Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/CallingConvLower.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/TargetRegisterInfo.h"
     24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/MC/MCAsmInfo.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/KnownBits.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetLoweringObjectFile.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include <cctype>
     37 using namespace llvm;
     38 
     39 /// NOTE: The TargetMachine owns TLOF.
     40 TargetLowering::TargetLowering(const TargetMachine &tm)
     41   : TargetLoweringBase(tm) {}
     42 
     43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     44   return nullptr;
     45 }
     46 
     47 bool TargetLowering::isPositionIndependent() const {
     48   return getTargetMachine().isPositionIndependent();
     49 }
     50 
     51 /// Check whether a given call node is in tail position within its function. If
     52 /// so, it sets Chain to the input chain of the tail call.
     53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     54                                           SDValue &Chain) const {
     55   const Function &F = DAG.getMachineFunction().getFunction();
     56 
     57   // Conservatively require the attributes of the call to match those of
     58   // the return. Ignore noalias because it doesn't affect the call sequence.
     59   AttributeList CallerAttrs = F.getAttributes();
     60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
     61           .removeAttribute(Attribute::NoAlias)
     62           .hasAttributes())
     63     return false;
     64 
     65   // It's not safe to eliminate the sign / zero extension of the return value.
     66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
     67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
     68     return false;
     69 
     70   // Check if the only use is a function return node.
     71   return isUsedByReturnOnly(Node, Chain);
     72 }
     73 
     74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
     75     const uint32_t *CallerPreservedMask,
     76     const SmallVectorImpl<CCValAssign> &ArgLocs,
     77     const SmallVectorImpl<SDValue> &OutVals) const {
     78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
     79     const CCValAssign &ArgLoc = ArgLocs[I];
     80     if (!ArgLoc.isRegLoc())
     81       continue;
     82     unsigned Reg = ArgLoc.getLocReg();
     83     // Only look at callee saved registers.
     84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
     85       continue;
     86     // Check that we pass the value used for the caller.
     87     // (We look for a CopyFromReg reading a virtual register that is used
     88     //  for the function live-in value of register Reg)
     89     SDValue Value = OutVals[I];
     90     if (Value->getOpcode() != ISD::CopyFromReg)
     91       return false;
     92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
     93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
     94       return false;
     95   }
     96   return true;
     97 }
     98 
     99 /// Set CallLoweringInfo attribute flags based on a call instruction
    100 /// and called function attributes.
    101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
    102                                                      unsigned ArgIdx) {
    103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
    104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
    105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
    106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
    107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
    108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
    109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
    110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
    111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
    112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
    113   Alignment  = CS->getParamAlignment(ArgIdx);
    114 }
    115 
    116 /// Generate a libcall taking the given operands as arguments and returning a
    117 /// result of type RetVT.
    118 std::pair<SDValue, SDValue>
    119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
    120                             ArrayRef<SDValue> Ops, bool isSigned,
    121                             const SDLoc &dl, bool doesNotReturn,
    122                             bool isReturnValueUsed) const {
    123   TargetLowering::ArgListTy Args;
    124   Args.reserve(Ops.size());
    125 
    126   TargetLowering::ArgListEntry Entry;
    127   for (SDValue Op : Ops) {
    128     Entry.Node = Op;
    129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
    130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    132     Args.push_back(Entry);
    133   }
    134 
    135   if (LC == RTLIB::UNKNOWN_LIBCALL)
    136     report_fatal_error("Unsupported library call operation!");
    137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
    138                                          getPointerTy(DAG.getDataLayout()));
    139 
    140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
    141   TargetLowering::CallLoweringInfo CLI(DAG);
    142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
    143   CLI.setDebugLoc(dl)
    144       .setChain(DAG.getEntryNode())
    145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
    146       .setNoReturn(doesNotReturn)
    147       .setDiscardResult(!isReturnValueUsed)
    148       .setSExtResult(signExtend)
    149       .setZExtResult(!signExtend);
    150   return LowerCallTo(CLI);
    151 }
    152 
    153 /// Soften the operands of a comparison. This code is shared among BR_CC,
    154 /// SELECT_CC, and SETCC handlers.
    155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    156                                          SDValue &NewLHS, SDValue &NewRHS,
    157                                          ISD::CondCode &CCCode,
    158                                          const SDLoc &dl) const {
    159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
    160          && "Unsupported setcc type!");
    161 
    162   // Expand into one or more soft-fp libcall(s).
    163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    164   bool ShouldInvertCC = false;
    165   switch (CCCode) {
    166   case ISD::SETEQ:
    167   case ISD::SETOEQ:
    168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
    170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
    171     break;
    172   case ISD::SETNE:
    173   case ISD::SETUNE:
    174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
    176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
    177     break;
    178   case ISD::SETGE:
    179   case ISD::SETOGE:
    180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
    182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
    183     break;
    184   case ISD::SETLT:
    185   case ISD::SETOLT:
    186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
    188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    189     break;
    190   case ISD::SETLE:
    191   case ISD::SETOLE:
    192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
    194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
    195     break;
    196   case ISD::SETGT:
    197   case ISD::SETOGT:
    198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
    200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    201     break;
    202   case ISD::SETUO:
    203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    204           (VT == MVT::f64) ? RTLIB::UO_F64 :
    205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
    206     break;
    207   case ISD::SETO:
    208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    209           (VT == MVT::f64) ? RTLIB::O_F64 :
    210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
    211     break;
    212   case ISD::SETONE:
    213     // SETONE = SETOLT | SETOGT
    214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
    216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
    219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    220     break;
    221   case ISD::SETUEQ:
    222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    223           (VT == MVT::f64) ? RTLIB::UO_F64 :
    224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
    225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
    227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
    228     break;
    229   default:
    230     // Invert CC for unordered comparisons
    231     ShouldInvertCC = true;
    232     switch (CCCode) {
    233     case ISD::SETULT:
    234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
    236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
    237       break;
    238     case ISD::SETULE:
    239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
    241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
    242       break;
    243     case ISD::SETUGT:
    244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
    246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
    247       break;
    248     case ISD::SETUGE:
    249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
    251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
    252       break;
    253     default: llvm_unreachable("Do not know how to soften this setcc!");
    254     }
    255   }
    256 
    257   // Use the target specific return value for comparions lib calls.
    258   EVT RetVT = getCmpLibcallReturnType();
    259   SDValue Ops[2] = {NewLHS, NewRHS};
    260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
    261                        dl).first;
    262   NewRHS = DAG.getConstant(0, dl, RetVT);
    263 
    264   CCCode = getCmpLibcallCC(LC1);
    265   if (ShouldInvertCC)
    266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
    267 
    268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    269     SDValue Tmp = DAG.getNode(
    270         ISD::SETCC, dl,
    271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
    273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
    274                          dl).first;
    275     NewLHS = DAG.getNode(
    276         ISD::SETCC, dl,
    277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    280     NewRHS = SDValue();
    281   }
    282 }
    283 
    284 /// Return the entry encoding for a jump table in the current function. The
    285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
    286 unsigned TargetLowering::getJumpTableEncoding() const {
    287   // In non-pic modes, just use the address of a block.
    288   if (!isPositionIndependent())
    289     return MachineJumpTableInfo::EK_BlockAddress;
    290 
    291   // In PIC mode, if the target supports a GPRel32 directive, use it.
    292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
    293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    294 
    295   // Otherwise, use a label difference.
    296   return MachineJumpTableInfo::EK_LabelDifference32;
    297 }
    298 
    299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    300                                                  SelectionDAG &DAG) const {
    301   // If our PIC model is GP relative, use the global offset table as the base.
    302   unsigned JTEncoding = getJumpTableEncoding();
    303 
    304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
    307 
    308   return Table;
    309 }
    310 
    311 /// This returns the relocation base for the given PIC jumptable, the same as
    312 /// getPICJumpTableRelocBase, but as an MCExpr.
    313 const MCExpr *
    314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    315                                              unsigned JTI,MCContext &Ctx) const{
    316   // The normal PIC reloc base is the label at the start of the jump table.
    317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
    318 }
    319 
    320 bool
    321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    322   const TargetMachine &TM = getTargetMachine();
    323   const GlobalValue *GV = GA->getGlobal();
    324 
    325   // If the address is not even local to this DSO we will have to load it from
    326   // a got and then add the offset.
    327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
    328     return false;
    329 
    330   // If the code is position independent we will have to add a base register.
    331   if (isPositionIndependent())
    332     return false;
    333 
    334   // Otherwise we can do it.
    335   return true;
    336 }
    337 
    338 //===----------------------------------------------------------------------===//
    339 //  Optimization Methods
    340 //===----------------------------------------------------------------------===//
    341 
    342 /// If the specified instruction has a constant integer operand and there are
    343 /// bits set in that constant that are not demanded, then clear those bits and
    344 /// return true.
    345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
    346                                             TargetLoweringOpt &TLO) const {
    347   SelectionDAG &DAG = TLO.DAG;
    348   SDLoc DL(Op);
    349   unsigned Opcode = Op.getOpcode();
    350 
    351   // Do target-specific constant optimization.
    352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
    353     return TLO.New.getNode();
    354 
    355   // FIXME: ISD::SELECT, ISD::SELECT_CC
    356   switch (Opcode) {
    357   default:
    358     break;
    359   case ISD::XOR:
    360   case ISD::AND:
    361   case ISD::OR: {
    362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    363     if (!Op1C)
    364       return false;
    365 
    366     // If this is a 'not' op, don't touch it because that's a canonical form.
    367     const APInt &C = Op1C->getAPIntValue();
    368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
    369       return false;
    370 
    371     if (!C.isSubsetOf(Demanded)) {
    372       EVT VT = Op.getValueType();
    373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
    374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
    375       return TLO.CombineTo(Op, NewOp);
    376     }
    377 
    378     break;
    379   }
    380   }
    381 
    382   return false;
    383 }
    384 
    385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
    386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
    387 /// generalized for targets with other types of implicit widening casts.
    388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
    389                                       const APInt &Demanded,
    390                                       TargetLoweringOpt &TLO) const {
    391   assert(Op.getNumOperands() == 2 &&
    392          "ShrinkDemandedOp only supports binary operators!");
    393   assert(Op.getNode()->getNumValues() == 1 &&
    394          "ShrinkDemandedOp only supports nodes with one result!");
    395 
    396   SelectionDAG &DAG = TLO.DAG;
    397   SDLoc dl(Op);
    398 
    399   // Early return, as this function cannot handle vector types.
    400   if (Op.getValueType().isVector())
    401     return false;
    402 
    403   // Don't do this if the node has another user, which may require the
    404   // full value.
    405   if (!Op.getNode()->hasOneUse())
    406     return false;
    407 
    408   // Search for the smallest integer type with free casts to and from
    409   // Op's type. For expedience, just check power-of-2 integer types.
    410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    411   unsigned DemandedSize = Demanded.getActiveBits();
    412   unsigned SmallVTBits = DemandedSize;
    413   if (!isPowerOf2_32(SmallVTBits))
    414     SmallVTBits = NextPowerOf2(SmallVTBits);
    415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    419       // We found a type with free casts.
    420       SDValue X = DAG.getNode(
    421           Op.getOpcode(), dl, SmallVT,
    422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
    423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
    424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
    425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
    426       return TLO.CombineTo(Op, Z);
    427     }
    428   }
    429   return false;
    430 }
    431 
    432 bool
    433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
    434                                      const APInt &Demanded,
    435                                      DAGCombinerInfo &DCI,
    436                                      TargetLoweringOpt &TLO) const {
    437   SDValue Op = User->getOperand(OpIdx);
    438   KnownBits Known;
    439 
    440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
    441     return false;
    442 
    443 
    444   // Old will not always be the same as Op.  For example:
    445   //
    446   // Demanded = 0xffffff
    447   // Op = i64 truncate (i32 and x, 0xffffff)
    448   // In this case simplify demand bits will want to replace the 'and' node
    449   // with the value 'x', which will give us:
    450   // Old = i32 and x, 0xffffff
    451   // New = x
    452   if (TLO.Old.hasOneUse()) {
    453     // For the one use case, we just commit the change.
    454     DCI.CommitTargetLoweringOpt(TLO);
    455     return true;
    456   }
    457 
    458   // If Old has more than one use then it must be Op, because the
    459   // AssumeSingleUse flag is not propogated to recursive calls of
    460   // SimplifyDemanded bits, so the only node with multiple use that
    461   // it will attempt to combine will be Op.
    462   assert(TLO.Old == Op);
    463 
    464   SmallVector <SDValue, 4> NewOps;
    465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
    466     if (i == OpIdx) {
    467       NewOps.push_back(TLO.New);
    468       continue;
    469     }
    470     NewOps.push_back(User->getOperand(i));
    471   }
    472   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
    473   // Op has less users now, so we may be able to perform additional combines
    474   // with it.
    475   DCI.AddToWorklist(Op.getNode());
    476   // User's operands have been updated, so we may be able to do new combines
    477   // with it.
    478   DCI.AddToWorklist(User);
    479   return true;
    480 }
    481 
    482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
    483                                           DAGCombinerInfo &DCI) const {
    484 
    485   SelectionDAG &DAG = DCI.DAG;
    486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
    487                         !DCI.isBeforeLegalizeOps());
    488   KnownBits Known;
    489 
    490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
    491   if (Simplified)
    492     DCI.CommitTargetLoweringOpt(TLO);
    493   return Simplified;
    494 }
    495 
    496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
    497 /// result of Op are ever used downstream. If we can use this information to
    498 /// simplify Op, create a new simplified DAG node and return true, returning the
    499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
    500 /// return a mask of Known bits for the expression (used to simplify the
    501 /// caller).  The Known bits may only be accurate for those bits in the
    502 /// DemandedMask.
    503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    504                                           const APInt &DemandedMask,
    505                                           KnownBits &Known,
    506                                           TargetLoweringOpt &TLO,
    507                                           unsigned Depth,
    508                                           bool AssumeSingleUse) const {
    509   unsigned BitWidth = DemandedMask.getBitWidth();
    510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
    511          "Mask size mismatches value type size!");
    512   APInt NewMask = DemandedMask;
    513   SDLoc dl(Op);
    514   auto &DL = TLO.DAG.getDataLayout();
    515 
    516   // Don't know anything.
    517   Known = KnownBits(BitWidth);
    518 
    519   if (Op.getOpcode() == ISD::Constant) {
    520     // We know all of the bits for a constant!
    521     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
    522     Known.Zero = ~Known.One;
    523     return false;
    524   }
    525 
    526   // Other users may use these bits.
    527   EVT VT = Op.getValueType();
    528   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
    529     if (Depth != 0) {
    530       // If not at the root, Just compute the Known bits to
    531       // simplify things downstream.
    532       TLO.DAG.computeKnownBits(Op, Known, Depth);
    533       return false;
    534     }
    535     // If this is the root being simplified, allow it to have multiple uses,
    536     // just set the NewMask to all bits.
    537     NewMask = APInt::getAllOnesValue(BitWidth);
    538   } else if (DemandedMask == 0) {
    539     // Not demanding any bits from Op.
    540     if (!Op.isUndef())
    541       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
    542     return false;
    543   } else if (Depth == 6) {        // Limit search depth.
    544     return false;
    545   }
    546 
    547   KnownBits Known2, KnownOut;
    548   switch (Op.getOpcode()) {
    549   case ISD::BUILD_VECTOR:
    550     // Collect the known bits that are shared by every constant vector element.
    551     Known.Zero.setAllBits(); Known.One.setAllBits();
    552     for (SDValue SrcOp : Op->ops()) {
    553       if (!isa<ConstantSDNode>(SrcOp)) {
    554         // We can only handle all constant values - bail out with no known bits.
    555         Known = KnownBits(BitWidth);
    556         return false;
    557       }
    558       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
    559       Known2.Zero = ~Known2.One;
    560 
    561       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
    562       if (Known2.One.getBitWidth() != BitWidth) {
    563         assert(Known2.getBitWidth() > BitWidth &&
    564                "Expected BUILD_VECTOR implicit truncation");
    565         Known2 = Known2.trunc(BitWidth);
    566       }
    567 
    568       // Known bits are the values that are shared by every element.
    569       // TODO: support per-element known bits.
    570       Known.One &= Known2.One;
    571       Known.Zero &= Known2.Zero;
    572     }
    573     return false;   // Don't fall through, will infinitely loop.
    574   case ISD::AND:
    575     // If the RHS is a constant, check to see if the LHS would be zero without
    576     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    577     // simplify the LHS, here we're using information from the LHS to simplify
    578     // the RHS.
    579     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
    580       SDValue Op0 = Op.getOperand(0);
    581       KnownBits LHSKnown;
    582       // Do not increment Depth here; that can cause an infinite loop.
    583       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
    584       // If the LHS already has zeros where RHSC does, this 'and' is dead.
    585       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    586         return TLO.CombineTo(Op, Op0);
    587 
    588       // If any of the set bits in the RHS are known zero on the LHS, shrink
    589       // the constant.
    590       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
    591         return true;
    592 
    593       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
    594       // constant, but if this 'and' is only clearing bits that were just set by
    595       // the xor, then this 'and' can be eliminated by shrinking the mask of
    596       // the xor. For example, for a 32-bit X:
    597       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
    598       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
    599           LHSKnown.One == ~RHSC->getAPIntValue()) {
    600         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0),
    601                                       Op.getOperand(1));
    602         return TLO.CombineTo(Op, Xor);
    603       }
    604     }
    605 
    606     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
    607       return true;
    608     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    609     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
    610                              Known2, TLO, Depth+1))
    611       return true;
    612     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
    613 
    614     // If all of the demanded bits are known one on one side, return the other.
    615     // These bits cannot contribute to the result of the 'and'.
    616     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
    617       return TLO.CombineTo(Op, Op.getOperand(0));
    618     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
    619       return TLO.CombineTo(Op, Op.getOperand(1));
    620     // If all of the demanded bits in the inputs are known zeros, return zero.
    621     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
    622       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
    623     // If the RHS is a constant, see if we can simplify it.
    624     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
    625       return true;
    626     // If the operation can be done in a smaller type, do so.
    627     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
    628       return true;
    629 
    630     // Output known-1 bits are only known if set in both the LHS & RHS.
    631     Known.One &= Known2.One;
    632     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    633     Known.Zero |= Known2.Zero;
    634     break;
    635   case ISD::OR:
    636     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
    637       return true;
    638     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    639     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
    640                              Known2, TLO, Depth+1))
    641       return true;
    642     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
    643 
    644     // If all of the demanded bits are known zero on one side, return the other.
