = signExtendInputIfNeeded(LHS);
   2857     RHS = signExtendInputIfNeeded(RHS);
   2858     SDValue SUBFNode =
   2859       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
   2860     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2861                                     SUBFNode, S->getI64Imm(1, dl),
   2862                                     S->getI64Imm(63, dl)), 0);
   2863   }
   2864   case ISD::SETUGE:
   2865     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
   2866     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
   2867     std::swap(LHS, RHS);
   2868     LLVM_FALLTHROUGH;
   2869   case ISD::SETULE: {
   2870     if (CmpInGPR == ICGPR_NonExtIn)
   2871       return SDValue();
   2872     // The upper 32-bits of the register can't be undefined for this sequence.
   2873     LHS = zeroExtendInputIfNeeded(LHS);
   2874     RHS = zeroExtendInputIfNeeded(RHS);
   2875     SDValue Subtract =
   2876       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
   2877     SDValue SrdiNode =
   2878       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2879                                           Subtract, S->getI64Imm(1, dl),
   2880                                           S->getI64Imm(63, dl)), 0);
   2881     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
   2882                                             S->getI32Imm(1, dl)), 0);
   2883   }
   2884   case ISD::SETUGT:
   2885     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
   2886     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
   2887     std::swap(LHS, RHS);
   2888     LLVM_FALLTHROUGH;
   2889   case ISD::SETULT: {
   2890     if (CmpInGPR == ICGPR_NonExtIn)
   2891       return SDValue();
   2892     // The upper 32-bits of the register can't be undefined for this sequence.
   2893     LHS = zeroExtendInputIfNeeded(LHS);
   2894     RHS = zeroExtendInputIfNeeded(RHS);
   2895     SDValue Subtract =
   2896       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
   2897     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2898                                           Subtract, S->getI64Imm(1, dl),
   2899                                           S->getI64Imm(63, dl)), 0);
   2900   }
   2901   }
   2902 }
   2903 
   2904 /// Produces a sign-extended result of comparing two 32-bit values according to
   2905 /// the passed condition code.
   2906 SDValue
   2907 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
   2908                                               ISD::CondCode CC,
   2909                                               int64_t RHSValue, SDLoc dl) {
   2910   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
   2911       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
   2912     return SDValue();
   2913   bool IsRHSZero = RHSValue == 0;
   2914   bool IsRHSOne = RHSValue == 1;
   2915   bool IsRHSNegOne = RHSValue == -1LL;
   2916 
   2917   switch (CC) {
   2918   default: return SDValue();
   2919   case ISD::SETEQ: {
   2920     // (sext (setcc %a, %b, seteq)) ->
   2921     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
   2922     // (sext (setcc %a, 0, seteq)) ->
   2923     //   (ashr (shl (ctlz %a), 58), 63)
   2924     SDValue CountInput = IsRHSZero ? LHS :
   2925       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
   2926     SDValue Cntlzw =
   2927       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
   2928     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
   2929                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
   2930     SDValue Slwi =
   2931       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
   2932     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
   2933   }
   2934   case ISD::SETNE: {
   2935     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
   2936     // flip the bit, finally take 2's complement.
   2937     // (sext (setcc %a, %b, setne)) ->
   2938     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
   2939     // Same as above, but the first xor is not needed.
   2940     // (sext (setcc %a, 0, setne)) ->
   2941     //   (neg (xor (lshr (ctlz %a), 5), 1))
   2942     SDValue Xor = IsRHSZero ? LHS :
   2943       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
   2944     SDValue Clz =
   2945       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
   2946     SDValue ShiftOps[] =
   2947       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
   2948     SDValue Shift =
   2949       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
   2950     SDValue Xori =
   2951       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
   2952                                      S->getI32Imm(1, dl)), 0);
   2953     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
   2954   }
   2955   case ISD::SETGE: {
   2956     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
   2957     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
   2958     if (IsRHSZero)
   2959       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
   2960 
   2961     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
   2962     // by swapping inputs and falling through.
   2963     std::swap(LHS, RHS);
   2964     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   2965     IsRHSZero = RHSConst && RHSConst->isNullValue();
   2966     LLVM_FALLTHROUGH;
   2967   }
   2968   case ISD::SETLE: {
   2969     if (CmpInGPR == ICGPR_NonExtIn)
   2970       return SDValue();
   2971     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
   2972     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
   2973     if (IsRHSZero)
   2974       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
   2975 
   2976     // The upper 32-bits of the register can't be undefined for this sequence.
   2977     LHS = signExtendInputIfNeeded(LHS);
   2978     RHS = signExtendInputIfNeeded(RHS);
   2979     SDValue SUBFNode =
   2980       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
   2981                                      LHS, RHS), 0);
   2982     SDValue Srdi =
   2983       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   2984                                      SUBFNode, S->getI64Imm(1, dl),
   2985                                      S->getI64Imm(63, dl)), 0);
   2986     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
   2987                                           S->getI32Imm(-1, dl)), 0);
   2988   }
   2989   case ISD::SETGT: {
   2990     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
   2991     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
   2992     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
   2993     if (IsRHSNegOne)
   2994       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
   2995     if (IsRHSZero) {
   2996       if (CmpInGPR == ICGPR_NonExtIn)
   2997         return SDValue();
   2998       // The upper 32-bits of the register can't be undefined for this sequence.
   2999       LHS = signExtendInputIfNeeded(LHS);
   3000       RHS = signExtendInputIfNeeded(RHS);
   3001       SDValue Neg =
   3002         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
   3003         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
   3004                                               S->getI64Imm(63, dl)), 0);
   3005     }
   3006     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
   3007     // (%b < %a) by swapping inputs and falling through.
   3008     std::swap(LHS, RHS);
   3009     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3010     IsRHSZero = RHSConst && RHSConst->isNullValue();
   3011     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
   3012     LLVM_FALLTHROUGH;
   3013   }
   3014   case ISD::SETLT: {
   3015     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
   3016     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
   3017     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
   3018     if (IsRHSOne) {
   3019       if (CmpInGPR == ICGPR_NonExtIn)
   3020         return SDValue();
   3021       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
   3022     }
   3023     if (IsRHSZero)
   3024       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
   3025                                             S->getI32Imm(31, dl)), 0);
   3026 
   3027     if (CmpInGPR == ICGPR_NonExtIn)
   3028       return SDValue();
   3029     // The upper 32-bits of the register can't be undefined for this sequence.
   3030     LHS = signExtendInputIfNeeded(LHS);
   3031     RHS = signExtendInputIfNeeded(RHS);
   3032     SDValue SUBFNode =
   3033       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
   3034     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
   3035                                           SUBFNode, S->getI64Imm(63, dl)), 0);
   3036   }
   3037   case ISD::SETUGE:
   3038     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
   3039     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
   3040     std::swap(LHS, RHS);
   3041     LLVM_FALLTHROUGH;
   3042   case ISD::SETULE: {
   3043     if (CmpInGPR == ICGPR_NonExtIn)
   3044       return SDValue();
   3045     // The upper 32-bits of the register can't be undefined for this sequence.
   3046     LHS = zeroExtendInputIfNeeded(LHS);
   3047     RHS = zeroExtendInputIfNeeded(RHS);
   3048     SDValue Subtract =
   3049       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
   3050     SDValue Shift =
   3051       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
   3052                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
   3053               0);
   3054     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
   3055                                           S->getI32Imm(-1, dl)), 0);
   3056   }
   3057   case ISD::SETUGT:
   3058     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
   3059     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
   3060     std::swap(LHS, RHS);
   3061     LLVM_FALLTHROUGH;
   3062   case ISD::SETULT: {
   3063     if (CmpInGPR == ICGPR_NonExtIn)
   3064       return SDValue();
   3065     // The upper 32-bits of the register can't be undefined for this sequence.
   3066     LHS = zeroExtendInputIfNeeded(LHS);
   3067     RHS = zeroExtendInputIfNeeded(RHS);
   3068     SDValue Subtract =
   3069       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
   3070     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
   3071                                           Subtract, S->getI64Imm(63, dl)), 0);
   3072   }
   3073   }
   3074 }
   3075 
   3076 /// Produces a zero-extended result of comparing two 64-bit values according to
   3077 /// the passed condition code.
   3078 SDValue
   3079 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
   3080                                               ISD::CondCode CC,
   3081                                               int64_t RHSValue, SDLoc dl) {
   3082   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
   3083       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
   3084     return SDValue();
   3085   bool IsRHSZero = RHSValue == 0;
   3086   bool IsRHSOne = RHSValue == 1;
   3087   bool IsRHSNegOne = RHSValue == -1LL;
   3088   switch (CC) {
   3089   default: return SDValue();
   3090   case ISD::SETEQ: {
   3091     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
   3092     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
   3093     SDValue Xor = IsRHSZero ? LHS :
   3094       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
   3095     SDValue Clz =
   3096       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
   3097     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
   3098                                           S->getI64Imm(58, dl),
   3099                                           S->getI64Imm(63, dl)), 0);
   3100   }
   3101   case ISD::SETNE: {
   3102     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
   3103     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
   3104     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
   3105     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
   3106     SDValue Xor = IsRHSZero ? LHS :
   3107       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
   3108     SDValue AC =
   3109       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
   3110                                      Xor, S->getI32Imm(~0U, dl)), 0);
   3111     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
   3112                                           Xor, AC.getValue(1)), 0);
   3113   }
   3114   case ISD::SETGE: {
   3115     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3116     // (zext (setcc %a, %b, setge)) ->
   3117     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
   3118     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
   3119     if (IsRHSZero)
   3120       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
   3121     std::swap(LHS, RHS);
   3122     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3123     IsRHSZero = RHSConst && RHSConst->isNullValue();
   3124     LLVM_FALLTHROUGH;
   3125   }
   3126   case ISD::SETLE: {
   3127     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3128     // (zext (setcc %a, %b, setge)) ->
   3129     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
   3130     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
   3131     if (IsRHSZero)
   3132       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
   3133     SDValue ShiftL =
   3134       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
   3135                                      S->getI64Imm(1, dl),
   3136                                      S->getI64Imm(63, dl)), 0);
   3137     SDValue ShiftR =
   3138       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
   3139                                      S->getI64Imm(63, dl)), 0);
   3140     SDValue SubtractCarry =
   3141       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3142                                      LHS, RHS), 1);
   3143     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
   3144                                           ShiftR, ShiftL, SubtractCarry), 0);
   3145   }
   3146   case ISD::SETGT: {
   3147     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3148     // (zext (setcc %a, %b, setgt)) ->
   3149     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
   3150     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
   3151     if (IsRHSNegOne)
   3152       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
   3153     if (IsRHSZero) {
   3154       SDValue Addi =
   3155         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
   3156                                        S->getI64Imm(~0ULL, dl)), 0);
   3157       SDValue Nor =
   3158         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
   3159       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
   3160                                             S->getI64Imm(1, dl),
   3161                                             S->getI64Imm(63, dl)), 0);
   3162     }
   3163     std::swap(LHS, RHS);
   3164     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3165     IsRHSZero = RHSConst && RHSConst->isNullValue();
   3166     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
   3167     LLVM_FALLTHROUGH;
   3168   }
   3169   case ISD::SETLT: {
   3170     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3171     // (zext (setcc %a, %b, setlt)) ->
   3172     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
   3173     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
   3174     if (IsRHSOne)
   3175       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
   3176     if (IsRHSZero)
   3177       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
   3178                                             S->getI64Imm(1, dl),
   3179                                             S->getI64Imm(63, dl)), 0);
   3180     SDValue SRADINode =
   3181       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
   3182                                      LHS, S->getI64Imm(63, dl)), 0);
   3183     SDValue SRDINode =
   3184       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   3185                                      RHS, S->getI64Imm(1, dl),
   3186                                      S->getI64Imm(63, dl)), 0);
   3187     SDValue SUBFC8Carry =
   3188       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3189                                      RHS, LHS), 1);
   3190     SDValue ADDE8Node =
   3191       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
   3192                                      SRDINode, SRADINode, SUBFC8Carry), 0);
   3193     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
   3194                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
   3195   }
   3196   case ISD::SETUGE:
   3197     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3198     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
   3199     std::swap(LHS, RHS);
   3200     LLVM_FALLTHROUGH;
   3201   case ISD::SETULE: {
   3202     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3203     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
   3204     SDValue SUBFC8Carry =
   3205       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3206                                      LHS, RHS), 1);
   3207     SDValue SUBFE8Node =
   3208       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
   3209                                      LHS, LHS, SUBFC8Carry), 0);
   3210     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
   3211                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
   3212   }
   3213   case ISD::SETUGT:
   3214     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3215     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
   3216     std::swap(LHS, RHS);
   3217     LLVM_FALLTHROUGH;
   3218   case ISD::SETULT: {
   3219     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3220     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
   3221     SDValue SubtractCarry =
   3222       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3223                                      RHS, LHS), 1);
   3224     SDValue ExtSub =
   3225       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
   3226                                      LHS, LHS, SubtractCarry), 0);
   3227     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
   3228                                           ExtSub), 0);
   3229   }
   3230   }
   3231 }
   3232 
   3233 /// Produces a sign-extended result of comparing two 64-bit values according to
   3234 /// the passed condition code.
