Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AArch64TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "AArch64ISelLowering.h"
     15 #include "AArch64CallingConvention.h"
     16 #include "AArch64MachineFunctionInfo.h"
     17 #include "AArch64PerfectShuffle.h"
     18 #include "AArch64RegisterInfo.h"
     19 #include "AArch64Subtarget.h"
     20 #include "MCTargetDesc/AArch64AddressingModes.h"
     21 #include "Utils/AArch64BaseInfo.h"
     22 #include "llvm/ADT/APFloat.h"
     23 #include "llvm/ADT/APInt.h"
     24 #include "llvm/ADT/ArrayRef.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/ADT/StringRef.h"
     29 #include "llvm/ADT/StringSwitch.h"
     30 #include "llvm/ADT/Triple.h"
     31 #include "llvm/ADT/Twine.h"
     32 #include "llvm/Analysis/VectorUtils.h"
     33 #include "llvm/CodeGen/CallingConvLower.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineFrameInfo.h"
     36 #include "llvm/CodeGen/MachineFunction.h"
     37 #include "llvm/CodeGen/MachineInstr.h"
     38 #include "llvm/CodeGen/MachineInstrBuilder.h"
     39 #include "llvm/CodeGen/MachineMemOperand.h"
     40 #include "llvm/CodeGen/MachineRegisterInfo.h"
     41 #include "llvm/CodeGen/RuntimeLibcalls.h"
     42 #include "llvm/CodeGen/SelectionDAG.h"
     43 #include "llvm/CodeGen/SelectionDAGNodes.h"
     44 #include "llvm/CodeGen/TargetCallingConv.h"
     45 #include "llvm/CodeGen/TargetInstrInfo.h"
     46 #include "llvm/CodeGen/ValueTypes.h"
     47 #include "llvm/IR/Attributes.h"
     48 #include "llvm/IR/Constants.h"
     49 #include "llvm/IR/DataLayout.h"
     50 #include "llvm/IR/DebugLoc.h"
     51 #include "llvm/IR/DerivedTypes.h"
     52 #include "llvm/IR/Function.h"
     53 #include "llvm/IR/GetElementPtrTypeIterator.h"
     54 #include "llvm/IR/GlobalValue.h"
     55 #include "llvm/IR/IRBuilder.h"
     56 #include "llvm/IR/Instruction.h"
     57 #include "llvm/IR/Instructions.h"
     58 #include "llvm/IR/Intrinsics.h"
     59 #include "llvm/IR/Module.h"
     60 #include "llvm/IR/OperandTraits.h"
     61 #include "llvm/IR/Type.h"
     62 #include "llvm/IR/Use.h"
     63 #include "llvm/IR/Value.h"
     64 #include "llvm/MC/MCRegisterInfo.h"
     65 #include "llvm/Support/Casting.h"
     66 #include "llvm/Support/CodeGen.h"
     67 #include "llvm/Support/CommandLine.h"
     68 #include "llvm/Support/Compiler.h"
     69 #include "llvm/Support/Debug.h"
     70 #include "llvm/Support/ErrorHandling.h"
     71 #include "llvm/Support/KnownBits.h"
     72 #include "llvm/Support/MachineValueType.h"
     73 #include "llvm/Support/MathExtras.h"
     74 #include "llvm/Support/raw_ostream.h"
     75 #include "llvm/Target/TargetMachine.h"
     76 #include "llvm/Target/TargetOptions.h"
     77 #include <algorithm>
     78 #include <bitset>
     79 #include <cassert>
     80 #include <cctype>
     81 #include <cstdint>
     82 #include <cstdlib>
     83 #include <iterator>
     84 #include <limits>
     85 #include <tuple>
     86 #include <utility>
     87 #include <vector>
     88 
     89 using namespace llvm;
     90 
     91 #define DEBUG_TYPE "aarch64-lower"
     92 
     93 STATISTIC(NumTailCalls, "Number of tail calls");
     94 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
     95 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
     96 
     97 static cl::opt<bool>
     98 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
     99                            cl::desc("Allow AArch64 SLI/SRI formation"),
    100                            cl::init(false));
    101 
    102 // FIXME: The necessary dtprel relocations don't seem to be supported
    103 // well in the GNU bfd and gold linkers at the moment. Therefore, by
    104 // default, for now, fall back to GeneralDynamic code generation.
    105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
    106     "aarch64-elf-ldtls-generation", cl::Hidden,
    107     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
    108     cl::init(false));
    109 
    110 static cl::opt<bool>
    111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
    112                          cl::desc("Enable AArch64 logical imm instruction "
    113                                   "optimization"),
    114                          cl::init(true));
    115 
    116 /// Value type used for condition codes.
    117 static const MVT MVT_CC = MVT::i32;
    118 
    119 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
    120                                              const AArch64Subtarget &STI)
    121     : TargetLowering(TM), Subtarget(&STI) {
    122   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
    123   // we have to make something up. Arbitrarily, choose ZeroOrOne.
    124   setBooleanContents(ZeroOrOneBooleanContent);
    125   // When comparing vectors the result sets the different elements in the
    126   // vector to all-one or all-zero.
    127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    128 
    129   // Set up the register classes.
    130   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
    131   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
    132 
    133   if (Subtarget->hasFPARMv8()) {
    134     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
    135     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
    136     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
    137     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
    138   }
    139 
    140   if (Subtarget->hasNEON()) {
    141     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
    142     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
    143     // Someone set us up the NEON.
    144     addDRTypeForNEON(MVT::v2f32);
    145     addDRTypeForNEON(MVT::v8i8);
    146     addDRTypeForNEON(MVT::v4i16);
    147     addDRTypeForNEON(MVT::v2i32);
    148     addDRTypeForNEON(MVT::v1i64);
    149     addDRTypeForNEON(MVT::v1f64);
    150     addDRTypeForNEON(MVT::v4f16);
    151 
    152     addQRTypeForNEON(MVT::v4f32);
    153     addQRTypeForNEON(MVT::v2f64);
    154     addQRTypeForNEON(MVT::v16i8);
    155     addQRTypeForNEON(MVT::v8i16);
    156     addQRTypeForNEON(MVT::v4i32);
    157     addQRTypeForNEON(MVT::v2i64);
    158     addQRTypeForNEON(MVT::v8f16);
    159   }
    160 
    161   // Compute derived properties from the register classes
    162   computeRegisterProperties(Subtarget->getRegisterInfo());
    163 
    164   // Provide all sorts of operation actions
    165   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    166   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    167   setOperationAction(ISD::SETCC, MVT::i32, Custom);
    168   setOperationAction(ISD::SETCC, MVT::i64, Custom);
    169   setOperationAction(ISD::SETCC, MVT::f16, Custom);
    170   setOperationAction(ISD::SETCC, MVT::f32, Custom);
    171   setOperationAction(ISD::SETCC, MVT::f64, Custom);
    172   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    173   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
    174   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    175   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
    176   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
    177   setOperationAction(ISD::BR_CC, MVT::f16, Custom);
    178   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
    179   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
    180   setOperationAction(ISD::SELECT, MVT::i32, Custom);
    181   setOperationAction(ISD::SELECT, MVT::i64, Custom);
    182   setOperationAction(ISD::SELECT, MVT::f16, Custom);
    183   setOperationAction(ISD::SELECT, MVT::f32, Custom);
    184   setOperationAction(ISD::SELECT, MVT::f64, Custom);
    185   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    186   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
    187   setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
    188   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    189   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    190   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    191   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
    192 
    193   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    194   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    195   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    196 
    197   setOperationAction(ISD::FREM, MVT::f32, Expand);
    198   setOperationAction(ISD::FREM, MVT::f64, Expand);
    199   setOperationAction(ISD::FREM, MVT::f80, Expand);
    200 
    201   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    202 
    203   // Custom lowering hooks are needed for XOR
    204   // to fold it into CSINC/CSINV.
    205   setOperationAction(ISD::XOR, MVT::i32, Custom);
    206   setOperationAction(ISD::XOR, MVT::i64, Custom);
    207 
    208   // Virtually no operation on f128 is legal, but LLVM can't expand them when
    209   // there's a valid register class, so we need custom operations in most cases.
    210   setOperationAction(ISD::FABS, MVT::f128, Expand);
    211   setOperationAction(ISD::FADD, MVT::f128, Custom);
    212   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
    213   setOperationAction(ISD::FCOS, MVT::f128, Expand);
    214   setOperationAction(ISD::FDIV, MVT::f128, Custom);
    215   setOperationAction(ISD::FMA, MVT::f128, Expand);
    216   setOperationAction(ISD::FMUL, MVT::f128, Custom);
    217   setOperationAction(ISD::FNEG, MVT::f128, Expand);
    218   setOperationAction(ISD::FPOW, MVT::f128, Expand);
    219   setOperationAction(ISD::FREM, MVT::f128, Expand);
    220   setOperationAction(ISD::FRINT, MVT::f128, Expand);
    221   setOperationAction(ISD::FSIN, MVT::f128, Expand);
    222   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
    223   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
    224   setOperationAction(ISD::FSUB, MVT::f128, Custom);
    225   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
    226   setOperationAction(ISD::SETCC, MVT::f128, Custom);
    227   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
    228   setOperationAction(ISD::SELECT, MVT::f128, Custom);
    229   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
    230   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
    231 
    232   // Lowering for many of the conversions is actually specified by the non-f128
    233   // type. The LowerXXX function will be trivial when f128 isn't involved.
    234   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    235   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    236   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
    237   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    238   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    239   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
    240   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    241   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    242   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
    243   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    244   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    245   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
    246   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
    247   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
    248 
    249   // Variable arguments.
    250   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    251   setOperationAction(ISD::VAARG, MVT::Other, Custom);
    252   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
    253   setOperationAction(ISD::VAEND, MVT::Other, Expand);
    254 
    255   // Variable-sized objects.
    256   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
    257   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
    258 
    259   if (Subtarget->isTargetWindows())
    260     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
    261   else
    262     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
    263 
    264   // Constant pool entries
    265   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
    266 
    267   // BlockAddress
    268   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
    269 
    270   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
    271   setOperationAction(ISD::ADDC, MVT::i32, Custom);
    272   setOperationAction(ISD::ADDE, MVT::i32, Custom);
    273   setOperationAction(ISD::SUBC, MVT::i32, Custom);
    274   setOperationAction(ISD::SUBE, MVT::i32, Custom);
    275   setOperationAction(ISD::ADDC, MVT::i64, Custom);
    276   setOperationAction(ISD::ADDE, MVT::i64, Custom);
    277   setOperationAction(ISD::SUBC, MVT::i64, Custom);
    278   setOperationAction(ISD::SUBE, MVT::i64, Custom);
    279 
    280   // AArch64 lacks both left-rotate and popcount instructions.
    281   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    282   setOperationAction(ISD::ROTL, MVT::i64, Expand);
    283   for (MVT VT : MVT::vector_valuetypes()) {
    284     setOperationAction(ISD::ROTL, VT, Expand);
    285     setOperationAction(ISD::ROTR, VT, Expand);
    286   }
    287 
    288   // AArch64 doesn't have {U|S}MUL_LOHI.
    289   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    290   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    291 
    292   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
    293   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
    294 
    295   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    296   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    297   for (MVT VT : MVT::vector_valuetypes()) {
    298     setOperationAction(ISD::SDIVREM, VT, Expand);
    299     setOperationAction(ISD::UDIVREM, VT, Expand);
    300   }
    301   setOperationAction(ISD::SREM, MVT::i32, Expand);
    302   setOperationAction(ISD::SREM, MVT::i64, Expand);
    303   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    304   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    305   setOperationAction(ISD::UREM, MVT::i32, Expand);
    306   setOperationAction(ISD::UREM, MVT::i64, Expand);
    307 
    308   // Custom lower Add/Sub/Mul with overflow.
    309   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    310   setOperationAction(ISD::SADDO, MVT::i64, Custom);
    311   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    312   setOperationAction(ISD::UADDO, MVT::i64, Custom);
    313   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    314   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
    315   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    316   setOperationAction(ISD::USUBO, MVT::i64, Custom);
    317   setOperationAction(ISD::SMULO, MVT::i32, Custom);
    318   setOperationAction(ISD::SMULO, MVT::i64, Custom);
    319   setOperationAction(ISD::UMULO, MVT::i32, Custom);
    320   setOperationAction(ISD::UMULO, MVT::i64, Custom);
    321 
    322   setOperationAction(ISD::FSIN, MVT::f32, Expand);
    323   setOperationAction(ISD::FSIN, MVT::f64, Expand);
    324   setOperationAction(ISD::FCOS, MVT::f32, Expand);
    325   setOperationAction(ISD::FCOS, MVT::f64, Expand);
    326   setOperationAction(ISD::FPOW, MVT::f32, Expand);
    327   setOperationAction(ISD::FPOW, MVT::f64, Expand);
    328   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    329   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    330   if (Subtarget->hasFullFP16())
    331     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
    332   else
    333     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
    334 
    335   setOperationAction(ISD::FREM,    MVT::f16,   Promote);
    336   setOperationAction(ISD::FREM,    MVT::v4f16, Promote);
    337   setOperationAction(ISD::FREM,    MVT::v8f16, Promote);
    338   setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
    339   setOperationAction(ISD::FPOW,    MVT::v4f16, Promote);
    340   setOperationAction(ISD::FPOW,    MVT::v8f16, Promote);
    341   setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
    342   setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
    343   setOperationAction(ISD::FCOS,    MVT::v4f16, Promote);
    344   setOperationAction(ISD::FCOS,    MVT::v8f16, Promote);
    345   setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
    346   setOperationAction(ISD::FSIN,    MVT::v4f16, Promote);
    347   setOperationAction(ISD::FSIN,    MVT::v8f16, Promote);
    348   setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
    349   setOperationAction(ISD::FSINCOS, MVT::v4f16, Promote);
    350   setOperationAction(ISD::FSINCOS, MVT::v8f16, Promote);
    351   setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
    352   setOperationAction(ISD::FEXP,    MVT::v4f16, Promote);
    353   setOperationAction(ISD::FEXP,    MVT::v8f16, Promote);
    354   setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
    355   setOperationAction(ISD::FEXP2,   MVT::v4f16, Promote);
    356   setOperationAction(ISD::FEXP2,   MVT::v8f16, Promote);
    357   setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
    358   setOperationAction(ISD::FLOG,    MVT::v4f16, Promote);
    359   setOperationAction(ISD::FLOG,    MVT::v8f16, Promote);
    360   setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
    361   setOperationAction(ISD::FLOG2,   MVT::v4f16, Promote);
    362   setOperationAction(ISD::FLOG2,   MVT::v8f16, Promote);
    363   setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
    364   setOperationAction(ISD::FLOG10,  MVT::v4f16, Promote);
    365   setOperationAction(ISD::FLOG10,  MVT::v8f16, Promote);
    366 
    367   if (!Subtarget->hasFullFP16()) {
    368     setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
    369     setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
    370     setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
    371     setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
    372     setOperationAction(ISD::FADD,        MVT::f16,  Promote);
    373     setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
    374     setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
    375     setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
    376     setOperationAction(ISD::FMA,         MVT::f16,  Promote);
    377     setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
    378     setOperationAction(ISD::FABS,        MVT::f16,  Promote);
    379     setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
    380     setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
    381     setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
    382     setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
    383     setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
    384     setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
    385     setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
    386     setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
    387     setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
    388     setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote);
    389     setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote);
    390 
    391     // promote v4f16 to v4f32 when that is known to be safe.
    392     setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
    393     setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
    394     setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
    395     setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
    396     setOperationAction(ISD::FP_EXTEND,   MVT::v4f16, Promote);
    397     setOperationAction(ISD::FP_ROUND,    MVT::v4f16, Promote);
    398     AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
    399     AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
    400     AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
    401     AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
    402     AddPromotedToType(ISD::FP_EXTEND,    MVT::v4f16, MVT::v4f32);
    403     AddPromotedToType(ISD::FP_ROUND,     MVT::v4f16, MVT::v4f32);
    404 
    405     setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
    406     setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
    407     setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
    408     setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
    409     setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
    410     setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
    411     setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
    412     setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
    413     setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
    414     setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
    415     setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
    416     setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
    417     setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
    418     setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
    419     setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
    420 
    421     setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
    422     setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
    423     setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
    424     setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
    425     setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
    426     setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
    427     setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
    428     setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
    429     setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
    430     setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
    431     setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
    432     setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
    433     setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
    434     setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
    435     setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
    436     setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
    437     setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
    438     setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
    439     setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
    440     setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
    441   }
    442 
    443   // AArch64 has implementations of a lot of rounding-like FP operations.
    444   for (MVT Ty : {MVT::f32, MVT::f64}) {
    445     setOperationAction(ISD::FFLOOR, Ty, Legal);
    446     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
    447     setOperationAction(ISD::FCEIL, Ty, Legal);
    448     setOperationAction(ISD::FRINT, Ty, Legal);
    449     setOperationAction(ISD::FTRUNC, Ty, Legal);
    450     setOperationAction(ISD::FROUND, Ty, Legal);
    451     setOperationAction(ISD::FMINNUM, Ty, Legal);
    452     setOperationAction(ISD::FMAXNUM, Ty, Legal);
    453     setOperationAction(ISD::FMINNAN, Ty, Legal);
    454     setOperationAction(ISD::FMAXNAN, Ty, Legal);
    455   }
    456 
    457   if (Subtarget->hasFullFP16()) {
    458     setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
    459     setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
    460     setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
    461     setOperationAction(ISD::FRINT,   MVT::f16, Legal);
    462     setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
    463     setOperationAction(ISD::FROUND,  MVT::f16, Legal);
    464     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    465     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
    466     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
    467     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
    468   }
    469 
    470   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
    471 
    472   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    473 
    474   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
    475   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
    476   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    477   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
    478   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    479 
    480   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
    481   // This requires the Performance Monitors extension.
    482   if (Subtarget->hasPerfMon())
    483     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
    484 
    485   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
    486       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
    487     // Issue __sincos_stret if available.
    488     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    489     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
    490   } else {
    491     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    492     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    493   }
    494 
    495   // Make floating-point constants legal for the large code model, so they don't
    496   // become loads from the constant pool.
    497   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
    498     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
    499     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
    500   }
    501 
    502   // AArch64 does not have floating-point extending loads, i1 sign-extending
    503   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
    504   for (MVT VT : MVT::fp_valuetypes()) {
    505     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    506     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    507     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
    508     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
    509   }
    510   for (MVT VT : MVT::integer_valuetypes())
    511     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
    512 
    513   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    514   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    515   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    516   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
    517   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    518   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    519   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
    520 
    521   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
    522   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
    523 
    524   // Indexed loads and stores are supported.
    525   for (unsigned im = (unsigned)ISD::PRE_INC;
    526        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    527     setIndexedLoadAction(im, MVT::i8, Legal);
    528     setIndexedLoadAction(im, MVT::i16, Legal);
    529     setIndexedLoadAction(im, MVT::i32, Legal);
    530     setIndexedLoadAction(im, MVT::i64, Legal);
    531     setIndexedLoadAction(im, MVT::f64, Legal);
    532     setIndexedLoadAction(im, MVT::f32, Legal);
    533     setIndexedLoadAction(im, MVT::f16, Legal);
    534     setIndexedStoreAction(im, MVT::i8, Legal);
    535     setIndexedStoreAction(im, MVT::i16, Legal);
    536     setIndexedStoreAction(im, MVT::i32, Legal);
    537     setIndexedStoreAction(im, MVT::i64, Legal);
    538     setIndexedStoreAction(im, MVT::f64, Legal);
    539     setIndexedStoreAction(im, MVT::f32, Legal);
    540     setIndexedStoreAction(im, MVT::f16, Legal);
    541   }
    542 
    543   // Trap.
    544   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    545 
    546   // We combine OR nodes for bitfield operations.
    547   setTargetDAGCombine(ISD::OR);
    548 
    549   // Vector add and sub nodes may conceal a high-half opportunity.
    550   // Also, try to fold ADD into CSINC/CSINV..
    551   setTargetDAGCombine(ISD::ADD);
    552   setTargetDAGCombine(ISD::SUB);
    553   setTargetDAGCombine(ISD::SRL);
    554   setTargetDAGCombine(ISD::XOR);
    555   setTargetDAGCombine(ISD::SINT_TO_FP);
    556   setTargetDAGCombine(ISD::UINT_TO_FP);
    557 
    558   setTargetDAGCombine(ISD::FP_TO_SINT);
    559   setTargetDAGCombine(ISD::FP_TO_UINT);
    560   setTargetDAGCombine(ISD::FDIV);
    561 
    562   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    563 
    564   setTargetDAGCombine(ISD::ANY_EXTEND);
    565   setTargetDAGCombine(ISD::ZERO_EXTEND);
    566   setTargetDAGCombine(ISD::SIGN_EXTEND);
    567   setTargetDAGCombine(ISD::BITCAST);
    568   setTargetDAGCombine(ISD::CONCAT_VECTORS);
    569   setTargetDAGCombine(ISD::STORE);
    570   if (Subtarget->supportsAddressTopByteIgnored())
    571     setTargetDAGCombine(ISD::LOAD);
    572 
    573   setTargetDAGCombine(ISD::MUL);
    574 
    575   setTargetDAGCombine(ISD::SELECT);
    576   setTargetDAGCombine(ISD::VSELECT);
    577 
    578   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    579   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    580   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    581 
    582   setTargetDAGCombine(ISD::GlobalAddress);
    583 
    584   // In case of strict alignment, avoid an excessive number of byte wide stores.
    585   MaxStoresPerMemsetOptSize = 8;
    586   MaxStoresPerMemset = Subtarget->requiresStrictAlign()
    587                        ? MaxStoresPerMemsetOptSize : 32;
    588 
    589   MaxGluedStoresPerMemcpy = 4;
    590   MaxStoresPerMemcpyOptSize = 4;
    591   MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
    592                        ? MaxStoresPerMemcpyOptSize : 16;
    593 
    594   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
    595 
    596   setStackPointerRegisterToSaveRestore(AArch64::SP);
    597 
    598   setSchedulingPreference(Sched::Hybrid);
    599 
    600   EnableExtLdPromotion = true;
    601 
    602   // Set required alignment.
    603   setMinFunctionAlignment(2);
    604   // Set preferred alignments.
    605   setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
    606   setPrefLoopAlignment(STI.getPrefLoopAlignment());
    607 
    608   // Only change the limit for entries in a jump table if specified by
    609   // the subtarget, but not at the command line.
    610   unsigned MaxJT = STI.getMaximumJumpTableSize();
    611   if (MaxJT && getMaximumJumpTableSize() == 0)
    612     setMaximumJumpTableSize(MaxJT);
    613 
    614   setHasExtractBitsInsn(true);
    615 
    616   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    617 
    618   if (Subtarget->hasNEON()) {
    619     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
    620     // silliness like this:
    621     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
    622     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
    623     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
    624     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
    625     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
    626     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
    627     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
    628     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
    629     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
    630     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
    631     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
    632     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
    633     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
    634     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
    635     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
    636     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
    637     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
    638     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
    639     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
    640     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
    641     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
    642     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
    643     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
    644     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
    645     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
    646 
    647     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
    648     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
    649     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
    650     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
    651     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
    652 
    653     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    654 
    655     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
    656     // elements smaller than i32, so promote the input to i32 first.
    657     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
    658     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
    659     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
    660     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
    661     // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
    662     // -> v8f16 conversions.
    663     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
    664     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
    665     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
    666     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
    667     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
    668     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
    669     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
    670     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
    671     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
    672     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
    673     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
    674     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
    675     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
    676 
    677     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    678     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
    679 
    680     setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
    681     setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
    682     setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
    683     setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
    684     setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
    685     setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
    686     setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
    687     setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
    688 
    689     // AArch64 doesn't have MUL.2d:
    690     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
    691     // Custom handling for some quad-vector types to detect MULL.
    692     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    693     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    694     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    695 
    696     // Vector reductions
    697     for (MVT VT : MVT::integer_valuetypes()) {
    698       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
    699       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
    700       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
    701       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
    702       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
    703     }
    704     for (MVT VT : MVT::fp_valuetypes()) {
    705       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
    706       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
    707     }
    708 
    709     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
    710     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
    711     // Likewise, narrowing and extending vector loads/stores aren't handled
    712     // directly.
    713     for (MVT VT : MVT::vector_valuetypes()) {
    714       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    715 
    716       if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
    717         setOperationAction(ISD::MULHS, VT, Custom);
    718         setOperationAction(ISD::MULHU, VT, Custom);
    719       } else {
    720         setOperationAction(ISD::MULHS, VT, Expand);
    721         setOperationAction(ISD::MULHU, VT, Expand);
    722       }
    723       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    724       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    725 
    726       setOperationAction(ISD::BSWAP, VT, Expand);
    727 
    728       for (MVT InnerVT : MVT::vector_valuetypes()) {
    729         setTruncStoreAction(VT, InnerVT, Expand);
    730         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    731         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    732         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    733       }
    734     }
    735 
    736     // AArch64 has implementations of a lot of rounding-like FP operations.
    737     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
    738       setOperationAction(ISD::FFLOOR, Ty, Legal);
    739       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
    740       setOperationAction(ISD::FCEIL, Ty, Legal);
    741       setOperationAction(ISD::FRINT, Ty, Legal);
    742       setOperationAction(ISD::FTRUNC, Ty, Legal);
    743       setOperationAction(ISD::FROUND, Ty, Legal);
    744     }
    745 
    746     setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
    747   }
    748 
    749   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
    750 }
    751 
    752 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
    753   assert(VT.isVector() && "VT should be a vector type");
    754 
    755   if (VT.isFloatingPoint()) {
    756     MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
    757     setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
    758     setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
    759   }
    760 
    761   // Mark vector float intrinsics as expand.
    762   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
    763     setOperationAction(ISD::FSIN, VT, Expand);
    764     setOperationAction(ISD::FCOS, VT, Expand);
    765     setOperationAction(ISD::FPOW, VT, Expand);
    766     setOperationAction(ISD::FLOG, VT, Expand);
    767     setOperationAction(ISD::FLOG2, VT, Expand);
    768     setOperationAction(ISD::FLOG10, VT, Expand);
    769     setOperationAction(ISD::FEXP, VT, Expand);
    770     setOperationAction(ISD::FEXP2, VT, Expand);
    771 
    772     // But we do support custom-lowering for FCOPYSIGN.
    773     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
    774   }
    775 
    776   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    777   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    778   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    779   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    780   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
    781   setOperationAction(ISD::SRA, VT, Custom);
    782   setOperationAction(ISD::SRL, VT, Custom);
    783   setOperationAction(ISD::SHL, VT, Custom);
    784   setOperationAction(ISD::AND, VT, Custom);
    785   setOperationAction(ISD::OR, VT, Custom);
    786   setOperationAction(ISD::SETCC, VT, Custom);
    787   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
    788 
    789   setOperationAction(ISD::SELECT, VT, Expand);
    790   setOperationAction(ISD::SELECT_CC, VT, Expand);
    791   setOperationAction(ISD::VSELECT, VT, Expand);
    792   for (MVT InnerVT : MVT::all_valuetypes())
    793     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
    794 
    795   // CNT supports only B element sizes.
    796   if (VT != MVT::v8i8 && VT != MVT::v16i8)
    797     setOperationAction(ISD::CTPOP, VT, Expand);
    798 
    799   setOperationAction(ISD::UDIV, VT, Expand);
    800   setOperationAction(ISD::SDIV, VT, Expand);
    801   setOperationAction(ISD::UREM, VT, Expand);
    802   setOperationAction(ISD::SREM, VT, Expand);
    803   setOperationAction(ISD::FREM, VT, Expand);
    804 
    805   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    806   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    807 
    808   if (!VT.isFloatingPoint())
    809     setOperationAction(ISD::ABS, VT, Legal);
    810 
    811   // [SU][MIN|MAX] are available for all NEON types apart from i64.
    812   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
    813     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
    814       setOperationAction(Opcode, VT, Legal);
    815 
    816   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
    817   if (VT.isFloatingPoint() &&
    818       (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
    819     for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
    820                             ISD::FMINNUM, ISD::FMAXNUM})
    821       setOperationAction(Opcode, VT, Legal);
    822 
    823   if (Subtarget->isLittleEndian()) {
    824     for (unsigned im = (unsigned)ISD::PRE_INC;
    825          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    826       setIndexedLoadAction(im, VT, Legal);
    827       setIndexedStoreAction(im, VT, Legal);
    828     }
    829   }
    830 }
    831 
    832 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
    833   addRegisterClass(VT, &AArch64::FPR64RegClass);
    834   addTypeForNEON(VT, MVT::v2i32);
    835 }
    836 
    837 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
    838   addRegisterClass(VT, &AArch64::FPR128RegClass);
    839   addTypeForNEON(VT, MVT::v4i32);
    840 }
    841 
    842 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
    843                                               EVT VT) const {
    844   if (!VT.isVector())
    845     return MVT::i32;
    846   return VT.changeVectorElementTypeToInteger();
    847 }
    848 
    849 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
    850                                const APInt &Demanded,
    851                                TargetLowering::TargetLoweringOpt &TLO,
    852                                unsigned NewOpc) {
    853   uint64_t OldImm = Imm, NewImm, Enc;
    854   uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
    855 
    856   // Return if the immediate is already all zeros, all ones, a bimm32 or a
    857   // bimm64.
    858   if (Imm == 0 || Imm == Mask ||
    859       AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
    860     return false;
    861 
    862   unsigned EltSize = Size;
    863   uint64_t DemandedBits = Demanded.getZExtValue();
    864 
    865   // Clear bits that are not demanded.
    866   Imm &= DemandedBits;
    867 
    868   while (true) {
    869     // The goal here is to set the non-demanded bits in a way that minimizes
    870     // the number of switching between 0 and 1. In order to achieve this goal,
    871     // we set the non-demanded bits to the value of the preceding demanded bits.
    872     // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
    873     // non-demanded bit), we copy bit0 (1) to the least significant 'x',
    874     // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
    875     // The final result is 0b11000011.
    876     uint64_t NonDemandedBits = ~DemandedBits;
    877     uint64_t InvertedImm = ~Imm & DemandedBits;
    878     uint64_t RotatedImm =
    879         ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
    880         NonDemandedBits;
    881     uint64_t Sum = RotatedImm + NonDemandedBits;
    882     bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
    883     uint64_t Ones = (Sum + Carry) & NonDemandedBits;
    884     NewImm = (Imm | Ones) & Mask;
    885 
    886     // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
    887     // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
    888     // we halve the element size and continue the search.
    889     if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
    890       break;
    891 
    892     // We cannot shrink the element size any further if it is 2-bits.
    893     if (EltSize == 2)
    894       return false;
    895 
    896     EltSize /= 2;
    897     Mask >>= EltSize;
    898     uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
    899 
    900     // Return if there is mismatch in any of the demanded bits of Imm and Hi.
    901     if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
    902       return false;
    903 
    904     // Merge the upper and lower halves of Imm and DemandedBits.
    905     Imm |= Hi;
    906     DemandedBits |= DemandedBitsHi;
    907   }
    908 
    909   ++NumOptimizedImms;
    910 
    911   // Replicate the element across the register width.
    912   while (EltSize < Size) {
    913     NewImm |= NewImm << EltSize;
    914     EltSize *= 2;
    915   }
    916 
    917   (void)OldImm;
    918   assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
    919          "demanded bits should never be altered");
    920   assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
    921 
    922   // Create the new constant immediate node.
    923   EVT VT = Op.getValueType();
    924   SDLoc DL(Op);
    925   SDValue New;
    926 
    927   // If the new constant immediate is all-zeros or all-ones, let the target
    928   // independent DAG combine optimize this node.
    929   if (NewImm == 0 || NewImm == OrigMask) {
    930     New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
    931                           TLO.DAG.getConstant(NewImm, DL, VT));
    932   // Otherwise, create a machine node so that target independent DAG combine
    933   // doesn't undo this optimization.
    934   } else {
    935     Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
    936     SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
    937     New = SDValue(
    938         TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
    939   }
    940 
    941   return TLO.CombineTo(Op, New);
    942 }
    943 
    944 bool AArch64TargetLowering::targetShrinkDemandedConstant(
    945     SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
    946   // Delay this optimization to as late as possible.
    947   if (!TLO.LegalOps)
    948     return false;
    949 
    950   if (!EnableOptimizeLogicalImm)
    951     return false;
    952 
    953   EVT VT = Op.getValueType();
    954   if (VT.isVector())
    955     return false;
    956 
    957   unsigned Size = VT.getSizeInBits();
    958   assert((Size == 32 || Size == 64) &&
    959          "i32 or i64 is expected after legalization.");
    960 
    961   // Exit early if we demand all bits.
    962   if (Demanded.countPopulation() == Size)
    963     return false;
    964 
    965   unsigned NewOpc;
    966   switch (Op.getOpcode()) {
    967   default:
    968     return false;
    969   case ISD::AND:
    970     NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
    971     break;
    972   case ISD::OR:
    973     NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
    974     break;
    975   case ISD::XOR:
    976     NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
    977     break;
    978   }
    979   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    980   if (!C)
    981     return false;
    982   uint64_t Imm = C->getZExtValue();
    983   return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
    984 }
    985 
    986 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
    987 /// Mask are known to be either zero or one and return them Known.
    988 void AArch64TargetLowering::computeKnownBitsForTargetNode(
    989     const SDValue Op, KnownBits &Known,
    990     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
    991   switch (Op.getOpcode()) {
    992   default:
    993     break;
    994   case AArch64ISD::CSEL: {
    995     KnownBits Known2;
    996     DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1);
    997     DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1);
    998     Known.Zero &= Known2.Zero;
    999     Known.One &= Known2.One;
   1000     break;
   1001   }
   1002   case ISD::INTRINSIC_W_CHAIN: {
   1003     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   1004     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   1005     switch (IntID) {
   1006     default: return;
   1007     case Intrinsic::aarch64_ldaxr:
   1008     case Intrinsic::aarch64_ldxr: {
   1009       unsigned BitWidth = Known.getBitWidth();
   1010       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   1011       unsigned MemBits = VT.getScalarSizeInBits();
   1012       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   1013       return;
   1014     }
   1015     }
   1016     break;
   1017   }
   1018   case ISD::INTRINSIC_WO_CHAIN:
   1019   case ISD::INTRINSIC_VOID: {
   1020     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1021     switch (IntNo) {
   1022     default:
   1023       break;
   1024     case Intrinsic::aarch64_neon_umaxv:
   1025     case Intrinsic::aarch64_neon_uminv: {
   1026       // Figure out the datatype of the vector operand. The UMINV instruction
   1027       // will zero extend the result, so we can mark as known zero all the
   1028       // bits larger than the element datatype. 32-bit or larget doesn't need
   1029       // this as those are legal types and will be handled by isel directly.
   1030       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
   1031       unsigned BitWidth = Known.getBitWidth();
   1032       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
   1033         assert(BitWidth >= 8 && "Unexpected width!");
   1034         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
   1035         Known.Zero |= Mask;
   1036       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
   1037         assert(BitWidth >= 16 && "Unexpected width!");
   1038         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
   1039         Known.Zero |= Mask;
   1040       }
   1041       break;
   1042     } break;
   1043     }
   1044   }
   1045   }
   1046 }
   1047 
   1048 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
   1049                                                   EVT) const {
   1050   return MVT::i64;
   1051 }
   1052 
   1053 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   1054                                                            unsigned AddrSpace,
   1055                                                            unsigned Align,
   1056                                                            bool *Fast) const {
   1057   if (Subtarget->requiresStrictAlign())
   1058     return false;
   1059 
   1060   if (Fast) {
   1061     // Some CPUs are fine with unaligned stores except for 128-bit ones.
   1062     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
   1063             // See comments in performSTORECombine() for more details about
   1064             // these conditions.
   1065 
   1066             // Code that uses clang vector extensions can mark that it
   1067             // wants unaligned accesses to be treated as fast by
   1068             // underspecifying alignment to be 1 or 2.
   1069             Align <= 2 ||
   1070 
   1071             // Disregard v2i64. Memcpy lowering produces those and splitting
   1072             // them regresses performance on micro-benchmarks and olden/bh.
   1073             VT == MVT::v2i64;
   1074   }
   1075   return true;
   1076 }
   1077 
   1078 FastISel *
   1079 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1080                                       const TargetLibraryInfo *libInfo) const {
   1081   return AArch64::createFastISel(funcInfo, libInfo);
   1082 }
   1083 
   1084 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
   1085   switch ((AArch64ISD::NodeType)Opcode) {
   1086   case AArch64ISD::FIRST_NUMBER:      break;
   1087   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
   1088   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
   1089   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
   1090   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
   1091   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
   1092   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
   1093   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
   1094   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
   1095   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
   1096   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
   1097   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
   1098   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
   1099   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
   1100   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
   1101   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
   1102   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
   1103   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
   1104   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
   1105   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
   1106   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
   1107   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
   1108   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
   1109   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
   1110   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
   1111   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
   1112   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
   1113   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
   1114   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
   1115   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
   1116   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
   1117   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
   1118   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
   1119   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
   1120   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
   1121   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
   1122   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
   1123   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
   1124   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
   1125   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
   1126   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
   1127   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
   1128   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
   1129   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
   1130   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
   1131   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
   1132   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
   1133   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
   1134   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
   1135   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
   1136   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
   1137   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
   1138   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
   1139   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
   1140   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
   1141   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
   1142   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
   1143   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
   1144   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
   1145   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
   1146   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
   1147   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
   1148   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
   1149   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
   1150   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
   1151   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
   1152   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
   1153   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
   1154   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
   1155   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
   1156   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
   1157   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
   1158   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
   1159   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
   1160   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
   1161   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
   1162   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
   1163   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
   1164   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
   1165   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
   1166   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
   1167   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
   1168   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
   1169   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
   1170   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
   1171   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
   1172   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
   1173   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
   1174   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
   1175   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
   1176   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
   1177   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
   1178   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
   1179   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
   1180   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
   1181   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
   1182   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
   1183   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
   1184   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
   1185   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
   1186   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
   1187   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
   1188   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
   1189   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
   1190   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
   1191   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
   1192   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
   1193   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
   1194   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
   1195   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
   1196   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
   1197   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
   1198   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
   1199   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
   1200   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
   1201   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
   1202   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
   1203   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
   1204   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
   1205   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
   1206   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
   1207   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
   1208   case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
   1209   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
   1210   case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
   1211   }
   1212   return nullptr;
   1213 }
   1214 
   1215 MachineBasicBlock *
   1216 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
   1217                                     MachineBasicBlock *MBB) const {
   1218   // We materialise the F128CSEL pseudo-instruction as some control flow and a
   1219   // phi node:
   1220 
   1221   // OrigBB:
   1222   //     [... previous instrs leading to comparison ...]
   1223   //     b.ne TrueBB
   1224   //     b EndBB
   1225   // TrueBB:
   1226   //     ; Fallthrough
   1227   // EndBB:
   1228   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
   1229 
   1230   MachineFunction *MF = MBB->getParent();
   1231   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1232   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   1233   DebugLoc DL = MI.getDebugLoc();
   1234   MachineFunction::iterator It = ++MBB->getIterator();
   1235 
   1236   unsigned DestReg = MI.getOperand(0).getReg();
   1237   unsigned IfTrueReg = MI.getOperand(1).getReg();
   1238   unsigned IfFalseReg = MI.getOperand(2).getReg();
   1239   unsigned CondCode = MI.getOperand(3).getImm();
   1240   bool NZCVKilled = MI.getOperand(4).isKill();
   1241 
   1242   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1243   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1244   MF->insert(It, TrueBB);
   1245   MF->insert(It, EndBB);
   1246 
   1247   // Transfer rest of current basic-block to EndBB
   1248   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
   1249                 MBB->end());
   1250   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
   1251 
   1252   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
   1253   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
   1254   MBB->addSuccessor(TrueBB);
   1255   MBB->addSuccessor(EndBB);
   1256 
   1257   // TrueBB falls through to the end.
   1258   TrueBB->addSuccessor(EndBB);
   1259 
   1260   if (!NZCVKilled) {
   1261     TrueBB->addLiveIn(AArch64::NZCV);
   1262     EndBB->addLiveIn(AArch64::NZCV);
   1263   }
   1264 
   1265   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
   1266       .addReg(IfTrueReg)
   1267       .addMBB(TrueBB)
   1268       .addReg(IfFalseReg)
   1269       .addMBB(MBB);
   1270 
   1271   MI.eraseFromParent();
   1272   return EndBB;
   1273 }
   1274 
   1275 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
   1276     MachineInstr &MI, MachineBasicBlock *BB) const {
   1277   switch (MI.getOpcode()) {
   1278   default:
   1279 #ifndef NDEBUG
   1280     MI.dump();
   1281 #endif
   1282     llvm_unreachable("Unexpected instruction for custom inserter!");
   1283 
   1284   case AArch64::F128CSEL:
   1285     return EmitF128CSEL(MI, BB);
   1286 
   1287   case TargetOpcode::STACKMAP:
   1288   case TargetOpcode::PATCHPOINT:
   1289     return emitPatchPoint(MI, BB);
   1290   }
   1291 }
   1292 
   1293 //===----------------------------------------------------------------------===//
   1294 // AArch64 Lowering private implementation.
   1295 //===----------------------------------------------------------------------===//
   1296 
   1297 //===----------------------------------------------------------------------===//
   1298 // Lowering Code
   1299 //===----------------------------------------------------------------------===//
   1300 
   1301 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
   1302 /// CC
   1303 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
   1304   switch (CC) {
   1305   default:
   1306     llvm_unreachable("Unknown condition code!");
   1307   case ISD::SETNE:
   1308     return AArch64CC::NE;
   1309   case ISD::SETEQ:
   1310     return AArch64CC::EQ;
   1311   case ISD::SETGT:
   1312     return AArch64CC::GT;
   1313   case ISD::SETGE:
   1314     return AArch64CC::GE;
   1315   case ISD::SETLT:
   1316     return AArch64CC::LT;
   1317   case ISD::SETLE:
   1318     return AArch64CC::LE;
   1319   case ISD::SETUGT:
   1320     return AArch64CC::HI;
   1321   case ISD::SETUGE:
   1322     return AArch64CC::HS;
   1323   case ISD::SETULT:
   1324     return AArch64CC::LO;
   1325   case ISD::SETULE:
   1326     return AArch64CC::LS;
   1327   }
   1328 }
   1329 
   1330 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
   1331 static void changeFPCCToAArch64CC(ISD::CondCode CC,
   1332                                   AArch64CC::CondCode &CondCode,
   1333                                   AArch64CC::CondCode &CondCode2) {
   1334   CondCode2 = AArch64CC::AL;
   1335   switch (CC) {
   1336   default:
   1337     llvm_unreachable("Unknown FP condition!");
   1338   case ISD::SETEQ:
   1339   case ISD::SETOEQ:
   1340     CondCode = AArch64CC::EQ;
   1341     break;
   1342   case ISD::SETGT:
   1343   case ISD::SETOGT:
   1344     CondCode = AArch64CC::GT;
   1345     break;
   1346   case ISD::SETGE:
   1347   case ISD::SETOGE:
   1348     CondCode = AArch64CC::GE;
   1349     break;
   1350   case ISD::SETOLT:
   1351     CondCode = AArch64CC::MI;
   1352     break;
   1353   case ISD::SETOLE:
   1354     CondCode = AArch64CC::LS;
   1355     break;
   1356   case ISD::SETONE:
   1357     CondCode = AArch64CC::MI;
   1358     CondCode2 = AArch64CC::GT;
   1359     break;
   1360   case ISD::SETO:
   1361     CondCode = AArch64CC::VC;
   1362     break;
   1363   case ISD::SETUO:
   1364     CondCode = AArch64CC::VS;
   1365     break;
   1366   case ISD::SETUEQ:
   1367     CondCode = AArch64CC::EQ;
   1368     CondCode2 = AArch64CC::VS;
   1369     break;
   1370   case ISD::SETUGT:
   1371     CondCode = AArch64CC::HI;
   1372     break;
   1373   case ISD::SETUGE:
   1374     CondCode = AArch64CC::PL;
   1375     break;
   1376   case ISD::SETLT:
   1377   case ISD::SETULT:
   1378     CondCode = AArch64CC::LT;
   1379     break;
   1380   case ISD::SETLE:
   1381   case ISD::SETULE:
   1382     CondCode = AArch64CC::LE;
   1383     break;
   1384   case ISD::SETNE:
   1385   case ISD::SETUNE:
   1386     CondCode = AArch64CC::NE;
   1387     break;
   1388   }
   1389 }
   1390 
   1391 /// Convert a DAG fp condition code to an AArch64 CC.
   1392 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
   1393 /// should be AND'ed instead of OR'ed.
   1394 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
   1395                                      AArch64CC::CondCode &CondCode,
   1396                                      AArch64CC::CondCode &CondCode2) {
   1397   CondCode2 = AArch64CC::AL;
   1398   switch (CC) {
   1399   default:
   1400     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
   1401     assert(CondCode2 == AArch64CC::AL);
   1402     break;
   1403   case ISD::SETONE:
   1404     // (a one b)
   1405     // == ((a olt b) || (a ogt b))
   1406     // == ((a ord b) && (a une b))
   1407     CondCode = AArch64CC::VC;
   1408     CondCode2 = AArch64CC::NE;
   1409     break;
   1410   case ISD::SETUEQ:
   1411     // (a ueq b)
   1412     // == ((a uno b) || (a oeq b))
   1413     // == ((a ule b) && (a uge b))
   1414     CondCode = AArch64CC::PL;
   1415     CondCode2 = AArch64CC::LE;
   1416     break;
   1417   }
   1418 }
   1419 
   1420 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
   1421 /// CC usable with the vector instructions. Fewer operations are available
   1422 /// without a real NZCV register, so we have to use less efficient combinations
   1423 /// to get the same effect.
   1424 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
   1425                                         AArch64CC::CondCode &CondCode,
   1426                                         AArch64CC::CondCode &CondCode2,
   1427                                         bool &Invert) {
   1428   Invert = false;
   1429   switch (CC) {
   1430   default:
   1431     // Mostly the scalar mappings work fine.
   1432     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
   1433     break;
   1434   case ISD::SETUO:
   1435     Invert = true;
   1436     LLVM_FALLTHROUGH;
   1437   case ISD::SETO:
   1438     CondCode = AArch64CC::MI;
   1439     CondCode2 = AArch64CC::GE;
   1440     break;
   1441   case ISD::SETUEQ:
   1442   case ISD::SETULT:
   1443   case ISD::SETULE:
   1444   case ISD::SETUGT:
   1445   case ISD::SETUGE:
   1446     // All of the compare-mask comparisons are ordered, but we can switch
   1447     // between the two by a double inversion. E.g. ULE == !OGT.
   1448     Invert = true;
   1449     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
   1450     break;
   1451   }
   1452 }
   1453 
   1454 static bool isLegalArithImmed(uint64_t C) {
   1455   // Matches AArch64DAGToDAGISel::SelectArithImmed().
   1456   bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
   1457   LLVM_DEBUG(dbgs() << "Is imm " << C
   1458                     << " legal: " << (IsLegal ? "yes\n" : "no\n"));
   1459   return IsLegal;
   1460 }
   1461 
   1462 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   1463                               const SDLoc &dl, SelectionDAG &DAG) {
   1464   EVT VT = LHS.getValueType();
   1465   const bool FullFP16 =
   1466     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
   1467 
   1468   if (VT.isFloatingPoint()) {
   1469     assert(VT != MVT::f128);
   1470     if (VT == MVT::f16 && !FullFP16) {
   1471       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
   1472       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
   1473       VT = MVT::f32;
   1474     }
   1475     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
   1476   }
   1477 
   1478   // The CMP instruction is just an alias for SUBS, and representing it as
   1479   // SUBS means that it's possible to get CSE with subtract operations.
   1480   // A later phase can perform the optimization of setting the destination
   1481   // register to WZR/XZR if it ends up being unused.
   1482   unsigned Opcode = AArch64ISD::SUBS;
   1483 
   1484   if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
   1485       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1486     // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
   1487     // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
   1488     // can be set differently by this operation. It comes down to whether
   1489     // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
   1490     // everything is fine. If not then the optimization is wrong. Thus general
   1491     // comparisons are only valid if op2 != 0.
   1492 
   1493     // So, finally, the only LLVM-native comparisons that don't mention C and V
   1494     // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
   1495     // the absence of information about op2.
   1496     Opcode = AArch64ISD::ADDS;
   1497     RHS = RHS.getOperand(1);
   1498   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
   1499              !isUnsignedIntSetCC(CC)) {
   1500     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
   1501     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
   1502     // of the signed comparisons.
   1503     Opcode = AArch64ISD::ANDS;
   1504     RHS = LHS.getOperand(1);
   1505     LHS = LHS.getOperand(0);
   1506   }
   1507 
   1508   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
   1509       .getValue(1);
   1510 }
   1511 
   1512 /// \defgroup AArch64CCMP CMP;CCMP matching
   1513 ///
   1514 /// These functions deal with the formation of CMP;CCMP;... sequences.
   1515 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
   1516 /// a comparison. They set the NZCV flags to a predefined value if their
   1517 /// predicate is false. This allows to express arbitrary conjunctions, for
   1518 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
   1519 /// expressed as:
   1520 ///   cmp A
   1521 ///   ccmp B, inv(CB), CA
   1522 ///   check for CB flags
   1523 ///
   1524 /// This naturally lets us implement chains of AND operations with SETCC
   1525 /// operands. And we can even implement some other situations by transforming
   1526 /// them:
   1527 ///   - We can implement (NEG SETCC) i.e. negating a single comparison by
   1528 ///     negating the flags used in a CCMP/FCCMP operations.