    645     // These bits cannot contribute to the result of the 'or'.
    646     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
    647       return TLO.CombineTo(Op, Op.getOperand(0));
    648     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
    649       return TLO.CombineTo(Op, Op.getOperand(1));
    650     // If the RHS is a constant, see if we can simplify it.
    651     if (ShrinkDemandedConstant(Op, NewMask, TLO))
    652       return true;
    653     // If the operation can be done in a smaller type, do so.
    654     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
    655       return true;
    656 
    657     // Output known-0 bits are only known if clear in both the LHS & RHS.
    658     Known.Zero &= Known2.Zero;
    659     // Output known-1 are known to be set if set in either the LHS | RHS.
    660     Known.One |= Known2.One;
    661     break;
    662   case ISD::XOR: {
    663     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
    664       return true;
    665     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    666     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
    667       return true;
    668     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
    669 
    670     // If all of the demanded bits are known zero on one side, return the other.
    671     // These bits cannot contribute to the result of the 'xor'.
    672     if (NewMask.isSubsetOf(Known.Zero))
    673       return TLO.CombineTo(Op, Op.getOperand(0));
    674     if (NewMask.isSubsetOf(Known2.Zero))
    675       return TLO.CombineTo(Op, Op.getOperand(1));
    676     // If the operation can be done in a smaller type, do so.
    677     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
    678       return true;
    679 
    680     // If all of the unknown bits are known to be zero on one side or the other
    681     // (but not both) turn this into an *inclusive* or.
    682     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    683     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
    684       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT,
    685                                                Op.getOperand(0),
    686                                                Op.getOperand(1)));
    687 
    688     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    689     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
    690     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    691     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
    692 
    693     // If all of the demanded bits on one side are known, and all of the set
    694     // bits on that side are also known to be set on the other side, turn this
    695     // into an AND, as we know the bits will be cleared.
    696     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    697     // NB: it is okay if more bits are known than are requested
    698     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
    699       if (Known.One == Known2.One) { // set bits are the same on both sides
    700         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
    701         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    702                                                  Op.getOperand(0), ANDC));
    703       }
    704     }
    705 
    706     // If the RHS is a constant, see if we can change it. Don't alter a -1
    707     // constant because that's a 'not' op, and that is better for combining and
    708     // codegen.
    709     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
    710     if (C && !C->isAllOnesValue()) {
    711       if (NewMask.isSubsetOf(C->getAPIntValue())) {
    712         // We're flipping all demanded bits. Flip the undemanded bits too.
    713         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), VT);
    714         return TLO.CombineTo(Op, New);
    715       }
    716       // If we can't turn this into a 'not', try to shrink the constant.
    717       if (ShrinkDemandedConstant(Op, NewMask, TLO))
    718         return true;
    719     }
    720 
    721     Known = std::move(KnownOut);
    722     break;
    723   }
    724   case ISD::SELECT:
    725     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
    726       return true;
    727     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
    728       return true;
    729     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    730     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
    731 
    732     // If the operands are constants, see if we can simplify them.
    733     if (ShrinkDemandedConstant(Op, NewMask, TLO))
    734       return true;
    735 
    736     // Only known if known in both the LHS and RHS.
    737     Known.One &= Known2.One;
    738     Known.Zero &= Known2.Zero;
    739     break;
    740   case ISD::SELECT_CC:
    741     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
    742       return true;
    743     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
    744       return true;
    745     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    746     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
    747 
    748     // If the operands are constants, see if we can simplify them.
    749     if (ShrinkDemandedConstant(Op, NewMask, TLO))
    750       return true;
    751 
    752     // Only known if known in both the LHS and RHS.
    753     Known.One &= Known2.One;
    754     Known.Zero &= Known2.Zero;
    755     break;
    756   case ISD::SETCC: {
    757     SDValue Op0 = Op.getOperand(0);
    758     SDValue Op1 = Op.getOperand(1);
    759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
    761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
    762     // -1, we may be able to bypass the setcc.
    763     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
    764         getBooleanContents(VT) ==
    765             BooleanContent::ZeroOrNegativeOneBooleanContent) {
    766       // If we're testing X < 0, then this compare isn't needed - just use X!
    767       // FIXME: We're limiting to integer types here, but this should also work
    768       // if we don't care about FP signed-zero. The use of SETLT with FP means
    769       // that we don't care about NaNs.
    770       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
    771           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
    772         return TLO.CombineTo(Op, Op0);
    773 
    774       // TODO: Should we check for other forms of sign-bit comparisons?
    775       // Examples: X <= -1, X >= 0
    776     }
    777     if (getBooleanContents(Op0.getValueType()) ==
    778             TargetLowering::ZeroOrOneBooleanContent &&
    779         BitWidth > 1)
    780       Known.Zero.setBitsFrom(1);
    781     break;
    782   }
    783   case ISD::SHL:
    784     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
    785       SDValue InOp = Op.getOperand(0);
    786 
    787       // If the shift count is an invalid immediate, don't do anything.
    788       if (SA->getAPIntValue().uge(BitWidth))
    789         break;
    790 
    791       unsigned ShAmt = SA->getZExtValue();
    792 
    793       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    794       // single shift.  We can do this if the bottom bits (which are shifted
    795       // out) are never demanded.
    796       if (InOp.getOpcode() == ISD::SRL) {
    797         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
    798           if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    799             if (SA2->getAPIntValue().ult(BitWidth)) {
    800               unsigned C1 = SA2->getZExtValue();
    801               unsigned Opc = ISD::SHL;
    802               int Diff = ShAmt-C1;
    803               if (Diff < 0) {
    804                 Diff = -Diff;
    805                 Opc = ISD::SRL;
    806               }
    807 
    808               SDValue NewSA =
    809                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    810               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    811                                                        InOp.getOperand(0),
    812                                                        NewSA));
    813             }
    814           }
    815         }
    816       }
    817 
    818       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
    819         return true;
    820 
    821       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    822       // are not demanded. This will likely allow the anyext to be folded away.
    823       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    824         SDValue InnerOp = InOp.getOperand(0);
    825         EVT InnerVT = InnerOp.getValueType();
    826         unsigned InnerBits = InnerVT.getScalarSizeInBits();
    827         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
    828             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    829           EVT ShTy = getShiftAmountTy(InnerVT, DL);
    830           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    831             ShTy = InnerVT;
    832           SDValue NarrowShl =
    833             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    834                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
    835           return
    836             TLO.CombineTo(Op,
    837                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
    838         }
    839         // Repeat the SHL optimization above in cases where an extension
    840         // intervenes: (shl (anyext (shr x, c1)), c2) to
    841         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
    842         // aren't demanded (as above) and that the shifted upper c1 bits of
    843         // x aren't demanded.
    844         if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
    845             InnerOp.hasOneUse()) {
    846           if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) {
    847             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
    848             if (InnerShAmt < ShAmt &&
    849                 InnerShAmt < InnerBits &&
    850                 NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
    851                 NewMask.countTrailingZeros() >= ShAmt) {
    852               SDValue NewSA =
    853                 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
    854                                     Op.getOperand(1).getValueType());
    855               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    856                                                InnerOp.getOperand(0));
    857               return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
    858                                                        NewExt, NewSA));
    859             }
    860           }
    861         }
    862       }
    863 
    864       Known.Zero <<= ShAmt;
    865       Known.One  <<= ShAmt;
    866       // low bits known zero.
    867       Known.Zero.setLowBits(ShAmt);
    868     }
    869     break;
    870   case ISD::SRL:
    871     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
    872       SDValue InOp = Op.getOperand(0);
    873 
    874       // If the shift count is an invalid immediate, don't do anything.
    875       if (SA->getAPIntValue().uge(BitWidth))
    876         break;
    877 
    878       unsigned ShAmt = SA->getZExtValue();
    879       APInt InDemandedMask = (NewMask << ShAmt);
    880 
    881       // If the shift is exact, then it does demand the low bits (and knows that
    882       // they are zero).
    883       if (Op->getFlags().hasExact())
    884         InDemandedMask.setLowBits(ShAmt);
    885 
    886       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    887       // single shift.  We can do this if the top bits (which are shifted out)
    888       // are never demanded.
    889       if (InOp.getOpcode() == ISD::SHL) {
    890         if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) {
    891           if (ShAmt &&
    892               (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
    893             if (SA2->getAPIntValue().ult(BitWidth)) {
    894               unsigned C1 = SA2->getZExtValue();
    895               unsigned Opc = ISD::SRL;
    896               int Diff = ShAmt-C1;
    897               if (Diff < 0) {
    898                 Diff = -Diff;
    899                 Opc = ISD::SHL;
    900               }
    901 
    902               SDValue NewSA =
    903                 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    904               return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    905                                                        InOp.getOperand(0),
    906                                                        NewSA));
    907             }
    908           }
    909         }
    910       }
    911 
    912       // Compute the new bits that are at the top now.
    913       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
    914         return true;
    915       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    916       Known.Zero.lshrInPlace(ShAmt);
    917       Known.One.lshrInPlace(ShAmt);
    918 
    919       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
    920     }
    921     break;
    922   case ISD::SRA:
    923     // If this is an arithmetic shift right and only the low-bit is set, we can
    924     // always convert this into a logical shr, even if the shift amount is
    925     // variable.  The low bit of the shift cannot be an input sign bit unless
    926     // the shift amount is >= the size of the datatype, which is undefined.
    927     if (NewMask.isOneValue())
    928       return TLO.CombineTo(Op,
    929                            TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
    930                                            Op.getOperand(1)));
    931 
    932     if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) {
    933       // If the shift count is an invalid immediate, don't do anything.
    934       if (SA->getAPIntValue().uge(BitWidth))
    935         break;
    936 
    937       unsigned ShAmt = SA->getZExtValue();
    938       APInt InDemandedMask = (NewMask << ShAmt);
    939 
    940       // If the shift is exact, then it does demand the low bits (and knows that
    941       // they are zero).
    942       if (Op->getFlags().hasExact())
    943         InDemandedMask.setLowBits(ShAmt);
    944 
    945       // If any of the demanded bits are produced by the sign extension, we also
    946       // demand the input sign bit.
    947       if (NewMask.countLeadingZeros() < ShAmt)
    948         InDemandedMask.setSignBit();
    949 
    950       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
    951                                Depth+1))
    952         return true;
    953       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
    954       Known.Zero.lshrInPlace(ShAmt);
    955       Known.One.lshrInPlace(ShAmt);
    956 
    957       // If the input sign bit is known to be zero, or if none of the top bits
    958       // are demanded, turn this into an unsigned shift right.
    959       if (Known.Zero[BitWidth - ShAmt - 1] ||
    960           NewMask.countLeadingZeros() >= ShAmt) {
    961         SDNodeFlags Flags;
    962         Flags.setExact(Op->getFlags().hasExact());
    963         return TLO.CombineTo(Op,
    964                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
    965                                              Op.getOperand(1), Flags));
    966       }
    967 
    968       int Log2 = NewMask.exactLogBase2();
    969       if (Log2 >= 0) {
    970         // The bit must come from the sign.
    971         SDValue NewSA =
    972           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
    973                               Op.getOperand(1).getValueType());
    974         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    975                                                  Op.getOperand(0), NewSA));
    976       }
    977 
    978       if (Known.One[BitWidth - ShAmt - 1])
    979         // New bits are known one.
    980         Known.One.setHighBits(ShAmt);
    981     }
    982     break;
    983   case ISD::SIGN_EXTEND_INREG: {
    984     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    985     unsigned ExVTBits = ExVT.getScalarSizeInBits();
    986 
    987     // If we only care about the highest bit, don't bother shifting right.
    988     if (NewMask.isSignMask()) {
    989       SDValue InOp = Op.getOperand(0);
    990       bool AlreadySignExtended =
    991         TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1;
    992       // However if the input is already sign extended we expect the sign
    993       // extension to be dropped altogether later and do not simplify.
    994       if (!AlreadySignExtended) {
    995         // Compute the correct shift amount type, which must be getShiftAmountTy
    996         // for scalar types after legalization.
    997         EVT ShiftAmtTy = VT;
    998         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    999           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
   1000 
   1001         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
   1002                                                ShiftAmtTy);
   1003         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, InOp,
   1004                                                  ShiftAmt));
   1005       }
   1006     }
   1007 
   1008     // If none of the extended bits are demanded, eliminate the sextinreg.
   1009     if (NewMask.getActiveBits() <= ExVTBits)
   1010       return TLO.CombineTo(Op, Op.getOperand(0));
   1011 
   1012     APInt InputDemandedBits = NewMask.getLoBits(ExVTBits);
   1013 
   1014     // Since the sign extended bits are demanded, we know that the sign
   1015     // bit is demanded.
   1016     InputDemandedBits.setBit(ExVTBits - 1);
   1017 
   1018     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
   1019                              Known, TLO, Depth+1))
   1020       return true;
   1021     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1022 
   1023     // If the sign bit of the input is known set or clear, then we know the
   1024     // top bits of the result.
   1025 
   1026     // If the input sign bit is known zero, convert this into a zero extension.
   1027     if (Known.Zero[ExVTBits - 1])
   1028       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
   1029                                    Op.getOperand(0), dl, ExVT.getScalarType()));
   1030 
   1031     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
   1032     if (Known.One[ExVTBits - 1]) {    // Input sign bit known set
   1033       Known.One.setBitsFrom(ExVTBits);
   1034       Known.Zero &= Mask;
   1035     } else {                       // Input sign bit unknown
   1036       Known.Zero &= Mask;
   1037       Known.One &= Mask;
   1038     }
   1039     break;
   1040   }
   1041   case ISD::BUILD_PAIR: {
   1042     EVT HalfVT = Op.getOperand(0).getValueType();
   1043     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
   1044 
   1045     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
   1046     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
   1047 
   1048     KnownBits KnownLo, KnownHi;
   1049 
   1050     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
   1051       return true;
   1052 
   1053     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
   1054       return true;
   1055 
   1056     Known.Zero = KnownLo.Zero.zext(BitWidth) |
   1057                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
   1058 
   1059     Known.One = KnownLo.One.zext(BitWidth) |
   1060                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
   1061     break;
   1062   }
   1063   case ISD::ZERO_EXTEND: {
   1064     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
   1065 
   1066     // If none of the top bits are demanded, convert this into an any_extend.
   1067     if (NewMask.getActiveBits() <= OperandBitWidth)
   1068       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
   1069                                                Op.getOperand(0)));
   1070 
   1071     APInt InMask = NewMask.trunc(OperandBitWidth);
   1072     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
   1073       return true;
   1074     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1075     Known = Known.zext(BitWidth);
   1076     Known.Zero.setBitsFrom(OperandBitWidth);
   1077     break;
   1078   }
   1079   case ISD::SIGN_EXTEND: {
   1080     unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits();
   1081 
   1082     // If none of the top bits are demanded, convert this into an any_extend.
   1083     if (NewMask.getActiveBits() <= InBits)
   1084       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
   1085                                               Op.getOperand(0)));
   1086 
   1087     // Since some of the sign extended bits are demanded, we know that the sign
   1088     // bit is demanded.
   1089     APInt InDemandedBits = NewMask.trunc(InBits);
   1090     InDemandedBits.setBit(InBits - 1);
   1091 
   1092     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
   1093                              Depth+1))
   1094       return true;
   1095     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1096     // If the sign bit is known one, the top bits match.
   1097     Known = Known.sext(BitWidth);
   1098 
   1099     // If the sign bit is known zero, convert this to a zero extend.
   1100     if (Known.isNonNegative())
   1101       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT,
   1102                                                Op.getOperand(0)));
   1103     break;
   1104   }
   1105   case ISD::ANY_EXTEND: {
   1106     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
   1107     APInt InMask = NewMask.trunc(OperandBitWidth);
   1108     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
   1109       return true;
   1110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1111     Known = Known.zext(BitWidth);
   1112     break;
   1113   }
   1114   case ISD::TRUNCATE: {
   1115     // Simplify the input, using demanded bit information, and compute the known
   1116     // zero/one bits live out.
   1117     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
   1118     APInt TruncMask = NewMask.zext(OperandBitWidth);
   1119     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
   1120       return true;
   1121     Known = Known.trunc(BitWidth);
   1122 
   1123     // If the input is only used by this truncate, see if we can shrink it based
   1124     // on the known demanded bits.
   1125     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1126       SDValue In = Op.getOperand(0);
   1127       switch (In.getOpcode()) {
   1128       default: break;
   1129       case ISD::SRL:
   1130         // Shrink SRL by a constant if none of the high bits shifted in are
   1131         // demanded.
   1132         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
   1133           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1134           // undesirable.
   1135           break;
   1136         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1137         if (!ShAmt)
   1138           break;
   1139         SDValue Shift = In.getOperand(1);
   1140         if (TLO.LegalTypes()) {
   1141           uint64_t ShVal = ShAmt->getZExtValue();
   1142           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
   1143         }
   1144 
   1145         if (ShAmt->getZExtValue() < BitWidth) {
   1146           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1147                                                  OperandBitWidth - BitWidth);
   1148           HighBits.lshrInPlace(ShAmt->getZExtValue());
   1149           HighBits = HighBits.trunc(BitWidth);
   1150 
   1151           if (!(HighBits & NewMask)) {
   1152             // None of the shifted in bits are needed.  Add a truncate of the
   1153             // shift input, then shift it.
   1154             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, VT,
   1155                                                In.getOperand(0));
   1156             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc,
   1157                                                      Shift));
   1158           }
   1159         }
   1160         break;
   1161       }
   1162     }
   1163 
   1164     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1165     break;
   1166   }
   1167   case ISD::AssertZext: {
   1168     // AssertZext demands all of the high bits, plus any of the low bits
   1169     // demanded by its users.
   1170     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1171     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
   1172     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1173                              Known, TLO, Depth+1))
   1174       return true;
   1175     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
   1176 
   1177     Known.Zero |= ~InMask;
   1178     break;
   1179   }
   1180   case ISD::BITCAST:
   1181     // If this is an FP->Int bitcast and if the sign bit is the only
   1182     // thing demanded, turn this into a FGETSIGN.
   1183     if (!TLO.LegalOperations() && !VT.isVector() &&
   1184         !Op.getOperand(0).getValueType().isVector() &&
   1185         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
   1186         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1187       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
   1188       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1189       if ((OpVTLegal || i32Legal) && VT.isSimple() &&
   1190            Op.getOperand(0).getValueType() != MVT::f16 &&
   1191            Op.getOperand(0).getValueType() != MVT::f128) {
   1192         // Cannot eliminate/lower SHL for f128 yet.
