Home | History | Annotate | Download | only in ARM
      1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMISelLowering.h"
     16 #include "ARMBaseInstrInfo.h"
     17 #include "ARMBaseRegisterInfo.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "ARMPerfectShuffle.h"
     22 #include "ARMRegisterInfo.h"
     23 #include "ARMSelectionDAGInfo.h"
     24 #include "ARMSubtarget.h"
     25 #include "MCTargetDesc/ARMAddressingModes.h"
     26 #include "MCTargetDesc/ARMBaseInfo.h"
     27 #include "Utils/ARMBaseInfo.h"
     28 #include "llvm/ADT/APFloat.h"
     29 #include "llvm/ADT/APInt.h"
     30 #include "llvm/ADT/ArrayRef.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/STLExtras.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/ADT/StringExtras.h"
     38 #include "llvm/ADT/StringRef.h"
     39 #include "llvm/ADT/StringSwitch.h"
     40 #include "llvm/ADT/Triple.h"
     41 #include "llvm/ADT/Twine.h"
     42 #include "llvm/Analysis/VectorUtils.h"
     43 #include "llvm/CodeGen/CallingConvLower.h"
     44 #include "llvm/CodeGen/ISDOpcodes.h"
     45 #include "llvm/CodeGen/IntrinsicLowering.h"
     46 #include "llvm/CodeGen/MachineBasicBlock.h"
     47 #include "llvm/CodeGen/MachineConstantPool.h"
     48 #include "llvm/CodeGen/MachineFrameInfo.h"
     49 #include "llvm/CodeGen/MachineFunction.h"
     50 #include "llvm/CodeGen/MachineInstr.h"
     51 #include "llvm/CodeGen/MachineInstrBuilder.h"
     52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     53 #include "llvm/CodeGen/MachineMemOperand.h"
     54 #include "llvm/CodeGen/MachineOperand.h"
     55 #include "llvm/CodeGen/MachineRegisterInfo.h"
     56 #include "llvm/CodeGen/RuntimeLibcalls.h"
     57 #include "llvm/CodeGen/SelectionDAG.h"
     58 #include "llvm/CodeGen/SelectionDAGNodes.h"
     59 #include "llvm/CodeGen/TargetInstrInfo.h"
     60 #include "llvm/CodeGen/TargetLowering.h"
     61 #include "llvm/CodeGen/TargetOpcodes.h"
     62 #include "llvm/CodeGen/TargetRegisterInfo.h"
     63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     64 #include "llvm/CodeGen/ValueTypes.h"
     65 #include "llvm/IR/Attributes.h"
     66 #include "llvm/IR/CallingConv.h"
     67 #include "llvm/IR/Constant.h"
     68 #include "llvm/IR/Constants.h"
     69 #include "llvm/IR/DataLayout.h"
     70 #include "llvm/IR/DebugLoc.h"
     71 #include "llvm/IR/DerivedTypes.h"
     72 #include "llvm/IR/Function.h"
     73 #include "llvm/IR/GlobalAlias.h"
     74 #include "llvm/IR/GlobalValue.h"
     75 #include "llvm/IR/GlobalVariable.h"
     76 #include "llvm/IR/IRBuilder.h"
     77 #include "llvm/IR/InlineAsm.h"
     78 #include "llvm/IR/Instruction.h"
     79 #include "llvm/IR/Instructions.h"
     80 #include "llvm/IR/IntrinsicInst.h"
     81 #include "llvm/IR/Intrinsics.h"
     82 #include "llvm/IR/Module.h"
     83 #include "llvm/IR/Type.h"
     84 #include "llvm/IR/User.h"
     85 #include "llvm/IR/Value.h"
     86 #include "llvm/MC/MCInstrDesc.h"
     87 #include "llvm/MC/MCInstrItineraries.h"
     88 #include "llvm/MC/MCRegisterInfo.h"
     89 #include "llvm/MC/MCSchedule.h"
     90 #include "llvm/Support/AtomicOrdering.h"
     91 #include "llvm/Support/BranchProbability.h"
     92 #include "llvm/Support/Casting.h"
     93 #include "llvm/Support/CodeGen.h"
     94 #include "llvm/Support/CommandLine.h"
     95 #include "llvm/Support/Compiler.h"
     96 #include "llvm/Support/Debug.h"
     97 #include "llvm/Support/ErrorHandling.h"
     98 #include "llvm/Support/KnownBits.h"
     99 #include "llvm/Support/MachineValueType.h"
    100 #include "llvm/Support/MathExtras.h"
    101 #include "llvm/Support/raw_ostream.h"
    102 #include "llvm/Target/TargetMachine.h"
    103 #include "llvm/Target/TargetOptions.h"
    104 #include <algorithm>
    105 #include <cassert>
    106 #include <cstdint>
    107 #include <cstdlib>
    108 #include <iterator>
    109 #include <limits>
    110 #include <string>
    111 #include <tuple>
    112 #include <utility>
    113 #include <vector>
    114 
    115 using namespace llvm;