   1529 ///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
   1530 ///     by negating the flags we test for afterwards. i.e.
   1531 ///     NEG (CMP CCMP CCCMP ...) can be implemented.
   1532 ///   - Note that we can only ever negate all previously processed results.
   1533 ///     What we can not implement by flipping the flags to test is a negation
   1534 ///     of two sub-trees (because the negation affects all sub-trees emitted so
   1535 ///     far, so the 2nd sub-tree we emit would also affect the first).
   1536 /// With those tools we can implement some OR operations:
   1537 ///   - (OR (SETCC A) (SETCC B)) can be implemented via:
   1538 ///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
   1539 ///   - After transforming OR to NEG/AND combinations we may be able to use NEG
   1540 ///     elimination rules from earlier to implement the whole thing as a
   1541 ///     CCMP/FCCMP chain.
   1542 ///
   1543 /// As complete example:
   1544 ///     or (or (setCA (cmp A)) (setCB (cmp B)))
   1545 ///        (and (setCC (cmp C)) (setCD (cmp D)))"
   1546 /// can be reassociated to:
   1547 ///     or (and (setCC (cmp C)) setCD (cmp D))
   1548 //         (or (setCA (cmp A)) (setCB (cmp B)))
   1549 /// can be transformed to:
   1550 ///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
   1551 ///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
   1552 /// which can be implemented as:
   1553 ///   cmp C
   1554 ///   ccmp D, inv(CD), CC
   1555 ///   ccmp A, CA, inv(CD)
   1556 ///   ccmp B, CB, inv(CA)
   1557 ///   check for CB flags
   1558 ///
   1559 /// A counterexample is "or (and A B) (and C D)" which translates to
   1560 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
   1561 /// can only implement 1 of the inner (not) operations, but not both!
   1562 /// @{
   1563 
   1564 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
   1565 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
   1566                                          ISD::CondCode CC, SDValue CCOp,
   1567                                          AArch64CC::CondCode Predicate,
   1568                                          AArch64CC::CondCode OutCC,
   1569                                          const SDLoc &DL, SelectionDAG &DAG) {
   1570   unsigned Opcode = 0;
   1571   const bool FullFP16 =
   1572     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
   1573 
   1574   if (LHS.getValueType().isFloatingPoint()) {
   1575     assert(LHS.getValueType() != MVT::f128);
   1576     if (LHS.getValueType() == MVT::f16 && !FullFP16) {
   1577       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
   1578       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
   1579     }
   1580     Opcode = AArch64ISD::FCCMP;
   1581   } else if (RHS.getOpcode() == ISD::SUB) {
   1582     SDValue SubOp0 = RHS.getOperand(0);
   1583     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   1584       // See emitComparison() on why we can only do this for SETEQ and SETNE.
   1585       Opcode = AArch64ISD::CCMN;
   1586       RHS = RHS.getOperand(1);
   1587     }
   1588   }
   1589   if (Opcode == 0)
   1590     Opcode = AArch64ISD::CCMP;
   1591 
   1592   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
   1593   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
   1594   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
   1595   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
   1596   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
   1597 }
   1598 
   1599 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
   1600 /// expressed as a conjunction. See \ref AArch64CCMP.
   1601 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
   1602 ///                     changing the conditions on the SETCC tests.
   1603 ///                     (this means we can call emitConjunctionRec() with
   1604 ///                      Negate==true on this sub-tree)
   1605 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
   1606 ///                     cannot do the negation naturally. We are required to
   1607 ///                     emit the subtree first in this case.
   1608 /// \param WillNegate   Is true if are called when the result of this
   1609 ///                     subexpression must be negated. This happens when the
   1610 ///                     outer expression is an OR. We can use this fact to know
   1611 ///                     that we have a double negation (or (or ...) ...) that
   1612 ///                     can be implemented for free.
   1613 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
   1614                                bool &MustBeFirst, bool WillNegate,
   1615                                unsigned Depth = 0) {
   1616   if (!Val.hasOneUse())
   1617     return false;
   1618   unsigned Opcode = Val->getOpcode();
   1619   if (Opcode == ISD::SETCC) {
   1620     if (Val->getOperand(0).getValueType() == MVT::f128)
   1621       return false;
   1622     CanNegate = true;
   1623     MustBeFirst = false;
   1624     return true;
   1625   }
   1626   // Protect against exponential runtime and stack overflow.
   1627   if (Depth > 6)
   1628     return false;
   1629   if (Opcode == ISD::AND || Opcode == ISD::OR) {
   1630     bool IsOR = Opcode == ISD::OR;
   1631     SDValue O0 = Val->getOperand(0);
   1632     SDValue O1 = Val->getOperand(1);
   1633     bool CanNegateL;
   1634     bool MustBeFirstL;
   1635     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
   1636       return false;
   1637     bool CanNegateR;
   1638     bool MustBeFirstR;
   1639     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
   1640       return false;
   1641 
   1642     if (MustBeFirstL && MustBeFirstR)
   1643       return false;
   1644 
   1645     if (IsOR) {
   1646       // For an OR expression we need to be able to naturally negate at least
   1647       // one side or we cannot do the transformation at all.
   1648       if (!CanNegateL && !CanNegateR)
   1649         return false;
   1650       // If we the result of the OR will be negated and we can naturally negate
   1651       // the leafs, then this sub-tree as a whole negates naturally.
   1652       CanNegate = WillNegate && CanNegateL && CanNegateR;
   1653       // If we cannot naturally negate the whole sub-tree, then this must be
   1654       // emitted first.
   1655       MustBeFirst = !CanNegate;
   1656     } else {
   1657       assert(Opcode == ISD::AND && "Must be OR or AND");
   1658       // We cannot naturally negate an AND operation.
   1659       CanNegate = false;
   1660       MustBeFirst = MustBeFirstL || MustBeFirstR;
   1661     }
   1662     return true;
   1663   }
   1664   return false;
   1665 }
   1666 
   1667 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
   1668 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
   1669 /// Tries to transform the given i1 producing node @p Val to a series compare
   1670 /// and conditional compare operations. @returns an NZCV flags producing node
   1671 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
   1672 /// transformation was not possible.
   1673 /// \p Negate is true if we want this sub-tree being negated just by changing
   1674 /// SETCC conditions.
   1675 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
   1676     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
   1677     AArch64CC::CondCode Predicate) {
   1678   // We're at a tree leaf, produce a conditional comparison operation.
   1679   unsigned Opcode = Val->getOpcode();
   1680   if (Opcode == ISD::SETCC) {
   1681     SDValue LHS = Val->getOperand(0);
   1682     SDValue RHS = Val->getOperand(1);
   1683     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
   1684     bool isInteger = LHS.getValueType().isInteger();
   1685     if (Negate)
   1686       CC = getSetCCInverse(CC, isInteger);
   1687     SDLoc DL(Val);
   1688     // Determine OutCC and handle FP special case.
   1689     if (isInteger) {
   1690       OutCC = changeIntCCToAArch64CC(CC);
   1691     } else {
   1692       assert(LHS.getValueType().isFloatingPoint());
   1693       AArch64CC::CondCode ExtraCC;
   1694       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
   1695       // Some floating point conditions can't be tested with a single condition
   1696       // code. Construct an additional comparison in this case.
   1697       if (ExtraCC != AArch64CC::AL) {
   1698         SDValue ExtraCmp;
   1699         if (!CCOp.getNode())
   1700           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
   1701         else
   1702           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
   1703                                                ExtraCC, DL, DAG);
   1704         CCOp = ExtraCmp;
   1705         Predicate = ExtraCC;
   1706       }
   1707     }
   1708 
   1709     // Produce a normal comparison if we are first in the chain
   1710     if (!CCOp)
   1711       return emitComparison(LHS, RHS, CC, DL, DAG);
   1712     // Otherwise produce a ccmp.
   1713     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
   1714                                      DAG);
   1715   }
   1716   assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
   1717 
   1718   bool IsOR = Opcode == ISD::OR;
   1719 
   1720   SDValue LHS = Val->getOperand(0);
   1721   bool CanNegateL;
   1722   bool MustBeFirstL;
   1723   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
   1724   assert(ValidL && "Valid conjunction/disjunction tree");
   1725   (void)ValidL;
   1726 
   1727   SDValue RHS = Val->getOperand(1);
   1728   bool CanNegateR;
   1729   bool MustBeFirstR;
   1730   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
   1731   assert(ValidR && "Valid conjunction/disjunction tree");
   1732   (void)ValidR;
   1733 
   1734   // Swap sub-tree that must come first to the right side.
   1735   if (MustBeFirstL) {
   1736     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
   1737     std::swap(LHS, RHS);
   1738     std::swap(CanNegateL, CanNegateR);
   1739     std::swap(MustBeFirstL, MustBeFirstR);
   1740   }
   1741 
   1742   bool NegateR;
   1743   bool NegateAfterR;
   1744   bool NegateL;
   1745   bool NegateAfterAll;
   1746   if (Opcode == ISD::OR) {
   1747     // Swap the sub-tree that we can negate naturally to the left.
   1748     if (!CanNegateL) {
   1749       assert(CanNegateR && "at least one side must be negatable");
   1750       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
   1751       assert(!Negate);
   1752       std::swap(LHS, RHS);
   1753       NegateR = false;
   1754       NegateAfterR = true;
   1755     } else {
   1756       // Negate the left sub-tree if possible, otherwise negate the result.
   1757       NegateR = CanNegateR;
   1758       NegateAfterR = !CanNegateR;
   1759     }
   1760     NegateL = true;
   1761     NegateAfterAll = !Negate;
   1762   } else {
   1763     assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
   1764     assert(!Negate && "Valid conjunction/disjunction tree");
   1765 
   1766     NegateL = false;
   1767     NegateR = false;
   1768     NegateAfterR = false;
   1769     NegateAfterAll = false;
   1770   }
   1771 
   1772   // Emit sub-trees.
   1773   AArch64CC::CondCode RHSCC;
   1774   SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
   1775   if (NegateAfterR)
   1776     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
   1777   SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
   1778   if (NegateAfterAll)
   1779     OutCC = AArch64CC::getInvertedCondCode(OutCC);
   1780   return CmpL;
   1781 }
   1782 
   1783 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
   1784 /// In some cases this is even possible with OR operations in the expression.
   1785 /// See \ref AArch64CCMP.
   1786 /// \see emitConjunctionRec().
   1787 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
   1788                                AArch64CC::CondCode &OutCC) {
   1789   bool DummyCanNegate;
   1790   bool DummyMustBeFirst;
   1791   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
   1792     return SDValue();
   1793 
   1794   return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
   1795 }
   1796 
   1797 /// @}
   1798 
   1799 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   1800                              SDValue &AArch64cc, SelectionDAG &DAG,
   1801                              const SDLoc &dl) {
   1802   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   1803     EVT VT = RHS.getValueType();
   1804     uint64_t C = RHSC->getZExtValue();
   1805     if (!isLegalArithImmed(C)) {
   1806       // Constant does not fit, try adjusting it by one?
   1807       switch (CC) {
   1808       default:
   1809         break;
   1810       case ISD::SETLT:
   1811       case ISD::SETGE:
   1812         if ((VT == MVT::i32 && C != 0x80000000 &&
   1813              isLegalArithImmed((uint32_t)(C - 1))) ||
   1814             (VT == MVT::i64 && C != 0x80000000ULL &&
   1815              isLegalArithImmed(C - 1ULL))) {
   1816           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   1817           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
   1818           RHS = DAG.getConstant(C, dl, VT);
   1819         }
   1820         break;
   1821       case ISD::SETULT:
   1822       case ISD::SETUGE:
   1823         if ((VT == MVT::i32 && C != 0 &&
   1824              isLegalArithImmed((uint32_t)(C - 1))) ||
   1825             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
   1826           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   1827           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
   1828           RHS = DAG.getConstant(C, dl, VT);
   1829         }
   1830         break;
   1831       case ISD::SETLE:
   1832       case ISD::SETGT:
   1833         if ((VT == MVT::i32 && C != INT32_MAX &&
   1834              isLegalArithImmed((uint32_t)(C + 1))) ||
   1835             (VT == MVT::i64 && C != INT64_MAX &&
   1836              isLegalArithImmed(C + 1ULL))) {
   1837           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   1838           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
   1839           RHS = DAG.getConstant(C, dl, VT);
   1840         }
   1841         break;
   1842       case ISD::SETULE:
   1843       case ISD::SETUGT:
   1844         if ((VT == MVT::i32 && C != UINT32_MAX &&
   1845              isLegalArithImmed((uint32_t)(C + 1))) ||
   1846             (VT == MVT::i64 && C != UINT64_MAX &&
   1847              isLegalArithImmed(C + 1ULL))) {
   1848           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1849           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
   1850           RHS = DAG.getConstant(C, dl, VT);
   1851         }
   1852         break;
   1853       }
   1854     }
   1855   }
   1856   SDValue Cmp;
   1857   AArch64CC::CondCode AArch64CC;
   1858   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
   1859     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
   1860 
   1861     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
   1862     // For the i8 operand, the largest immediate is 255, so this can be easily
   1863     // encoded in the compare instruction. For the i16 operand, however, the
   1864     // largest immediate cannot be encoded in the compare.
   1865     // Therefore, use a sign extending load and cmn to avoid materializing the
   1866     // -1 constant. For example,
   1867     // movz w1, #65535
   1868     // ldrh w0, [x0, #0]
   1869     // cmp w0, w1
   1870     // >
   1871     // ldrsh w0, [x0, #0]
   1872     // cmn w0, #1
   1873     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
   1874     // if and only if (sext LHS) == (sext RHS). The checks are in place to
   1875     // ensure both the LHS and RHS are truly zero extended and to make sure the
   1876     // transformation is profitable.
   1877     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
   1878         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
   1879         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
   1880         LHS.getNode()->hasNUsesOfValue(1, 0)) {
   1881       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
   1882       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
   1883         SDValue SExt =
   1884             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
   1885                         DAG.getValueType(MVT::i16));
   1886         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
   1887                                                    RHS.getValueType()),
   1888                              CC, dl, DAG);
   1889         AArch64CC = changeIntCCToAArch64CC(CC);
   1890       }
   1891     }
   1892 
   1893     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
   1894       if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
   1895         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
   1896           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
   1897       }
   1898     }
   1899   }
   1900 
   1901   if (!Cmp) {
   1902     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
   1903     AArch64CC = changeIntCCToAArch64CC(CC);
   1904   }
   1905   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
   1906   return Cmp;
   1907 }
   1908 
   1909 static std::pair<SDValue, SDValue>
   1910 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
   1911   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
   1912          "Unsupported value type");
   1913   SDValue Value, Overflow;
   1914   SDLoc DL(Op);
   1915   SDValue LHS = Op.getOperand(0);
   1916   SDValue RHS = Op.getOperand(1);
   1917   unsigned Opc = 0;
   1918   switch (Op.getOpcode()) {
   1919   default:
   1920     llvm_unreachable("Unknown overflow instruction!");
   1921   case ISD::SADDO:
   1922     Opc = AArch64ISD::ADDS;
   1923     CC = AArch64CC::VS;
   1924     break;
   1925   case ISD::UADDO:
   1926     Opc = AArch64ISD::ADDS;
   1927     CC = AArch64CC::HS;
   1928     break;
   1929   case ISD::SSUBO:
   1930     Opc = AArch64ISD::SUBS;
   1931     CC = AArch64CC::VS;
   1932     break;
   1933   case ISD::USUBO:
   1934     Opc = AArch64ISD::SUBS;
   1935     CC = AArch64CC::LO;
   1936     break;
   1937   // Multiply needs a little bit extra work.
   1938   case ISD::SMULO:
   1939   case ISD::UMULO: {
   1940     CC = AArch64CC::NE;
   1941     bool IsSigned = Op.getOpcode() == ISD::SMULO;
   1942     if (Op.getValueType() == MVT::i32) {
   1943       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   1944       // For a 32 bit multiply with overflow check we want the instruction
   1945       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
   1946       // need to generate the following pattern:
   1947       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
   1948       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
   1949       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
   1950       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
   1951       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
   1952                                 DAG.getConstant(0, DL, MVT::i64));
   1953       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
   1954       // operation. We need to clear out the upper 32 bits, because we used a
   1955       // widening multiply that wrote all 64 bits. In the end this should be a
   1956       // noop.
   1957       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
   1958       if (IsSigned) {
   1959         // The signed overflow check requires more than just a simple check for
   1960         // any bit set in the upper 32 bits of the result. These bits could be
   1961         // just the sign bits of a negative number. To perform the overflow
   1962         // check we have to arithmetic shift right the 32nd bit of the result by
   1963         // 31 bits. Then we compare the result to the upper 32 bits.
   1964         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
   1965                                         DAG.getConstant(32, DL, MVT::i64));
   1966         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
   1967         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
   1968                                         DAG.getConstant(31, DL, MVT::i64));
   1969         // It is important that LowerBits is last, otherwise the arithmetic
   1970         // shift will not be folded into the compare (SUBS).
   1971         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
   1972         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
   1973                        .getValue(1);
   1974       } else {
   1975         // The overflow check for unsigned multiply is easy. We only need to
   1976         // check if any of the upper 32 bits are set. This can be done with a
   1977         // CMP (shifted register). For that we need to generate the following
   1978         // pattern:
   1979         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
   1980         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
   1981                                         DAG.getConstant(32, DL, MVT::i64));
   1982         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
   1983         Overflow =
   1984             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
   1985                         DAG.getConstant(0, DL, MVT::i64),
   1986                         UpperBits).getValue(1);
   1987       }
   1988       break;
   1989     }
   1990     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
   1991     // For the 64 bit multiply
   1992     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
   1993     if (IsSigned) {
   1994       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
   1995       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
   1996                                       DAG.getConstant(63, DL, MVT::i64));
   1997       // It is important that LowerBits is last, otherwise the arithmetic
   1998       // shift will not be folded into the compare (SUBS).
   1999       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
   2000       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
   2001                      .getValue(1);
   2002     } else {
   2003       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
   2004       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
   2005       Overflow =
   2006           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
   2007                       DAG.getConstant(0, DL, MVT::i64),
   2008                       UpperBits).getValue(1);
   2009     }
   2010     break;
   2011   }
   2012   } // switch (...)
   2013 
   2014   if (Opc) {
   2015     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
   2016 
   2017     // Emit the AArch64 operation with overflow check.
   2018     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
   2019     Overflow = Value.getValue(1);
   2020   }
   2021   return std::make_pair(Value, Overflow);
   2022 }
   2023 
   2024 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
   2025                                              RTLIB::Libcall Call) const {
   2026   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
   2027   return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
   2028 }
   2029 
   2030 // Returns true if the given Op is the overflow flag result of an overflow
   2031 // intrinsic operation.
   2032 static bool isOverflowIntrOpRes(SDValue Op) {
   2033   unsigned Opc = Op.getOpcode();
   2034   return (Op.getResNo() == 1 &&
   2035           (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   2036            Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
   2037 }
   2038 
   2039 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
   2040   SDValue Sel = Op.getOperand(0);
   2041   SDValue Other = Op.getOperand(1);
   2042   SDLoc dl(Sel);
   2043 
   2044   // If the operand is an overflow checking operation, invert the condition
   2045   // code and kill the Not operation. I.e., transform:
   2046   // (xor (overflow_op_bool, 1))
   2047   //   -->
   2048   // (csel 1, 0, invert(cc), overflow_op_bool)
   2049   // ... which later gets transformed to just a cset instruction with an
   2050   // inverted condition code, rather than a cset + eor sequence.
   2051   if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
   2052     // Only lower legal XALUO ops.
   2053     if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
   2054       return SDValue();
   2055 
   2056     SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
   2057     SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
   2058     AArch64CC::CondCode CC;
   2059     SDValue Value, Overflow;
   2060     std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
   2061     SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
   2062     return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
   2063                        CCVal, Overflow);
   2064   }
   2065   // If neither operand is a SELECT_CC, give up.
   2066   if (Sel.getOpcode() != ISD::SELECT_CC)
   2067     std::swap(Sel, Other);
   2068   if (Sel.getOpcode() != ISD::SELECT_CC)
   2069     return Op;
   2070 
   2071   // The folding we want to perform is:
   2072   // (xor x, (select_cc a, b, cc, 0, -1) )
   2073   //   -->
   2074   // (csel x, (xor x, -1), cc ...)
   2075   //
   2076   // The latter will get matched to a CSINV instruction.
   2077 
   2078   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
   2079   SDValue LHS = Sel.getOperand(0);
   2080   SDValue RHS = Sel.getOperand(1);
   2081   SDValue TVal = Sel.getOperand(2);
   2082   SDValue FVal = Sel.getOperand(3);
   2083 
   2084   // FIXME: This could be generalized to non-integer comparisons.
   2085   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
   2086     return Op;
   2087 
   2088   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
   2089   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
   2090 
   2091   // The values aren't constants, this isn't the pattern we're looking for.
   2092   if (!CFVal || !CTVal)
   2093     return Op;
   2094 
   2095   // We can commute the SELECT_CC by inverting the condition.  This
   2096   // might be needed to make this fit into a CSINV pattern.
   2097   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
   2098     std::swap(TVal, FVal);
   2099     std::swap(CTVal, CFVal);
   2100     CC = ISD::getSetCCInverse(CC, true);
   2101   }
   2102 
   2103   // If the constants line up, perform the transform!
   2104   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
   2105     SDValue CCVal;
   2106     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
   2107 
   2108     FVal = Other;
   2109     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
   2110                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
   2111 
   2112     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
   2113                        CCVal, Cmp);
   2114   }
   2115 
   2116   return Op;
   2117 }
   2118 
   2119 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   2120   EVT VT = Op.getValueType();
   2121 
   2122   // Let legalize expand this if it isn't a legal type yet.
   2123   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   2124     return SDValue();
   2125 
   2126   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   2127 
   2128   unsigned Opc;
   2129   bool ExtraOp = false;
   2130   switch (Op.getOpcode()) {
   2131   default:
   2132     llvm_unreachable("Invalid code");
   2133   case ISD::ADDC:
   2134     Opc = AArch64ISD::ADDS;
   2135     break;
   2136   case ISD::SUBC:
   2137     Opc = AArch64ISD::SUBS;
   2138     break;
   2139   case ISD::ADDE:
   2140     Opc = AArch64ISD::ADCS;
   2141     ExtraOp = true;
   2142     break;
   2143   case ISD::SUBE:
   2144     Opc = AArch64ISD::SBCS;
   2145     ExtraOp = true;
   2146     break;
   2147   }
   2148 
   2149   if (!ExtraOp)
   2150     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
   2151   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
   2152                      Op.getOperand(2));
   2153 }
   2154 
   2155 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
   2156   // Let legalize expand this if it isn't a legal type yet.
   2157   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   2158     return SDValue();
   2159 
   2160   SDLoc dl(Op);
   2161   AArch64CC::CondCode CC;
   2162   // The actual operation that sets the overflow or carry flag.
   2163   SDValue Value, Overflow;
   2164   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
   2165 
   2166   // We use 0 and 1 as false and true values.
   2167   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
   2168   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
   2169 
   2170   // We use an inverted condition, because the conditional select is inverted
   2171   // too. This will allow it to be selected to a single instruction:
   2172   // CSINC Wd, WZR, WZR, invert(cond).
   2173   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
   2174   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
   2175                          CCVal, Overflow);
   2176 
   2177   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   2178   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
   2179 }
   2180 
   2181 // Prefetch operands are:
   2182 // 1: Address to prefetch
   2183 // 2: bool isWrite
   2184 // 3: int locality (0 = no locality ... 3 = extreme locality)
   2185 // 4: bool isDataCache
   2186 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
   2187   SDLoc DL(Op);
   2188   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   2189   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
   2190   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2191 
   2192   bool IsStream = !Locality;
   2193   // When the locality number is set
   2194   if (Locality) {
   2195     // The front-end should have filtered out the out-of-range values
   2196     assert(Locality <= 3 && "Prefetch locality out-of-range");
   2197     // The locality degree is the opposite of the cache speed.
   2198     // Put the number the other way around.
   2199     // The encoding starts at 0 for level 1
   2200     Locality = 3 - Locality;
   2201   }
   2202 
   2203   // built the mask value encoding the expected behavior.
   2204   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
   2205                    (!IsData << 3) |     // IsDataCache bit
   2206                    (Locality << 1) |    // Cache level bits
   2207                    (unsigned)IsStream;  // Stream bit
   2208   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
   2209                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
   2210 }
   2211 
   2212 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
   2213                                               SelectionDAG &DAG) const {
   2214   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
   2215 
   2216   RTLIB::Libcall LC;
   2217   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
   2218 
   2219   return LowerF128Call(Op, DAG, LC);
   2220 }
   2221 
   2222 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
   2223                                              SelectionDAG &DAG) const {
   2224   if (Op.getOperand(0).getValueType() != MVT::f128) {
   2225     // It's legal except when f128 is involved
   2226     return Op;
   2227   }
   2228 
   2229   RTLIB::Libcall LC;
   2230   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
   2231 
   2232   // FP_ROUND node has a second operand indicating whether it is known to be
   2233   // precise. That doesn't take part in the LibCall so we can't directly use
   2234   // LowerF128Call.
   2235   SDValue SrcVal = Op.getOperand(0);
   2236   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   2237                      SDLoc(Op)).first;
   2238 }
   2239 
   2240 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   2241   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
   2242   // Any additional optimization in this function should be recorded
   2243   // in the cost tables.
   2244   EVT InVT = Op.getOperand(0).getValueType();
   2245   EVT VT = Op.getValueType();
   2246   unsigned NumElts = InVT.getVectorNumElements();
   2247 
   2248   // f16 vectors are promoted to f32 before a conversion.
   2249   if (InVT.getVectorElementType() == MVT::f16) {
   2250     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
   2251     SDLoc dl(Op);
   2252     return DAG.getNode(
   2253         Op.getOpcode(), dl, Op.getValueType(),
   2254         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
   2255   }
   2256 
   2257   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
   2258     SDLoc dl(Op);
   2259     SDValue Cv =
   2260         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
   2261                     Op.getOperand(0));
   2262     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
   2263   }
   2264 
   2265   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
   2266     SDLoc dl(Op);
   2267     MVT ExtVT =
   2268         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
   2269                          VT.getVectorNumElements());
   2270     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
   2271     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
   2272   }
   2273 
   2274   // Type changing conversions are illegal.
   2275   return Op;
   2276 }
   2277 
   2278 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
   2279                                               SelectionDAG &DAG) const {
   2280   if (Op.getOperand(0).getValueType().isVector())
   2281     return LowerVectorFP_TO_INT(Op, DAG);
   2282 
   2283   // f16 conversions are promoted to f32 when full fp16 is not supported.
   2284   if (Op.getOperand(0).getValueType() == MVT::f16 &&
   2285       !Subtarget->hasFullFP16()) {
   2286     SDLoc dl(Op);
   2287     return DAG.getNode(
   2288         Op.getOpcode(), dl, Op.getValueType(),
   2289         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
   2290   }
   2291 
   2292   if (Op.getOperand(0).getValueType() != MVT::f128) {
   2293     // It's legal except when f128 is involved
   2294     return Op;
   2295   }
   2296 
   2297   RTLIB::Libcall LC;
   2298   if (Op.getOpcode() == ISD::FP_TO_SINT)
   2299     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
   2300   else
   2301     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
   2302 
   2303   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
   2304   return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
   2305 }
   2306 
   2307 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   2308   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
   2309   // Any additional optimization in this function should be recorded
   2310   // in the cost tables.
   2311   EVT VT = Op.getValueType();
   2312   SDLoc dl(Op);
   2313   SDValue In = Op.getOperand(0);
   2314   EVT InVT = In.getValueType();
   2315 
   2316   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
   2317     MVT CastVT =
   2318         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
   2319                          InVT.getVectorNumElements());
   2320     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
   2321     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
   2322   }
   2323 
   2324   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
   2325     unsigned CastOpc =
   2326         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   2327     EVT CastVT = VT.changeVectorElementTypeToInteger();
   2328     In = DAG.getNode(CastOpc, dl, CastVT, In);
   2329     return DAG.getNode(Op.getOpcode(), dl, VT, In);
   2330   }
   2331 
   2332   return Op;
   2333 }
   2334 
   2335 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
   2336                                             SelectionDAG &DAG) const {
   2337   if (Op.getValueType().isVector())
   2338     return LowerVectorINT_TO_FP(Op, DAG);
   2339 
   2340   // f16 conversions are promoted to f32 when full fp16 is not supported.
   2341   if (Op.getValueType() == MVT::f16 &&
   2342       !Subtarget->hasFullFP16()) {
   2343     SDLoc dl(Op);
   2344     return DAG.getNode(
   2345         ISD::FP_ROUND, dl, MVT::f16,
   2346         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
   2347         DAG.getIntPtrConstant(0, dl));
   2348   }
   2349 
   2350   // i128 conversions are libcalls.
   2351   if (Op.getOperand(0).getValueType() == MVT::i128)
   2352     return SDValue();
   2353 
   2354   // Other conversions are legal, unless it's to the completely software-based
   2355   // fp128.
   2356   if (Op.getValueType() != MVT::f128)
   2357     return Op;
   2358 
   2359   RTLIB::Libcall LC;
   2360   if (Op.getOpcode() == ISD::SINT_TO_FP)
   2361     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
   2362   else
   2363     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
   2364 
   2365   return LowerF128Call(Op, DAG, LC);
   2366 }
   2367 
   2368 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
   2369                                             SelectionDAG &DAG) const {
   2370   // For iOS, we want to call an alternative entry point: __sincos_stret,
   2371   // which returns the values in two S / D registers.
   2372   SDLoc dl(Op);
   2373   SDValue Arg = Op.getOperand(0);
   2374   EVT ArgVT = Arg.getValueType();
   2375   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   2376 
   2377   ArgListTy Args;
   2378   ArgListEntry Entry;
   2379 
   2380   Entry.Node = Arg;
   2381   Entry.Ty = ArgTy;
   2382   Entry.IsSExt = false;
   2383   Entry.IsZExt = false;
   2384   Args.push_back(Entry);
   2385 
   2386   RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
   2387                                         : RTLIB::SINCOS_STRET_F32;
   2388   const char *LibcallName = getLibcallName(LC);
   2389   SDValue Callee =
   2390       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
   2391 
   2392   StructType *RetTy = StructType::get(ArgTy, ArgTy);
   2393   TargetLowering::CallLoweringInfo CLI(DAG);
   2394   CLI.setDebugLoc(dl)
   2395       .setChain(DAG.getEntryNode())
   2396       .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
   2397 
   2398   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2399   return CallResult.first;
   2400 }
   2401 
   2402 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
   2403   if (Op.getValueType() != MVT::f16)
   2404     return SDValue();
   2405 
   2406   assert(Op.getOperand(0).getValueType() == MVT::i16);
   2407   SDLoc DL(Op);
   2408 
   2409   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
   2410   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
   2411   return SDValue(
   2412       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
   2413                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
   2414       0);
   2415 }
   2416 
   2417 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   2418   if (OrigVT.getSizeInBits() >= 64)
   2419     return OrigVT;
   2420 
   2421   assert(OrigVT.isSimple() && "Expecting a simple value type");
   2422 
   2423   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   2424   switch (OrigSimpleTy) {
   2425   default: llvm_unreachable("Unexpected Vector Type");
   2426   case MVT::v2i8:
   2427   case MVT::v2i16:
   2428      return MVT::v2i32;
   2429   case MVT::v4i8:
   2430     return  MVT::v4i16;
   2431   }
   2432 }
   2433 
   2434 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
   2435                                                  const EVT &OrigTy,
   2436                                                  const EVT &ExtTy,
   2437                                                  unsigned ExtOpcode) {
   2438   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   2439   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   2440   // 64-bits we need to insert a new extension so that it will be 64-bits.
   2441   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   2442   if (OrigTy.getSizeInBits() >= 64)
   2443     return N;
   2444 
   2445   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   2446   EVT NewVT = getExtensionTo64Bits(OrigTy);
   2447 
   2448   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   2449 }
   2450 
   2451 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   2452                                    bool isSigned) {
   2453   EVT VT = N->getValueType(0);
   2454 
   2455   if (N->getOpcode() != ISD::BUILD_VECTOR)
   2456     return false;
   2457 
   2458   for (const SDValue &Elt : N->op_values()) {
   2459     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   2460       unsigned EltSize = VT.getScalarSizeInBits();
   2461       unsigned HalfSize = EltSize / 2;
   2462       if (isSigned) {
   2463         if (!isIntN(HalfSize, C->getSExtValue()))
   2464           return false;
   2465       } else {
   2466         if (!isUIntN(HalfSize, C->getZExtValue()))
   2467           return false;
   2468       }
   2469       continue;
   2470     }
   2471     return false;
   2472   }
   2473 
   2474   return true;
   2475 }
   2476 
   2477 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
   2478   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   2479     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
   2480                                              N->getOperand(0)->getValueType(0),
   2481                                              N->getValueType(0),
   2482                                              N->getOpcode());
   2483 
   2484   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   2485   EVT VT = N->getValueType(0);
   2486   SDLoc dl(N);
   2487   unsigned EltSize = VT.getScalarSizeInBits() / 2;
   2488   unsigned NumElts = VT.getVectorNumElements();
   2489   MVT TruncVT = MVT::getIntegerVT(EltSize);
   2490   SmallVector<SDValue, 8> Ops;
   2491   for (unsigned i = 0; i != NumElts; ++i) {
   2492     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   2493     const APInt &CInt = C->getAPIntValue();
   2494     // Element types smaller than 32 bits are not legal, so use i32 elements.
   2495     // The values are implicitly truncated so sext vs. zext doesn't matter.
   2496     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
   2497   }
   2498   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
   2499 }
   2500 
   2501 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   2502   return N->getOpcode() == ISD::SIGN_EXTEND ||
   2503          isExtendedBUILD_VECTOR(N, DAG, true);
   2504 }
   2505 
   2506 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   2507   return N->getOpcode() == ISD::ZERO_EXTEND ||
   2508          isExtendedBUILD_VECTOR(N, DAG, false);
   2509 }
   2510 
   2511 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   2512   unsigned Opcode = N->getOpcode();
   2513   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   2514     SDNode *N0 = N->getOperand(0).getNode();
   2515     SDNode *N1 = N->getOperand(1).getNode();
   2516     return N0->hasOneUse() && N1->hasOneUse() &&
   2517       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   2518   }
   2519   return false;
   2520 }
   2521 
   2522 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   2523   unsigned Opcode = N->getOpcode();
   2524   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   2525     SDNode *N0 = N->getOperand(0).getNode();
   2526     SDNode *N1 = N->getOperand(1).getNode();
   2527     return N0->hasOneUse() && N1->hasOneUse() &&
   2528       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   2529   }
   2530   return false;
   2531 }
   2532 
   2533 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   2534                                                 SelectionDAG &DAG) const {
   2535   // The rounding mode is in bits 23:22 of the FPSCR.
   2536   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   2537   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   2538   // so that the shift + and get folded into a bitfield extract.
   2539   SDLoc dl(Op);
   2540 
   2541   SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
   2542                                 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
   2543                                                 MVT::i64));
   2544   SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
   2545   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
   2546                                   DAG.getConstant(1U << 22, dl, MVT::i32));
   2547   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   2548                               DAG.getConstant(22, dl, MVT::i32));
   2549   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   2550                      DAG.getConstant(3, dl, MVT::i32));
   2551 }
   2552 
   2553 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   2554   // Multiplications are only custom-lowered for 128-bit vectors so that
   2555   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   2556   EVT VT = Op.getValueType();
   2557   assert(VT.is128BitVector() && VT.isInteger() &&
   2558          "unexpected type for custom-lowering ISD::MUL");
   2559   SDNode *N0 = Op.getOperand(0).getNode();
   2560   SDNode *N1 = Op.getOperand(1).getNode();
   2561   unsigned NewOpc = 0;
   2562   bool isMLA = false;
   2563   bool isN0SExt = isSignExtended(N0, DAG);
   2564   bool isN1SExt = isSignExtended(N1, DAG);
   2565   if (isN0SExt && isN1SExt)
   2566     NewOpc = AArch64ISD::SMULL;
   2567   else {
   2568     bool isN0ZExt = isZeroExtended(N0, DAG);
   2569     bool isN1ZExt = isZeroExtended(N1, DAG);
   2570     if (isN0ZExt && isN1ZExt)
   2571       NewOpc = AArch64ISD::UMULL;
   2572     else if (isN1SExt || isN1ZExt) {
   2573       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   2574       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   2575       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   2576         NewOpc = AArch64ISD::SMULL;
   2577         isMLA = true;
   2578       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   2579         NewOpc =  AArch64ISD::UMULL;
   2580         isMLA = true;
   2581       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   2582         std::swap(N0, N1);
   2583         NewOpc =  AArch64ISD::UMULL;
   2584         isMLA = true;
   2585       }
   2586     }
   2587 
   2588     if (!NewOpc) {
   2589       if (VT == MVT::v2i64)
   2590         // Fall through to expand this.  It is not legal.
   2591         return SDValue();
   2592       else
   2593         // Other vector multiplications are legal.
   2594         return Op;
   2595     }
   2596   }
   2597 
   2598   // Legalize to a S/UMULL instruction
   2599   SDLoc DL(Op);
   2600   SDValue Op0;
   2601   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
   2602   if (!isMLA) {
   2603     Op0 = skipExtensionForVectorMULL(N0, DAG);
   2604     assert(Op0.getValueType().is64BitVector() &&
   2605            Op1.getValueType().is64BitVector() &&
   2606            "unexpected types for extended operands to VMULL");
   2607     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   2608   }
   2609   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
   2610   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
   2611   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
   2612   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
   2613   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
   2614   EVT Op1VT = Op1.getValueType();
   2615   return DAG.getNode(N0->getOpcode(), DL, VT,
   2616                      DAG.getNode(NewOpc, DL, VT,
   2617                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   2618                      DAG.getNode(NewOpc, DL, VT,
   2619                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   2620 }
   2621 
   2622 // Lower vector multiply high (ISD::MULHS and ISD::MULHU).
   2623 static SDValue LowerMULH(SDValue Op, SelectionDAG &DAG) {
   2624   // Multiplications are only custom-lowered for 128-bit vectors so that
   2625   // {S,U}MULL{2} can be detected.  Otherwise v2i64 multiplications are not
   2626   // legal.
   2627   EVT VT = Op.getValueType();
   2628   assert(VT.is128BitVector() && VT.isInteger() &&
   2629          "unexpected type for custom-lowering ISD::MULH{U,S}");
   2630 
   2631   SDValue V0 = Op.getOperand(0);
   2632   SDValue V1 = Op.getOperand(1);
   2633 
   2634   SDLoc DL(Op);
   2635 
   2636   EVT ExtractVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
   2637 
   2638   // We turn (V0 mulhs/mulhu V1) to:
   2639   //
   2640   // (uzp2 (smull (extract_subvector (ExtractVT V128:V0, (i64 0)),
   2641   //              (extract_subvector (ExtractVT V128:V1, (i64 0))))),
   2642   //       (smull (extract_subvector (ExtractVT V128:V0, (i64 VMull2Idx)),
   2643   //              (extract_subvector (ExtractVT V128:V2, (i64 VMull2Idx))))))
   2644   //
   2645   // Where ExtractVT is a subvector with half number of elements, and
   2646   // VMullIdx2 is the index of the middle element (the high part).
   2647   //
   2648   // The vector hight part extract and multiply will be matched against
   2649   // {S,U}MULL{v16i8_v8i16,v8i16_v4i32,v4i32_v2i64} which in turn will
   2650   // issue a {s}mull2 instruction.
   2651   //
   2652   // This basically multiply the lower subvector with '{s,u}mull', the high
   2653   // subvector with '{s,u}mull2', and shuffle both results high part in
   2654   // resulting vector.
   2655   unsigned Mull2VectorIdx = VT.getVectorNumElements () / 2;
   2656   SDValue VMullIdx = DAG.getConstant(0, DL, MVT::i64);
   2657   SDValue VMull2Idx = DAG.getConstant(Mull2VectorIdx, DL, MVT::i64);
   2658 
   2659   SDValue VMullV0 =
   2660     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMullIdx);
   2661   SDValue VMullV1 =
   2662     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMullIdx);
   2663 
   2664   SDValue VMull2V0 =
   2665     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMull2Idx);
   2666   SDValue VMull2V1 =
   2667     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMull2Idx);
   2668 
   2669   unsigned MullOpc = Op.getOpcode() == ISD::MULHS ? AArch64ISD::SMULL
   2670                                                   : AArch64ISD::UMULL;
   2671 
   2672   EVT MullVT = ExtractVT.widenIntegerVectorElementType(*DAG.getContext());
   2673   SDValue Mull  = DAG.getNode(MullOpc, DL, MullVT, VMullV0, VMullV1);
   2674   SDValue Mull2 = DAG.getNode(MullOpc, DL, MullVT, VMull2V0, VMull2V1);
   2675 
   2676   Mull  = DAG.getNode(ISD::BITCAST, DL, VT, Mull);
   2677   Mull2 = DAG.getNode(ISD::BITCAST, DL, VT, Mull2);
   2678 
   2679   return DAG.getNode(AArch64ISD::UZP2, DL, VT, Mull, Mull2);
   2680 }
   2681 
   2682 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   2683                                                      SelectionDAG &DAG) const {
   2684   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2685   SDLoc dl(Op);
   2686   switch (IntNo) {
   2687   default: return SDValue();    // Don't custom lower most intrinsics.
   2688   case Intrinsic::thread_pointer: {
   2689     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2690     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
   2691   }
   2692   case Intrinsic::aarch64_neon_abs:
   2693     return DAG.getNode(ISD::ABS, dl, Op.getValueType(),
   2694                        Op.getOperand(1));
   2695   case Intrinsic::aarch64_neon_smax:
   2696     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
   2697                        Op.getOperand(1), Op.getOperand(2));
   2698   case Intrinsic::aarch64_neon_umax:
   2699     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
   2700                        Op.getOperand(1), Op.getOperand(2));
   2701   case Intrinsic::aarch64_neon_smin:
   2702     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
   2703                        Op.getOperand(1), Op.getOperand(2));
   2704   case Intrinsic::aarch64_neon_umin:
   2705     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
   2706                        Op.getOperand(1), Op.getOperand(2));
   2707   }
   2708 }
   2709 
   2710 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
   2711 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
   2712                                         EVT VT, EVT MemVT,
   2713                                         SelectionDAG &DAG) {
   2714   assert(VT.isVector() && "VT should be a vector type");
   2715   assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
   2716 
   2717   SDValue Value = ST->getValue();
   2718 
   2719   // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
   2720   // the word lane which represent the v4i8 subvector.  It optimizes the store
   2721   // to:
   2722   //
   2723   //   xtn  v0.8b, v0.8h
   2724   //   str  s0, [x0]
   2725 
   2726   SDValue Undef = DAG.getUNDEF(MVT::i16);
   2727   SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
   2728                                         {Undef, Undef, Undef, Undef});
   2729 
   2730   SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
   2731                                  Value, UndefVec);
   2732   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
   2733 
   2734   Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
   2735   SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
   2736                                      Trunc, DAG.getConstant(0, DL, MVT::i64));
   2737 
   2738   return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
   2739                       ST->getBasePtr(), ST->getMemOperand());
   2740 }
   2741 
   2742 // Custom lowering for any store, vector or scalar and/or default or with
   2743 // a truncate operations.  Currently only custom lower truncate operation
   2744 // from vector v4i16 to v4i8.
   2745 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
   2746                                           SelectionDAG &DAG) const {
   2747   SDLoc Dl(Op);
   2748   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
   2749   assert (StoreNode && "Can only custom lower store nodes");
   2750 
   2751   SDValue Value = StoreNode->getValue();
   2752 
   2753   EVT VT = Value.getValueType();
   2754   EVT MemVT = StoreNode->getMemoryVT();
   2755 
   2756   assert (VT.isVector() && "Can only custom lower vector store types");
   2757 
   2758   unsigned AS = StoreNode->getAddressSpace();
   2759   unsigned Align = StoreNode->getAlignment();
   2760   if (Align < MemVT.getStoreSize() &&
   2761       !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
   2762     return scalarizeVectorStore(StoreNode, DAG);
   2763   }
   2764 
   2765   if (StoreNode->isTruncatingStore()) {
   2766     return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
   2767   }
   2768 
   2769   return SDValue();
   2770 }
   2771 
   2772 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
   2773                                               SelectionDAG &DAG) const {
   2774   LLVM_DEBUG(dbgs() << "Custom lowering: ");
   2775   LLVM_DEBUG(Op.dump());
   2776 
   2777   switch (Op.getOpcode()) {
   2778   default:
   2779     llvm_unreachable("unimplemented operand");
   2780     return SDValue();
   2781   case ISD::BITCAST:
   2782     return LowerBITCAST(Op, DAG);
   2783   case ISD::GlobalAddress:
   2784     return LowerGlobalAddress(Op, DAG);
   2785   case ISD::GlobalTLSAddress:
   2786     return LowerGlobalTLSAddress(Op, DAG);
   2787   case ISD::SETCC:
   2788     return LowerSETCC(Op, DAG);
   2789   case ISD::BR_CC:
   2790     return LowerBR_CC(Op, DAG);
   2791   case ISD::SELECT:
   2792     return LowerSELECT(Op, DAG);
   2793   case ISD::SELECT_CC:
   2794     return LowerSELECT_CC(Op, DAG);
   2795   case ISD::JumpTable:
   2796     return LowerJumpTable(Op, DAG);
   2797   case ISD::ConstantPool:
   2798     return LowerConstantPool(Op, DAG);
   2799   case ISD::BlockAddress:
   2800     return LowerBlockAddress(Op, DAG);
   2801   case ISD::VASTART:
   2802     return LowerVASTART(Op, DAG);
   2803   case ISD::VACOPY:
   2804     return LowerVACOPY(Op, DAG);
   2805   case ISD::VAARG:
   2806     return LowerVAARG(Op, DAG);
   2807   case ISD::ADDC:
   2808   case ISD::ADDE:
   2809   case ISD::SUBC:
   2810   case ISD::SUBE:
   2811     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   2812   case ISD::SADDO:
   2813   case ISD::UADDO:
   2814   case ISD::SSUBO:
   2815   case ISD::USUBO:
   2816   case ISD::SMULO:
   2817   case ISD::UMULO:
   2818     return LowerXALUO(Op, DAG);
   2819   case ISD::FADD:
   2820     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
   2821   case ISD::FSUB:
   2822     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
   2823   case ISD::FMUL:
   2824     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
   2825   case ISD::FDIV:
   2826     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
   2827   case ISD::FP_ROUND:
   2828     return LowerFP_ROUND(Op, DAG);
   2829   case ISD::FP_EXTEND:
   2830     return LowerFP_EXTEND(Op, DAG);
   2831   case ISD::FRAMEADDR:
   2832     return LowerFRAMEADDR(Op, DAG);
   2833   case ISD::RETURNADDR:
   2834     return LowerRETURNADDR(Op, DAG);
   2835   case ISD::INSERT_VECTOR_ELT:
   2836     return LowerINSERT_VECTOR_ELT(Op, DAG);
   2837   case ISD::EXTRACT_VECTOR_ELT:
   2838     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   2839   case ISD::BUILD_VECTOR:
   2840     return LowerBUILD_VECTOR(Op, DAG);
   2841   case ISD::VECTOR_SHUFFLE:
   2842     return LowerVECTOR_SHUFFLE(Op, DAG);
   2843   case ISD::EXTRACT_SUBVECTOR:
   2844     return LowerEXTRACT_SUBVECTOR(Op, DAG);
   2845   case ISD::SRA:
   2846   case ISD::SRL:
   2847   case ISD::SHL:
   2848     return LowerVectorSRA_SRL_SHL(Op, DAG);
   2849   case ISD::SHL_PARTS:
   2850     return LowerShiftLeftParts(Op, DAG);
   2851   case ISD::SRL_PARTS:
   2852   case ISD::SRA_PARTS:
   2853     return LowerShiftRightParts(Op, DAG);
   2854   case ISD::CTPOP:
   2855     return LowerCTPOP(Op, DAG);
   2856   case ISD::FCOPYSIGN:
   2857     return LowerFCOPYSIGN(Op, DAG);
   2858   case ISD::AND:
   2859     return LowerVectorAND(Op, DAG);
   2860   case ISD::OR:
   2861     return LowerVectorOR(Op, DAG);
   2862   case ISD::XOR:
   2863     return LowerXOR(Op, DAG);
   2864   case ISD::PREFETCH:
   2865     return LowerPREFETCH(Op, DAG);
   2866   case ISD::SINT_TO_FP:
   2867   case ISD::UINT_TO_FP:
   2868     return LowerINT_TO_FP(Op, DAG);
   2869   case ISD::FP_TO_SINT:
   2870   case ISD::FP_TO_UINT:
   2871     return LowerFP_TO_INT(Op, DAG);
   2872   case ISD::FSINCOS:
   2873     return LowerFSINCOS(Op, DAG);
   2874   case ISD::FLT_ROUNDS_:
   2875     return LowerFLT_ROUNDS_(Op, DAG);
   2876   case ISD::MUL:
   2877     return LowerMUL(Op, DAG);
   2878   case ISD::MULHS:
   2879   case ISD::MULHU:
   2880     return LowerMULH(Op, DAG);
   2881   case ISD::INTRINSIC_WO_CHAIN:
   2882     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   2883   case ISD::STORE:
   2884     return LowerSTORE(Op, DAG);
   2885   case ISD::VECREDUCE_ADD:
   2886   case ISD::VECREDUCE_SMAX:
   2887   case ISD::VECREDUCE_SMIN:
   2888   case ISD::VECREDUCE_UMAX:
   2889   case ISD::VECREDUCE_UMIN:
   2890   case ISD::VECREDUCE_FMAX:
   2891   case ISD::VECREDUCE_FMIN:
   2892     return LowerVECREDUCE(Op, DAG);
   2893   case ISD::ATOMIC_LOAD_SUB:
   2894     return LowerATOMIC_LOAD_SUB(Op, DAG);
   2895   case ISD::ATOMIC_LOAD_AND:
   2896     return LowerATOMIC_LOAD_AND(Op, DAG);
   2897   case ISD::DYNAMIC_STACKALLOC:
   2898     return LowerDYNAMIC_STACKALLOC(Op, DAG);
   2899   }
   2900 }
   2901 
   2902 //===----------------------------------------------------------------------===//
   2903 //                      Calling Convention Implementation
   2904 //===----------------------------------------------------------------------===//
   2905 
   2906 #include "AArch64GenCallingConv.inc"
   2907 
   2908 /// Selects the correct CCAssignFn for a given CallingConvention value.