   3235 SDValue
   3236 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
   3237                                               ISD::CondCode CC,
   3238                                               int64_t RHSValue, SDLoc dl) {
   3239   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
   3240       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
   3241     return SDValue();
   3242   bool IsRHSZero = RHSValue == 0;
   3243   bool IsRHSOne = RHSValue == 1;
   3244   bool IsRHSNegOne = RHSValue == -1LL;
   3245   switch (CC) {
   3246   default: return SDValue();
   3247   case ISD::SETEQ: {
   3248     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
   3249     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
   3250     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
   3251     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
   3252     SDValue AddInput = IsRHSZero ? LHS :
   3253       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
   3254     SDValue Addic =
   3255       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
   3256                                      AddInput, S->getI32Imm(~0U, dl)), 0);
   3257     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
   3258                                           Addic, Addic.getValue(1)), 0);
   3259   }
   3260   case ISD::SETNE: {
   3261     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
   3262     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
   3263     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
   3264     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
   3265     SDValue Xor = IsRHSZero ? LHS :
   3266       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
   3267     SDValue SC =
   3268       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
   3269                                      Xor, S->getI32Imm(0, dl)), 0);
   3270     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
   3271                                           SC, SC.getValue(1)), 0);
   3272   }
   3273   case ISD::SETGE: {
   3274     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3275     // (zext (setcc %a, %b, setge)) ->
   3276     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
   3277     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
   3278     if (IsRHSZero)
   3279       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
   3280     std::swap(LHS, RHS);
   3281     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3282     IsRHSZero = RHSConst && RHSConst->isNullValue();
   3283     LLVM_FALLTHROUGH;
   3284   }
   3285   case ISD::SETLE: {
   3286     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3287     // (zext (setcc %a, %b, setge)) ->
   3288     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
   3289     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
   3290     if (IsRHSZero)
   3291       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
   3292     SDValue ShiftR =
   3293       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
   3294                                      S->getI64Imm(63, dl)), 0);
   3295     SDValue ShiftL =
   3296       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
   3297                                      S->getI64Imm(1, dl),
   3298                                      S->getI64Imm(63, dl)), 0);
   3299     SDValue SubtractCarry =
   3300       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3301                                      LHS, RHS), 1);
   3302     SDValue Adde =
   3303       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
   3304                                      ShiftR, ShiftL, SubtractCarry), 0);
   3305     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
   3306   }
   3307   case ISD::SETGT: {
   3308     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3309     // (zext (setcc %a, %b, setgt)) ->
   3310     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
   3311     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
   3312     if (IsRHSNegOne)
   3313       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
   3314     if (IsRHSZero) {
   3315       SDValue Add =
   3316         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
   3317                                        S->getI64Imm(-1, dl)), 0);
   3318       SDValue Nor =
   3319         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
   3320       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
   3321                                             S->getI64Imm(63, dl)), 0);
   3322     }
   3323     std::swap(LHS, RHS);
   3324     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3325     IsRHSZero = RHSConst && RHSConst->isNullValue();
   3326     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
   3327     LLVM_FALLTHROUGH;
   3328   }
   3329   case ISD::SETLT: {
   3330     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3331     // (zext (setcc %a, %b, setlt)) ->
   3332     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
   3333     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
   3334     if (IsRHSOne)
   3335       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
   3336     if (IsRHSZero) {
   3337       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
   3338                                             S->getI64Imm(63, dl)), 0);
   3339     }
   3340     SDValue SRADINode =
   3341       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
   3342                                      LHS, S->getI64Imm(63, dl)), 0);
   3343     SDValue SRDINode =
   3344       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
   3345                                      RHS, S->getI64Imm(1, dl),
   3346                                      S->getI64Imm(63, dl)), 0);
   3347     SDValue SUBFC8Carry =
   3348       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3349                                      RHS, LHS), 1);
   3350     SDValue ADDE8Node =
   3351       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
   3352                                      SRDINode, SRADINode, SUBFC8Carry), 0);
   3353     SDValue XORI8Node =
   3354       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
   3355                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
   3356     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
   3357                                           XORI8Node), 0);
   3358   }
   3359   case ISD::SETUGE:
   3360     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3361     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
   3362     std::swap(LHS, RHS);
   3363     LLVM_FALLTHROUGH;
   3364   case ISD::SETULE: {
   3365     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3366     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
   3367     SDValue SubtractCarry =
   3368       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3369                                      LHS, RHS), 1);
   3370     SDValue ExtSub =
   3371       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
   3372                                      LHS, SubtractCarry), 0);
   3373     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
   3374                                           ExtSub, ExtSub), 0);
   3375   }
   3376   case ISD::SETUGT:
   3377     // {subc.reg, subc.CA} = (subcarry %b, %a)
   3378     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
   3379     std::swap(LHS, RHS);
   3380     LLVM_FALLTHROUGH;
   3381   case ISD::SETULT: {
   3382     // {subc.reg, subc.CA} = (subcarry %a, %b)
   3383     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
   3384     SDValue SubCarry =
   3385       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
   3386                                      RHS, LHS), 1);
   3387     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
   3388                                      LHS, LHS, SubCarry), 0);
   3389   }
   3390   }
   3391 }
   3392 
   3393 /// Do all uses of this SDValue need the result in a GPR?
   3394 /// This is meant to be used on values that have type i1 since
   3395 /// it is somewhat meaningless to ask if values of other types
   3396 /// should be kept in GPR's.
   3397 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
   3398   assert(Compare.getOpcode() == ISD::SETCC &&
   3399          "An ISD::SETCC node required here.");
   3400 
   3401   // For values that have a single use, the caller should obviously already have
   3402   // checked if that use is an extending use. We check the other uses here.
   3403   if (Compare.hasOneUse())
   3404     return true;
   3405   // We want the value in a GPR if it is being extended, used for a select, or
   3406   // used in logical operations.
   3407   for (auto CompareUse : Compare.getNode()->uses())
   3408     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
   3409         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
   3410         CompareUse->getOpcode() != ISD::SELECT &&
   3411         !isLogicOp(CompareUse->getOpcode())) {
   3412       OmittedForNonExtendUses++;
   3413       return false;
   3414     }
   3415   return true;
   3416 }
   3417 
   3418 /// Returns an equivalent of a SETCC node but with the result the same width as
   3419 /// the inputs. This can also be used for SELECT_CC if either the true or false
   3420 /// values is a power of two while the other is zero.
   3421 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
   3422                                                 SetccInGPROpts ConvOpts) {
   3423   assert((Compare.getOpcode() == ISD::SETCC ||
   3424           Compare.getOpcode() == ISD::SELECT_CC) &&
   3425          "An ISD::SETCC node required here.");
   3426 
   3427   // Don't convert this comparison to a GPR sequence because there are uses
   3428   // of the i1 result (i.e. uses that require the result in the CR).
   3429   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
   3430     return SDValue();
   3431 
   3432   SDValue LHS = Compare.getOperand(0);
   3433   SDValue RHS = Compare.getOperand(1);
   3434 
   3435   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
   3436   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
   3437   ISD::CondCode CC =
   3438     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
   3439   EVT InputVT = LHS.getValueType();
   3440   if (InputVT != MVT::i32 && InputVT != MVT::i64)
   3441     return SDValue();
   3442 
   3443   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
   3444       ConvOpts == SetccInGPROpts::SExtInvert)
   3445     CC = ISD::getSetCCInverse(CC, true);
   3446 
   3447   bool Inputs32Bit = InputVT == MVT::i32;
   3448 
   3449   SDLoc dl(Compare);
   3450   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
   3451   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
   3452   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
   3453     ConvOpts == SetccInGPROpts::SExtInvert;
   3454 
   3455   if (IsSext && Inputs32Bit)
   3456     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
   3457   else if (Inputs32Bit)
   3458     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
   3459   else if (IsSext)
   3460     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
   3461   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
   3462 }
   3463 
   3464 } // end anonymous namespace
   3465 
   3466 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
   3467   if (N->getValueType(0) != MVT::i32 &&
   3468       N->getValueType(0) != MVT::i64)
   3469     return false;
   3470 
   3471   // This optimization will emit code that assumes 64-bit registers
   3472   // so we don't want to run it in 32-bit mode. Also don't run it
   3473   // on functions that are not to be optimized.
   3474   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
   3475     return false;
   3476 
   3477   switch (N->getOpcode()) {
   3478   default: break;
   3479   case ISD::ZERO_EXTEND:
   3480   case ISD::SIGN_EXTEND:
   3481   case ISD::AND:
   3482   case ISD::OR:
   3483   case ISD::XOR: {
   3484     IntegerCompareEliminator ICmpElim(CurDAG, this);
   3485     if (SDNode *New = ICmpElim.Select(N)) {
   3486       ReplaceNode(N, New);
   3487       return true;
   3488     }
   3489   }
   3490   }
   3491   return false;
   3492 }
   3493 
   3494 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
   3495   if (N->getValueType(0) != MVT::i32 &&
   3496       N->getValueType(0) != MVT::i64)
   3497     return false;
   3498 
   3499   if (!UseBitPermRewriter)
   3500     return false;
   3501 
   3502   switch (N->getOpcode()) {
   3503   default: break;
   3504   case ISD::ROTL:
   3505   case ISD::SHL:
   3506   case ISD::SRL:
   3507   case ISD::AND:
   3508   case ISD::OR: {
   3509     BitPermutationSelector BPS(CurDAG);
   3510     if (SDNode *New = BPS.Select(N)) {
   3511       ReplaceNode(N, New);
   3512       return true;
   3513     }
   3514     return false;
   3515   }
   3516   }
   3517 
   3518   return false;
   3519 }
   3520 
   3521 /// SelectCC - Select a comparison of the specified values with the specified
   3522 /// condition code, returning the CR# of the expression.
   3523 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3524                                   const SDLoc &dl) {
   3525   // Always select the LHS.
   3526   unsigned Opc;
   3527 
   3528   if (LHS.getValueType() == MVT::i32) {
   3529     unsigned Imm;
   3530     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   3531       if (isInt32Immediate(RHS, Imm)) {
   3532         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   3533         if (isUInt<16>(Imm))
   3534           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   3535                                                 getI32Imm(Imm & 0xFFFF, dl)),
   3536                          0);
   3537         // If this is a 16-bit signed immediate, fold it.
   3538         if (isInt<16>((int)Imm))
   3539           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   3540                                                 getI32Imm(Imm & 0xFFFF, dl)),
   3541                          0);
   3542 
   3543         // For non-equality comparisons, the default code would materialize the
   3544         // constant, then compare against it, like this:
   3545         //   lis r2, 4660
   3546         //   ori r2, r2, 22136
   3547         //   cmpw cr0, r3, r2
   3548         // Since we are just comparing for equality, we can emit this instead:
   3549         //   xoris r0,r3,0x1234
   3550         //   cmplwi cr0,r0,0x5678
   3551         //   beq cr0,L6
   3552         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
   3553                                            getI32Imm(Imm >> 16, dl)), 0);
   3554         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
   3555                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
   3556       }
   3557       Opc = PPC::CMPLW;
   3558     } else if (ISD::isUnsignedIntSetCC(CC)) {
   3559       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
   3560         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   3561                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
   3562       Opc = PPC::CMPLW;
   3563     } else {
   3564       int16_t SImm;
   3565       if (isIntS16Immediate(RHS, SImm))
   3566         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   3567                                               getI32Imm((int)SImm & 0xFFFF,
   3568                                                         dl)),
   3569                          0);
   3570       Opc = PPC::CMPW;
   3571     }
   3572   } else if (LHS.getValueType() == MVT::i64) {
   3573     uint64_t Imm;
   3574     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   3575       if (isInt64Immediate(RHS.getNode(), Imm)) {
   3576         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   3577         if (isUInt<16>(Imm))
   3578           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   3579                                                 getI32Imm(Imm & 0xFFFF, dl)),
   3580                          0);
   3581         // If this is a 16-bit signed immediate, fold it.
   3582         if (isInt<16>(Imm))
   3583           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   3584                                                 getI32Imm(Imm & 0xFFFF, dl)),
   3585                          0);
   3586 
   3587         // For non-equality comparisons, the default code would materialize the
   3588         // constant, then compare against it, like this:
   3589         //   lis r2, 4660
   3590         //   ori r2, r2, 22136
   3591         //   cmpd cr0, r3, r2
   3592         // Since we are just comparing for equality, we can emit this instead:
   3593         //   xoris r0,r3,0x1234
   3594         //   cmpldi cr0,r0,0x5678
   3595         //   beq cr0,L6
   3596         if (isUInt<32>(Imm)) {
   3597           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
   3598                                              getI64Imm(Imm >> 16, dl)), 0);
   3599           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
   3600                                                 getI64Imm(Imm & 0xFFFF, dl)),
   3601                          0);
   3602         }
   3603       }
   3604       Opc = PPC::CMPLD;
   3605     } else if (ISD::isUnsignedIntSetCC(CC)) {
   3606       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
   3607         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   3608                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
   3609       Opc = PPC::CMPLD;
   3610     } else {
   3611       int16_t SImm;
   3612       if (isIntS16Immediate(RHS, SImm))
   3613         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   3614                                               getI64Imm(SImm & 0xFFFF, dl)),
   3615                          0);
   3616       Opc = PPC::CMPD;
   3617     }
   3618   } else if (LHS.getValueType() == MVT::f32) {
   3619     if (PPCSubTarget->hasSPE()) {
   3620       switch (CC) {
   3621         default:
   3622         case ISD::SETEQ:
   3623         case ISD::SETNE:
   3624           Opc = PPC::EFSCMPEQ;
   3625           break;
   3626         case ISD::SETLT:
   3627         case ISD::SETGE:
   3628         case ISD::SETOLT:
   3629         case ISD::SETOGE:
   3630         case ISD::SETULT:
   3631         case ISD::SETUGE:
   3632           Opc = PPC::EFSCMPLT;
   3633           break;
   3634         case ISD::SETGT:
   3635         case ISD::SETLE:
   3636         case ISD::SETOGT:
   3637         case ISD::SETOLE:
   3638         case ISD::SETUGT:
   3639         case ISD::SETULE:
   3640           Opc = PPC::EFSCMPGT;
   3641           break;
   3642       }
   3643     } else
   3644       Opc = PPC::FCMPUS;
   3645   } else if (LHS.getValueType() == MVT::f64) {
   3646     if (PPCSubTarget->hasSPE()) {
   3647       switch (CC) {
   3648         default:
   3649         case ISD::SETEQ:
   3650         case ISD::SETNE:
   3651           Opc = PPC::EFDCMPEQ;
   3652           break;
   3653         case ISD::SETLT:
   3654         case ISD::SETGE:
   3655         case ISD::SETOLT:
   3656         case ISD::SETOGE:
   3657         case ISD::SETULT:
   3658         case ISD::SETUGE:
   3659           Opc = PPC::EFDCMPLT;
   3660           break;
   3661         case ISD::SETGT:
   3662         case ISD::SETLE:
   3663         case ISD::SETOGT:
   3664         case ISD::SETOLE:
   3665         case ISD::SETUGT:
   3666         case ISD::SETULE:
   3667           Opc = PPC::EFDCMPGT;
   3668           break;
   3669       }
   3670     } else
   3671       Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
   3672   } else {
   3673     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
   3674     assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
   3675     Opc = PPC::XSCMPUQP;
   3676   }
   3677   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
   3678 }
   3679 
   3680 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
   3681   switch (CC) {
   3682   case ISD::SETUEQ:
   3683   case ISD::SETONE:
   3684   case ISD::SETOLE:
   3685   case ISD::SETOGE:
   3686     llvm_unreachable("Should be lowered by legalize!");
   3687   default: llvm_unreachable("Unknown condition!");
   3688   case ISD::SETOEQ:
   3689   case ISD::SETEQ:  return PPC::PRED_EQ;
   3690   case ISD::SETUNE:
   3691   case ISD::SETNE:  return PPC::PRED_NE;
   3692   case ISD::SETOLT:
   3693   case ISD::SETLT:  return PPC::PRED_LT;
   3694   case ISD::SETULE:
   3695   case ISD::SETLE:  return PPC::PRED_LE;
   3696   case ISD::SETOGT:
   3697   case ISD::SETGT:  return PPC::PRED_GT;
   3698   case ISD::SETUGE:
   3699   case ISD::SETGE:  return PPC::PRED_GE;
   3700   case ISD::SETO:   return PPC::PRED_NU;
   3701   case ISD::SETUO:  return PPC::PRED_UN;
   3702     // These two are invalid for floating point.  Assume we have int.
   3703   case ISD::SETULT: return PPC::PRED_LT;
   3704   case ISD::SETUGT: return PPC::PRED_GT;
   3705   }
   3706 }
   3707 
   3708 /// getCRIdxForSetCC - Return the index of the condition register field
   3709 /// associated with the SetCC condition, and whether or not the field is
   3710 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
   3711 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
   3712   Invert = false;
   3713   switch (CC) {
   3714   default: llvm_unreachable("Unknown condition!");
   3715   case ISD::SETOLT:
   3716   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
   3717   case ISD::SETOGT:
   3718   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
   3719   case ISD::SETOEQ:
   3720   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
   3721   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
   3722   case ISD::SETUGE:
   3723   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
   3724   case ISD::SETULE:
   3725   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
   3726   case ISD::SETUNE:
   3727   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
   3728   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
   3729   case ISD::SETUEQ:
   3730   case ISD::SETOGE:
   3731   case ISD::SETOLE:
   3732   case ISD::SETONE:
   3733     llvm_unreachable("Invalid branch code: should be expanded by legalize");
   3734   // These are invalid for floating point.  Assume integer.