   1193         EVT Ty = OpVTLegal ? VT : MVT::i32;
   1194         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1195         // place.  We expect the SHL to be eliminated by other optimizations.
   1196         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1197         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
   1198         if (!OpVTLegal && OpVTSizeInBits > 32)
   1199           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
   1200         unsigned ShVal = Op.getValueSizeInBits() - 1;
   1201         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
   1202         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
   1203       }
   1204     }
   1205     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
   1206     // recursive call where Known may be useful to the caller.
   1207     if (Depth > 0) {
   1208       TLO.DAG.computeKnownBits(Op, Known, Depth);
   1209       return false;
   1210     }
   1211     break;
   1212   case ISD::ADD:
   1213   case ISD::MUL:
   1214   case ISD::SUB: {
   1215     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1216     // of the highest bit demanded of them.
   1217     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
   1218     unsigned NewMaskLZ = NewMask.countLeadingZeros();
   1219     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - NewMaskLZ);
   1220     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
   1221         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
   1222         // See if the operation should be performed at a smaller bit width.
   1223         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
   1224       SDNodeFlags Flags = Op.getNode()->getFlags();
   1225       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
   1226         // Disable the nsw and nuw flags. We can no longer guarantee that we
   1227         // won't wrap after simplification.
   1228         Flags.setNoSignedWrap(false);
   1229         Flags.setNoUnsignedWrap(false);
   1230         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
   1231                                         Flags);
   1232         return TLO.CombineTo(Op, NewOp);
   1233       }
   1234       return true;
   1235     }
   1236 
   1237     // If we have a constant operand, we may be able to turn it into -1 if we
   1238     // do not demand the high bits. This can make the constant smaller to
   1239     // encode, allow more general folding, or match specialized instruction
   1240     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
   1241     // is probably not useful (and could be detrimental).
   1242     ConstantSDNode *C = isConstOrConstSplat(Op1);
   1243     APInt HighMask = APInt::getHighBitsSet(NewMask.getBitWidth(), NewMaskLZ);
   1244     if (C && !C->isAllOnesValue() && !C->isOne() &&
   1245         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
   1246       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
   1247       // We can't guarantee that the new math op doesn't wrap, so explicitly
   1248       // clear those flags to prevent folding with a potential existing node
   1249       // that has those flags set.
   1250       SDNodeFlags Flags;
   1251       Flags.setNoSignedWrap(false);
   1252       Flags.setNoUnsignedWrap(false);
   1253       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
   1254       return TLO.CombineTo(Op, NewOp);
   1255     }
   1256 
   1257     LLVM_FALLTHROUGH;
   1258   }
   1259   default:
   1260     // Just use computeKnownBits to compute output bits.
   1261     TLO.DAG.computeKnownBits(Op, Known, Depth);
   1262     break;
   1263   }
   1264 
   1265   // If we know the value of all of the demanded bits, return this as a
   1266   // constant.
   1267   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
   1268     // Avoid folding to a constant if any OpaqueConstant is involved.
   1269     const SDNode *N = Op.getNode();
   1270     for (SDNodeIterator I = SDNodeIterator::begin(N),
   1271          E = SDNodeIterator::end(N); I != E; ++I) {
   1272       SDNode *Op = *I;
   1273       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
   1274         if (C->isOpaque())
   1275           return false;
   1276     }
   1277     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
   1278   }
   1279 
   1280   return false;
   1281 }
   1282 
   1283 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
   1284                                                 const APInt &DemandedElts,
   1285                                                 APInt &KnownUndef,
   1286                                                 APInt &KnownZero,
   1287                                                 DAGCombinerInfo &DCI) const {
   1288   SelectionDAG &DAG = DCI.DAG;
   1289   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1290                         !DCI.isBeforeLegalizeOps());
   1291 
   1292   bool Simplified =
   1293       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
   1294   if (Simplified)
   1295     DCI.CommitTargetLoweringOpt(TLO);
   1296   return Simplified;
   1297 }
   1298 
   1299 bool TargetLowering::SimplifyDemandedVectorElts(
   1300     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
   1301     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
   1302     bool AssumeSingleUse) const {
   1303   EVT VT = Op.getValueType();
   1304   APInt DemandedElts = DemandedEltMask;
   1305   unsigned NumElts = DemandedElts.getBitWidth();
   1306   assert(VT.isVector() && "Expected vector op");
   1307   assert(VT.getVectorNumElements() == NumElts &&
   1308          "Mask size mismatches value type element count!");
   1309 
   1310   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
   1311 
   1312   // Undef operand.
   1313   if (Op.isUndef()) {
   1314     KnownUndef.setAllBits();
   1315     return false;
   1316   }
   1317 
   1318   // If Op has other users, assume that all elements are needed.
   1319   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
   1320     DemandedElts.setAllBits();
   1321 
   1322   // Not demanding any elements from Op.
   1323   if (DemandedElts == 0) {
   1324     KnownUndef.setAllBits();
   1325     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
   1326   }
   1327 
   1328   // Limit search depth.
   1329   if (Depth >= 6)
   1330     return false;
   1331 
   1332   SDLoc DL(Op);
   1333   unsigned EltSizeInBits = VT.getScalarSizeInBits();
   1334 
   1335   switch (Op.getOpcode()) {
   1336   case ISD::SCALAR_TO_VECTOR: {
   1337     if (!DemandedElts[0]) {
   1338       KnownUndef.setAllBits();
   1339       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
   1340     }
   1341     KnownUndef.setHighBits(NumElts - 1);
   1342     break;
   1343   }
   1344   case ISD::BITCAST: {
   1345     SDValue Src = Op.getOperand(0);
   1346     EVT SrcVT = Src.getValueType();
   1347 
   1348     // We only handle vectors here.
   1349     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
   1350     if (!SrcVT.isVector())
   1351       break;
   1352 
   1353     // Fast handling of 'identity' bitcasts.
   1354     unsigned NumSrcElts = SrcVT.getVectorNumElements();
   1355     if (NumSrcElts == NumElts)
   1356       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
   1357                                         KnownZero, TLO, Depth + 1);
   1358 
   1359     APInt SrcZero, SrcUndef;
   1360     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
   1361 
   1362     // Bitcast from 'large element' src vector to 'small element' vector, we
   1363     // must demand a source element if any DemandedElt maps to it.
   1364     if ((NumElts % NumSrcElts) == 0) {
   1365       unsigned Scale = NumElts / NumSrcElts;
   1366       for (unsigned i = 0; i != NumElts; ++i)
   1367         if (DemandedElts[i])
   1368           SrcDemandedElts.setBit(i / Scale);
   1369 
   1370       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
   1371                                      TLO, Depth + 1))
   1372         return true;
   1373 
   1374       // If the src element is zero/undef then all the output elements will be -
   1375       // only demanded elements are guaranteed to be correct.
   1376       for (unsigned i = 0; i != NumSrcElts; ++i) {
   1377         if (SrcDemandedElts[i]) {
   1378           if (SrcZero[i])
   1379             KnownZero.setBits(i * Scale, (i + 1) * Scale);
   1380           if (SrcUndef[i])
   1381             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
   1382         }
   1383       }
   1384     }
   1385 
   1386     // Bitcast from 'small element' src vector to 'large element' vector, we
   1387     // demand all smaller source elements covered by the larger demanded element
   1388     // of this vector.
   1389     if ((NumSrcElts % NumElts) == 0) {
   1390       unsigned Scale = NumSrcElts / NumElts;
   1391       for (unsigned i = 0; i != NumElts; ++i)
   1392         if (DemandedElts[i])
   1393           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
   1394 
   1395       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
   1396                                      TLO, Depth + 1))
   1397         return true;
   1398 
   1399       // If all the src elements covering an output element are zero/undef, then
   1400       // the output element will be as well, assuming it was demanded.
   1401       for (unsigned i = 0; i != NumElts; ++i) {
   1402         if (DemandedElts[i]) {
   1403           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
   1404             KnownZero.setBit(i);
   1405           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
   1406             KnownUndef.setBit(i);
   1407         }
   1408       }
   1409     }
   1410     break;
   1411   }
   1412   case ISD::BUILD_VECTOR: {
   1413     // Check all elements and simplify any unused elements with UNDEF.
   1414     if (!DemandedElts.isAllOnesValue()) {
   1415       // Don't simplify BROADCASTS.
   1416       if (llvm::any_of(Op->op_values(),
   1417                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
   1418         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
   1419         bool Updated = false;
   1420         for (unsigned i = 0; i != NumElts; ++i) {
   1421           if (!DemandedElts[i] && !Ops[i].isUndef()) {
   1422             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
   1423             KnownUndef.setBit(i);
   1424             Updated = true;
   1425           }
   1426         }
   1427         if (Updated)
   1428           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
   1429       }
   1430     }
   1431     for (unsigned i = 0; i != NumElts; ++i) {
   1432       SDValue SrcOp = Op.getOperand(i);
   1433       if (SrcOp.isUndef()) {
   1434         KnownUndef.setBit(i);
   1435       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
   1436                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
   1437         KnownZero.setBit(i);
   1438       }
   1439     }
   1440     break;
   1441   }
   1442   case ISD::CONCAT_VECTORS: {
   1443     EVT SubVT = Op.getOperand(0).getValueType();
   1444     unsigned NumSubVecs = Op.getNumOperands();
   1445     unsigned NumSubElts = SubVT.getVectorNumElements();
   1446     for (unsigned i = 0; i != NumSubVecs; ++i) {
   1447       SDValue SubOp = Op.getOperand(i);
   1448       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
   1449       APInt SubUndef, SubZero;
   1450       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
   1451                                      Depth + 1))
   1452         return true;
   1453       KnownUndef.insertBits(SubUndef, i * NumSubElts);
   1454       KnownZero.insertBits(SubZero, i * NumSubElts);
   1455     }
   1456     break;
   1457   }
   1458   case ISD::INSERT_SUBVECTOR: {
   1459     if (!isa<ConstantSDNode>(Op.getOperand(2)))
   1460       break;
   1461     SDValue Base = Op.getOperand(0);
   1462     SDValue Sub = Op.getOperand(1);
   1463     EVT SubVT = Sub.getValueType();
   1464     unsigned NumSubElts = SubVT.getVectorNumElements();
   1465     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
   1466     if (Idx.uge(NumElts - NumSubElts))
   1467       break;
   1468     unsigned SubIdx = Idx.getZExtValue();
   1469     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
   1470     APInt SubUndef, SubZero;
   1471     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
   1472                                    Depth + 1))
   1473       return true;
   1474     APInt BaseElts = DemandedElts;
   1475     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
   1476     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
   1477                                    Depth + 1))
   1478       return true;
   1479     KnownUndef.insertBits(SubUndef, SubIdx);
   1480     KnownZero.insertBits(SubZero, SubIdx);
   1481     break;
   1482   }
   1483   case ISD::EXTRACT_SUBVECTOR: {
   1484     if (!isa<ConstantSDNode>(Op.getOperand(1)))
   1485       break;
   1486     SDValue Src = Op.getOperand(0);
   1487     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
   1488     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
   1489     if (Idx.uge(NumSrcElts - NumElts))
   1490       break;
   1491     // Offset the demanded elts by the subvector index.
   1492     uint64_t SubIdx = Idx.getZExtValue();
   1493     APInt SrcElts = DemandedElts.zext(NumSrcElts).shl(SubIdx);
   1494     APInt SrcUndef, SrcZero;
   1495     if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
   1496                                    Depth + 1))
   1497       return true;
   1498     KnownUndef = SrcUndef.extractBits(NumElts, SubIdx);
   1499     KnownZero = SrcZero.extractBits(NumElts, SubIdx);
   1500     break;
   1501   }
   1502   case ISD::INSERT_VECTOR_ELT: {
   1503     SDValue Vec = Op.getOperand(0);
   1504     SDValue Scl = Op.getOperand(1);
   1505     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   1506 
   1507     // For a legal, constant insertion index, if we don't need this insertion
   1508     // then strip it, else remove it from the demanded elts.
   1509     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
   1510       unsigned Idx = CIdx->getZExtValue();
   1511       if (!DemandedElts[Idx])
   1512         return TLO.CombineTo(Op, Vec);
   1513       DemandedElts.clearBit(Idx);
   1514 
   1515       if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef,
   1516                                      KnownZero, TLO, Depth + 1))
   1517         return true;
   1518 
   1519       KnownUndef.clearBit(Idx);
   1520       if (Scl.isUndef())
   1521         KnownUndef.setBit(Idx);
   1522 
   1523       KnownZero.clearBit(Idx);
   1524       if (isNullConstant(Scl) || isNullFPConstant(Scl))
   1525         KnownZero.setBit(Idx);
   1526       break;
   1527     }
   1528 
   1529     APInt VecUndef, VecZero;
   1530     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
   1531                                    Depth + 1))
   1532       return true;
   1533     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
   1534     break;
   1535   }
   1536   case ISD::VSELECT: {
   1537     APInt DemandedLHS(DemandedElts);
   1538     APInt DemandedRHS(DemandedElts);
   1539 
   1540     // TODO - add support for constant vselect masks.
   1541 
   1542     // See if we can simplify either vselect operand.
   1543     APInt UndefLHS, ZeroLHS;
   1544     APInt UndefRHS, ZeroRHS;
   1545     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
   1546                                    ZeroLHS, TLO, Depth + 1))
   1547       return true;
   1548     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
   1549                                    ZeroRHS, TLO, Depth + 1))
   1550       return true;
   1551 
   1552     KnownUndef = UndefLHS & UndefRHS;
   1553     KnownZero = ZeroLHS & ZeroRHS;
   1554     break;
   1555   }
   1556   case ISD::VECTOR_SHUFFLE: {
   1557     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
   1558 
   1559     // Collect demanded elements from shuffle operands..
   1560     APInt DemandedLHS(NumElts, 0);
   1561     APInt DemandedRHS(NumElts, 0);
   1562     for (unsigned i = 0; i != NumElts; ++i) {
   1563       int M = ShuffleMask[i];
   1564       if (M < 0 || !DemandedElts[i])
   1565         continue;
   1566       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
   1567       if (M < (int)NumElts)
   1568         DemandedLHS.setBit(M);
   1569       else
   1570         DemandedRHS.setBit(M - NumElts);
   1571     }
   1572 
   1573     // See if we can simplify either shuffle operand.
   1574     APInt UndefLHS, ZeroLHS;
   1575     APInt UndefRHS, ZeroRHS;
   1576     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
   1577                                    ZeroLHS, TLO, Depth + 1))
   1578       return true;
   1579     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
   1580                                    ZeroRHS, TLO, Depth + 1))
   1581       return true;
   1582 
   1583     // Simplify mask using undef elements from LHS/RHS.
   1584     bool Updated = false;
   1585     bool IdentityLHS = true, IdentityRHS = true;
   1586     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
   1587     for (unsigned i = 0; i != NumElts; ++i) {
   1588       int &M = NewMask[i];
   1589       if (M < 0)
   1590         continue;
   1591       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
   1592           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
   1593         Updated = true;
   1594         M = -1;
   1595       }
   1596       IdentityLHS &= (M < 0) || (M == (int)i);
   1597       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
   1598     }
   1599 
   1600     // Update legal shuffle masks based on demanded elements if it won't reduce
   1601     // to Identity which can cause premature removal of the shuffle mask.
   1602     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
   1603         isShuffleMaskLegal(NewMask, VT))
   1604       return TLO.CombineTo(Op,
   1605                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
   1606                                                     Op.getOperand(1), NewMask));
   1607 
   1608     // Propagate undef/zero elements from LHS/RHS.
   1609     for (unsigned i = 0; i != NumElts; ++i) {
   1610       int M = ShuffleMask[i];
   1611       if (M < 0) {
   1612         KnownUndef.setBit(i);
   1613       } else if (M < (int)NumElts) {
   1614         if (UndefLHS[M])
   1615           KnownUndef.setBit(i);
   1616         if (ZeroLHS[M])
   1617           KnownZero.setBit(i);
   1618       } else {
   1619         if (UndefRHS[M - NumElts])
   1620           KnownUndef.setBit(i);
   1621         if (ZeroRHS[M - NumElts])
   1622           KnownZero.setBit(i);
   1623       }
   1624     }
   1625     break;
   1626   }
   1627   case ISD::ADD:
   1628   case ISD::SUB: {
   1629     APInt SrcUndef, SrcZero;
   1630     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
   1631                                    SrcZero, TLO, Depth + 1))
   1632       return true;
   1633     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
   1634                                    KnownZero, TLO, Depth + 1))
   1635       return true;
   1636     KnownZero &= SrcZero;
   1637     KnownUndef &= SrcUndef;
   1638     break;
   1639   }
   1640   case ISD::TRUNCATE:
   1641     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
   1642                                    KnownZero, TLO, Depth + 1))
   1643       return true;
   1644     break;
   1645   default: {
   1646     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
   1647       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
   1648                                                   KnownZero, TLO, Depth))
   1649         return true;
   1650     break;
   1651   }
   1652   }
   1653 
   1654   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
   1655   return false;
   1656 }
   1657 
   1658 /// Determine which of the bits specified in Mask are known to be either zero or
   1659 /// one and return them in the Known.
   1660 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1661                                                    KnownBits &Known,
   1662                                                    const APInt &DemandedElts,
   1663                                                    const SelectionDAG &DAG,
   1664                                                    unsigned Depth) const {
   1665   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1666           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1667           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1668           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1669          "Should use MaskedValueIsZero if you don't know whether Op"
   1670          " is a target node!");
   1671   Known.resetAll();
   1672 }
   1673 
   1674 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
   1675                                                    KnownBits &Known,
   1676                                                    const APInt &DemandedElts,
   1677                                                    const SelectionDAG &DAG,
   1678                                                    unsigned Depth) const {
   1679   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
   1680 
   1681   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
   1682     // The low bits are known zero if the pointer is aligned.
   1683     Known.Zero.setLowBits(Log2_32(Align));
   1684   }
   1685 }
   1686 
   1687 /// This method can be implemented by targets that want to expose additional
   1688 /// information about sign bits to the DAG Combiner.