    116 
    117 #define DEBUG_TYPE "arm-isel"
    118 
    119 STATISTIC(NumTailCalls, "Number of tail calls");
    120 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
    121 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
    122 STATISTIC(NumConstpoolPromoted,
    123   "Number of constants with their storage promoted into constant pools");
    124 
    125 static cl::opt<bool>
    126 ARMInterworking("arm-interworking", cl::Hidden,
    127   cl::desc("Enable / disable ARM interworking (for debugging only)"),
    128   cl::init(true));
    129 
    130 static cl::opt<bool> EnableConstpoolPromotion(
    131     "arm-promote-constant", cl::Hidden,
    132     cl::desc("Enable / disable promotion of unnamed_addr constants into "
    133              "constant pools"),
    134     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
    135 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
    136     "arm-promote-constant-max-size", cl::Hidden,
    137     cl::desc("Maximum size of constant to promote into a constant pool"),
    138     cl::init(64));
    139 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
    140     "arm-promote-constant-max-total", cl::Hidden,
    141     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
    142     cl::init(128));
    143 
    144 // The APCS parameter registers.
    145 static const MCPhysReg GPRArgRegs[] = {
    146   ARM::R0, ARM::R1, ARM::R2, ARM::R3
    147 };
    148 
    149 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
    150                                        MVT PromotedBitwiseVT) {
    151   if (VT != PromotedLdStVT) {
    152     setOperationAction(ISD::LOAD, VT, Promote);
    153     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
    154 
    155     setOperationAction(ISD::STORE, VT, Promote);
    156     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
    157   }
    158 
    159   MVT ElemTy = VT.getVectorElementType();
    160   if (ElemTy != MVT::f64)
    161     setOperationAction(ISD::SETCC, VT, Custom);
    162   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    163   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    164   if (ElemTy == MVT::i32) {
    165     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    166     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    167     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    168     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    169   } else {
    170     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    171     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    172     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    173     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    174   }
    175   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    176   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    177   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    178   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    179   setOperationAction(ISD::SELECT,            VT, Expand);
    180   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    181   setOperationAction(ISD::VSELECT,           VT, Expand);
    182   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    183   if (VT.isInteger()) {
    184     setOperationAction(ISD::SHL, VT, Custom);
    185     setOperationAction(ISD::SRA, VT, Custom);
    186     setOperationAction(ISD::SRL, VT, Custom);
    187   }
    188 
    189   // Promote all bit-wise operations.
    190   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    191     setOperationAction(ISD::AND, VT, Promote);
    192     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    193     setOperationAction(ISD::OR,  VT, Promote);
    194     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    195     setOperationAction(ISD::XOR, VT, Promote);
    196     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    197   }
    198 
    199   // Neon does not support vector divide/remainder operations.