   3735   case ISD::SETULT: return 0;
   3736   case ISD::SETUGT: return 1;
   3737   }
   3738 }
   3739 
   3740 // getVCmpInst: return the vector compare instruction for the specified
   3741 // vector type and condition code. Since this is for altivec specific code,
   3742 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
   3743 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
   3744                                 bool HasVSX, bool &Swap, bool &Negate) {
   3745   Swap = false;
   3746   Negate = false;
   3747 
   3748   if (VecVT.isFloatingPoint()) {
   3749     /* Handle some cases by swapping input operands.  */
   3750     switch (CC) {
   3751       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
   3752       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   3753       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
   3754       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
   3755       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   3756       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
   3757       default: break;
   3758     }
   3759     /* Handle some cases by negating the result.  */
   3760     switch (CC) {
   3761       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   3762       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
   3763       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
   3764       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
   3765       default: break;
   3766     }
   3767     /* We have instructions implementing the remaining cases.  */
   3768     switch (CC) {
   3769       case ISD::SETEQ:
   3770       case ISD::SETOEQ:
   3771         if (VecVT == MVT::v4f32)
   3772           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
   3773         else if (VecVT == MVT::v2f64)
   3774           return PPC::XVCMPEQDP;
   3775         break;
   3776       case ISD::SETGT:
   3777       case ISD::SETOGT:
   3778         if (VecVT == MVT::v4f32)
   3779           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
   3780         else if (VecVT == MVT::v2f64)
   3781           return PPC::XVCMPGTDP;
   3782         break;
   3783       case ISD::SETGE:
   3784       case ISD::SETOGE:
   3785         if (VecVT == MVT::v4f32)
   3786           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
   3787         else if (VecVT == MVT::v2f64)
   3788           return PPC::XVCMPGEDP;
   3789         break;
   3790       default:
   3791         break;
   3792     }
   3793     llvm_unreachable("Invalid floating-point vector compare condition");
   3794   } else {
   3795     /* Handle some cases by swapping input operands.  */
   3796     switch (CC) {
   3797       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
   3798       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   3799       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   3800       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
   3801       default: break;
   3802     }
   3803     /* Handle some cases by negating the result.  */
   3804     switch (CC) {
   3805       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   3806       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
   3807       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
   3808       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
   3809       default: break;
   3810     }
   3811     /* We have instructions implementing the remaining cases.  */
   3812     switch (CC) {
   3813       case ISD::SETEQ:
   3814       case ISD::SETUEQ:
   3815         if (VecVT == MVT::v16i8)
   3816           return PPC::VCMPEQUB;
   3817         else if (VecVT == MVT::v8i16)
   3818           return PPC::VCMPEQUH;
   3819         else if (VecVT == MVT::v4i32)
   3820           return PPC::VCMPEQUW;
   3821         else if (VecVT == MVT::v2i64)
   3822           return PPC::VCMPEQUD;
   3823         break;
   3824       case ISD::SETGT:
   3825         if (VecVT == MVT::v16i8)
   3826           return PPC::VCMPGTSB;
   3827         else if (VecVT == MVT::v8i16)
   3828           return PPC::VCMPGTSH;
   3829         else if (VecVT == MVT::v4i32)
   3830           return PPC::VCMPGTSW;
   3831         else if (VecVT == MVT::v2i64)
   3832           return PPC::VCMPGTSD;
   3833         break;
   3834       case ISD::SETUGT:
   3835         if (VecVT == MVT::v16i8)
   3836           return PPC::VCMPGTUB;
   3837         else if (VecVT == MVT::v8i16)
   3838           return PPC::VCMPGTUH;
   3839         else if (VecVT == MVT::v4i32)
   3840           return PPC::VCMPGTUW;
   3841         else if (VecVT == MVT::v2i64)
   3842           return PPC::VCMPGTUD;
   3843         break;
   3844       default:
   3845         break;
   3846     }
   3847     llvm_unreachable("Invalid integer vector compare condition");
   3848   }
   3849 }
   3850 
   3851 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
   3852   SDLoc dl(N);
   3853   unsigned Imm;
   3854   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   3855   EVT PtrVT =
   3856       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
   3857   bool isPPC64 = (PtrVT == MVT::i64);
   3858 
   3859   if (!PPCSubTarget->useCRBits() &&
   3860       isInt32Immediate(N->getOperand(1), Imm)) {
   3861     // We can codegen setcc op, imm very efficiently compared to a brcond.
   3862     // Check for those cases here.
   3863     // setcc op, 0
   3864     if (Imm == 0) {
   3865       SDValue Op = N->getOperand(0);
   3866       switch (CC) {
   3867       default: break;
   3868       case ISD::SETEQ: {
   3869         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
   3870         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
   3871                           getI32Imm(31, dl) };
   3872         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   3873         return true;
   3874       }
   3875       case ISD::SETNE: {
   3876         if (isPPC64) break;
   3877         SDValue AD =
   3878           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   3879                                          Op, getI32Imm(~0U, dl)), 0);
   3880         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
   3881         return true;
   3882       }
   3883       case ISD::SETLT: {
   3884         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
   3885                           getI32Imm(31, dl) };
   3886         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   3887         return true;
   3888       }
   3889       case ISD::SETGT: {
   3890         SDValue T =
   3891           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
   3892         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
   3893         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
   3894                           getI32Imm(31, dl) };
   3895         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   3896         return true;
   3897       }
   3898       }
   3899     } else if (Imm == ~0U) {        // setcc op, -1
   3900       SDValue Op = N->getOperand(0);
   3901       switch (CC) {
   3902       default: break;
   3903       case ISD::SETEQ:
   3904         if (isPPC64) break;
   3905         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   3906                                             Op, getI32Imm(1, dl)), 0);
   3907         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
   3908                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
   3909                                                             MVT::i32,
   3910                                                             getI32Imm(0, dl)),
   3911                                      0), Op.getValue(1));
   3912         return true;
   3913       case ISD::SETNE: {
   3914         if (isPPC64) break;
   3915         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
   3916         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   3917                                             Op, getI32Imm(~0U, dl));
   3918         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
   3919                              SDValue(AD, 1));
   3920         return true;
   3921       }
   3922       case ISD::SETLT: {
   3923         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
   3924                                                     getI32Imm(1, dl)), 0);
   3925         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
   3926                                                     Op), 0);
   3927         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
   3928                           getI32Imm(31, dl) };
   3929         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   3930         return true;
   3931       }
   3932       case ISD::SETGT: {
   3933         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
   3934                           getI32Imm(31, dl) };
   3935         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   3936         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
   3937         return true;
   3938       }
   3939       }
   3940     }
   3941   }
   3942 
   3943   SDValue LHS = N->getOperand(0);
   3944   SDValue RHS = N->getOperand(1);
   3945 
   3946   // Altivec Vector compare instructions do not set any CR register by default and
   3947   // vector compare operations return the same type as the operands.
   3948   if (LHS.getValueType().isVector()) {
   3949     if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
   3950       return false;
   3951 
   3952     EVT VecVT = LHS.getValueType();
   3953     bool Swap, Negate;
   3954     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
   3955                                         PPCSubTarget->hasVSX(), Swap, Negate);
   3956     if (Swap)
   3957       std::swap(LHS, RHS);
   3958 
   3959     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
   3960     if (Negate) {
   3961       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
   3962       CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
   3963                            ResVT, VCmp, VCmp);
   3964       return true;
   3965     }
   3966 
   3967     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
   3968     return true;
   3969   }
   3970 
   3971   if (PPCSubTarget->useCRBits())
   3972     return false;
   3973 
   3974   bool Inv;
   3975   unsigned Idx = getCRIdxForSetCC(CC, Inv);
   3976   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
   3977   SDValue IntCR;
   3978 
   3979   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
   3980   // The correct compare instruction is already set by SelectCC()
   3981   if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
   3982     Idx = 1;
   3983   }
   3984 
   3985   // Force the ccreg into CR7.
   3986   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
   3987 
   3988   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
   3989   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
   3990                                InFlag).getValue(1);
   3991 
   3992   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
   3993                                          CCReg), 0);
   3994 
   3995   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
   3996                       getI32Imm(31, dl), getI32Imm(31, dl) };
   3997   if (!Inv) {
   3998     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   3999     return true;
   4000   }
   4001 
   4002   // Get the specified bit.
   4003   SDValue Tmp =
   4004     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   4005   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
   4006   return true;
   4007 }
   4008 
   4009 /// Does this node represent a load/store node whose address can be represented
   4010 /// with a register plus an immediate that's a multiple of \p Val:
   4011 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
   4012   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
   4013   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
   4014   SDValue AddrOp;
   4015   if (LDN)
   4016     AddrOp = LDN->getOperand(1);
   4017   else if (STN)
   4018     AddrOp = STN->getOperand(2);
   4019 
   4020   // If the address points a frame object or a frame object with an offset,
   4021   // we need to check the object alignment.
   4022   short Imm = 0;
   4023   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
   4024           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
   4025                                            AddrOp)) {
   4026     // If op0 is a frame index that is under aligned, we can't do it either,
   4027     // because it is translated to r31 or r1 + slot + offset. We won't know the
   4028     // slot number until the stack frame is finalized.
   4029     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
   4030     unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
   4031     if ((SlotAlign % Val) != 0)
   4032       return false;
   4033 
   4034     // If we have an offset, we need further check on the offset.
   4035     if (AddrOp.getOpcode() != ISD::ADD)
   4036       return true;
   4037   }
   4038 
   4039   if (AddrOp.getOpcode() == ISD::ADD)
   4040     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
   4041 
   4042   // If the address comes from the outside, the offset will be zero.
   4043   return AddrOp.getOpcode() == ISD::CopyFromReg;
   4044 }
   4045 
   4046 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
   4047   // Transfer memoperands.
   4048   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   4049   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   4050   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
   4051 }
   4052 
   4053 /// This method returns a node after flipping the MSB of each element
   4054 /// of vector integer type. Additionally, if SignBitVec is non-null,
   4055 /// this method sets a node with one at MSB of all elements
   4056 /// and zero at other bits in SignBitVec.
   4057 MachineSDNode *
   4058 PPCDAGToDAGISel::flipSignBit(const SDValue &N, SDNode **SignBitVec) {
   4059   SDLoc dl(N);
   4060   EVT VecVT = N.getValueType();
   4061   if (VecVT == MVT::v4i32) {
   4062     if (SignBitVec) {
   4063       SDNode *ZV = CurDAG->getMachineNode(PPC::V_SET0, dl, MVT::v4i32);
   4064       *SignBitVec = CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT,
   4065                                         SDValue(ZV, 0));
   4066     }
   4067     return CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT, N);
   4068   }
   4069   else if (VecVT == MVT::v8i16) {
   4070     SDNode *Hi = CurDAG->getMachineNode(PPC::LIS, dl, MVT::i32,
   4071                                      getI32Imm(0x8000, dl));
   4072     SDNode *ScaImm = CurDAG->getMachineNode(PPC::ORI, dl, MVT::i32,
   4073                                          SDValue(Hi, 0),
   4074                                          getI32Imm(0x8000, dl));
   4075     SDNode *VecImm = CurDAG->getMachineNode(PPC::MTVSRWS, dl, VecVT,
   4076                                          SDValue(ScaImm, 0));
   4077     /*
   4078     Alternatively, we can do this as follow to use VRF instead of GPR.
   4079       vspltish 5, 1
   4080       vspltish 6, 15
   4081       vslh 5, 6, 5
   4082     */
   4083     if (SignBitVec) *SignBitVec = VecImm;
   4084     return CurDAG->getMachineNode(PPC::VADDUHM, dl, VecVT, N,
   4085                                   SDValue(VecImm, 0));
   4086   }
   4087   else if (VecVT == MVT::v16i8) {
   4088     SDNode *VecImm = CurDAG->getMachineNode(PPC::XXSPLTIB, dl, MVT::i32,
   4089                                          getI32Imm(0x80, dl));
   4090     if (SignBitVec) *SignBitVec = VecImm;
   4091     return CurDAG->getMachineNode(PPC::VADDUBM, dl, VecVT, N,
   4092                                   SDValue(VecImm, 0));
   4093   }
   4094   else
   4095     llvm_unreachable("Unsupported vector data type for flipSignBit");
   4096 }
   4097 
   4098 // Select - Convert the specified operand from a target-independent to a
   4099 // target-specific node if it hasn't already been changed.
   4100 void PPCDAGToDAGISel::Select(SDNode *N) {
   4101   SDLoc dl(N);
   4102   if (N->isMachineOpcode()) {
   4103     N->setNodeId(-1);
   4104     return;   // Already selected.
   4105   }
   4106 
   4107   // In case any misguided DAG-level optimizations form an ADD with a
   4108   // TargetConstant operand, crash here instead of miscompiling (by selecting
   4109   // an r+r add instead of some kind of r+i add).
   4110   if (N->getOpcode() == ISD::ADD &&
   4111       N->getOperand(1).getOpcode() == ISD::TargetConstant)
   4112     llvm_unreachable("Invalid ADD with TargetConstant operand");
   4113 
   4114   // Try matching complex bit permutations before doing anything else.
   4115   if (tryBitPermutation(N))
   4116     return;
   4117 
   4118   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
   4119   if (tryIntCompareInGPR(N))
   4120     return;
   4121 
   4122   switch (N->getOpcode()) {
   4123   default: break;
   4124 
   4125   case ISD::Constant:
   4126     if (N->getValueType(0) == MVT::i64) {
   4127       ReplaceNode(N, selectI64Imm(CurDAG, N));
   4128       return;
   4129     }
   4130     break;
   4131 
   4132   case ISD::SETCC:
   4133     if (trySETCC(N))
   4134       return;
   4135     break;
   4136 
   4137   case PPCISD::CALL: {
   4138     const Module *M = MF->getFunction().getParent();
   4139 
   4140     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
   4141         !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
   4142         M->getPICLevel() == PICLevel::SmallPIC)
   4143       break;
   4144 
   4145     SDValue Op = N->getOperand(1);
   4146 
   4147     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
   4148       if (GA->getTargetFlags() == PPCII::MO_PLT)
   4149         getGlobalBaseReg();
   4150     }
   4151     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
   4152       if (ES->getTargetFlags() == PPCII::MO_PLT)
   4153         getGlobalBaseReg();
   4154     }
   4155   }
   4156     break;
   4157 
   4158   case PPCISD::GlobalBaseReg:
   4159     ReplaceNode(N, getGlobalBaseReg());
   4160     return;
   4161 
   4162   case ISD::FrameIndex:
   4163     selectFrameIndex(N, N);
   4164     return;
   4165 
   4166   case PPCISD::MFOCRF: {
   4167     SDValue InFlag = N->getOperand(1);
   4168     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
   4169                                           N->getOperand(0), InFlag));
   4170     return;
   4171   }
   4172 
   4173   case PPCISD::READ_TIME_BASE:
   4174     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
   4175                                           MVT::Other, N->getOperand(0)));
   4176     return;
   4177 
   4178   case PPCISD::SRA_ADDZE: {
   4179     SDValue N0 = N->getOperand(0);
   4180     SDValue ShiftAmt =
   4181       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
   4182                                   getConstantIntValue(), dl,
   4183                                   N->getValueType(0));
   4184     if (N->getValueType(0) == MVT::i64) {
   4185       SDNode *Op =
   4186         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
   4187                                N0, ShiftAmt);
   4188       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
   4189                            SDValue(Op, 1));
   4190       return;
   4191     } else {
   4192       assert(N->getValueType(0) == MVT::i32 &&
   4193              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
   4194       SDNode *Op =
   4195         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
   4196                                N0, ShiftAmt);
   4197       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
   4198                            SDValue(Op, 1));
   4199       return;
   4200     }
   4201   }
   4202 
   4203   case ISD::STORE: {
   4204     // Change TLS initial-exec D-form stores to X-form stores.
   4205     StoreSDNode *ST = cast<StoreSDNode>(N);
   4206     if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
   4207         ST->getAddressingMode() != ISD::PRE_INC)
   4208       if (tryTLSXFormStore(ST))
   4209         return;
   4210     break;
   4211   }
   4212   case ISD::LOAD: {
   4213     // Handle preincrement loads.