   1689 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1690                                                          const APInt &,
   1691                                                          const SelectionDAG &,
   1692                                                          unsigned Depth) const {
   1693   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1694           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1695           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1696           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1697          "Should use ComputeNumSignBits if you don't know whether Op"
   1698          " is a target node!");
   1699   return 1;
   1700 }
   1701 
   1702 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
   1703     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
   1704     TargetLoweringOpt &TLO, unsigned Depth) const {
   1705   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1706           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1707           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1708           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1709          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
   1710          " is a target node!");
   1711   return false;
   1712 }
   1713 
   1714 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
   1715 // work with truncating build vectors and vectors with elements of less than
   1716 // 8 bits.
   1717 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
   1718   if (!N)
   1719     return false;
   1720 
   1721   APInt CVal;
   1722   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
   1723     CVal = CN->getAPIntValue();
   1724   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
   1725     auto *CN = BV->getConstantSplatNode();
   1726     if (!CN)
   1727       return false;
   1728 
   1729     // If this is a truncating build vector, truncate the splat value.
   1730     // Otherwise, we may fail to match the expected values below.
   1731     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
   1732     CVal = CN->getAPIntValue();
   1733     if (BVEltWidth < CVal.getBitWidth())
   1734       CVal = CVal.trunc(BVEltWidth);
   1735   } else {
   1736     return false;
   1737   }
   1738 
   1739   switch (getBooleanContents(N->getValueType(0))) {
   1740   case UndefinedBooleanContent:
   1741     return CVal[0];
   1742   case ZeroOrOneBooleanContent:
   1743     return CVal.isOneValue();
   1744   case ZeroOrNegativeOneBooleanContent:
   1745     return CVal.isAllOnesValue();
   1746   }
   1747 
   1748   llvm_unreachable("Invalid boolean contents");
   1749 }
   1750 
   1751 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
   1752   if (!N)
   1753     return false;
   1754 
   1755   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1756   if (!CN) {
   1757     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1758     if (!BV)
   1759       return false;
   1760 
   1761     // Only interested in constant splats, we don't care about undef
   1762     // elements in identifying boolean constants and getConstantSplatNode
   1763     // returns NULL if all ops are undef;
   1764     CN = BV->getConstantSplatNode();
   1765     if (!CN)
   1766       return false;
   1767   }
   1768 
   1769   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
   1770     return !CN->getAPIntValue()[0];
   1771 
   1772   return CN->isNullValue();
   1773 }
   1774 
   1775 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
   1776                                        bool SExt) const {
   1777   if (VT == MVT::i1)
   1778     return N->isOne();
   1779 
   1780   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
   1781   switch (Cnt) {
   1782   case TargetLowering::ZeroOrOneBooleanContent:
   1783     // An extended value of 1 is always true, unless its original type is i1,
   1784     // in which case it will be sign extended to -1.
   1785     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
   1786   case TargetLowering::UndefinedBooleanContent:
   1787   case TargetLowering::ZeroOrNegativeOneBooleanContent:
   1788     return N->isAllOnesValue() && SExt;
   1789   }
   1790   llvm_unreachable("Unexpected enumeration.");
   1791 }
   1792 
   1793 /// This helper function of SimplifySetCC tries to optimize the comparison when
   1794 /// either operand of the SetCC node is a bitwise-and instruction.
   1795 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
   1796                                              ISD::CondCode Cond,
   1797                                              DAGCombinerInfo &DCI,
   1798                                              const SDLoc &DL) const {
   1799   // Match these patterns in any of their permutations:
   1800   // (X & Y) == Y
   1801   // (X & Y) != Y
   1802   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
   1803     std::swap(N0, N1);
   1804 
   1805   EVT OpVT = N0.getValueType();
   1806   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
   1807       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
   1808     return SDValue();
   1809 
   1810   SDValue X, Y;
   1811   if (N0.getOperand(0) == N1) {
   1812     X = N0.getOperand(1);
   1813     Y = N0.getOperand(0);
   1814   } else if (N0.getOperand(1) == N1) {
   1815     X = N0.getOperand(0);
   1816     Y = N0.getOperand(1);
   1817   } else {
   1818     return SDValue();
   1819   }
   1820 
   1821   SelectionDAG &DAG = DCI.DAG;
   1822   SDValue Zero = DAG.getConstant(0, DL, OpVT);
   1823   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
   1824     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
   1825     // Note that where Y is variable and is known to have at most one bit set
   1826     // (for example, if it is Z & 1) we cannot do this; the expressions are not
   1827     // equivalent when Y == 0.
   1828     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1829     if (DCI.isBeforeLegalizeOps() ||
   1830         isCondCodeLegal(Cond, N0.getSimpleValueType()))
   1831       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
   1832   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
   1833     // If the target supports an 'and-not' or 'and-complement' logic operation,
   1834     // try to use that to make a comparison operation more efficient.
   1835     // But don't do this transform if the mask is a single bit because there are
   1836     // more efficient ways to deal with that case (for example, 'bt' on x86 or
   1837     // 'rlwinm' on PPC).
   1838 
   1839     // Bail out if the compare operand that we want to turn into a zero is
   1840     // already a zero (otherwise, infinite loop).
   1841     auto *YConst = dyn_cast<ConstantSDNode>(Y);
   1842     if (YConst && YConst->isNullValue())
   1843       return SDValue();
   1844 
   1845     // Transform this into: ~X & Y == 0.
   1846     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
   1847     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
   1848     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
   1849   }
   1850 
   1851   return SDValue();
   1852 }
   1853 
   1854 /// There are multiple IR patterns that could be checking whether certain
   1855 /// truncation of a signed number would be lossy or not. The pattern which is
   1856 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
   1857 /// We are looking for the following pattern: (KeptBits is a constant)
   1858 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
   1859 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
   1860 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
   1861 /// We will unfold it into the natural trunc+sext pattern:
   1862 ///   ((%x << C) a>> C) dstcond %x
   1863 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
   1864 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
   1865     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
   1866     const SDLoc &DL) const {
   1867   // We must be comparing with a constant.
   1868   ConstantSDNode *C1;
   1869   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
   1870     return SDValue();
   1871 
   1872   // N0 should be:  add %x, (1 << (KeptBits-1))
   1873   if (N0->getOpcode() != ISD::ADD)
   1874     return SDValue();
   1875 
   1876   // And we must be 'add'ing a constant.
   1877   ConstantSDNode *C01;
   1878   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
   1879     return SDValue();
   1880 
   1881   SDValue X = N0->getOperand(0);
   1882   EVT XVT = X.getValueType();
   1883 
   1884   // Validate constants ...
   1885 
   1886   APInt I1 = C1->getAPIntValue();
   1887 
   1888   ISD::CondCode NewCond;
   1889   if (Cond == ISD::CondCode::SETULT) {
   1890     NewCond = ISD::CondCode::SETEQ;
   1891   } else if (Cond == ISD::CondCode::SETULE) {
   1892     NewCond = ISD::CondCode::SETEQ;
   1893     // But need to 'canonicalize' the constant.
   1894     I1 += 1;
   1895   } else if (Cond == ISD::CondCode::SETUGT) {
   1896     NewCond = ISD::CondCode::SETNE;
   1897     // But need to 'canonicalize' the constant.
   1898     I1 += 1;
   1899   } else if (Cond == ISD::CondCode::SETUGE) {
   1900     NewCond = ISD::CondCode::SETNE;
   1901   } else
   1902     return SDValue();
   1903 
   1904   const APInt &I01 = C01->getAPIntValue();
   1905   // Both of them must be power-of-two, and the constant from setcc is bigger.
   1906   if (!(I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2()))
   1907     return SDValue();
   1908 
   1909   // They are power-of-two, so which bit is set?
   1910   const unsigned KeptBits = I1.logBase2();
   1911   const unsigned KeptBitsMinusOne = I01.logBase2();
   1912 
   1913   // Magic!
   1914   if (KeptBits != (KeptBitsMinusOne + 1))
   1915     return SDValue();
   1916   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
   1917 
   1918   // We don't want to do this in every single case.
   1919   SelectionDAG &DAG = DCI.DAG;
   1920   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
   1921           XVT, KeptBits))
   1922     return SDValue();
   1923 
   1924   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
   1925   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
   1926 
   1927   // Unfold into:  ((%x << C) a>> C) cond %x
   1928   // Where 'cond' will be either 'eq' or 'ne'.
   1929   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
   1930   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
   1931   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
   1932   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
   1933 
   1934   return T2;
   1935 }
   1936 
   1937 /// Try to simplify a setcc built with the specified operands and cc. If it is
   1938 /// unable to simplify it, return a null SDValue.
   1939 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1940                                       ISD::CondCode Cond, bool foldBooleans,
   1941                                       DAGCombinerInfo &DCI,
   1942                                       const SDLoc &dl) const {
   1943   SelectionDAG &DAG = DCI.DAG;
   1944   EVT OpVT = N0.getValueType();
   1945 
   1946   // These setcc operations always fold.
   1947   switch (Cond) {
   1948   default: break;
   1949   case ISD::SETFALSE:
   1950   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
   1951   case ISD::SETTRUE:
   1952   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
   1953   }
   1954 
   1955   // Ensure that the constant occurs on the RHS and fold constant comparisons.
   1956   // TODO: Handle non-splat vector constants. All undef causes trouble.
   1957   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
   1958   if (isConstOrConstSplat(N0) &&
   1959       (DCI.isBeforeLegalizeOps() ||
   1960        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
   1961     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
   1962 
   1963   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1964     const APInt &C1 = N1C->getAPIntValue();
   1965 
   1966     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1967     // equality comparison, then we're just comparing whether X itself is
   1968     // zero.
   1969     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
   1970         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1971         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1972       const APInt &ShAmt
   1973         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1974       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1975           ShAmt == Log2_32(N0.getValueSizeInBits())) {
   1976         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1977           // (srl (ctlz x), 5) == 0  -> X != 0
   1978           // (srl (ctlz x), 5) != 1  -> X != 0
   1979           Cond = ISD::SETNE;
   1980         } else {
   1981           // (srl (ctlz x), 5) != 0  -> X == 0
   1982           // (srl (ctlz x), 5) == 1  -> X == 0
   1983           Cond = ISD::SETEQ;
   1984         }
   1985         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
   1986         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1987                             Zero, Cond);
   1988       }
   1989     }
   1990 
   1991     SDValue CTPOP = N0;
   1992     // Look through truncs that don't change the value of a ctpop.
   1993     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1994       CTPOP = N0.getOperand(0);
   1995 
   1996     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1997         (N0 == CTPOP ||
   1998          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
   1999       EVT CTVT = CTPOP.getValueType();
   2000       SDValue CTOp = CTPOP.getOperand(0);
   2001 
   2002       // (ctpop x) u< 2 -> (x & x-1) == 0
   2003       // (ctpop x) u> 1 -> (x & x-1) != 0
   2004       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   2005         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   2006                                   DAG.getConstant(1, dl, CTVT));
   2007         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   2008         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   2009         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
   2010       }
   2011 
   2012       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   2013     }
   2014 
   2015     // (zext x) == C --> x == (trunc C)
   2016     // (sext x) == C --> x == (trunc C)
   2017     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2018         DCI.isBeforeLegalize() && N0->hasOneUse()) {
   2019       unsigned MinBits = N0.getValueSizeInBits();
   2020       SDValue PreExt;
   2021       bool Signed = false;
   2022       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   2023         // ZExt
   2024         MinBits = N0->getOperand(0).getValueSizeInBits();
   2025         PreExt = N0->getOperand(0);
   2026       } else if (N0->getOpcode() == ISD::AND) {
   2027         // DAGCombine turns costly ZExts into ANDs
   2028         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   2029           if ((C->getAPIntValue()+1).isPowerOf2()) {
   2030             MinBits = C->getAPIntValue().countTrailingOnes();
   2031             PreExt = N0->getOperand(0);
   2032           }
   2033       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
   2034         // SExt
   2035         MinBits = N0->getOperand(0).getValueSizeInBits();
   2036         PreExt = N0->getOperand(0);
   2037         Signed = true;
   2038       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
   2039         // ZEXTLOAD / SEXTLOAD
   2040         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   2041           MinBits = LN0->getMemoryVT().getSizeInBits();
   2042           PreExt = N0;
   2043         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
   2044           Signed = true;
   2045           MinBits = LN0->getMemoryVT().getSizeInBits();
   2046           PreExt = N0;
   2047         }
   2048       }
   2049 
   2050       // Figure out how many bits we need to preserve this constant.
   2051       unsigned ReqdBits = Signed ?
   2052         C1.getBitWidth() - C1.getNumSignBits() + 1 :
   2053         C1.getActiveBits();
   2054 
   2055       // Make sure we're not losing bits from the constant.
   2056       if (MinBits > 0 &&
   2057           MinBits < C1.getBitWidth() &&
   2058           MinBits >= ReqdBits) {
   2059         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   2060         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   2061           // Will get folded away.
   2062           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
   2063           if (MinBits == 1 && C1 == 1)
   2064             // Invert the condition.
   2065             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
   2066                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2067           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
   2068           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   2069         }
   2070 
   2071         // If truncating the setcc operands is not desirable, we can still
   2072         // simplify the expression in some cases:
   2073         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
   2074         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
   2075         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
   2076         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
   2077         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
   2078         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
   2079         SDValue TopSetCC = N0->getOperand(0);
   2080         unsigned N0Opc = N0->getOpcode();
   2081         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
   2082         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
   2083             TopSetCC.getOpcode() == ISD::SETCC &&
   2084             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
   2085             (isConstFalseVal(N1C) ||
   2086              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
   2087 
   2088           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
   2089                          (!N1C->isNullValue() && Cond == ISD::SETNE);
   2090 
   2091           if (!Inverse)
   2092             return TopSetCC;
   2093 
   2094           ISD::CondCode InvCond = ISD::getSetCCInverse(
   2095               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
   2096               TopSetCC.getOperand(0).getValueType().isInteger());
   2097           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
   2098                                       TopSetCC.getOperand(1),
   2099                                       InvCond);
   2100         }
   2101       }
   2102     }
   2103 
   2104     // If the LHS is '(and load, const)', the RHS is 0, the test is for
   2105     // equality or unsigned, and all 1 bits of the const are in the same
   2106     // partial word, see if we can shorten the load.
   2107     if (DCI.isBeforeLegalize() &&
   2108         !ISD::isSignedIntSetCC(Cond) &&
   2109         N0.getOpcode() == ISD::AND && C1 == 0 &&
   2110         N0.getNode()->hasOneUse() &&
   2111         isa<LoadSDNode>(N0.getOperand(0)) &&
   2112         N0.getOperand(0).getNode()->hasOneUse() &&
   2113         isa<ConstantSDNode>(N0.getOperand(1))) {
   2114       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   2115       APInt bestMask;
   2116       unsigned bestWidth = 0, bestOffset = 0;
   2117       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   2118         unsigned origWidth = N0.getValueSizeInBits();
   2119         unsigned maskWidth = origWidth;
   2120         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   2121         // 8 bits, but have to be careful...
   2122         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   2123           origWidth = Lod->getMemoryVT().getSizeInBits();
   2124         const APInt &Mask =
   2125           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   2126         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   2127           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   2128           for (unsigned offset=0; offset<origWidth/width; offset++) {
   2129             if (Mask.isSubsetOf(newMask)) {
   2130               if (DAG.getDataLayout().isLittleEndian())
   2131                 bestOffset = (uint64_t)offset * (width/8);
   2132               else
   2133                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   2134               bestMask = Mask.lshr(offset * (width/8) * 8);
   2135               bestWidth = width;
   2136               break;
   2137             }
   2138             newMask <<= width;
   2139           }
   2140         }
   2141       }
   2142       if (bestWidth) {
   2143         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   2144         if (newVT.isRound()) {
   2145           EVT PtrType = Lod->getOperand(1).getValueType();
   2146           SDValue Ptr = Lod->getBasePtr();
   2147           if (bestOffset != 0)
   2148             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   2149                               DAG.getConstant(bestOffset, dl, PtrType));
   2150           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   2151           SDValue NewLoad = DAG.getLoad(
   2152               newVT, dl, Lod->getChain(), Ptr,
   2153               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
   2154           return DAG.getSetCC(dl, VT,
   2155                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   2156                                       DAG.getConstant(bestMask.trunc(bestWidth),
   2157                                                       dl, newVT)),
   2158                               DAG.getConstant(0LL, dl, newVT), Cond);
   2159         }
   2160       }
   2161     }
   2162 
   2163     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   2164     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   2165       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
   2166 
   2167       // If the comparison constant has bits in the upper part, the
   2168       // zero-extended value could never match.
   2169       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   2170                                               C1.getBitWidth() - InSize))) {
   2171         switch (Cond) {
   2172         case ISD::SETUGT:
   2173         case ISD::SETUGE:
   2174         case ISD::SETEQ:
   2175           return DAG.getConstant(0, dl, VT);
   2176         case ISD::SETULT:
   2177         case ISD::SETULE:
   2178         case ISD::SETNE:
   2179           return DAG.getConstant(1, dl, VT);
   2180         case ISD::SETGT:
   2181         case ISD::SETGE:
   2182           // True if the sign bit of C1 is set.
   2183           return DAG.getConstant(C1.isNegative(), dl, VT);
   2184         case ISD::SETLT:
   2185         case ISD::SETLE:
   2186           // True if the sign bit of C1 isn't set.
   2187           return DAG.getConstant(C1.isNonNegative(), dl, VT);
   2188         default:
   2189           break;
   2190         }
   2191       }
   2192 
   2193       // Otherwise, we can perform the comparison with the low bits.
   2194       switch (Cond) {
   2195       case ISD::SETEQ:
   2196       case ISD::SETNE:
   2197       case ISD::SETUGT:
   2198       case ISD::SETUGE:
   2199       case ISD::SETULT:
   2200       case ISD::SETULE: {
   2201         EVT newVT = N0.getOperand(0).getValueType();
   2202         if (DCI.isBeforeLegalizeOps() ||
   2203             (isOperationLegal(ISD::SETCC, newVT) &&
   2204              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
   2205           EVT NewSetCCVT =
   2206               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
   2207           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
   2208 
   2209           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
   2210                                           NewConst, Cond);
   2211           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
   2212         }
   2213         break;
   2214       }
   2215       default:
   2216         break;   // todo, be more careful with signed comparisons
   2217       }
   2218     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   2219                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2220       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   2221       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   2222       EVT ExtDstTy = N0.getValueType();
   2223       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   2224 
   2225       // If the constant doesn't fit into the number of bits for the source of
   2226       // the sign extension, it is impossible for both sides to be equal.