    200   setOperationAction(ISD::SDIV, VT, Expand);
    201   setOperationAction(ISD::UDIV, VT, Expand);
    202   setOperationAction(ISD::FDIV, VT, Expand);
    203   setOperationAction(ISD::SREM, VT, Expand);
    204   setOperationAction(ISD::UREM, VT, Expand);
    205   setOperationAction(ISD::FREM, VT, Expand);
    206 
    207   if (!VT.isFloatingPoint() &&
    208       VT != MVT::v2i64 && VT != MVT::v1i64)
    209     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
    210       setOperationAction(Opcode, VT, Legal);
    211 }
    212 
    213 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    214   addRegisterClass(VT, &ARM::DPRRegClass);
    215   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    216 }
    217 
    218 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    219   addRegisterClass(VT, &ARM::DPairRegClass);
    220   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    221 }
    222 
    223 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
    224                                      const ARMSubtarget &STI)
    225     : TargetLowering(TM), Subtarget(&STI) {
    226   RegInfo = Subtarget->getRegisterInfo();
    227   Itins = Subtarget->getInstrItineraryData();
    228 
    229   setBooleanContents(ZeroOrOneBooleanContent);
    230   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    231 
    232   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
    233       !Subtarget->isTargetWatchOS()) {
    234     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
    235     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
    236       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
    237                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
    238                                        : CallingConv::ARM_AAPCS);
    239   }
    240 
    241   if (Subtarget->isTargetMachO()) {
    242     // Uses VFP for Thumb libfuncs if available.
    243     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
    244         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
    245       static const struct {
    246         const RTLIB::Libcall Op;
    247         const char * const Name;
    248         const ISD::CondCode Cond;
    249       } LibraryCalls[] = {
    250         // Single-precision floating-point arithmetic.
    251         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
    252         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
    253         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
    254         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
    255 
    256         // Double-precision floating-point arithmetic.
    257         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
    258         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
    259         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
    260         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
    261 
    262         // Single-precision comparisons.
    263         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
    264         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
    265         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
    266         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
    267         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
    268         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
    269         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
    270         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
    271 
    272         // Double-precision comparisons.
    273         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
    274         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
    275         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
    276         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
    277         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
    278         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
    279         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
    280         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
    281 
    282         // Floating-point to integer conversions.
    283         // i64 conversions are done via library routines even when generating VFP
    284         // instructions, so use the same ones.
    285         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
    286         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
    287         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
    288         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
    289 
    290         // Conversions between floating types.
    291         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
    292         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
    293 
    294         // Integer to floating-point conversions.
    295         // i64 conversions are done via library routines even when generating VFP
    296         // instructions, so use the same ones.
    297         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    298         // e.g., __floatunsidf vs. __floatunssidfvfp.
    299         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
    300         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
    301         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
    302         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
    303       };
    304 
    305       for (const auto &LC : LibraryCalls) {
    306         setLibcallName(LC.Op, LC.Name);
    307         if (LC.Cond != ISD::SETCC_INVALID)
    308           setCmpLibcallCC(LC.Op, LC.Cond);
    309       }
    310     }
    311   }
    312 
    313   // These libcalls are not available in 32-bit.
    314   setLibcallName(RTLIB::SHL_I128, nullptr);
    315   setLibcallName(RTLIB::SRL_I128, nullptr);
    316   setLibcallName(RTLIB::SRA_I128, nullptr);
    317 
    318   // RTLIB
    319   if (Subtarget->isAAPCS_ABI() &&
    320       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
    321        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
    322     static const struct {
    323       const RTLIB::Libcall Op;
    324       const char * const Name;
    325       const CallingConv::ID CC;
    326       const ISD::CondCode Cond;
    327     } LibraryCalls[] = {
    328       // Double-precision floating-point arithmetic helper functions
    329       // RTABI chapter 4.1.2, Table 2
    330       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    331       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    332       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    333       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    334 
    335       // Double-precision floating-point comparison helper functions
    336       // RTABI chapter 4.1.2, Table 3
    337       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    338       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    339       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    340       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    341       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    342       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    343       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    344       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    345 
    346       // Single-precision floating-point arithmetic helper functions
    347       // RTABI chapter 4.1.2, Table 4
    348       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    349       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    350       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    351       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    352 
    353       // Single-precision floating-point comparison helper functions
    354       // RTABI chapter 4.1.2, Table 5
    355       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    356       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    357       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    358       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    359       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    360       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    361       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    362       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    363 
    364       // Floating-point to integer conversions.