   4214     LoadSDNode *LD = cast<LoadSDNode>(N);
   4215     EVT LoadedVT = LD->getMemoryVT();
   4216 
   4217     // Normal loads are handled by code generated from the .td file.
   4218     if (LD->getAddressingMode() != ISD::PRE_INC) {
   4219       // Change TLS initial-exec D-form loads to X-form loads.
   4220       if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
   4221         if (tryTLSXFormLoad(LD))
   4222           return;
   4223       break;
   4224     }
   4225 
   4226     SDValue Offset = LD->getOffset();
   4227     if (Offset.getOpcode() == ISD::TargetConstant ||
   4228         Offset.getOpcode() == ISD::TargetGlobalAddress) {
   4229 
   4230       unsigned Opcode;
   4231       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   4232       if (LD->getValueType(0) != MVT::i64) {
   4233         // Handle PPC32 integer and normal FP loads.
   4234         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   4235         switch (LoadedVT.getSimpleVT().SimpleTy) {
   4236           default: llvm_unreachable("Invalid PPC load type!");
   4237           case MVT::f64: Opcode = PPC::LFDU; break;
   4238           case MVT::f32: Opcode = PPC::LFSU; break;
   4239           case MVT::i32: Opcode = PPC::LWZU; break;
   4240           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
   4241           case MVT::i1:
   4242           case MVT::i8:  Opcode = PPC::LBZU; break;
   4243         }
   4244       } else {
   4245         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   4246         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   4247         switch (LoadedVT.getSimpleVT().SimpleTy) {
   4248           default: llvm_unreachable("Invalid PPC load type!");
   4249           case MVT::i64: Opcode = PPC::LDU; break;
   4250           case MVT::i32: Opcode = PPC::LWZU8; break;
   4251           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
   4252           case MVT::i1:
   4253           case MVT::i8:  Opcode = PPC::LBZU8; break;
   4254         }
   4255       }
   4256 
   4257       SDValue Chain = LD->getChain();
   4258       SDValue Base = LD->getBasePtr();
   4259       SDValue Ops[] = { Offset, Base, Chain };
   4260       SDNode *MN = CurDAG->getMachineNode(
   4261           Opcode, dl, LD->getValueType(0),
   4262           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
   4263       transferMemOperands(N, MN);
   4264       ReplaceNode(N, MN);
   4265       return;
   4266     } else {
   4267       unsigned Opcode;
   4268       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   4269       if (LD->getValueType(0) != MVT::i64) {
   4270         // Handle PPC32 integer and normal FP loads.
   4271         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   4272         switch (LoadedVT.getSimpleVT().SimpleTy) {
   4273           default: llvm_unreachable("Invalid PPC load type!");
   4274           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
   4275           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
   4276           case MVT::f64: Opcode = PPC::LFDUX; break;
   4277           case MVT::f32: Opcode = PPC::LFSUX; break;
   4278           case MVT::i32: Opcode = PPC::LWZUX; break;
   4279           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
   4280           case MVT::i1:
   4281           case MVT::i8:  Opcode = PPC::LBZUX; break;
   4282         }
   4283       } else {
   4284         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   4285         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
   4286                "Invalid sext update load");
   4287         switch (LoadedVT.getSimpleVT().SimpleTy) {
   4288           default: llvm_unreachable("Invalid PPC load type!");
   4289           case MVT::i64: Opcode = PPC::LDUX; break;
   4290           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
   4291           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
   4292           case MVT::i1:
   4293           case MVT::i8:  Opcode = PPC::LBZUX8; break;
   4294         }
   4295       }
   4296 
   4297       SDValue Chain = LD->getChain();
   4298       SDValue Base = LD->getBasePtr();
   4299       SDValue Ops[] = { Base, Offset, Chain };
   4300       SDNode *MN = CurDAG->getMachineNode(
   4301           Opcode, dl, LD->getValueType(0),
   4302           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
   4303       transferMemOperands(N, MN);
   4304       ReplaceNode(N, MN);
   4305       return;
   4306     }
   4307   }
   4308 
   4309   case ISD::AND: {
   4310     unsigned Imm, Imm2, SH, MB, ME;
   4311     uint64_t Imm64;
   4312 
   4313     // If this is an and of a value rotated between 0 and 31 bits and then and'd
   4314     // with a mask, emit rlwinm
   4315     if (isInt32Immediate(N->getOperand(1), Imm) &&
   4316         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
   4317       SDValue Val = N->getOperand(0).getOperand(0);
   4318       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
   4319                         getI32Imm(ME, dl) };
   4320       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   4321       return;
   4322     }
   4323     // If this is just a masked value where the input is not handled above, and
   4324     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
   4325     if (isInt32Immediate(N->getOperand(1), Imm) &&
   4326         isRunOfOnes(Imm, MB, ME) &&
   4327         N->getOperand(0).getOpcode() != ISD::ROTL) {
   4328       SDValue Val = N->getOperand(0);
   4329       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
   4330                         getI32Imm(ME, dl) };
   4331       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   4332       return;
   4333     }
   4334     // If this is a 64-bit zero-extension mask, emit rldicl.
   4335     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
   4336         isMask_64(Imm64)) {
   4337       SDValue Val = N->getOperand(0);
   4338       MB = 64 - countTrailingOnes(Imm64);
   4339       SH = 0;
   4340 
   4341       if (Val.getOpcode() == ISD::ANY_EXTEND) {
   4342         auto Op0 = Val.getOperand(0);
   4343         if ( Op0.getOpcode() == ISD::SRL &&
   4344            isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
   4345 
   4346            auto ResultType = Val.getNode()->getValueType(0);
   4347            auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
   4348                                                ResultType);
   4349            SDValue IDVal (ImDef, 0);
   4350 
   4351            Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
   4352                          ResultType, IDVal, Op0.getOperand(0),
   4353                          getI32Imm(1, dl)), 0);
   4354            SH = 64 - Imm;
   4355         }
   4356       }
   4357 
   4358       // If the operand is a logical right shift, we can fold it into this
   4359       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
   4360       // for n <= mb. The right shift is really a left rotate followed by a
   4361       // mask, and this mask is a more-restrictive sub-mask of the mask implied
   4362       // by the shift.
   4363       if (Val.getOpcode() == ISD::SRL &&
   4364           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
   4365         assert(Imm < 64 && "Illegal shift amount");
   4366         Val = Val.getOperand(0);
   4367         SH = 64 - Imm;
   4368       }
   4369 
   4370       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
   4371       CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
   4372       return;
   4373     }
   4374     // If this is a negated 64-bit zero-extension mask,
   4375     // i.e. the immediate is a sequence of ones from most significant side
   4376     // and all zero for reminder, we should use rldicr.
   4377     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
   4378         isMask_64(~Imm64)) {
   4379       SDValue Val = N->getOperand(0);
   4380       MB = 63 - countTrailingOnes(~Imm64);
   4381       SH = 0;
   4382       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
   4383       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
   4384       return;
   4385     }
   4386 
   4387     // AND X, 0 -> 0, not "rlwinm 32".
   4388     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
   4389       ReplaceUses(SDValue(N, 0), N->getOperand(1));
   4390       return;
   4391     }
   4392     // ISD::OR doesn't get all the bitfield insertion fun.
   4393     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
   4394     // bitfield insert.
   4395     if (isInt32Immediate(N->getOperand(1), Imm) &&
   4396         N->getOperand(0).getOpcode() == ISD::OR &&
   4397         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
   4398       // The idea here is to check whether this is equivalent to:
   4399       //   (c1 & m) | (x & ~m)
   4400       // where m is a run-of-ones mask. The logic here is that, for each bit in
   4401       // c1 and c2:
   4402       //  - if both are 1, then the output will be 1.
   4403       //  - if both are 0, then the output will be 0.
   4404       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
   4405       //    come from x.
   4406       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
   4407       //    be 0.
   4408       //  If that last condition is never the case, then we can form m from the
   4409       //  bits that are the same between c1 and c2.
   4410       unsigned MB, ME;
   4411       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
   4412         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   4413                             N->getOperand(0).getOperand(1),
   4414                             getI32Imm(0, dl), getI32Imm(MB, dl),
   4415                             getI32Imm(ME, dl) };
   4416         ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
   4417         return;
   4418       }
   4419     }
   4420 
   4421     // Other cases are autogenerated.
   4422     break;
   4423   }
   4424   case ISD::OR: {
   4425     if (N->getValueType(0) == MVT::i32)
   4426       if (tryBitfieldInsert(N))
   4427         return;
   4428 
   4429     int16_t Imm;
   4430     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   4431         isIntS16Immediate(N->getOperand(1), Imm)) {
   4432       KnownBits LHSKnown;
   4433       CurDAG->computeKnownBits(N->getOperand(0), LHSKnown);
   4434 
   4435       // If this is equivalent to an add, then we can fold it with the
   4436       // FrameIndex calculation.
   4437       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
   4438         selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   4439         return;
   4440       }
   4441     }
   4442 
   4443     // OR with a 32-bit immediate can be handled by ori + oris
   4444     // without creating an immediate in a GPR.
   4445     uint64_t Imm64 = 0;
   4446     bool IsPPC64 = PPCSubTarget->isPPC64();
   4447     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
   4448         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
   4449       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
   4450       uint64_t ImmHi = Imm64 >> 16;
   4451       uint64_t ImmLo = Imm64 & 0xFFFF;
   4452       if (ImmHi != 0 && ImmLo != 0) {
   4453         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
   4454                                             N->getOperand(0),
   4455                                             getI16Imm(ImmLo, dl));
   4456         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
   4457         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
   4458         return;
   4459       }
   4460     }
   4461 
   4462     // Other cases are autogenerated.
   4463     break;
   4464   }
   4465   case ISD::XOR: {
   4466     // XOR with a 32-bit immediate can be handled by xori + xoris
   4467     // without creating an immediate in a GPR.
   4468     uint64_t Imm64 = 0;
   4469     bool IsPPC64 = PPCSubTarget->isPPC64();
   4470     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
   4471         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
   4472       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
   4473       uint64_t ImmHi = Imm64 >> 16;
   4474       uint64_t ImmLo = Imm64 & 0xFFFF;
   4475       if (ImmHi != 0 && ImmLo != 0) {
   4476         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
   4477                                             N->getOperand(0),
   4478                                             getI16Imm(ImmLo, dl));
   4479         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
   4480         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
   4481         return;
   4482       }
   4483     }
   4484 
   4485     break;
   4486   }
   4487   case ISD::ADD: {
   4488     int16_t Imm;
   4489     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   4490         isIntS16Immediate(N->getOperand(1), Imm)) {
   4491       selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   4492       return;
   4493     }
   4494 
   4495     break;
   4496   }
   4497   case ISD::SHL: {
   4498     unsigned Imm, SH, MB, ME;
   4499     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   4500         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   4501       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   4502                           getI32Imm(SH, dl), getI32Imm(MB, dl),
   4503                           getI32Imm(ME, dl) };
   4504       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   4505       return;
   4506     }
   4507 
   4508     // Other cases are autogenerated.
   4509     break;
   4510   }
   4511   case ISD::SRL: {
   4512     unsigned Imm, SH, MB, ME;
   4513     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   4514         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   4515       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   4516                           getI32Imm(SH, dl), getI32Imm(MB, dl),
   4517                           getI32Imm(ME, dl) };
   4518       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   4519       return;
   4520     }
   4521 
   4522     // Other cases are autogenerated.
   4523     break;
   4524   }
   4525   // FIXME: Remove this once the ANDI glue bug is fixed:
   4526   case PPCISD::ANDIo_1_EQ_BIT:
   4527   case PPCISD::ANDIo_1_GT_BIT: {
   4528     if (!ANDIGlueBug)
   4529       break;
   4530 
   4531     EVT InVT = N->getOperand(0).getValueType();
   4532     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
   4533            "Invalid input type for ANDIo_1_EQ_BIT");
   4534 
   4535     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
   4536     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
   4537                                         N->getOperand(0),
   4538                                         CurDAG->getTargetConstant(1, dl, InVT)),
   4539                  0);
   4540     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
   4541     SDValue SRIdxVal =
   4542       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
   4543                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
   4544 
   4545     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
   4546                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
   4547     return;
   4548   }
   4549   case ISD::SELECT_CC: {
   4550     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   4551     EVT PtrVT =
   4552         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
   4553     bool isPPC64 = (PtrVT == MVT::i64);
   4554 
   4555     // If this is a select of i1 operands, we'll pattern match it.
   4556     if (PPCSubTarget->useCRBits() &&
   4557         N->getOperand(0).getValueType() == MVT::i1)
   4558       break;
   4559 
   4560     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
   4561     if (!isPPC64)
   4562       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   4563         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
   4564           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
   4565             if (N1C->isNullValue() && N3C->isNullValue() &&
   4566                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
   4567                 // FIXME: Implement this optzn for PPC64.
   4568                 N->getValueType(0) == MVT::i32) {
   4569               SDNode *Tmp =
   4570                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   4571                                        N->getOperand(0), getI32Imm(~0U, dl));
   4572               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
   4573                                    N->getOperand(0), SDValue(Tmp, 1));
   4574               return;
   4575             }
   4576 
   4577     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
   4578 
   4579     if (N->getValueType(0) == MVT::i1) {
   4580       // An i1 select is: (c & t) | (!c & f).