   2227       if (C1.getMinSignedBits() > ExtSrcTyBits)
   2228         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
   2229 
   2230       SDValue ZextOp;
   2231       EVT Op0Ty = N0.getOperand(0).getValueType();
   2232       if (Op0Ty == ExtSrcTy) {
   2233         ZextOp = N0.getOperand(0);
   2234       } else {
   2235         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   2236         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   2237                               DAG.getConstant(Imm, dl, Op0Ty));
   2238       }
   2239       if (!DCI.isCalledByLegalizer())
   2240         DCI.AddToWorklist(ZextOp.getNode());
   2241       // Otherwise, make this a use of a zext.
   2242       return DAG.getSetCC(dl, VT, ZextOp,
   2243                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   2244                                                               ExtDstTyBits,
   2245                                                               ExtSrcTyBits),
   2246                                           dl, ExtDstTy),
   2247                           Cond);
   2248     } else if ((N1C->isNullValue() || N1C->isOne()) &&
   2249                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2250       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   2251       if (N0.getOpcode() == ISD::SETCC &&
   2252           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   2253         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
   2254         if (TrueWhenTrue)
   2255           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   2256         // Invert the condition.
   2257         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   2258         CC = ISD::getSetCCInverse(CC,
   2259                                   N0.getOperand(0).getValueType().isInteger());
   2260         if (DCI.isBeforeLegalizeOps() ||
   2261             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
   2262           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   2263       }
   2264 
   2265       if ((N0.getOpcode() == ISD::XOR ||
   2266            (N0.getOpcode() == ISD::AND &&
   2267             N0.getOperand(0).getOpcode() == ISD::XOR &&
   2268             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   2269           isa<ConstantSDNode>(N0.getOperand(1)) &&
   2270           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
   2271         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   2272         // can only do this if the top bits are known zero.
   2273         unsigned BitWidth = N0.getValueSizeInBits();
   2274         if (DAG.MaskedValueIsZero(N0,
   2275                                   APInt::getHighBitsSet(BitWidth,
   2276                                                         BitWidth-1))) {
   2277           // Okay, get the un-inverted input value.
   2278           SDValue Val;
   2279           if (N0.getOpcode() == ISD::XOR) {
   2280             Val = N0.getOperand(0);
   2281           } else {
   2282             assert(N0.getOpcode() == ISD::AND &&
   2283                     N0.getOperand(0).getOpcode() == ISD::XOR);
   2284             // ((X^1)&1)^1 -> X & 1
   2285             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   2286                               N0.getOperand(0).getOperand(0),
   2287                               N0.getOperand(1));
   2288           }
   2289 
   2290           return DAG.getSetCC(dl, VT, Val, N1,
   2291                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2292         }
   2293       } else if (N1C->isOne() &&
   2294                  (VT == MVT::i1 ||
   2295                   getBooleanContents(N0->getValueType(0)) ==
   2296                       ZeroOrOneBooleanContent)) {
   2297         SDValue Op0 = N0;
   2298         if (Op0.getOpcode() == ISD::TRUNCATE)
   2299           Op0 = Op0.getOperand(0);
   2300 
   2301         if ((Op0.getOpcode() == ISD::XOR) &&
   2302             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   2303             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   2304           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   2305           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   2306           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   2307                               Cond);
   2308         }
   2309         if (Op0.getOpcode() == ISD::AND &&
   2310             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   2311             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
   2312           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   2313           if (Op0.getValueType().bitsGT(VT))
   2314             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2315                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   2316                           DAG.getConstant(1, dl, VT));
   2317           else if (Op0.getValueType().bitsLT(VT))
   2318             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2319                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   2320                         DAG.getConstant(1, dl, VT));
   2321 
   2322           return DAG.getSetCC(dl, VT, Op0,
   2323                               DAG.getConstant(0, dl, Op0.getValueType()),
   2324                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2325         }
   2326         if (Op0.getOpcode() == ISD::AssertZext &&
   2327             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   2328           return DAG.getSetCC(dl, VT, Op0,
   2329                               DAG.getConstant(0, dl, Op0.getValueType()),
   2330                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2331       }
   2332     }
   2333 
   2334     if (SDValue V =
   2335             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
   2336       return V;
   2337   }
   2338 
   2339   // These simplifications apply to splat vectors as well.
   2340   // TODO: Handle more splat vector cases.
   2341   if (auto *N1C = isConstOrConstSplat(N1)) {
   2342     const APInt &C1 = N1C->getAPIntValue();
   2343 
   2344     APInt MinVal, MaxVal;
   2345     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
   2346     if (ISD::isSignedIntSetCC(Cond)) {
   2347       MinVal = APInt::getSignedMinValue(OperandBitSize);
   2348       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   2349     } else {
   2350       MinVal = APInt::getMinValue(OperandBitSize);
   2351       MaxVal = APInt::getMaxValue(OperandBitSize);
   2352     }
   2353 
   2354     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   2355     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   2356       // X >= MIN --> true
   2357       if (C1 == MinVal)
   2358         return DAG.getBoolConstant(true, dl, VT, OpVT);
   2359 
   2360       if (!VT.isVector()) { // TODO: Support this for vectors.
   2361         // X >= C0 --> X > (C0 - 1)
   2362         APInt C = C1 - 1;
   2363         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
   2364         if ((DCI.isBeforeLegalizeOps() ||
   2365              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   2366             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
   2367                                   isLegalICmpImmediate(C.getSExtValue())))) {
   2368           return DAG.getSetCC(dl, VT, N0,
   2369                               DAG.getConstant(C, dl, N1.getValueType()),
   2370                               NewCC);
   2371         }
   2372       }
   2373     }
   2374 
   2375     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   2376       // X <= MAX --> true
   2377       if (C1 == MaxVal)
   2378         return DAG.getBoolConstant(true, dl, VT, OpVT);
   2379 
   2380       // X <= C0 --> X < (C0 + 1)
   2381       if (!VT.isVector()) { // TODO: Support this for vectors.
   2382         APInt C = C1 + 1;
   2383         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
   2384         if ((DCI.isBeforeLegalizeOps() ||
   2385              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   2386             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
   2387                                   isLegalICmpImmediate(C.getSExtValue())))) {
   2388           return DAG.getSetCC(dl, VT, N0,
   2389                               DAG.getConstant(C, dl, N1.getValueType()),
   2390                               NewCC);
   2391         }
   2392       }
   2393     }
   2394 
   2395     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
   2396       if (C1 == MinVal)
   2397         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
   2398 
   2399       // TODO: Support this for vectors after legalize ops.
   2400       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
   2401         // Canonicalize setlt X, Max --> setne X, Max
   2402         if (C1 == MaxVal)
   2403           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2404 
   2405         // If we have setult X, 1, turn it into seteq X, 0
   2406         if (C1 == MinVal+1)
   2407           return DAG.getSetCC(dl, VT, N0,
   2408                               DAG.getConstant(MinVal, dl, N0.getValueType()),
   2409                               ISD::SETEQ);
   2410       }
   2411     }
   2412 
   2413     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
   2414       if (C1 == MaxVal)
   2415         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
   2416 
   2417       // TODO: Support this for vectors after legalize ops.
   2418       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
   2419         // Canonicalize setgt X, Min --> setne X, Min
   2420         if (C1 == MinVal)
   2421           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2422 
   2423         // If we have setugt X, Max-1, turn it into seteq X, Max
   2424         if (C1 == MaxVal-1)
   2425           return DAG.getSetCC(dl, VT, N0,
   2426                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
   2427                               ISD::SETEQ);
   2428       }
   2429     }
   2430 
   2431     // If we have "setcc X, C0", check to see if we can shrink the immediate
   2432     // by changing cc.
   2433     // TODO: Support this for vectors after legalize ops.
   2434     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
   2435       // SETUGT X, SINTMAX  -> SETLT X, 0
   2436       if (Cond == ISD::SETUGT &&
   2437           C1 == APInt::getSignedMaxValue(OperandBitSize))
   2438         return DAG.getSetCC(dl, VT, N0,
   2439                             DAG.getConstant(0, dl, N1.getValueType()),
   2440                             ISD::SETLT);
   2441 
   2442       // SETULT X, SINTMIN  -> SETGT X, -1
   2443       if (Cond == ISD::SETULT &&
   2444           C1 == APInt::getSignedMinValue(OperandBitSize)) {
   2445         SDValue ConstMinusOne =
   2446             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
   2447                             N1.getValueType());
   2448         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   2449       }
   2450     }
   2451   }
   2452 
   2453   // Back to non-vector simplifications.
   2454   // TODO: Can we do these for vector splats?
   2455   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   2456     const APInt &C1 = N1C->getAPIntValue();
   2457 
   2458     // Fold bit comparisons when we can.
   2459     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2460         (VT == N0.getValueType() ||
   2461          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   2462         N0.getOpcode() == ISD::AND) {
   2463       auto &DL = DAG.getDataLayout();
   2464       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2465         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
   2466                                        !DCI.isBeforeLegalize());
   2467         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   2468           // Perform the xform if the AND RHS is a single bit.
   2469           if (AndRHS->getAPIntValue().isPowerOf2()) {
   2470             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2471                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2472                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
   2473                                    ShiftTy)));
   2474           }
   2475         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   2476           // (X & 8) == 8  -->  (X & 8) >> 3
   2477           // Perform the xform if C1 is a single bit.
   2478           if (C1.isPowerOf2()) {
   2479             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2480                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2481                                       DAG.getConstant(C1.logBase2(), dl,
   2482                                                       ShiftTy)));
   2483           }
   2484         }
   2485       }
   2486     }
   2487 
   2488     if (C1.getMinSignedBits() <= 64 &&
   2489         !isLegalICmpImmediate(C1.getSExtValue())) {
   2490       // (X & -256) == 256 -> (X >> 8) == 1
   2491       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2492           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   2493         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2494           const APInt &AndRHSC = AndRHS->getAPIntValue();
   2495           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   2496             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   2497             auto &DL = DAG.getDataLayout();
   2498             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
   2499                                            !DCI.isBeforeLegalize());
   2500             EVT CmpTy = N0.getValueType();
   2501             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   2502                                         DAG.getConstant(ShiftBits, dl,
   2503                                                         ShiftTy));
   2504             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
   2505             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   2506           }
   2507         }
   2508       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   2509                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   2510         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   2511         // X <  0x100000000 -> (X >> 32) <  1
   2512         // X >= 0x100000000 -> (X >> 32) >= 1
   2513         // X <= 0x0ffffffff -> (X >> 32) <  1
   2514         // X >  0x0ffffffff -> (X >> 32) >= 1
   2515         unsigned ShiftBits;
   2516         APInt NewC = C1;
   2517         ISD::CondCode NewCond = Cond;
   2518         if (AdjOne) {
   2519           ShiftBits = C1.countTrailingOnes();
   2520           NewC = NewC + 1;
   2521           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   2522         } else {
   2523           ShiftBits = C1.countTrailingZeros();
   2524         }
   2525         NewC.lshrInPlace(ShiftBits);
   2526         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
   2527           isLegalICmpImmediate(NewC.getSExtValue())) {
   2528           auto &DL = DAG.getDataLayout();
   2529           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
   2530                                          !DCI.isBeforeLegalize());
   2531           EVT CmpTy = N0.getValueType();
   2532           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   2533                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
   2534           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
   2535           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   2536         }
   2537       }
   2538     }
   2539   }
   2540 
   2541   if (isa<ConstantFPSDNode>(N0.getNode())) {
   2542     // Constant fold or commute setcc.
   2543     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   2544     if (O.getNode()) return O;
   2545   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   2546     // If the RHS of an FP comparison is a constant, simplify it away in
   2547     // some cases.
   2548     if (CFP->getValueAPF().isNaN()) {
   2549       // If an operand is known to be a nan, we can fold it.
   2550       switch (ISD::getUnorderedFlavor(Cond)) {
   2551       default: llvm_unreachable("Unknown flavor!");
   2552       case 0:  // Known false.
   2553         return DAG.getBoolConstant(false, dl, VT, OpVT);
   2554       case 1:  // Known true.
   2555         return DAG.getBoolConstant(true, dl, VT, OpVT);
   2556       case 2:  // Undefined.
   2557         return DAG.getUNDEF(VT);
   2558       }
   2559     }
   2560 
   2561     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   2562     // constant if knowing that the operand is non-nan is enough.  We prefer to
   2563     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   2564     // materialize 0.0.
   2565     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   2566       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   2567 
   2568     // setcc (fneg x), C -> setcc swap(pred) x, -C
   2569     if (N0.getOpcode() == ISD::FNEG) {
   2570       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
   2571       if (DCI.isBeforeLegalizeOps() ||
   2572           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
   2573         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
   2574         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
   2575       }
   2576     }
   2577 
   2578     // If the condition is not legal, see if we can find an equivalent one
   2579     // which is legal.
   2580     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   2581       // If the comparison was an awkward floating-point == or != and one of
   2582       // the comparison operands is infinity or negative infinity, convert the
   2583       // condition to a less-awkward <= or >=.
   2584       if (CFP->getValueAPF().isInfinity()) {
   2585         if (CFP->getValueAPF().isNegative()) {
   2586           if (Cond == ISD::SETOEQ &&
   2587               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   2588             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   2589           if (Cond == ISD::SETUEQ &&
   2590               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   2591             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   2592           if (Cond == ISD::SETUNE &&
   2593               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   2594             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   2595           if (Cond == ISD::SETONE &&
   2596               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   2597             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   2598         } else {
   2599           if (Cond == ISD::SETOEQ &&
   2600               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   2601             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   2602           if (Cond == ISD::SETUEQ &&
   2603               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   2604             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   2605           if (Cond == ISD::SETUNE &&
   2606               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   2607             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   2608           if (Cond == ISD::SETONE &&
   2609               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   2610             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   2611         }
   2612       }
   2613     }
   2614   }
   2615 
   2616   if (N0 == N1) {
   2617     // The sext(setcc()) => setcc() optimization relies on the appropriate
   2618     // constant being emitted.
   2619 
   2620     bool EqTrue = ISD::isTrueWhenEqual(Cond);
   2621 
   2622     // We can always fold X == X for integer setcc's.
   2623     if (N0.getValueType().isInteger())
   2624       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
   2625 
   2626     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   2627     if (UOF == 2)   // FP operators that are undefined on NaNs.
   2628       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
   2629     if (UOF == unsigned(EqTrue))
   2630       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
   2631     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   2632     // if it is not already.
   2633     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   2634     if (NewCond != Cond &&
   2635         (DCI.isBeforeLegalizeOps() ||
   2636          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
   2637       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   2638   }
   2639 
   2640   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2641       N0.getValueType().isInteger()) {
   2642     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   2643         N0.getOpcode() == ISD::XOR) {
   2644       // Simplify (X+Y) == (X+Z) -->  Y == Z
   2645       if (N0.getOpcode() == N1.getOpcode()) {
   2646         if (N0.getOperand(0) == N1.getOperand(0))
   2647           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   2648         if (N0.getOperand(1) == N1.getOperand(1))
   2649           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   2650         if (isCommutativeBinOp(N0.getOpcode())) {
   2651           // If X op Y == Y op X, try other combinations.
   2652           if (N0.getOperand(0) == N1.getOperand(1))
   2653             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   2654                                 Cond);
   2655           if (N0.getOperand(1) == N1.getOperand(0))
   2656             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   2657                                 Cond);
   2658         }
   2659       }
   2660 
   2661       // If RHS is a legal immediate value for a compare instruction, we need
   2662       // to be careful about increasing register pressure needlessly.
   2663       bool LegalRHSImm = false;
   2664 
   2665       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   2666         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2667           // Turn (X+C1) == C2 --> X == C2-C1
   2668           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   2669             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2670                                 DAG.getConstant(RHSC->getAPIntValue()-
   2671                                                 LHSR->getAPIntValue(),
   2672                                 dl, N0.getValueType()), Cond);
   2673           }
   2674 
   2675           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   2676           if (N0.getOpcode() == ISD::XOR)
   2677             // If we know that all of the inverted bits are zero, don't bother
   2678             // performing the inversion.
   2679             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   2680               return
   2681                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   2682                              DAG.getConstant(LHSR->getAPIntValue() ^
   2683                                                RHSC->getAPIntValue(),
   2684                                              dl, N0.getValueType()),
   2685                              Cond);
   2686         }
   2687 
   2688         // Turn (C1-X) == C2 --> X == C1-C2
   2689         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   2690           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   2691             return
   2692               DAG.getSetCC(dl, VT, N0.getOperand(1),
   2693                            DAG.getConstant(SUBC->getAPIntValue() -
   2694                                              RHSC->getAPIntValue(),
   2695                                            dl, N0.getValueType()),
   2696                            Cond);
   2697           }
   2698         }
   2699 
   2700         // Could RHSC fold directly into a compare?
   2701         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   2702           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   2703       }
   2704 
   2705       // Simplify (X+Z) == X -->  Z == 0
   2706       // Don't do this if X is an immediate that can fold into a cmp
   2707       // instruction and X+Z has other uses. It could be an induction variable
   2708       // chain, and the transform would increase register pressure.
   2709       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   2710         if (N0.getOperand(0) == N1)
   2711           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   2712                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
   2713         if (N0.getOperand(1) == N1) {
   2714           if (isCommutativeBinOp(N0.getOpcode()))
   2715             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2716                                 DAG.getConstant(0, dl, N0.getValueType()),
   2717                                 Cond);
   2718           if (N0.getNode()->hasOneUse()) {
   2719             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   2720             auto &DL = DAG.getDataLayout();
   2721             // (Z-X) == X  --> Z == X<<1
   2722             SDValue SH = DAG.getNode(
   2723                 ISD::SHL, dl, N1.getValueType(), N1,
   2724                 DAG.getConstant(1, dl,
   2725                                 getShiftAmountTy(N1.getValueType(), DL,
   2726                                                  !DCI.isBeforeLegalize())));
   2727             if (!DCI.isCalledByLegalizer())
   2728               DCI.AddToWorklist(SH.getNode());
   2729             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   2730           }
   2731         }
   2732       }
   2733     }
   2734 
   2735     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   2736         N1.getOpcode() == ISD::XOR) {
   2737       // Simplify  X == (X+Z) -->  Z == 0
   2738       if (N1.getOperand(0) == N0)
   2739         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   2740                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
   2741       if (N1.getOperand(1) == N0) {
   2742         if (isCommutativeBinOp(N1.getOpcode()))
   2743           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   2744                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
   2745         if (N1.getNode()->hasOneUse()) {
   2746           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   2747           auto &DL = DAG.getDataLayout();
   2748           // X == (Z-X)  --> X<<1 == Z
   2749           SDValue SH = DAG.getNode(
   2750               ISD::SHL, dl, N1.getValueType(), N0,
   2751               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
   2752                                                       !DCI.isBeforeLegalize())));
   2753           if (!DCI.isCalledByLegalizer())
   2754             DCI.AddToWorklist(SH.getNode());
   2755           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2756         }
   2757       }
   2758     }
   2759 
   2760     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
   2761       return V;
   2762   }
   2763 
   2764   // Fold away ALL boolean setcc's.