    365       // RTABI chapter 4.1.2, Table 6
    366       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    367       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    368       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    369       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    370       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    371       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    372       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    373       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    374 
    375       // Conversions between floating types.
    376       // RTABI chapter 4.1.2, Table 7
    377       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    378       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    379       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    380 
    381       // Integer to floating-point conversions.
    382       // RTABI chapter 4.1.2, Table 8
    383       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    384       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    385       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    386       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    387       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    388       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    389       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    390       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    391 
    392       // Long long helper functions
    393       // RTABI chapter 4.2, Table 9
    394       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    395       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    396       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    397       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    398 
    399       // Integer division functions
    400       // RTABI chapter 4.3.1
    401       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    402       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    403       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    404       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    405       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    406       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    407       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    408       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    409     };
    410 
    411     for (const auto &LC : LibraryCalls) {
    412       setLibcallName(LC.Op, LC.Name);
    413       setLibcallCallingConv(LC.Op, LC.CC);
    414       if (LC.Cond != ISD::SETCC_INVALID)
    415         setCmpLibcallCC(LC.Op, LC.Cond);
    416     }
    417 
    418     // EABI dependent RTLIB
    419     if (TM.Options.EABIVersion == EABI::EABI4 ||
    420         TM.Options.EABIVersion == EABI::EABI5) {
    421       static const struct {
    422         const RTLIB::Libcall Op;
    423         const char *const Name;
    424         const CallingConv::ID CC;
    425         const ISD::CondCode Cond;
    426       } MemOpsLibraryCalls[] = {
    427         // Memory operations
    428         // RTABI chapter 4.3.4
    429         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    430         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    431         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    432       };
    433 
    434       for (const auto &LC : MemOpsLibraryCalls) {
    435         setLibcallName(LC.Op, LC.Name);
    436         setLibcallCallingConv(LC.Op, LC.CC);
    437         if (LC.Cond != ISD::SETCC_INVALID)
    438           setCmpLibcallCC(LC.Op, LC.Cond);
    439       }
    440     }
    441   }
    442 
    443   if (Subtarget->isTargetWindows()) {
    444     static const struct {
    445       const RTLIB::Libcall Op;
    446       const char * const Name;
    447       const CallingConv::ID CC;
    448     } LibraryCalls[] = {
    449       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
    450       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
    451       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
    452       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
    453       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
    454       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
    455       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
    456       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    457     };
    458 
    459     for (const auto &LC : LibraryCalls) {
    460       setLibcallName(LC.Op, LC.Name);
    461       setLibcallCallingConv(LC.Op, LC.CC);
    462     }
    463   }
    464 
    465   // Use divmod compiler-rt calls for iOS 5.0 and later.
    466   if (Subtarget->isTargetMachO() &&
    467       !(Subtarget->isTargetIOS() &&
    468         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
    469     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    470     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    471   }
    472 
    473   // The half <-> float conversion functions are always soft-float on
    474   // non-watchos platforms, but are needed for some targets which use a
    475   // hard-float calling convention by default.
    476   if (!Subtarget->isTargetWatchABI()) {
    477     if (Subtarget->isAAPCS_ABI()) {
    478       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
    479       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
    480       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
    481     } else {
    482       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
    483       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
    484       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
    485     }
    486   }
    487 
    488   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
    489   // a __gnu_ prefix (which is the default).