   2909 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
   2910                                                      bool IsVarArg) const {
   2911   switch (CC) {
   2912   default:
   2913     report_fatal_error("Unsupported calling convention.");
   2914   case CallingConv::WebKit_JS:
   2915     return CC_AArch64_WebKit_JS;
   2916   case CallingConv::GHC:
   2917     return CC_AArch64_GHC;
   2918   case CallingConv::C:
   2919   case CallingConv::Fast:
   2920   case CallingConv::PreserveMost:
   2921   case CallingConv::CXX_FAST_TLS:
   2922   case CallingConv::Swift:
   2923     if (Subtarget->isTargetWindows() && IsVarArg)
   2924       return CC_AArch64_Win64_VarArg;
   2925     if (!Subtarget->isTargetDarwin())
   2926       return CC_AArch64_AAPCS;
   2927     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
   2928   case CallingConv::Win64:
   2929     return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
   2930   }
   2931 }
   2932 
   2933 CCAssignFn *
   2934 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
   2935   return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
   2936                                       : RetCC_AArch64_AAPCS;
   2937 }
   2938 
   2939 SDValue AArch64TargetLowering::LowerFormalArguments(
   2940     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   2941     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   2942     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   2943   MachineFunction &MF = DAG.getMachineFunction();
   2944   MachineFrameInfo &MFI = MF.getFrameInfo();
   2945   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
   2946 
   2947   // Assign locations to all of the incoming arguments.
   2948   SmallVector<CCValAssign, 16> ArgLocs;
   2949   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2950                  *DAG.getContext());
   2951 
   2952   // At this point, Ins[].VT may already be promoted to i32. To correctly
   2953   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
   2954   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
   2955   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
   2956   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
   2957   // LocVT.
   2958   unsigned NumArgs = Ins.size();
   2959   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
   2960   unsigned CurArgIdx = 0;
   2961   for (unsigned i = 0; i != NumArgs; ++i) {
   2962     MVT ValVT = Ins[i].VT;
   2963     if (Ins[i].isOrigArg()) {
   2964       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
   2965       CurArgIdx = Ins[i].getOrigArgIndex();
   2966 
   2967       // Get type of the original argument.
   2968       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
   2969                                   /*AllowUnknown*/ true);
   2970       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
   2971       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
   2972       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
   2973         ValVT = MVT::i8;
   2974       else if (ActualMVT == MVT::i16)
   2975         ValVT = MVT::i16;
   2976     }
   2977     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
   2978     bool Res =
   2979         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
   2980     assert(!Res && "Call operand has unhandled type");
   2981     (void)Res;
   2982   }
   2983   assert(ArgLocs.size() == Ins.size());
   2984   SmallVector<SDValue, 16> ArgValues;
   2985   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2986     CCValAssign &VA = ArgLocs[i];
   2987 
   2988     if (Ins[i].Flags.isByVal()) {
   2989       // Byval is used for HFAs in the PCS, but the system should work in a
   2990       // non-compliant manner for larger structs.
   2991       EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2992       int Size = Ins[i].Flags.getByValSize();
   2993       unsigned NumRegs = (Size + 7) / 8;
   2994 
   2995       // FIXME: This works on big-endian for composite byvals, which are the common
   2996       // case. It should also work for fundamental types too.
   2997       unsigned FrameIdx =
   2998         MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
   2999       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
   3000       InVals.push_back(FrameIdxN);
   3001 
   3002       continue;
   3003     }
   3004 
   3005     if (VA.isRegLoc()) {
   3006       // Arguments stored in registers.
   3007       EVT RegVT = VA.getLocVT();
   3008 
   3009       SDValue ArgValue;
   3010       const TargetRegisterClass *RC;
   3011 
   3012       if (RegVT == MVT::i32)
   3013         RC = &AArch64::GPR32RegClass;
   3014       else if (RegVT == MVT::i64)
   3015         RC = &AArch64::GPR64RegClass;
   3016       else if (RegVT == MVT::f16)
   3017         RC = &AArch64::FPR16RegClass;
   3018       else if (RegVT == MVT::f32)
   3019         RC = &AArch64::FPR32RegClass;
   3020       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
   3021         RC = &AArch64::FPR64RegClass;
   3022       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
   3023         RC = &AArch64::FPR128RegClass;
   3024       else
   3025         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3026 
   3027       // Transform the arguments in physical registers into virtual ones.
   3028       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3029       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
   3030 
   3031       // If this is an 8, 16 or 32-bit value, it is really passed promoted
   3032       // to 64 bits.  Insert an assert[sz]ext to capture this, then
   3033       // truncate to the right size.
   3034       switch (VA.getLocInfo()) {
   3035       default:
   3036         llvm_unreachable("Unknown loc info!");
   3037       case CCValAssign::Full:
   3038         break;
   3039       case CCValAssign::BCvt:
   3040         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
   3041         break;
   3042       case CCValAssign::AExt:
   3043       case CCValAssign::SExt:
   3044       case CCValAssign::ZExt:
   3045         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
   3046         // nodes after our lowering.
   3047         assert(RegVT == Ins[i].VT && "incorrect register location selected");
   3048         break;
   3049       }
   3050 
   3051       InVals.push_back(ArgValue);
   3052 
   3053     } else { // VA.isRegLoc()
   3054       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
   3055       unsigned ArgOffset = VA.getLocMemOffset();
   3056       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
   3057 
   3058       uint32_t BEAlign = 0;
   3059       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
   3060           !Ins[i].Flags.isInConsecutiveRegs())
   3061         BEAlign = 8 - ArgSize;
   3062 
   3063       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
   3064 
   3065       // Create load nodes to retrieve arguments from the stack.
   3066       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   3067       SDValue ArgValue;
   3068 
   3069       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
   3070       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
   3071       MVT MemVT = VA.getValVT();
   3072 
   3073       switch (VA.getLocInfo()) {
   3074       default:
   3075         break;
   3076       case CCValAssign::BCvt:
   3077         MemVT = VA.getLocVT();
   3078         break;
   3079       case CCValAssign::SExt:
   3080         ExtType = ISD::SEXTLOAD;
   3081         break;
   3082       case CCValAssign::ZExt:
   3083         ExtType = ISD::ZEXTLOAD;
   3084         break;
   3085       case CCValAssign::AExt:
   3086         ExtType = ISD::EXTLOAD;
   3087         break;
   3088       }
   3089 
   3090       ArgValue = DAG.getExtLoad(
   3091           ExtType, DL, VA.getLocVT(), Chain, FIN,
   3092           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3093           MemVT);
   3094 
   3095       InVals.push_back(ArgValue);
   3096     }
   3097   }
   3098 
   3099   // varargs
   3100   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
   3101   if (isVarArg) {
   3102     if (!Subtarget->isTargetDarwin() || IsWin64) {
   3103       // The AAPCS variadic function ABI is identical to the non-variadic
   3104       // one. As a result there may be more arguments in registers and we should
   3105       // save them for future reference.
   3106       // Win64 variadic functions also pass arguments in registers, but all float
   3107       // arguments are passed in integer registers.
   3108       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
   3109     }
   3110 
   3111     // This will point to the next argument passed via stack.
   3112     unsigned StackOffset = CCInfo.getNextStackOffset();
   3113     // We currently pass all varargs at 8-byte alignment.
   3114     StackOffset = ((StackOffset + 7) & ~7);
   3115     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
   3116   }
   3117 
   3118   unsigned StackArgSize = CCInfo.getNextStackOffset();
   3119   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
   3120   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
   3121     // This is a non-standard ABI so by fiat I say we're allowed to make full
   3122     // use of the stack area to be popped, which must be aligned to 16 bytes in
   3123     // any case:
   3124     StackArgSize = alignTo(StackArgSize, 16);
   3125 
   3126     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
   3127     // a multiple of 16.
   3128     FuncInfo->setArgumentStackToRestore(StackArgSize);
   3129 
   3130     // This realignment carries over to the available bytes below. Our own
   3131     // callers will guarantee the space is free by giving an aligned value to
   3132     // CALLSEQ_START.
   3133   }
   3134   // Even if we're not expected to free up the space, it's useful to know how
   3135   // much is there while considering tail calls (because we can reuse it).
   3136   FuncInfo->setBytesInStackArgArea(StackArgSize);
   3137 
   3138   return Chain;
   3139 }
   3140 
   3141 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
   3142                                                 SelectionDAG &DAG,
   3143                                                 const SDLoc &DL,
   3144                                                 SDValue &Chain) const {
   3145   MachineFunction &MF = DAG.getMachineFunction();
   3146   MachineFrameInfo &MFI = MF.getFrameInfo();
   3147   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
   3148   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3149   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
   3150 
   3151   SmallVector<SDValue, 8> MemOps;
   3152 
   3153   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
   3154                                           AArch64::X3, AArch64::X4, AArch64::X5,
   3155                                           AArch64::X6, AArch64::X7 };
   3156   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
   3157   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
   3158 
   3159   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
   3160   int GPRIdx = 0;
   3161   if (GPRSaveSize != 0) {
   3162     if (IsWin64) {
   3163       GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
   3164       if (GPRSaveSize & 15)
   3165         // The extra size here, if triggered, will always be 8.
   3166         MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
   3167     } else
   3168       GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
   3169 
   3170     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
   3171 
   3172     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
   3173       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
   3174       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
   3175       SDValue Store = DAG.getStore(
   3176           Val.getValue(1), DL, Val, FIN,
   3177           IsWin64
   3178               ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
   3179                                                   GPRIdx,
   3180                                                   (i - FirstVariadicGPR) * 8)
   3181               : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
   3182       MemOps.push_back(Store);
   3183       FIN =
   3184           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
   3185     }
   3186   }
   3187   FuncInfo->setVarArgsGPRIndex(GPRIdx);
   3188   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
   3189 
   3190   if (Subtarget->hasFPARMv8() && !IsWin64) {
   3191     static const MCPhysReg FPRArgRegs[] = {
   3192         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
   3193         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
   3194     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
   3195     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
   3196 
   3197     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
   3198     int FPRIdx = 0;
   3199     if (FPRSaveSize != 0) {
   3200       FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
   3201 
   3202       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
   3203 
   3204       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
   3205         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
   3206         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
   3207 
   3208         SDValue Store = DAG.getStore(
   3209             Val.getValue(1), DL, Val, FIN,
   3210             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
   3211         MemOps.push_back(Store);
   3212         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
   3213                           DAG.getConstant(16, DL, PtrVT));
   3214       }
   3215     }
   3216     FuncInfo->setVarArgsFPRIndex(FPRIdx);
   3217     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
   3218   }
   3219 
   3220   if (!MemOps.empty()) {
   3221     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   3222   }
   3223 }
   3224 
   3225 /// LowerCallResult - Lower the result values of a call into the
   3226 /// appropriate copies out of appropriate physical registers.
   3227 SDValue AArch64TargetLowering::LowerCallResult(
   3228     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
   3229     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   3230     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
   3231     SDValue ThisVal) const {
   3232   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
   3233                           ? RetCC_AArch64_WebKit_JS
   3234                           : RetCC_AArch64_AAPCS;
   3235   // Assign locations to each value returned by this call.
   3236   SmallVector<CCValAssign, 16> RVLocs;
   3237   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   3238                  *DAG.getContext());
   3239   CCInfo.AnalyzeCallResult(Ins, RetCC);
   3240 
   3241   // Copy all of the result registers out of their specified physreg.
   3242   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3243     CCValAssign VA = RVLocs[i];
   3244 
   3245     // Pass 'this' value directly from the argument to return value, to avoid
   3246     // reg unit interference
   3247     if (i == 0 && isThisReturn) {
   3248       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
   3249              "unexpected return calling convention register assignment");
   3250       InVals.push_back(ThisVal);
   3251       continue;
   3252     }
   3253 
   3254     SDValue Val =
   3255         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
   3256     Chain = Val.getValue(1);
   3257     InFlag = Val.getValue(2);
   3258 
   3259     switch (VA.getLocInfo()) {
   3260     default:
   3261       llvm_unreachable("Unknown loc info!");
   3262     case CCValAssign::Full:
   3263       break;
   3264     case CCValAssign::BCvt:
   3265       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
   3266       break;
   3267     }
   3268 
   3269     InVals.push_back(Val);
   3270   }
   3271 
   3272   return Chain;
   3273 }
   3274 
   3275 /// Return true if the calling convention is one that we can guarantee TCO for.
   3276 static bool canGuaranteeTCO(CallingConv::ID CC) {
   3277   return CC == CallingConv::Fast;
   3278 }
   3279 
   3280 /// Return true if we might ever do TCO for calls with this calling convention.
   3281 static bool mayTailCallThisCC(CallingConv::ID CC) {
   3282   switch (CC) {
   3283   case CallingConv::C:
   3284   case CallingConv::PreserveMost:
   3285   case CallingConv::Swift:
   3286     return true;
   3287   default:
   3288     return canGuaranteeTCO(CC);
   3289   }
   3290 }
   3291 
   3292 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
   3293     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
   3294     const SmallVectorImpl<ISD::OutputArg> &Outs,
   3295     const SmallVectorImpl<SDValue> &OutVals,
   3296     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
   3297   if (!mayTailCallThisCC(CalleeCC))
   3298     return false;
   3299 
   3300   MachineFunction &MF = DAG.getMachineFunction();
   3301   const Function &CallerF = MF.getFunction();
   3302   CallingConv::ID CallerCC = CallerF.getCallingConv();
   3303   bool CCMatch = CallerCC == CalleeCC;
   3304 
   3305   // Byval parameters hand the function a pointer directly into the stack area
   3306   // we want to reuse during a tail call. Working around this *is* possible (see
   3307   // X86) but less efficient and uglier in LowerCall.
   3308   for (Function::const_arg_iterator i = CallerF.arg_begin(),
   3309                                     e = CallerF.arg_end();
   3310        i != e; ++i)
   3311     if (i->hasByValAttr())
   3312       return false;
   3313 
   3314   if (getTargetMachine().Options.GuaranteedTailCallOpt)
   3315     return canGuaranteeTCO(CalleeCC) && CCMatch;
   3316 
   3317   // Externally-defined functions with weak linkage should not be
   3318   // tail-called on AArch64 when the OS does not support dynamic
   3319   // pre-emption of symbols, as the AAELF spec requires normal calls
   3320   // to undefined weak functions to be replaced with a NOP or jump to the
   3321   // next instruction. The behaviour of branch instructions in this
   3322   // situation (as used for tail calls) is implementation-defined, so we
   3323   // cannot rely on the linker replacing the tail call with a return.
   3324   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3325     const GlobalValue *GV = G->getGlobal();
   3326     const Triple &TT = getTargetMachine().getTargetTriple();
   3327     if (GV->hasExternalWeakLinkage() &&
   3328         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
   3329       return false;
   3330   }
   3331 
   3332   // Now we search for cases where we can use a tail call without changing the
   3333   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
   3334   // concept.
   3335 
   3336   // I want anyone implementing a new calling convention to think long and hard
   3337   // about this assert.
   3338   assert((!isVarArg || CalleeCC == CallingConv::C) &&
   3339          "Unexpected variadic calling convention");
   3340 
   3341   LLVMContext &C = *DAG.getContext();
   3342   if (isVarArg && !Outs.empty()) {
   3343     // At least two cases here: if caller is fastcc then we can't have any
   3344     // memory arguments (we'd be expected to clean up the stack afterwards). If
   3345     // caller is C then we could potentially use its argument area.
   3346 
   3347     // FIXME: for now we take the most conservative of these in both cases:
   3348     // disallow all variadic memory operands.
   3349     SmallVector<CCValAssign, 16> ArgLocs;
   3350     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
   3351 
   3352     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
   3353     for (const CCValAssign &ArgLoc : ArgLocs)
   3354       if (!ArgLoc.isRegLoc())
   3355         return false;
   3356   }
   3357 
   3358   // Check that the call results are passed in the same way.
   3359   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
   3360                                   CCAssignFnForCall(CalleeCC, isVarArg),
   3361                                   CCAssignFnForCall(CallerCC, isVarArg)))
   3362     return false;
   3363   // The callee has to preserve all registers the caller needs to preserve.
   3364   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
   3365   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
   3366   if (!CCMatch) {
   3367     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
   3368     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
   3369       return false;
   3370   }
   3371 
   3372   // Nothing more to check if the callee is taking no arguments
   3373   if (Outs.empty())
   3374     return true;
   3375 
   3376   SmallVector<CCValAssign, 16> ArgLocs;
   3377   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
   3378 
   3379   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
   3380 
   3381   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
   3382 
   3383   // If the stack arguments for this call do not fit into our own save area then
   3384   // the call cannot be made tail.
   3385   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
   3386     return false;
   3387 
   3388   const MachineRegisterInfo &MRI = MF.getRegInfo();
   3389   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
   3390     return false;
   3391 
   3392   return true;
   3393 }
   3394 
   3395 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
   3396                                                    SelectionDAG &DAG,
   3397                                                    MachineFrameInfo &MFI,
   3398                                                    int ClobberedFI) const {
   3399   SmallVector<SDValue, 8> ArgChains;
   3400   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
   3401   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
   3402 
   3403   // Include the original chain at the beginning of the list. When this is
   3404   // used by target LowerCall hooks, this helps legalize find the
   3405   // CALLSEQ_BEGIN node.
   3406   ArgChains.push_back(Chain);
   3407 
   3408   // Add a chain value for each stack argument corresponding
   3409   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
   3410                             UE = DAG.getEntryNode().getNode()->use_end();
   3411        U != UE; ++U)
   3412     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
   3413       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
   3414         if (FI->getIndex() < 0) {
   3415           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
   3416           int64_t InLastByte = InFirstByte;
   3417           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
   3418 
   3419           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
   3420               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
   3421             ArgChains.push_back(SDValue(L, 1));
   3422         }
   3423 
   3424   // Build a tokenfactor for all the chains.
   3425   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
   3426 }
   3427 
   3428 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
   3429                                                    bool TailCallOpt) const {
   3430   return CallCC == CallingConv::Fast && TailCallOpt;
   3431 }
   3432 
   3433 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
   3434 /// and add input and output parameter nodes.
   3435 SDValue
   3436 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
   3437                                  SmallVectorImpl<SDValue> &InVals) const {
   3438   SelectionDAG &DAG = CLI.DAG;
   3439   SDLoc &DL = CLI.DL;
   3440   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   3441   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
   3442   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
   3443   SDValue Chain = CLI.Chain;
   3444   SDValue Callee = CLI.Callee;
   3445   bool &IsTailCall = CLI.IsTailCall;
   3446   CallingConv::ID CallConv = CLI.CallConv;
   3447   bool IsVarArg = CLI.IsVarArg;
   3448 
   3449   MachineFunction &MF = DAG.getMachineFunction();
   3450   bool IsThisReturn = false;
   3451 
   3452   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
   3453   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
   3454   bool IsSibCall = false;
   3455 
   3456   if (IsTailCall) {
   3457     // Check if it's really possible to do a tail call.
   3458     IsTailCall = isEligibleForTailCallOptimization(
   3459         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
   3460     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
   3461       report_fatal_error("failed to perform tail call elimination on a call "
   3462                          "site marked musttail");
   3463 
   3464     // A sibling call is one where we're under the usual C ABI and not planning
   3465     // to change that but can still do a tail call:
   3466     if (!TailCallOpt && IsTailCall)
   3467       IsSibCall = true;
   3468 
   3469     if (IsTailCall)
   3470       ++NumTailCalls;
   3471   }
   3472 
   3473   // Analyze operands of the call, assigning locations to each operand.
   3474   SmallVector<CCValAssign, 16> ArgLocs;
   3475   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
   3476                  *DAG.getContext());
   3477 
   3478   if (IsVarArg) {
   3479     // Handle fixed and variable vector arguments differently.
   3480     // Variable vector arguments always go into memory.
   3481     unsigned NumArgs = Outs.size();
   3482 
   3483     for (unsigned i = 0; i != NumArgs; ++i) {
   3484       MVT ArgVT = Outs[i].VT;
   3485       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   3486       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
   3487                                                /*IsVarArg=*/ !Outs[i].IsFixed);
   3488       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
   3489       assert(!Res && "Call operand has unhandled type");
   3490       (void)Res;
   3491     }
   3492   } else {
   3493     // At this point, Outs[].VT may already be promoted to i32. To correctly
   3494     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
   3495     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
   3496     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
   3497     // we use a special version of AnalyzeCallOperands to pass in ValVT and
   3498     // LocVT.
   3499     unsigned NumArgs = Outs.size();
   3500     for (unsigned i = 0; i != NumArgs; ++i) {
   3501       MVT ValVT = Outs[i].VT;
   3502       // Get type of the original argument.
   3503       EVT ActualVT = getValueType(DAG.getDataLayout(),
   3504                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
   3505                                   /*AllowUnknown*/ true);
   3506       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
   3507       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   3508       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
   3509       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
   3510         ValVT = MVT::i8;
   3511       else if (ActualMVT == MVT::i16)
   3512         ValVT = MVT::i16;
   3513 
   3514       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
   3515       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
   3516       assert(!Res && "Call operand has unhandled type");
   3517       (void)Res;
   3518     }
   3519   }
   3520 
   3521   // Get a count of how many bytes are to be pushed on the stack.
   3522   unsigned NumBytes = CCInfo.getNextStackOffset();
   3523 
   3524   if (IsSibCall) {
   3525     // Since we're not changing the ABI to make this a tail call, the memory
   3526     // operands are already available in the caller's incoming argument space.
   3527     NumBytes = 0;
   3528   }
   3529 
   3530   // FPDiff is the byte offset of the call's argument area from the callee's.
   3531   // Stores to callee stack arguments will be placed in FixedStackSlots offset
   3532   // by this amount for a tail call. In a sibling call it must be 0 because the
   3533   // caller will deallocate the entire stack and the callee still expects its
   3534   // arguments to begin at SP+0. Completely unused for non-tail calls.
   3535   int FPDiff = 0;
   3536 
   3537   if (IsTailCall && !IsSibCall) {
   3538     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
   3539 
   3540     // Since callee will pop argument stack as a tail call, we must keep the
   3541     // popped size 16-byte aligned.
   3542     NumBytes = alignTo(NumBytes, 16);
   3543 
   3544     // FPDiff will be negative if this tail call requires more space than we
   3545     // would automatically have in our incoming argument space. Positive if we
   3546     // can actually shrink the stack.
   3547     FPDiff = NumReusableBytes - NumBytes;
   3548 
   3549     // The stack pointer must be 16-byte aligned at all times it's used for a
   3550     // memory operation, which in practice means at *all* times and in
   3551     // particular across call boundaries. Therefore our own arguments started at
   3552     // a 16-byte aligned SP and the delta applied for the tail call should
   3553     // satisfy the same constraint.
   3554     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
   3555   }
   3556 
   3557   // Adjust the stack pointer for the new arguments...
   3558   // These operations are automatically eliminated by the prolog/epilog pass
   3559   if (!IsSibCall)
   3560     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
   3561 
   3562   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
   3563                                         getPointerTy(DAG.getDataLayout()));
   3564 
   3565   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   3566   SmallVector<SDValue, 8> MemOpChains;
   3567   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3568 
   3569   // Walk the register/memloc assignments, inserting copies/loads.
   3570   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
   3571        ++i, ++realArgIdx) {
   3572     CCValAssign &VA = ArgLocs[i];
   3573     SDValue Arg = OutVals[realArgIdx];
   3574     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   3575 
   3576     // Promote the value if needed.
   3577     switch (VA.getLocInfo()) {
   3578     default:
   3579       llvm_unreachable("Unknown loc info!");
   3580     case CCValAssign::Full:
   3581       break;
   3582     case CCValAssign::SExt:
   3583       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
   3584       break;
   3585     case CCValAssign::ZExt:
   3586       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
   3587       break;
   3588     case CCValAssign::AExt:
   3589       if (Outs[realArgIdx].ArgVT == MVT::i1) {
   3590         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
   3591         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
   3592         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
   3593       }
   3594       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
   3595       break;
   3596     case CCValAssign::BCvt:
   3597       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
   3598       break;
   3599     case CCValAssign::FPExt:
   3600       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
   3601       break;
   3602     }
   3603 
   3604     if (VA.isRegLoc()) {
   3605       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
   3606           Outs[0].VT == MVT::i64) {
   3607         assert(VA.getLocVT() == MVT::i64 &&
   3608                "unexpected calling convention register assignment");
   3609         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
   3610                "unexpected use of 'returned'");
   3611         IsThisReturn = true;
   3612       }
   3613       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   3614     } else {
   3615       assert(VA.isMemLoc());
   3616 
   3617       SDValue DstAddr;
   3618       MachinePointerInfo DstInfo;
   3619 
   3620       // FIXME: This works on big-endian for composite byvals, which are the
   3621       // common case. It should also work for fundamental types too.
   3622       uint32_t BEAlign = 0;
   3623       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
   3624                                         : VA.getValVT().getSizeInBits();
   3625       OpSize = (OpSize + 7) / 8;
   3626       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
   3627           !Flags.isInConsecutiveRegs()) {
   3628         if (OpSize < 8)
   3629           BEAlign = 8 - OpSize;
   3630       }
   3631       unsigned LocMemOffset = VA.getLocMemOffset();
   3632       int32_t Offset = LocMemOffset + BEAlign;
   3633       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
   3634       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
   3635 
   3636       if (IsTailCall) {
   3637         Offset = Offset + FPDiff;
   3638         int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
   3639 
   3640         DstAddr = DAG.getFrameIndex(FI, PtrVT);
   3641         DstInfo =
   3642             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
   3643 
   3644         // Make sure any stack arguments overlapping with where we're storing
   3645         // are loaded before this eventual operation. Otherwise they'll be
   3646         // clobbered.
   3647         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
   3648       } else {
   3649         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
   3650 
   3651         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
   3652         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
   3653                                                LocMemOffset);
   3654       }
   3655 
   3656       if (Outs[i].Flags.isByVal()) {
   3657         SDValue SizeNode =
   3658             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
   3659         SDValue Cpy = DAG.getMemcpy(
   3660             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
   3661             /*isVol = */ false, /*AlwaysInline = */ false,
   3662             /*isTailCall = */ false,
   3663             DstInfo, MachinePointerInfo());
   3664 
   3665         MemOpChains.push_back(Cpy);
   3666       } else {
   3667         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
   3668         // promoted to a legal register type i32, we should truncate Arg back to
   3669         // i1/i8/i16.
   3670         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
   3671             VA.getValVT() == MVT::i16)
   3672           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
   3673 
   3674         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
   3675         MemOpChains.push_back(Store);
   3676       }
   3677     }
   3678   }
   3679 
   3680   if (!MemOpChains.empty())
   3681     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   3682 
   3683   // Build a sequence of copy-to-reg nodes chained together with token chain
   3684   // and flag operands which copy the outgoing args into the appropriate regs.
   3685   SDValue InFlag;
   3686   for (auto &RegToPass : RegsToPass) {
   3687     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
   3688                              RegToPass.second, InFlag);
   3689     InFlag = Chain.getValue(1);
   3690   }
   3691 
   3692   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   3693   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   3694   // node so that legalize doesn't hack it.
   3695   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3696     auto GV = G->getGlobal();
   3697     if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
   3698         AArch64II::MO_GOT) {
   3699       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
   3700       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
   3701     } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
   3702       assert(Subtarget->isTargetWindows() &&
   3703              "Windows is the only supported COFF target");
   3704       Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
   3705     } else {
   3706       const GlobalValue *GV = G->getGlobal();
   3707       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
   3708     }
   3709   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   3710     if (getTargetMachine().getCodeModel() == CodeModel::Large &&
   3711         Subtarget->isTargetMachO()) {
   3712       const char *Sym = S->getSymbol();
   3713       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
   3714       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
   3715     } else {
   3716       const char *Sym = S->getSymbol();
   3717       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
   3718     }
   3719   }
   3720 
   3721   // We don't usually want to end the call-sequence here because we would tidy
   3722   // the frame up *after* the call, however in the ABI-changing tail-call case
   3723   // we've carefully laid out the parameters so that when sp is reset they'll be
   3724   // in the correct location.
   3725   if (IsTailCall && !IsSibCall) {
   3726     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
   3727                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
   3728     InFlag = Chain.getValue(1);
   3729   }
   3730 
   3731   std::vector<SDValue> Ops;
   3732   Ops.push_back(Chain);
   3733   Ops.push_back(Callee);
   3734 
   3735   if (IsTailCall) {
   3736     // Each tail call may have to adjust the stack by a different amount, so
   3737     // this information must travel along with the operation for eventual
   3738     // consumption by emitEpilogue.
   3739     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
   3740   }
   3741 
   3742   // Add argument registers to the end of the list so that they are known live
   3743   // into the call.
   3744   for (auto &RegToPass : RegsToPass)
   3745     Ops.push_back(DAG.getRegister(RegToPass.first,
   3746                                   RegToPass.second.getValueType()));
   3747 
   3748   // Add a register mask operand representing the call-preserved registers.
   3749   const uint32_t *Mask;
   3750   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
   3751   if (IsThisReturn) {
   3752     // For 'this' returns, use the X0-preserving mask if applicable
   3753     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
   3754     if (!Mask) {
   3755       IsThisReturn = false;
   3756       Mask = TRI->getCallPreservedMask(MF, CallConv);
   3757     }
   3758   } else
   3759     Mask = TRI->getCallPreservedMask(MF, CallConv);
   3760 
   3761   assert(Mask && "Missing call preserved mask for calling convention");
   3762   Ops.push_back(DAG.getRegisterMask(Mask));
   3763 
   3764   if (InFlag.getNode())
   3765     Ops.push_back(InFlag);
   3766 
   3767   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   3768 
   3769   // If we're doing a tall call, use a TC_RETURN here rather than an
   3770   // actual call instruction.
   3771   if (IsTailCall) {
   3772     MF.getFrameInfo().setHasTailCall();
   3773     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
   3774   }
   3775 
   3776   // Returns a chain and a flag for retval copy to use.
   3777   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
   3778   InFlag = Chain.getValue(1);
   3779 
   3780   uint64_t CalleePopBytes =
   3781       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
   3782 
   3783   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
   3784                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
   3785                              InFlag, DL);
   3786   if (!Ins.empty())
   3787     InFlag = Chain.getValue(1);
   3788 
   3789   // Handle result values, copying them out of physregs into vregs that we
   3790   // return.
   3791   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
   3792                          InVals, IsThisReturn,
   3793                          IsThisReturn ? OutVals[0] : SDValue());
   3794 }
   3795 
   3796 bool AArch64TargetLowering::CanLowerReturn(
   3797     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
   3798     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
   3799   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
   3800                           ? RetCC_AArch64_WebKit_JS
   3801                           : RetCC_AArch64_AAPCS;
   3802   SmallVector<CCValAssign, 16> RVLocs;
   3803   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   3804   return CCInfo.CheckReturn(Outs, RetCC);
   3805 }
   3806 
   3807 SDValue
   3808 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   3809                                    bool isVarArg,
   3810                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   3811                                    const SmallVectorImpl<SDValue> &OutVals,
   3812                                    const SDLoc &DL, SelectionDAG &DAG) const {
   3813   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
   3814                           ? RetCC_AArch64_WebKit_JS
   3815                           : RetCC_AArch64_AAPCS;
   3816   SmallVector<CCValAssign, 16> RVLocs;
   3817   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   3818                  *DAG.getContext());
   3819   CCInfo.AnalyzeReturn(Outs, RetCC);
   3820 
   3821   // Copy the result values into the output registers.
   3822   SDValue Flag;
   3823   SmallVector<SDValue, 4> RetOps(1, Chain);
   3824   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
   3825        ++i, ++realRVLocIdx) {
   3826     CCValAssign &VA = RVLocs[i];
   3827     assert(VA.isRegLoc() && "Can only return in registers!");
   3828     SDValue Arg = OutVals[realRVLocIdx];
   3829 
   3830     switch (VA.getLocInfo()) {
   3831     default:
   3832       llvm_unreachable("Unknown loc info!");
   3833     case CCValAssign::Full:
   3834       if (Outs[i].ArgVT == MVT::i1) {
   3835         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
   3836         // value. This is strictly redundant on Darwin (which uses "zeroext
   3837         // i1"), but will be optimised out before ISel.
   3838         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
   3839         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
   3840       }
   3841       break;
   3842     case CCValAssign::BCvt:
   3843       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
   3844       break;
   3845     }
   3846 
   3847     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
   3848     Flag = Chain.getValue(1);
   3849     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   3850   }
   3851   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
   3852   const MCPhysReg *I =
   3853       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   3854   if (I) {
   3855     for (; *I; ++I) {
   3856       if (AArch64::GPR64RegClass.contains(*I))
   3857         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
   3858       else if (AArch64::FPR64RegClass.contains(*I))
   3859         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
   3860       else
   3861         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   3862     }
   3863   }
   3864 
   3865   RetOps[0] = Chain; // Update chain.
   3866 
   3867   // Add the flag if we have it.
   3868   if (Flag.getNode())
   3869     RetOps.push_back(Flag);
   3870 
   3871   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
   3872 }
   3873 
   3874 //===----------------------------------------------------------------------===//
   3875 //  Other Lowering Code
   3876 //===----------------------------------------------------------------------===//
   3877 
   3878 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
   3879                                              SelectionDAG &DAG,
   3880                                              unsigned Flag) const {
   3881   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
   3882                                     N->getOffset(), Flag);
   3883 }
   3884 
   3885 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
   3886                                              SelectionDAG &DAG,
   3887                                              unsigned Flag) const {
   3888   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
   3889 }
   3890 
   3891 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
   3892                                              SelectionDAG &DAG,
   3893                                              unsigned Flag) const {
   3894   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
   3895                                    N->getOffset(), Flag);
   3896 }
   3897 
   3898 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
   3899                                              SelectionDAG &DAG,
   3900                                              unsigned Flag) const {
   3901   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
   3902 }
   3903 
   3904 // (loadGOT sym)
   3905 template <class NodeTy>
   3906 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
   3907                                       unsigned Flags) const {
   3908   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
   3909   SDLoc DL(N);
   3910   EVT Ty = getPointerTy(DAG.getDataLayout());
   3911   SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
   3912   // FIXME: Once remat is capable of dealing with instructions with register
   3913   // operands, expand this into two nodes instead of using a wrapper node.
   3914   return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
   3915 }
   3916 
   3917 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
   3918 template <class NodeTy>
   3919 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
   3920                                             unsigned Flags) const {
   3921   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
   3922   SDLoc DL(N);
   3923   EVT Ty = getPointerTy(DAG.getDataLayout());
   3924   const unsigned char MO_NC = AArch64II::MO_NC;
   3925   return DAG.getNode(
   3926       AArch64ISD::WrapperLarge, DL, Ty,
   3927       getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
   3928       getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
   3929       getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
   3930       getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
   3931 }
   3932 
   3933 // (addlow (adrp %hi(sym)) %lo(sym))
   3934 template <class NodeTy>
   3935 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
   3936                                        unsigned Flags) const {
   3937   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
   3938   SDLoc DL(N);
   3939   EVT Ty = getPointerTy(DAG.getDataLayout());
   3940   SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
   3941   SDValue Lo = getTargetNode(N, Ty, DAG,
   3942                              AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
   3943   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
   3944   return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
   3945 }
   3946 
   3947 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
   3948                                                   SelectionDAG &DAG) const {
   3949   GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
   3950   const GlobalValue *GV = GN->getGlobal();
   3951   const AArch64II::TOF TargetFlags =
   3952       (GV->hasDLLImportStorageClass() ? AArch64II::MO_DLLIMPORT
   3953                                       : AArch64II::MO_NO_FLAG);
   3954   unsigned char OpFlags =
   3955       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   3956 
   3957   if (OpFlags != AArch64II::MO_NO_FLAG)
   3958     assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
   3959            "unexpected offset in global node");
   3960 
   3961   // This also catches the large code model case for Darwin.
   3962   if ((OpFlags & AArch64II::MO_GOT) != 0) {
   3963     return getGOT(GN, DAG, TargetFlags);
   3964   }
   3965 
   3966   SDValue Result;
   3967   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   3968     Result = getAddrLarge(GN, DAG, TargetFlags);
   3969   } else {
   3970     Result = getAddr(GN, DAG, TargetFlags);
   3971   }
   3972   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3973   SDLoc DL(GN);
   3974   if (GV->hasDLLImportStorageClass())
   3975     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   3976                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   3977   return Result;
   3978 }
   3979 
   3980 /// Convert a TLS address reference into the correct sequence of loads
   3981 /// and calls to compute the variable's address (for Darwin, currently) and
   3982 /// return an SDValue containing the final node.
   3983 
   3984 /// Darwin only has one TLS scheme which must be capable of dealing with the
   3985 /// fully general situation, in the worst case. This means:
   3986 ///     + "extern __thread" declaration.
   3987 ///     + Defined in a possibly unknown dynamic library.
   3988 ///
   3989 /// The general system is that each __thread variable has a [3 x i64] descriptor
   3990 /// which contains information used by the runtime to calculate the address. The
   3991 /// only part of this the compiler needs to know about is the first xword, which
   3992 /// contains a function pointer that must be called with the address of the
   3993 /// entire descriptor in "x0".
   3994 ///
   3995 /// Since this descriptor may be in a different unit, in general even the
   3996 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
   3997 /// is:
   3998 ///     adrp x0, _var@TLVPPAGE
   3999 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
   4000 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
   4001 ///                                      ; the function pointer
   4002 ///     blr x1                           ; Uses descriptor address in x0
   4003 ///     ; Address of _var is now in x0.
   4004 ///
   4005 /// If the address of _var's descriptor *is* known to the linker, then it can
   4006 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
   4007 /// a slight efficiency gain.
   4008 SDValue
   4009 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
   4010                                                    SelectionDAG &DAG) const {
   4011   assert(Subtarget->isTargetDarwin() &&
   4012          "This function expects a Darwin target");
   4013 
   4014   SDLoc DL(Op);
   4015   MVT PtrVT = getPointerTy(DAG.getDataLayout());
   4016   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   4017 
   4018   SDValue TLVPAddr =
   4019       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
   4020   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
   4021 
   4022   // The first entry in the descriptor is a function pointer that we must call
   4023   // to obtain the address of the variable.
   4024   SDValue Chain = DAG.getEntryNode();
   4025   SDValue FuncTLVGet = DAG.getLoad(
   4026       MVT::i64, DL, Chain, DescAddr,
   4027       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   4028       /* Alignment = */ 8,
   4029       MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
   4030           MachineMemOperand::MODereferenceable);
   4031   Chain = FuncTLVGet.getValue(1);
   4032 
   4033   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   4034   MFI.setAdjustsStack(true);
   4035 
   4036   // TLS calls preserve all registers except those that absolutely must be
   4037   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
   4038   // silly).
   4039   const uint32_t *Mask =
   4040       Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
   4041 
   4042   // Finally, we can make the call. This is just a degenerate version of a
   4043   // normal AArch64 call node: x0 takes the address of the descriptor, and
   4044   // returns the address of the variable in this thread.
   4045   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
   4046   Chain =
   4047       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
   4048                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
   4049                   DAG.getRegisterMask(Mask), Chain.getValue(1));
   4050   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
   4051 }
   4052 
   4053 /// When accessing thread-local variables under either the general-dynamic or
   4054 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
   4055 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
   4056 /// is a function pointer to carry out the resolution.
   4057 ///
   4058 /// The sequence is:
   4059 ///    adrp  x0, :tlsdesc:var
   4060 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
   4061 ///    add   x0, x0, #:tlsdesc_lo12:var
   4062 ///    .tlsdesccall var
   4063 ///    blr   x1
   4064 ///    (TPIDR_EL0 offset now in x0)
   4065 ///
   4066 ///  The above sequence must be produced unscheduled, to enable the linker to
   4067 ///  optimize/relax this sequence.
   4068 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
   4069 ///  above sequence, and expanded really late in the compilation flow, to ensure
   4070 ///  the sequence is produced as per above.
   4071 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
   4072                                                       const SDLoc &DL,
   4073                                                       SelectionDAG &DAG) const {
   4074   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   4075 
   4076   SDValue Chain = DAG.getEntryNode();
   4077   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   4078 
   4079   Chain =
   4080       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
   4081   SDValue Glue = Chain.getValue(1);
   4082 
   4083   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
   4084 }
   4085 
   4086 SDValue
   4087 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
   4088                                                 SelectionDAG &DAG) const {
   4089   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
   4090   assert(Subtarget->useSmallAddressing() &&
   4091          "ELF TLS only supported in small memory model");
   4092   // Different choices can be made for the maximum size of the TLS area for a
   4093   // module. For the small address model, the default TLS size is 16MiB and the
   4094   // maximum TLS size is 4GiB.
   4095   // FIXME: add -mtls-size command line option and make it control the 16MiB
   4096   // vs. 4GiB code sequence generation.
   4097   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   4098 
   4099   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
   4100 
   4101   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
   4102     if (Model == TLSModel::LocalDynamic)
   4103       Model = TLSModel::GeneralDynamic;
   4104   }
   4105 
   4106   SDValue TPOff;
   4107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   4108   SDLoc DL(Op);
   4109   const GlobalValue *GV = GA->getGlobal();
   4110 
   4111   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
   4112 
   4113   if (Model == TLSModel::LocalExec) {
   4114     SDValue HiVar = DAG.getTargetGlobalAddress(
   4115         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
   4116     SDValue LoVar = DAG.getTargetGlobalAddress(
   4117         GV, DL, PtrVT, 0,
   4118         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
   4119 
   4120     SDValue TPWithOff_lo =
   4121         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
   4122                                    HiVar,
   4123                                    DAG.getTargetConstant(0, DL, MVT::i32)),
   4124                 0);
   4125     SDValue TPWithOff =
   4126         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
   4127                                    LoVar,
   4128                                    DAG.getTargetConstant(0, DL, MVT::i32)),
   4129                 0);
   4130     return TPWithOff;
   4131   } else if (Model == TLSModel::InitialExec) {
   4132     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
   4133     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
   4134   } else if (Model == TLSModel::LocalDynamic) {
   4135     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
   4136     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
   4137     // the beginning of the module's TLS region, followed by a DTPREL offset
   4138     // calculation.
   4139 
   4140     // These accesses will need deduplicating if there's more than one.
   4141     AArch64FunctionInfo *MFI =
   4142         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
   4143     MFI->incNumLocalDynamicTLSAccesses();
   4144 
   4145     // The call needs a relocation too for linker relaxation. It doesn't make
   4146     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
   4147     // the address.
   4148     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
   4149                                                   AArch64II::MO_TLS);
   4150 
   4151     // Now we can calculate the offset from TPIDR_EL0 to this module's
   4152     // thread-local area.
   4153     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
   4154 
   4155     // Now use :dtprel_whatever: operations to calculate this variable's offset
   4156     // in its thread-storage area.
   4157     SDValue HiVar = DAG.getTargetGlobalAddress(
   4158         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
   4159     SDValue LoVar = DAG.getTargetGlobalAddress(
   4160         GV, DL, MVT::i64, 0,
   4161         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
   4162 
   4163     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
   4164                                        DAG.getTargetConstant(0, DL, MVT::i32)),
   4165                     0);
   4166     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
   4167                                        DAG.getTargetConstant(0, DL, MVT::i32)),
   4168                     0);
   4169   } else if (Model == TLSModel::GeneralDynamic) {
   4170     // The call needs a relocation too for linker relaxation. It doesn't make
   4171     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
   4172     // the address.
   4173     SDValue SymAddr =
   4174         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
   4175 
   4176     // Finally we can make a call to calculate the offset from tpidr_el0.
   4177     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
   4178   } else
   4179     llvm_unreachable("Unsupported ELF TLS access model");
   4180 
   4181   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
   4182 }
   4183 
   4184 SDValue
   4185 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
   4186                                                     SelectionDAG &DAG) const {
   4187   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
   4188 
   4189   SDValue Chain = DAG.getEntryNode();
   4190   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   4191   SDLoc DL(Op);
   4192 
   4193   SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
   4194 
   4195   // Load the ThreadLocalStoragePointer from the TEB
   4196   // A pointer to the TLS array is located at offset 0x58 from the TEB.
   4197   SDValue TLSArray =
   4198       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
   4199   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
   4200   Chain = TLSArray.getValue(1);
   4201 
   4202   // Load the TLS index from the C runtime;
   4203   // This does the same as getAddr(), but without having a GlobalAddressSDNode.
   4204   // This also does the same as LOADgot, but using a generic i32 load,
   4205   // while LOADgot only loads i64.
   4206   SDValue TLSIndexHi =
   4207       DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
   4208   SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
   4209       "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
   4210   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
   4211   SDValue TLSIndex =
   4212       DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
   4213   TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
   4214   Chain = TLSIndex.getValue(1);
   4215 
   4216   // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
   4217   // offset into the TLSArray.
   4218   TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
   4219   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
   4220                              DAG.getConstant(3, DL, PtrVT));
   4221   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
   4222                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
   4223                             MachinePointerInfo());
   4224   Chain = TLS.getValue(1);
   4225 
   4226   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   4227   const GlobalValue *GV = GA->getGlobal();
   4228   SDValue TGAHi = DAG.getTargetGlobalAddress(
   4229       GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
   4230   SDValue TGALo = DAG.getTargetGlobalAddress(
   4231       GV, DL, PtrVT, 0,
   4232       AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
   4233 
   4234   // Add the offset from the start of the .tls section (section base).
   4235   SDValue Addr =
   4236       SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
   4237                                  DAG.getTargetConstant(0, DL, MVT::i32)),
   4238               0);
   4239   Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
   4240   return Addr;
   4241 }
   4242 
   4243 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
   4244                                                      SelectionDAG &DAG) const {
   4245   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   4246   if (DAG.getTarget().useEmulatedTLS())
   4247     return LowerToTLSEmulatedModel(GA, DAG);
   4248 
   4249   if (Subtarget->isTargetDarwin())
   4250     return LowerDarwinGlobalTLSAddress(Op, DAG);
   4251   if (Subtarget->isTargetELF())
   4252     return LowerELFGlobalTLSAddress(Op, DAG);
   4253   if (Subtarget->isTargetWindows())
   4254     return LowerWindowsGlobalTLSAddress(Op, DAG);
   4255 
   4256   llvm_unreachable("Unexpected platform trying to use TLS");
   4257 }
   4258 
   4259 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   4260   SDValue Chain = Op.getOperand(0);
   4261   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   4262   SDValue LHS = Op.getOperand(2);
   4263   SDValue RHS = Op.getOperand(3);
   4264   SDValue Dest = Op.getOperand(4);
   4265   SDLoc dl(Op);
   4266 
   4267   // Handle f128 first, since lowering it will result in comparing the return
   4268   // value of a libcall against zero, which is just what the rest of LowerBR_CC
   4269   // is expecting to deal with.
   4270   if (LHS.getValueType() == MVT::f128) {
   4271     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
   4272 
   4273     // If softenSetCCOperands returned a scalar, we need to compare the result
   4274     // against zero to select between true and false values.
   4275     if (!RHS.getNode()) {
   4276       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   4277       CC = ISD::SETNE;
   4278     }
   4279   }
   4280 
   4281   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
   4282   // instruction.
   4283   if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
   4284       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   4285     // Only lower legal XALUO ops.
   4286     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
   4287       return SDValue();
   4288 
   4289     // The actual operation with overflow check.
   4290     AArch64CC::CondCode OFCC;
   4291     SDValue Value, Overflow;
   4292     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
   4293 
   4294     if (CC == ISD::SETNE)
   4295       OFCC = getInvertedCondCode(OFCC);
   4296     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
   4297 
   4298     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
   4299                        Overflow);
   4300   }
   4301 
   4302   if (LHS.getValueType().isInteger()) {
   4303     assert((LHS.getValueType() == RHS.getValueType()) &&
   4304            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
   4305 
   4306     // If the RHS of the comparison is zero, we can potentially fold this
   4307     // to a specialized branch.
   4308     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
   4309     if (RHSC && RHSC->getZExtValue() == 0) {
   4310       if (CC == ISD::SETEQ) {
   4311         // See if we can use a TBZ to fold in an AND as well.
   4312         // TBZ has a smaller branch displacement than CBZ.  If the offset is
   4313         // out of bounds, a late MI-layer pass rewrites branches.
   4314         // 403.gcc is an example that hits this case.