   4581       bool Inv;
   4582       unsigned Idx = getCRIdxForSetCC(CC, Inv);
   4583 
   4584       unsigned SRI;
   4585       switch (Idx) {
   4586       default: llvm_unreachable("Invalid CC index");
   4587       case 0: SRI = PPC::sub_lt; break;
   4588       case 1: SRI = PPC::sub_gt; break;
   4589       case 2: SRI = PPC::sub_eq; break;
   4590       case 3: SRI = PPC::sub_un; break;
   4591       }
   4592 
   4593       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
   4594 
   4595       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
   4596                                               CCBit, CCBit), 0);
   4597       SDValue C =    Inv ? NotCCBit : CCBit,
   4598               NotC = Inv ? CCBit    : NotCCBit;
   4599 
   4600       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   4601                                            C, N->getOperand(2)), 0);
   4602       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   4603                                               NotC, N->getOperand(3)), 0);
   4604 
   4605       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
   4606       return;
   4607     }
   4608 
   4609     unsigned BROpc = getPredicateForSetCC(CC);
   4610 
   4611     unsigned SelectCCOp;
   4612     if (N->getValueType(0) == MVT::i32)
   4613       SelectCCOp = PPC::SELECT_CC_I4;
   4614     else if (N->getValueType(0) == MVT::i64)
   4615       SelectCCOp = PPC::SELECT_CC_I8;
   4616     else if (N->getValueType(0) == MVT::f32) {
   4617       if (PPCSubTarget->hasP8Vector())
   4618         SelectCCOp = PPC::SELECT_CC_VSSRC;
   4619       else if (PPCSubTarget->hasSPE())
   4620         SelectCCOp = PPC::SELECT_CC_SPE4;
   4621       else
   4622         SelectCCOp = PPC::SELECT_CC_F4;
   4623     } else if (N->getValueType(0) == MVT::f64) {
   4624       if (PPCSubTarget->hasVSX())
   4625         SelectCCOp = PPC::SELECT_CC_VSFRC;
   4626       else if (PPCSubTarget->hasSPE())
   4627         SelectCCOp = PPC::SELECT_CC_SPE;
   4628       else
   4629         SelectCCOp = PPC::SELECT_CC_F8;
   4630     } else if (N->getValueType(0) == MVT::f128)
   4631       SelectCCOp = PPC::SELECT_CC_F16;
   4632     else if (PPCSubTarget->hasSPE())
   4633       SelectCCOp = PPC::SELECT_CC_SPE;
   4634     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
   4635       SelectCCOp = PPC::SELECT_CC_QFRC;
   4636     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
   4637       SelectCCOp = PPC::SELECT_CC_QSRC;
   4638     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
   4639       SelectCCOp = PPC::SELECT_CC_QBRC;
   4640     else if (N->getValueType(0) == MVT::v2f64 ||
   4641              N->getValueType(0) == MVT::v2i64)
   4642       SelectCCOp = PPC::SELECT_CC_VSRC;
   4643     else
   4644       SelectCCOp = PPC::SELECT_CC_VRRC;
   4645 
   4646     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
   4647                         getI32Imm(BROpc, dl) };
   4648     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
   4649     return;
   4650   }
   4651   case ISD::VSELECT:
   4652     if (PPCSubTarget->hasVSX()) {
   4653       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
   4654       CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
   4655       return;
   4656     }
   4657     break;
   4658 
   4659   case ISD::VECTOR_SHUFFLE:
   4660     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
   4661                                   N->getValueType(0) == MVT::v2i64)) {
   4662       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   4663 
   4664       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
   4665               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
   4666       unsigned DM[2];
   4667 
   4668       for (int i = 0; i < 2; ++i)
   4669         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
   4670           DM[i] = 0;
   4671         else
   4672           DM[i] = 1;
   4673 
   4674       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
   4675           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   4676           isa<LoadSDNode>(Op1.getOperand(0))) {
   4677         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
   4678         SDValue Base, Offset;
   4679 
   4680         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
   4681             (LD->getMemoryVT() == MVT::f64 ||
   4682              LD->getMemoryVT() == MVT::i64) &&
   4683             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
   4684           SDValue Chain = LD->getChain();
   4685           SDValue Ops[] = { Base, Offset, Chain };
   4686           MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   4687           MemOp[0] = LD->getMemOperand();
   4688           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
   4689                                               N->getValueType(0), Ops);
   4690           cast<MachineSDNode>(NewN)->setMemRefs(MemOp, MemOp + 1);
   4691           return;
   4692         }
   4693       }
   4694 
   4695       // For little endian, we must swap the input operands and adjust
   4696       // the mask elements (reverse and invert them).
   4697       if (PPCSubTarget->isLittleEndian()) {
   4698         std::swap(Op1, Op2);
   4699         unsigned tmp = DM[0];
   4700         DM[0] = 1 - DM[1];
   4701         DM[1] = 1 - tmp;
   4702       }
   4703 
   4704       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
   4705                                               MVT::i32);
   4706       SDValue Ops[] = { Op1, Op2, DMV };
   4707       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
   4708       return;
   4709     }
   4710 
   4711     break;
   4712   case PPCISD::BDNZ:
   4713   case PPCISD::BDZ: {
   4714     bool IsPPC64 = PPCSubTarget->isPPC64();
   4715     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
   4716     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
   4717                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
   4718                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
   4719                          MVT::Other, Ops);
   4720     return;
   4721   }
   4722   case PPCISD::COND_BRANCH: {
   4723     // Op #0 is the Chain.
   4724     // Op #1 is the PPC::PRED_* number.
   4725     // Op #2 is the CR#
   4726     // Op #3 is the Dest MBB
   4727     // Op #4 is the Flag.
   4728     // Prevent PPC::PRED_* from being selected into LI.
   4729     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   4730     if (EnableBranchHint)
   4731       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
   4732 
   4733     SDValue Pred = getI32Imm(PCC, dl);
   4734     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
   4735       N->getOperand(0), N->getOperand(4) };
   4736     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   4737     return;
   4738   }
   4739   case ISD::BR_CC: {
   4740     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   4741     unsigned PCC = getPredicateForSetCC(CC);
   4742 
   4743     if (N->getOperand(2).getValueType() == MVT::i1) {
   4744       unsigned Opc;
   4745       bool Swap;
   4746       switch (PCC) {
   4747       default: llvm_unreachable("Unexpected Boolean-operand predicate");
   4748       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
   4749       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
   4750       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
   4751       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
   4752       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
   4753       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
   4754       }
   4755 
   4756       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
   4757                                              N->getOperand(Swap ? 3 : 2),
   4758                                              N->getOperand(Swap ? 2 : 3)), 0);
   4759       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
   4760                            N->getOperand(0));
   4761       return;
   4762     }
   4763 
   4764     if (EnableBranchHint)
   4765       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
   4766 
   4767     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
   4768     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
   4769                         N->getOperand(4), N->getOperand(0) };
   4770     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   4771     return;
   4772   }
   4773   case ISD::BRIND: {
   4774     // FIXME: Should custom lower this.
   4775     SDValue Chain = N->getOperand(0);
   4776     SDValue Target = N->getOperand(1);
   4777     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
   4778     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
   4779     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
   4780                                            Chain), 0);
   4781     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
   4782     return;
   4783   }
   4784   case PPCISD::TOC_ENTRY: {
   4785     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
   4786             "Only supported for 64-bit ABI and 32-bit SVR4");
   4787     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
   4788       SDValue GA = N->getOperand(0);
   4789       SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
   4790                                           N->getOperand(1));
   4791       transferMemOperands(N, MN);
   4792       ReplaceNode(N, MN);
   4793       return;
   4794     }
   4795 
   4796     // For medium and large code model, we generate two instructions as
   4797     // described below.  Otherwise we allow SelectCodeCommon to handle this,
   4798     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
   4799     CodeModel::Model CModel = TM.getCodeModel();
   4800     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
   4801       break;
   4802 
   4803     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
   4804     // If it must be toc-referenced according to PPCSubTarget, we generate:
   4805     //   LDtocL(@sym, ADDIStocHA(%x2, @sym))
   4806     // Otherwise we generate:
   4807     //   ADDItocL(ADDIStocHA(%x2, @sym), @sym)
   4808     SDValue GA = N->getOperand(0);
   4809     SDValue TOCbase = N->getOperand(1);
   4810     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
   4811                                          TOCbase, GA);
   4812 
   4813     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
   4814         CModel == CodeModel::Large) {
   4815       SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
   4816                                           SDValue(Tmp, 0));
   4817       transferMemOperands(N, MN);
   4818       ReplaceNode(N, MN);
   4819       return;
   4820     }
   4821 
   4822     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
   4823       const GlobalValue *GV = G->getGlobal();
   4824       unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
   4825       if (GVFlags & PPCII::MO_NLP_FLAG) {
   4826         SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
   4827                                             SDValue(Tmp, 0));
   4828         transferMemOperands(N, MN);
   4829         ReplaceNode(N, MN);
   4830         return;
   4831       }
   4832     }
   4833 
   4834     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
   4835                                           SDValue(Tmp, 0), GA));
   4836     return;
   4837   }
   4838   case PPCISD::PPC32_PICGOT:
   4839     // Generate a PIC-safe GOT reference.
   4840     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
   4841       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
   4842     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
   4843                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
   4844                          MVT::i32);
   4845     return;
   4846 
   4847   case PPCISD::VADD_SPLAT: {
   4848     // This expands into one of three sequences, depending on whether
   4849     // the first operand is odd or even, positive or negative.
   4850     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
   4851            isa<ConstantSDNode>(N->getOperand(1)) &&
   4852            "Invalid operand on VADD_SPLAT!");
   4853 
   4854     int Elt     = N->getConstantOperandVal(0);
   4855     int EltSize = N->getConstantOperandVal(1);
   4856     unsigned Opc1, Opc2, Opc3;
   4857     EVT VT;
   4858 
   4859     if (EltSize == 1) {
   4860       Opc1 = PPC::VSPLTISB;
   4861       Opc2 = PPC::VADDUBM;
   4862       Opc3 = PPC::VSUBUBM;
   4863       VT = MVT::v16i8;
   4864     } else if (EltSize == 2) {
   4865       Opc1 = PPC::VSPLTISH;
   4866       Opc2 = PPC::VADDUHM;
   4867       Opc3 = PPC::VSUBUHM;
   4868       VT = MVT::v8i16;
   4869     } else {
   4870       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
   4871       Opc1 = PPC::VSPLTISW;
   4872       Opc2 = PPC::VADDUWM;
   4873       Opc3 = PPC::VSUBUWM;
   4874       VT = MVT::v4i32;
   4875     }
   4876 
   4877     if ((Elt & 1) == 0) {
   4878       // Elt is even, in the range [-32,-18] + [16,30].
   4879       //
   4880       // Convert: VADD_SPLAT elt, size
   4881       // Into:    tmp = VSPLTIS[BHW] elt
   4882       //          VADDU[BHW]M tmp, tmp
   4883       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
   4884       SDValue EltVal = getI32Imm(Elt >> 1, dl);
   4885       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   4886       SDValue TmpVal = SDValue(Tmp, 0);
   4887       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
   4888       return;
   4889     } else if (Elt > 0) {
   4890       // Elt is odd and positive, in the range [17,31].
   4891       //
   4892       // Convert: VADD_SPLAT elt, size
   4893       // Into:    tmp1 = VSPLTIS[BHW] elt-16
   4894       //          tmp2 = VSPLTIS[BHW] -16
   4895       //          VSUBU[BHW]M tmp1, tmp2
   4896       SDValue EltVal = getI32Imm(Elt - 16, dl);
   4897       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   4898       EltVal = getI32Imm(-16, dl);
   4899       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   4900       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
   4901                                             SDValue(Tmp2, 0)));
   4902       return;
   4903     } else {
   4904       // Elt is odd and negative, in the range [-31,-17].
   4905       //
   4906       // Convert: VADD_SPLAT elt, size
   4907       // Into:    tmp1 = VSPLTIS[BHW] elt+16
   4908       //          tmp2 = VSPLTIS[BHW] -16
   4909       //          VADDU[BHW]M tmp1, tmp2
   4910       SDValue EltVal = getI32Imm(Elt + 16, dl);
   4911       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   4912       EltVal = getI32Imm(-16, dl);
   4913       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   4914       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
   4915                                             SDValue(Tmp2, 0)));
   4916       return;
   4917     }
   4918   }
   4919   case ISD::ABS: {
   4920     assert(PPCSubTarget->hasP9Vector() && "ABS is supported with P9 Vector");
   4921 
   4922     // For vector absolute difference, we use VABSDUW instruction of POWER9.
   4923     // Since VABSDU instructions are for unsigned integers, we need adjustment
   4924     // for signed integers.
   4925     // For abs(sub(a, b)), we generate VABSDUW(a+0x80000000, b+0x80000000).
   4926     // Otherwise, abs(sub(-1, 0)) returns 0xFFFFFFFF(=-1) instead of 1.
   4927     // For abs(a), we generate VABSDUW(a+0x80000000, 0x80000000).
   4928     EVT VecVT = N->getOperand(0).getValueType();
   4929     SDNode *AbsOp = nullptr;
   4930     unsigned AbsOpcode;
   4931 
   4932     if (VecVT == MVT::v4i32)
   4933       AbsOpcode = PPC::VABSDUW;
   4934     else if (VecVT == MVT::v8i16)
   4935       AbsOpcode = PPC::VABSDUH;
   4936     else if (VecVT == MVT::v16i8)
   4937       AbsOpcode = PPC::VABSDUB;
   4938     else
   4939       llvm_unreachable("Unsupported vector data type for ISD::ABS");
   4940 
   4941     // Even for signed integers, we can skip adjustment if all values are
   4942     // known to be positive (as signed integer) due to zero-extended inputs.
   4943     if (N->getOperand(0).getOpcode() == ISD::SUB &&
   4944         N->getOperand(0)->getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
   4945         N->getOperand(0)->getOperand(1).getOpcode() == ISD::ZERO_EXTEND) {
   4946       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
   4947                                      SDValue(N->getOperand(0)->getOperand(0)),
   4948                                      SDValue(N->getOperand(0)->getOperand(1)));
   4949       ReplaceNode(N, AbsOp);
   4950       return;
   4951     }
   4952     if (N->getOperand(0).getOpcode() == ISD::SUB) {
   4953       SDValue SubVal = N->getOperand(0);
   4954       SDNode *Op0 = flipSignBit(SubVal->getOperand(0));
   4955       SDNode *Op1 = flipSignBit(SubVal->getOperand(1));
   4956       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
   4957                                      SDValue(Op0, 0), SDValue(Op1, 0));
   4958     }
   4959     else {
   4960       SDNode *Op1 = nullptr;
   4961       SDNode *Op0 = flipSignBit(N->getOperand(0), &Op1);
   4962       AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT, SDValue(Op0, 0),
   4963                                      SDValue(Op1, 0));
   4964     }
   4965     ReplaceNode(N, AbsOp);
   4966     return;
   4967   }
   4968   }
   4969 
   4970   SelectCode(N);
   4971 }
   4972 
   4973 // If the target supports the cmpb instruction, do the idiom recognition here.
   4974 // We don't do this as a DAG combine because we don't want to do it as nodes
   4975 // are being combined (because we might miss part of the eventual idiom). We
   4976 // don't want to do it during instruction selection because we want to reuse
   4977 // the logic for lowering the masking operations already part of the
   4978 // instruction selector.
   4979 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
   4980   SDLoc dl(N);
   4981 
   4982   assert(N->getOpcode() == ISD::OR &&
   4983          "Only OR nodes are supported for CMPB");
   4984 
   4985   SDValue Res;
   4986   if (!PPCSubTarget->hasCMPB())
   4987     return Res;
   4988 
   4989   if (N->getValueType(0) != MVT::i32 &&
   4990       N->getValueType(0) != MVT::i64)
   4991     return Res;
   4992 
   4993   EVT VT = N->getValueType(0);
   4994 
   4995   SDValue RHS, LHS;
   4996   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
   4997   uint64_t Mask = 0, Alt = 0;
   4998 
   4999   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
   5000                                uint64_t &Mask, uint64_t &Alt,
   5001                                SDValue &LHS, SDValue &RHS) {
   5002     if (O.getOpcode() != ISD::SELECT_CC)
   5003       return false;
   5004     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
   5005 
   5006     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
   5007         !isa<ConstantSDNode>(O.getOperand(3)))
   5008       return false;
   5009 
   5010     uint64_t PM = O.getConstantOperandVal(2);
   5011     uint64_t PAlt = O.getConstantOperandVal(3);
   5012     for (b = 0; b < 8; ++b) {
   5013       uint64_t Mask = UINT64_C(0xFF) << (8*b);
   5014       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
   5015         break;
   5016     }
   5017 
   5018     if (b == 8)
   5019       return false;
   5020     Mask |= PM;
   5021     Alt  |= PAlt;
   5022 
   5023     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
   5024         O.getConstantOperandVal(1) != 0) {
   5025       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
   5026       if (Op0.getOpcode() == ISD::TRUNCATE)
   5027         Op0 = Op0.getOperand(0);
   5028       if (Op1.getOpcode() == ISD::TRUNCATE)
   5029         Op1 = Op1.getOperand(0);
   5030 
   5031       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
   5032           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
   5033           isa<ConstantSDNode>(Op0.getOperand(1))) {
   5034 
   5035         unsigned Bits = Op0.getValueSizeInBits();
   5036         if (b != Bits/8-1)
   5037           return false;
   5038         if (Op0.getConstantOperandVal(1) != Bits-8)
   5039           return false;
   5040 
   5041         LHS = Op0.getOperand(0);
   5042         RHS = Op1.getOperand(0);
   5043         return true;
   5044       }
   5045 
   5046       // When we have small integers (i16 to be specific), the form present
   5047       // post-legalization uses SETULT in the SELECT_CC for the
   5048       // higher-order byte, depending on the fact that the
   5049       // even-higher-order bytes are known to all be zero, for example:
   5050       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
   5051       // (so when the second byte is the same, because all higher-order
   5052       // bits from bytes 3 and 4 are known to be zero, the result of the
   5053       // xor can be at most 255)
   5054       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
   5055           isa<ConstantSDNode>(O.getOperand(1))) {
   5056 
   5057         uint64_t ULim = O.getConstantOperandVal(1);
   5058         if (ULim != (UINT64_C(1) << b*8))
   5059           return false;
   5060 
   5061         // Now we need to make sure that the upper bytes are known to be
   5062         // zero.