    490   if (Subtarget->isTargetAEABI()) {
    491     static const struct {
    492       const RTLIB::Libcall Op;
    493       const char * const Name;
    494       const CallingConv::ID CC;
    495     } LibraryCalls[] = {
    496       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
    497       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
    498       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
    499     };
    500 
    501     for (const auto &LC : LibraryCalls) {
    502       setLibcallName(LC.Op, LC.Name);
    503       setLibcallCallingConv(LC.Op, LC.CC);
    504     }
    505   }
    506 
    507   if (Subtarget->isThumb1Only())
    508     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    509   else
    510     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    511 
    512   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    513       !Subtarget->isThumb1Only()) {
    514     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    515     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    516   }
    517 
    518   if (Subtarget->hasFullFP16()) {
    519     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
    520     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
    521     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    522     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
    523 
    524     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    525     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
    526   }
    527 
    528   for (MVT VT : MVT::vector_valuetypes()) {
    529     for (MVT InnerVT : MVT::vector_valuetypes()) {
    530       setTruncStoreAction(VT, InnerVT, Expand);
    531       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    532       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    533       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    534     }
    535 
    536     setOperationAction(ISD::MULHS, VT, Expand);
    537     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    538     setOperationAction(ISD::MULHU, VT, Expand);
    539     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    540 
    541     setOperationAction(ISD::BSWAP, VT, Expand);
    542   }
    543 
    544   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    545   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
    546 
    547   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
    548   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
    549 
    550   if (Subtarget->hasNEON()) {
    551     addDRTypeForNEON(MVT::v2f32);
    552     addDRTypeForNEON(MVT::v8i8);
    553     addDRTypeForNEON(MVT::v4i16);
    554     addDRTypeForNEON(MVT::v2i32);
    555     addDRTypeForNEON(MVT::v1i64);
    556 
    557     addQRTypeForNEON(MVT::v4f32);
    558     addQRTypeForNEON(MVT::v2f64);
    559     addQRTypeForNEON(MVT::v16i8);
    560     addQRTypeForNEON(MVT::v8i16);
    561     addQRTypeForNEON(MVT::v4i32);
    562     addQRTypeForNEON(MVT::v2i64);
    563 
    564     if (Subtarget->hasFullFP16()) {
    565       addQRTypeForNEON(MVT::v8f16);
    566       addDRTypeForNEON(MVT::v4f16);
    567     }
    568 
    569     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    570     // neither Neon nor VFP support any arithmetic operations on it.
    571     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    572     // supported for v4f32.
    573     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    574     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    575     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    576     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    577     // ARMTargetLowering::addTypeForNEON method for details.
    578     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    579     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    580     // FIXME: Create unittest.
    581     // In another words, find a way when "copysign" appears in DAG with vector
    582     // operands.
    583     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    584     // FIXME: Code duplication: SETCC has custom operation action, see
    585     // ARMTargetLowering::addTypeForNEON method for details.
    586     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    587     // FIXME: Create unittest for FNEG and for FABS.
    588     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    589     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    590     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    591     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    592     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    593     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    594     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    595     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    596     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    597     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    598     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    599     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    600     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    601     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    602     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    603     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    604     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    605     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
    606 
    607     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    608     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    609     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    610     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    611     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    612     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    613     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    614     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    615     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    616     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    617     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    618     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    619     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    620     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    621 
    622     // Mark v2f32 intrinsics.
    623     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    624     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    625     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    626     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    627     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    628     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    629     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    630     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    631     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    632     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    633     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    634     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    635     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    636     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
    637 
    638     // Neon does not support some operations on v1i64 and v2i64 types.
    639     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    640     // Custom handling for some quad-vector types to detect VMULL.
    641     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    642     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    643     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    644     // Custom handling for some vector types to avoid expensive expansions
    645     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    646     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    647     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    648     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    649     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    650     // a destination type that is wider than the source, and nor does
    651     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    652     // source.
    653     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    654     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    655     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    656     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    657 
    658     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    659     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
    660 
    661     // NEON does not have single instruction CTPOP for vectors with element
    662     // types wider than 8-bits.  However, custom lowering can leverage the
    663     // v8i8/v16i8 vcnt instruction.
    664     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    665     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    666     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    667     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    668     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
    669     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
    670 
    671     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
    672     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
    673 
    674     // NEON does not have single instruction CTTZ for vectors.
    675     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
    676     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
    677     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
    678     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
    679 
    680     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
    681     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
    682     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
    683     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
    684 
    685     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
    686     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
    687     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
    688     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
    689 
    690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
    691     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
    692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
    693     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
    694 
    695     // NEON only has FMA instructions as of VFP4.