   4315         if (LHS.getOpcode() == ISD::AND &&
   4316             isa<ConstantSDNode>(LHS.getOperand(1)) &&
   4317             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
   4318           SDValue Test = LHS.getOperand(0);
   4319           uint64_t Mask = LHS.getConstantOperandVal(1);
   4320           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
   4321                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
   4322                              Dest);
   4323         }
   4324 
   4325         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
   4326       } else if (CC == ISD::SETNE) {
   4327         // See if we can use a TBZ to fold in an AND as well.
   4328         // TBZ has a smaller branch displacement than CBZ.  If the offset is
   4329         // out of bounds, a late MI-layer pass rewrites branches.
   4330         // 403.gcc is an example that hits this case.
   4331         if (LHS.getOpcode() == ISD::AND &&
   4332             isa<ConstantSDNode>(LHS.getOperand(1)) &&
   4333             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
   4334           SDValue Test = LHS.getOperand(0);
   4335           uint64_t Mask = LHS.getConstantOperandVal(1);
   4336           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
   4337                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
   4338                              Dest);
   4339         }
   4340 
   4341         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
   4342       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
   4343         // Don't combine AND since emitComparison converts the AND to an ANDS
   4344         // (a.k.a. TST) and the test in the test bit and branch instruction
   4345         // becomes redundant.  This would also increase register pressure.
   4346         uint64_t Mask = LHS.getValueSizeInBits() - 1;
   4347         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
   4348                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
   4349       }
   4350     }
   4351     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
   4352         LHS.getOpcode() != ISD::AND) {
   4353       // Don't combine AND since emitComparison converts the AND to an ANDS
   4354       // (a.k.a. TST) and the test in the test bit and branch instruction
   4355       // becomes redundant.  This would also increase register pressure.
   4356       uint64_t Mask = LHS.getValueSizeInBits() - 1;
   4357       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
   4358                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
   4359     }
   4360 
   4361     SDValue CCVal;
   4362     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
   4363     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
   4364                        Cmp);
   4365   }
   4366 
   4367   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
   4368          LHS.getValueType() == MVT::f64);
   4369 
   4370   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
   4371   // clean.  Some of them require two branches to implement.
   4372   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
   4373   AArch64CC::CondCode CC1, CC2;
   4374   changeFPCCToAArch64CC(CC, CC1, CC2);
   4375   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
   4376   SDValue BR1 =
   4377       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
   4378   if (CC2 != AArch64CC::AL) {
   4379     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
   4380     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
   4381                        Cmp);
   4382   }
   4383 
   4384   return BR1;
   4385 }
   4386 
   4387 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
   4388                                               SelectionDAG &DAG) const {
   4389   EVT VT = Op.getValueType();
   4390   SDLoc DL(Op);
   4391 
   4392   SDValue In1 = Op.getOperand(0);
   4393   SDValue In2 = Op.getOperand(1);
   4394   EVT SrcVT = In2.getValueType();
   4395 
   4396   if (SrcVT.bitsLT(VT))
   4397     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
   4398   else if (SrcVT.bitsGT(VT))
   4399     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
   4400 
   4401   EVT VecVT;
   4402   uint64_t EltMask;
   4403   SDValue VecVal1, VecVal2;
   4404 
   4405   auto setVecVal = [&] (int Idx) {
   4406     if (!VT.isVector()) {
   4407       VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
   4408                                           DAG.getUNDEF(VecVT), In1);
   4409       VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
   4410                                           DAG.getUNDEF(VecVT), In2);
   4411     } else {
   4412       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
   4413       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
   4414     }
   4415   };
   4416 
   4417   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
   4418     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
   4419     EltMask = 0x80000000ULL;
   4420     setVecVal(AArch64::ssub);
   4421   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
   4422     VecVT = MVT::v2i64;
   4423 
   4424     // We want to materialize a mask with the high bit set, but the AdvSIMD
   4425     // immediate moves cannot materialize that in a single instruction for
   4426     // 64-bit elements. Instead, materialize zero and then negate it.
   4427     EltMask = 0;
   4428 
   4429     setVecVal(AArch64::dsub);
   4430   } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
   4431     VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
   4432     EltMask = 0x8000ULL;
   4433     setVecVal(AArch64::hsub);
   4434   } else {
   4435     llvm_unreachable("Invalid type for copysign!");
   4436   }
   4437 
   4438   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
   4439 
   4440   // If we couldn't materialize the mask above, then the mask vector will be
   4441   // the zero vector, and we need to negate it here.
   4442   if (VT == MVT::f64 || VT == MVT::v2f64) {
   4443     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
   4444     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
   4445     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
   4446   }
   4447 
   4448   SDValue Sel =
   4449       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
   4450 
   4451   if (VT == MVT::f16)
   4452     return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
   4453   if (VT == MVT::f32)
   4454     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
   4455   else if (VT == MVT::f64)
   4456     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
   4457   else
   4458     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
   4459 }
   4460 
   4461 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
   4462   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
   4463           Attribute::NoImplicitFloat))
   4464     return SDValue();
   4465 
   4466   if (!Subtarget->hasNEON())
   4467     return SDValue();
   4468 
   4469   // While there is no integer popcount instruction, it can
   4470   // be more efficiently lowered to the following sequence that uses
   4471   // AdvSIMD registers/instructions as long as the copies to/from
   4472   // the AdvSIMD registers are cheap.
   4473   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
   4474   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
   4475   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
   4476   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
   4477   SDValue Val = Op.getOperand(0);
   4478   SDLoc DL(Op);
   4479   EVT VT = Op.getValueType();
   4480 
   4481   if (VT == MVT::i32)
   4482     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
   4483   Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
   4484 
   4485   SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
   4486   SDValue UaddLV = DAG.getNode(
   4487       ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
   4488       DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
   4489 
   4490   if (VT == MVT::i64)
   4491     UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
   4492   return UaddLV;
   4493 }
   4494 
   4495 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   4496 
   4497   if (Op.getValueType().isVector())
   4498     return LowerVSETCC(Op, DAG);
   4499 
   4500   SDValue LHS = Op.getOperand(0);
   4501   SDValue RHS = Op.getOperand(1);
   4502   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   4503   SDLoc dl(Op);
   4504 
   4505   // We chose ZeroOrOneBooleanContents, so use zero and one.
   4506   EVT VT = Op.getValueType();
   4507   SDValue TVal = DAG.getConstant(1, dl, VT);
   4508   SDValue FVal = DAG.getConstant(0, dl, VT);
   4509 
   4510   // Handle f128 first, since one possible outcome is a normal integer
   4511   // comparison which gets picked up by the next if statement.
   4512   if (LHS.getValueType() == MVT::f128) {
   4513     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
   4514 
   4515     // If softenSetCCOperands returned a scalar, use it.
   4516     if (!RHS.getNode()) {
   4517       assert(LHS.getValueType() == Op.getValueType() &&
   4518              "Unexpected setcc expansion!");
   4519       return LHS;
   4520     }
   4521   }
   4522 
   4523   if (LHS.getValueType().isInteger()) {
   4524     SDValue CCVal;
   4525     SDValue Cmp =
   4526         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
   4527 
   4528     // Note that we inverted the condition above, so we reverse the order of
   4529     // the true and false operands here.  This will allow the setcc to be
   4530     // matched to a single CSINC instruction.
   4531     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
   4532   }
   4533 
   4534   // Now we know we're dealing with FP values.
   4535   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
   4536          LHS.getValueType() == MVT::f64);
   4537 
   4538   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
   4539   // and do the comparison.
   4540   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
   4541 
   4542   AArch64CC::CondCode CC1, CC2;
   4543   changeFPCCToAArch64CC(CC, CC1, CC2);
   4544   if (CC2 == AArch64CC::AL) {
   4545     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
   4546     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
   4547 
   4548     // Note that we inverted the condition above, so we reverse the order of
   4549     // the true and false operands here.  This will allow the setcc to be
   4550     // matched to a single CSINC instruction.
   4551     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
   4552   } else {
   4553     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
   4554     // totally clean.  Some of them require two CSELs to implement.  As is in
   4555     // this case, we emit the first CSEL and then emit a second using the output
   4556     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
   4557 
   4558     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
   4559     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
   4560     SDValue CS1 =
   4561         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
   4562 
   4563     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
   4564     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
   4565   }
   4566 }
   4567 
   4568 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
   4569                                               SDValue RHS, SDValue TVal,
   4570                                               SDValue FVal, const SDLoc &dl,
   4571                                               SelectionDAG &DAG) const {
   4572   // Handle f128 first, because it will result in a comparison of some RTLIB
   4573   // call result against zero.
   4574   if (LHS.getValueType() == MVT::f128) {
   4575     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
   4576 
   4577     // If softenSetCCOperands returned a scalar, we need to compare the result
   4578     // against zero to select between true and false values.
   4579     if (!RHS.getNode()) {
   4580       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   4581       CC = ISD::SETNE;
   4582     }
   4583   }
   4584 
   4585   // Also handle f16, for which we need to do a f32 comparison.
   4586   if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
   4587     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
   4588     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
   4589   }
   4590 
   4591   // Next, handle integers.
   4592   if (LHS.getValueType().isInteger()) {
   4593     assert((LHS.getValueType() == RHS.getValueType()) &&
   4594            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
   4595 
   4596     unsigned Opcode = AArch64ISD::CSEL;
   4597 
   4598     // If both the TVal and the FVal are constants, see if we can swap them in
   4599     // order to for a CSINV or CSINC out of them.
   4600     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
   4601     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
   4602 
   4603     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
   4604       std::swap(TVal, FVal);
   4605       std::swap(CTVal, CFVal);
   4606       CC = ISD::getSetCCInverse(CC, true);
   4607     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
   4608       std::swap(TVal, FVal);
   4609       std::swap(CTVal, CFVal);
   4610       CC = ISD::getSetCCInverse(CC, true);
   4611     } else if (TVal.getOpcode() == ISD::XOR) {
   4612       // If TVal is a NOT we want to swap TVal and FVal so that we can match
   4613       // with a CSINV rather than a CSEL.
   4614       if (isAllOnesConstant(TVal.getOperand(1))) {
   4615         std::swap(TVal, FVal);
   4616         std::swap(CTVal, CFVal);
   4617         CC = ISD::getSetCCInverse(CC, true);
   4618       }
   4619     } else if (TVal.getOpcode() == ISD::SUB) {
   4620       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
   4621       // that we can match with a CSNEG rather than a CSEL.
   4622       if (isNullConstant(TVal.getOperand(0))) {
   4623         std::swap(TVal, FVal);
   4624         std::swap(CTVal, CFVal);
   4625         CC = ISD::getSetCCInverse(CC, true);
   4626       }
   4627     } else if (CTVal && CFVal) {
   4628       const int64_t TrueVal = CTVal->getSExtValue();
   4629       const int64_t FalseVal = CFVal->getSExtValue();
   4630       bool Swap = false;
   4631 
   4632       // If both TVal and FVal are constants, see if FVal is the
   4633       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
   4634       // instead of a CSEL in that case.
   4635       if (TrueVal == ~FalseVal) {
   4636         Opcode = AArch64ISD::CSINV;
   4637       } else if (TrueVal == -FalseVal) {
   4638         Opcode = AArch64ISD::CSNEG;
   4639       } else if (TVal.getValueType() == MVT::i32) {
   4640         // If our operands are only 32-bit wide, make sure we use 32-bit
   4641         // arithmetic for the check whether we can use CSINC. This ensures that
   4642         // the addition in the check will wrap around properly in case there is
   4643         // an overflow (which would not be the case if we do the check with
   4644         // 64-bit arithmetic).
   4645         const uint32_t TrueVal32 = CTVal->getZExtValue();
   4646         const uint32_t FalseVal32 = CFVal->getZExtValue();
   4647 
   4648         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
   4649           Opcode = AArch64ISD::CSINC;
   4650 
   4651           if (TrueVal32 > FalseVal32) {
   4652             Swap = true;
   4653           }
   4654         }
   4655         // 64-bit check whether we can use CSINC.
   4656       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
   4657         Opcode = AArch64ISD::CSINC;
   4658 
   4659         if (TrueVal > FalseVal) {
   4660           Swap = true;
   4661         }
   4662       }
   4663 
   4664       // Swap TVal and FVal if necessary.
   4665       if (Swap) {
   4666         std::swap(TVal, FVal);
   4667         std::swap(CTVal, CFVal);
   4668         CC = ISD::getSetCCInverse(CC, true);
   4669       }
   4670 
   4671       if (Opcode != AArch64ISD::CSEL) {
   4672         // Drop FVal since we can get its value by simply inverting/negating
   4673         // TVal.
   4674         FVal = TVal;
   4675       }
   4676     }
   4677 
   4678     // Avoid materializing a constant when possible by reusing a known value in
   4679     // a register.  However, don't perform this optimization if the known value
   4680     // is one, zero or negative one in the case of a CSEL.  We can always
   4681     // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
   4682     // FVal, respectively.
   4683     ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
   4684     if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
   4685         !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
   4686       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
   4687       // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
   4688       // "a != C ? x : a" to avoid materializing C.
   4689       if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
   4690         TVal = LHS;
   4691       else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
   4692         FVal = LHS;
   4693     } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
   4694       assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
   4695       // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
   4696       // avoid materializing C.
   4697       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
   4698       if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
   4699         Opcode = AArch64ISD::CSINV;
   4700         TVal = LHS;
   4701         FVal = DAG.getConstant(0, dl, FVal.getValueType());
   4702       }
   4703     }
   4704 
   4705     SDValue CCVal;
   4706     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
   4707     EVT VT = TVal.getValueType();
   4708     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
   4709   }
   4710 
   4711   // Now we know we're dealing with FP values.
   4712   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
   4713          LHS.getValueType() == MVT::f64);
   4714   assert(LHS.getValueType() == RHS.getValueType());
   4715   EVT VT = TVal.getValueType();
   4716   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
   4717 
   4718   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
   4719   // clean.  Some of them require two CSELs to implement.
   4720   AArch64CC::CondCode CC1, CC2;
   4721   changeFPCCToAArch64CC(CC, CC1, CC2);
   4722 
   4723   if (DAG.getTarget().Options.UnsafeFPMath) {
   4724     // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
   4725     // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
   4726     ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
   4727     if (RHSVal && RHSVal->isZero()) {
   4728       ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
   4729       ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
   4730 
   4731       if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
   4732           CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
   4733         TVal = LHS;
   4734       else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
   4735                CFVal && CFVal->isZero() &&
   4736                FVal.getValueType() == LHS.getValueType())
   4737         FVal = LHS;
   4738     }
   4739   }
   4740 
   4741   // Emit first, and possibly only, CSEL.
   4742   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
   4743   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
   4744 
   4745   // If we need a second CSEL, emit it, using the output of the first as the
   4746   // RHS.  We're effectively OR'ing the two CC's together.
   4747   if (CC2 != AArch64CC::AL) {
   4748     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
   4749     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
   4750   }
   4751 
   4752   // Otherwise, return the output of the first CSEL.
   4753   return CS1;
   4754 }
   4755 
   4756 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
   4757                                               SelectionDAG &DAG) const {
   4758   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4759   SDValue LHS = Op.getOperand(0);
   4760   SDValue RHS = Op.getOperand(1);
   4761   SDValue TVal = Op.getOperand(2);
   4762   SDValue FVal = Op.getOperand(3);
   4763   SDLoc DL(Op);
   4764   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
   4765 }
   4766 
   4767 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
   4768                                            SelectionDAG &DAG) const {
   4769   SDValue CCVal = Op->getOperand(0);
   4770   SDValue TVal = Op->getOperand(1);
   4771   SDValue FVal = Op->getOperand(2);
   4772   SDLoc DL(Op);
   4773 
   4774   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
   4775   // instruction.
   4776   if (isOverflowIntrOpRes(CCVal)) {
   4777     // Only lower legal XALUO ops.
   4778     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
   4779       return SDValue();
   4780 
   4781     AArch64CC::CondCode OFCC;
   4782     SDValue Value, Overflow;
   4783     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
   4784     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
   4785 
   4786     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
   4787                        CCVal, Overflow);
   4788   }
   4789 
   4790   // Lower it the same way as we would lower a SELECT_CC node.
   4791   ISD::CondCode CC;
   4792   SDValue LHS, RHS;
   4793   if (CCVal.getOpcode() == ISD::SETCC) {
   4794     LHS = CCVal.getOperand(0);
   4795     RHS = CCVal.getOperand(1);
   4796     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
   4797   } else {
   4798     LHS = CCVal;
   4799     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
   4800     CC = ISD::SETNE;
   4801   }
   4802   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
   4803 }
   4804 
   4805 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
   4806                                               SelectionDAG &DAG) const {
   4807   // Jump table entries as PC relative offsets. No additional tweaking
   4808   // is necessary here. Just get the address of the jump table.
   4809   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   4810 
   4811   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
   4812       !Subtarget->isTargetMachO()) {
   4813     return getAddrLarge(JT, DAG);
   4814   }
   4815   return getAddr(JT, DAG);
   4816 }
   4817 
   4818 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
   4819                                                  SelectionDAG &DAG) const {
   4820   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   4821 
   4822   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   4823     // Use the GOT for the large code model on iOS.
   4824     if (Subtarget->isTargetMachO()) {
   4825       return getGOT(CP, DAG);
   4826     }
   4827     return getAddrLarge(CP, DAG);
   4828   } else {
   4829     return getAddr(CP, DAG);
   4830   }
   4831 }
   4832 
   4833 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
   4834                                                SelectionDAG &DAG) const {
   4835   BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
   4836   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
   4837       !Subtarget->isTargetMachO()) {
   4838     return getAddrLarge(BA, DAG);
   4839   } else {
   4840     return getAddr(BA, DAG);
   4841   }
   4842 }
   4843 
   4844 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
   4845                                                  SelectionDAG &DAG) const {
   4846   AArch64FunctionInfo *FuncInfo =
   4847       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
   4848 
   4849   SDLoc DL(Op);
   4850   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
   4851                                  getPointerTy(DAG.getDataLayout()));
   4852   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   4853   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   4854                       MachinePointerInfo(SV));
   4855 }
   4856 
   4857 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
   4858                                                   SelectionDAG &DAG) const {
   4859   AArch64FunctionInfo *FuncInfo =
   4860       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
   4861 
   4862   SDLoc DL(Op);
   4863   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
   4864                                      ? FuncInfo->getVarArgsGPRIndex()
   4865                                      : FuncInfo->getVarArgsStackIndex(),
   4866                                  getPointerTy(DAG.getDataLayout()));
   4867   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   4868   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   4869                       MachinePointerInfo(SV));
   4870 }
   4871 
   4872 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
   4873                                                 SelectionDAG &DAG) const {
   4874   // The layout of the va_list struct is specified in the AArch64 Procedure Call
   4875   // Standard, section B.3.
   4876   MachineFunction &MF = DAG.getMachineFunction();
   4877   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
   4878   auto PtrVT = getPointerTy(DAG.getDataLayout());
   4879   SDLoc DL(Op);
   4880 
   4881   SDValue Chain = Op.getOperand(0);
   4882   SDValue VAList = Op.getOperand(1);
   4883   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   4884   SmallVector<SDValue, 4> MemOps;
   4885 
   4886   // void *__stack at offset 0
   4887   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
   4888   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
   4889                                 MachinePointerInfo(SV), /* Alignment = */ 8));
   4890 
   4891   // void *__gr_top at offset 8
   4892   int GPRSize = FuncInfo->getVarArgsGPRSize();
   4893   if (GPRSize > 0) {
   4894     SDValue GRTop, GRTopAddr;
   4895 
   4896     GRTopAddr =
   4897         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
   4898 
   4899     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
   4900     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
   4901                         DAG.getConstant(GPRSize, DL, PtrVT));
   4902 
   4903     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
   4904                                   MachinePointerInfo(SV, 8),
   4905                                   /* Alignment = */ 8));
   4906   }
   4907 
   4908   // void *__vr_top at offset 16
   4909   int FPRSize = FuncInfo->getVarArgsFPRSize();
   4910   if (FPRSize > 0) {
   4911     SDValue VRTop, VRTopAddr;
   4912     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
   4913                             DAG.getConstant(16, DL, PtrVT));
   4914 
   4915     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
   4916     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
   4917                         DAG.getConstant(FPRSize, DL, PtrVT));
   4918 
   4919     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
   4920                                   MachinePointerInfo(SV, 16),
   4921                                   /* Alignment = */ 8));
   4922   }
   4923 
   4924   // int __gr_offs at offset 24
   4925   SDValue GROffsAddr =
   4926       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
   4927   MemOps.push_back(DAG.getStore(
   4928       Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
   4929       MachinePointerInfo(SV, 24), /* Alignment = */ 4));
   4930 
   4931   // int __vr_offs at offset 28
   4932   SDValue VROffsAddr =
   4933       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
   4934   MemOps.push_back(DAG.getStore(
   4935       Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
   4936       MachinePointerInfo(SV, 28), /* Alignment = */ 4));
   4937 
   4938   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   4939 }
   4940 
   4941 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
   4942                                             SelectionDAG &DAG) const {
   4943   MachineFunction &MF = DAG.getMachineFunction();
   4944 
   4945   if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
   4946     return LowerWin64_VASTART(Op, DAG);
   4947   else if (Subtarget->isTargetDarwin())
   4948     return LowerDarwin_VASTART(Op, DAG);
   4949   else
   4950     return LowerAAPCS_VASTART(Op, DAG);
   4951 }
   4952 
   4953 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
   4954                                            SelectionDAG &DAG) const {
   4955   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
   4956   // pointer.
   4957   SDLoc DL(Op);
   4958   unsigned VaListSize =
   4959       Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
   4960   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   4961   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   4962 
   4963   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
   4964                        Op.getOperand(2),
   4965                        DAG.getConstant(VaListSize, DL, MVT::i32),
   4966                        8, false, false, false, MachinePointerInfo(DestSV),
   4967                        MachinePointerInfo(SrcSV));
   4968 }
   4969 
   4970 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   4971   assert(Subtarget->isTargetDarwin() &&
   4972          "automatic va_arg instruction only works on Darwin");
   4973 
   4974   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   4975   EVT VT = Op.getValueType();
   4976   SDLoc DL(Op);
   4977   SDValue Chain = Op.getOperand(0);
   4978   SDValue Addr = Op.getOperand(1);
   4979   unsigned Align = Op.getConstantOperandVal(3);
   4980   auto PtrVT = getPointerTy(DAG.getDataLayout());
   4981 
   4982   SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
   4983   Chain = VAList.getValue(1);
   4984 
   4985   if (Align > 8) {
   4986     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
   4987     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
   4988                          DAG.getConstant(Align - 1, DL, PtrVT));
   4989     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
   4990                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
   4991   }
   4992 
   4993   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   4994   uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
   4995 
   4996   // Scalar integer and FP values smaller than 64 bits are implicitly extended
   4997   // up to 64 bits.  At the very least, we have to increase the striding of the
   4998   // vaargs list to match this, and for FP values we need to introduce
   4999   // FP_ROUND nodes as well.
   5000   if (VT.isInteger() && !VT.isVector())
   5001     ArgSize = 8;
   5002   bool NeedFPTrunc = false;
   5003   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
   5004     ArgSize = 8;
   5005     NeedFPTrunc = true;
   5006   }
   5007 
   5008   // Increment the pointer, VAList, to the next vaarg
   5009   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
   5010                                DAG.getConstant(ArgSize, DL, PtrVT));
   5011   // Store the incremented VAList to the legalized pointer
   5012   SDValue APStore =
   5013       DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
   5014 
   5015   // Load the actual argument out of the pointer VAList
   5016   if (NeedFPTrunc) {
   5017     // Load the value as an f64.
   5018     SDValue WideFP =
   5019         DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
   5020     // Round the value down to an f32.
   5021     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
   5022                                    DAG.getIntPtrConstant(1, DL));
   5023     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
   5024     // Merge the rounded value with the chain output of the load.
   5025     return DAG.getMergeValues(Ops, DL);
   5026   }
   5027 
   5028   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
   5029 }
   5030 
   5031 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
   5032                                               SelectionDAG &DAG) const {
   5033   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   5034   MFI.setFrameAddressIsTaken(true);
   5035 
   5036   EVT VT = Op.getValueType();
   5037   SDLoc DL(Op);
   5038   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5039   SDValue FrameAddr =
   5040       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
   5041   while (Depth--)
   5042     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
   5043                             MachinePointerInfo());
   5044   return FrameAddr;
   5045 }
   5046 
   5047 // FIXME? Maybe this could be a TableGen attribute on some registers and
   5048 // this table could be generated automatically from RegInfo.
   5049 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
   5050                                                   SelectionDAG &DAG) const {
   5051   unsigned Reg = StringSwitch<unsigned>(RegName)
   5052                        .Case("sp", AArch64::SP)
   5053                        .Case("x18", AArch64::X18)
   5054                        .Case("w18", AArch64::W18)
   5055                        .Case("x20", AArch64::X20)
   5056                        .Case("w20", AArch64::W20)
   5057                        .Default(0);
   5058   if (((Reg == AArch64::X18 || Reg == AArch64::W18) &&
   5059       !Subtarget->isX18Reserved()) ||
   5060       ((Reg == AArch64::X20 || Reg == AArch64::W20) &&
   5061       !Subtarget->isX20Reserved()))
   5062     Reg = 0;
   5063   if (Reg)
   5064     return Reg;
   5065   report_fatal_error(Twine("Invalid register name \""
   5066                               + StringRef(RegName)  + "\"."));
   5067 }
   5068 
   5069 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
   5070                                                SelectionDAG &DAG) const {
   5071   MachineFunction &MF = DAG.getMachineFunction();
   5072   MachineFrameInfo &MFI = MF.getFrameInfo();
   5073   MFI.setReturnAddressIsTaken(true);
   5074 
   5075   EVT VT = Op.getValueType();
   5076   SDLoc DL(Op);
   5077   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5078   if (Depth) {
   5079     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   5080     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
   5081     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
   5082                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
   5083                        MachinePointerInfo());
   5084   }
   5085 
   5086   // Return LR, which contains the return address. Mark it an implicit live-in.
   5087   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
   5088   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
   5089 }
   5090 
   5091 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   5092 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
   5093 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
   5094                                                     SelectionDAG &DAG) const {
   5095   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   5096   EVT VT = Op.getValueType();
   5097   unsigned VTBits = VT.getSizeInBits();
   5098   SDLoc dl(Op);
   5099   SDValue ShOpLo = Op.getOperand(0);
   5100   SDValue ShOpHi = Op.getOperand(1);
   5101   SDValue ShAmt = Op.getOperand(2);
   5102   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   5103 
   5104   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   5105 
   5106   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
   5107                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
   5108   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   5109 
   5110   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
   5111   // is "undef". We wanted 0, so CSEL it directly.
   5112   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
   5113                                ISD::SETEQ, dl, DAG);
   5114   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
   5115   HiBitsForLo =
   5116       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
   5117                   HiBitsForLo, CCVal, Cmp);
   5118 
   5119   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
   5120                                    DAG.getConstant(VTBits, dl, MVT::i64));
   5121 
   5122   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   5123   SDValue LoForNormalShift =
   5124       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
   5125 
   5126   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
   5127                        dl, DAG);
   5128   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
   5129   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   5130   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
   5131                            LoForNormalShift, CCVal, Cmp);
   5132 
   5133   // AArch64 shifts larger than the register width are wrapped rather than
   5134   // clamped, so we can't just emit "hi >> x".
   5135   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   5136   SDValue HiForBigShift =
   5137       Opc == ISD::SRA
   5138           ? DAG.getNode(Opc, dl, VT, ShOpHi,
   5139                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
   5140           : DAG.getConstant(0, dl, VT);
   5141   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
   5142                            HiForNormalShift, CCVal, Cmp);
   5143 
   5144   SDValue Ops[2] = { Lo, Hi };
   5145   return DAG.getMergeValues(Ops, dl);
   5146 }
   5147 
   5148 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   5149 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
   5150 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
   5151                                                    SelectionDAG &DAG) const {
   5152   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   5153   EVT VT = Op.getValueType();
   5154   unsigned VTBits = VT.getSizeInBits();
   5155   SDLoc dl(Op);
   5156   SDValue ShOpLo = Op.getOperand(0);
   5157   SDValue ShOpHi = Op.getOperand(1);
   5158   SDValue ShAmt = Op.getOperand(2);
   5159 
   5160   assert(Op.getOpcode() == ISD::SHL_PARTS);
   5161   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
   5162                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
   5163   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   5164 
   5165   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
   5166   // is "undef". We wanted 0, so CSEL it directly.
   5167   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
   5168                                ISD::SETEQ, dl, DAG);
   5169   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
   5170   LoBitsForHi =
   5171       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
   5172                   LoBitsForHi, CCVal, Cmp);
   5173 
   5174   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
   5175                                    DAG.getConstant(VTBits, dl, MVT::i64));
   5176   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   5177   SDValue HiForNormalShift =
   5178       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
   5179 
   5180   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   5181 
   5182   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
   5183                        dl, DAG);
   5184   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
   5185   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
   5186                            HiForNormalShift, CCVal, Cmp);
   5187 
   5188   // AArch64 shifts of larger than register sizes are wrapped rather than
   5189   // clamped, so we can't just emit "lo << a" if a is too big.
   5190   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
   5191   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   5192   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
   5193                            LoForNormalShift, CCVal, Cmp);
   5194 
   5195   SDValue Ops[2] = { Lo, Hi };
   5196   return DAG.getMergeValues(Ops, dl);
   5197 }
   5198 
   5199 bool AArch64TargetLowering::isOffsetFoldingLegal(
   5200     const GlobalAddressSDNode *GA) const {
   5201   // Offsets are folded in the DAG combine rather than here so that we can
   5202   // intelligently choose an offset based on the uses.
   5203   return false;
   5204 }
   5205 
   5206 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   5207   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
   5208   // FIXME: We should be able to handle f128 as well with a clever lowering.
   5209   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 ||
   5210                           (VT == MVT::f16 && Subtarget->hasFullFP16()))) {
   5211     LLVM_DEBUG(
   5212         dbgs() << "Legal fp imm: materialize 0 using the zero register\n");
   5213     return true;
   5214   }
   5215 
   5216   StringRef FPType;
   5217   bool IsLegal = false;
   5218   SmallString<128> ImmStrVal;
   5219   Imm.toString(ImmStrVal);
   5220 
   5221   if (VT == MVT::f64) {
   5222     FPType = "f64";
   5223     IsLegal = AArch64_AM::getFP64Imm(Imm) != -1;
   5224   } else if (VT == MVT::f32) {
   5225     FPType = "f32";
   5226     IsLegal = AArch64_AM::getFP32Imm(Imm) != -1;
   5227   } else if (VT == MVT::f16 && Subtarget->hasFullFP16()) {
   5228     FPType = "f16";
   5229     IsLegal = AArch64_AM::getFP16Imm(Imm) != -1;
   5230   }
   5231 
   5232   if (IsLegal) {
   5233     LLVM_DEBUG(dbgs() << "Legal " << FPType << " imm value: " << ImmStrVal
   5234                       << "\n");
   5235     return true;
   5236   }
   5237 
   5238   if (!FPType.empty())
   5239     LLVM_DEBUG(dbgs() << "Illegal " << FPType << " imm value: " << ImmStrVal
   5240                       << "\n");
   5241   else
   5242     LLVM_DEBUG(dbgs() << "Illegal fp imm " << ImmStrVal
   5243                       << ": unsupported fp type\n");
   5244 
   5245   return false;
   5246 }
   5247 
   5248 //===----------------------------------------------------------------------===//
   5249 //                          AArch64 Optimization Hooks
   5250 //===----------------------------------------------------------------------===//
   5251 
   5252 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
   5253                            SDValue Operand, SelectionDAG &DAG,
   5254                            int &ExtraSteps) {
   5255   EVT VT = Operand.getValueType();
   5256   if (ST->hasNEON() &&
   5257       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
   5258        VT == MVT::f32 || VT == MVT::v1f32 ||
   5259        VT == MVT::v2f32 || VT == MVT::v4f32)) {
   5260     if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
   5261       // For the reciprocal estimates, convergence is quadratic, so the number
   5262       // of digits is doubled after each iteration.  In ARMv8, the accuracy of
   5263       // the initial estimate is 2^-8.  Thus the number of extra steps to refine
   5264       // the result for float (23 mantissa bits) is 2 and for double (52
   5265       // mantissa bits) is 3.
   5266       ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
   5267 
   5268     return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
   5269   }
   5270 
   5271   return SDValue();
   5272 }
   5273 
   5274 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
   5275                                                SelectionDAG &DAG, int Enabled,
   5276                                                int &ExtraSteps,
   5277                                                bool &UseOneConst,
   5278                                                bool Reciprocal) const {
   5279   if (Enabled == ReciprocalEstimate::Enabled ||
   5280       (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
   5281     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
   5282                                        DAG, ExtraSteps)) {
   5283       SDLoc DL(Operand);
   5284       EVT VT = Operand.getValueType();
   5285 
   5286       SDNodeFlags Flags;
   5287       Flags.setAllowReassociation(true);
   5288 
   5289       // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
   5290       // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
   5291       for (int i = ExtraSteps; i > 0; --i) {
   5292         SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
   5293                                    Flags);
   5294         Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
   5295         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
   5296       }
   5297       if (!Reciprocal) {
   5298         EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   5299                                       VT);
   5300         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
   5301         SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
   5302 
   5303         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
   5304         // Correct the result if the operand is 0.0.
   5305         Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
   5306                                VT, Eq, Operand, Estimate);
   5307       }
   5308 
   5309       ExtraSteps = 0;
   5310       return Estimate;
   5311     }
   5312 
   5313   return SDValue();
   5314 }
   5315 
   5316 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
   5317                                                 SelectionDAG &DAG, int Enabled,
   5318                                                 int &ExtraSteps) const {
   5319   if (Enabled == ReciprocalEstimate::Enabled)
   5320     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
   5321                                        DAG, ExtraSteps)) {
   5322       SDLoc DL(Operand);
   5323       EVT VT = Operand.getValueType();
   5324 
   5325       SDNodeFlags Flags;
   5326       Flags.setAllowReassociation(true);
   5327 
   5328       // Newton reciprocal iteration: E * (2 - X * E)
   5329       // AArch64 reciprocal iteration instruction: (2 - M * N)
   5330       for (int i = ExtraSteps; i > 0; --i) {
   5331         SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
   5332                                    Estimate, Flags);
   5333         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
   5334       }
   5335 
   5336       ExtraSteps = 0;
   5337       return Estimate;
   5338     }
   5339 
   5340   return SDValue();
   5341 }
   5342 
   5343 //===----------------------------------------------------------------------===//
   5344 //                          AArch64 Inline Assembly Support
   5345 //===----------------------------------------------------------------------===//
   5346 
   5347 // Table of Constraints
   5348 // TODO: This is the current set of constraints supported by ARM for the
   5349 // compiler, not all of them may make sense.
   5350 //
   5351 // r - A general register
   5352 // w - An FP/SIMD register of some size in the range v0-v31
   5353 // x - An FP/SIMD register of some size in the range v0-v15
   5354 // I - Constant that can be used with an ADD instruction
   5355 // J - Constant that can be used with a SUB instruction
   5356 // K - Constant that can be used with a 32-bit logical instruction
   5357 // L - Constant that can be used with a 64-bit logical instruction
   5358 // M - Constant that can be used as a 32-bit MOV immediate
   5359 // N - Constant that can be used as a 64-bit MOV immediate
   5360 // Q - A memory reference with base register and no offset
   5361 // S - A symbolic address
   5362 // Y - Floating point constant zero
   5363 // Z - Integer constant zero
   5364 //
   5365 //   Note that general register operands will be output using their 64-bit x
   5366 // register name, whatever the size of the variable, unless the asm operand
   5367 // is prefixed by the %w modifier. Floating-point and SIMD register operands
   5368 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
   5369 // %q modifier.
   5370 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
   5371   // At this point, we have to lower this constraint to something else, so we
   5372   // lower it to an "r" or "w". However, by doing this we will force the result
   5373   // to be in register, while the X constraint is much more permissive.
   5374   //
   5375   // Although we are correct (we are free to emit anything, without
   5376   // constraints), we might break use cases that would expect us to be more
   5377   // efficient and emit something else.
   5378   if (!Subtarget->hasFPARMv8())
   5379     return "r";
   5380 
   5381   if (ConstraintVT.isFloatingPoint())
   5382     return "w";
   5383 
   5384   if (ConstraintVT.isVector() &&
   5385      (ConstraintVT.getSizeInBits() == 64 ||
   5386       ConstraintVT.getSizeInBits() == 128))
   5387     return "w";
   5388 
   5389   return "r";
   5390 }
   5391 
   5392 /// getConstraintType - Given a constraint letter, return the type of
   5393 /// constraint it is for this target.
   5394 AArch64TargetLowering::ConstraintType
   5395 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
   5396   if (Constraint.size() == 1) {
   5397     switch (Constraint[0]) {
   5398     default:
   5399       break;
   5400     case 'z':
   5401       return C_Other;
   5402     case 'x':
   5403     case 'w':
   5404       return C_RegisterClass;
   5405     // An address with a single base register. Due to the way we
   5406     // currently handle addresses it is the same as 'r'.
   5407     case 'Q':
   5408       return C_Memory;
   5409     case 'S': // A symbolic address
   5410       return C_Other;
   5411     }
   5412   }
   5413   return TargetLowering::getConstraintType(Constraint);
   5414 }
   5415 
   5416 /// Examine constraint type and operand type and determine a weight value.
   5417 /// This object must already have been set up with the operand type
   5418 /// and the current alternative constraint selected.
   5419 TargetLowering::ConstraintWeight
   5420 AArch64TargetLowering::getSingleConstraintMatchWeight(
   5421     AsmOperandInfo &info, const char *constraint) const {
   5422   ConstraintWeight weight = CW_Invalid;
   5423   Value *CallOperandVal = info.CallOperandVal;
   5424   // If we don't have a value, we can't do a match,
   5425   // but allow it at the lowest weight.
   5426   if (!CallOperandVal)
   5427     return CW_Default;
   5428   Type *type = CallOperandVal->getType();
   5429   // Look at the constraint type.
   5430   switch (*constraint) {
   5431   default:
   5432     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   5433     break;
   5434   case 'x':
   5435   case 'w':
   5436     if (type->isFloatingPointTy() || type->isVectorTy())
   5437       weight = CW_Register;
   5438     break;
   5439   case 'z':
   5440     weight = CW_Constant;
   5441     break;
   5442   }
   5443   return weight;
   5444 }
   5445 
   5446 std::pair<unsigned, const TargetRegisterClass *>
   5447 AArch64TargetLowering::getRegForInlineAsmConstraint(
   5448     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
   5449   if (Constraint.size() == 1) {
   5450     switch (Constraint[0]) {
   5451     case 'r':
   5452       if (VT.getSizeInBits() == 64)
   5453         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
   5454       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
   5455     case 'w':
   5456       if (VT.getSizeInBits() == 16)
   5457         return std::make_pair(0U, &AArch64::FPR16RegClass);
   5458       if (VT.getSizeInBits() == 32)
   5459         return std::make_pair(0U, &AArch64::FPR32RegClass);
   5460       if (VT.getSizeInBits() == 64)
   5461         return std::make_pair(0U, &AArch64::FPR64RegClass);
   5462       if (VT.getSizeInBits() == 128)
   5463         return std::make_pair(0U, &AArch64::FPR128RegClass);
   5464       break;
   5465     // The instructions that this constraint is designed for can
   5466     // only take 128-bit registers so just use that regclass.
   5467     case 'x':
   5468       if (VT.getSizeInBits() == 128)
   5469         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
   5470       break;
   5471     }
   5472   }
   5473   if (StringRef("{cc}").equals_lower(Constraint))
   5474     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
   5475 
   5476   // Use the default implementation in TargetLowering to convert the register
   5477   // constraint into a member of a register class.
   5478   std::pair<unsigned, const TargetRegisterClass *> Res;
   5479   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   5480 
   5481   // Not found as a standard register?
   5482   if (!Res.second) {
   5483     unsigned Size = Constraint.size();
   5484     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
   5485         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
   5486       int RegNo;
   5487       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
   5488       if (!Failed && RegNo >= 0 && RegNo <= 31) {
   5489         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
   5490         // By default we'll emit v0-v31 for this unless there's a modifier where
   5491         // we'll emit the correct register as well.
   5492         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
   5493           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
   5494           Res.second = &AArch64::FPR64RegClass;
   5495         } else {
   5496           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
   5497           Res.second = &AArch64::FPR128RegClass;
   5498         }
   5499       }
   5500     }
   5501   }
   5502 
   5503   return Res;
   5504 }
   5505 
   5506 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   5507 /// vector.  If it is invalid, don't add anything to Ops.
   5508 void AArch64TargetLowering::LowerAsmOperandForConstraint(
   5509     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
   5510     SelectionDAG &DAG) const {
   5511   SDValue Result;
   5512 
   5513   // Currently only support length 1 constraints.
   5514   if (Constraint.length() != 1)
   5515     return;
   5516 
   5517   char ConstraintLetter = Constraint[0];
   5518   switch (ConstraintLetter) {
   5519   default:
   5520     break;
   5521 
   5522   // This set of constraints deal with valid constants for various instructions.
   5523   // Validate and return a target constant for them if we can.
   5524   case 'z': {
   5525     // 'z' maps to xzr or wzr so it needs an input of 0.
   5526     if (!isNullConstant(Op))
   5527       return;
   5528 
   5529     if (Op.getValueType() == MVT::i64)
   5530       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
   5531     else
   5532       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
   5533     break;
   5534   }
   5535   case 'S': {
   5536     // An absolute symbolic address or label reference.
   5537     if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
   5538       Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
   5539                                           GA->getValueType(0));
   5540     } else if (const BlockAddressSDNode *BA =
   5541                    dyn_cast<BlockAddressSDNode>(Op)) {
   5542       Result =
   5543           DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
   5544     } else if (const ExternalSymbolSDNode *ES =
   5545                    dyn_cast<ExternalSymbolSDNode>(Op)) {
   5546       Result =
   5547           DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
   5548     } else
   5549       return;
   5550     break;
   5551   }
   5552 
   5553   case 'I':
   5554   case 'J':
   5555   case 'K':
   5556   case 'L':
   5557   case 'M':
   5558   case 'N':
   5559     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   5560     if (!C)
   5561       return;
   5562 
   5563     // Grab the value and do some validation.
   5564     uint64_t CVal = C->getZExtValue();
   5565     switch (ConstraintLetter) {
   5566     // The I constraint applies only to simple ADD or SUB immediate operands:
   5567     // i.e. 0 to 4095 with optional shift by 12
   5568     // The J constraint applies only to ADD or SUB immediates that would be
   5569     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
   5570     // instruction [or vice versa], in other words -1 to -4095 with optional
   5571     // left shift by 12.
   5572     case 'I':
   5573       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
   5574         break;
   5575       return;
   5576     case 'J': {
   5577       uint64_t NVal = -C->getSExtValue();
   5578       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
   5579         CVal = C->getSExtValue();
   5580         break;
   5581       }
   5582       return;
   5583     }
   5584     // The K and L constraints apply *only* to logical immediates, including
   5585     // what used to be the MOVI alias for ORR (though the MOVI alias has now
   5586     // been removed and MOV should be used). So these constraints have to
   5587     // distinguish between bit patterns that are valid 32-bit or 64-bit
   5588     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
   5589     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
   5590     // versa.
   5591     case 'K':
   5592       if (AArch64_AM::isLogicalImmediate(CVal, 32))
   5593         break;
   5594       return;
   5595     case 'L':
   5596       if (AArch64_AM::isLogicalImmediate(CVal, 64))
   5597         break;
   5598       return;
   5599     // The M and N constraints are a superset of K and L respectively, for use
   5600     // with the MOV (immediate) alias. As well as the logical immediates they
   5601     // also match 32 or 64-bit immediates that can be loaded either using a
   5602     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
   5603     // (M) or 64-bit 0x1234000000000000 (N) etc.
   5604     // As a note some of this code is liberally stolen from the asm parser.
   5605     case 'M': {
   5606       if (!isUInt<32>(CVal))
   5607         return;
   5608       if (AArch64_AM::isLogicalImmediate(CVal, 32))
   5609         break;
   5610       if ((CVal & 0xFFFF) == CVal)
   5611         break;
   5612       if ((CVal & 0xFFFF0000ULL) == CVal)
   5613         break;
   5614       uint64_t NCVal = ~(uint32_t)CVal;
   5615       if ((NCVal & 0xFFFFULL) == NCVal)
   5616         break;
   5617       if ((NCVal & 0xFFFF0000ULL) == NCVal)
   5618         break;
   5619       return;
   5620     }
   5621     case 'N': {
   5622       if (AArch64_AM::isLogicalImmediate(CVal, 64))
   5623         break;
   5624       if ((CVal & 0xFFFFULL) == CVal)
   5625         break;
   5626       if ((CVal & 0xFFFF0000ULL) == CVal)
   5627         break;
   5628       if ((CVal & 0xFFFF00000000ULL) == CVal)
   5629         break;
   5630       if ((CVal & 0xFFFF000000000000ULL) == CVal)
   5631         break;
   5632       uint64_t NCVal = ~CVal;
   5633       if ((NCVal & 0xFFFFULL) == NCVal)
   5634         break;
   5635       if ((NCVal & 0xFFFF0000ULL) == NCVal)
   5636         break;
   5637       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
   5638         break;
   5639       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
   5640         break;
   5641       return;
   5642     }
   5643     default:
   5644       return;
   5645     }
   5646 
   5647     // All assembler immediates are 64-bit integers.
   5648     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
   5649     break;
   5650   }
   5651 
   5652   if (Result.getNode()) {
   5653     Ops.push_back(Result);
   5654     return;
   5655   }
   5656 
   5657   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   5658 }
   5659 
   5660 //===----------------------------------------------------------------------===//
   5661 //                     AArch64 Advanced SIMD Support
   5662 //===----------------------------------------------------------------------===//
   5663 
   5664 /// WidenVector - Given a value in the V64 register class, produce the
   5665 /// equivalent value in the V128 register class.
   5666 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
   5667   EVT VT = V64Reg.getValueType();
   5668   unsigned NarrowSize = VT.getVectorNumElements();
   5669   MVT EltTy = VT.getVectorElementType().getSimpleVT();
   5670   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
   5671   SDLoc DL(V64Reg);
   5672 
   5673   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
   5674                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
   5675 }
   5676 
   5677 /// getExtFactor - Determine the adjustment factor for the position when
   5678 /// generating an "extract from vector registers" instruction.
   5679 static unsigned getExtFactor(SDValue &V) {
   5680   EVT EltType = V.getValueType().getVectorElementType();
   5681   return EltType.getSizeInBits() / 8;
   5682 }
   5683 
   5684 /// NarrowVector - Given a value in the V128 register class, produce the
   5685 /// equivalent value in the V64 register class.
   5686 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
   5687   EVT VT = V128Reg.getValueType();
   5688   unsigned WideSize = VT.getVectorNumElements();
   5689   MVT EltTy = VT.getVectorElementType().getSimpleVT();
   5690   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
   5691   SDLoc DL(V128Reg);
   5692 
   5693   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
   5694 }
   5695 
   5696 // Gather data to see if the operation can be modelled as a
   5697 // shuffle in combination with VEXTs.
   5698 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
   5699                                                   SelectionDAG &DAG) const {
   5700   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
   5701   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
   5702   SDLoc dl(Op);
   5703   EVT VT = Op.getValueType();
   5704   unsigned NumElts = VT.getVectorNumElements();
   5705 
   5706   struct ShuffleSourceInfo {
   5707     SDValue Vec;
   5708     unsigned MinElt;
   5709     unsigned MaxElt;
   5710 
   5711     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
   5712     // be compatible with the shuffle we intend to construct. As a result
   5713     // ShuffleVec will be some sliding window into the original Vec.
   5714     SDValue ShuffleVec;
   5715 
   5716     // Code should guarantee that element i in Vec starts at element "WindowBase
   5717     // + i * WindowScale in ShuffleVec".
   5718     int WindowBase;
   5719     int WindowScale;
   5720 
   5721     ShuffleSourceInfo(SDValue Vec)
   5722       : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
   5723           ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
   5724 
   5725     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
   5726   };
   5727 
   5728   // First gather all vectors used as an immediate source for this BUILD_VECTOR
   5729   // node.
   5730   SmallVector<ShuffleSourceInfo, 2> Sources;
   5731   for (unsigned i = 0; i < NumElts; ++i) {
   5732     SDValue V = Op.getOperand(i);
   5733     if (V.isUndef())
   5734       continue;
   5735     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   5736              !isa<ConstantSDNode>(V.getOperand(1))) {
   5737       LLVM_DEBUG(
   5738           dbgs() << "Reshuffle failed: "
   5739                     "a shuffle can only come from building a vector from "
   5740                     "various elements of other vectors, provided their "
   5741                     "indices are constant\n");
   5742       return SDValue();
   5743     }
   5744 
   5745     // Add this element source to the list if it's not already there.
   5746     SDValue SourceVec = V.getOperand(0);
   5747     auto Source = find(Sources, SourceVec);
   5748     if (Source == Sources.end())
   5749       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
   5750 
   5751     // Update the minimum and maximum lane number seen.