   5063         unsigned Bits = Op0.getValueSizeInBits();
   5064         if (!CurDAG->MaskedValueIsZero(
   5065                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
   5066           return false;
   5067 
   5068         LHS = Op0.getOperand(0);
   5069         RHS = Op0.getOperand(1);
   5070         return true;
   5071       }
   5072 
   5073       return false;
   5074     }
   5075 
   5076     if (CC != ISD::SETEQ)
   5077       return false;
   5078 
   5079     SDValue Op = O.getOperand(0);
   5080     if (Op.getOpcode() == ISD::AND) {
   5081       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   5082         return false;
   5083       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
   5084         return false;
   5085 
   5086       SDValue XOR = Op.getOperand(0);
   5087       if (XOR.getOpcode() == ISD::TRUNCATE)
   5088         XOR = XOR.getOperand(0);
   5089       if (XOR.getOpcode() != ISD::XOR)
   5090         return false;
   5091 
   5092       LHS = XOR.getOperand(0);
   5093       RHS = XOR.getOperand(1);
   5094       return true;
   5095     } else if (Op.getOpcode() == ISD::SRL) {
   5096       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   5097         return false;
   5098       unsigned Bits = Op.getValueSizeInBits();
   5099       if (b != Bits/8-1)
   5100         return false;
   5101       if (Op.getConstantOperandVal(1) != Bits-8)
   5102         return false;
   5103 
   5104       SDValue XOR = Op.getOperand(0);
   5105       if (XOR.getOpcode() == ISD::TRUNCATE)
   5106         XOR = XOR.getOperand(0);
   5107       if (XOR.getOpcode() != ISD::XOR)
   5108         return false;
   5109 
   5110       LHS = XOR.getOperand(0);
   5111       RHS = XOR.getOperand(1);
   5112       return true;
   5113     }
   5114 
   5115     return false;
   5116   };
   5117 
   5118   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
   5119   while (!Queue.empty()) {
   5120     SDValue V = Queue.pop_back_val();
   5121 
   5122     for (const SDValue &O : V.getNode()->ops()) {
   5123       unsigned b;
   5124       uint64_t M = 0, A = 0;
   5125       SDValue OLHS, ORHS;
   5126       if (O.getOpcode() == ISD::OR) {
   5127         Queue.push_back(O);
   5128       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
   5129         if (!LHS) {
   5130           LHS = OLHS;
   5131           RHS = ORHS;
   5132           BytesFound[b] = true;
   5133           Mask |= M;
   5134           Alt  |= A;
   5135         } else if ((LHS == ORHS && RHS == OLHS) ||
   5136                    (RHS == ORHS && LHS == OLHS)) {
   5137           BytesFound[b] = true;
   5138           Mask |= M;
   5139           Alt  |= A;
   5140         } else {
   5141           return Res;
   5142         }
   5143       } else {
   5144         return Res;
   5145       }
   5146     }
   5147   }
   5148 
   5149   unsigned LastB = 0, BCnt = 0;
   5150   for (unsigned i = 0; i < 8; ++i)
   5151     if (BytesFound[LastB]) {
   5152       ++BCnt;
   5153       LastB = i;
   5154     }
   5155 
   5156   if (!LastB || BCnt < 2)
   5157     return Res;
   5158 
   5159   // Because we'll be zero-extending the output anyway if don't have a specific
   5160   // value for each input byte (via the Mask), we can 'anyext' the inputs.
   5161   if (LHS.getValueType() != VT) {
   5162     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
   5163     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
   5164   }
   5165 
   5166   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
   5167 
   5168   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
   5169   if (NonTrivialMask && !Alt) {
   5170     // Res = Mask & CMPB
   5171     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
   5172                           CurDAG->getConstant(Mask, dl, VT));
   5173   } else if (Alt) {
   5174     // Res = (CMPB & Mask) | (~CMPB & Alt)
   5175     // Which, as suggested here:
   5176     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
   5177     // can be written as:
   5178     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
   5179     // useful because the (Alt ^ Mask) can be pre-computed.
   5180     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
   5181                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
   5182     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
   5183                           CurDAG->getConstant(Alt, dl, VT));
   5184   }
   5185 
   5186   return Res;
   5187 }
   5188 
   5189 // When CR bit registers are enabled, an extension of an i1 variable to a i32
   5190 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
   5191 // involves constant materialization of a 0 or a 1 or both. If the result of
   5192 // the extension is then operated upon by some operator that can be constant
   5193 // folded with a constant 0 or 1, and that constant can be materialized using
   5194 // only one instruction (like a zero or one), then we should fold in those
   5195 // operations with the select.
   5196 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
   5197   if (!PPCSubTarget->useCRBits())
   5198     return;
   5199 
   5200   if (N->getOpcode() != ISD::ZERO_EXTEND &&
   5201       N->getOpcode() != ISD::SIGN_EXTEND &&
   5202       N->getOpcode() != ISD::ANY_EXTEND)
   5203     return;
   5204 
   5205   if (N->getOperand(0).getValueType() != MVT::i1)
   5206     return;
   5207 
   5208   if (!N->hasOneUse())
   5209     return;
   5210 
   5211   SDLoc dl(N);
   5212   EVT VT = N->getValueType(0);
   5213   SDValue Cond = N->getOperand(0);
   5214   SDValue ConstTrue =
   5215     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
   5216   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
   5217 
   5218   do {
   5219     SDNode *User = *N->use_begin();
   5220     if (User->getNumOperands() != 2)
   5221       break;
   5222 
   5223     auto TryFold = [this, N, User, dl](SDValue Val) {
   5224       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
   5225       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
   5226       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
   5227 
   5228       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
   5229                                             User->getValueType(0),
   5230                                             O0.getNode(), O1.getNode());
   5231     };
   5232 
   5233     // FIXME: When the semantics of the interaction between select and undef
   5234     // are clearly defined, it may turn out to be unnecessary to break here.
   5235     SDValue TrueRes = TryFold(ConstTrue);
   5236     if (!TrueRes || TrueRes.isUndef())
   5237       break;
   5238     SDValue FalseRes = TryFold(ConstFalse);
   5239     if (!FalseRes || FalseRes.isUndef())
   5240       break;
   5241 
   5242     // For us to materialize these using one instruction, we must be able to
   5243     // represent them as signed 16-bit integers.
   5244     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
   5245              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
   5246     if (!isInt<16>(True) || !isInt<16>(False))
   5247       break;
   5248 
   5249     // We can replace User with a new SELECT node, and try again to see if we
   5250     // can fold the select with its user.
   5251     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
   5252     N = User;
   5253     ConstTrue = TrueRes;
   5254     ConstFalse = FalseRes;
   5255   } while (N->hasOneUse());
   5256 }
   5257 
   5258 void PPCDAGToDAGISel::PreprocessISelDAG() {
   5259   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
   5260 
   5261   bool MadeChange = false;
   5262   while (Position != CurDAG->allnodes_begin()) {
   5263     SDNode *N = &*--Position;
   5264     if (N->use_empty())
   5265       continue;
   5266 
   5267     SDValue Res;
   5268     switch (N->getOpcode()) {
   5269     default: break;
   5270     case ISD::OR:
   5271       Res = combineToCMPB(N);
   5272       break;
   5273     }
   5274 
   5275     if (!Res)
   5276       foldBoolExts(Res, N);
   5277 
   5278     if (Res) {
   5279       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
   5280       LLVM_DEBUG(N->dump(CurDAG));
   5281       LLVM_DEBUG(dbgs() << "\nNew: ");
   5282       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
   5283       LLVM_DEBUG(dbgs() << "\n");
   5284 
   5285       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
   5286       MadeChange = true;
   5287     }
   5288   }
   5289 
   5290   if (MadeChange)
   5291     CurDAG->RemoveDeadNodes();
   5292 }
   5293 
   5294 /// PostprocessISelDAG - Perform some late peephole optimizations
   5295 /// on the DAG representation.
   5296 void PPCDAGToDAGISel::PostprocessISelDAG() {
   5297   // Skip peepholes at -O0.
   5298   if (TM.getOptLevel() == CodeGenOpt::None)
   5299     return;
   5300 
   5301   PeepholePPC64();
   5302   PeepholeCROps();
   5303   PeepholePPC64ZExt();
   5304 }
   5305 
   5306 // Check if all users of this node will become isel where the second operand
   5307 // is the constant zero. If this is so, and if we can negate the condition,
   5308 // then we can flip the true and false operands. This will allow the zero to
   5309 // be folded with the isel so that we don't need to materialize a register
   5310 // containing zero.
   5311 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
   5312   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   5313        UI != UE; ++UI) {
   5314     SDNode *User = *UI;
   5315     if (!User->isMachineOpcode())
   5316       return false;
   5317     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
   5318         User->getMachineOpcode() != PPC::SELECT_I8)
   5319       return false;
   5320 
   5321     SDNode *Op2 = User->getOperand(2).getNode();
   5322     if (!Op2->isMachineOpcode())
   5323       return false;
   5324 
   5325     if (Op2->getMachineOpcode() != PPC::LI &&
   5326         Op2->getMachineOpcode() != PPC::LI8)
   5327       return false;
   5328 
   5329     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
   5330     if (!C)
   5331       return false;
   5332 
   5333     if (!C->isNullValue())
   5334       return false;
   5335   }
   5336 
   5337   return true;
   5338 }
   5339 
   5340 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
   5341   SmallVector<SDNode *, 4> ToReplace;
   5342   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   5343        UI != UE; ++UI) {
   5344     SDNode *User = *UI;
   5345     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
   5346             User->getMachineOpcode() == PPC::SELECT_I8) &&
   5347            "Must have all select users");
   5348     ToReplace.push_back(User);
   5349   }
   5350 
   5351   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
   5352        UE = ToReplace.end(); UI != UE; ++UI) {
   5353     SDNode *User = *UI;
   5354     SDNode *ResNode =
   5355       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
   5356                              User->getValueType(0), User->getOperand(0),
   5357                              User->getOperand(2),
   5358                              User->getOperand(1));
   5359 
   5360     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   5361     LLVM_DEBUG(User->dump(CurDAG));
   5362     LLVM_DEBUG(dbgs() << "\nNew: ");
   5363     LLVM_DEBUG(ResNode->dump(CurDAG));
   5364     LLVM_DEBUG(dbgs() << "\n");
   5365 
   5366     ReplaceUses(User, ResNode);
   5367   }
   5368 }
   5369 
   5370 void PPCDAGToDAGISel::PeepholeCROps() {
   5371   bool IsModified;
   5372   do {
   5373     IsModified = false;
   5374     for (SDNode &Node : CurDAG->allnodes()) {
   5375       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
   5376       if (!MachineNode || MachineNode->use_empty())
   5377         continue;
   5378       SDNode *ResNode = MachineNode;
   5379 
   5380       bool Op1Set   = false, Op1Unset = false,
   5381            Op1Not   = false,
   5382            Op2Set   = false, Op2Unset = false,
   5383            Op2Not   = false;
   5384 
   5385       unsigned Opcode = MachineNode->getMachineOpcode();
   5386       switch (Opcode) {
   5387       default: break;
   5388       case PPC::CRAND:
   5389       case PPC::CRNAND:
   5390       case PPC::CROR:
   5391       case PPC::CRXOR:
   5392       case PPC::CRNOR:
   5393       case PPC::CREQV:
   5394       case PPC::CRANDC:
   5395       case PPC::CRORC: {
   5396         SDValue Op = MachineNode->getOperand(1);
   5397         if (Op.isMachineOpcode()) {
   5398           if (Op.getMachineOpcode() == PPC::CRSET)
   5399             Op2Set = true;
   5400           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   5401             Op2Unset = true;
   5402           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   5403                    Op.getOperand(0) == Op.getOperand(1))
   5404             Op2Not = true;
   5405         }
   5406         LLVM_FALLTHROUGH;
   5407       }
   5408       case PPC::BC:
   5409       case PPC::BCn:
   5410       case PPC::SELECT_I4:
   5411       case PPC::SELECT_I8:
   5412       case PPC::SELECT_F4:
   5413       case PPC::SELECT_F8:
   5414       case PPC::SELECT_QFRC:
   5415       case PPC::SELECT_QSRC:
   5416       case PPC::SELECT_QBRC:
   5417       case PPC::SELECT_SPE:
   5418       case PPC::SELECT_SPE4:
   5419       case PPC::SELECT_VRRC:
   5420       case PPC::SELECT_VSFRC:
   5421       case PPC::SELECT_VSSRC:
   5422       case PPC::SELECT_VSRC: {
   5423         SDValue Op = MachineNode->getOperand(0);
   5424         if (Op.isMachineOpcode()) {
   5425           if (Op.getMachineOpcode() == PPC::CRSET)
   5426             Op1Set = true;
   5427           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   5428             Op1Unset = true;
   5429           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   5430                    Op.getOperand(0) == Op.getOperand(1))
   5431             Op1Not = true;
   5432         }
   5433         }
   5434         break;
   5435       }
   5436 
   5437       bool SelectSwap = false;
   5438       switch (Opcode) {
   5439       default: break;
   5440       case PPC::CRAND:
   5441         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5442           // x & x = x
   5443           ResNode = MachineNode->getOperand(0).getNode();
   5444         else if (Op1Set)
   5445           // 1 & y = y
   5446           ResNode = MachineNode->getOperand(1).getNode();
   5447         else if (Op2Set)
   5448           // x & 1 = x
   5449           ResNode = MachineNode->getOperand(0).getNode();
   5450         else if (Op1Unset || Op2Unset)
   5451           // x & 0 = 0 & y = 0
   5452           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   5453                                            MVT::i1);
   5454         else if (Op1Not)
   5455           // ~x & y = andc(y, x)
   5456           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   5457                                            MVT::i1, MachineNode->getOperand(1),
   5458                                            MachineNode->getOperand(0).
   5459                                              getOperand(0));
   5460         else if (Op2Not)
   5461           // x & ~y = andc(x, y)
   5462           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   5463                                            MVT::i1, MachineNode->getOperand(0),
   5464                                            MachineNode->getOperand(1).
   5465                                              getOperand(0));
   5466         else if (AllUsersSelectZero(MachineNode)) {
   5467           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   5468                                            MVT::i1, MachineNode->getOperand(0),
   5469                                            MachineNode->getOperand(1));
   5470           SelectSwap = true;
   5471         }
   5472         break;
   5473       case PPC::CRNAND:
   5474         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5475           // nand(x, x) -> nor(x, x)
   5476           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5477                                            MVT::i1, MachineNode->getOperand(0),
   5478                                            MachineNode->getOperand(0));
   5479         else if (Op1Set)
   5480           // nand(1, y) -> nor(y, y)
   5481           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5482                                            MVT::i1, MachineNode->getOperand(1),
   5483                                            MachineNode->getOperand(1));
   5484         else if (Op2Set)
   5485           // nand(x, 1) -> nor(x, x)
   5486           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5487                                            MVT::i1, MachineNode->getOperand(0),
   5488                                            MachineNode->getOperand(0));
   5489         else if (Op1Unset || Op2Unset)
   5490           // nand(x, 0) = nand(0, y) = 1
   5491           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   5492                                            MVT::i1);
   5493         else if (Op1Not)
   5494           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
   5495           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   5496                                            MVT::i1, MachineNode->getOperand(0).