   2765   SDValue Temp;
   2766   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
   2767     EVT OpVT = N0.getValueType();
   2768     switch (Cond) {
   2769     default: llvm_unreachable("Unknown integer setcc!");
   2770     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2771       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
   2772       N0 = DAG.getNOT(dl, Temp, OpVT);
   2773       if (!DCI.isCalledByLegalizer())
   2774         DCI.AddToWorklist(Temp.getNode());
   2775       break;
   2776     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2777       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
   2778       break;
   2779     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2780     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2781       Temp = DAG.getNOT(dl, N0, OpVT);
   2782       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
   2783       if (!DCI.isCalledByLegalizer())
   2784         DCI.AddToWorklist(Temp.getNode());
   2785       break;
   2786     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2787     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2788       Temp = DAG.getNOT(dl, N1, OpVT);
   2789       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
   2790       if (!DCI.isCalledByLegalizer())
   2791         DCI.AddToWorklist(Temp.getNode());
   2792       break;
   2793     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2794     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2795       Temp = DAG.getNOT(dl, N0, OpVT);
   2796       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
   2797       if (!DCI.isCalledByLegalizer())
   2798         DCI.AddToWorklist(Temp.getNode());
   2799       break;
   2800     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2801     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2802       Temp = DAG.getNOT(dl, N1, OpVT);
   2803       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
   2804       break;
   2805     }
   2806     if (VT.getScalarType() != MVT::i1) {
   2807       if (!DCI.isCalledByLegalizer())
   2808         DCI.AddToWorklist(N0.getNode());
   2809       // FIXME: If running after legalize, we probably can't do this.
   2810       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
   2811       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
   2812     }
   2813     return N0;
   2814   }
   2815 
   2816   // Could not fold it.
   2817   return SDValue();
   2818 }
   2819 
   2820 /// Returns true (and the GlobalValue and the offset) if the node is a
   2821 /// GlobalAddress + offset.
   2822 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2823                                     int64_t &Offset) const {
   2824   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
   2825     GA = GASD->getGlobal();
   2826     Offset += GASD->getOffset();
   2827     return true;
   2828   }
   2829 
   2830   if (N->getOpcode() == ISD::ADD) {
   2831     SDValue N1 = N->getOperand(0);
   2832     SDValue N2 = N->getOperand(1);
   2833     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2834       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
   2835         Offset += V->getSExtValue();
   2836         return true;
   2837       }
   2838     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2839       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
   2840         Offset += V->getSExtValue();
   2841         return true;
   2842       }
   2843     }
   2844   }
   2845 
   2846   return false;
   2847 }
   2848 
   2849 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
   2850                                           DAGCombinerInfo &DCI) const {
   2851   // Default implementation: no optimization.
   2852   return SDValue();
   2853 }
   2854 
   2855 //===----------------------------------------------------------------------===//
   2856 //  Inline Assembler Implementation Methods
   2857 //===----------------------------------------------------------------------===//
   2858 
   2859 TargetLowering::ConstraintType
   2860 TargetLowering::getConstraintType(StringRef Constraint) const {
   2861   unsigned S = Constraint.size();
   2862 
   2863   if (S == 1) {
   2864     switch (Constraint[0]) {
   2865     default: break;
   2866     case 'r': return C_RegisterClass;
   2867     case 'm':    // memory
   2868     case 'o':    // offsetable
   2869     case 'V':    // not offsetable
   2870       return C_Memory;
   2871     case 'i':    // Simple Integer or Relocatable Constant
   2872     case 'n':    // Simple Integer
   2873     case 'E':    // Floating Point Constant
   2874     case 'F':    // Floating Point Constant
   2875     case 's':    // Relocatable Constant
   2876     case 'p':    // Address.
   2877     case 'X':    // Allow ANY value.
   2878     case 'I':    // Target registers.
   2879     case 'J':
   2880     case 'K':
   2881     case 'L':
   2882     case 'M':
   2883     case 'N':
   2884     case 'O':
   2885     case 'P':
   2886     case '<':
   2887     case '>':
   2888       return C_Other;
   2889     }
   2890   }
   2891 
   2892   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   2893     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
   2894       return C_Memory;
   2895     return C_Register;
   2896   }
   2897   return C_Unknown;
   2898 }
   2899 
   2900 /// Try to replace an X constraint, which matches anything, with another that
   2901 /// has more specific requirements based on the type of the corresponding
   2902 /// operand.
   2903 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2904   if (ConstraintVT.isInteger())
   2905     return "r";
   2906   if (ConstraintVT.isFloatingPoint())
   2907     return "f";      // works for many targets
   2908   return nullptr;
   2909 }
   2910 
   2911 /// Lower the specified operand into the Ops vector.
   2912 /// If it is invalid, don't add anything to Ops.
   2913 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2914                                                   std::string &Constraint,
   2915                                                   std::vector<SDValue> &Ops,
   2916                                                   SelectionDAG &DAG) const {
   2917 
   2918   if (Constraint.length() > 1) return;
   2919 
   2920   char ConstraintLetter = Constraint[0];
   2921   switch (ConstraintLetter) {
   2922   default: break;
   2923   case 'X':     // Allows any operand; labels (basic block) use this.
   2924     if (Op.getOpcode() == ISD::BasicBlock) {
   2925       Ops.push_back(Op);
   2926       return;
   2927     }
   2928     LLVM_FALLTHROUGH;
   2929   case 'i':    // Simple Integer or Relocatable Constant
   2930   case 'n':    // Simple Integer
   2931   case 's': {  // Relocatable Constant
   2932     // These operands are interested in values of the form (GV+C), where C may
   2933     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2934     // is possible and fine if either GV or C are missing.
   2935     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2936     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2937 
   2938     // If we have "(add GV, C)", pull out GV/C
   2939     if (Op.getOpcode() == ISD::ADD) {
   2940       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2941       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2942       if (!C || !GA) {
   2943         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2944         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2945       }
   2946       if (!C || !GA) {
   2947         C = nullptr;
   2948         GA = nullptr;
   2949       }
   2950     }
   2951 
   2952     // If we find a valid operand, map to the TargetXXX version so that the
   2953     // value itself doesn't get selected.
   2954     if (GA) {   // Either &GV   or   &GV+C
   2955       if (ConstraintLetter != 'n') {
   2956         int64_t Offs = GA->getOffset();
   2957         if (C) Offs += C->getZExtValue();
   2958         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2959                                                  C ? SDLoc(C) : SDLoc(),
   2960                                                  Op.getValueType(), Offs));
   2961       }
   2962       return;
   2963     }
   2964     if (C) {   // just C, no GV.
   2965       // Simple constants are not allowed for 's'.
   2966       if (ConstraintLetter != 's') {
   2967         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2968         // now; without this it would get ZExt'd later in
   2969         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2970         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
   2971                                             SDLoc(C), MVT::i64));
   2972       }
   2973       return;
   2974     }
   2975     break;
   2976   }
   2977   }
   2978 }
   2979 
   2980 std::pair<unsigned, const TargetRegisterClass *>
   2981 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
   2982                                              StringRef Constraint,
   2983                                              MVT VT) const {
   2984   if (Constraint.empty() || Constraint[0] != '{')
   2985     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
   2986   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2987 
   2988   // Remove the braces from around the name.
   2989   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2990 
   2991   std::pair<unsigned, const TargetRegisterClass*> R =
   2992     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
   2993 
   2994   // Figure out which register class contains this reg.
   2995   for (const TargetRegisterClass *RC : RI->regclasses()) {
   2996     // If none of the value types for this register class are valid, we
   2997     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2998     if (!isLegalRC(*RI, *RC))
   2999       continue;
   3000 
   3001     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   3002          I != E; ++I) {
   3003       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
   3004         std::pair<unsigned, const TargetRegisterClass*> S =
   3005           std::make_pair(*I, RC);
   3006 
   3007         // If this register class has the requested value type, return it,
   3008         // otherwise keep searching and return the first class found
   3009         // if no other is found which explicitly has the requested type.
   3010         if (RI->isTypeLegalForClass(*RC, VT))
   3011           return S;
   3012         if (!R.second)
   3013           R = S;
   3014       }
   3015     }
   3016   }
   3017 
   3018   return R;
   3019 }
   3020 
   3021 //===----------------------------------------------------------------------===//
   3022 // Constraint Selection.
   3023 
   3024 /// Return true of this is an input operand that is a matching constraint like
   3025 /// "4".
   3026 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   3027   assert(!ConstraintCode.empty() && "No known constraint!");
   3028   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   3029 }
   3030 
   3031 /// If this is an input matching constraint, this method returns the output
   3032 /// operand it matches.
   3033 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   3034   assert(!ConstraintCode.empty() && "No known constraint!");
   3035   return atoi(ConstraintCode.c_str());
   3036 }
   3037 
   3038 /// Split up the constraint string from the inline assembly value into the
   3039 /// specific constraints and their prefixes, and also tie in the associated
   3040 /// operand values.
   3041 /// If this returns an empty vector, and if the constraint string itself
   3042 /// isn't empty, there was an error parsing.
   3043 TargetLowering::AsmOperandInfoVector
   3044 TargetLowering::ParseConstraints(const DataLayout &DL,
   3045                                  const TargetRegisterInfo *TRI,
   3046                                  ImmutableCallSite CS) const {
   3047   /// Information about all of the constraints.
   3048   AsmOperandInfoVector ConstraintOperands;
   3049   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   3050   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   3051 
   3052   // Do a prepass over the constraints, canonicalizing them, and building up the
   3053   // ConstraintOperands list.
   3054   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   3055   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   3056 
   3057   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
   3058     ConstraintOperands.emplace_back(std::move(CI));
   3059     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   3060 
   3061     // Update multiple alternative constraint count.
   3062     if (OpInfo.multipleAlternatives.size() > maCount)
   3063       maCount = OpInfo.multipleAlternatives.size();
   3064 
   3065     OpInfo.ConstraintVT = MVT::Other;
   3066 
   3067     // Compute the value type for each operand.
   3068     switch (OpInfo.Type) {
   3069     case InlineAsm::isOutput:
   3070       // Indirect outputs just consume an argument.
   3071       if (OpInfo.isIndirect) {
   3072         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   3073         break;
   3074       }
   3075 
   3076       // The return value of the call is this value.  As such, there is no
   3077       // corresponding argument.
   3078       assert(!CS.getType()->isVoidTy() &&
   3079              "Bad inline asm!");
   3080       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   3081         OpInfo.ConstraintVT =
   3082             getSimpleValueType(DL, STy->getElementType(ResNo));
   3083       } else {
   3084         assert(ResNo == 0 && "Asm only has one result!");
   3085         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
   3086       }
   3087       ++ResNo;
   3088       break;
   3089     case InlineAsm::isInput:
   3090       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   3091       break;
   3092     case InlineAsm::isClobber:
   3093       // Nothing to do.
   3094       break;
   3095     }
   3096 
   3097     if (OpInfo.CallOperandVal) {
   3098       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   3099       if (OpInfo.isIndirect) {
   3100         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   3101         if (!PtrTy)
   3102           report_fatal_error("Indirect operand for inline asm not a pointer!");
   3103         OpTy = PtrTy->getElementType();
   3104       }
   3105 
   3106       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   3107       if (StructType *STy = dyn_cast<StructType>(OpTy))
   3108         if (STy->getNumElements() == 1)
   3109           OpTy = STy->getElementType(0);
   3110 
   3111       // If OpTy is not a single value, it may be a struct/union that we
   3112       // can tile with integers.
   3113       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   3114         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
   3115         switch (BitSize) {
   3116         default: break;
   3117         case 1:
   3118         case 8:
   3119         case 16:
   3120         case 32:
   3121         case 64:
   3122         case 128:
   3123           OpInfo.ConstraintVT =
   3124             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   3125           break;
   3126         }
   3127       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   3128         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
   3129         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
   3130       } else {
   3131         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   3132       }
   3133     }
   3134   }
   3135 
   3136   // If we have multiple alternative constraints, select the best alternative.
   3137   if (!ConstraintOperands.empty()) {
   3138     if (maCount) {
   3139       unsigned bestMAIndex = 0;
   3140       int bestWeight = -1;
   3141       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   3142       int weight = -1;
   3143       unsigned maIndex;
   3144       // Compute the sums of the weights for each alternative, keeping track
   3145       // of the best (highest weight) one so far.
   3146       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   3147         int weightSum = 0;
   3148         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   3149             cIndex != eIndex; ++cIndex) {
   3150           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   3151           if (OpInfo.Type == InlineAsm::isClobber)
   3152             continue;
   3153 
   3154           // If this is an output operand with a matching input operand,
   3155           // look up the matching input. If their types mismatch, e.g. one
   3156           // is an integer, the other is floating point, or their sizes are
   3157           // different, flag it as an maCantMatch.
   3158           if (OpInfo.hasMatchingInput()) {
   3159             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   3160             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   3161               if ((OpInfo.ConstraintVT.isInteger() !=
   3162                    Input.ConstraintVT.isInteger()) ||
   3163                   (OpInfo.ConstraintVT.getSizeInBits() !=
   3164                    Input.ConstraintVT.getSizeInBits())) {
   3165                 weightSum = -1;  // Can't match.
   3166                 break;
   3167               }
   3168             }
   3169           }
   3170           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   3171           if (weight == -1) {
   3172             weightSum = -1;
   3173             break;
   3174           }
   3175           weightSum += weight;
   3176         }
   3177         // Update best.
   3178         if (weightSum > bestWeight) {
   3179           bestWeight = weightSum;
   3180           bestMAIndex = maIndex;
   3181         }
   3182       }
   3183 
   3184       // Now select chosen alternative in each constraint.
   3185       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   3186           cIndex != eIndex; ++cIndex) {
   3187         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   3188         if (cInfo.Type == InlineAsm::isClobber)
   3189           continue;
   3190         cInfo.selectAlternative(bestMAIndex);
   3191       }
   3192     }
   3193   }
   3194 
   3195   // Check and hook up tied operands, choose constraint code to use.
   3196   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   3197       cIndex != eIndex; ++cIndex) {
   3198     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   3199 
   3200     // If this is an output operand with a matching input operand, look up the
   3201     // matching input. If their types mismatch, e.g. one is an integer, the
   3202     // other is floating point, or their sizes are different, flag it as an
   3203     // error.
   3204     if (OpInfo.hasMatchingInput()) {
   3205       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   3206 
   3207       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   3208         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
   3209             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
   3210                                          OpInfo.ConstraintVT);
   3211         std::pair<unsigned, const TargetRegisterClass *> InputRC =
   3212             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
   3213                                          Input.ConstraintVT);
   3214         if ((OpInfo.ConstraintVT.isInteger() !=
   3215              Input.ConstraintVT.isInteger()) ||
   3216             (MatchRC.second != InputRC.second)) {
   3217           report_fatal_error("Unsupported asm: input constraint"
   3218                              " with a matching output constraint of"
   3219                              " incompatible type!");
   3220         }
   3221       }
   3222     }
   3223   }
   3224 
   3225   return ConstraintOperands;
   3226 }
   3227 
   3228 /// Return an integer indicating how general CT is.
   3229 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   3230   switch (CT) {
   3231   case TargetLowering::C_Other:
   3232   case TargetLowering::C_Unknown:
   3233     return 0;
   3234   case TargetLowering::C_Register:
   3235     return 1;
   3236   case TargetLowering::C_RegisterClass:
   3237     return 2;
   3238   case TargetLowering::C_Memory:
   3239     return 3;
   3240   }
   3241   llvm_unreachable("Invalid constraint type");
   3242 }
   3243 
   3244 /// Examine constraint type and operand type and determine a weight value.
   3245 /// This object must already have been set up with the operand type
   3246 /// and the current alternative constraint selected.
   3247 TargetLowering::ConstraintWeight
   3248   TargetLowering::getMultipleConstraintMatchWeight(
   3249     AsmOperandInfo &info, int maIndex) const {
   3250   InlineAsm::ConstraintCodeVector *rCodes;
   3251   if (maIndex >= (int)info.multipleAlternatives.size())
   3252     rCodes = &info.Codes;
   3253   else
   3254     rCodes = &info.multipleAlternatives[maIndex].Codes;
   3255   ConstraintWeight BestWeight = CW_Invalid;
   3256 
   3257   // Loop over the options, keeping track of the most general one.
   3258   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   3259     ConstraintWeight weight =
   3260       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   3261     if (weight > BestWeight)
   3262       BestWeight = weight;
   3263   }
   3264 
   3265   return BestWeight;
   3266 }
   3267 
   3268 /// Examine constraint type and operand type and determine a weight value.
   3269 /// This object must already have been set up with the operand type
   3270 /// and the current alternative constraint selected.
   3271 TargetLowering::ConstraintWeight
   3272   TargetLowering::getSingleConstraintMatchWeight(
   3273     AsmOperandInfo &info, const char *constraint) const {
   3274   ConstraintWeight weight = CW_Invalid;
   3275   Value *CallOperandVal = info.CallOperandVal;
   3276     // If we don't have a value, we can't do a match,
   3277     // but allow it at the lowest weight.
   3278   if (!CallOperandVal)
   3279     return CW_Default;
   3280   // Look at the constraint type.
   3281   switch (*constraint) {
   3282     case 'i': // immediate integer.
   3283     case 'n': // immediate integer with a known value.
   3284       if (isa<ConstantInt>(CallOperandVal))
   3285         weight = CW_Constant;
   3286       break;
   3287     case 's': // non-explicit intregal immediate.
   3288       if (isa<GlobalValue>(CallOperandVal))
   3289         weight = CW_Constant;
   3290       break;
   3291     case 'E': // immediate float if host format.