   5752     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   5753     Source->MinElt = std::min(Source->MinElt, EltNo);
   5754     Source->MaxElt = std::max(Source->MaxElt, EltNo);
   5755   }
   5756 
   5757   if (Sources.size() > 2) {
   5758     LLVM_DEBUG(
   5759         dbgs() << "Reshuffle failed: currently only do something sane when at "
   5760                   "most two source vectors are involved\n");
   5761     return SDValue();
   5762   }
   5763 
   5764   // Find out the smallest element size among result and two sources, and use
   5765   // it as element size to build the shuffle_vector.
   5766   EVT SmallestEltTy = VT.getVectorElementType();
   5767   for (auto &Source : Sources) {
   5768     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
   5769     if (SrcEltTy.bitsLT(SmallestEltTy)) {
   5770       SmallestEltTy = SrcEltTy;
   5771     }
   5772   }
   5773   unsigned ResMultiplier =
   5774       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
   5775   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
   5776   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
   5777 
   5778   // If the source vector is too wide or too narrow, we may nevertheless be able
   5779   // to construct a compatible shuffle either by concatenating it with UNDEF or
   5780   // extracting a suitable range of elements.
   5781   for (auto &Src : Sources) {
   5782     EVT SrcVT = Src.ShuffleVec.getValueType();
   5783 
   5784     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
   5785       continue;
   5786 
   5787     // This stage of the search produces a source with the same element type as
   5788     // the original, but with a total width matching the BUILD_VECTOR output.
   5789     EVT EltVT = SrcVT.getVectorElementType();
   5790     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
   5791     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
   5792 
   5793     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
   5794       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
   5795       // We can pad out the smaller vector for free, so if it's part of a
   5796       // shuffle...
   5797       Src.ShuffleVec =
   5798           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
   5799                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
   5800       continue;
   5801     }
   5802 
   5803     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
   5804 
   5805     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
   5806       LLVM_DEBUG(
   5807           dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
   5808       return SDValue();
   5809     }
   5810 
   5811     if (Src.MinElt >= NumSrcElts) {
   5812       // The extraction can just take the second half
   5813       Src.ShuffleVec =
   5814           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5815                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
   5816       Src.WindowBase = -NumSrcElts;
   5817     } else if (Src.MaxElt < NumSrcElts) {
   5818       // The extraction can just take the first half
   5819       Src.ShuffleVec =
   5820           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5821                       DAG.getConstant(0, dl, MVT::i64));
   5822     } else {
   5823       // An actual VEXT is needed
   5824       SDValue VEXTSrc1 =
   5825           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5826                       DAG.getConstant(0, dl, MVT::i64));
   5827       SDValue VEXTSrc2 =
   5828           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5829                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
   5830       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
   5831 
   5832       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
   5833                                    VEXTSrc2,
   5834                                    DAG.getConstant(Imm, dl, MVT::i32));
   5835       Src.WindowBase = -Src.MinElt;
   5836     }
   5837   }
   5838 
   5839   // Another possible incompatibility occurs from the vector element types. We
   5840   // can fix this by bitcasting the source vectors to the same type we intend
   5841   // for the shuffle.
   5842   for (auto &Src : Sources) {
   5843     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
   5844     if (SrcEltTy == SmallestEltTy)
   5845       continue;
   5846     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
   5847     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
   5848     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
   5849     Src.WindowBase *= Src.WindowScale;
   5850   }
   5851 
   5852   // Final sanity check before we try to actually produce a shuffle.
   5853   LLVM_DEBUG(for (auto Src
   5854                   : Sources)
   5855                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
   5856 
   5857   // The stars all align, our next step is to produce the mask for the shuffle.
   5858   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
   5859   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
   5860   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   5861     SDValue Entry = Op.getOperand(i);
   5862     if (Entry.isUndef())
   5863       continue;
   5864 
   5865     auto Src = find(Sources, Entry.getOperand(0));
   5866     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
   5867 
   5868     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
   5869     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
   5870     // segment.
   5871     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
   5872     int BitsDefined =
   5873         std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
   5874     int LanesDefined = BitsDefined / BitsPerShuffleLane;
   5875 
   5876     // This source is expected to fill ResMultiplier lanes of the final shuffle,
   5877     // starting at the appropriate offset.
   5878     int *LaneMask = &Mask[i * ResMultiplier];
   5879 
   5880     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
   5881     ExtractBase += NumElts * (Src - Sources.begin());
   5882     for (int j = 0; j < LanesDefined; ++j)
   5883       LaneMask[j] = ExtractBase + j;
   5884   }
   5885 
   5886   // Final check before we try to produce nonsense...
   5887   if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
   5888     LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
   5889     return SDValue();
   5890   }
   5891 
   5892   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
   5893   for (unsigned i = 0; i < Sources.size(); ++i)
   5894     ShuffleOps[i] = Sources[i].ShuffleVec;
   5895 
   5896   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
   5897                                          ShuffleOps[1], Mask);
   5898   SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   5899 
   5900   LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
   5901              dbgs() << "Reshuffle, creating node: "; V.dump(););
   5902 
   5903   return V;
   5904 }
   5905 
   5906 // check if an EXT instruction can handle the shuffle mask when the
   5907 // vector sources of the shuffle are the same.
   5908 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   5909   unsigned NumElts = VT.getVectorNumElements();
   5910 
   5911   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   5912   if (M[0] < 0)
   5913     return false;
   5914 
   5915   Imm = M[0];
   5916 
   5917   // If this is a VEXT shuffle, the immediate value is the index of the first
   5918   // element.  The other shuffle indices must be the successive elements after
   5919   // the first one.
   5920   unsigned ExpectedElt = Imm;
   5921   for (unsigned i = 1; i < NumElts; ++i) {
   5922     // Increment the expected index.  If it wraps around, just follow it
   5923     // back to index zero and keep going.
   5924     ++ExpectedElt;
   5925     if (ExpectedElt == NumElts)
   5926       ExpectedElt = 0;
   5927 
   5928     if (M[i] < 0)
   5929       continue; // ignore UNDEF indices
   5930     if (ExpectedElt != static_cast<unsigned>(M[i]))
   5931       return false;
   5932   }
   5933 
   5934   return true;
   5935 }
   5936 
   5937 // check if an EXT instruction can handle the shuffle mask when the
   5938 // vector sources of the shuffle are different.
   5939 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
   5940                       unsigned &Imm) {
   5941   // Look for the first non-undef element.
   5942   const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
   5943 
   5944   // Benefit form APInt to handle overflow when calculating expected element.
   5945   unsigned NumElts = VT.getVectorNumElements();
   5946   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
   5947   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
   5948   // The following shuffle indices must be the successive elements after the
   5949   // first real element.
   5950   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
   5951       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
   5952   if (FirstWrongElt != M.end())
   5953     return false;
   5954 
   5955   // The index of an EXT is the first element if it is not UNDEF.
   5956   // Watch out for the beginning UNDEFs. The EXT index should be the expected
   5957   // value of the first element.  E.g.
   5958   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
   5959   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
   5960   // ExpectedElt is the last mask index plus 1.
   5961   Imm = ExpectedElt.getZExtValue();
   5962 
   5963   // There are two difference cases requiring to reverse input vectors.
   5964   // For example, for vector <4 x i32> we have the following cases,
   5965   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
   5966   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
   5967   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
   5968   // to reverse two input vectors.
   5969   if (Imm < NumElts)
   5970     ReverseEXT = true;
   5971   else
   5972     Imm -= NumElts;
   5973 
   5974   return true;
   5975 }
   5976 
   5977 /// isREVMask - Check if a vector shuffle corresponds to a REV
   5978 /// instruction with the specified blocksize.  (The order of the elements
   5979 /// within each block of the vector is reversed.)
   5980 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   5981   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
   5982          "Only possible block sizes for REV are: 16, 32, 64");
   5983 
   5984   unsigned EltSz = VT.getScalarSizeInBits();
   5985   if (EltSz == 64)
   5986     return false;
   5987 
   5988   unsigned NumElts = VT.getVectorNumElements();
   5989   unsigned BlockElts = M[0] + 1;
   5990   // If the first shuffle index is UNDEF, be optimistic.
   5991   if (M[0] < 0)
   5992     BlockElts = BlockSize / EltSz;
   5993 
   5994   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   5995     return false;
   5996 
   5997   for (unsigned i = 0; i < NumElts; ++i) {
   5998     if (M[i] < 0)
   5999       continue; // ignore UNDEF indices
   6000     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
   6001       return false;
   6002   }
   6003 
   6004   return true;
   6005 }
   6006 
   6007 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6008   unsigned NumElts = VT.getVectorNumElements();
   6009   WhichResult = (M[0] == 0 ? 0 : 1);
   6010   unsigned Idx = WhichResult * NumElts / 2;
   6011   for (unsigned i = 0; i != NumElts; i += 2) {
   6012     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
   6013         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
   6014       return false;
   6015     Idx += 1;
   6016   }
   6017 
   6018   return true;
   6019 }
   6020 
   6021 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6022   unsigned NumElts = VT.getVectorNumElements();
   6023   WhichResult = (M[0] == 0 ? 0 : 1);
   6024   for (unsigned i = 0; i != NumElts; ++i) {
   6025     if (M[i] < 0)
   6026       continue; // ignore UNDEF indices
   6027     if ((unsigned)M[i] != 2 * i + WhichResult)
   6028       return false;
   6029   }
   6030 
   6031   return true;
   6032 }
   6033 
   6034 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6035   unsigned NumElts = VT.getVectorNumElements();
   6036   WhichResult = (M[0] == 0 ? 0 : 1);
   6037   for (unsigned i = 0; i < NumElts; i += 2) {
   6038     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
   6039         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
   6040       return false;
   6041   }
   6042   return true;
   6043 }
   6044 
   6045 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
   6046 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6047 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   6048 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6049   unsigned NumElts = VT.getVectorNumElements();
   6050   WhichResult = (M[0] == 0 ? 0 : 1);
   6051   unsigned Idx = WhichResult * NumElts / 2;
   6052   for (unsigned i = 0; i != NumElts; i += 2) {
   6053     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
   6054         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
   6055       return false;
   6056     Idx += 1;
   6057   }
   6058 
   6059   return true;
   6060 }
   6061 
   6062 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
   6063 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6064 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   6065 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6066   unsigned Half = VT.getVectorNumElements() / 2;
   6067   WhichResult = (M[0] == 0 ? 0 : 1);
   6068   for (unsigned j = 0; j != 2; ++j) {
   6069     unsigned Idx = WhichResult;
   6070     for (unsigned i = 0; i != Half; ++i) {
   6071       int MIdx = M[i + j * Half];
   6072       if (MIdx >= 0 && (unsigned)MIdx != Idx)
   6073         return false;
   6074       Idx += 2;
   6075     }
   6076   }
   6077 
   6078   return true;
   6079 }
   6080 
   6081 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
   6082 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6083 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   6084 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6085   unsigned NumElts = VT.getVectorNumElements();
   6086   WhichResult = (M[0] == 0 ? 0 : 1);
   6087   for (unsigned i = 0; i < NumElts; i += 2) {
   6088     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
   6089         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
   6090       return false;
   6091   }
   6092   return true;
   6093 }
   6094 
   6095 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
   6096                       bool &DstIsLeft, int &Anomaly) {
   6097   if (M.size() != static_cast<size_t>(NumInputElements))
   6098     return false;
   6099 
   6100   int NumLHSMatch = 0, NumRHSMatch = 0;
   6101   int LastLHSMismatch = -1, LastRHSMismatch = -1;
   6102 
   6103   for (int i = 0; i < NumInputElements; ++i) {
   6104     if (M[i] == -1) {
   6105       ++NumLHSMatch;
   6106       ++NumRHSMatch;
   6107       continue;
   6108     }
   6109 
   6110     if (M[i] == i)
   6111       ++NumLHSMatch;
   6112     else
   6113       LastLHSMismatch = i;
   6114 
   6115     if (M[i] == i + NumInputElements)
   6116       ++NumRHSMatch;
   6117     else
   6118       LastRHSMismatch = i;
   6119   }
   6120 
   6121   if (NumLHSMatch == NumInputElements - 1) {
   6122     DstIsLeft = true;
   6123     Anomaly = LastLHSMismatch;
   6124     return true;
   6125   } else if (NumRHSMatch == NumInputElements - 1) {
   6126     DstIsLeft = false;
   6127     Anomaly = LastRHSMismatch;
   6128     return true;
   6129   }
   6130 
   6131   return false;
   6132 }
   6133 
   6134 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
   6135   if (VT.getSizeInBits() != 128)
   6136     return false;
   6137 
   6138   unsigned NumElts = VT.getVectorNumElements();
   6139 
   6140   for (int I = 0, E = NumElts / 2; I != E; I++) {
   6141     if (Mask[I] != I)
   6142       return false;
   6143   }
   6144 
   6145   int Offset = NumElts / 2;
   6146   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
   6147     if (Mask[I] != I + SplitLHS * Offset)
   6148       return false;
   6149   }
   6150 
   6151   return true;
   6152 }
   6153 
   6154 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
   6155   SDLoc DL(Op);
   6156   EVT VT = Op.getValueType();
   6157   SDValue V0 = Op.getOperand(0);
   6158   SDValue V1 = Op.getOperand(1);
   6159   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
   6160 
   6161   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
   6162       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
   6163     return SDValue();
   6164 
   6165   bool SplitV0 = V0.getValueSizeInBits() == 128;
   6166 
   6167   if (!isConcatMask(Mask, VT, SplitV0))
   6168     return SDValue();
   6169 
   6170   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
   6171                                 VT.getVectorNumElements() / 2);
   6172   if (SplitV0) {
   6173     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
   6174                      DAG.getConstant(0, DL, MVT::i64));
   6175   }
   6176   if (V1.getValueSizeInBits() == 128) {
   6177     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
   6178                      DAG.getConstant(0, DL, MVT::i64));
   6179   }
   6180   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
   6181 }
   6182 
   6183 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   6184 /// the specified operations to build the shuffle.
   6185 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   6186                                       SDValue RHS, SelectionDAG &DAG,
   6187                                       const SDLoc &dl) {
   6188   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   6189   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
   6190   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
   6191 
   6192   enum {
   6193     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   6194     OP_VREV,
   6195     OP_VDUP0,
   6196     OP_VDUP1,
   6197     OP_VDUP2,
   6198     OP_VDUP3,
   6199     OP_VEXT1,
   6200     OP_VEXT2,
   6201     OP_VEXT3,
   6202     OP_VUZPL, // VUZP, left result
   6203     OP_VUZPR, // VUZP, right result
   6204     OP_VZIPL, // VZIP, left result
   6205     OP_VZIPR, // VZIP, right result
   6206     OP_VTRNL, // VTRN, left result
   6207     OP_VTRNR  // VTRN, right result
   6208   };
   6209 
   6210   if (OpNum == OP_COPY) {
   6211     if (LHSID == (1 * 9 + 2) * 9 + 3)
   6212       return LHS;
   6213     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
   6214     return RHS;
   6215   }
   6216 
   6217   SDValue OpLHS, OpRHS;
   6218   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   6219   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   6220   EVT VT = OpLHS.getValueType();
   6221 
   6222   switch (OpNum) {
   6223   default:
   6224     llvm_unreachable("Unknown shuffle opcode!");
   6225   case OP_VREV:
   6226     // VREV divides the vector in half and swaps within the half.
   6227     if (VT.getVectorElementType() == MVT::i32 ||
   6228         VT.getVectorElementType() == MVT::f32)
   6229       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
   6230     // vrev <4 x i16> -> REV32
   6231     if (VT.getVectorElementType() == MVT::i16 ||
   6232         VT.getVectorElementType() == MVT::f16)
   6233       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
   6234     // vrev <4 x i8> -> REV16
   6235     assert(VT.getVectorElementType() == MVT::i8);
   6236     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
   6237   case OP_VDUP0:
   6238   case OP_VDUP1:
   6239   case OP_VDUP2:
   6240   case OP_VDUP3: {
   6241     EVT EltTy = VT.getVectorElementType();
   6242     unsigned Opcode;
   6243     if (EltTy == MVT::i8)
   6244       Opcode = AArch64ISD::DUPLANE8;
   6245     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
   6246       Opcode = AArch64ISD::DUPLANE16;
   6247     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
   6248       Opcode = AArch64ISD::DUPLANE32;
   6249     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
   6250       Opcode = AArch64ISD::DUPLANE64;
   6251     else
   6252       llvm_unreachable("Invalid vector element type?");
   6253 
   6254     if (VT.getSizeInBits() == 64)
   6255       OpLHS = WidenVector(OpLHS, DAG);
   6256     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
   6257     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
   6258   }
   6259   case OP_VEXT1:
   6260   case OP_VEXT2:
   6261   case OP_VEXT3: {
   6262     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
   6263     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
   6264                        DAG.getConstant(Imm, dl, MVT::i32));
   6265   }
   6266   case OP_VUZPL:
   6267     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
   6268                        OpRHS);
   6269   case OP_VUZPR:
   6270     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
   6271                        OpRHS);
   6272   case OP_VZIPL:
   6273     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
   6274                        OpRHS);
   6275   case OP_VZIPR:
   6276     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
   6277                        OpRHS);
   6278   case OP_VTRNL:
   6279     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
   6280                        OpRHS);
   6281   case OP_VTRNR:
   6282     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
   6283                        OpRHS);
   6284   }
   6285 }
   6286 
   6287 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
   6288                            SelectionDAG &DAG) {
   6289   // Check to see if we can use the TBL instruction.
   6290   SDValue V1 = Op.getOperand(0);
   6291   SDValue V2 = Op.getOperand(1);
   6292   SDLoc DL(Op);
   6293 
   6294   EVT EltVT = Op.getValueType().getVectorElementType();
   6295   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
   6296 
   6297   SmallVector<SDValue, 8> TBLMask;
   6298   for (int Val : ShuffleMask) {
   6299     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
   6300       unsigned Offset = Byte + Val * BytesPerElt;
   6301       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
   6302     }
   6303   }
   6304 
   6305   MVT IndexVT = MVT::v8i8;
   6306   unsigned IndexLen = 8;
   6307   if (Op.getValueSizeInBits() == 128) {
   6308     IndexVT = MVT::v16i8;
   6309     IndexLen = 16;
   6310   }
   6311 
   6312   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
   6313   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
   6314 
   6315   SDValue Shuffle;
   6316   if (V2.getNode()->isUndef()) {
   6317     if (IndexLen == 8)
   6318       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
   6319     Shuffle = DAG.getNode(
   6320         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
   6321         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
   6322         DAG.getBuildVector(IndexVT, DL,
   6323                            makeArrayRef(TBLMask.data(), IndexLen)));
   6324   } else {
   6325     if (IndexLen == 8) {
   6326       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
   6327       Shuffle = DAG.getNode(
   6328           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
   6329           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
   6330           DAG.getBuildVector(IndexVT, DL,
   6331                              makeArrayRef(TBLMask.data(), IndexLen)));
   6332     } else {
   6333       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
   6334       // cannot currently represent the register constraints on the input
   6335       // table registers.
   6336       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
   6337       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
   6338       //                   IndexLen));
   6339       Shuffle = DAG.getNode(
   6340           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
   6341           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
   6342           V2Cst, DAG.getBuildVector(IndexVT, DL,
   6343                                     makeArrayRef(TBLMask.data(), IndexLen)));
   6344     }
   6345   }
   6346   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
   6347 }
   6348 
   6349 static unsigned getDUPLANEOp(EVT EltType) {
   6350   if (EltType == MVT::i8)
   6351     return AArch64ISD::DUPLANE8;
   6352   if (EltType == MVT::i16 || EltType == MVT::f16)
   6353     return AArch64ISD::DUPLANE16;
   6354   if (EltType == MVT::i32 || EltType == MVT::f32)
   6355     return AArch64ISD::DUPLANE32;
   6356   if (EltType == MVT::i64 || EltType == MVT::f64)
   6357     return AArch64ISD::DUPLANE64;
   6358 
   6359   llvm_unreachable("Invalid vector element type?");
   6360 }
   6361 
   6362 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   6363                                                    SelectionDAG &DAG) const {
   6364   SDLoc dl(Op);
   6365   EVT VT = Op.getValueType();
   6366 
   6367   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   6368 
   6369   // Convert shuffles that are directly supported on NEON to target-specific
   6370   // DAG nodes, instead of keeping them as shuffles and matching them again
   6371   // during code selection.  This is more efficient and avoids the possibility
   6372   // of inconsistencies between legalization and selection.
   6373   ArrayRef<int> ShuffleMask = SVN->getMask();
   6374 
   6375   SDValue V1 = Op.getOperand(0);
   6376   SDValue V2 = Op.getOperand(1);
   6377 
   6378   if (SVN->isSplat()) {
   6379     int Lane = SVN->getSplatIndex();
   6380     // If this is undef splat, generate it via "just" vdup, if possible.
   6381     if (Lane == -1)
   6382       Lane = 0;
   6383 
   6384     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6385       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
   6386                          V1.getOperand(0));
   6387     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
   6388     // constant. If so, we can just reference the lane's definition directly.
   6389     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
   6390         !isa<ConstantSDNode>(V1.getOperand(Lane)))
   6391       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
   6392 
   6393     // Otherwise, duplicate from the lane of the input vector.
   6394     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
   6395 
   6396     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
   6397     // to make a vector of the same size as this SHUFFLE. We can ignore the
   6398     // extract entirely, and canonicalise the concat using WidenVector.
   6399     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
   6400       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
   6401       V1 = V1.getOperand(0);
   6402     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
   6403       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
   6404       Lane -= Idx * VT.getVectorNumElements() / 2;
   6405       V1 = WidenVector(V1.getOperand(Idx), DAG);
   6406     } else if (VT.getSizeInBits() == 64)
   6407       V1 = WidenVector(V1, DAG);
   6408 
   6409     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
   6410   }
   6411 
   6412   if (isREVMask(ShuffleMask, VT, 64))
   6413     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
   6414   if (isREVMask(ShuffleMask, VT, 32))
   6415     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
   6416   if (isREVMask(ShuffleMask, VT, 16))
   6417     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
   6418 
   6419   bool ReverseEXT = false;
   6420   unsigned Imm;
   6421   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
   6422     if (ReverseEXT)
   6423       std::swap(V1, V2);
   6424     Imm *= getExtFactor(V1);
   6425     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
   6426                        DAG.getConstant(Imm, dl, MVT::i32));
   6427   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
   6428     Imm *= getExtFactor(V1);
   6429     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
   6430                        DAG.getConstant(Imm, dl, MVT::i32));
   6431   }
   6432 
   6433   unsigned WhichResult;
   6434   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
   6435     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
   6436     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
   6437   }
   6438   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
   6439     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
   6440     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
   6441   }
   6442   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
   6443     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
   6444     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
   6445   }
   6446 
   6447   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
   6448     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
   6449     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
   6450   }
   6451   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
   6452     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
   6453     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
   6454   }
   6455   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
   6456     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
   6457     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
   6458   }
   6459 
   6460   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
   6461     return Concat;
   6462 
   6463   bool DstIsLeft;
   6464   int Anomaly;
   6465   int NumInputElements = V1.getValueType().getVectorNumElements();
   6466   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
   6467     SDValue DstVec = DstIsLeft ? V1 : V2;
   6468     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
   6469 
   6470     SDValue SrcVec = V1;
   6471     int SrcLane = ShuffleMask[Anomaly];
   6472     if (SrcLane >= NumInputElements) {
   6473       SrcVec = V2;
   6474       SrcLane -= VT.getVectorNumElements();
   6475     }
   6476     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
   6477 
   6478     EVT ScalarVT = VT.getVectorElementType();
   6479 
   6480     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
   6481       ScalarVT = MVT::i32;
   6482 
   6483     return DAG.getNode(
   6484         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
   6485         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
   6486         DstLaneV);
   6487   }
   6488 
   6489   // If the shuffle is not directly supported and it has 4 elements, use
   6490   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   6491   unsigned NumElts = VT.getVectorNumElements();
   6492   if (NumElts == 4) {
   6493     unsigned PFIndexes[4];
   6494     for (unsigned i = 0; i != 4; ++i) {
   6495       if (ShuffleMask[i] < 0)
   6496         PFIndexes[i] = 8;
   6497       else
   6498         PFIndexes[i] = ShuffleMask[i];
   6499     }
   6500 
   6501     // Compute the index in the perfect shuffle table.
   6502     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
   6503                             PFIndexes[2] * 9 + PFIndexes[3];
   6504     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   6505     unsigned Cost = (PFEntry >> 30);
   6506 
   6507     if (Cost <= 4)
   6508       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   6509   }
   6510 
   6511   return GenerateTBL(Op, ShuffleMask, DAG);
   6512 }
   6513 
   6514 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
   6515                                APInt &UndefBits) {
   6516   EVT VT = BVN->getValueType(0);
   6517   APInt SplatBits, SplatUndef;
   6518   unsigned SplatBitSize;
   6519   bool HasAnyUndefs;
   6520   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   6521     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
   6522 
   6523     for (unsigned i = 0; i < NumSplats; ++i) {
   6524       CnstBits <<= SplatBitSize;
   6525       UndefBits <<= SplatBitSize;
   6526       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
   6527       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
   6528     }
   6529 
   6530     return true;
   6531   }
   6532 
   6533   return false;
   6534 }
   6535 
   6536 // Try 64-bit splatted SIMD immediate.
   6537 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
   6538                                  const APInt &Bits) {
   6539   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6540     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6541     EVT VT = Op.getValueType();
   6542     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
   6543 
   6544     if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
   6545       Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
   6546 
   6547       SDLoc dl(Op);
   6548       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
   6549                                 DAG.getConstant(Value, dl, MVT::i32));
   6550       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6551     }
   6552   }
   6553 
   6554   return SDValue();
   6555 }
   6556 
   6557 // Try 32-bit splatted SIMD immediate.
   6558 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
   6559                                   const APInt &Bits,
   6560                                   const SDValue *LHS = nullptr) {
   6561   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6562     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6563     EVT VT = Op.getValueType();
   6564     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
   6565     bool isAdvSIMDModImm = false;
   6566     uint64_t Shift;
   6567 
   6568     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
   6569       Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
   6570       Shift = 0;
   6571     }
   6572     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
   6573       Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
   6574       Shift = 8;
   6575     }
   6576     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
   6577       Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
   6578       Shift = 16;
   6579     }
   6580     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
   6581       Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
   6582       Shift = 24;
   6583     }
   6584 
   6585     if (isAdvSIMDModImm) {
   6586       SDLoc dl(Op);
   6587       SDValue Mov;
   6588 
   6589       if (LHS)
   6590         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
   6591                           DAG.getConstant(Value, dl, MVT::i32),
   6592                           DAG.getConstant(Shift, dl, MVT::i32));
   6593       else
   6594         Mov = DAG.getNode(NewOp, dl, MovTy,
   6595                           DAG.getConstant(Value, dl, MVT::i32),
   6596                           DAG.getConstant(Shift, dl, MVT::i32));
   6597 
   6598       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6599     }
   6600   }
   6601 
   6602   return SDValue();
   6603 }
   6604 
   6605 // Try 16-bit splatted SIMD immediate.
   6606 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
   6607                                   const APInt &Bits,
   6608                                   const SDValue *LHS = nullptr) {
   6609   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6610     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6611     EVT VT = Op.getValueType();
   6612     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
   6613     bool isAdvSIMDModImm = false;
   6614     uint64_t Shift;
   6615 
   6616     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
   6617       Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
   6618       Shift = 0;
   6619     }
   6620     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
   6621       Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
   6622       Shift = 8;
   6623     }
   6624 
   6625     if (isAdvSIMDModImm) {
   6626       SDLoc dl(Op);
   6627       SDValue Mov;
   6628 
   6629       if (LHS)
   6630         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
   6631                           DAG.getConstant(Value, dl, MVT::i32),
   6632                           DAG.getConstant(Shift, dl, MVT::i32));
   6633       else
   6634         Mov = DAG.getNode(NewOp, dl, MovTy,
   6635                           DAG.getConstant(Value, dl, MVT::i32),
   6636                           DAG.getConstant(Shift, dl, MVT::i32));
   6637 
   6638       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6639     }
   6640   }
   6641 
   6642   return SDValue();
   6643 }
   6644 
   6645 // Try 32-bit splatted SIMD immediate with shifted ones.
   6646 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
   6647                                     SelectionDAG &DAG, const APInt &Bits) {
   6648   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6649     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6650     EVT VT = Op.getValueType();
   6651     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
   6652     bool isAdvSIMDModImm = false;
   6653     uint64_t Shift;
   6654 
   6655     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
   6656       Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
   6657       Shift = 264;
   6658     }
   6659     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
   6660       Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
   6661       Shift = 272;
   6662     }
   6663 
   6664     if (isAdvSIMDModImm) {
   6665       SDLoc dl(Op);
   6666       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
   6667                                 DAG.getConstant(Value, dl, MVT::i32),
   6668                                 DAG.getConstant(Shift, dl, MVT::i32));
   6669       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6670     }
   6671   }
   6672 
   6673   return SDValue();
   6674 }
   6675 
   6676 // Try 8-bit splatted SIMD immediate.
   6677 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
   6678                                  const APInt &Bits) {
   6679   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6680     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6681     EVT VT = Op.getValueType();
   6682     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
   6683 
   6684     if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
   6685       Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
   6686 
   6687       SDLoc dl(Op);
   6688       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
   6689                                 DAG.getConstant(Value, dl, MVT::i32));
   6690       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6691     }
   6692   }
   6693 
   6694   return SDValue();
   6695 }
   6696 
   6697 // Try FP splatted SIMD immediate.
   6698 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
   6699                                   const APInt &Bits) {
   6700   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
   6701     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
   6702     EVT VT = Op.getValueType();
   6703     bool isWide = (VT.getSizeInBits() == 128);
   6704     MVT MovTy;
   6705     bool isAdvSIMDModImm = false;
   6706 
   6707     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
   6708       Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
   6709       MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
   6710     }
   6711     else if (isWide &&
   6712              (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
   6713       Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
   6714       MovTy = MVT::v2f64;
   6715     }
   6716 
   6717     if (isAdvSIMDModImm) {
   6718       SDLoc dl(Op);
   6719       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
   6720                                 DAG.getConstant(Value, dl, MVT::i32));
   6721       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
   6722     }
   6723   }
   6724 
   6725   return SDValue();
   6726 }
   6727 
   6728 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
   6729                                               SelectionDAG &DAG) const {
   6730   SDValue LHS = Op.getOperand(0);
   6731   EVT VT = Op.getValueType();
   6732 
   6733   BuildVectorSDNode *BVN =
   6734       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
   6735   if (!BVN) {
   6736     // AND commutes, so try swapping the operands.
   6737     LHS = Op.getOperand(1);
   6738     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
   6739   }
   6740   if (!BVN)
   6741     return Op;
   6742 
   6743   APInt DefBits(VT.getSizeInBits(), 0);
   6744   APInt UndefBits(VT.getSizeInBits(), 0);
   6745   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
   6746     SDValue NewOp;
   6747 
   6748     // We only have BIC vector immediate instruction, which is and-not.
   6749     DefBits = ~DefBits;
   6750     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
   6751                                     DefBits, &LHS)) ||
   6752         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
   6753                                     DefBits, &LHS)))
   6754       return NewOp;
   6755 
   6756     UndefBits = ~UndefBits;
   6757     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
   6758                                     UndefBits, &LHS)) ||
   6759         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
   6760                                     UndefBits, &LHS)))
   6761       return NewOp;
   6762   }
   6763 
   6764   // We can always fall back to a non-immediate AND.
   6765   return Op;
   6766 }
   6767 
   6768 // Specialized code to quickly find if PotentialBVec is a BuildVector that
   6769 // consists of only the same constant int value, returned in reference arg
   6770 // ConstVal
   6771 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
   6772                                      uint64_t &ConstVal) {
   6773   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
   6774   if (!Bvec)
   6775     return false;
   6776   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
   6777   if (!FirstElt)
   6778     return false;
   6779   EVT VT = Bvec->getValueType(0);
   6780   unsigned NumElts = VT.getVectorNumElements();
   6781   for (unsigned i = 1; i < NumElts; ++i)
   6782     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
   6783       return false;
   6784   ConstVal = FirstElt->getZExtValue();
   6785   return true;
   6786 }
   6787 
   6788 static unsigned getIntrinsicID(const SDNode *N) {
   6789   unsigned Opcode = N->getOpcode();
   6790   switch (Opcode) {
   6791   default:
   6792     return Intrinsic::not_intrinsic;
   6793   case ISD::INTRINSIC_WO_CHAIN: {
   6794     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   6795     if (IID < Intrinsic::num_intrinsics)
   6796       return IID;
   6797     return Intrinsic::not_intrinsic;
   6798   }
   6799   }
   6800 }
   6801 
   6802 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
   6803 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
   6804 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
   6805 // Also, logical shift right -> sri, with the same structure.
   6806 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
   6807   EVT VT = N->getValueType(0);
   6808 
   6809   if (!VT.isVector())
   6810     return SDValue();
   6811 
   6812   SDLoc DL(N);
   6813 
   6814   // Is the first op an AND?
   6815   const SDValue And = N->getOperand(0);
   6816   if (And.getOpcode() != ISD::AND)
   6817     return SDValue();
   6818 
   6819   // Is the second op an shl or lshr?
   6820   SDValue Shift = N->getOperand(1);
   6821   // This will have been turned into: AArch64ISD::VSHL vector, #shift
   6822   // or AArch64ISD::VLSHR vector, #shift
   6823   unsigned ShiftOpc = Shift.getOpcode();
   6824   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
   6825     return SDValue();
   6826   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
   6827 
   6828   // Is the shift amount constant?
   6829   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
   6830   if (!C2node)
   6831     return SDValue();
   6832 
   6833   // Is the and mask vector all constant?
   6834   uint64_t C1;
   6835   if (!isAllConstantBuildVector(And.getOperand(1), C1))
   6836     return SDValue();
   6837 
   6838   // Is C1 == ~C2, taking into account how much one can shift elements of a
   6839   // particular size?
   6840   uint64_t C2 = C2node->getZExtValue();
   6841   unsigned ElemSizeInBits = VT.getScalarSizeInBits();
   6842   if (C2 > ElemSizeInBits)
   6843     return SDValue();
   6844   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
   6845   if ((C1 & ElemMask) != (~C2 & ElemMask))
   6846     return SDValue();
   6847 
   6848   SDValue X = And.getOperand(0);
   6849   SDValue Y = Shift.getOperand(0);
   6850 
   6851   unsigned Intrin =
   6852       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
   6853   SDValue ResultSLI =
   6854       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   6855                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
   6856                   Shift.getOperand(1));
   6857 
   6858   LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
   6859   LLVM_DEBUG(N->dump(&DAG));
   6860   LLVM_DEBUG(dbgs() << "into: \n");
   6861   LLVM_DEBUG(ResultSLI->dump(&DAG));
   6862 
   6863   ++NumShiftInserts;
   6864   return ResultSLI;
   6865 }
   6866 
   6867 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
   6868                                              SelectionDAG &DAG) const {
   6869   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
   6870   if (EnableAArch64SlrGeneration) {
   6871     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
   6872       return Res;
   6873   }
   6874 
   6875   EVT VT = Op.getValueType();
   6876 
   6877   SDValue LHS = Op.getOperand(0);
   6878   BuildVectorSDNode *BVN =
   6879       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
   6880   if (!BVN) {
   6881     // OR commutes, so try swapping the operands.
   6882     LHS = Op.getOperand(1);
   6883     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
   6884   }
   6885   if (!BVN)
   6886     return Op;
   6887 
   6888   APInt DefBits(VT.getSizeInBits(), 0);
   6889   APInt UndefBits(VT.getSizeInBits(), 0);
   6890   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
   6891     SDValue NewOp;
   6892 
   6893     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
   6894                                     DefBits, &LHS)) ||
   6895         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
   6896                                     DefBits, &LHS)))
   6897       return NewOp;
   6898 
   6899     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
   6900                                     UndefBits, &LHS)) ||
   6901         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
   6902                                     UndefBits, &LHS)))
   6903       return NewOp;
   6904   }
   6905 
   6906   // We can always fall back to a non-immediate OR.
   6907   return Op;
   6908 }
   6909 
   6910 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
   6911 // be truncated to fit element width.
   6912 static SDValue NormalizeBuildVector(SDValue Op,
   6913                                     SelectionDAG &DAG) {
   6914   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
   6915   SDLoc dl(Op);
   6916   EVT VT = Op.getValueType();
   6917   EVT EltTy= VT.getVectorElementType();
   6918 
   6919   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
   6920     return Op;
   6921 
   6922   SmallVector<SDValue, 16> Ops;
   6923   for (SDValue Lane : Op->ops()) {
   6924     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
   6925       APInt LowBits(EltTy.getSizeInBits(),
   6926                     CstLane->getZExtValue());
   6927       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
   6928     }
   6929     Ops.push_back(Lane);
   6930   }
   6931   return DAG.getBuildVector(VT, dl, Ops);
   6932 }
   6933 
   6934 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
   6935   EVT VT = Op.getValueType();
   6936 
   6937   APInt DefBits(VT.getSizeInBits(), 0);
   6938   APInt UndefBits(VT.getSizeInBits(), 0);
   6939   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   6940   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
   6941     SDValue NewOp;
   6942     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
   6943         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
   6944         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
   6945         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
   6946         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
   6947         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
   6948       return NewOp;
   6949 
   6950     DefBits = ~DefBits;
   6951     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
   6952         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
   6953         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
   6954       return NewOp;
   6955 
   6956     DefBits = UndefBits;
   6957     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
   6958         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
   6959         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
   6960         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
   6961         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
   6962         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
   6963       return NewOp;
   6964 
   6965     DefBits = ~UndefBits;
   6966     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
   6967         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
   6968         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
   6969       return NewOp;
   6970   }
   6971 
   6972   return SDValue();
   6973 }
   6974 
   6975 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
   6976                                                  SelectionDAG &DAG) const {
   6977   EVT VT = Op.getValueType();
   6978 
   6979   // Try to build a simple constant vector.
   6980   Op = NormalizeBuildVector(Op, DAG);
   6981   if (VT.isInteger()) {
   6982     // Certain vector constants, used to express things like logical NOT and
   6983     // arithmetic NEG, are passed through unmodified.  This allows special
   6984     // patterns for these operations to match, which will lower these constants
   6985     // to whatever is proven necessary.
   6986     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   6987     if (BVN->isConstant())
   6988       if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
   6989         unsigned BitSize = VT.getVectorElementType().getSizeInBits();
   6990         APInt Val(BitSize,
   6991                   Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
   6992         if (Val.isNullValue() || Val.isAllOnesValue())
   6993           return Op;
   6994       }
   6995   }
   6996 
   6997   if (SDValue V = ConstantBuildVector(Op, DAG))
   6998     return V;
   6999 
   7000   // Scan through the operands to find some interesting properties we can
   7001   // exploit:
   7002   //   1) If only one value is used, we can use a DUP, or
   7003   //   2) if only the low element is not undef, we can just insert that, or
   7004   //   3) if only one constant value is used (w/ some non-constant lanes),
   7005   //      we can splat the constant value into the whole vector then fill
   7006   //      in the non-constant lanes.
   7007   //   4) FIXME: If different constant values are used, but we can intelligently
   7008   //             select the values we'll be overwriting for the non-constant
   7009   //             lanes such that we can directly materialize the vector
   7010   //             some other way (MOVI, e.g.), we can be sneaky.
   7011   //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
   7012   SDLoc dl(Op);
   7013   unsigned NumElts = VT.getVectorNumElements();
   7014   bool isOnlyLowElement = true;
   7015   bool usesOnlyOneValue = true;
   7016   bool usesOnlyOneConstantValue = true;
   7017   bool isConstant = true;
   7018   bool AllLanesExtractElt = true;
   7019   unsigned NumConstantLanes = 0;
   7020   SDValue Value;
   7021   SDValue ConstantValue;
   7022   for (unsigned i = 0; i < NumElts; ++i) {
   7023     SDValue V = Op.getOperand(i);
   7024     if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7025       AllLanesExtractElt = false;
   7026     if (V.isUndef())
   7027       continue;
   7028     if (i > 0)
   7029       isOnlyLowElement = false;
   7030     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   7031       isConstant = false;
   7032 
   7033     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
   7034       ++NumConstantLanes;
   7035       if (!ConstantValue.getNode())
   7036         ConstantValue = V;
   7037       else if (ConstantValue != V)
   7038         usesOnlyOneConstantValue = false;
   7039     }
   7040 
   7041     if (!Value.getNode())
   7042       Value = V;
   7043     else if (V != Value)
   7044       usesOnlyOneValue = false;
   7045   }
   7046 
   7047   if (!Value.getNode()) {
   7048     LLVM_DEBUG(
   7049         dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
   7050     return DAG.getUNDEF(VT);
   7051   }
   7052 
   7053   if (isOnlyLowElement) {
   7054     LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
   7055                          "SCALAR_TO_VECTOR node\n");
   7056     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   7057   }
   7058 
   7059   if (AllLanesExtractElt) {
   7060     SDNode *Vector = nullptr;
   7061     bool Even = false;
   7062     bool Odd = false;
   7063     // Check whether the extract elements match the Even pattern <0,2,4,...> or
   7064     // the Odd pattern <1,3,5,...>.
   7065     for (unsigned i = 0; i < NumElts; ++i) {
   7066       SDValue V = Op.getOperand(i);
   7067       const SDNode *N = V.getNode();
   7068       if (!isa<ConstantSDNode>(N->getOperand(1)))
   7069         break;
   7070       SDValue N0 = N->getOperand(0);
   7071 
   7072       // All elements are extracted from the same vector.
   7073       if (!Vector) {
   7074         Vector = N0.getNode();
   7075         // Check that the type of EXTRACT_VECTOR_ELT matches the type of
   7076         // BUILD_VECTOR.
   7077         if (VT.getVectorElementType() !=
   7078             N0.getValueType().getVectorElementType())
   7079           break;
   7080       } else if (Vector != N0.getNode()) {
   7081         Odd = false;
   7082         Even = false;
   7083         break;
   7084       }
   7085 
   7086       // Extracted values are either at Even indices <0,2,4,...> or at Odd
   7087       // indices <1,3,5,...>.
   7088       uint64_t Val = N->getConstantOperandVal(1);
   7089       if (Val == 2 * i) {
   7090         Even = true;
   7091         continue;
   7092       }
   7093       if (Val - 1 == 2 * i) {
   7094         Odd = true;
   7095         continue;
   7096       }
   7097 
   7098       // Something does not match: abort.
   7099       Odd = false;
   7100       Even = false;
   7101       break;
   7102     }
   7103     if (Even || Odd) {
   7104       SDValue LHS =
   7105           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
   7106                       DAG.getConstant(0, dl, MVT::i64));
   7107       SDValue RHS =
   7108           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
   7109                       DAG.getConstant(NumElts, dl, MVT::i64));
   7110 
   7111       if (Even && !Odd)
   7112         return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
   7113                            RHS);
   7114       if (Odd && !Even)
   7115         return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
   7116                            RHS);
   7117     }
   7118   }
   7119 
   7120   // Use DUP for non-constant splats. For f32 constant splats, reduce to
   7121   // i32 and try again.
   7122   if (usesOnlyOneValue) {
   7123     if (!isConstant) {
   7124       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   7125           Value.getValueType() != VT) {
   7126         LLVM_DEBUG(
   7127             dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
   7128         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
   7129       }
   7130 
   7131       // This is actually a DUPLANExx operation, which keeps everything vectory.
   7132 
   7133       SDValue Lane = Value.getOperand(1);
   7134       Value = Value.getOperand(0);
   7135       if (Value.getValueSizeInBits() == 64) {
   7136         LLVM_DEBUG(
   7137             dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
   7138                       "widening it\n");
   7139         Value = WidenVector(Value, DAG);
   7140       }
   7141 
   7142       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
   7143       return DAG.getNode(Opcode, dl, VT, Value, Lane);
   7144     }
   7145 
   7146     if (VT.getVectorElementType().isFloatingPoint()) {
   7147       SmallVector<SDValue, 8> Ops;
   7148       EVT EltTy = VT.getVectorElementType();
   7149       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
   7150               "Unsupported floating-point vector type");
   7151       LLVM_DEBUG(
   7152           dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
   7153                     "BITCASTS, and try again\n");
   7154       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
   7155       for (unsigned i = 0; i < NumElts; ++i)
   7156         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
   7157       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
   7158       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
   7159       LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
   7160                  Val.dump(););
   7161       Val = LowerBUILD_VECTOR(Val, DAG);
   7162       if (Val.getNode())
   7163         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   7164     }
   7165   }
   7166 
   7167   // If there was only one constant value used and for more than one lane,
   7168   // start by splatting that value, then replace the non-constant lanes. This
   7169   // is better than the default, which will perform a separate initialization
   7170   // for each lane.
   7171   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
   7172     // Firstly, try to materialize the splat constant.
   7173     SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
   7174             Val = ConstantBuildVector(Vec, DAG);
   7175     if (!Val) {
   7176       // Otherwise, materialize the constant and splat it.
   7177       Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
   7178       DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
   7179     }
   7180 
   7181     // Now insert the non-constant lanes.
   7182     for (unsigned i = 0; i < NumElts; ++i) {
   7183       SDValue V = Op.getOperand(i);
   7184       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
   7185       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
   7186         // Note that type legalization likely mucked about with the VT of the
   7187         // source operand, so we may have to convert it here before inserting.
   7188         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
   7189     }
   7190     return Val;
   7191   }
   7192 
   7193   // This will generate a load from the constant pool.
   7194   if (isConstant) {
   7195     LLVM_DEBUG(
   7196         dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
   7197                   "expansion\n");
   7198     return SDValue();
   7199   }
   7200 
   7201   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   7202   if (NumElts >= 4) {
   7203     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
   7204       return shuffle;
   7205   }
   7206 
   7207   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   7208   // know the default expansion would otherwise fall back on something even
   7209   // worse. For a vector with one or two non-undef values, that's
   7210   // scalar_to_vector for the elements followed by a shuffle (provided the
   7211   // shuffle is valid for the target) and materialization element by element
   7212   // on the stack followed by a load for everything else.
   7213   if (!isConstant && !usesOnlyOneValue) {
   7214     LLVM_DEBUG(
   7215         dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
   7216                   "of INSERT_VECTOR_ELT\n");
   7217 
   7218     SDValue Vec = DAG.getUNDEF(VT);
   7219     SDValue Op0 = Op.getOperand(0);
   7220     unsigned i = 0;
   7221 
   7222     // Use SCALAR_TO_VECTOR for lane zero to
   7223     // a) Avoid a RMW dependency on the full vector register, and
   7224     // b) Allow the register coalescer to fold away the copy if the
   7225     //    value is already in an S or D register, and we're forced to emit an
   7226     //    INSERT_SUBREG that we can't fold anywhere.
   7227     //
   7228     // We also allow types like i8 and i16 which are illegal scalar but legal
   7229     // vector element types. After type-legalization the inserted value is
   7230     // extended (i32) and it is safe to cast them to the vector type by ignoring
   7231     // the upper bits of the lowest lane (e.g. v8i8, v4i16).
   7232     if (!Op0.isUndef()) {
   7233       LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
   7234       Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
   7235       ++i;
   7236     }
   7237     LLVM_DEBUG(if (i < NumElts) dbgs()
   7238                    << "Creating nodes for the other vector elements:\n";);
   7239     for (; i < NumElts; ++i) {
   7240       SDValue V = Op.getOperand(i);
   7241       if (V.isUndef())
   7242         continue;
   7243       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
   7244       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   7245     }
   7246     return Vec;
   7247   }
   7248 
   7249   LLVM_DEBUG(
   7250       dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
   7251                 "better alternative\n");
   7252   return SDValue();
   7253 }
   7254 
   7255 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
   7256                                                       SelectionDAG &DAG) const {
   7257   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
   7258 
   7259   // Check for non-constant or out of range lane.
   7260   EVT VT = Op.getOperand(0).getValueType();
   7261   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   7262   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
   7263     return SDValue();
   7264 
   7265 
   7266   // Insertion/extraction are legal for V128 types.
   7267   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
   7268       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
   7269       VT == MVT::v8f16)
   7270     return Op;
   7271 
   7272   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
   7273       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
   7274     return SDValue();
   7275 
   7276   // For V64 types, we perform insertion by expanding the value
   7277   // to a V128 type and perform the insertion on that.
   7278   SDLoc DL(Op);
   7279   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
   7280   EVT WideTy = WideVec.getValueType();
   7281 
   7282   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
   7283                              Op.getOperand(1), Op.getOperand(2));
   7284   // Re-narrow the resultant vector.
   7285   return NarrowVector(Node, DAG);
   7286 }
   7287 
   7288 SDValue
   7289 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   7290                                                SelectionDAG &DAG) const {
   7291   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
   7292 
   7293   // Check for non-constant or out of range lane.
   7294   EVT VT = Op.getOperand(0).getValueType();
   7295   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   7296   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
   7297     return SDValue();
   7298 
   7299 
   7300   // Insertion/extraction are legal for V128 types.
   7301   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
   7302       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
   7303       VT == MVT::v8f16)
   7304     return Op;
   7305 
   7306   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
   7307       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
   7308     return SDValue();
   7309 
   7310   // For V64 types, we perform extraction by expanding the value
   7311   // to a V128 type and perform the extraction on that.
   7312   SDLoc DL(Op);
   7313   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
   7314   EVT WideTy = WideVec.getValueType();
   7315 
   7316   EVT ExtrTy = WideTy.getVectorElementType();
   7317   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
   7318     ExtrTy = MVT::i32;
   7319 
   7320   // For extractions, we just return the result directly.