   5497                                                       getOperand(0),
   5498                                            MachineNode->getOperand(1));
   5499         else if (Op2Not)
   5500           // nand(x, ~y) = ~x | y = orc(y, x)
   5501           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   5502                                            MVT::i1, MachineNode->getOperand(1).
   5503                                                       getOperand(0),
   5504                                            MachineNode->getOperand(0));
   5505         else if (AllUsersSelectZero(MachineNode)) {
   5506           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   5507                                            MVT::i1, MachineNode->getOperand(0),
   5508                                            MachineNode->getOperand(1));
   5509           SelectSwap = true;
   5510         }
   5511         break;
   5512       case PPC::CROR:
   5513         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5514           // x | x = x
   5515           ResNode = MachineNode->getOperand(0).getNode();
   5516         else if (Op1Set || Op2Set)
   5517           // x | 1 = 1 | y = 1
   5518           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   5519                                            MVT::i1);
   5520         else if (Op1Unset)
   5521           // 0 | y = y
   5522           ResNode = MachineNode->getOperand(1).getNode();
   5523         else if (Op2Unset)
   5524           // x | 0 = x
   5525           ResNode = MachineNode->getOperand(0).getNode();
   5526         else if (Op1Not)
   5527           // ~x | y = orc(y, x)
   5528           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   5529                                            MVT::i1, MachineNode->getOperand(1),
   5530                                            MachineNode->getOperand(0).
   5531                                              getOperand(0));
   5532         else if (Op2Not)
   5533           // x | ~y = orc(x, y)
   5534           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   5535                                            MVT::i1, MachineNode->getOperand(0),
   5536                                            MachineNode->getOperand(1).
   5537                                              getOperand(0));
   5538         else if (AllUsersSelectZero(MachineNode)) {
   5539           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5540                                            MVT::i1, MachineNode->getOperand(0),
   5541                                            MachineNode->getOperand(1));
   5542           SelectSwap = true;
   5543         }
   5544         break;
   5545       case PPC::CRXOR:
   5546         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5547           // xor(x, x) = 0
   5548           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   5549                                            MVT::i1);
   5550         else if (Op1Set)
   5551           // xor(1, y) -> nor(y, y)
   5552           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5553                                            MVT::i1, MachineNode->getOperand(1),
   5554                                            MachineNode->getOperand(1));
   5555         else if (Op2Set)
   5556           // xor(x, 1) -> nor(x, x)
   5557           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5558                                            MVT::i1, MachineNode->getOperand(0),
   5559                                            MachineNode->getOperand(0));
   5560         else if (Op1Unset)
   5561           // xor(0, y) = y
   5562           ResNode = MachineNode->getOperand(1).getNode();
   5563         else if (Op2Unset)
   5564           // xor(x, 0) = x
   5565           ResNode = MachineNode->getOperand(0).getNode();
   5566         else if (Op1Not)
   5567           // xor(~x, y) = eqv(x, y)
   5568           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   5569                                            MVT::i1, MachineNode->getOperand(0).
   5570                                                       getOperand(0),
   5571                                            MachineNode->getOperand(1));
   5572         else if (Op2Not)
   5573           // xor(x, ~y) = eqv(x, y)
   5574           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   5575                                            MVT::i1, MachineNode->getOperand(0),
   5576                                            MachineNode->getOperand(1).
   5577                                              getOperand(0));
   5578         else if (AllUsersSelectZero(MachineNode)) {
   5579           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   5580                                            MVT::i1, MachineNode->getOperand(0),
   5581                                            MachineNode->getOperand(1));
   5582           SelectSwap = true;
   5583         }
   5584         break;
   5585       case PPC::CRNOR:
   5586         if (Op1Set || Op2Set)
   5587           // nor(1, y) -> 0
   5588           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   5589                                            MVT::i1);
   5590         else if (Op1Unset)
   5591           // nor(0, y) = ~y -> nor(y, y)
   5592           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5593                                            MVT::i1, MachineNode->getOperand(1),
   5594                                            MachineNode->getOperand(1));
   5595         else if (Op2Unset)
   5596           // nor(x, 0) = ~x
   5597           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5598                                            MVT::i1, MachineNode->getOperand(0),
   5599                                            MachineNode->getOperand(0));
   5600         else if (Op1Not)
   5601           // nor(~x, y) = andc(x, y)
   5602           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   5603                                            MVT::i1, MachineNode->getOperand(0).
   5604                                                       getOperand(0),
   5605                                            MachineNode->getOperand(1));
   5606         else if (Op2Not)
   5607           // nor(x, ~y) = andc(y, x)
   5608           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   5609                                            MVT::i1, MachineNode->getOperand(1).
   5610                                                       getOperand(0),
   5611                                            MachineNode->getOperand(0));
   5612         else if (AllUsersSelectZero(MachineNode)) {
   5613           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   5614                                            MVT::i1, MachineNode->getOperand(0),
   5615                                            MachineNode->getOperand(1));
   5616           SelectSwap = true;
   5617         }
   5618         break;
   5619       case PPC::CREQV:
   5620         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5621           // eqv(x, x) = 1
   5622           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   5623                                            MVT::i1);
   5624         else if (Op1Set)
   5625           // eqv(1, y) = y
   5626           ResNode = MachineNode->getOperand(1).getNode();
   5627         else if (Op2Set)
   5628           // eqv(x, 1) = x
   5629           ResNode = MachineNode->getOperand(0).getNode();
   5630         else if (Op1Unset)
   5631           // eqv(0, y) = ~y -> nor(y, y)
   5632           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5633                                            MVT::i1, MachineNode->getOperand(1),
   5634                                            MachineNode->getOperand(1));
   5635         else if (Op2Unset)
   5636           // eqv(x, 0) = ~x
   5637           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5638                                            MVT::i1, MachineNode->getOperand(0),
   5639                                            MachineNode->getOperand(0));
   5640         else if (Op1Not)
   5641           // eqv(~x, y) = xor(x, y)
   5642           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   5643                                            MVT::i1, MachineNode->getOperand(0).
   5644                                                       getOperand(0),
   5645                                            MachineNode->getOperand(1));
   5646         else if (Op2Not)
   5647           // eqv(x, ~y) = xor(x, y)
   5648           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   5649                                            MVT::i1, MachineNode->getOperand(0),
   5650                                            MachineNode->getOperand(1).
   5651                                              getOperand(0));
   5652         else if (AllUsersSelectZero(MachineNode)) {
   5653           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   5654                                            MVT::i1, MachineNode->getOperand(0),
   5655                                            MachineNode->getOperand(1));
   5656           SelectSwap = true;
   5657         }
   5658         break;
   5659       case PPC::CRANDC:
   5660         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5661           // andc(x, x) = 0
   5662           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   5663                                            MVT::i1);
   5664         else if (Op1Set)
   5665           // andc(1, y) = ~y
   5666           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5667                                            MVT::i1, MachineNode->getOperand(1),
   5668                                            MachineNode->getOperand(1));
   5669         else if (Op1Unset || Op2Set)
   5670           // andc(0, y) = andc(x, 1) = 0
   5671           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   5672                                            MVT::i1);
   5673         else if (Op2Unset)
   5674           // andc(x, 0) = x
   5675           ResNode = MachineNode->getOperand(0).getNode();
   5676         else if (Op1Not)
   5677           // andc(~x, y) = ~(x | y) = nor(x, y)
   5678           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5679                                            MVT::i1, MachineNode->getOperand(0).
   5680                                                       getOperand(0),
   5681                                            MachineNode->getOperand(1));
   5682         else if (Op2Not)
   5683           // andc(x, ~y) = x & y
   5684           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   5685                                            MVT::i1, MachineNode->getOperand(0),
   5686                                            MachineNode->getOperand(1).
   5687                                              getOperand(0));
   5688         else if (AllUsersSelectZero(MachineNode)) {
   5689           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   5690                                            MVT::i1, MachineNode->getOperand(1),
   5691                                            MachineNode->getOperand(0));
   5692           SelectSwap = true;
   5693         }
   5694         break;
   5695       case PPC::CRORC:
   5696         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   5697           // orc(x, x) = 1
   5698           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   5699                                            MVT::i1);
   5700         else if (Op1Set || Op2Unset)
   5701           // orc(1, y) = orc(x, 0) = 1
   5702           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   5703                                            MVT::i1);
   5704         else if (Op2Set)
   5705           // orc(x, 1) = x
   5706           ResNode = MachineNode->getOperand(0).getNode();
   5707         else if (Op1Unset)
   5708           // orc(0, y) = ~y
   5709           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   5710                                            MVT::i1, MachineNode->getOperand(1),
   5711                                            MachineNode->getOperand(1));
   5712         else if (Op1Not)
   5713           // orc(~x, y) = ~(x & y) = nand(x, y)
   5714           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   5715                                            MVT::i1, MachineNode->getOperand(0).
   5716                                                       getOperand(0),
   5717                                            MachineNode->getOperand(1));
   5718         else if (Op2Not)
   5719           // orc(x, ~y) = x | y
   5720           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   5721                                            MVT::i1, MachineNode->getOperand(0),
   5722                                            MachineNode->getOperand(1).
   5723                                              getOperand(0));
   5724         else if (AllUsersSelectZero(MachineNode)) {
   5725           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   5726                                            MVT::i1, MachineNode->getOperand(1),
   5727                                            MachineNode->getOperand(0));
   5728           SelectSwap = true;
   5729         }
   5730         break;
   5731       case PPC::SELECT_I4:
   5732       case PPC::SELECT_I8:
   5733       case PPC::SELECT_F4:
   5734       case PPC::SELECT_F8:
   5735       case PPC::SELECT_QFRC:
   5736       case PPC::SELECT_QSRC:
   5737       case PPC::SELECT_QBRC:
   5738       case PPC::SELECT_SPE:
   5739       case PPC::SELECT_SPE4:
   5740       case PPC::SELECT_VRRC:
   5741       case PPC::SELECT_VSFRC:
   5742       case PPC::SELECT_VSSRC:
   5743       case PPC::SELECT_VSRC:
   5744         if (Op1Set)
   5745           ResNode = MachineNode->getOperand(1).getNode();
   5746         else if (Op1Unset)
   5747           ResNode = MachineNode->getOperand(2).getNode();
   5748         else if (Op1Not)
   5749           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
   5750                                            SDLoc(MachineNode),
   5751                                            MachineNode->getValueType(0),
   5752                                            MachineNode->getOperand(0).
   5753                                              getOperand(0),
   5754                                            MachineNode->getOperand(2),
   5755                                            MachineNode->getOperand(1));
   5756         break;
   5757       case PPC::BC:
   5758       case PPC::BCn:
   5759         if (Op1Not)
   5760           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
   5761                                                                PPC::BC,
   5762                                            SDLoc(MachineNode),
   5763                                            MVT::Other,
   5764                                            MachineNode->getOperand(0).
   5765                                              getOperand(0),
   5766                                            MachineNode->getOperand(1),
   5767                                            MachineNode->getOperand(2));
   5768         // FIXME: Handle Op1Set, Op1Unset here too.
   5769         break;
   5770       }
   5771 
   5772       // If we're inverting this node because it is used only by selects that
   5773       // we'd like to swap, then swap the selects before the node replacement.
   5774       if (SelectSwap)
   5775         SwapAllSelectUsers(MachineNode);
   5776 
   5777       if (ResNode != MachineNode) {
   5778         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   5779         LLVM_DEBUG(MachineNode->dump(CurDAG));
   5780         LLVM_DEBUG(dbgs() << "\nNew: ");
   5781         LLVM_DEBUG(ResNode->dump(CurDAG));
   5782         LLVM_DEBUG(dbgs() << "\n");
   5783 
   5784         ReplaceUses(MachineNode, ResNode);
   5785         IsModified = true;
   5786       }
   5787     }
   5788     if (IsModified)
   5789       CurDAG->RemoveDeadNodes();
   5790   } while (IsModified);
   5791 }
   5792 
   5793 // Gather the set of 32-bit operations that are known to have their
   5794 // higher-order 32 bits zero, where ToPromote contains all such operations.
   5795 static bool PeepholePPC64ZExtGather(SDValue Op32,
   5796                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
   5797   if (!Op32.isMachineOpcode())
   5798     return false;
   5799 
   5800   // First, check for the "frontier" instructions (those that will clear the
   5801   // higher-order 32 bits.
   5802 
   5803   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
   5804   // around. If it does not, then these instructions will clear the
   5805   // higher-order bits.
   5806   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
   5807        Op32.getMachineOpcode() == PPC::RLWNM) &&
   5808       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
   5809     ToPromote.insert(Op32.getNode());
   5810     return true;
   5811   }
   5812 
   5813   // SLW and SRW always clear the higher-order bits.
   5814   if (Op32.getMachineOpcode() == PPC::SLW ||
   5815       Op32.getMachineOpcode() == PPC::SRW) {
   5816     ToPromote.insert(Op32.getNode());
   5817     return true;
   5818   }
   5819 
   5820   // For LI and LIS, we need the immediate to be positive (so that it is not
   5821   // sign extended).
   5822   if (Op32.getMachineOpcode() == PPC::LI ||
   5823       Op32.getMachineOpcode() == PPC::LIS) {
   5824     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
   5825       return false;
   5826 
   5827     ToPromote.insert(Op32.getNode());
   5828     return true;
   5829   }
   5830 
   5831   // LHBRX and LWBRX always clear the higher-order bits.
   5832   if (Op32.getMachineOpcode() == PPC::LHBRX ||
   5833       Op32.getMachineOpcode() == PPC::LWBRX) {
   5834     ToPromote.insert(Op32.getNode());
   5835     return true;
   5836   }
   5837 
   5838   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
   5839   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
   5840       Op32.getMachineOpcode() == PPC::CNTTZW) {
   5841     ToPromote.insert(Op32.getNode());
   5842     return true;
   5843   }
   5844 
   5845   // Next, check for those instructions we can look through.
   5846 
   5847   // Assuming the mask does not wrap around, then the higher-order bits are
   5848   // taken directly from the first operand.
   5849   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
   5850       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
   5851     SmallPtrSet<SDNode *, 16> ToPromote1;
   5852     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   5853       return false;
   5854 
   5855     ToPromote.insert(Op32.getNode());
   5856     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   5857     return true;
   5858   }
   5859 
   5860   // For OR, the higher-order bits are zero if that is true for both operands.
   5861   // For SELECT_I4, the same is true (but the relevant operand numbers are
   5862   // shifted by 1).
   5863   if (Op32.getMachineOpcode() == PPC::OR ||
   5864       Op32.getMachineOpcode() == PPC::SELECT_I4) {
   5865     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
   5866     SmallPtrSet<SDNode *, 16> ToPromote1;
   5867     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
   5868       return false;
   5869     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
   5870       return false;
   5871 
   5872     ToPromote.insert(Op32.getNode());
   5873     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   5874     return true;
   5875   }
   5876 
   5877   // For ORI and ORIS, we need the higher-order bits of the first operand to be
   5878   // zero, and also for the constant to be positive (so that it is not sign
   5879   // extended).