   3292     case 'F': // immediate float.
   3293       if (isa<ConstantFP>(CallOperandVal))
   3294         weight = CW_Constant;
   3295       break;
   3296     case '<': // memory operand with autodecrement.
   3297     case '>': // memory operand with autoincrement.
   3298     case 'm': // memory operand.
   3299     case 'o': // offsettable memory operand
   3300     case 'V': // non-offsettable memory operand
   3301       weight = CW_Memory;
   3302       break;
   3303     case 'r': // general register.
   3304     case 'g': // general register, memory operand or immediate integer.
   3305               // note: Clang converts "g" to "imr".
   3306       if (CallOperandVal->getType()->isIntegerTy())
   3307         weight = CW_Register;
   3308       break;
   3309     case 'X': // any operand.
   3310     default:
   3311       weight = CW_Default;
   3312       break;
   3313   }
   3314   return weight;
   3315 }
   3316 
   3317 /// If there are multiple different constraints that we could pick for this
   3318 /// operand (e.g. "imr") try to pick the 'best' one.
   3319 /// This is somewhat tricky: constraints fall into four classes:
   3320 ///    Other         -> immediates and magic values
   3321 ///    Register      -> one specific register
   3322 ///    RegisterClass -> a group of regs
   3323 ///    Memory        -> memory
   3324 /// Ideally, we would pick the most specific constraint possible: if we have
   3325 /// something that fits into a register, we would pick it.  The problem here
   3326 /// is that if we have something that could either be in a register or in
   3327 /// memory that use of the register could cause selection of *other*
   3328 /// operands to fail: they might only succeed if we pick memory.  Because of
   3329 /// this the heuristic we use is:
   3330 ///
   3331 ///  1) If there is an 'other' constraint, and if the operand is valid for
   3332 ///     that constraint, use it.  This makes us take advantage of 'i'
   3333 ///     constraints when available.
   3334 ///  2) Otherwise, pick the most general constraint present.  This prefers
   3335 ///     'm' over 'r', for example.
   3336 ///
   3337 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   3338                              const TargetLowering &TLI,
   3339                              SDValue Op, SelectionDAG *DAG) {
   3340   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   3341   unsigned BestIdx = 0;
   3342   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   3343   int BestGenerality = -1;
   3344 
   3345   // Loop over the options, keeping track of the most general one.
   3346   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   3347     TargetLowering::ConstraintType CType =
   3348       TLI.getConstraintType(OpInfo.Codes[i]);
   3349 
   3350     // If this is an 'other' constraint, see if the operand is valid for it.
   3351     // For example, on X86 we might have an 'rI' constraint.  If the operand
   3352     // is an integer in the range [0..31] we want to use I (saving a load
   3353     // of a register), otherwise we must use 'r'.
   3354     if (CType == TargetLowering::C_Other && Op.getNode()) {
   3355       assert(OpInfo.Codes[i].size() == 1 &&
   3356              "Unhandled multi-letter 'other' constraint");
   3357       std::vector<SDValue> ResultOps;
   3358       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   3359                                        ResultOps, *DAG);
   3360       if (!ResultOps.empty()) {
   3361         BestType = CType;
   3362         BestIdx = i;
   3363         break;
   3364       }
   3365     }
   3366 
   3367     // Things with matching constraints can only be registers, per gcc
   3368     // documentation.  This mainly affects "g" constraints.
   3369     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   3370       continue;
   3371 
   3372     // This constraint letter is more general than the previous one, use it.
   3373     int Generality = getConstraintGenerality(CType);
   3374     if (Generality > BestGenerality) {
   3375       BestType = CType;
   3376       BestIdx = i;
   3377       BestGenerality = Generality;
   3378     }
   3379   }
   3380 
   3381   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   3382   OpInfo.ConstraintType = BestType;
   3383 }
   3384 
   3385 /// Determines the constraint code and constraint type to use for the specific
   3386 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   3387 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   3388                                             SDValue Op,
   3389                                             SelectionDAG *DAG) const {
   3390   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   3391 
   3392   // Single-letter constraints ('r') are very common.
   3393   if (OpInfo.Codes.size() == 1) {
   3394     OpInfo.ConstraintCode = OpInfo.Codes[0];
   3395     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3396   } else {
   3397     ChooseConstraint(OpInfo, *this, Op, DAG);
   3398   }
   3399 
   3400   // 'X' matches anything.
   3401   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   3402     // Labels and constants are handled elsewhere ('X' is the only thing
   3403     // that matches labels).  For Functions, the type here is the type of
   3404     // the result, which is not what we want to look at; leave them alone.
   3405     Value *v = OpInfo.CallOperandVal;
   3406     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   3407       OpInfo.CallOperandVal = v;
   3408       return;
   3409     }
   3410 
   3411     // Otherwise, try to resolve it to something we know about by looking at
   3412     // the actual operand type.
   3413     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   3414       OpInfo.ConstraintCode = Repl;
   3415       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3416     }
   3417   }
   3418 }
   3419 
   3420 /// Given an exact SDIV by a constant, create a multiplication
   3421 /// with the multiplicative inverse of the constant.
   3422 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
   3423                               const SDLoc &dl, SelectionDAG &DAG,
   3424                               SmallVectorImpl<SDNode *> &Created) {
   3425   assert(d != 0 && "Division by zero!");
   3426 
   3427   // Shift the value upfront if it is even, so the LSB is one.
   3428   unsigned ShAmt = d.countTrailingZeros();
   3429   if (ShAmt) {
   3430     // TODO: For UDIV use SRL instead of SRA.
   3431     SDValue Amt =
   3432         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
   3433                                                         DAG.getDataLayout()));
   3434     SDNodeFlags Flags;
   3435     Flags.setExact(true);
   3436     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
   3437     Created.push_back(Op1.getNode());
   3438     d.ashrInPlace(ShAmt);
   3439   }
   3440 
   3441   // Calculate the multiplicative inverse, using Newton's method.
   3442   APInt t, xn = d;
   3443   while ((t = d*xn) != 1)
   3444     xn *= APInt(d.getBitWidth(), 2) - t;
   3445 
   3446   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
   3447   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   3448   Created.push_back(Mul.getNode());
   3449   return Mul;
   3450 }
   3451 
   3452 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   3453                                      SelectionDAG &DAG,
   3454                                      SmallVectorImpl<SDNode *> &Created) const {
   3455   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
   3456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3457   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
   3458     return SDValue(N,0); // Lower SDIV as SDIV
   3459   return SDValue();
   3460 }
   3461 
   3462 /// Given an ISD::SDIV node expressing a divide by constant,
   3463 /// return a DAG expression to select that will generate the same value by
   3464 /// multiplying by a magic number.
   3465 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   3466 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
   3467                                   SelectionDAG &DAG, bool IsAfterLegalization,
   3468                                   SmallVectorImpl<SDNode *> &Created) const {
   3469   EVT VT = N->getValueType(0);
   3470   SDLoc dl(N);
   3471 
   3472   // Check to see if we can do this.
   3473   // FIXME: We should be more aggressive here.
   3474   if (!isTypeLegal(VT))
   3475     return SDValue();
   3476 
   3477   // If the sdiv has an 'exact' bit we can use a simpler lowering.
   3478   if (N->getFlags().hasExact())
   3479     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, Created);
   3480 
   3481   APInt::ms magics = Divisor.magic();
   3482 
   3483   // Multiply the numerator (operand 0) by the magic value
   3484   // FIXME: We should support doing a MUL in a wider type
   3485   SDValue Q;
   3486   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   3487                             isOperationLegalOrCustom(ISD::MULHS, VT))
   3488     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   3489                     DAG.getConstant(magics.m, dl, VT));
   3490   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   3491                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   3492     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   3493                               N->getOperand(0),
   3494                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   3495   else
   3496     return SDValue();       // No mulhs or equvialent
   3497 
   3498   Created.push_back(Q.getNode());
   3499 
   3500   // If d > 0 and m < 0, add the numerator
   3501   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
   3502     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   3503     Created.push_back(Q.getNode());
   3504   }
   3505   // If d < 0 and m > 0, subtract the numerator.
   3506   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
   3507     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   3508     Created.push_back(Q.getNode());
   3509   }
   3510   auto &DL = DAG.getDataLayout();
   3511   // Shift right algebraic if shift value is nonzero
   3512   if (magics.s > 0) {
   3513     Q = DAG.getNode(
   3514         ISD::SRA, dl, VT, Q,
   3515         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   3516     Created.push_back(Q.getNode());
   3517   }
   3518   // Extract the sign bit and add it to the quotient
   3519   SDValue T =
   3520       DAG.getNode(ISD::SRL, dl, VT, Q,
   3521                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
   3522                                   getShiftAmountTy(Q.getValueType(), DL)));
   3523   Created.push_back(T.getNode());
   3524   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   3525 }
   3526 
   3527 /// Given an ISD::UDIV node expressing a divide by constant,
   3528 /// return a DAG expression to select that will generate the same value by
   3529 /// multiplying by a magic number.
   3530 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   3531 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
   3532                                   SelectionDAG &DAG, bool IsAfterLegalization,
   3533                                   SmallVectorImpl<SDNode *> &Created) const {
   3534   EVT VT = N->getValueType(0);
   3535   SDLoc dl(N);
   3536   auto &DL = DAG.getDataLayout();
   3537 
   3538   // Check to see if we can do this.
   3539   // FIXME: We should be more aggressive here.
   3540   if (!isTypeLegal(VT))
   3541     return SDValue();
   3542 
   3543   // FIXME: We should use a narrower constant when the upper
   3544   // bits are known to be zero.
   3545   APInt::mu magics = Divisor.magicu();
   3546 
   3547   SDValue Q = N->getOperand(0);
   3548 
   3549   // If the divisor is even, we can avoid using the expensive fixup by shifting
   3550   // the divided value upfront.
   3551   if (magics.a != 0 && !Divisor[0]) {
   3552     unsigned Shift = Divisor.countTrailingZeros();
   3553     Q = DAG.getNode(
   3554         ISD::SRL, dl, VT, Q,
   3555         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
   3556     Created.push_back(Q.getNode());
   3557 
   3558     // Get magic number for the shifted divisor.
   3559     magics = Divisor.lshr(Shift).magicu(Shift);
   3560     assert(magics.a == 0 && "Should use cheap fixup now");
   3561   }
   3562 
   3563   // Multiply the numerator (operand 0) by the magic value
   3564   // FIXME: We should support doing a MUL in a wider type
   3565   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   3566                             isOperationLegalOrCustom(ISD::MULHU, VT))
   3567     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
   3568   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   3569                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   3570     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   3571                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   3572   else
   3573     return SDValue();       // No mulhu or equivalent
   3574 
   3575   Created.push_back(Q.getNode());
   3576 
   3577   if (magics.a == 0) {
   3578     assert(magics.s < Divisor.getBitWidth() &&
   3579            "We shouldn't generate an undefined shift!");
   3580     return DAG.getNode(
   3581         ISD::SRL, dl, VT, Q,
   3582         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   3583   } else {
   3584     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   3585     Created.push_back(NPQ.getNode());
   3586     NPQ = DAG.getNode(
   3587         ISD::SRL, dl, VT, NPQ,
   3588         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
   3589     Created.push_back(NPQ.getNode());
   3590     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   3591     Created.push_back(NPQ.getNode());
   3592     return DAG.getNode(
   3593         ISD::SRL, dl, VT, NPQ,
   3594         DAG.getConstant(magics.s - 1, dl,
   3595                         getShiftAmountTy(NPQ.getValueType(), DL)));
   3596   }
   3597 }
   3598 
   3599 bool TargetLowering::
   3600 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
   3601   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
   3602     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
   3603                                 "be a constant integer");
   3604     return true;
   3605   }
   3606 
   3607   return false;
   3608 }
   3609 
   3610 //===----------------------------------------------------------------------===//
   3611 // Legalization Utilities
   3612 //===----------------------------------------------------------------------===//
   3613 
   3614 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
   3615                                     SDValue LHS, SDValue RHS,
   3616                                     SmallVectorImpl<SDValue> &Result,
   3617                                     EVT HiLoVT, SelectionDAG &DAG,
   3618                                     MulExpansionKind Kind, SDValue LL,
   3619                                     SDValue LH, SDValue RL, SDValue RH) const {
   3620   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
   3621          Opcode == ISD::SMUL_LOHI);
   3622 
   3623   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
   3624                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
   3625   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
   3626                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
   3627   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
   3628                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
   3629   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
   3630                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
   3631 
   3632   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
   3633     return false;
   3634 
   3635   unsigned OuterBitSize = VT.getScalarSizeInBits();
   3636   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
   3637   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
   3638   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
   3639 
   3640   // LL, LH, RL, and RH must be either all NULL or all set to a value.
   3641   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
   3642          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
   3643 
   3644   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
   3645   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
   3646                           bool Signed) -> bool {
   3647     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
   3648       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
   3649       Hi = SDValue(Lo.getNode(), 1);
   3650       return true;
   3651     }
   3652     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
   3653       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
   3654       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
   3655       return true;
   3656     }
   3657     return false;
   3658   };
   3659 
   3660   SDValue Lo, Hi;
   3661 
   3662   if (!LL.getNode() && !RL.getNode() &&
   3663       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   3664     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
   3665     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
   3666   }
   3667 
   3668   if (!LL.getNode())
   3669     return false;
   3670 
   3671   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
   3672   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
   3673       DAG.MaskedValueIsZero(RHS, HighMask)) {
   3674     // The inputs are both zero-extended.
   3675     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
   3676       Result.push_back(Lo);
   3677       Result.push_back(Hi);
   3678       if (Opcode != ISD::MUL) {
   3679         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
   3680         Result.push_back(Zero);
   3681         Result.push_back(Zero);
   3682       }
   3683       return true;
   3684     }
   3685   }
   3686 
   3687   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
   3688       RHSSB > InnerBitSize) {
   3689     // The input values are both sign-extended.
   3690     // TODO non-MUL case?
   3691     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
   3692       Result.push_back(Lo);
   3693       Result.push_back(Hi);
   3694       return true;
   3695     }
   3696   }
   3697 
   3698   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
   3699   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
   3700   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
   3701     // FIXME getShiftAmountTy does not always return a sensible result when VT
   3702     // is an illegal type, and so the type may be too small to fit the shift
   3703     // amount. Override it with i32. The shift will have to be legalized.
   3704     ShiftAmountTy = MVT::i32;
   3705   }
   3706   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
   3707 
   3708   if (!LH.getNode() && !RH.getNode() &&
   3709       isOperationLegalOrCustom(ISD::SRL, VT) &&
   3710       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   3711     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
   3712     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
   3713     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
   3714     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
   3715   }
   3716 
   3717   if (!LH.getNode())
   3718     return false;
   3719 
   3720   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
   3721     return false;
   3722 
   3723   Result.push_back(Lo);
   3724 
   3725   if (Opcode == ISD::MUL) {
   3726     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   3727     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   3728     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   3729     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   3730     Result.push_back(Hi);
   3731     return true;
   3732   }
   3733 
   3734   // Compute the full width result.
   3735   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
   3736     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
   3737     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
   3738     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
   3739     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
   3740   };
   3741 
   3742   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
   3743   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
   3744     return false;
   3745 
   3746   // This is effectively the add part of a multiply-add of half-sized operands,
   3747   // so it cannot overflow.
   3748   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
   3749 
   3750   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
   3751     return false;
   3752 
   3753   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
   3754                      Merge(Lo, Hi));
   3755 
   3756   SDValue Carry = Next.getValue(1);
   3757   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
   3758   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
   3759 
   3760   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
   3761     return false;
   3762 
   3763   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
   3764   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
   3765                    Carry);
   3766   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
   3767 
   3768   if (Opcode == ISD::SMUL_LOHI) {
   3769     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
   3770                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
   3771     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
   3772 
   3773     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
   3774                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
   3775     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
   3776   }
   3777 
   3778   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
   3779   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
   3780   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
   3781   return true;
   3782 }
   3783 
   3784 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   3785                                SelectionDAG &DAG, MulExpansionKind Kind,
   3786                                SDValue LL, SDValue LH, SDValue RL,
   3787                                SDValue RH) const {
   3788   SmallVector<SDValue, 2> Result;
   3789   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
   3790                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
   3791                            DAG, Kind, LL, LH, RL, RH);
   3792   if (Ok) {
   3793     assert(Result.size() == 2);
   3794     Lo = Result[0];
   3795     Hi = Result[1];
   3796   }
   3797   return Ok;
   3798 }
   3799 
   3800 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
   3801                                SelectionDAG &DAG) const {
   3802   EVT VT = Node->getOperand(0).getValueType();
   3803   EVT NVT = Node->getValueType(0);
   3804   SDLoc dl(SDValue(Node, 0));
   3805 
   3806   // FIXME: Only f32 to i64 conversions are supported.