   7321   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
   7322                      Op.getOperand(1));
   7323 }
   7324 
   7325 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
   7326                                                       SelectionDAG &DAG) const {
   7327   EVT VT = Op.getOperand(0).getValueType();
   7328   SDLoc dl(Op);
   7329   // Just in case...
   7330   if (!VT.isVector())
   7331     return SDValue();
   7332 
   7333   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   7334   if (!Cst)
   7335     return SDValue();
   7336   unsigned Val = Cst->getZExtValue();
   7337 
   7338   unsigned Size = Op.getValueSizeInBits();
   7339 
   7340   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
   7341   if (Val == 0)
   7342     return Op;
   7343 
   7344   // If this is extracting the upper 64-bits of a 128-bit vector, we match
   7345   // that directly.
   7346   if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
   7347     return Op;
   7348 
   7349   return SDValue();
   7350 }
   7351 
   7352 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
   7353   if (VT.getVectorNumElements() == 4 &&
   7354       (VT.is128BitVector() || VT.is64BitVector())) {
   7355     unsigned PFIndexes[4];
   7356     for (unsigned i = 0; i != 4; ++i) {
   7357       if (M[i] < 0)
   7358         PFIndexes[i] = 8;
   7359       else
   7360         PFIndexes[i] = M[i];
   7361     }
   7362 
   7363     // Compute the index in the perfect shuffle table.
   7364     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
   7365                             PFIndexes[2] * 9 + PFIndexes[3];
   7366     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   7367     unsigned Cost = (PFEntry >> 30);
   7368 
   7369     if (Cost <= 4)
   7370       return true;
   7371   }
   7372 
   7373   bool DummyBool;
   7374   int DummyInt;
   7375   unsigned DummyUnsigned;
   7376 
   7377   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
   7378           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
   7379           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
   7380           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
   7381           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
   7382           isZIPMask(M, VT, DummyUnsigned) ||
   7383           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
   7384           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
   7385           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
   7386           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
   7387           isConcatMask(M, VT, VT.getSizeInBits() == 128));
   7388 }
   7389 
   7390 /// getVShiftImm - Check if this is a valid build_vector for the immediate
   7391 /// operand of a vector shift operation, where all the elements of the
   7392 /// build_vector must have the same constant integer value.
   7393 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   7394   // Ignore bit_converts.
   7395   while (Op.getOpcode() == ISD::BITCAST)
   7396     Op = Op.getOperand(0);
   7397   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   7398   APInt SplatBits, SplatUndef;
   7399   unsigned SplatBitSize;
   7400   bool HasAnyUndefs;
   7401   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   7402                                     HasAnyUndefs, ElementBits) ||
   7403       SplatBitSize > ElementBits)
   7404     return false;
   7405   Cnt = SplatBits.getSExtValue();
   7406   return true;
   7407 }
   7408 
   7409 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   7410 /// operand of a vector shift left operation.  That value must be in the range:
   7411 ///   0 <= Value < ElementBits for a left shift; or
   7412 ///   0 <= Value <= ElementBits for a long left shift.
   7413 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   7414   assert(VT.isVector() && "vector shift count is not a vector type");
   7415   int64_t ElementBits = VT.getScalarSizeInBits();
   7416   if (!getVShiftImm(Op, ElementBits, Cnt))
   7417     return false;
   7418   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
   7419 }
   7420 
   7421 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   7422 /// operand of a vector shift right operation. The value must be in the range:
   7423 ///   1 <= Value <= ElementBits for a right shift; or
   7424 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
   7425   assert(VT.isVector() && "vector shift count is not a vector type");
   7426   int64_t ElementBits = VT.getScalarSizeInBits();
   7427   if (!getVShiftImm(Op, ElementBits, Cnt))
   7428     return false;
   7429   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
   7430 }
   7431 
   7432 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
   7433                                                       SelectionDAG &DAG) const {
   7434   EVT VT = Op.getValueType();
   7435   SDLoc DL(Op);
   7436   int64_t Cnt;
   7437 
   7438   if (!Op.getOperand(1).getValueType().isVector())
   7439     return Op;
   7440   unsigned EltSize = VT.getScalarSizeInBits();
   7441 
   7442   switch (Op.getOpcode()) {
   7443   default:
   7444     llvm_unreachable("unexpected shift opcode");
   7445 
   7446   case ISD::SHL:
   7447     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
   7448       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
   7449                          DAG.getConstant(Cnt, DL, MVT::i32));
   7450     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   7451                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
   7452                                        MVT::i32),
   7453                        Op.getOperand(0), Op.getOperand(1));
   7454   case ISD::SRA:
   7455   case ISD::SRL:
   7456     // Right shift immediate
   7457     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
   7458       unsigned Opc =
   7459           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
   7460       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
   7461                          DAG.getConstant(Cnt, DL, MVT::i32));
   7462     }
   7463 
   7464     // Right shift register.  Note, there is not a shift right register
   7465     // instruction, but the shift left register instruction takes a signed
   7466     // value, where negative numbers specify a right shift.
   7467     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
   7468                                                 : Intrinsic::aarch64_neon_ushl;
   7469     // negate the shift amount
   7470     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
   7471     SDValue NegShiftLeft =
   7472         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   7473                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
   7474                     NegShift);
   7475     return NegShiftLeft;
   7476   }
   7477 
   7478   return SDValue();
   7479 }
   7480 
   7481 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
   7482                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
   7483                                     const SDLoc &dl, SelectionDAG &DAG) {
   7484   EVT SrcVT = LHS.getValueType();
   7485   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
   7486          "function only supposed to emit natural comparisons");
   7487 
   7488   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
   7489   APInt CnstBits(VT.getSizeInBits(), 0);
   7490   APInt UndefBits(VT.getSizeInBits(), 0);
   7491   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
   7492   bool IsZero = IsCnst && (CnstBits == 0);
   7493 
   7494   if (SrcVT.getVectorElementType().isFloatingPoint()) {
   7495     switch (CC) {
   7496     default:
   7497       return SDValue();
   7498     case AArch64CC::NE: {
   7499       SDValue Fcmeq;
   7500       if (IsZero)
   7501         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
   7502       else
   7503         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
   7504       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
   7505     }
   7506     case AArch64CC::EQ:
   7507       if (IsZero)
   7508         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
   7509       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
   7510     case AArch64CC::GE:
   7511       if (IsZero)
   7512         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
   7513       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
   7514     case AArch64CC::GT:
   7515       if (IsZero)
   7516         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
   7517       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
   7518     case AArch64CC::LS:
   7519       if (IsZero)
   7520         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
   7521       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
   7522     case AArch64CC::LT:
   7523       if (!NoNans)
   7524         return SDValue();
   7525       // If we ignore NaNs then we can use to the MI implementation.
   7526       LLVM_FALLTHROUGH;
   7527     case AArch64CC::MI:
   7528       if (IsZero)
   7529         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
   7530       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
   7531     }
   7532   }
   7533 
   7534   switch (CC) {
   7535   default:
   7536     return SDValue();
   7537   case AArch64CC::NE: {
   7538     SDValue Cmeq;
   7539     if (IsZero)
   7540       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
   7541     else
   7542       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
   7543     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
   7544   }
   7545   case AArch64CC::EQ:
   7546     if (IsZero)
   7547       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
   7548     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
   7549   case AArch64CC::GE:
   7550     if (IsZero)
   7551       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
   7552     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
   7553   case AArch64CC::GT:
   7554     if (IsZero)
   7555       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
   7556     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
   7557   case AArch64CC::LE:
   7558     if (IsZero)
   7559       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
   7560     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
   7561   case AArch64CC::LS:
   7562     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
   7563   case AArch64CC::LO:
   7564     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
   7565   case AArch64CC::LT:
   7566     if (IsZero)
   7567       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
   7568     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
   7569   case AArch64CC::HI:
   7570     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
   7571   case AArch64CC::HS:
   7572     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
   7573   }
   7574 }
   7575 
   7576 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
   7577                                            SelectionDAG &DAG) const {
   7578   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   7579   SDValue LHS = Op.getOperand(0);
   7580   SDValue RHS = Op.getOperand(1);
   7581   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
   7582   SDLoc dl(Op);
   7583 
   7584   if (LHS.getValueType().getVectorElementType().isInteger()) {
   7585     assert(LHS.getValueType() == RHS.getValueType());
   7586     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
   7587     SDValue Cmp =
   7588         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
   7589     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
   7590   }
   7591 
   7592   const bool FullFP16 =
   7593     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
   7594 
   7595   // Make v4f16 (only) fcmp operations utilise vector instructions
   7596   // v8f16 support will be a litle more complicated
   7597   if (LHS.getValueType().getVectorElementType() == MVT::f16) {
   7598     if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) {
   7599       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
   7600       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
   7601       SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
   7602       DAG.ReplaceAllUsesWith(Op, NewSetcc);
   7603       CmpVT = MVT::v4i32;
   7604     } else
   7605       return SDValue();
   7606   }
   7607 
   7608   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
   7609          LHS.getValueType().getVectorElementType() == MVT::f64);
   7610 
   7611   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
   7612   // clean.  Some of them require two branches to implement.
   7613   AArch64CC::CondCode CC1, CC2;
   7614   bool ShouldInvert;
   7615   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
   7616 
   7617   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
   7618   SDValue Cmp =
   7619       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
   7620   if (!Cmp.getNode())
   7621     return SDValue();
   7622 
   7623   if (CC2 != AArch64CC::AL) {
   7624     SDValue Cmp2 =
   7625         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
   7626     if (!Cmp2.getNode())
   7627       return SDValue();
   7628 
   7629     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
   7630   }
   7631 
   7632   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
   7633 
   7634   if (ShouldInvert)
   7635     return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
   7636 
   7637   return Cmp;
   7638 }
   7639 
   7640 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
   7641                                   SelectionDAG &DAG) {
   7642   SDValue VecOp = ScalarOp.getOperand(0);
   7643   auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
   7644   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
   7645                      DAG.getConstant(0, DL, MVT::i64));
   7646 }
   7647 
   7648 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
   7649                                               SelectionDAG &DAG) const {
   7650   SDLoc dl(Op);
   7651   switch (Op.getOpcode()) {
   7652   case ISD::VECREDUCE_ADD:
   7653     return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
   7654   case ISD::VECREDUCE_SMAX:
   7655     return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
   7656   case ISD::VECREDUCE_SMIN:
   7657     return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
   7658   case ISD::VECREDUCE_UMAX:
   7659     return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
   7660   case ISD::VECREDUCE_UMIN:
   7661     return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
   7662   case ISD::VECREDUCE_FMAX: {
   7663     assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
   7664     return DAG.getNode(
   7665         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
   7666         DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
   7667         Op.getOperand(0));
   7668   }
   7669   case ISD::VECREDUCE_FMIN: {
   7670     assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
   7671     return DAG.getNode(
   7672         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
   7673         DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
   7674         Op.getOperand(0));
   7675   }
   7676   default:
   7677     llvm_unreachable("Unhandled reduction");
   7678   }
   7679 }
   7680 
   7681 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
   7682                                                     SelectionDAG &DAG) const {
   7683   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
   7684   if (!Subtarget.hasLSE())
   7685     return SDValue();
   7686 
   7687   // LSE has an atomic load-add instruction, but not a load-sub.
   7688   SDLoc dl(Op);
   7689   MVT VT = Op.getSimpleValueType();
   7690   SDValue RHS = Op.getOperand(2);
   7691   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
   7692   RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
   7693   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
   7694                        Op.getOperand(0), Op.getOperand(1), RHS,
   7695                        AN->getMemOperand());
   7696 }
   7697 
   7698 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
   7699                                                     SelectionDAG &DAG) const {
   7700   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
   7701   if (!Subtarget.hasLSE())
   7702     return SDValue();
   7703 
   7704   // LSE has an atomic load-clear instruction, but not a load-and.
   7705   SDLoc dl(Op);
   7706   MVT VT = Op.getSimpleValueType();
   7707   SDValue RHS = Op.getOperand(2);
   7708   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
   7709   RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
   7710   return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
   7711                        Op.getOperand(0), Op.getOperand(1), RHS,
   7712                        AN->getMemOperand());
   7713 }
   7714 
   7715 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
   7716     SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
   7717   SDLoc dl(Op);
   7718   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7719   SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
   7720 
   7721   const uint32_t *Mask =
   7722       Subtarget->getRegisterInfo()->getWindowsStackProbePreservedMask();
   7723 
   7724   Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
   7725                      DAG.getConstant(4, dl, MVT::i64));
   7726   Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
   7727   Chain =
   7728       DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
   7729                   Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
   7730                   DAG.getRegisterMask(Mask), Chain.getValue(1));
   7731   // To match the actual intent better, we should read the output from X15 here
   7732   // again (instead of potentially spilling it to the stack), but rereading Size
   7733   // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
   7734   // here.
   7735 
   7736   Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
   7737                      DAG.getConstant(4, dl, MVT::i64));
   7738   return Chain;
   7739 }
   7740 
   7741 SDValue
   7742 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   7743                                                SelectionDAG &DAG) const {
   7744   assert(Subtarget->isTargetWindows() &&
   7745          "Only Windows alloca probing supported");
   7746   SDLoc dl(Op);
   7747   // Get the inputs.
   7748   SDNode *Node = Op.getNode();
   7749   SDValue Chain = Op.getOperand(0);
   7750   SDValue Size = Op.getOperand(1);
   7751   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   7752   EVT VT = Node->getValueType(0);
   7753 
   7754   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
   7755           "no-stack-arg-probe")) {
   7756     SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
   7757     Chain = SP.getValue(1);
   7758     SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
   7759     if (Align)
   7760       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
   7761                        DAG.getConstant(-(uint64_t)Align, dl, VT));
   7762     Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
   7763     SDValue Ops[2] = {SP, Chain};
   7764     return DAG.getMergeValues(Ops, dl);
   7765   }
   7766 
   7767   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
   7768 
   7769   Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
   7770 
   7771   SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
   7772   Chain = SP.getValue(1);
   7773   SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
   7774   if (Align)
   7775     SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
   7776                      DAG.getConstant(-(uint64_t)Align, dl, VT));
   7777   Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
   7778 
   7779   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
   7780                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
   7781 
   7782   SDValue Ops[2] = {SP, Chain};
   7783   return DAG.getMergeValues(Ops, dl);
   7784 }
   7785 
   7786 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   7787 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   7788 /// specified in the intrinsic calls.
   7789 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   7790                                                const CallInst &I,
   7791                                                MachineFunction &MF,
   7792                                                unsigned Intrinsic) const {
   7793   auto &DL = I.getModule()->getDataLayout();
   7794   switch (Intrinsic) {
   7795   case Intrinsic::aarch64_neon_ld2:
   7796   case Intrinsic::aarch64_neon_ld3:
   7797   case Intrinsic::aarch64_neon_ld4:
   7798   case Intrinsic::aarch64_neon_ld1x2:
   7799   case Intrinsic::aarch64_neon_ld1x3:
   7800   case Intrinsic::aarch64_neon_ld1x4:
   7801   case Intrinsic::aarch64_neon_ld2lane:
   7802   case Intrinsic::aarch64_neon_ld3lane:
   7803   case Intrinsic::aarch64_neon_ld4lane:
   7804   case Intrinsic::aarch64_neon_ld2r:
   7805   case Intrinsic::aarch64_neon_ld3r:
   7806   case Intrinsic::aarch64_neon_ld4r: {
   7807     Info.opc = ISD::INTRINSIC_W_CHAIN;
   7808     // Conservatively set memVT to the entire set of vectors loaded.
   7809     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
   7810     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   7811     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
   7812     Info.offset = 0;
   7813     Info.align = 0;
   7814     // volatile loads with NEON intrinsics not supported
   7815     Info.flags = MachineMemOperand::MOLoad;
   7816     return true;
   7817   }
   7818   case Intrinsic::aarch64_neon_st2:
   7819   case Intrinsic::aarch64_neon_st3:
   7820   case Intrinsic::aarch64_neon_st4:
   7821   case Intrinsic::aarch64_neon_st1x2:
   7822   case Intrinsic::aarch64_neon_st1x3:
   7823   case Intrinsic::aarch64_neon_st1x4:
   7824   case Intrinsic::aarch64_neon_st2lane:
   7825   case Intrinsic::aarch64_neon_st3lane:
   7826   case Intrinsic::aarch64_neon_st4lane: {
   7827     Info.opc = ISD::INTRINSIC_VOID;
   7828     // Conservatively set memVT to the entire set of vectors stored.
   7829     unsigned NumElts = 0;
   7830     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   7831       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   7832       if (!ArgTy->isVectorTy())
   7833         break;
   7834       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
   7835     }
   7836     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   7837     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
   7838     Info.offset = 0;
   7839     Info.align = 0;
   7840     // volatile stores with NEON intrinsics not supported
   7841     Info.flags = MachineMemOperand::MOStore;
   7842     return true;
   7843   }
   7844   case Intrinsic::aarch64_ldaxr:
   7845   case Intrinsic::aarch64_ldxr: {
   7846     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   7847     Info.opc = ISD::INTRINSIC_W_CHAIN;
   7848     Info.memVT = MVT::getVT(PtrTy->getElementType());
   7849     Info.ptrVal = I.getArgOperand(0);
   7850     Info.offset = 0;
   7851     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   7852     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
   7853     return true;
   7854   }
   7855   case Intrinsic::aarch64_stlxr:
   7856   case Intrinsic::aarch64_stxr: {
   7857     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   7858     Info.opc = ISD::INTRINSIC_W_CHAIN;
   7859     Info.memVT = MVT::getVT(PtrTy->getElementType());
   7860     Info.ptrVal = I.getArgOperand(1);
   7861     Info.offset = 0;
   7862     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   7863     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
   7864     return true;
   7865   }
   7866   case Intrinsic::aarch64_ldaxp:
   7867   case Intrinsic::aarch64_ldxp:
   7868     Info.opc = ISD::INTRINSIC_W_CHAIN;
   7869     Info.memVT = MVT::i128;
   7870     Info.ptrVal = I.getArgOperand(0);
   7871     Info.offset = 0;
   7872     Info.align = 16;
   7873     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
   7874     return true;
   7875   case Intrinsic::aarch64_stlxp:
   7876   case Intrinsic::aarch64_stxp:
   7877     Info.opc = ISD::INTRINSIC_W_CHAIN;
   7878     Info.memVT = MVT::i128;
   7879     Info.ptrVal = I.getArgOperand(2);
   7880     Info.offset = 0;
   7881     Info.align = 16;
   7882     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
   7883     return true;
   7884   default:
   7885     break;
   7886   }
   7887 
   7888   return false;
   7889 }
   7890 
   7891 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
   7892                                                   ISD::LoadExtType ExtTy,
   7893                                                   EVT NewVT) const {
   7894   // If we're reducing the load width in order to avoid having to use an extra
   7895   // instruction to do extension then it's probably a good idea.
   7896   if (ExtTy != ISD::NON_EXTLOAD)
   7897     return true;
   7898   // Don't reduce load width if it would prevent us from combining a shift into
   7899   // the offset.
   7900   MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
   7901   assert(Mem);
   7902   const SDValue &Base = Mem->getBasePtr();
   7903   if (Base.getOpcode() == ISD::ADD &&
   7904       Base.getOperand(1).getOpcode() == ISD::SHL &&
   7905       Base.getOperand(1).hasOneUse() &&
   7906       Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
   7907     // The shift can be combined if it matches the size of the value being
   7908     // loaded (and so reducing the width would make it not match).
   7909     uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
   7910     uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
   7911     if (ShiftAmount == Log2_32(LoadBytes))
   7912       return false;
   7913   }
   7914   // We have no reason to disallow reducing the load width, so allow it.
   7915   return true;
   7916 }
   7917 
   7918 // Truncations from 64-bit GPR to 32-bit GPR is free.
   7919 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   7920   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   7921     return false;
   7922   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   7923   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   7924   return NumBits1 > NumBits2;
   7925 }
   7926 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   7927   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
   7928     return false;
   7929   unsigned NumBits1 = VT1.getSizeInBits();
   7930   unsigned NumBits2 = VT2.getSizeInBits();
   7931   return NumBits1 > NumBits2;
   7932 }
   7933 
   7934 /// Check if it is profitable to hoist instruction in then/else to if.
   7935 /// Not profitable if I and it's user can form a FMA instruction
   7936 /// because we prefer FMSUB/FMADD.
   7937 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
   7938   if (I->getOpcode() != Instruction::FMul)
   7939     return true;
   7940 
   7941   if (!I->hasOneUse())
   7942     return true;
   7943 
   7944   Instruction *User = I->user_back();
   7945 
   7946   if (User &&
   7947       !(User->getOpcode() == Instruction::FSub ||
   7948         User->getOpcode() == Instruction::FAdd))
   7949     return true;
   7950 
   7951   const TargetOptions &Options = getTargetMachine().Options;
   7952   const DataLayout &DL = I->getModule()->getDataLayout();
   7953   EVT VT = getValueType(DL, User->getOperand(0)->getType());
   7954 
   7955   return !(isFMAFasterThanFMulAndFAdd(VT) &&
   7956            isOperationLegalOrCustom(ISD::FMA, VT) &&
   7957            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
   7958             Options.UnsafeFPMath));
   7959 }
   7960 
   7961 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
   7962 // 64-bit GPR.
   7963 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   7964   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   7965     return false;
   7966   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   7967   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   7968   return NumBits1 == 32 && NumBits2 == 64;
   7969 }
   7970 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   7971   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
   7972     return false;
   7973   unsigned NumBits1 = VT1.getSizeInBits();
   7974   unsigned NumBits2 = VT2.getSizeInBits();
   7975   return NumBits1 == 32 && NumBits2 == 64;
   7976 }
   7977 
   7978 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   7979   EVT VT1 = Val.getValueType();
   7980   if (isZExtFree(VT1, VT2)) {
   7981     return true;
   7982   }
   7983 
   7984   if (Val.getOpcode() != ISD::LOAD)
   7985     return false;
   7986 
   7987   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
   7988   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
   7989           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
   7990           VT1.getSizeInBits() <= 32);
   7991 }
   7992 
   7993 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
   7994   if (isa<FPExtInst>(Ext))
   7995     return false;
   7996 
   7997   // Vector types are not free.
   7998   if (Ext->getType()->isVectorTy())
   7999     return false;
   8000 
   8001   for (const Use &U : Ext->uses()) {
   8002     // The extension is free if we can fold it with a left shift in an
   8003     // addressing mode or an arithmetic operation: add, sub, and cmp.
   8004 
   8005     // Is there a shift?
   8006     const Instruction *Instr = cast<Instruction>(U.getUser());
   8007 
   8008     // Is this a constant shift?
   8009     switch (Instr->getOpcode()) {
   8010     case Instruction::Shl:
   8011       if (!isa<ConstantInt>(Instr->getOperand(1)))
   8012         return false;
   8013       break;
   8014     case Instruction::GetElementPtr: {
   8015       gep_type_iterator GTI = gep_type_begin(Instr);
   8016       auto &DL = Ext->getModule()->getDataLayout();
   8017       std::advance(GTI, U.getOperandNo()-1);
   8018       Type *IdxTy = GTI.getIndexedType();
   8019       // This extension will end up with a shift because of the scaling factor.
   8020       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
   8021       // Get the shift amount based on the scaling factor:
   8022       // log2(sizeof(IdxTy)) - log2(8).
   8023       uint64_t ShiftAmt =
   8024           countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
   8025       // Is the constant foldable in the shift of the addressing mode?
   8026       // I.e., shift amount is between 1 and 4 inclusive.
   8027       if (ShiftAmt == 0 || ShiftAmt > 4)
   8028         return false;
   8029       break;
   8030     }
   8031     case Instruction::Trunc:
   8032       // Check if this is a noop.
   8033       // trunc(sext ty1 to ty2) to ty1.
   8034       if (Instr->getType() == Ext->getOperand(0)->getType())
   8035         continue;
   8036       LLVM_FALLTHROUGH;
   8037     default:
   8038       return false;
   8039     }
   8040 
   8041     // At this point we can use the bfm family, so this extension is free
   8042     // for that use.
   8043   }
   8044   return true;
   8045 }
   8046 
   8047 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
   8048                                           unsigned &RequiredAligment) const {
   8049   if (!LoadedType.isSimple() ||
   8050       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
   8051     return false;
   8052   // Cyclone supports unaligned accesses.
   8053   RequiredAligment = 0;
   8054   unsigned NumBits = LoadedType.getSizeInBits();
   8055   return NumBits == 32 || NumBits == 64;
   8056 }
   8057 
   8058 /// A helper function for determining the number of interleaved accesses we
   8059 /// will generate when lowering accesses of the given type.
   8060 unsigned
   8061 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
   8062                                                  const DataLayout &DL) const {
   8063   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
   8064 }
   8065 
   8066 MachineMemOperand::Flags
   8067 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
   8068   if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
   8069       I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
   8070     return MOStridedAccess;
   8071   return MachineMemOperand::MONone;
   8072 }
   8073 
   8074 bool AArch64TargetLowering::isLegalInterleavedAccessType(
   8075     VectorType *VecTy, const DataLayout &DL) const {
   8076 
   8077   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
   8078   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
   8079 
   8080   // Ensure the number of vector elements is greater than 1.
   8081   if (VecTy->getNumElements() < 2)
   8082     return false;
   8083 
   8084   // Ensure the element type is legal.
   8085   if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
   8086     return false;
   8087 
   8088   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
   8089   // 128 will be split into multiple interleaved accesses.
   8090   return VecSize == 64 || VecSize % 128 == 0;
   8091 }
   8092 
   8093 /// Lower an interleaved load into a ldN intrinsic.
   8094 ///
   8095 /// E.g. Lower an interleaved load (Factor = 2):
   8096 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
   8097 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
   8098 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
   8099 ///
   8100 ///      Into:
   8101 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
   8102 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
   8103 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
   8104 bool AArch64TargetLowering::lowerInterleavedLoad(
   8105     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
   8106     ArrayRef<unsigned> Indices, unsigned Factor) const {
   8107   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   8108          "Invalid interleave factor");
   8109   assert(!Shuffles.empty() && "Empty shufflevector input");
   8110   assert(Shuffles.size() == Indices.size() &&
   8111          "Unmatched number of shufflevectors and indices");
   8112 
   8113   const DataLayout &DL = LI->getModule()->getDataLayout();
   8114 
   8115   VectorType *VecTy = Shuffles[0]->getType();
   8116 
   8117   // Skip if we do not have NEON and skip illegal vector types. We can
   8118   // "legalize" wide vector types into multiple interleaved accesses as long as
   8119   // the vector types are divisible by 128.
   8120   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
   8121     return false;
   8122 
   8123   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
   8124 
   8125   // A pointer vector can not be the return type of the ldN intrinsics. Need to
   8126   // load integer vectors first and then convert to pointer vectors.
   8127   Type *EltTy = VecTy->getVectorElementType();
   8128   if (EltTy->isPointerTy())
   8129     VecTy =
   8130         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
   8131 
   8132   IRBuilder<> Builder(LI);
   8133 
   8134   // The base address of the load.
   8135   Value *BaseAddr = LI->getPointerOperand();
   8136 
   8137   if (NumLoads > 1) {
   8138     // If we're going to generate more than one load, reset the sub-vector type
   8139     // to something legal.
   8140     VecTy = VectorType::get(VecTy->getVectorElementType(),
   8141                             VecTy->getVectorNumElements() / NumLoads);
   8142 
   8143     // We will compute the pointer operand of each load from the original base
   8144     // address using GEPs. Cast the base address to a pointer to the scalar
   8145     // element type.
   8146     BaseAddr = Builder.CreateBitCast(
   8147         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
   8148                       LI->getPointerAddressSpace()));
   8149   }
   8150 
   8151   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
   8152   Type *Tys[2] = {VecTy, PtrTy};
   8153   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
   8154                                             Intrinsic::aarch64_neon_ld3,
   8155                                             Intrinsic::aarch64_neon_ld4};
   8156   Function *LdNFunc =
   8157       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
   8158 
   8159   // Holds sub-vectors extracted from the load intrinsic return values. The
   8160   // sub-vectors are associated with the shufflevector instructions they will
   8161   // replace.
   8162   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
   8163 
   8164   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
   8165 
   8166     // If we're generating more than one load, compute the base address of
   8167     // subsequent loads as an offset from the previous.
   8168     if (LoadCount > 0)
   8169       BaseAddr = Builder.CreateConstGEP1_32(
   8170           BaseAddr, VecTy->getVectorNumElements() * Factor);
   8171 
   8172     CallInst *LdN = Builder.CreateCall(
   8173         LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
   8174 
   8175     // Extract and store the sub-vectors returned by the load intrinsic.
   8176     for (unsigned i = 0; i < Shuffles.size(); i++) {
   8177       ShuffleVectorInst *SVI = Shuffles[i];
   8178       unsigned Index = Indices[i];
   8179 
   8180       Value *SubVec = Builder.CreateExtractValue(LdN, Index);
   8181 
   8182       // Convert the integer vector to pointer vector if the element is pointer.
   8183       if (EltTy->isPointerTy())
   8184         SubVec = Builder.CreateIntToPtr(
   8185             SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
   8186                                     VecTy->getVectorNumElements()));
   8187       SubVecs[SVI].push_back(SubVec);
   8188     }
   8189   }
   8190 
   8191   // Replace uses of the shufflevector instructions with the sub-vectors
   8192   // returned by the load intrinsic. If a shufflevector instruction is
   8193   // associated with more than one sub-vector, those sub-vectors will be
   8194   // concatenated into a single wide vector.
   8195   for (ShuffleVectorInst *SVI : Shuffles) {
   8196     auto &SubVec = SubVecs[SVI];
   8197     auto *WideVec =
   8198         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
   8199     SVI->replaceAllUsesWith(WideVec);
   8200   }
   8201 
   8202   return true;
   8203 }
   8204 
   8205 /// Lower an interleaved store into a stN intrinsic.
   8206 ///
   8207 /// E.g. Lower an interleaved store (Factor = 3):
   8208 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
   8209 ///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
   8210 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
   8211 ///
   8212 ///      Into:
   8213 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
   8214 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
   8215 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
   8216 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
   8217 ///
   8218 /// Note that the new shufflevectors will be removed and we'll only generate one
   8219 /// st3 instruction in CodeGen.
   8220 ///
   8221 /// Example for a more general valid mask (Factor 3). Lower:
   8222 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
   8223 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
   8224 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
   8225 ///
   8226 ///      Into:
   8227 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
   8228 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
   8229 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
   8230 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
   8231 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
   8232                                                   ShuffleVectorInst *SVI,
   8233                                                   unsigned Factor) const {
   8234   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   8235          "Invalid interleave factor");
   8236 
   8237   VectorType *VecTy = SVI->getType();
   8238   assert(VecTy->getVectorNumElements() % Factor == 0 &&
   8239          "Invalid interleaved store");
   8240 
   8241   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
   8242   Type *EltTy = VecTy->getVectorElementType();
   8243   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
   8244 
   8245   const DataLayout &DL = SI->getModule()->getDataLayout();
   8246 
   8247   // Skip if we do not have NEON and skip illegal vector types. We can
   8248   // "legalize" wide vector types into multiple interleaved accesses as long as
   8249   // the vector types are divisible by 128.
   8250   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
   8251     return false;
   8252 
   8253   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
   8254 
   8255   Value *Op0 = SVI->getOperand(0);
   8256   Value *Op1 = SVI->getOperand(1);
   8257   IRBuilder<> Builder(SI);
   8258 
   8259   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
   8260   // vectors to integer vectors.
   8261   if (EltTy->isPointerTy()) {
   8262     Type *IntTy = DL.getIntPtrType(EltTy);
   8263     unsigned NumOpElts = Op0->getType()->getVectorNumElements();
   8264 
   8265     // Convert to the corresponding integer vector.
   8266     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
   8267     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
   8268     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
   8269 
   8270     SubVecTy = VectorType::get(IntTy, LaneLen);
   8271   }
   8272 
   8273   // The base address of the store.
   8274   Value *BaseAddr = SI->getPointerOperand();
   8275 
   8276   if (NumStores > 1) {
   8277     // If we're going to generate more than one store, reset the lane length
   8278     // and sub-vector type to something legal.
   8279     LaneLen /= NumStores;
   8280     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
   8281 
   8282     // We will compute the pointer operand of each store from the original base
   8283     // address using GEPs. Cast the base address to a pointer to the scalar
   8284     // element type.
   8285     BaseAddr = Builder.CreateBitCast(
   8286         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
   8287                       SI->getPointerAddressSpace()));
   8288   }
   8289 
   8290   auto Mask = SVI->getShuffleMask();
   8291 
   8292   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
   8293   Type *Tys[2] = {SubVecTy, PtrTy};
   8294   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
   8295                                              Intrinsic::aarch64_neon_st3,
   8296                                              Intrinsic::aarch64_neon_st4};
   8297   Function *StNFunc =
   8298       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
   8299 
   8300   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
   8301 
   8302     SmallVector<Value *, 5> Ops;
   8303 
   8304     // Split the shufflevector operands into sub vectors for the new stN call.
   8305     for (unsigned i = 0; i < Factor; i++) {
   8306       unsigned IdxI = StoreCount * LaneLen * Factor + i;
   8307       if (Mask[IdxI] >= 0) {
   8308         Ops.push_back(Builder.CreateShuffleVector(
   8309             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
   8310       } else {
   8311         unsigned StartMask = 0;
   8312         for (unsigned j = 1; j < LaneLen; j++) {
   8313           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
   8314           if (Mask[IdxJ * Factor + IdxI] >= 0) {
   8315             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
   8316             break;
   8317           }
   8318         }
   8319         // Note: Filling undef gaps with random elements is ok, since
   8320         // those elements were being written anyway (with undefs).
   8321         // In the case of all undefs we're defaulting to using elems from 0
   8322         // Note: StartMask cannot be negative, it's checked in
   8323         // isReInterleaveMask
   8324         Ops.push_back(Builder.CreateShuffleVector(
   8325             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
   8326       }
   8327     }
   8328 
   8329     // If we generating more than one store, we compute the base address of
   8330     // subsequent stores as an offset from the previous.
   8331     if (StoreCount > 0)
   8332       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
   8333 
   8334     Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
   8335     Builder.CreateCall(StNFunc, Ops);
   8336   }
   8337   return true;
   8338 }
   8339 
   8340 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   8341                        unsigned AlignCheck) {
   8342   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   8343           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   8344 }
   8345 
   8346 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
   8347                                                unsigned SrcAlign, bool IsMemset,
   8348                                                bool ZeroMemset,
   8349                                                bool MemcpyStrSrc,
   8350                                                MachineFunction &MF) const {
   8351   // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
   8352   // instruction to materialize the v2i64 zero and one store (with restrictive
   8353   // addressing mode). Just do two i64 store of zero-registers.
   8354   bool Fast;
   8355   const Function &F = MF.getFunction();
   8356   if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
   8357       !F.hasFnAttribute(Attribute::NoImplicitFloat) &&
   8358       (memOpAlign(SrcAlign, DstAlign, 16) ||
   8359        (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
   8360     return MVT::f128;
   8361 
   8362   if (Size >= 8 &&
   8363       (memOpAlign(SrcAlign, DstAlign, 8) ||
   8364        (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
   8365     return MVT::i64;
   8366 
   8367   if (Size >= 4 &&
   8368       (memOpAlign(SrcAlign, DstAlign, 4) ||
   8369        (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
   8370     return MVT::i32;
   8371 
   8372   return MVT::Other;
   8373 }
   8374 
   8375 // 12-bit optionally shifted immediates are legal for adds.
   8376 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
   8377   if (Immed == std::numeric_limits<int64_t>::min()) {
   8378     LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
   8379                       << ": avoid UB for INT64_MIN\n");
   8380     return false;
   8381   }
   8382   // Same encoding for add/sub, just flip the sign.
   8383   Immed = std::abs(Immed);
   8384   bool IsLegal = ((Immed >> 12) == 0 ||
   8385                   ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
   8386   LLVM_DEBUG(dbgs() << "Is " << Immed
   8387                     << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
   8388   return IsLegal;
   8389 }
   8390 
   8391 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
   8392 // immediates is the same as for an add or a sub.
   8393 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
   8394   return isLegalAddImmediate(Immed);
   8395 }
   8396 
   8397 /// isLegalAddressingMode - Return true if the addressing mode represented
   8398 /// by AM is legal for this target, for a load/store of the specified type.
   8399 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
   8400                                                   const AddrMode &AM, Type *Ty,
   8401                                                   unsigned AS, Instruction *I) const {
   8402   // AArch64 has five basic addressing modes:
   8403   //  reg
   8404   //  reg + 9-bit signed offset
   8405   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
   8406   //  reg1 + reg2
   8407   //  reg + SIZE_IN_BYTES * reg
   8408 
   8409   // No global is ever allowed as a base.
   8410   if (AM.BaseGV)
   8411     return false;
   8412 
   8413   // No reg+reg+imm addressing.
   8414   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
   8415     return false;
   8416 
   8417   // check reg + imm case:
   8418   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
   8419   uint64_t NumBytes = 0;
   8420   if (Ty->isSized()) {
   8421     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
   8422     NumBytes = NumBits / 8;
   8423     if (!isPowerOf2_64(NumBits))
   8424       NumBytes = 0;
   8425   }
   8426 
   8427   if (!AM.Scale) {
   8428     int64_t Offset = AM.BaseOffs;
   8429 
   8430     // 9-bit signed offset
   8431     if (isInt<9>(Offset))
   8432       return true;
   8433 
   8434     // 12-bit unsigned offset
   8435     unsigned shift = Log2_64(NumBytes);
   8436     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
   8437         // Must be a multiple of NumBytes (NumBytes is a power of 2)
   8438         (Offset >> shift) << shift == Offset)
   8439       return true;
   8440     return false;
   8441   }
   8442 
   8443   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
   8444 
   8445   return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
   8446 }
   8447 
   8448 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
   8449   // Consider splitting large offset of struct or array.
   8450   return true;
   8451 }
   8452 
   8453 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
   8454                                                 const AddrMode &AM, Type *Ty,
   8455                                                 unsigned AS) const {
   8456   // Scaling factors are not free at all.
   8457   // Operands                     | Rt Latency
   8458   // -------------------------------------------
   8459   // Rt, [Xn, Xm]                 | 4
   8460   // -------------------------------------------
   8461   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
   8462   // Rt, [Xn, Wm, <extend> #imm]  |
   8463   if (isLegalAddressingMode(DL, AM, Ty, AS))
   8464     // Scale represents reg2 * scale, thus account for 1 if
   8465     // it is not equal to 0 or 1.
   8466     return AM.Scale != 0 && AM.Scale != 1;
   8467   return -1;
   8468 }
   8469 
   8470 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   8471   VT = VT.getScalarType();
   8472 
   8473   if (!VT.isSimple())
   8474     return false;
   8475 
   8476   switch (VT.getSimpleVT().SimpleTy) {
   8477   case MVT::f32:
   8478   case MVT::f64:
   8479     return true;
   8480   default:
   8481     break;
   8482   }
   8483 
   8484   return false;
   8485 }
   8486 
   8487 const MCPhysReg *
   8488 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
   8489   // LR is a callee-save register, but we must treat it as clobbered by any call
   8490   // site. Hence we include LR in the scratch registers, which are in turn added
   8491   // as implicit-defs for stackmaps and patchpoints.
   8492   static const MCPhysReg ScratchRegs[] = {
   8493     AArch64::X16, AArch64::X17, AArch64::LR, 0
   8494   };
   8495   return ScratchRegs;
   8496 }
   8497 
   8498 bool
   8499 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
   8500   EVT VT = N->getValueType(0);
   8501     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
   8502     // it with shift to let it be lowered to UBFX.
   8503   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
   8504       isa<ConstantSDNode>(N->getOperand(1))) {
   8505     uint64_t TruncMask = N->getConstantOperandVal(1);
   8506     if (isMask_64(TruncMask) &&
   8507       N->getOperand(0).getOpcode() == ISD::SRL &&
   8508       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
   8509       return false;
   8510   }
   8511   return true;
   8512 }
   8513 
   8514 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   8515                                                               Type *Ty) const {
   8516   assert(Ty->isIntegerTy());
   8517 
   8518   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   8519   if (BitSize == 0)
   8520     return false;
   8521 
   8522   int64_t Val = Imm.getSExtValue();
   8523   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
   8524     return true;
   8525 
   8526   if ((int64_t)Val < 0)
   8527     Val = ~Val;
   8528   if (BitSize == 32)
   8529     Val &= (1LL << 32) - 1;
   8530 
   8531   unsigned LZ = countLeadingZeros((uint64_t)Val);
   8532   unsigned Shift = (63 - LZ) / 16;
   8533   // MOVZ is free so return true for one or fewer MOVK.
   8534   return Shift < 3;
   8535 }
   8536 
   8537 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
   8538                                                     unsigned Index) const {
   8539   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
   8540     return false;
   8541 
   8542   return (Index == 0 || Index == ResVT.getVectorNumElements());
   8543 }
   8544 
   8545 /// Turn vector tests of the signbit in the form of:
   8546 ///   xor (sra X, elt_size(X)-1), -1
   8547 /// into:
   8548 ///   cmge X, X, #0
   8549 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
   8550                                          const AArch64Subtarget *Subtarget) {
   8551   EVT VT = N->getValueType(0);
   8552   if (!Subtarget->hasNEON() || !VT.isVector())
   8553     return SDValue();
   8554 
   8555   // There must be a shift right algebraic before the xor, and the xor must be a
   8556   // 'not' operation.
   8557   SDValue Shift = N->getOperand(0);
   8558   SDValue Ones = N->getOperand(1);
   8559   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
   8560       !ISD::isBuildVectorAllOnes(Ones.getNode()))
   8561     return SDValue();
   8562 
   8563   // The shift should be smearing the sign bit across each vector element.
   8564   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
   8565   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
   8566   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
   8567     return SDValue();
   8568 
   8569   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
   8570 }
   8571 
   8572 // Generate SUBS and CSEL for integer abs.
   8573 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
   8574   EVT VT = N->getValueType(0);
   8575 
   8576   SDValue N0 = N->getOperand(0);
   8577   SDValue N1 = N->getOperand(1);
   8578   SDLoc DL(N);
   8579 
   8580   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
   8581   // and change it to SUB and CSEL.
   8582   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
   8583       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
   8584       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
   8585     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
   8586       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
   8587         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
   8588                                   N0.getOperand(0));
   8589         // Generate SUBS & CSEL.
   8590         SDValue Cmp =
   8591             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
   8592                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
   8593         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
   8594                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
   8595                            SDValue(Cmp.getNode(), 1));
   8596       }
   8597   return SDValue();
   8598 }
   8599 
   8600 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
   8601                                  TargetLowering::DAGCombinerInfo &DCI,
   8602                                  const AArch64Subtarget *Subtarget) {
   8603   if (DCI.isBeforeLegalizeOps())
   8604     return SDValue();
   8605 
   8606   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
   8607     return Cmp;
   8608 
   8609   return performIntegerAbsCombine(N, DAG);
   8610 }
   8611 
   8612 SDValue
   8613 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   8614                                      SelectionDAG &DAG,
   8615                                      SmallVectorImpl<SDNode *> &Created) const {
   8616   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
   8617   if (isIntDivCheap(N->getValueType(0), Attr))
   8618     return SDValue(N,0); // Lower SDIV as SDIV
   8619 
   8620   // fold (sdiv X, pow2)
   8621   EVT VT = N->getValueType(0);
   8622   if ((VT != MVT::i32 && VT != MVT::i64) ||
   8623       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
   8624     return SDValue();
   8625 
   8626   SDLoc DL(N);
   8627   SDValue N0 = N->getOperand(0);
   8628   unsigned Lg2 = Divisor.countTrailingZeros();
   8629   SDValue Zero = DAG.getConstant(0, DL, VT);
   8630   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
   8631 
   8632   // Add (N0 < 0) ? Pow2 - 1 : 0;
   8633   SDValue CCVal;
   8634   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
   8635   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
   8636   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
   8637 
   8638   Created.push_back(Cmp.getNode());
   8639   Created.push_back(Add.getNode());
   8640   Created.push_back(CSel.getNode());
   8641 
   8642   // Divide by pow2.
   8643   SDValue SRA =
   8644       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
   8645 
   8646   // If we're dividing by a positive value, we're done.  Otherwise, we must
   8647   // negate the result.
   8648   if (Divisor.isNonNegative())
   8649     return SRA;
   8650 
   8651   Created.push_back(SRA.getNode());
   8652   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
   8653 }
   8654 
   8655 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
   8656                                  TargetLowering::DAGCombinerInfo &DCI,
   8657                                  const AArch64Subtarget *Subtarget) {
   8658   if (DCI.isBeforeLegalizeOps())
   8659     return SDValue();
   8660 
   8661   // The below optimizations require a constant RHS.
   8662   if (!isa<ConstantSDNode>(N->getOperand(1)))
   8663     return SDValue();
   8664 
   8665   ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
   8666   const APInt &ConstValue = C->getAPIntValue();
   8667 
   8668   // Multiplication of a power of two plus/minus one can be done more
   8669   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
   8670   // future CPUs have a cheaper MADD instruction, this may need to be
   8671   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
   8672   // 64-bit is 5 cycles, so this is always a win.
   8673   // More aggressively, some multiplications N0 * C can be lowered to
   8674   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
   8675   // e.g. 6=3*2=(2+1)*2.
   8676   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
   8677   // which equals to (1+2)*16-(1+2).
   8678   SDValue N0 = N->getOperand(0);
   8679   // TrailingZeroes is used to test if the mul can be lowered to
   8680   // shift+add+shift.
   8681   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
   8682   if (TrailingZeroes) {
   8683     // Conservatively do not lower to shift+add+shift if the mul might be
   8684     // folded into smul or umul.
   8685     if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
   8686                             isZeroExtended(N0.getNode(), DAG)))
   8687       return SDValue();
   8688     // Conservatively do not lower to shift+add+shift if the mul might be
   8689     // folded into madd or msub.
   8690     if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
   8691                            N->use_begin()->getOpcode() == ISD::SUB))
   8692       return SDValue();
   8693   }
   8694   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
   8695   // and shift+add+shift.
   8696   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
   8697 
   8698   unsigned ShiftAmt, AddSubOpc;
   8699   // Is the shifted value the LHS operand of the add/sub?
   8700   bool ShiftValUseIsN0 = true;
   8701   // Do we need to negate the result?
   8702   bool NegateResult = false;
   8703 
   8704   if (ConstValue.isNonNegative()) {
   8705     // (mul x, 2^N + 1) => (add (shl x, N), x)
   8706     // (mul x, 2^N - 1) => (sub (shl x, N), x)
   8707     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
   8708     APInt SCVMinus1 = ShiftedConstValue - 1;
   8709     APInt CVPlus1 = ConstValue + 1;
   8710     if (SCVMinus1.isPowerOf2()) {
   8711       ShiftAmt = SCVMinus1.logBase2();
   8712       AddSubOpc = ISD::ADD;
   8713     } else if (CVPlus1.isPowerOf2()) {
   8714       ShiftAmt = CVPlus1.logBase2();
   8715       AddSubOpc = ISD::SUB;
   8716     } else
   8717       return SDValue();
   8718   } else {
   8719     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   8720     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   8721     APInt CVNegPlus1 = -ConstValue + 1;
   8722     APInt CVNegMinus1 = -ConstValue - 1;
   8723     if (CVNegPlus1.isPowerOf2()) {
   8724       ShiftAmt = CVNegPlus1.logBase2();
   8725       AddSubOpc = ISD::SUB;
   8726       ShiftValUseIsN0 = false;
   8727     } else if (CVNegMinus1.isPowerOf2()) {
   8728       ShiftAmt = CVNegMinus1.logBase2();
   8729       AddSubOpc = ISD::ADD;
   8730       NegateResult = true;
   8731     } else
   8732       return SDValue();
   8733   }
   8734 
   8735   SDLoc DL(N);
   8736   EVT VT = N->getValueType(0);
   8737   SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
   8738                                    DAG.getConstant(ShiftAmt, DL, MVT::i64));
   8739 
   8740   SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
   8741   SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
   8742   SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
   8743   assert(!(NegateResult && TrailingZeroes) &&
   8744          "NegateResult and TrailingZeroes cannot both be true for now.");
   8745   // Negate the result.
   8746   if (NegateResult)
   8747     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
   8748   // Shift the result.
   8749   if (TrailingZeroes)
   8750     return DAG.getNode(ISD::SHL, DL, VT, Res,
   8751                        DAG.getConstant(TrailingZeroes, DL, MVT::i64));
   8752   return Res;
   8753 }
   8754 
   8755 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
   8756                                                          SelectionDAG &DAG) {
   8757   // Take advantage of vector comparisons producing 0 or -1 in each lane to
   8758   // optimize away operation when it's from a constant.
   8759   //
   8760   // The general transformation is:
   8761   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
   8762   //       AND(VECTOR_CMP(x,y), constant2)
   8763   //    constant2 = UNARYOP(constant)
   8764 
   8765   // Early exit if this isn't a vector operation, the operand of the
   8766   // unary operation isn't a bitwise AND, or if the sizes of the operations
   8767   // aren't the same.
   8768   EVT VT = N->getValueType(0);
   8769   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
   8770       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
   8771       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
   8772     return SDValue();
   8773 
   8774   // Now check that the other operand of the AND is a constant. We could
   8775   // make the transformation for non-constant splats as well, but it's unclear
   8776   // that would be a benefit as it would not eliminate any operations, just
   8777   // perform one more step in scalar code before moving to the vector unit.
   8778   if (BuildVectorSDNode *BV =
   8779           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
   8780     // Bail out if the vector isn't a constant.