   5880   if (Op32.getMachineOpcode() == PPC::ORI ||
   5881       Op32.getMachineOpcode() == PPC::ORIS) {
   5882     SmallPtrSet<SDNode *, 16> ToPromote1;
   5883     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   5884       return false;
   5885     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
   5886       return false;
   5887 
   5888     ToPromote.insert(Op32.getNode());
   5889     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   5890     return true;
   5891   }
   5892 
   5893   // The higher-order bits of AND are zero if that is true for at least one of
   5894   // the operands.
   5895   if (Op32.getMachineOpcode() == PPC::AND) {
   5896     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
   5897     bool Op0OK =
   5898       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   5899     bool Op1OK =
   5900       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
   5901     if (!Op0OK && !Op1OK)
   5902       return false;
   5903 
   5904     ToPromote.insert(Op32.getNode());
   5905 
   5906     if (Op0OK)
   5907       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   5908 
   5909     if (Op1OK)
   5910       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
   5911 
   5912     return true;
   5913   }
   5914 
   5915   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
   5916   // of the first operand, or if the second operand is positive (so that it is
   5917   // not sign extended).
   5918   if (Op32.getMachineOpcode() == PPC::ANDIo ||
   5919       Op32.getMachineOpcode() == PPC::ANDISo) {
   5920     SmallPtrSet<SDNode *, 16> ToPromote1;
   5921     bool Op0OK =
   5922       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   5923     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
   5924     if (!Op0OK && !Op1OK)
   5925       return false;
   5926 
   5927     ToPromote.insert(Op32.getNode());
   5928 
   5929     if (Op0OK)
   5930       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   5931 
   5932     return true;
   5933   }
   5934 
   5935   return false;
   5936 }
   5937 
   5938 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
   5939   if (!PPCSubTarget->isPPC64())
   5940     return;
   5941 
   5942   // When we zero-extend from i32 to i64, we use a pattern like this:
   5943   // def : Pat<(i64 (zext i32:$in)),
   5944   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
   5945   //                   0, 32)>;
   5946   // There are several 32-bit shift/rotate instructions, however, that will
   5947   // clear the higher-order bits of their output, rendering the RLDICL
   5948   // unnecessary. When that happens, we remove it here, and redefine the
   5949   // relevant 32-bit operation to be a 64-bit operation.
   5950 
   5951   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
   5952 
   5953   bool MadeChange = false;
   5954   while (Position != CurDAG->allnodes_begin()) {
   5955     SDNode *N = &*--Position;
   5956     // Skip dead nodes and any non-machine opcodes.
   5957     if (N->use_empty() || !N->isMachineOpcode())
   5958       continue;
   5959 
   5960     if (N->getMachineOpcode() != PPC::RLDICL)
   5961       continue;
   5962 
   5963     if (N->getConstantOperandVal(1) != 0 ||
   5964         N->getConstantOperandVal(2) != 32)
   5965       continue;
   5966 
   5967     SDValue ISR = N->getOperand(0);
   5968     if (!ISR.isMachineOpcode() ||
   5969         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
   5970       continue;
   5971 
   5972     if (!ISR.hasOneUse())
   5973       continue;
   5974 
   5975     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
   5976       continue;
   5977 
   5978     SDValue IDef = ISR.getOperand(0);
   5979     if (!IDef.isMachineOpcode() ||
   5980         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
   5981       continue;
   5982 
   5983     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
   5984     // can get rid of it.
   5985 
   5986     SDValue Op32 = ISR->getOperand(1);
   5987     if (!Op32.isMachineOpcode())
   5988       continue;
   5989 
   5990     // There are some 32-bit instructions that always clear the high-order 32
   5991     // bits, there are also some instructions (like AND) that we can look
   5992     // through.
   5993     SmallPtrSet<SDNode *, 16> ToPromote;
   5994     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
   5995       continue;
   5996 
   5997     // If the ToPromote set contains nodes that have uses outside of the set
   5998     // (except for the original INSERT_SUBREG), then abort the transformation.
   5999     bool OutsideUse = false;
   6000     for (SDNode *PN : ToPromote) {
   6001       for (SDNode *UN : PN->uses()) {
   6002         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
   6003           OutsideUse = true;
   6004           break;
   6005         }
   6006       }
   6007 
   6008       if (OutsideUse)
   6009         break;
   6010     }
   6011     if (OutsideUse)
   6012       continue;
   6013 
   6014     MadeChange = true;
   6015 
   6016     // We now know that this zero extension can be removed by promoting to
   6017     // nodes in ToPromote to 64-bit operations, where for operations in the
   6018     // frontier of the set, we need to insert INSERT_SUBREGs for their
   6019     // operands.
   6020     for (SDNode *PN : ToPromote) {
   6021       unsigned NewOpcode;
   6022       switch (PN->getMachineOpcode()) {
   6023       default:
   6024         llvm_unreachable("Don't know the 64-bit variant of this instruction");
   6025       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
   6026       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
   6027       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
   6028       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
   6029       case PPC::LI:        NewOpcode = PPC::LI8; break;
   6030       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
   6031       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
   6032       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
   6033       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
   6034       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
   6035       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
   6036       case PPC::OR:        NewOpcode = PPC::OR8; break;
   6037       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
   6038       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
   6039       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
   6040       case PPC::AND:       NewOpcode = PPC::AND8; break;
   6041       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
   6042       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
   6043       }
   6044 
   6045       // Note: During the replacement process, the nodes will be in an
   6046       // inconsistent state (some instructions will have operands with values
   6047       // of the wrong type). Once done, however, everything should be right
   6048       // again.
   6049 
   6050       SmallVector<SDValue, 4> Ops;
   6051       for (const SDValue &V : PN->ops()) {
   6052         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
   6053             !isa<ConstantSDNode>(V)) {
   6054           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
   6055           SDNode *ReplOp =
   6056             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
   6057                                    ISR.getNode()->getVTList(), ReplOpOps);
   6058           Ops.push_back(SDValue(ReplOp, 0));
   6059         } else {
   6060           Ops.push_back(V);
   6061         }
   6062       }
   6063 
   6064       // Because all to-be-promoted nodes only have users that are other
   6065       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
   6066       // the i32 result value type with i64.
   6067 
   6068       SmallVector<EVT, 2> NewVTs;
   6069       SDVTList VTs = PN->getVTList();
   6070       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
   6071         if (VTs.VTs[i] == MVT::i32)
   6072           NewVTs.push_back(MVT::i64);
   6073         else
   6074           NewVTs.push_back(VTs.VTs[i]);
   6075 
   6076       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
   6077       LLVM_DEBUG(PN->dump(CurDAG));
   6078 
   6079       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
   6080 
   6081       LLVM_DEBUG(dbgs() << "\nNew: ");
   6082       LLVM_DEBUG(PN->dump(CurDAG));
   6083       LLVM_DEBUG(dbgs() << "\n");
   6084     }
   6085 
   6086     // Now we replace the original zero extend and its associated INSERT_SUBREG
   6087     // with the value feeding the INSERT_SUBREG (which has now been promoted to
   6088     // return an i64).
   6089 
   6090     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
   6091     LLVM_DEBUG(N->dump(CurDAG));
   6092     LLVM_DEBUG(dbgs() << "\nNew: ");
   6093     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
   6094     LLVM_DEBUG(dbgs() << "\n");
   6095 
   6096     ReplaceUses(N, Op32.getNode());
   6097   }
   6098 
   6099   if (MadeChange)
   6100     CurDAG->RemoveDeadNodes();
   6101 }
   6102 
   6103 void PPCDAGToDAGISel::PeepholePPC64() {
   6104   // These optimizations are currently supported only for 64-bit SVR4.
   6105   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
   6106     return;
   6107 
   6108   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
   6109 
   6110   while (Position != CurDAG->allnodes_begin()) {
   6111     SDNode *N = &*--Position;
   6112     // Skip dead nodes and any non-machine opcodes.
   6113     if (N->use_empty() || !N->isMachineOpcode())
   6114       continue;
   6115 
   6116     unsigned FirstOp;
   6117     unsigned StorageOpcode = N->getMachineOpcode();
   6118     bool RequiresMod4Offset = false;
   6119 
   6120     switch (StorageOpcode) {
   6121     default: continue;
   6122 
   6123     case PPC::LWA:
   6124     case PPC::LD:
   6125     case PPC::DFLOADf64:
   6126     case PPC::DFLOADf32:
   6127       RequiresMod4Offset = true;
   6128       LLVM_FALLTHROUGH;
   6129     case PPC::LBZ:
   6130     case PPC::LBZ8:
   6131     case PPC::LFD:
   6132     case PPC::LFS:
   6133     case PPC::LHA:
   6134     case PPC::LHA8:
   6135     case PPC::LHZ:
   6136     case PPC::LHZ8:
   6137     case PPC::LWZ:
   6138     case PPC::LWZ8:
   6139       FirstOp = 0;
   6140       break;
   6141 
   6142     case PPC::STD:
   6143     case PPC::DFSTOREf64:
   6144     case PPC::DFSTOREf32:
   6145       RequiresMod4Offset = true;
   6146       LLVM_FALLTHROUGH;
   6147     case PPC::STB:
   6148     case PPC::STB8:
   6149     case PPC::STFD:
   6150     case PPC::STFS:
   6151     case PPC::STH:
   6152     case PPC::STH8:
   6153     case PPC::STW:
   6154     case PPC::STW8:
   6155       FirstOp = 1;
   6156       break;
   6157     }
   6158 
   6159     // If this is a load or store with a zero offset, or within the alignment,
   6160     // we may be able to fold an add-immediate into the memory operation.
   6161     // The check against alignment is below, as it can't occur until we check
   6162     // the arguments to N
   6163     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
   6164       continue;
   6165 
   6166     SDValue Base = N->getOperand(FirstOp + 1);
   6167     if (!Base.isMachineOpcode())
   6168       continue;
   6169 
   6170     unsigned Flags = 0;
   6171     bool ReplaceFlags = true;
   6172 
   6173     // When the feeding operation is an add-immediate of some sort,
   6174     // determine whether we need to add relocation information to the
   6175     // target flags on the immediate operand when we fold it into the
   6176     // load instruction.
   6177     //
   6178     // For something like ADDItocL, the relocation information is
   6179     // inferred from the opcode; when we process it in the AsmPrinter,
   6180     // we add the necessary relocation there.  A load, though, can receive
   6181     // relocation from various flavors of ADDIxxx, so we need to carry
   6182     // the relocation information in the target flags.
   6183     switch (Base.getMachineOpcode()) {
   6184     default: continue;
   6185 
   6186     case PPC::ADDI8:
   6187     case PPC::ADDI:
   6188       // In some cases (such as TLS) the relocation information
   6189       // is already in place on the operand, so copying the operand
   6190       // is sufficient.
   6191       ReplaceFlags = false;
   6192       // For these cases, the immediate may not be divisible by 4, in
   6193       // which case the fold is illegal for DS-form instructions.  (The
   6194       // other cases provide aligned addresses and are always safe.)
   6195       if (RequiresMod4Offset &&
   6196           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
   6197            Base.getConstantOperandVal(1) % 4 != 0))
   6198         continue;
   6199       break;
   6200     case PPC::ADDIdtprelL:
   6201       Flags = PPCII::MO_DTPREL_LO;
   6202       break;
   6203     case PPC::ADDItlsldL:
   6204       Flags = PPCII::MO_TLSLD_LO;
   6205       break;
   6206     case PPC::ADDItocL:
   6207       Flags = PPCII::MO_TOC_LO;
   6208       break;
   6209     }
   6210 
   6211     SDValue ImmOpnd = Base.getOperand(1);
   6212 
   6213     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
   6214     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
   6215     // we might have needed different @ha relocation values for the offset
   6216     // pointers).
   6217     int MaxDisplacement = 7;
   6218     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   6219       const GlobalValue *GV = GA->getGlobal();
   6220       MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
   6221     }
   6222 
   6223     bool UpdateHBase = false;
   6224     SDValue HBase = Base.getOperand(0);
   6225 
   6226     int Offset = N->getConstantOperandVal(FirstOp);
   6227     if (ReplaceFlags) {
   6228       if (Offset < 0 || Offset > MaxDisplacement) {
   6229         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
   6230         // one use, then we can do this for any offset, we just need to also
   6231         // update the offset (i.e. the symbol addend) on the addis also.
   6232         if (Base.getMachineOpcode() != PPC::ADDItocL)
   6233           continue;
   6234 
   6235         if (!HBase.isMachineOpcode() ||
   6236             HBase.getMachineOpcode() != PPC::ADDIStocHA)
   6237           continue;
   6238 
   6239         if (!Base.hasOneUse() || !HBase.hasOneUse())
   6240           continue;
   6241 
   6242         SDValue HImmOpnd = HBase.getOperand(1);
   6243         if (HImmOpnd != ImmOpnd)
   6244           continue;
   6245 
   6246         UpdateHBase = true;
   6247       }
   6248     } else {
   6249       // If we're directly folding the addend from an addi instruction, then:
   6250       //  1. In general, the offset on the memory access must be zero.
   6251       //  2. If the addend is a constant, then it can be combined with a
   6252       //     non-zero offset, but only if the result meets the encoding
   6253       //     requirements.
   6254       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
   6255         Offset += C->getSExtValue();
   6256 
   6257         if (RequiresMod4Offset && (Offset % 4) != 0)
   6258           continue;
   6259 
   6260         if (!isInt<16>(Offset))
   6261           continue;
   6262 
   6263         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
   6264                                             ImmOpnd.getValueType());
   6265       } else if (Offset != 0) {
   6266         continue;
   6267       }
   6268     }
   6269 
   6270     // We found an opportunity.  Reverse the operands from the add
   6271     // immediate and substitute them into the load or store.  If
   6272     // needed, update the target flags for the immediate operand to
   6273     // reflect the necessary relocation information.
   6274     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
   6275     LLVM_DEBUG(Base->dump(CurDAG));
   6276     LLVM_DEBUG(dbgs() << "\nN: ");
   6277     LLVM_DEBUG(N->dump(CurDAG));
   6278     LLVM_DEBUG(dbgs() << "\n");
   6279 
   6280     // If the relocation information isn't already present on the
   6281     // immediate operand, add it now.
   6282     if (ReplaceFlags) {
   6283       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   6284         SDLoc dl(GA);
   6285         const GlobalValue *GV = GA->getGlobal();
   6286         // We can't perform this optimization for data whose alignment
   6287         // is insufficient for the instruction encoding.
   6288         if (GV->getAlignment() < 4 &&
   6289             (RequiresMod4Offset || (Offset % 4) != 0)) {
   6290           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
   6291           continue;
   6292         }
   6293         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
   6294       } else if (ConstantPoolSDNode *CP =
   6295                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
   6296         const Constant *C = CP->getConstVal();
   6297         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
   6298                                                 CP->getAlignment(),
   6299                                                 Offset, Flags);
   6300       }
   6301     }
   6302 
   6303     if (FirstOp == 1) // Store
   6304       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
   6305                                        Base.getOperand(0), N->getOperand(3));
   6306     else // Load
   6307       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
   6308                                        N->getOperand(2));
   6309 
   6310     if (UpdateHBase)
   6311       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
   6312                                        ImmOpnd);
   6313 
   6314     // The add-immediate may now be dead, in which case remove it.
   6315     if (Base.getNode()->use_empty())
   6316       CurDAG->RemoveDeadNode(Base.getNode());
   6317   }
   6318 }
   6319 
   6320 /// createPPCISelDag - This pass converts a legalized DAG into a
   6321 /// PowerPC-specific DAG, ready for instruction scheduling.
   6322 ///
   6323 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
   6324                                      CodeGenOpt::Level OptLevel) {
   6325   return new PPCDAGToDAGISel(TM, OptLevel);
   6326 }
   6327