   3807   if (VT != MVT::f32 || NVT != MVT::i64)
   3808     return false;
   3809 
   3810   // Expand f32 -> i64 conversion
   3811   // This algorithm comes from compiler-rt's implementation of fixsfdi:
   3812   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
   3813   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
   3814                                 VT.getSizeInBits());
   3815   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
   3816   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
   3817   SDValue Bias = DAG.getConstant(127, dl, IntVT);
   3818   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
   3819                                      IntVT);
   3820   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
   3821   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
   3822 
   3823   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
   3824 
   3825   auto &DL = DAG.getDataLayout();
   3826   SDValue ExponentBits = DAG.getNode(
   3827       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
   3828       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
   3829   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
   3830 
   3831   SDValue Sign = DAG.getNode(
   3832       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
   3833       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
   3834   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
   3835 
   3836   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
   3837       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
   3838       DAG.getConstant(0x00800000, dl, IntVT));
   3839 
   3840   R = DAG.getZExtOrTrunc(R, dl, NVT);
   3841 
   3842   R = DAG.getSelectCC(
   3843       dl, Exponent, ExponentLoBit,
   3844       DAG.getNode(ISD::SHL, dl, NVT, R,
   3845                   DAG.getZExtOrTrunc(
   3846                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
   3847                       dl, getShiftAmountTy(IntVT, DL))),
   3848       DAG.getNode(ISD::SRL, dl, NVT, R,
   3849                   DAG.getZExtOrTrunc(
   3850                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
   3851                       dl, getShiftAmountTy(IntVT, DL))),
   3852       ISD::SETGT);
   3853 
   3854   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
   3855       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
   3856       Sign);
   3857 
   3858   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
   3859       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
   3860   return true;
   3861 }
   3862 
   3863 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
   3864                                             SelectionDAG &DAG) const {
   3865   SDLoc SL(LD);
   3866   SDValue Chain = LD->getChain();
   3867   SDValue BasePTR = LD->getBasePtr();
   3868   EVT SrcVT = LD->getMemoryVT();
   3869   ISD::LoadExtType ExtType = LD->getExtensionType();
   3870 
   3871   unsigned NumElem = SrcVT.getVectorNumElements();
   3872 
   3873   EVT SrcEltVT = SrcVT.getScalarType();
   3874   EVT DstEltVT = LD->getValueType(0).getScalarType();
   3875 
   3876   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
   3877   assert(SrcEltVT.isByteSized());
   3878 
   3879   EVT PtrVT = BasePTR.getValueType();
   3880 
   3881   SmallVector<SDValue, 8> Vals;
   3882   SmallVector<SDValue, 8> LoadChains;
   3883 
   3884   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
   3885     SDValue ScalarLoad =
   3886         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
   3887                        LD->getPointerInfo().getWithOffset(Idx * Stride),
   3888                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
   3889                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
   3890 
   3891     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
   3892                           DAG.getConstant(Stride, SL, PtrVT));
   3893 
   3894     Vals.push_back(ScalarLoad.getValue(0));
   3895     LoadChains.push_back(ScalarLoad.getValue(1));
   3896   }
   3897 
   3898   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
   3899   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
   3900 
   3901   return DAG.getMergeValues({ Value, NewChain }, SL);
   3902 }
   3903 
   3904 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
   3905                                              SelectionDAG &DAG) const {
   3906   SDLoc SL(ST);
   3907 
   3908   SDValue Chain = ST->getChain();
   3909   SDValue BasePtr = ST->getBasePtr();
   3910   SDValue Value = ST->getValue();
   3911   EVT StVT = ST->getMemoryVT();
   3912 
   3913   // The type of the data we want to save
   3914   EVT RegVT = Value.getValueType();
   3915   EVT RegSclVT = RegVT.getScalarType();
   3916 
   3917   // The type of data as saved in memory.
   3918   EVT MemSclVT = StVT.getScalarType();
   3919 
   3920   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
   3921   unsigned NumElem = StVT.getVectorNumElements();
   3922 
   3923   // A vector must always be stored in memory as-is, i.e. without any padding
   3924   // between the elements, since various code depend on it, e.g. in the
   3925   // handling of a bitcast of a vector type to int, which may be done with a
   3926   // vector store followed by an integer load. A vector that does not have
   3927   // elements that are byte-sized must therefore be stored as an integer
   3928   // built out of the extracted vector elements.
   3929   if (!MemSclVT.isByteSized()) {
   3930     unsigned NumBits = StVT.getSizeInBits();
   3931     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
   3932 
   3933     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
   3934 
   3935     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
   3936       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
   3937                                 DAG.getConstant(Idx, SL, IdxVT));
   3938       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
   3939       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
   3940       unsigned ShiftIntoIdx =
   3941           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
   3942       SDValue ShiftAmount =
   3943           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
   3944       SDValue ShiftedElt =
   3945           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
   3946       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
   3947     }
   3948 
   3949     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
   3950                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
   3951                         ST->getAAInfo());
   3952   }
   3953 
   3954   // Store Stride in bytes
   3955   unsigned Stride = MemSclVT.getSizeInBits() / 8;
   3956   assert (Stride && "Zero stride!");
   3957   // Extract each of the elements from the original vector and save them into
   3958   // memory individually.
   3959   SmallVector<SDValue, 8> Stores;
   3960   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
   3961     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
   3962                               DAG.getConstant(Idx, SL, IdxVT));
   3963 
   3964     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
   3965 
   3966     // This scalar TruncStore may be illegal, but we legalize it later.
   3967     SDValue Store = DAG.getTruncStore(
   3968         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
   3969         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
   3970         ST->getMemOperand()->getFlags(), ST->getAAInfo());
   3971 
   3972     Stores.push_back(Store);
   3973   }
   3974 
   3975   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
   3976 }
   3977 
   3978 std::pair<SDValue, SDValue>
   3979 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
   3980   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
   3981          "unaligned indexed loads not implemented!");
   3982   SDValue Chain = LD->getChain();
   3983   SDValue Ptr = LD->getBasePtr();
   3984   EVT VT = LD->getValueType(0);
   3985   EVT LoadedVT = LD->getMemoryVT();
   3986   SDLoc dl(LD);
   3987   auto &MF = DAG.getMachineFunction();
   3988 
   3989   if (VT.isFloatingPoint() || VT.isVector()) {
   3990     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
   3991     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
   3992       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
   3993         // Scalarize the load and let the individual components be handled.
   3994         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
   3995         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
   3996           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
   3997         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
   3998       }
   3999 
   4000       // Expand to a (misaligned) integer load of the same size,
   4001       // then bitconvert to floating point or vector.
   4002       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
   4003                                     LD->getMemOperand());
   4004       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
   4005       if (LoadedVT != VT)
   4006         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
   4007                              ISD::ANY_EXTEND, dl, VT, Result);
   4008 
   4009       return std::make_pair(Result, newLoad.getValue(1));
   4010     }
   4011 
   4012     // Copy the value to a (aligned) stack slot using (unaligned) integer
   4013     // loads and stores, then do a (aligned) load from the stack slot.
   4014     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
   4015     unsigned LoadedBytes = LoadedVT.getStoreSize();
   4016     unsigned RegBytes = RegVT.getSizeInBits() / 8;
   4017     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
   4018 
   4019     // Make sure the stack slot is also aligned for the register type.
   4020     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
   4021     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
   4022     SmallVector<SDValue, 8> Stores;
   4023     SDValue StackPtr = StackBase;
   4024     unsigned Offset = 0;
   4025 
   4026     EVT PtrVT = Ptr.getValueType();
   4027     EVT StackPtrVT = StackPtr.getValueType();
   4028 
   4029     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
   4030     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
   4031 
   4032     // Do all but one copies using the full register width.
   4033     for (unsigned i = 1; i < NumRegs; i++) {
   4034       // Load one integer register's worth from the original location.
   4035       SDValue Load = DAG.getLoad(
   4036           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
   4037           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
   4038           LD->getAAInfo());
   4039       // Follow the load with a store to the stack slot.  Remember the store.
   4040       Stores.push_back(DAG.getStore(
   4041           Load.getValue(1), dl, Load, StackPtr,
   4042           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
   4043       // Increment the pointers.
   4044       Offset += RegBytes;
   4045 
   4046       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
   4047       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
   4048     }
   4049 
   4050     // The last copy may be partial.  Do an extending load.
   4051     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
   4052                                   8 * (LoadedBytes - Offset));
   4053     SDValue Load =
   4054         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
   4055                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
   4056                        MinAlign(LD->getAlignment(), Offset),
   4057                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
   4058     // Follow the load with a store to the stack slot.  Remember the store.
   4059     // On big-endian machines this requires a truncating store to ensure
   4060     // that the bits end up in the right place.
   4061     Stores.push_back(DAG.getTruncStore(
   4062         Load.getValue(1), dl, Load, StackPtr,
   4063         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
   4064 
   4065     // The order of the stores doesn't matter - say it with a TokenFactor.
   4066     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   4067 
   4068     // Finally, perform the original load only redirected to the stack slot.
   4069     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
   4070                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
   4071                           LoadedVT);
   4072 
   4073     // Callers expect a MERGE_VALUES node.
   4074     return std::make_pair(Load, TF);
   4075   }
   4076 
   4077   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
   4078          "Unaligned load of unsupported type.");
   4079 
   4080   // Compute the new VT that is half the size of the old one.  This is an
   4081   // integer MVT.
   4082   unsigned NumBits = LoadedVT.getSizeInBits();
   4083   EVT NewLoadedVT;
   4084   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
   4085   NumBits >>= 1;
   4086 
   4087   unsigned Alignment = LD->getAlignment();
   4088   unsigned IncrementSize = NumBits / 8;
   4089   ISD::LoadExtType HiExtType = LD->getExtensionType();
   4090 
   4091   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
   4092   if (HiExtType == ISD::NON_EXTLOAD)
   4093     HiExtType = ISD::ZEXTLOAD;
   4094 
   4095   // Load the value in two parts
   4096   SDValue Lo, Hi;
   4097   if (DAG.getDataLayout().isLittleEndian()) {
   4098     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
   4099                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
   4100                         LD->getAAInfo());
   4101 
   4102     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
   4103     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
   4104                         LD->getPointerInfo().getWithOffset(IncrementSize),
   4105                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
   4106                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
   4107   } else {
   4108     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
   4109                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
   4110                         LD->getAAInfo());
   4111 
   4112     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
   4113     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
   4114                         LD->getPointerInfo().getWithOffset(IncrementSize),
   4115                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
   4116                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
   4117   }
   4118 
   4119   // aggregate the two parts
   4120   SDValue ShiftAmount =
   4121       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
   4122                                                     DAG.getDataLayout()));
   4123   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
   4124   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
   4125 
   4126   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   4127                              Hi.getValue(1));
   4128 
   4129   return std::make_pair(Result, TF);
   4130 }
   4131 
   4132 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
   4133                                              SelectionDAG &DAG) const {
   4134   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
   4135          "unaligned indexed stores not implemented!");
   4136   SDValue Chain = ST->getChain();
   4137   SDValue Ptr = ST->getBasePtr();
   4138   SDValue Val = ST->getValue();
   4139   EVT VT = Val.getValueType();
   4140   int Alignment = ST->getAlignment();
   4141   auto &MF = DAG.getMachineFunction();
   4142 
   4143   SDLoc dl(ST);
   4144   if (ST->getMemoryVT().isFloatingPoint() ||
   4145       ST->getMemoryVT().isVector()) {
   4146     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
   4147     if (isTypeLegal(intVT)) {
   4148       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
   4149         // Scalarize the store and let the individual components be handled.
   4150         SDValue Result = scalarizeVectorStore(ST, DAG);
   4151 
   4152         return Result;
   4153       }
   4154       // Expand to a bitconvert of the value to the integer type of the
   4155       // same size, then a (misaligned) int store.
   4156       // FIXME: Does not handle truncating floating point stores!
   4157       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
   4158       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
   4159                             Alignment, ST->getMemOperand()->getFlags());
   4160       return Result;
   4161     }
   4162     // Do a (aligned) store to a stack slot, then copy from the stack slot
   4163     // to the final destination using (unaligned) integer loads and stores.
   4164     EVT StoredVT = ST->getMemoryVT();
   4165     MVT RegVT =
   4166       getRegisterType(*DAG.getContext(),
   4167                       EVT::getIntegerVT(*DAG.getContext(),
   4168                                         StoredVT.getSizeInBits()));
   4169     EVT PtrVT = Ptr.getValueType();
   4170     unsigned StoredBytes = StoredVT.getStoreSize();
   4171     unsigned RegBytes = RegVT.getSizeInBits() / 8;
   4172     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
   4173 
   4174     // Make sure the stack slot is also aligned for the register type.
   4175     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
   4176     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
   4177 
   4178     // Perform the original store, only redirected to the stack slot.
   4179     SDValue Store = DAG.getTruncStore(
   4180         Chain, dl, Val, StackPtr,
   4181         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
   4182 
   4183     EVT StackPtrVT = StackPtr.getValueType();
   4184 
   4185     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
   4186     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
   4187     SmallVector<SDValue, 8> Stores;
   4188     unsigned Offset = 0;
   4189 
   4190     // Do all but one copies using the full register width.
   4191     for (unsigned i = 1; i < NumRegs; i++) {
   4192       // Load one integer register's worth from the stack slot.
   4193       SDValue Load = DAG.getLoad(
   4194           RegVT, dl, Store, StackPtr,
   4195           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
   4196       // Store it to the final location.  Remember the store.
   4197       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
   4198                                     ST->getPointerInfo().getWithOffset(Offset),
   4199                                     MinAlign(ST->getAlignment(), Offset),
   4200                                     ST->getMemOperand()->getFlags()));
   4201       // Increment the pointers.
   4202       Offset += RegBytes;
   4203       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
   4204       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
   4205     }
   4206 
   4207     // The last store may be partial.  Do a truncating store.  On big-endian
   4208     // machines this requires an extending load from the stack slot to ensure
   4209     // that the bits are in the right place.
   4210     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
   4211                                   8 * (StoredBytes - Offset));
   4212 
   4213     // Load from the stack slot.
   4214     SDValue Load = DAG.getExtLoad(
   4215         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
   4216         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
   4217 
   4218     Stores.push_back(
   4219         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
   4220                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
   4221                           MinAlign(ST->getAlignment(), Offset),
   4222                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
   4223     // The order of the stores doesn't matter - say it with a TokenFactor.
   4224     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   4225     return Result;
   4226   }
   4227 
   4228   assert(ST->getMemoryVT().isInteger() &&
   4229          !ST->getMemoryVT().isVector() &&
   4230          "Unaligned store of unknown type.");
   4231   // Get the half-size VT
   4232   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
   4233   int NumBits = NewStoredVT.getSizeInBits();
   4234   int IncrementSize = NumBits / 8;
   4235 
   4236   // Divide the stored value in two parts.
   4237   SDValue ShiftAmount =
   4238       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
   4239                                                     DAG.getDataLayout()));
   4240   SDValue Lo = Val;
   4241   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
   4242 
   4243   // Store the two parts
   4244   SDValue Store1, Store2;
   4245   Store1 = DAG.getTruncStore(Chain, dl,
   4246                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
   4247                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
   4248                              ST->getMemOperand()->getFlags());
   4249 
   4250   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
   4251   Alignment = MinAlign(Alignment, IncrementSize);
   4252   Store2 = DAG.getTruncStore(
   4253       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
   4254       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
   4255       ST->getMemOperand()->getFlags(), ST->getAAInfo());
   4256 
   4257   SDValue Result =
   4258     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
   4259   return Result;
   4260 }
   4261 
   4262 SDValue
   4263 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
   4264                                        const SDLoc &DL, EVT DataVT,
   4265                                        SelectionDAG &DAG,
   4266                                        bool IsCompressedMemory) const {
   4267   SDValue Increment;
   4268   EVT AddrVT = Addr.getValueType();
   4269   EVT MaskVT = Mask.getValueType();
   4270   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
   4271          "Incompatible types of Data and Mask");
   4272   if (IsCompressedMemory) {
   4273     // Incrementing the pointer according to number of '1's in the mask.
   4274     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
   4275     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
   4276     if (MaskIntVT.getSizeInBits() < 32) {
   4277       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
   4278       MaskIntVT = MVT::i32;
   4279     }
   4280 
   4281     // Count '1's with POPCNT.
   4282     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
   4283     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
   4284     // Scale is an element size in bytes.
   4285     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
   4286                                     AddrVT);
   4287     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
   4288   } else
   4289     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
   4290 
   4291   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
   4292 }
   4293 
   4294 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
   4295                                        SDValue Idx,
   4296                                        EVT VecVT,
   4297                                        const SDLoc &dl) {
   4298   if (isa<ConstantSDNode>(Idx))
   4299     return Idx;
   4300 
   4301   EVT IdxVT = Idx.getValueType();
   4302   unsigned NElts = VecVT.getVectorNumElements();
   4303   if (isPowerOf2_32(NElts)) {
   4304     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
   4305                                      Log2_32(NElts));
   4306     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
   4307                        DAG.getConstant(Imm, dl, IdxVT));
   4308   }
   4309 
   4310   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
   4311                      DAG.getConstant(NElts - 1, dl, IdxVT));
   4312 }
   4313 
   4314 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
   4315                                                 SDValue VecPtr, EVT VecVT,
   4316                                                 SDValue Index) const {
   4317   SDLoc dl(Index);
   4318   // Make sure the index type is big enough to compute in.
   4319   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
   4320 
   4321   EVT EltVT = VecVT.getVectorElementType();
   4322 
   4323   // Calculate the element offset and add it to the pointer.
   4324   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
   4325   assert(EltSize * 8 == EltVT.getSizeInBits() &&
   4326          "Converting bits to bytes lost precision");
   4327 
   4328   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
   4329 
   4330   EVT IdxVT = Index.getValueType();
   4331 
   4332   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
   4333                       DAG.getConstant(EltSize, dl, IdxVT));
   4334   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
   4335 }
   4336 
   4337 //===----------------------------------------------------------------------===//
   4338 // Implementation of Emulated TLS Model
   4339 //===----------------------------------------------------------------------===//
   4340 
   4341 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   4342                                                 SelectionDAG &DAG) const {
   4343   // Access to address of TLS varialbe xyz is lowered to a function call:
   4344   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
   4345   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   4346   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
   4347   SDLoc dl(GA);
   4348 
   4349   ArgListTy Args;
   4350   ArgListEntry Entry;
   4351   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
   4352   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
   4353   StringRef EmuTlsVarName(NameString);
   4354   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
   4355   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
   4356   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
   4357   Entry.Ty = VoidPtrType;
   4358   Args.push_back(Entry);
   4359 
   4360   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
   4361 
   4362   TargetLowering::CallLoweringInfo CLI(DAG);
   4363   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
   4364   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
   4365   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   4366 
   4367   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   4368   // At last for X86 targets, maybe good for other targets too?
   4369   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   4370   MFI.setAdjustsStack(true);  // Is this only for X86 target?
   4371   MFI.setHasCalls(true);
   4372 
   4373   assert((GA->getOffset() == 0) &&
   4374          "Emulated TLS must have zero offset in GlobalAddressSDNode");
   4375   return CallResult.first;
   4376 }
   4377 
   4378 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
   4379                                                 SelectionDAG &DAG) const {
   4380   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
   4381   if (!isCtlzFast())
   4382     return SDValue();
   4383   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   4384   SDLoc dl(Op);
   4385   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   4386     if (C->isNullValue() && CC == ISD::SETEQ) {
   4387       EVT VT = Op.getOperand(0).getValueType();
   4388       SDValue Zext = Op.getOperand(0);
   4389       if (VT.bitsLT(MVT::i32)) {
   4390         VT = MVT::i32;
   4391         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   4392       }
   4393       unsigned Log2b = Log2_32(VT.getSizeInBits());
   4394       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   4395       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   4396                                 DAG.getConstant(Log2b, dl, MVT::i32));
   4397       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   4398     }
   4399   }
   4400   return SDValue();
   4401 }
   4402