   8781     if (!BV->isConstant())
   8782       return SDValue();
   8783 
   8784     // Everything checks out. Build up the new and improved node.
   8785     SDLoc DL(N);
   8786     EVT IntVT = BV->getValueType(0);
   8787     // Create a new constant of the appropriate type for the transformed
   8788     // DAG.
   8789     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
   8790     // The AND node needs bitcasts to/from an integer vector type around it.
   8791     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
   8792     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
   8793                                  N->getOperand(0)->getOperand(0), MaskConst);
   8794     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
   8795     return Res;
   8796   }
   8797 
   8798   return SDValue();
   8799 }
   8800 
   8801 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
   8802                                      const AArch64Subtarget *Subtarget) {
   8803   // First try to optimize away the conversion when it's conditionally from
   8804   // a constant. Vectors only.
   8805   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
   8806     return Res;
   8807 
   8808   EVT VT = N->getValueType(0);
   8809   if (VT != MVT::f32 && VT != MVT::f64)
   8810     return SDValue();
   8811 
   8812   // Only optimize when the source and destination types have the same width.
   8813   if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
   8814     return SDValue();
   8815 
   8816   // If the result of an integer load is only used by an integer-to-float
   8817   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
   8818   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
   8819   SDValue N0 = N->getOperand(0);
   8820   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
   8821       // Do not change the width of a volatile load.
   8822       !cast<LoadSDNode>(N0)->isVolatile()) {
   8823     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
   8824     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
   8825                                LN0->getPointerInfo(), LN0->getAlignment(),
   8826                                LN0->getMemOperand()->getFlags());
   8827 
   8828     // Make sure successors of the original load stay after it by updating them
   8829     // to use the new Chain.
   8830     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
   8831 
   8832     unsigned Opcode =
   8833         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
   8834     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
   8835   }
   8836 
   8837   return SDValue();
   8838 }
   8839 
   8840 /// Fold a floating-point multiply by power of two into floating-point to
   8841 /// fixed-point conversion.
   8842 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
   8843                                      TargetLowering::DAGCombinerInfo &DCI,
   8844                                      const AArch64Subtarget *Subtarget) {
   8845   if (!Subtarget->hasNEON())
   8846     return SDValue();
   8847 
   8848   SDValue Op = N->getOperand(0);
   8849   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
   8850       Op.getOpcode() != ISD::FMUL)
   8851     return SDValue();
   8852 
   8853   SDValue ConstVec = Op->getOperand(1);
   8854   if (!isa<BuildVectorSDNode>(ConstVec))
   8855     return SDValue();
   8856 
   8857   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   8858   uint32_t FloatBits = FloatTy.getSizeInBits();
   8859   if (FloatBits != 32 && FloatBits != 64)
   8860     return SDValue();
   8861 
   8862   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   8863   uint32_t IntBits = IntTy.getSizeInBits();
   8864   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
   8865     return SDValue();
   8866 
   8867   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
   8868   if (IntBits > FloatBits)
   8869     return SDValue();
   8870 
   8871   BitVector UndefElements;
   8872   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   8873   int32_t Bits = IntBits == 64 ? 64 : 32;
   8874   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
   8875   if (C == -1 || C == 0 || C > Bits)
   8876     return SDValue();
   8877 
   8878   MVT ResTy;
   8879   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   8880   switch (NumLanes) {
   8881   default:
   8882     return SDValue();
   8883   case 2:
   8884     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
   8885     break;
   8886   case 4:
   8887     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
   8888     break;
   8889   }
   8890 
   8891   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
   8892     return SDValue();
   8893 
   8894   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
   8895          "Illegal vector type after legalization");
   8896 
   8897   SDLoc DL(N);
   8898   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
   8899   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
   8900                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
   8901   SDValue FixConv =
   8902       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
   8903                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
   8904                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
   8905   // We can handle smaller integers by generating an extra trunc.
   8906   if (IntBits < FloatBits)
   8907     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
   8908 
   8909   return FixConv;
   8910 }
   8911 
   8912 /// Fold a floating-point divide by power of two into fixed-point to
   8913 /// floating-point conversion.
   8914 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
   8915                                   TargetLowering::DAGCombinerInfo &DCI,
   8916                                   const AArch64Subtarget *Subtarget) {
   8917   if (!Subtarget->hasNEON())
   8918     return SDValue();
   8919 
   8920   SDValue Op = N->getOperand(0);
   8921   unsigned Opc = Op->getOpcode();
   8922   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
   8923       !Op.getOperand(0).getValueType().isSimple() ||
   8924       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
   8925     return SDValue();
   8926 
   8927   SDValue ConstVec = N->getOperand(1);
   8928   if (!isa<BuildVectorSDNode>(ConstVec))
   8929     return SDValue();
   8930 
   8931   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   8932   int32_t IntBits = IntTy.getSizeInBits();
   8933   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
   8934     return SDValue();
   8935 
   8936   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   8937   int32_t FloatBits = FloatTy.getSizeInBits();
   8938   if (FloatBits != 32 && FloatBits != 64)
   8939     return SDValue();
   8940 
   8941   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
   8942   if (IntBits > FloatBits)
   8943     return SDValue();
   8944 
   8945   BitVector UndefElements;
   8946   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   8947   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
   8948   if (C == -1 || C == 0 || C > FloatBits)
   8949     return SDValue();
   8950 
   8951   MVT ResTy;
   8952   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   8953   switch (NumLanes) {
   8954   default:
   8955     return SDValue();
   8956   case 2:
   8957     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
   8958     break;
   8959   case 4:
   8960     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
   8961     break;
   8962   }
   8963 
   8964   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
   8965     return SDValue();
   8966 
   8967   SDLoc DL(N);
   8968   SDValue ConvInput = Op.getOperand(0);
   8969   bool IsSigned = Opc == ISD::SINT_TO_FP;
   8970   if (IntBits < FloatBits)
   8971     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
   8972                             ResTy, ConvInput);
   8973 
   8974   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
   8975                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
   8976   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
   8977                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
   8978                      DAG.getConstant(C, DL, MVT::i32));
   8979 }
   8980 
   8981 /// An EXTR instruction is made up of two shifts, ORed together. This helper
   8982 /// searches for and classifies those shifts.
   8983 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
   8984                          bool &FromHi) {
   8985   if (N.getOpcode() == ISD::SHL)
   8986     FromHi = false;
   8987   else if (N.getOpcode() == ISD::SRL)
   8988     FromHi = true;
   8989   else
   8990     return false;
   8991 
   8992   if (!isa<ConstantSDNode>(N.getOperand(1)))
   8993     return false;
   8994 
   8995   ShiftAmount = N->getConstantOperandVal(1);
   8996   Src = N->getOperand(0);
   8997   return true;
   8998 }
   8999 
   9000 /// EXTR instruction extracts a contiguous chunk of bits from two existing
   9001 /// registers viewed as a high/low pair. This function looks for the pattern:
   9002 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
   9003 /// with an EXTR. Can't quite be done in TableGen because the two immediates
   9004 /// aren't independent.
   9005 static SDValue tryCombineToEXTR(SDNode *N,
   9006                                 TargetLowering::DAGCombinerInfo &DCI) {
   9007   SelectionDAG &DAG = DCI.DAG;
   9008   SDLoc DL(N);
   9009   EVT VT = N->getValueType(0);
   9010 
   9011   assert(N->getOpcode() == ISD::OR && "Unexpected root");
   9012 
   9013   if (VT != MVT::i32 && VT != MVT::i64)
   9014     return SDValue();
   9015 
   9016   SDValue LHS;
   9017   uint32_t ShiftLHS = 0;
   9018   bool LHSFromHi = false;
   9019   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
   9020     return SDValue();
   9021 
   9022   SDValue RHS;
   9023   uint32_t ShiftRHS = 0;
   9024   bool RHSFromHi = false;
   9025   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
   9026     return SDValue();
   9027 
   9028   // If they're both trying to come from the high part of the register, they're
   9029   // not really an EXTR.
   9030   if (LHSFromHi == RHSFromHi)
   9031     return SDValue();
   9032 
   9033   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
   9034     return SDValue();
   9035 
   9036   if (LHSFromHi) {
   9037     std::swap(LHS, RHS);
   9038     std::swap(ShiftLHS, ShiftRHS);
   9039   }
   9040 
   9041   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
   9042                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
   9043 }
   9044 
   9045 static SDValue tryCombineToBSL(SDNode *N,
   9046                                 TargetLowering::DAGCombinerInfo &DCI) {
   9047   EVT VT = N->getValueType(0);
   9048   SelectionDAG &DAG = DCI.DAG;
   9049   SDLoc DL(N);
   9050 
   9051   if (!VT.isVector())
   9052     return SDValue();
   9053 
   9054   SDValue N0 = N->getOperand(0);
   9055   if (N0.getOpcode() != ISD::AND)
   9056     return SDValue();
   9057 
   9058   SDValue N1 = N->getOperand(1);
   9059   if (N1.getOpcode() != ISD::AND)
   9060     return SDValue();
   9061 
   9062   // We only have to look for constant vectors here since the general, variable
   9063   // case can be handled in TableGen.
   9064   unsigned Bits = VT.getScalarSizeInBits();
   9065   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
   9066   for (int i = 1; i >= 0; --i)
   9067     for (int j = 1; j >= 0; --j) {
   9068       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
   9069       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
   9070       if (!BVN0 || !BVN1)
   9071         continue;
   9072 
   9073       bool FoundMatch = true;
   9074       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
   9075         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
   9076         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
   9077         if (!CN0 || !CN1 ||
   9078             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
   9079           FoundMatch = false;
   9080           break;
   9081         }
   9082       }
   9083 
   9084       if (FoundMatch)
   9085         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
   9086                            N0->getOperand(1 - i), N1->getOperand(1 - j));
   9087     }
   9088 
   9089   return SDValue();
   9090 }
   9091 
   9092 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
   9093                                 const AArch64Subtarget *Subtarget) {
   9094   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
   9095   SelectionDAG &DAG = DCI.DAG;
   9096   EVT VT = N->getValueType(0);
   9097 
   9098   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9099     return SDValue();
   9100 
   9101   if (SDValue Res = tryCombineToEXTR(N, DCI))
   9102     return Res;
   9103 
   9104   if (SDValue Res = tryCombineToBSL(N, DCI))
   9105     return Res;
   9106 
   9107   return SDValue();
   9108 }
   9109 
   9110 static SDValue performSRLCombine(SDNode *N,
   9111                                  TargetLowering::DAGCombinerInfo &DCI) {
   9112   SelectionDAG &DAG = DCI.DAG;
   9113   EVT VT = N->getValueType(0);
   9114   if (VT != MVT::i32 && VT != MVT::i64)
   9115     return SDValue();
   9116 
   9117   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
   9118   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
   9119   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
   9120   SDValue N0 = N->getOperand(0);
   9121   if (N0.getOpcode() == ISD::BSWAP) {
   9122     SDLoc DL(N);
   9123     SDValue N1 = N->getOperand(1);
   9124     SDValue N00 = N0.getOperand(0);
   9125     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   9126       uint64_t ShiftAmt = C->getZExtValue();
   9127       if (VT == MVT::i32 && ShiftAmt == 16 &&
   9128           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
   9129         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
   9130       if (VT == MVT::i64 && ShiftAmt == 32 &&
   9131           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
   9132         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
   9133     }
   9134   }
   9135   return SDValue();
   9136 }
   9137 
   9138 static SDValue performBitcastCombine(SDNode *N,
   9139                                      TargetLowering::DAGCombinerInfo &DCI,
   9140                                      SelectionDAG &DAG) {
   9141   // Wait 'til after everything is legalized to try this. That way we have
   9142   // legal vector types and such.
   9143   if (DCI.isBeforeLegalizeOps())
   9144     return SDValue();
   9145 
   9146   // Remove extraneous bitcasts around an extract_subvector.
   9147   // For example,
   9148   //    (v4i16 (bitconvert
   9149   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
   9150   //  becomes
   9151   //    (extract_subvector ((v8i16 ...), (i64 4)))
   9152 
   9153   // Only interested in 64-bit vectors as the ultimate result.
   9154   EVT VT = N->getValueType(0);
   9155   if (!VT.isVector())
   9156     return SDValue();
   9157   if (VT.getSimpleVT().getSizeInBits() != 64)
   9158     return SDValue();
   9159   // Is the operand an extract_subvector starting at the beginning or halfway
   9160   // point of the vector? A low half may also come through as an
   9161   // EXTRACT_SUBREG, so look for that, too.
   9162   SDValue Op0 = N->getOperand(0);
   9163   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
   9164       !(Op0->isMachineOpcode() &&
   9165         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
   9166     return SDValue();
   9167   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
   9168   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
   9169     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
   9170       return SDValue();
   9171   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
   9172     if (idx != AArch64::dsub)
   9173       return SDValue();
   9174     // The dsub reference is equivalent to a lane zero subvector reference.
   9175     idx = 0;
   9176   }
   9177   // Look through the bitcast of the input to the extract.
   9178   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
   9179     return SDValue();
   9180   SDValue Source = Op0->getOperand(0)->getOperand(0);
   9181   // If the source type has twice the number of elements as our destination
   9182   // type, we know this is an extract of the high or low half of the vector.
   9183   EVT SVT = Source->getValueType(0);
   9184   if (!SVT.isVector() ||
   9185       SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
   9186     return SDValue();
   9187 
   9188   LLVM_DEBUG(
   9189       dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
   9190 
   9191   // Create the simplified form to just extract the low or high half of the
   9192   // vector directly rather than bothering with the bitcasts.
   9193   SDLoc dl(N);
   9194   unsigned NumElements = VT.getVectorNumElements();
   9195   if (idx) {
   9196     SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
   9197     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
   9198   } else {
   9199     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
   9200     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
   9201                                       Source, SubReg),
   9202                    0);
   9203   }
   9204 }
   9205 
   9206 static SDValue performConcatVectorsCombine(SDNode *N,
   9207                                            TargetLowering::DAGCombinerInfo &DCI,
   9208                                            SelectionDAG &DAG) {
   9209   SDLoc dl(N);
   9210   EVT VT = N->getValueType(0);
   9211   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
   9212 
   9213   // Optimize concat_vectors of truncated vectors, where the intermediate
   9214   // type is illegal, to avoid said illegality,  e.g.,
   9215   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
   9216   //                          (v2i16 (truncate (v2i64)))))
   9217   // ->
   9218   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
   9219   //                                    (v4i32 (bitcast (v2i64))),
   9220   //                                    <0, 2, 4, 6>)))
   9221   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
   9222   // on both input and result type, so we might generate worse code.
   9223   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
   9224   if (N->getNumOperands() == 2 &&
   9225       N0->getOpcode() == ISD::TRUNCATE &&
   9226       N1->getOpcode() == ISD::TRUNCATE) {
   9227     SDValue N00 = N0->getOperand(0);
   9228     SDValue N10 = N1->getOperand(0);
   9229     EVT N00VT = N00.getValueType();
   9230 
   9231     if (N00VT == N10.getValueType() &&
   9232         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
   9233         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
   9234       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
   9235       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
   9236       for (size_t i = 0; i < Mask.size(); ++i)
   9237         Mask[i] = i * 2;
   9238       return DAG.getNode(ISD::TRUNCATE, dl, VT,
   9239                          DAG.getVectorShuffle(
   9240                              MidVT, dl,
   9241                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
   9242                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
   9243     }
   9244   }
   9245 
   9246   // Wait 'til after everything is legalized to try this. That way we have
   9247   // legal vector types and such.
   9248   if (DCI.isBeforeLegalizeOps())
   9249     return SDValue();
   9250 
   9251   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
   9252   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
   9253   // canonicalise to that.
   9254   if (N0 == N1 && VT.getVectorNumElements() == 2) {
   9255     assert(VT.getScalarSizeInBits() == 64);
   9256     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
   9257                        DAG.getConstant(0, dl, MVT::i64));
   9258   }
   9259 
   9260   // Canonicalise concat_vectors so that the right-hand vector has as few
   9261   // bit-casts as possible before its real operation. The primary matching
   9262   // destination for these operations will be the narrowing "2" instructions,
   9263   // which depend on the operation being performed on this right-hand vector.
   9264   // For example,
   9265   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
   9266   // becomes
   9267   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
   9268 
   9269   if (N1->getOpcode() != ISD::BITCAST)
   9270     return SDValue();
   9271   SDValue RHS = N1->getOperand(0);
   9272   MVT RHSTy = RHS.getValueType().getSimpleVT();
   9273   // If the RHS is not a vector, this is not the pattern we're looking for.
   9274   if (!RHSTy.isVector())
   9275     return SDValue();
   9276 
   9277   LLVM_DEBUG(
   9278       dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
   9279 
   9280   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
   9281                                   RHSTy.getVectorNumElements() * 2);
   9282   return DAG.getNode(ISD::BITCAST, dl, VT,
   9283                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
   9284                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
   9285                                  RHS));
   9286 }
   9287 
   9288 static SDValue tryCombineFixedPointConvert(SDNode *N,
   9289                                            TargetLowering::DAGCombinerInfo &DCI,
   9290                                            SelectionDAG &DAG) {
   9291   // Wait until after everything is legalized to try this. That way we have
   9292   // legal vector types and such.
   9293   if (DCI.isBeforeLegalizeOps())
   9294     return SDValue();
   9295   // Transform a scalar conversion of a value from a lane extract into a
   9296   // lane extract of a vector conversion. E.g., from foo1 to foo2:
   9297   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
   9298   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
   9299   //
   9300   // The second form interacts better with instruction selection and the
   9301   // register allocator to avoid cross-class register copies that aren't
   9302   // coalescable due to a lane reference.
   9303 
   9304   // Check the operand and see if it originates from a lane extract.
   9305   SDValue Op1 = N->getOperand(1);
   9306   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9307     // Yep, no additional predication needed. Perform the transform.
   9308     SDValue IID = N->getOperand(0);
   9309     SDValue Shift = N->getOperand(2);
   9310     SDValue Vec = Op1.getOperand(0);
   9311     SDValue Lane = Op1.getOperand(1);
   9312     EVT ResTy = N->getValueType(0);
   9313     EVT VecResTy;
   9314     SDLoc DL(N);
   9315 
   9316     // The vector width should be 128 bits by the time we get here, even
   9317     // if it started as 64 bits (the extract_vector handling will have
   9318     // done so).
   9319     assert(Vec.getValueSizeInBits() == 128 &&
   9320            "unexpected vector size on extract_vector_elt!");
   9321     if (Vec.getValueType() == MVT::v4i32)
   9322       VecResTy = MVT::v4f32;
   9323     else if (Vec.getValueType() == MVT::v2i64)
   9324       VecResTy = MVT::v2f64;
   9325     else
   9326       llvm_unreachable("unexpected vector type!");
   9327 
   9328     SDValue Convert =
   9329         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
   9330     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
   9331   }
   9332   return SDValue();
   9333 }
   9334 
   9335 // AArch64 high-vector "long" operations are formed by performing the non-high
   9336 // version on an extract_subvector of each operand which gets the high half:
   9337 //
   9338 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
   9339 //
   9340 // However, there are cases which don't have an extract_high explicitly, but
   9341 // have another operation that can be made compatible with one for free. For
   9342 // example:
   9343 //
   9344 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
   9345 //
   9346 // This routine does the actual conversion of such DUPs, once outer routines
   9347 // have determined that everything else is in order.
   9348 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
   9349 // similarly here.
   9350 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
   9351   switch (N.getOpcode()) {
   9352   case AArch64ISD::DUP:
   9353   case AArch64ISD::DUPLANE8:
   9354   case AArch64ISD::DUPLANE16:
   9355   case AArch64ISD::DUPLANE32:
   9356   case AArch64ISD::DUPLANE64:
   9357   case AArch64ISD::MOVI:
   9358   case AArch64ISD::MOVIshift:
   9359   case AArch64ISD::MOVIedit:
   9360   case AArch64ISD::MOVImsl:
   9361   case AArch64ISD::MVNIshift:
   9362   case AArch64ISD::MVNImsl:
   9363     break;
   9364   default:
   9365     // FMOV could be supported, but isn't very useful, as it would only occur
   9366     // if you passed a bitcast' floating point immediate to an eligible long
   9367     // integer op (addl, smull, ...).
   9368     return SDValue();
   9369   }
   9370 
   9371   MVT NarrowTy = N.getSimpleValueType();
   9372   if (!NarrowTy.is64BitVector())
   9373     return SDValue();
   9374 
   9375   MVT ElementTy = NarrowTy.getVectorElementType();
   9376   unsigned NumElems = NarrowTy.getVectorNumElements();
   9377   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
   9378 
   9379   SDLoc dl(N);
   9380   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
   9381                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
   9382                      DAG.getConstant(NumElems, dl, MVT::i64));
   9383 }
   9384 
   9385 static bool isEssentiallyExtractSubvector(SDValue N) {
   9386   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
   9387     return true;
   9388 
   9389   return N.getOpcode() == ISD::BITCAST &&
   9390          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
   9391 }
   9392 
   9393 /// Helper structure to keep track of ISD::SET_CC operands.
   9394 struct GenericSetCCInfo {
   9395   const SDValue *Opnd0;
   9396   const SDValue *Opnd1;
   9397   ISD::CondCode CC;
   9398 };
   9399 
   9400 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
   9401 struct AArch64SetCCInfo {
   9402   const SDValue *Cmp;
   9403   AArch64CC::CondCode CC;
   9404 };
   9405 
   9406 /// Helper structure to keep track of SetCC information.
   9407 union SetCCInfo {
   9408   GenericSetCCInfo Generic;
   9409   AArch64SetCCInfo AArch64;
   9410 };
   9411 
   9412 /// Helper structure to be able to read SetCC information.  If set to
   9413 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
   9414 /// GenericSetCCInfo.
   9415 struct SetCCInfoAndKind {
   9416   SetCCInfo Info;
   9417   bool IsAArch64;
   9418 };
   9419 
   9420 /// Check whether or not \p Op is a SET_CC operation, either a generic or
   9421 /// an
   9422 /// AArch64 lowered one.
   9423 /// \p SetCCInfo is filled accordingly.
   9424 /// \post SetCCInfo is meanginfull only when this function returns true.
   9425 /// \return True when Op is a kind of SET_CC operation.
   9426 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
   9427   // If this is a setcc, this is straight forward.
   9428   if (Op.getOpcode() == ISD::SETCC) {
   9429     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
   9430     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
   9431     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   9432     SetCCInfo.IsAArch64 = false;
   9433     return true;
   9434   }
   9435   // Otherwise, check if this is a matching csel instruction.
   9436   // In other words:
   9437   // - csel 1, 0, cc
   9438   // - csel 0, 1, !cc
   9439   if (Op.getOpcode() != AArch64ISD::CSEL)
   9440     return false;
   9441   // Set the information about the operands.
   9442   // TODO: we want the operands of the Cmp not the csel
   9443   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
   9444   SetCCInfo.IsAArch64 = true;
   9445   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
   9446       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   9447 
   9448   // Check that the operands matches the constraints:
   9449   // (1) Both operands must be constants.
   9450   // (2) One must be 1 and the other must be 0.
   9451   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   9452   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   9453 
   9454   // Check (1).
   9455   if (!TValue || !FValue)
   9456     return false;
   9457 
   9458   // Check (2).
   9459   if (!TValue->isOne()) {
   9460     // Update the comparison when we are interested in !cc.
   9461     std::swap(TValue, FValue);
   9462     SetCCInfo.Info.AArch64.CC =
   9463         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
   9464   }
   9465   return TValue->isOne() && FValue->isNullValue();
   9466 }
   9467 
   9468 // Returns true if Op is setcc or zext of setcc.
   9469 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
   9470   if (isSetCC(Op, Info))
   9471     return true;
   9472   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
   9473     isSetCC(Op->getOperand(0), Info));
   9474 }
   9475 
   9476 // The folding we want to perform is:
   9477 // (add x, [zext] (setcc cc ...) )
   9478 //   -->
   9479 // (csel x, (add x, 1), !cc ...)
   9480 //
   9481 // The latter will get matched to a CSINC instruction.
   9482 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
   9483   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
   9484   SDValue LHS = Op->getOperand(0);
   9485   SDValue RHS = Op->getOperand(1);
   9486   SetCCInfoAndKind InfoAndKind;
   9487 
   9488   // If neither operand is a SET_CC, give up.
   9489   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
   9490     std::swap(LHS, RHS);
   9491     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
   9492       return SDValue();
   9493   }
   9494 
   9495   // FIXME: This could be generatized to work for FP comparisons.
   9496   EVT CmpVT = InfoAndKind.IsAArch64
   9497                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
   9498                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
   9499   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
   9500     return SDValue();
   9501 
   9502   SDValue CCVal;
   9503   SDValue Cmp;
   9504   SDLoc dl(Op);
   9505   if (InfoAndKind.IsAArch64) {
   9506     CCVal = DAG.getConstant(
   9507         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
   9508         MVT::i32);
   9509     Cmp = *InfoAndKind.Info.AArch64.Cmp;
   9510   } else
   9511     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
   9512                       *InfoAndKind.Info.Generic.Opnd1,
   9513                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
   9514                       CCVal, DAG, dl);
   9515 
   9516   EVT VT = Op->getValueType(0);
   9517   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
   9518   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
   9519 }
   9520 
   9521 // The basic add/sub long vector instructions have variants with "2" on the end
   9522 // which act on the high-half of their inputs. They are normally matched by
   9523 // patterns like:
   9524 //
   9525 // (add (zeroext (extract_high LHS)),
   9526 //      (zeroext (extract_high RHS)))
   9527 // -> uaddl2 vD, vN, vM
   9528 //
   9529 // However, if one of the extracts is something like a duplicate, this
   9530 // instruction can still be used profitably. This function puts the DAG into a
   9531 // more appropriate form for those patterns to trigger.
   9532 static SDValue performAddSubLongCombine(SDNode *N,
   9533                                         TargetLowering::DAGCombinerInfo &DCI,
   9534                                         SelectionDAG &DAG) {
   9535   if (DCI.isBeforeLegalizeOps())
   9536     return SDValue();
   9537 
   9538   MVT VT = N->getSimpleValueType(0);
   9539   if (!VT.is128BitVector()) {
   9540     if (N->getOpcode() == ISD::ADD)
   9541       return performSetccAddFolding(N, DAG);
   9542     return SDValue();
   9543   }
   9544 
   9545   // Make sure both branches are extended in the same way.
   9546   SDValue LHS = N->getOperand(0);
   9547   SDValue RHS = N->getOperand(1);
   9548   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
   9549        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
   9550       LHS.getOpcode() != RHS.getOpcode())
   9551     return SDValue();
   9552 
   9553   unsigned ExtType = LHS.getOpcode();
   9554 
   9555   // It's not worth doing if at least one of the inputs isn't already an
   9556   // extract, but we don't know which it'll be so we have to try both.
   9557   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
   9558     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
   9559     if (!RHS.getNode())
   9560       return SDValue();
   9561 
   9562     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
   9563   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
   9564     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
   9565     if (!LHS.getNode())
   9566       return SDValue();
   9567 
   9568     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
   9569   }
   9570 
   9571   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
   9572 }
   9573 
   9574 // Massage DAGs which we can use the high-half "long" operations on into
   9575 // something isel will recognize better. E.g.
   9576 //
   9577 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
   9578 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
   9579 //                     (extract_high (v2i64 (dup128 scalar)))))
   9580 //
   9581 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
   9582                                        TargetLowering::DAGCombinerInfo &DCI,
   9583                                        SelectionDAG &DAG) {
   9584   if (DCI.isBeforeLegalizeOps())
   9585     return SDValue();
   9586 
   9587   SDValue LHS = N->getOperand(1);
   9588   SDValue RHS = N->getOperand(2);
   9589   assert(LHS.getValueType().is64BitVector() &&
   9590          RHS.getValueType().is64BitVector() &&
   9591          "unexpected shape for long operation");
   9592 
   9593   // Either node could be a DUP, but it's not worth doing both of them (you'd
   9594   // just as well use the non-high version) so look for a corresponding extract
   9595   // operation on the other "wing".
   9596   if (isEssentiallyExtractSubvector(LHS)) {
   9597     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
   9598     if (!RHS.getNode())
   9599       return SDValue();
   9600   } else if (isEssentiallyExtractSubvector(RHS)) {
   9601     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
   9602     if (!LHS.getNode())
   9603       return SDValue();
   9604   }
   9605 
   9606   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
   9607                      N->getOperand(0), LHS, RHS);
   9608 }
   9609 
   9610 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
   9611   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
   9612   unsigned ElemBits = ElemTy.getSizeInBits();
   9613 
   9614   int64_t ShiftAmount;
   9615   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
   9616     APInt SplatValue, SplatUndef;
   9617     unsigned SplatBitSize;
   9618     bool HasAnyUndefs;
   9619     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   9620                               HasAnyUndefs, ElemBits) ||
   9621         SplatBitSize != ElemBits)
   9622       return SDValue();
   9623 
   9624     ShiftAmount = SplatValue.getSExtValue();
   9625   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
   9626     ShiftAmount = CVN->getSExtValue();
   9627   } else
   9628     return SDValue();
   9629 
   9630   unsigned Opcode;
   9631   bool IsRightShift;
   9632   switch (IID) {
   9633   default:
   9634     llvm_unreachable("Unknown shift intrinsic");
   9635   case Intrinsic::aarch64_neon_sqshl:
   9636     Opcode = AArch64ISD::SQSHL_I;
   9637     IsRightShift = false;
   9638     break;
   9639   case Intrinsic::aarch64_neon_uqshl:
   9640     Opcode = AArch64ISD::UQSHL_I;
   9641     IsRightShift = false;
   9642     break;
   9643   case Intrinsic::aarch64_neon_srshl:
   9644     Opcode = AArch64ISD::SRSHR_I;
   9645     IsRightShift = true;
   9646     break;
   9647   case Intrinsic::aarch64_neon_urshl:
   9648     Opcode = AArch64ISD::URSHR_I;
   9649     IsRightShift = true;
   9650     break;
   9651   case Intrinsic::aarch64_neon_sqshlu:
   9652     Opcode = AArch64ISD::SQSHLU_I;
   9653     IsRightShift = false;
   9654     break;
   9655   }
   9656 
   9657   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
   9658     SDLoc dl(N);
   9659     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
   9660                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
   9661   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
   9662     SDLoc dl(N);
   9663     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
   9664                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
   9665   }
   9666 
   9667   return SDValue();
   9668 }
   9669 
   9670 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
   9671 // the intrinsics must be legal and take an i32, this means there's almost
   9672 // certainly going to be a zext in the DAG which we can eliminate.
   9673 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
   9674   SDValue AndN = N->getOperand(2);
   9675   if (AndN.getOpcode() != ISD::AND)
   9676     return SDValue();
   9677 
   9678   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
   9679   if (!CMask || CMask->getZExtValue() != Mask)
   9680     return SDValue();
   9681 
   9682   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
   9683                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
   9684 }
   9685 
   9686 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
   9687                                            SelectionDAG &DAG) {
   9688   SDLoc dl(N);
   9689   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
   9690                      DAG.getNode(Opc, dl,
   9691                                  N->getOperand(1).getSimpleValueType(),
   9692                                  N->getOperand(1)),
   9693                      DAG.getConstant(0, dl, MVT::i64));
   9694 }
   9695 
   9696 static SDValue performIntrinsicCombine(SDNode *N,
   9697                                        TargetLowering::DAGCombinerInfo &DCI,
   9698                                        const AArch64Subtarget *Subtarget) {
   9699   SelectionDAG &DAG = DCI.DAG;
   9700   unsigned IID = getIntrinsicID(N);
   9701   switch (IID) {
   9702   default:
   9703     break;
   9704   case Intrinsic::aarch64_neon_vcvtfxs2fp:
   9705   case Intrinsic::aarch64_neon_vcvtfxu2fp:
   9706     return tryCombineFixedPointConvert(N, DCI, DAG);
   9707   case Intrinsic::aarch64_neon_saddv:
   9708     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
   9709   case Intrinsic::aarch64_neon_uaddv:
   9710     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
   9711   case Intrinsic::aarch64_neon_sminv:
   9712     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
   9713   case Intrinsic::aarch64_neon_uminv:
   9714     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
   9715   case Intrinsic::aarch64_neon_smaxv:
   9716     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
   9717   case Intrinsic::aarch64_neon_umaxv:
   9718     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
   9719   case Intrinsic::aarch64_neon_fmax:
   9720     return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
   9721                        N->getOperand(1), N->getOperand(2));
   9722   case Intrinsic::aarch64_neon_fmin:
   9723     return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
   9724                        N->getOperand(1), N->getOperand(2));
   9725   case Intrinsic::aarch64_neon_fmaxnm:
   9726     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
   9727                        N->getOperand(1), N->getOperand(2));
   9728   case Intrinsic::aarch64_neon_fminnm:
   9729     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
   9730                        N->getOperand(1), N->getOperand(2));
   9731   case Intrinsic::aarch64_neon_smull:
   9732   case Intrinsic::aarch64_neon_umull:
   9733   case Intrinsic::aarch64_neon_pmull:
   9734   case Intrinsic::aarch64_neon_sqdmull:
   9735     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
   9736   case Intrinsic::aarch64_neon_sqshl:
   9737   case Intrinsic::aarch64_neon_uqshl:
   9738   case Intrinsic::aarch64_neon_sqshlu:
   9739   case Intrinsic::aarch64_neon_srshl:
   9740   case Intrinsic::aarch64_neon_urshl:
   9741     return tryCombineShiftImm(IID, N, DAG);
   9742   case Intrinsic::aarch64_crc32b:
   9743   case Intrinsic::aarch64_crc32cb:
   9744     return tryCombineCRC32(0xff, N, DAG);
   9745   case Intrinsic::aarch64_crc32h:
   9746   case Intrinsic::aarch64_crc32ch:
   9747     return tryCombineCRC32(0xffff, N, DAG);
   9748   }
   9749   return SDValue();
   9750 }
   9751 
   9752 static SDValue performExtendCombine(SDNode *N,
   9753                                     TargetLowering::DAGCombinerInfo &DCI,
   9754                                     SelectionDAG &DAG) {
   9755   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
   9756   // we can convert that DUP into another extract_high (of a bigger DUP), which
   9757   // helps the backend to decide that an sabdl2 would be useful, saving a real
   9758   // extract_high operation.
   9759   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
   9760       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
   9761     SDNode *ABDNode = N->getOperand(0).getNode();
   9762     unsigned IID = getIntrinsicID(ABDNode);
   9763     if (IID == Intrinsic::aarch64_neon_sabd ||
   9764         IID == Intrinsic::aarch64_neon_uabd) {
   9765       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
   9766       if (!NewABD.getNode())
   9767         return SDValue();
   9768 
   9769       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
   9770                          NewABD);
   9771     }
   9772   }
   9773 
   9774   // This is effectively a custom type legalization for AArch64.
   9775   //
   9776   // Type legalization will split an extend of a small, legal, type to a larger
   9777   // illegal type by first splitting the destination type, often creating
   9778   // illegal source types, which then get legalized in isel-confusing ways,
   9779   // leading to really terrible codegen. E.g.,
   9780   //   %result = v8i32 sext v8i8 %value
   9781   // becomes
   9782   //   %losrc = extract_subreg %value, ...
   9783   //   %hisrc = extract_subreg %value, ...
   9784   //   %lo = v4i32 sext v4i8 %losrc
   9785   //   %hi = v4i32 sext v4i8 %hisrc
   9786   // Things go rapidly downhill from there.
   9787   //
   9788   // For AArch64, the [sz]ext vector instructions can only go up one element
   9789   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
   9790   // take two instructions.
   9791   //
   9792   // This implies that the most efficient way to do the extend from v8i8
   9793   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
   9794   // the normal splitting to happen for the v8i16->v8i32.
   9795 
   9796   // This is pre-legalization to catch some cases where the default
   9797   // type legalization will create ill-tempered code.
   9798   if (!DCI.isBeforeLegalizeOps())
   9799     return SDValue();
   9800 
   9801   // We're only interested in cleaning things up for non-legal vector types
   9802   // here. If both the source and destination are legal, things will just
   9803   // work naturally without any fiddling.
   9804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9805   EVT ResVT = N->getValueType(0);
   9806   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
   9807     return SDValue();
   9808   // If the vector type isn't a simple VT, it's beyond the scope of what
   9809   // we're  worried about here. Let legalization do its thing and hope for
   9810   // the best.
   9811   SDValue Src = N->getOperand(0);
   9812   EVT SrcVT = Src->getValueType(0);
   9813   if (!ResVT.isSimple() || !SrcVT.isSimple())
   9814     return SDValue();
   9815 
   9816   // If the source VT is a 64-bit vector, we can play games and get the
   9817   // better results we want.
   9818   if (SrcVT.getSizeInBits() != 64)
   9819     return SDValue();
   9820 
   9821   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
   9822   unsigned ElementCount = SrcVT.getVectorNumElements();
   9823   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
   9824   SDLoc DL(N);
   9825   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
   9826 
   9827   // Now split the rest of the operation into two halves, each with a 64
   9828   // bit source.
   9829   EVT LoVT, HiVT;
   9830   SDValue Lo, Hi;
   9831   unsigned NumElements = ResVT.getVectorNumElements();
   9832   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
   9833   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
   9834                                  ResVT.getVectorElementType(), NumElements / 2);
   9835 
   9836   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
   9837                                LoVT.getVectorNumElements());
   9838   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
   9839                    DAG.getConstant(0, DL, MVT::i64));
   9840   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
   9841                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
   9842   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
   9843   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
   9844 
   9845   // Now combine the parts back together so we still have a single result
   9846   // like the combiner expects.
   9847   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
   9848 }
   9849 
   9850 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
   9851                                SDValue SplatVal, unsigned NumVecElts) {
   9852   unsigned OrigAlignment = St.getAlignment();
   9853   unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
   9854 
   9855   // Create scalar stores. This is at least as good as the code sequence for a
   9856   // split unaligned store which is a dup.s, ext.b, and two stores.
   9857   // Most of the time the three stores should be replaced by store pair
   9858   // instructions (stp).
   9859   SDLoc DL(&St);
   9860   SDValue BasePtr = St.getBasePtr();
   9861   uint64_t BaseOffset = 0;
   9862 
   9863   const MachinePointerInfo &PtrInfo = St.getPointerInfo();
   9864   SDValue NewST1 =
   9865       DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
   9866                    OrigAlignment, St.getMemOperand()->getFlags());
   9867 
   9868   // As this in ISel, we will not merge this add which may degrade results.
   9869   if (BasePtr->getOpcode() == ISD::ADD &&
   9870       isa<ConstantSDNode>(BasePtr->getOperand(1))) {
   9871     BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
   9872     BasePtr = BasePtr->getOperand(0);
   9873   }
   9874 
   9875   unsigned Offset = EltOffset;
   9876   while (--NumVecElts) {
   9877     unsigned Alignment = MinAlign(OrigAlignment, Offset);
   9878     SDValue OffsetPtr =
   9879         DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
   9880                     DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
   9881     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
   9882                           PtrInfo.getWithOffset(Offset), Alignment,
   9883                           St.getMemOperand()->getFlags());
   9884     Offset += EltOffset;
   9885   }
   9886   return NewST1;
   9887 }
   9888 
   9889 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
   9890 /// load store optimizer pass will merge them to store pair stores.  This should
   9891 /// be better than a movi to create the vector zero followed by a vector store
   9892 /// if the zero constant is not re-used, since one instructions and one register
   9893 /// live range will be removed.
   9894 ///
   9895 /// For example, the final generated code should be:
   9896 ///
   9897 ///   stp xzr, xzr, [x0]
   9898 ///
   9899 /// instead of:
   9900 ///
   9901 ///   movi v0.2d, #0
   9902 ///   str q0, [x0]
   9903 ///
   9904 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
   9905   SDValue StVal = St.getValue();
   9906   EVT VT = StVal.getValueType();
   9907 
   9908   // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
   9909   // 2, 3 or 4 i32 elements.
   9910   int NumVecElts = VT.getVectorNumElements();
   9911   if (!(((NumVecElts == 2 || NumVecElts == 3) &&
   9912          VT.getVectorElementType().getSizeInBits() == 64) ||
   9913         ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
   9914          VT.getVectorElementType().getSizeInBits() == 32)))
   9915     return SDValue();
   9916 
   9917   if (StVal.getOpcode() != ISD::BUILD_VECTOR)
   9918     return SDValue();
   9919 
   9920   // If the zero constant has more than one use then the vector store could be
   9921   // better since the constant mov will be amortized and stp q instructions
   9922   // should be able to be formed.
   9923   if (!StVal.hasOneUse())
   9924     return SDValue();
   9925 
   9926   // If the immediate offset of the address operand is too large for the stp
   9927   // instruction, then bail out.
   9928   if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
   9929     int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
   9930     if (Offset < -512 || Offset > 504)
   9931       return SDValue();
   9932   }
   9933 
   9934   for (int I = 0; I < NumVecElts; ++I) {
   9935     SDValue EltVal = StVal.getOperand(I);
   9936     if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
   9937       return SDValue();
   9938   }
   9939 
   9940   // Use a CopyFromReg WZR/XZR here to prevent
   9941   // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
   9942   SDLoc DL(&St);
   9943   unsigned ZeroReg;
   9944   EVT ZeroVT;
   9945   if (VT.getVectorElementType().getSizeInBits() == 32) {
   9946     ZeroReg = AArch64::WZR;
   9947     ZeroVT = MVT::i32;
   9948   } else {
   9949     ZeroReg = AArch64::XZR;
   9950     ZeroVT = MVT::i64;
   9951   }
   9952   SDValue SplatVal =
   9953       DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
   9954   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
   9955 }
   9956 
   9957 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
   9958 /// value. The load store optimizer pass will merge them to store pair stores.
   9959 /// This has better performance than a splat of the scalar followed by a split
   9960 /// vector store. Even if the stores are not merged it is four stores vs a dup,
   9961 /// followed by an ext.b and two stores.
   9962 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
   9963   SDValue StVal = St.getValue();
   9964   EVT VT = StVal.getValueType();
   9965 
   9966   // Don't replace floating point stores, they possibly won't be transformed to
   9967   // stp because of the store pair suppress pass.
   9968   if (VT.isFloatingPoint())
   9969     return SDValue();
   9970 
   9971   // We can express a splat as store pair(s) for 2 or 4 elements.
   9972   unsigned NumVecElts = VT.getVectorNumElements();
   9973   if (NumVecElts != 4 && NumVecElts != 2)
   9974     return SDValue();
   9975 
   9976   // Check that this is a splat.
   9977   // Make sure that each of the relevant vector element locations are inserted
   9978   // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
   9979   std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
   9980   SDValue SplatVal;
   9981   for (unsigned I = 0; I < NumVecElts; ++I) {
   9982     // Check for insert vector elements.
   9983     if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
   9984       return SDValue();
   9985 
   9986     // Check that same value is inserted at each vector element.
   9987     if (I == 0)
   9988       SplatVal = StVal.getOperand(1);
   9989     else if (StVal.getOperand(1) != SplatVal)
   9990       return SDValue();
   9991 
   9992     // Check insert element index.
   9993     ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
   9994     if (!CIndex)
   9995       return SDValue();
   9996     uint64_t IndexVal = CIndex->getZExtValue();
   9997     if (IndexVal >= NumVecElts)
   9998       return SDValue();
   9999     IndexNotInserted.reset(IndexVal);
   10000 
   10001     StVal = StVal.getOperand(0);
   10002   }
   10003   // Check that all vector element locations were inserted to.
   10004   if (IndexNotInserted.any())
   10005       return SDValue();
   10006 
   10007   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
   10008 }
   10009 
   10010 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
   10011                            SelectionDAG &DAG,
   10012                            const AArch64Subtarget *Subtarget) {
   10013 
   10014   StoreSDNode *S = cast<StoreSDNode>(N);
   10015   if (S->isVolatile() || S->isIndexed())
   10016     return SDValue();
   10017 
   10018   SDValue StVal = S->getValue();
   10019   EVT VT = StVal.getValueType();
   10020   if (!VT.isVector())
   10021     return SDValue();
   10022 
   10023   // If we get a splat of zeros, convert this vector store to a store of
   10024   // scalars. They will be merged into store pairs of xzr thereby removing one
   10025   // instruction and one register.
   10026   if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
   10027     return ReplacedZeroSplat;
   10028 
   10029   // FIXME: The logic for deciding if an unaligned store should be split should
   10030   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
   10031   // a call to that function here.
   10032 
   10033   if (!Subtarget->isMisaligned128StoreSlow())
   10034     return SDValue();
   10035 
   10036   // Don't split at -Oz.
   10037   if (DAG.getMachineFunction().getFunction().optForMinSize())
   10038     return SDValue();
   10039 
   10040   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
   10041   // those up regresses performance on micro-benchmarks and olden/bh.
   10042   if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
   10043     return SDValue();
   10044 
   10045   // Split unaligned 16B stores. They are terrible for performance.
   10046   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
   10047   // extensions can use this to mark that it does not want splitting to happen
   10048   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
   10049   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
   10050   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
   10051       S->getAlignment() <= 2)
   10052     return SDValue();
   10053 
   10054   // If we get a splat of a scalar convert this vector store to a store of
   10055   // scalars. They will be merged into store pairs thereby removing two
   10056   // instructions.
   10057   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
   10058     return ReplacedSplat;
   10059 
   10060   SDLoc DL(S);
   10061   unsigned NumElts = VT.getVectorNumElements() / 2;
   10062   // Split VT into two.
   10063   EVT HalfVT =
   10064       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
   10065   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
   10066                                    DAG.getConstant(0, DL, MVT::i64));
   10067   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
   10068                                    DAG.getConstant(NumElts, DL, MVT::i64));
   10069   SDValue BasePtr = S->getBasePtr();
   10070   SDValue NewST1 =
   10071       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
   10072                    S->getAlignment(), S->getMemOperand()->getFlags());
   10073   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
   10074                                   DAG.getConstant(8, DL, MVT::i64));
   10075   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
   10076                       S->getPointerInfo(), S->getAlignment(),
   10077                       S->getMemOperand()->getFlags());
   10078 }
   10079 
   10080 /// Target-specific DAG combine function for post-increment LD1 (lane) and
   10081 /// post-increment LD1R.
   10082 static SDValue performPostLD1Combine(SDNode *N,
   10083                                      TargetLowering::DAGCombinerInfo &DCI,
   10084                                      bool IsLaneOp) {
   10085   if (DCI.isBeforeLegalizeOps())
   10086     return SDValue();
   10087 
   10088   SelectionDAG &DAG = DCI.DAG;
   10089   EVT VT = N->getValueType(0);
   10090 
   10091   unsigned LoadIdx = IsLaneOp ? 1 : 0;
   10092   SDNode *LD = N->getOperand(LoadIdx).getNode();
   10093   // If it is not LOAD, can not do such combine.
   10094   if (LD->getOpcode() != ISD::LOAD)
   10095     return SDValue();
   10096 
   10097   // The vector lane must be a constant in the LD1LANE opcode.
   10098   SDValue Lane;
   10099   if (IsLaneOp) {
   10100     Lane = N->getOperand(2);
   10101     auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
   10102     if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
   10103       return SDValue();
   10104   }
   10105 
   10106   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
   10107   EVT MemVT = LoadSDN->getMemoryVT();
   10108   // Check if memory operand is the same type as the vector element.
   10109   if (MemVT != VT.getVectorElementType())
   10110     return SDValue();
   10111 
   10112   // Check if there are other uses. If so, do not combine as it will introduce
   10113   // an extra load.
   10114   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
   10115        ++UI) {
   10116     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
   10117       continue;
   10118     if (*UI != N)
   10119       return SDValue();
   10120   }
   10121 
   10122   SDValue Addr = LD->getOperand(1);
   10123   SDValue Vector = N->getOperand(0);
   10124   // Search for a use of the address operand that is an increment.
   10125   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
   10126        Addr.getNode()->use_end(); UI != UE; ++UI) {
   10127     SDNode *User = *UI;
   10128     if (User->getOpcode() != ISD::ADD
   10129         || UI.getUse().getResNo() != Addr.getResNo())
   10130       continue;
   10131 
   10132     // Check that the add is independent of the load.  Otherwise, folding it
   10133     // would create a cycle.
   10134     if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
   10135       continue;
   10136     // Also check that add is not used in the vector operand.  This would also
   10137     // create a cycle.
   10138     if (User->isPredecessorOf(Vector.getNode()))
   10139       continue;
   10140 
   10141     // If the increment is a constant, it must match the memory ref size.
   10142     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   10143     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   10144       uint32_t IncVal = CInc->getZExtValue();
   10145       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
   10146       if (IncVal != NumBytes)
   10147         continue;
   10148       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
   10149     }
   10150 
   10151     // Finally, check that the vector doesn't depend on the load.
   10152     // Again, this would create a cycle.
   10153     // The load depending on the vector is fine, as that's the case for the
   10154     // LD1*post we'll eventually generate anyway.
   10155     if (LoadSDN->isPredecessorOf(Vector.getNode()))
   10156       continue;
   10157 
   10158     SmallVector<SDValue, 8> Ops;
   10159     Ops.push_back(LD->getOperand(0));  // Chain
   10160     if (IsLaneOp) {
   10161       Ops.push_back(Vector);           // The vector to be inserted
   10162       Ops.push_back(Lane);             // The lane to be inserted in the vector
   10163     }
   10164     Ops.push_back(Addr);
   10165     Ops.push_back(Inc);
   10166 
   10167     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
   10168     SDVTList SDTys = DAG.getVTList(Tys);
   10169     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
   10170     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
   10171                                            MemVT,
   10172                                            LoadSDN->getMemOperand());
   10173 
   10174     // Update the uses.