    696     if (!Subtarget->hasVFP4()) {
    697       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
    698       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    699     }
    700 
    701     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    702     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    703     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    704     setTargetDAGCombine(ISD::SHL);
    705     setTargetDAGCombine(ISD::SRL);
    706     setTargetDAGCombine(ISD::SRA);
    707     setTargetDAGCombine(ISD::SIGN_EXTEND);
    708     setTargetDAGCombine(ISD::ZERO_EXTEND);
    709     setTargetDAGCombine(ISD::ANY_EXTEND);
    710     setTargetDAGCombine(ISD::BUILD_VECTOR);
    711     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    712     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    713     setTargetDAGCombine(ISD::STORE);
    714     setTargetDAGCombine(ISD::FP_TO_SINT);
    715     setTargetDAGCombine(ISD::FP_TO_UINT);
    716     setTargetDAGCombine(ISD::FDIV);
    717     setTargetDAGCombine(ISD::LOAD);
    718 
    719     // It is legal to extload from v4i8 to v4i16 or v4i32.
    720     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
    721                    MVT::v2i32}) {
    722       for (MVT VT : MVT::integer_vector_valuetypes()) {
    723         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
    724         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
    725         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
    726       }
    727     }
    728   }
    729 
    730   if (Subtarget->isFPOnlySP()) {
    731     // When targeting a floating-point unit with only single-precision
    732     // operations, f64 is legal for the few double-precision instructions which
    733     // are present However, no double-precision operations other than moves,
    734     // loads and stores are provided by the hardware.
    735     setOperationAction(ISD::FADD,       MVT::f64, Expand);
    736     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
    737     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
    738     setOperationAction(ISD::FMA,        MVT::f64, Expand);
    739     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
    740     setOperationAction(ISD::FREM,       MVT::f64, Expand);
    741     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
    742     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
    743     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
    744     setOperationAction(ISD::FABS,       MVT::f64, Expand);
    745     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
    746     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
    747     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
    748     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
    749     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
    750     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
    751     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
    752     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
    753     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
    754     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
    755     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
    756     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
    757     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    758     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
    759     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    760     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    761     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    762     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    763     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
    764     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
    765     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
    766     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
    767   }
    768 
    769   computeRegisterProperties(Subtarget->getRegisterInfo());
    770 
    771   // ARM does not have floating-point extending loads.
    772   for (MVT VT : MVT::fp_valuetypes()) {
    773     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    774     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    775   }
    776 
    777   // ... or truncating stores
    778   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    779   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    780   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    781 
    782   // ARM does not have i1 sign extending load.
    783   for (MVT VT : MVT::integer_valuetypes())
    784     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    785 
    786   // ARM supports all 4 flavors of integer indexed load / store.
    787   if (!Subtarget->isThumb1Only()) {
    788     for (unsigned im = (unsigned)ISD::PRE_INC;
    789          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    790       setIndexedLoadAction(im,  MVT::i1,  Legal);
    791       setIndexedLoadAction(im,  MVT::i8,  Legal);
    792       setIndexedLoadAction(im,  MVT::i16, Legal);
    793       setIndexedLoadAction(im,  MVT::i32, Legal);
    794       setIndexedStoreAction(im, MVT::i1,  Legal);
    795       setIndexedStoreAction(im, MVT::i8,  Legal);
    796       setIndexedStoreAction(im, MVT::i16, Legal);
    797       setIndexedStoreAction(im, MVT::i32, Legal);
    798     }
    799   } else {
    800     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
    801     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
    802     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
    803   }
    804 
    805   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    806   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    807   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    808   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    809 
    810   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
    811   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
    812 
    813   // i64 operation support.
    814   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    815   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    816   if (Subtarget->isThumb1Only()) {
    817     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    818     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    819   }
    820   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    821       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
    822     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    823 
    824   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    825   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    826   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    827   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    828   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    829   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
    830 
    831   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
    832   if (Subtarget->isThumb1Only()) {
    833     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    834     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    835     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
    836   }
    837 
    838   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
    839     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    840 
    841   // ARM does not have ROTL.
    842   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    843   for (MVT VT : MVT::vector_valuetypes()) {
    844     setOperationAction(ISD::ROTL, VT, Expand);
    845     setOperationAction(ISD::ROTR, VT, Expand);
    846   }
    847   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    848   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    849   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    850     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    851 
    852   // @llvm.readcyclecounter requires the Performance Monitors extension.