   10175     SDValue NewResults[] = {
   10176         SDValue(LD, 0),            // The result of load
   10177         SDValue(UpdN.getNode(), 2) // Chain
   10178     };
   10179     DCI.CombineTo(LD, NewResults);
   10180     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
   10181     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
   10182 
   10183     break;
   10184   }
   10185   return SDValue();
   10186 }
   10187 
   10188 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
   10189 /// address translation.
   10190 static bool performTBISimplification(SDValue Addr,
   10191                                      TargetLowering::DAGCombinerInfo &DCI,
   10192                                      SelectionDAG &DAG) {
   10193   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
   10194   KnownBits Known;
   10195   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   10196                                         !DCI.isBeforeLegalizeOps());
   10197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10198   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
   10199     DCI.CommitTargetLoweringOpt(TLO);
   10200     return true;
   10201   }
   10202   return false;
   10203 }
   10204 
   10205 static SDValue performSTORECombine(SDNode *N,
   10206                                    TargetLowering::DAGCombinerInfo &DCI,
   10207                                    SelectionDAG &DAG,
   10208                                    const AArch64Subtarget *Subtarget) {
   10209   if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
   10210     return Split;
   10211 
   10212   if (Subtarget->supportsAddressTopByteIgnored() &&
   10213       performTBISimplification(N->getOperand(2), DCI, DAG))
   10214     return SDValue(N, 0);
   10215 
   10216   return SDValue();
   10217 }
   10218 
   10219 
   10220 /// Target-specific DAG combine function for NEON load/store intrinsics
   10221 /// to merge base address updates.
   10222 static SDValue performNEONPostLDSTCombine(SDNode *N,
   10223                                           TargetLowering::DAGCombinerInfo &DCI,
   10224                                           SelectionDAG &DAG) {
   10225   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   10226     return SDValue();
   10227 
   10228   unsigned AddrOpIdx = N->getNumOperands() - 1;
   10229   SDValue Addr = N->getOperand(AddrOpIdx);
   10230 
   10231   // Search for a use of the address operand that is an increment.
   10232   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   10233        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   10234     SDNode *User = *UI;
   10235     if (User->getOpcode() != ISD::ADD ||
   10236         UI.getUse().getResNo() != Addr.getResNo())
   10237       continue;
   10238 
   10239     // Check that the add is independent of the load/store.  Otherwise, folding
   10240     // it would create a cycle.
   10241     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   10242       continue;
   10243 
   10244     // Find the new opcode for the updating load/store.
   10245     bool IsStore = false;
   10246     bool IsLaneOp = false;
   10247     bool IsDupOp = false;
   10248     unsigned NewOpc = 0;
   10249     unsigned NumVecs = 0;
   10250     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   10251     switch (IntNo) {
   10252     default: llvm_unreachable("unexpected intrinsic for Neon base update");
   10253     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
   10254       NumVecs = 2; break;
   10255     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
   10256       NumVecs = 3; break;
   10257     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
   10258       NumVecs = 4; break;
   10259     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
   10260       NumVecs = 2; IsStore = true; break;
   10261     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
   10262       NumVecs = 3; IsStore = true; break;
   10263     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
   10264       NumVecs = 4; IsStore = true; break;
   10265     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
   10266       NumVecs = 2; break;
   10267     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
   10268       NumVecs = 3; break;
   10269     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
   10270       NumVecs = 4; break;
   10271     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
   10272       NumVecs = 2; IsStore = true; break;
   10273     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
   10274       NumVecs = 3; IsStore = true; break;
   10275     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
   10276       NumVecs = 4; IsStore = true; break;
   10277     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
   10278       NumVecs = 2; IsDupOp = true; break;
   10279     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
   10280       NumVecs = 3; IsDupOp = true; break;
   10281     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
   10282       NumVecs = 4; IsDupOp = true; break;
   10283     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
   10284       NumVecs = 2; IsLaneOp = true; break;
   10285     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
   10286       NumVecs = 3; IsLaneOp = true; break;
   10287     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
   10288       NumVecs = 4; IsLaneOp = true; break;
   10289     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
   10290       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
   10291     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
   10292       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
   10293     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
   10294       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
   10295     }
   10296 
   10297     EVT VecTy;
   10298     if (IsStore)
   10299       VecTy = N->getOperand(2).getValueType();
   10300     else
   10301       VecTy = N->getValueType(0);
   10302 
   10303     // If the increment is a constant, it must match the memory ref size.
   10304     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   10305     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   10306       uint32_t IncVal = CInc->getZExtValue();
   10307       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   10308       if (IsLaneOp || IsDupOp)
   10309         NumBytes /= VecTy.getVectorNumElements();
   10310       if (IncVal != NumBytes)
   10311         continue;
   10312       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
   10313     }
   10314     SmallVector<SDValue, 8> Ops;
   10315     Ops.push_back(N->getOperand(0)); // Incoming chain
   10316     // Load lane and store have vector list as input.
   10317     if (IsLaneOp || IsStore)
   10318       for (unsigned i = 2; i < AddrOpIdx; ++i)
   10319         Ops.push_back(N->getOperand(i));
   10320     Ops.push_back(Addr); // Base register
   10321     Ops.push_back(Inc);
   10322 
   10323     // Return Types.
   10324     EVT Tys[6];
   10325     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
   10326     unsigned n;
   10327     for (n = 0; n < NumResultVecs; ++n)
   10328       Tys[n] = VecTy;
   10329     Tys[n++] = MVT::i64;  // Type of write back register
   10330     Tys[n] = MVT::Other;  // Type of the chain
   10331     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
   10332 
   10333     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
   10334     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
   10335                                            MemInt->getMemoryVT(),
   10336                                            MemInt->getMemOperand());
   10337 
   10338     // Update the uses.
   10339     std::vector<SDValue> NewResults;
   10340     for (unsigned i = 0; i < NumResultVecs; ++i) {
   10341       NewResults.push_back(SDValue(UpdN.getNode(), i));
   10342     }
   10343     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
   10344     DCI.CombineTo(N, NewResults);
   10345     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   10346 
   10347     break;
   10348   }
   10349   return SDValue();
   10350 }
   10351 
   10352 // Checks to see if the value is the prescribed width and returns information
   10353 // about its extension mode.
   10354 static
   10355 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
   10356   ExtType = ISD::NON_EXTLOAD;
   10357   switch(V.getNode()->getOpcode()) {
   10358   default:
   10359     return false;
   10360   case ISD::LOAD: {
   10361     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
   10362     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
   10363        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
   10364       ExtType = LoadNode->getExtensionType();
   10365       return true;
   10366     }
   10367     return false;
   10368   }
   10369   case ISD::AssertSext: {
   10370     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
   10371     if ((TypeNode->getVT() == MVT::i8 && width == 8)
   10372        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
   10373       ExtType = ISD::SEXTLOAD;
   10374       return true;
   10375     }
   10376     return false;
   10377   }
   10378   case ISD::AssertZext: {
   10379     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
   10380     if ((TypeNode->getVT() == MVT::i8 && width == 8)
   10381        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
   10382       ExtType = ISD::ZEXTLOAD;
   10383       return true;
   10384     }
   10385     return false;
   10386   }
   10387   case ISD::Constant:
   10388   case ISD::TargetConstant: {
   10389     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
   10390            1LL << (width - 1);
   10391   }
   10392   }
   10393 
   10394   return true;
   10395 }
   10396 
   10397 // This function does a whole lot of voodoo to determine if the tests are
   10398 // equivalent without and with a mask. Essentially what happens is that given a
   10399 // DAG resembling:
   10400 //
   10401 //  +-------------+ +-------------+ +-------------+ +-------------+
   10402 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
   10403 //  +-------------+ +-------------+ +-------------+ +-------------+
   10404 //           |           |           |               |
   10405 //           V           V           |    +----------+
   10406 //          +-------------+  +----+  |    |
   10407 //          |     ADD     |  |0xff|  |    |
   10408 //          +-------------+  +----+  |    |
   10409 //                  |           |    |    |
   10410 //                  V           V    |    |
   10411 //                 +-------------+   |    |
   10412 //                 |     AND     |   |    |
   10413 //                 +-------------+   |    |
   10414 //                      |            |    |
   10415 //                      +-----+      |    |
   10416 //                            |      |    |
   10417 //                            V      V    V
   10418 //                           +-------------+
   10419 //                           |     CMP     |
   10420 //                           +-------------+
   10421 //
   10422 // The AND node may be safely removed for some combinations of inputs. In
   10423 // particular we need to take into account the extension type of the Input,
   10424 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
   10425 // width of the input (this can work for any width inputs, the above graph is
   10426 // specific to 8 bits.
   10427 //
   10428 // The specific equations were worked out by generating output tables for each
   10429 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
   10430 // problem was simplified by working with 4 bit inputs, which means we only
   10431 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
   10432 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
   10433 // patterns present in both extensions (0,7). For every distinct set of
   10434 // AddConstant and CompConstants bit patterns we can consider the masked and
   10435 // unmasked versions to be equivalent if the result of this function is true for
   10436 // all 16 distinct bit patterns of for the current extension type of Input (w0).
   10437 //
   10438 //   sub      w8, w0, w1
   10439 //   and      w10, w8, #0x0f
   10440 //   cmp      w8, w2
   10441 //   cset     w9, AArch64CC
   10442 //   cmp      w10, w2
   10443 //   cset     w11, AArch64CC
   10444 //   cmp      w9, w11
   10445 //   cset     w0, eq
   10446 //   ret
   10447 //
   10448 // Since the above function shows when the outputs are equivalent it defines
   10449 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
   10450 // would be expensive to run during compiles. The equations below were written
   10451 // in a test harness that confirmed they gave equivalent outputs to the above
   10452 // for all inputs function, so they can be used determine if the removal is
   10453 // legal instead.
   10454 //
   10455 // isEquivalentMaskless() is the code for testing if the AND can be removed
   10456 // factored out of the DAG recognition as the DAG can take several forms.
   10457 
   10458 static bool isEquivalentMaskless(unsigned CC, unsigned width,
   10459                                  ISD::LoadExtType ExtType, int AddConstant,
   10460                                  int CompConstant) {
   10461   // By being careful about our equations and only writing the in term
   10462   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
   10463   // make them generally applicable to all bit widths.
   10464   int MaxUInt = (1 << width);
   10465 
   10466   // For the purposes of these comparisons sign extending the type is
   10467   // equivalent to zero extending the add and displacing it by half the integer
   10468   // width. Provided we are careful and make sure our equations are valid over
   10469   // the whole range we can just adjust the input and avoid writing equations
   10470   // for sign extended inputs.
   10471   if (ExtType == ISD::SEXTLOAD)
   10472     AddConstant -= (1 << (width-1));
   10473 
   10474   switch(CC) {
   10475   case AArch64CC::LE:
   10476   case AArch64CC::GT:
   10477     if ((AddConstant == 0) ||
   10478         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
   10479         (AddConstant >= 0 && CompConstant < 0) ||
   10480         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
   10481       return true;
   10482     break;
   10483   case AArch64CC::LT:
   10484   case AArch64CC::GE:
   10485     if ((AddConstant == 0) ||
   10486         (AddConstant >= 0 && CompConstant <= 0) ||
   10487         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
   10488       return true;
   10489     break;
   10490   case AArch64CC::HI:
   10491   case AArch64CC::LS:
   10492     if ((AddConstant >= 0 && CompConstant < 0) ||
   10493        (AddConstant <= 0 && CompConstant >= -1 &&
   10494         CompConstant < AddConstant + MaxUInt))
   10495       return true;
   10496    break;
   10497   case AArch64CC::PL:
   10498   case AArch64CC::MI:
   10499     if ((AddConstant == 0) ||
   10500         (AddConstant > 0 && CompConstant <= 0) ||
   10501         (AddConstant < 0 && CompConstant <= AddConstant))
   10502       return true;
   10503     break;
   10504   case AArch64CC::LO:
   10505   case AArch64CC::HS:
   10506     if ((AddConstant >= 0 && CompConstant <= 0) ||
   10507         (AddConstant <= 0 && CompConstant >= 0 &&
   10508          CompConstant <= AddConstant + MaxUInt))
   10509       return true;
   10510     break;
   10511   case AArch64CC::EQ:
   10512   case AArch64CC::NE:
   10513     if ((AddConstant > 0 && CompConstant < 0) ||
   10514         (AddConstant < 0 && CompConstant >= 0 &&
   10515          CompConstant < AddConstant + MaxUInt) ||
   10516         (AddConstant >= 0 && CompConstant >= 0 &&
   10517          CompConstant >= AddConstant) ||
   10518         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
   10519       return true;
   10520     break;
   10521   case AArch64CC::VS:
   10522   case AArch64CC::VC:
   10523   case AArch64CC::AL:
   10524   case AArch64CC::NV:
   10525     return true;
   10526   case AArch64CC::Invalid:
   10527     break;
   10528   }
   10529 
   10530   return false;
   10531 }
   10532 
   10533 static
   10534 SDValue performCONDCombine(SDNode *N,
   10535                            TargetLowering::DAGCombinerInfo &DCI,
   10536                            SelectionDAG &DAG, unsigned CCIndex,
   10537                            unsigned CmpIndex) {
   10538   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
   10539   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
   10540   unsigned CondOpcode = SubsNode->getOpcode();
   10541 
   10542   if (CondOpcode != AArch64ISD::SUBS)
   10543     return SDValue();
   10544 
   10545   // There is a SUBS feeding this condition. Is it fed by a mask we can
   10546   // use?
   10547 
   10548   SDNode *AndNode = SubsNode->getOperand(0).getNode();
   10549   unsigned MaskBits = 0;
   10550 
   10551   if (AndNode->getOpcode() != ISD::AND)
   10552     return SDValue();
   10553 
   10554   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
   10555     uint32_t CNV = CN->getZExtValue();
   10556     if (CNV == 255)
   10557       MaskBits = 8;
   10558     else if (CNV == 65535)
   10559       MaskBits = 16;
   10560   }
   10561 
   10562   if (!MaskBits)
   10563     return SDValue();
   10564 
   10565   SDValue AddValue = AndNode->getOperand(0);
   10566 
   10567   if (AddValue.getOpcode() != ISD::ADD)
   10568     return SDValue();
   10569 
   10570   // The basic dag structure is correct, grab the inputs and validate them.
   10571 
   10572   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
   10573   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
   10574   SDValue SubsInputValue = SubsNode->getOperand(1);
   10575 
   10576   // The mask is present and the provenance of all the values is a smaller type,
   10577   // lets see if the mask is superfluous.
   10578 
   10579   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
   10580       !isa<ConstantSDNode>(SubsInputValue.getNode()))
   10581     return SDValue();
   10582 
   10583   ISD::LoadExtType ExtType;
   10584 
   10585   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
   10586       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
   10587       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
   10588     return SDValue();
   10589 
   10590   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
   10591                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
   10592                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
   10593     return SDValue();
   10594 
   10595   // The AND is not necessary, remove it.
   10596 
   10597   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
   10598                                SubsNode->getValueType(1));
   10599   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
   10600 
   10601   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
   10602   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
   10603 
   10604   return SDValue(N, 0);
   10605 }
   10606 
   10607 // Optimize compare with zero and branch.
   10608 static SDValue performBRCONDCombine(SDNode *N,
   10609                                     TargetLowering::DAGCombinerInfo &DCI,
   10610                                     SelectionDAG &DAG) {
   10611   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
   10612     N = NV.getNode();
   10613   SDValue Chain = N->getOperand(0);
   10614   SDValue Dest = N->getOperand(1);
   10615   SDValue CCVal = N->getOperand(2);
   10616   SDValue Cmp = N->getOperand(3);
   10617 
   10618   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
   10619   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
   10620   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
   10621     return SDValue();
   10622 
   10623   unsigned CmpOpc = Cmp.getOpcode();
   10624   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
   10625     return SDValue();
   10626 
   10627   // Only attempt folding if there is only one use of the flag and no use of the
   10628   // value.
   10629   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
   10630     return SDValue();
   10631 
   10632   SDValue LHS = Cmp.getOperand(0);
   10633   SDValue RHS = Cmp.getOperand(1);
   10634 
   10635   assert(LHS.getValueType() == RHS.getValueType() &&
   10636          "Expected the value type to be the same for both operands!");
   10637   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
   10638     return SDValue();
   10639 
   10640   if (isNullConstant(LHS))
   10641     std::swap(LHS, RHS);
   10642 
   10643   if (!isNullConstant(RHS))
   10644     return SDValue();
   10645 
   10646   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
   10647       LHS.getOpcode() == ISD::SRL)
   10648     return SDValue();
   10649 
   10650   // Fold the compare into the branch instruction.
   10651   SDValue BR;
   10652   if (CC == AArch64CC::EQ)
   10653     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
   10654   else
   10655     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
   10656 
   10657   // Do not add new nodes to DAG combiner worklist.
   10658   DCI.CombineTo(N, BR, false);
   10659 
   10660   return SDValue();
   10661 }
   10662 
   10663 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
   10664 // as well as whether the test should be inverted.  This code is required to
   10665 // catch these cases (as opposed to standard dag combines) because
   10666 // AArch64ISD::TBZ is matched during legalization.
   10667 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
   10668                                  SelectionDAG &DAG) {
   10669 
   10670   if (!Op->hasOneUse())
   10671     return Op;
   10672 
   10673   // We don't handle undef/constant-fold cases below, as they should have
   10674   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
   10675   // etc.)
   10676 
   10677   // (tbz (trunc x), b) -> (tbz x, b)
   10678   // This case is just here to enable more of the below cases to be caught.
   10679   if (Op->getOpcode() == ISD::TRUNCATE &&
   10680       Bit < Op->getValueType(0).getSizeInBits()) {
   10681     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10682   }
   10683 
   10684   if (Op->getNumOperands() != 2)
   10685     return Op;
   10686 
   10687   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
   10688   if (!C)
   10689     return Op;
   10690 
   10691   switch (Op->getOpcode()) {
   10692   default:
   10693     return Op;
   10694 
   10695   // (tbz (and x, m), b) -> (tbz x, b)
   10696   case ISD::AND:
   10697     if ((C->getZExtValue() >> Bit) & 1)
   10698       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10699     return Op;
   10700 
   10701   // (tbz (shl x, c), b) -> (tbz x, b-c)
   10702   case ISD::SHL:
   10703     if (C->getZExtValue() <= Bit &&
   10704         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
   10705       Bit = Bit - C->getZExtValue();
   10706       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10707     }
   10708     return Op;
   10709 
   10710   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
   10711   case ISD::SRA:
   10712     Bit = Bit + C->getZExtValue();
   10713     if (Bit >= Op->getValueType(0).getSizeInBits())
   10714       Bit = Op->getValueType(0).getSizeInBits() - 1;
   10715     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10716 
   10717   // (tbz (srl x, c), b) -> (tbz x, b+c)
   10718   case ISD::SRL:
   10719     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
   10720       Bit = Bit + C->getZExtValue();
   10721       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10722     }
   10723     return Op;
   10724 
   10725   // (tbz (xor x, -1), b) -> (tbnz x, b)
   10726   case ISD::XOR:
   10727     if ((C->getZExtValue() >> Bit) & 1)
   10728       Invert = !Invert;
   10729     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
   10730   }
   10731 }
   10732 
   10733 // Optimize test single bit zero/non-zero and branch.
   10734 static SDValue performTBZCombine(SDNode *N,
   10735                                  TargetLowering::DAGCombinerInfo &DCI,
   10736                                  SelectionDAG &DAG) {
   10737   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   10738   bool Invert = false;
   10739   SDValue TestSrc = N->getOperand(1);
   10740   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
   10741 
   10742   if (TestSrc == NewTestSrc)
   10743     return SDValue();
   10744 
   10745   unsigned NewOpc = N->getOpcode();
   10746   if (Invert) {
   10747     if (NewOpc == AArch64ISD::TBZ)
   10748       NewOpc = AArch64ISD::TBNZ;
   10749     else {
   10750       assert(NewOpc == AArch64ISD::TBNZ);
   10751       NewOpc = AArch64ISD::TBZ;
   10752     }
   10753   }
   10754 
   10755   SDLoc DL(N);
   10756   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
   10757                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
   10758 }
   10759 
   10760 // vselect (v1i1 setcc) ->
   10761 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
   10762 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
   10763 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
   10764 // such VSELECT.
   10765 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
   10766   SDValue N0 = N->getOperand(0);
   10767   EVT CCVT = N0.getValueType();
   10768 
   10769   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
   10770       CCVT.getVectorElementType() != MVT::i1)
   10771     return SDValue();
   10772 
   10773   EVT ResVT = N->getValueType(0);
   10774   EVT CmpVT = N0.getOperand(0).getValueType();
   10775   // Only combine when the result type is of the same size as the compared
   10776   // operands.
   10777   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
   10778     return SDValue();
   10779 
   10780   SDValue IfTrue = N->getOperand(1);
   10781   SDValue IfFalse = N->getOperand(2);
   10782   SDValue SetCC =
   10783       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
   10784                    N0.getOperand(0), N0.getOperand(1),
   10785                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
   10786   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
   10787                      IfTrue, IfFalse);
   10788 }
   10789 
   10790 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
   10791 /// the compare-mask instructions rather than going via NZCV, even if LHS and
   10792 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
   10793 /// with a vector one followed by a DUP shuffle on the result.
   10794 static SDValue performSelectCombine(SDNode *N,
   10795                                     TargetLowering::DAGCombinerInfo &DCI) {
   10796   SelectionDAG &DAG = DCI.DAG;
   10797   SDValue N0 = N->getOperand(0);
   10798   EVT ResVT = N->getValueType(0);
   10799 
   10800   if (N0.getOpcode() != ISD::SETCC)
   10801     return SDValue();
   10802 
   10803   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
   10804   // scalar SetCCResultType. We also don't expect vectors, because we assume
   10805   // that selects fed by vector SETCCs are canonicalized to VSELECT.
   10806   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
   10807          "Scalar-SETCC feeding SELECT has unexpected result type!");
   10808 
   10809   // If NumMaskElts == 0, the comparison is larger than select result. The
   10810   // largest real NEON comparison is 64-bits per lane, which means the result is
   10811   // at most 32-bits and an illegal vector. Just bail out for now.
   10812   EVT SrcVT = N0.getOperand(0).getValueType();
   10813 
   10814   // Don't try to do this optimization when the setcc itself has i1 operands.
   10815   // There are no legal vectors of i1, so this would be pointless.
   10816   if (SrcVT == MVT::i1)
   10817     return SDValue();
   10818 
   10819   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
   10820   if (!ResVT.isVector() || NumMaskElts == 0)
   10821     return SDValue();
   10822 
   10823   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
   10824   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
   10825 
   10826   // Also bail out if the vector CCVT isn't the same size as ResVT.
   10827   // This can happen if the SETCC operand size doesn't divide the ResVT size
   10828   // (e.g., f64 vs v3f32).
   10829   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
   10830     return SDValue();
   10831 
   10832   // Make sure we didn't create illegal types, if we're not supposed to.
   10833   assert(DCI.isBeforeLegalize() ||
   10834          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
   10835 
   10836   // First perform a vector comparison, where lane 0 is the one we're interested
   10837   // in.
   10838   SDLoc DL(N0);
   10839   SDValue LHS =
   10840       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
   10841   SDValue RHS =
   10842       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
   10843   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
   10844 
   10845   // Now duplicate the comparison mask we want across all other lanes.
   10846   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
   10847   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
   10848   Mask = DAG.getNode(ISD::BITCAST, DL,
   10849                      ResVT.changeVectorElementTypeToInteger(), Mask);
   10850 
   10851   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
   10852 }
   10853 
   10854 /// Get rid of unnecessary NVCASTs (that don't change the type).
   10855 static SDValue performNVCASTCombine(SDNode *N) {
   10856   if (N->getValueType(0) == N->getOperand(0).getValueType())
   10857     return N->getOperand(0);
   10858 
   10859   return SDValue();
   10860 }
   10861 
   10862 // If all users of the globaladdr are of the form (globaladdr + constant), find
   10863 // the smallest constant, fold it into the globaladdr's offset and rewrite the
   10864 // globaladdr as (globaladdr + constant) - constant.
   10865 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
   10866                                            const AArch64Subtarget *Subtarget,
   10867                                            const TargetMachine &TM) {
   10868   auto *GN = dyn_cast<GlobalAddressSDNode>(N);
   10869   if (!GN || Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
   10870                  AArch64II::MO_NO_FLAG)
   10871     return SDValue();
   10872 
   10873   uint64_t MinOffset = -1ull;
   10874   for (SDNode *N : GN->uses()) {
   10875     if (N->getOpcode() != ISD::ADD)
   10876       return SDValue();
   10877     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
   10878     if (!C)
   10879       C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   10880     if (!C)
   10881       return SDValue();
   10882     MinOffset = std::min(MinOffset, C->getZExtValue());
   10883   }
   10884   uint64_t Offset = MinOffset + GN->getOffset();
   10885 
   10886   // Require that the new offset is larger than the existing one. Otherwise, we
   10887   // can end up oscillating between two possible DAGs, for example,
   10888   // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
   10889   if (Offset <= uint64_t(GN->getOffset()))
   10890     return SDValue();
   10891 
   10892   // Check whether folding this offset is legal. It must not go out of bounds of
   10893   // the referenced object to avoid violating the code model, and must be
   10894   // smaller than 2^21 because this is the largest offset expressible in all
   10895   // object formats.
   10896   //
   10897   // This check also prevents us from folding negative offsets, which will end
   10898   // up being treated in the same way as large positive ones. They could also
   10899   // cause code model violations, and aren't really common enough to matter.
   10900   if (Offset >= (1 << 21))
   10901     return SDValue();
   10902 
   10903   const GlobalValue *GV = GN->getGlobal();
   10904   Type *T = GV->getValueType();
   10905   if (!T->isSized() ||
   10906       Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
   10907     return SDValue();
   10908 
   10909   SDLoc DL(GN);
   10910   SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
   10911   return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
   10912                      DAG.getConstant(MinOffset, DL, MVT::i64));
   10913 }
   10914 
   10915 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
   10916                                                  DAGCombinerInfo &DCI) const {
   10917   SelectionDAG &DAG = DCI.DAG;
   10918   switch (N->getOpcode()) {
   10919   default:
   10920     LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
   10921     break;
   10922   case ISD::ADD:
   10923   case ISD::SUB:
   10924     return performAddSubLongCombine(N, DCI, DAG);
   10925   case ISD::XOR:
   10926     return performXorCombine(N, DAG, DCI, Subtarget);
   10927   case ISD::MUL:
   10928     return performMulCombine(N, DAG, DCI, Subtarget);
   10929   case ISD::SINT_TO_FP:
   10930   case ISD::UINT_TO_FP:
   10931     return performIntToFpCombine(N, DAG, Subtarget);
   10932   case ISD::FP_TO_SINT:
   10933   case ISD::FP_TO_UINT:
   10934     return performFpToIntCombine(N, DAG, DCI, Subtarget);
   10935   case ISD::FDIV:
   10936     return performFDivCombine(N, DAG, DCI, Subtarget);
   10937   case ISD::OR:
   10938     return performORCombine(N, DCI, Subtarget);
   10939   case ISD::SRL:
   10940     return performSRLCombine(N, DCI);
   10941   case ISD::INTRINSIC_WO_CHAIN:
   10942     return performIntrinsicCombine(N, DCI, Subtarget);
   10943   case ISD::ANY_EXTEND:
   10944   case ISD::ZERO_EXTEND:
   10945   case ISD::SIGN_EXTEND:
   10946     return performExtendCombine(N, DCI, DAG);
   10947   case ISD::BITCAST:
   10948     return performBitcastCombine(N, DCI, DAG);
   10949   case ISD::CONCAT_VECTORS:
   10950     return performConcatVectorsCombine(N, DCI, DAG);
   10951   case ISD::SELECT:
   10952     return performSelectCombine(N, DCI);
   10953   case ISD::VSELECT:
   10954     return performVSelectCombine(N, DCI.DAG);
   10955   case ISD::LOAD:
   10956     if (performTBISimplification(N->getOperand(1), DCI, DAG))
   10957       return SDValue(N, 0);
   10958     break;
   10959   case ISD::STORE:
   10960     return performSTORECombine(N, DCI, DAG, Subtarget);
   10961   case AArch64ISD::BRCOND:
   10962     return performBRCONDCombine(N, DCI, DAG);
   10963   case AArch64ISD::TBNZ:
   10964   case AArch64ISD::TBZ:
   10965     return performTBZCombine(N, DCI, DAG);
   10966   case AArch64ISD::CSEL:
   10967     return performCONDCombine(N, DCI, DAG, 2, 3);
   10968   case AArch64ISD::DUP:
   10969     return performPostLD1Combine(N, DCI, false);
   10970   case AArch64ISD::NVCAST:
   10971     return performNVCASTCombine(N);
   10972   case ISD::INSERT_VECTOR_ELT:
   10973     return performPostLD1Combine(N, DCI, true);
   10974   case ISD::INTRINSIC_VOID:
   10975   case ISD::INTRINSIC_W_CHAIN:
   10976     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10977     case Intrinsic::aarch64_neon_ld2:
   10978     case Intrinsic::aarch64_neon_ld3:
   10979     case Intrinsic::aarch64_neon_ld4:
   10980     case Intrinsic::aarch64_neon_ld1x2:
   10981     case Intrinsic::aarch64_neon_ld1x3:
   10982     case Intrinsic::aarch64_neon_ld1x4:
   10983     case Intrinsic::aarch64_neon_ld2lane:
   10984     case Intrinsic::aarch64_neon_ld3lane:
   10985     case Intrinsic::aarch64_neon_ld4lane:
   10986     case Intrinsic::aarch64_neon_ld2r:
   10987     case Intrinsic::aarch64_neon_ld3r:
   10988     case Intrinsic::aarch64_neon_ld4r:
   10989     case Intrinsic::aarch64_neon_st2:
   10990     case Intrinsic::aarch64_neon_st3:
   10991     case Intrinsic::aarch64_neon_st4:
   10992     case Intrinsic::aarch64_neon_st1x2:
   10993     case Intrinsic::aarch64_neon_st1x3:
   10994     case Intrinsic::aarch64_neon_st1x4:
   10995     case Intrinsic::aarch64_neon_st2lane:
   10996     case Intrinsic::aarch64_neon_st3lane:
   10997     case Intrinsic::aarch64_neon_st4lane:
   10998       return performNEONPostLDSTCombine(N, DCI, DAG);
   10999     default:
   11000       break;
   11001     }
   11002     break;
   11003   case ISD::GlobalAddress:
   11004     return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
   11005   }
   11006   return SDValue();
   11007 }
   11008 
   11009 // Check if the return value is used as only a return value, as otherwise
   11010 // we can't perform a tail-call. In particular, we need to check for
   11011 // target ISD nodes that are returns and any other "odd" constructs
   11012 // that the generic analysis code won't necessarily catch.
   11013 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
   11014                                                SDValue &Chain) const {
   11015   if (N->getNumValues() != 1)
   11016     return false;
   11017   if (!N->hasNUsesOfValue(1, 0))
   11018     return false;
   11019 
   11020   SDValue TCChain = Chain;
   11021   SDNode *Copy = *N->use_begin();
   11022   if (Copy->getOpcode() == ISD::CopyToReg) {
   11023     // If the copy has a glue operand, we conservatively assume it isn't safe to
   11024     // perform a tail call.
   11025     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
   11026         MVT::Glue)
   11027       return false;
   11028     TCChain = Copy->getOperand(0);
   11029   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
   11030     return false;
   11031 
   11032   bool HasRet = false;
   11033   for (SDNode *Node : Copy->uses()) {
   11034     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
   11035       return false;
   11036     HasRet = true;
   11037   }
   11038 
   11039   if (!HasRet)
   11040     return false;
   11041 
   11042   Chain = TCChain;
   11043   return true;
   11044 }
   11045 
   11046 // Return whether the an instruction can potentially be optimized to a tail
   11047 // call. This will cause the optimizers to attempt to move, or duplicate,
   11048 // return instructions to help enable tail call optimizations for this
   11049 // instruction.
   11050 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
   11051   return CI->isTailCall();
   11052 }
   11053 
   11054 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
   11055                                                    SDValue &Offset,
   11056                                                    ISD::MemIndexedMode &AM,
   11057                                                    bool &IsInc,
   11058                                                    SelectionDAG &DAG) const {
   11059   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
   11060     return false;
   11061 
   11062   Base = Op->getOperand(0);
   11063   // All of the indexed addressing mode instructions take a signed
   11064   // 9 bit immediate offset.
   11065   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
   11066     int64_t RHSC = RHS->getSExtValue();
   11067     if (Op->getOpcode() == ISD::SUB)
   11068       RHSC = -(uint64_t)RHSC;
   11069     if (!isInt<9>(RHSC))
   11070       return false;
   11071     IsInc = (Op->getOpcode() == ISD::ADD);
   11072     Offset = Op->getOperand(1);
   11073     return true;
   11074   }
   11075   return false;
   11076 }
   11077 
   11078 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   11079                                                       SDValue &Offset,
   11080                                                       ISD::MemIndexedMode &AM,
   11081                                                       SelectionDAG &DAG) const {
   11082   EVT VT;
   11083   SDValue Ptr;
   11084   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11085     VT = LD->getMemoryVT();
   11086     Ptr = LD->getBasePtr();
   11087   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11088     VT = ST->getMemoryVT();
   11089     Ptr = ST->getBasePtr();
   11090   } else
   11091     return false;
   11092 
   11093   bool IsInc;
   11094   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
   11095     return false;
   11096   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
   11097   return true;
   11098 }
   11099 
   11100 bool AArch64TargetLowering::getPostIndexedAddressParts(
   11101     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
   11102     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
   11103   EVT VT;
   11104   SDValue Ptr;
   11105   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11106     VT = LD->getMemoryVT();
   11107     Ptr = LD->getBasePtr();
   11108   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11109     VT = ST->getMemoryVT();
   11110     Ptr = ST->getBasePtr();
   11111   } else
   11112     return false;
   11113 
   11114   bool IsInc;
   11115   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
   11116     return false;
   11117   // Post-indexing updates the base, so it's not a valid transform
   11118   // if that's not the same as the load's pointer.
   11119   if (Ptr != Base)
   11120     return false;
   11121   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
   11122   return true;
   11123 }
   11124 
   11125 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
   11126                                   SelectionDAG &DAG) {
   11127   SDLoc DL(N);
   11128   SDValue Op = N->getOperand(0);
   11129 
   11130   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
   11131     return;
   11132 
   11133   Op = SDValue(
   11134       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
   11135                          DAG.getUNDEF(MVT::i32), Op,
   11136                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
   11137       0);
   11138   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
   11139   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
   11140 }
   11141 
   11142 static void ReplaceReductionResults(SDNode *N,
   11143                                     SmallVectorImpl<SDValue> &Results,
   11144                                     SelectionDAG &DAG, unsigned InterOp,
   11145                                     unsigned AcrossOp) {
   11146   EVT LoVT, HiVT;
   11147   SDValue Lo, Hi;
   11148   SDLoc dl(N);
   11149   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
   11150   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
   11151   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
   11152   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
   11153   Results.push_back(SplitVal);
   11154 }
   11155 
   11156 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
   11157   SDLoc DL(N);
   11158   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
   11159   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
   11160                            DAG.getNode(ISD::SRL, DL, MVT::i128, N,
   11161                                        DAG.getConstant(64, DL, MVT::i64)));
   11162   return std::make_pair(Lo, Hi);
   11163 }
   11164 
   11165 // Create an even/odd pair of X registers holding integer value V.
   11166 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
   11167   SDLoc dl(V.getNode());
   11168   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
   11169   SDValue VHi = DAG.getAnyExtOrTrunc(
   11170       DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
   11171       dl, MVT::i64);
   11172   if (DAG.getDataLayout().isBigEndian())
   11173     std::swap (VLo, VHi);
   11174   SDValue RegClass =
   11175       DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
   11176   SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
   11177   SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
   11178   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
   11179   return SDValue(
   11180       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
   11181 }
   11182 
   11183 static void ReplaceCMP_SWAP_128Results(SDNode *N,
   11184                                        SmallVectorImpl<SDValue> &Results,
   11185                                        SelectionDAG &DAG,
   11186                                        const AArch64Subtarget *Subtarget) {
   11187   assert(N->getValueType(0) == MVT::i128 &&
   11188          "AtomicCmpSwap on types less than 128 should be legal");
   11189 
   11190   if (Subtarget->hasLSE()) {
   11191     // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
   11192     // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
   11193     SDValue Ops[] = {
   11194         createGPRPairNode(DAG, N->getOperand(2)), // Compare value
   11195         createGPRPairNode(DAG, N->getOperand(3)), // Store value
   11196         N->getOperand(1), // Ptr
   11197         N->getOperand(0), // Chain in
   11198     };
   11199 
   11200     MachineFunction &MF = DAG.getMachineFunction();
   11201     MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
   11202     MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   11203 
   11204     unsigned Opcode;
   11205     switch (MemOp[0]->getOrdering()) {
   11206     case AtomicOrdering::Monotonic:
   11207       Opcode = AArch64::CASPX;
   11208       break;
   11209     case AtomicOrdering::Acquire:
   11210       Opcode = AArch64::CASPAX;
   11211       break;
   11212     case AtomicOrdering::Release:
   11213       Opcode = AArch64::CASPLX;
   11214       break;
   11215     case AtomicOrdering::AcquireRelease:
   11216     case AtomicOrdering::SequentiallyConsistent:
   11217       Opcode = AArch64::CASPALX;
   11218       break;
   11219     default:
   11220       llvm_unreachable("Unexpected ordering!");
   11221     }
   11222 
   11223     MachineSDNode *CmpSwap = DAG.getMachineNode(
   11224         Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
   11225     CmpSwap->setMemRefs(MemOp, MemOp + 1);
   11226 
   11227     unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
   11228     if (DAG.getDataLayout().isBigEndian())
   11229       std::swap(SubReg1, SubReg2);
   11230     Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
   11231                                                  SDValue(CmpSwap, 0)));
   11232     Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
   11233                                                  SDValue(CmpSwap, 0)));
   11234     Results.push_back(SDValue(CmpSwap, 1)); // Chain out
   11235     return;
   11236   }
   11237 
   11238   auto Desired = splitInt128(N->getOperand(2), DAG);
   11239   auto New = splitInt128(N->getOperand(3), DAG);
   11240   SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
   11241                    New.first,        New.second,    N->getOperand(0)};
   11242   SDNode *CmpSwap = DAG.getMachineNode(
   11243       AArch64::CMP_SWAP_128, SDLoc(N),
   11244       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
   11245 
   11246   MachineFunction &MF = DAG.getMachineFunction();
   11247   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
   11248   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   11249   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
   11250 
   11251   Results.push_back(SDValue(CmpSwap, 0));
   11252   Results.push_back(SDValue(CmpSwap, 1));
   11253   Results.push_back(SDValue(CmpSwap, 3));
   11254 }
   11255 
   11256 void AArch64TargetLowering::ReplaceNodeResults(
   11257     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
   11258   switch (N->getOpcode()) {
   11259   default:
   11260     llvm_unreachable("Don't know how to custom expand this");
   11261   case ISD::BITCAST:
   11262     ReplaceBITCASTResults(N, Results, DAG);
   11263     return;
   11264   case ISD::VECREDUCE_ADD:
   11265   case ISD::VECREDUCE_SMAX:
   11266   case ISD::VECREDUCE_SMIN:
   11267   case ISD::VECREDUCE_UMAX:
   11268   case ISD::VECREDUCE_UMIN:
   11269     Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
   11270     return;
   11271 
   11272   case AArch64ISD::SADDV:
   11273     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
   11274     return;
   11275   case AArch64ISD::UADDV:
   11276     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
   11277     return;
   11278   case AArch64ISD::SMINV:
   11279     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
   11280     return;
   11281   case AArch64ISD::UMINV:
   11282     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
   11283     return;
   11284   case AArch64ISD::SMAXV:
   11285     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
   11286     return;
   11287   case AArch64ISD::UMAXV:
   11288     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
   11289     return;
   11290   case ISD::FP_TO_UINT:
   11291   case ISD::FP_TO_SINT:
   11292     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
   11293     // Let normal code take care of it by not adding anything to Results.
   11294     return;
   11295   case ISD::ATOMIC_CMP_SWAP:
   11296     ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
   11297     return;
   11298   }
   11299 }
   11300 
   11301 bool AArch64TargetLowering::useLoadStackGuardNode() const {
   11302   if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
   11303     return TargetLowering::useLoadStackGuardNode();
   11304   return true;
   11305 }
   11306 
   11307 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
   11308   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
   11309   // reciprocal if there are three or more FDIVs.
   11310   return 3;
   11311 }
   11312 
   11313 TargetLoweringBase::LegalizeTypeAction
   11314 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
   11315   MVT SVT = VT.getSimpleVT();
   11316   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
   11317   // v4i16, v2i32 instead of to promote.
   11318   if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
   11319       || SVT == MVT::v1f32)
   11320     return TypeWidenVector;
   11321 
   11322   return TargetLoweringBase::getPreferredVectorAction(VT);
   11323 }
   11324 
   11325 // Loads and stores less than 128-bits are already atomic; ones above that
   11326 // are doomed anyway, so defer to the default libcall and blame the OS when
   11327 // things go wrong.
   11328 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   11329   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   11330   return Size == 128;
   11331 }
   11332 
   11333 // Loads and stores less than 128-bits are already atomic; ones above that
   11334 // are doomed anyway, so defer to the default libcall and blame the OS when
   11335 // things go wrong.
   11336 TargetLowering::AtomicExpansionKind
   11337 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   11338   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
   11339   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
   11340 }
   11341 
   11342 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
   11343 TargetLowering::AtomicExpansionKind
   11344 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   11345   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
   11346   if (Size > 128) return AtomicExpansionKind::None;
   11347   // Nand not supported in LSE.
   11348   if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
   11349   // Leave 128 bits to LLSC.
   11350   return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
   11351 }
   11352 
   11353 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
   11354     AtomicCmpXchgInst *AI) const {
   11355   // If subtarget has LSE, leave cmpxchg intact for codegen.
   11356   if (Subtarget->hasLSE()) return false;
   11357   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
   11358   // implement cmpxchg without spilling. If the address being exchanged is also
   11359   // on the stack and close enough to the spill slot, this can lead to a
   11360   // situation where the monitor always gets cleared and the atomic operation
   11361   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
   11362   return getTargetMachine().getOptLevel() != 0;
   11363 }
   11364 
   11365 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   11366                                              AtomicOrdering Ord) const {
   11367   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11368   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   11369   bool IsAcquire = isAcquireOrStronger(Ord);
   11370 
   11371   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
   11372   // intrinsic must return {i64, i64} and we have to recombine them into a
   11373   // single i128 here.
   11374   if (ValTy->getPrimitiveSizeInBits() == 128) {
   11375     Intrinsic::ID Int =
   11376         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
   11377     Function *Ldxr = Intrinsic::getDeclaration(M, Int);
   11378 
   11379     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   11380     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
   11381 
   11382     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   11383     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   11384     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   11385     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   11386     return Builder.CreateOr(
   11387         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
   11388   }
   11389 
   11390   Type *Tys[] = { Addr->getType() };
   11391   Intrinsic::ID Int =
   11392       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
   11393   Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
   11394 
   11395   return Builder.CreateTruncOrBitCast(
   11396       Builder.CreateCall(Ldxr, Addr),
   11397       cast<PointerType>(Addr->getType())->getElementType());
   11398 }
   11399 
   11400 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
   11401     IRBuilder<> &Builder) const {
   11402   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11403   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
   11404 }
   11405 
   11406 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
   11407                                                    Value *Val, Value *Addr,
   11408                                                    AtomicOrdering Ord) const {
   11409   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11410   bool IsRelease = isReleaseOrStronger(Ord);
   11411 
   11412   // Since the intrinsics must have legal type, the i128 intrinsics take two
   11413   // parameters: "i64, i64". We must marshal Val into the appropriate form
   11414   // before the call.
   11415   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
   11416     Intrinsic::ID Int =
   11417         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
   11418     Function *Stxr = Intrinsic::getDeclaration(M, Int);
   11419     Type *Int64Ty = Type::getInt64Ty(M->getContext());
   11420 
   11421     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
   11422     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
   11423     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   11424     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
   11425   }
   11426 
   11427   Intrinsic::ID Int =
   11428       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
   11429   Type *Tys[] = { Addr->getType() };
   11430   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
   11431 
   11432   return Builder.CreateCall(Stxr,
   11433                             {Builder.CreateZExtOrBitCast(
   11434                                  Val, Stxr->getFunctionType()->getParamType(0)),
   11435                              Addr});
   11436 }
   11437 
   11438 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
   11439     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   11440   return Ty->isArrayTy();
   11441 }
   11442 
   11443 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
   11444                                                             EVT) const {
   11445   return false;
   11446 }
   11447 
   11448 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
   11449   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
   11450   Function *ThreadPointerFunc =
   11451       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
   11452   return IRB.CreatePointerCast(
   11453       IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
   11454       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
   11455 }
   11456 
   11457 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
   11458   // Android provides a fixed TLS slot for the stack cookie. See the definition
   11459   // of TLS_SLOT_STACK_GUARD in
   11460   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
   11461   if (Subtarget->isTargetAndroid())
   11462     return UseTlsOffset(IRB, 0x28);
   11463 
   11464   // Fuchsia is similar.
   11465   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
   11466   if (Subtarget->isTargetFuchsia())
   11467     return UseTlsOffset(IRB, -0x10);
   11468 
   11469   return TargetLowering::getIRStackGuard(IRB);
   11470 }
   11471 
   11472 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
   11473   // Android provides a fixed TLS slot for the SafeStack pointer. See the
   11474   // definition of TLS_SLOT_SAFESTACK in
   11475   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
   11476   if (Subtarget->isTargetAndroid())
   11477     return UseTlsOffset(IRB, 0x48);
   11478 
   11479   // Fuchsia is similar.
   11480   // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
   11481   if (Subtarget->isTargetFuchsia())
   11482     return UseTlsOffset(IRB, -0x8);
   11483 
   11484   return TargetLowering::getSafeStackPointerLocation(IRB);
   11485 }
   11486 
   11487 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
   11488     const Instruction &AndI) const {
   11489   // Only sink 'and' mask to cmp use block if it is masking a single bit, since
   11490   // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
   11491   // may be beneficial to sink in other cases, but we would have to check that
   11492   // the cmp would not get folded into the br to form a cbz for these to be
   11493   // beneficial.
   11494   ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
   11495   if (!Mask)
   11496     return false;
   11497   return Mask->getValue().isPowerOf2();
   11498 }
   11499 
   11500 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   11501   // Update IsSplitCSR in AArch64unctionInfo.
   11502   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
   11503   AFI->setIsSplitCSR(true);
   11504 }
   11505 
   11506 void AArch64TargetLowering::insertCopiesSplitCSR(
   11507     MachineBasicBlock *Entry,
   11508     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   11509   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
   11510   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   11511   if (!IStart)
   11512     return;
   11513 
   11514   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   11515   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   11516   MachineBasicBlock::iterator MBBI = Entry->begin();
   11517   for (const MCPhysReg *I = IStart; *I; ++I) {
   11518     const TargetRegisterClass *RC = nullptr;
   11519     if (AArch64::GPR64RegClass.contains(*I))
   11520       RC = &AArch64::GPR64RegClass;
   11521     else if (AArch64::FPR64RegClass.contains(*I))
   11522       RC = &AArch64::FPR64RegClass;
   11523     else
   11524       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   11525 
   11526     unsigned NewVR = MRI->createVirtualRegister(RC);
   11527     // Create copy from CSR to a virtual register.
   11528     // FIXME: this currently does not emit CFI pseudo-instructions, it works
   11529     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
   11530     // nounwind. If we want to generalize this later, we may need to emit
   11531     // CFI pseudo-instructions.
   11532     assert(Entry->getParent()->getFunction().hasFnAttribute(
   11533                Attribute::NoUnwind) &&
   11534            "Function should be nounwind in insertCopiesSplitCSR!");
   11535     Entry->addLiveIn(*I);
   11536     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   11537         .addReg(*I);
   11538 
   11539     // Insert the copy-back instructions right before the terminator.
   11540     for (auto *Exit : Exits)
   11541       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   11542               TII->get(TargetOpcode::COPY), *I)
   11543           .addReg(NewVR);
   11544   }
   11545 }
   11546 
   11547 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
   11548   // Integer division on AArch64 is expensive. However, when aggressively
   11549   // optimizing for code size, we prefer to use a div instruction, as it is
   11550   // usually smaller than the alternative sequence.
   11551   // The exception to this is vector division. Since AArch64 doesn't have vector
   11552   // integer division, leaving the division as-is is a loss even in terms of
   11553   // size, because it will have to be scalarized, while the alternative code
   11554   // sequence can be performed in vector form.
   11555   bool OptSize =
   11556       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
   11557   return OptSize && !VT.isVector();
   11558 }
   11559 
   11560 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   11561   return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
   11562 }
   11563 
   11564 unsigned
   11565 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
   11566   if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
   11567     return getPointerTy(DL).getSizeInBits();
   11568 
   11569   return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
   11570 }
   11571 
   11572 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
   11573   MF.getFrameInfo().computeMaxCallFrameSize(MF);
   11574   TargetLoweringBase::finalizeLowering(MF);
   11575 }
   11576