    853   // Default to the 0 expansion on unsupported platforms.
    854   // FIXME: Technically there are older ARM CPUs that have
    855   // implementation-specific ways of obtaining this information.
    856   if (Subtarget->hasPerfMon())
    857     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
    858 
    859   // Only ARMv6 has BSWAP.
    860   if (!Subtarget->hasV6Ops())
    861     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    862 
    863   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
    864                                         : Subtarget->hasDivideInARMMode();
    865   if (!hasDivide) {
    866     // These are expanded into libcalls if the cpu doesn't have HW divider.
    867     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
    868     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
    869   }
    870 
    871   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
    872     setOperationAction(ISD::SDIV, MVT::i32, Custom);
    873     setOperationAction(ISD::UDIV, MVT::i32, Custom);
    874 
    875     setOperationAction(ISD::SDIV, MVT::i64, Custom);
    876     setOperationAction(ISD::UDIV, MVT::i64, Custom);
    877   }
    878 
    879   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    880   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    881 
    882   // Register based DivRem for AEABI (RTABI 4.2)
    883   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
    884       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
    885       Subtarget->isTargetWindows()) {
    886     setOperationAction(ISD::SREM, MVT::i64, Custom);
    887     setOperationAction(ISD::UREM, MVT::i64, Custom);
    888     HasStandaloneRem = false;
    889 
    890     if (Subtarget->isTargetWindows()) {
    891       const struct {
    892         const RTLIB::Libcall Op;
    893         const char * const Name;
    894         const CallingConv::ID CC;
    895       } LibraryCalls[] = {
    896         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
    897         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
    898         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
    899         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
    900 
    901         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
    902         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
    903         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
    904         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
    905       };
    906 
    907       for (const auto &LC : LibraryCalls) {
    908         setLibcallName(LC.Op, LC.Name);
    909         setLibcallCallingConv(LC.Op, LC.CC);
    910       }
    911     } else {
    912       const struct {
    913         const RTLIB::Libcall Op;
    914         const char * const Name;
    915         const CallingConv::ID CC;
    916       } LibraryCalls[] = {
    917         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
    918         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
    919         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
    920         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
    921 
    922         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
    923         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
    924         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
    925         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
    926       };
    927 
    928       for (const auto &LC : LibraryCalls) {
    929         setLibcallName(LC.Op, LC.Name);
    930         setLibcallCallingConv(LC.Op, LC.CC);
    931       }
    932     }
    933 
    934     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    935     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    936     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
    937     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
    938   } else {
    939     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    940     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    941   }
    942 
    943   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
    944     for (auto &VT : {MVT::f32, MVT::f64})
    945       setOperationAction(ISD::FPOWI, VT, Custom);
    946 
    947   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    948   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    949   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    950   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    951 
    952   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    953 
    954   // Use the default implementation.
    955   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    956   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    957   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    958   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    959   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    960   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    961 
    962   if (Subtarget->isTargetWindows())
    963     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    964   else
    965     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    966 
    967   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    968   // the default expansion.
    969   InsertFencesForAtomic = false;
    970   if (Subtarget->hasAnyDataBarrier() &&
    971       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
    972     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    973     // to ldrex/strex loops already.
    974     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    975     if (!Subtarget->isThumb() || !Subtarget->isMClass())
    976       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
    977 
    978     // On v8, we have particularly efficient implementations of atomic fences
    979     // if they can be combined with nearby atomic loads and stores.
    980     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
    981       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
    982       InsertFencesForAtomic = true;
    983     }
    984   } else {
    985     // If there's anything we can use as a barrier, go through custom lowering
    986     // for ATOMIC_FENCE.
    987     // If target has DMB in thumb, Fences can be inserted.
    988     if (Subtarget->hasDataBarrier())
    989       InsertFencesForAtomic = true;
    990 
    991     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
    992                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
    993 
    994     // Set them all for expansion, which will force libcalls.
    995     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    996     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    997     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    998     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    999     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
   1000     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
   1001     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
   1002     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
   1003     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
   1004     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
   1005     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
   1006     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
   1007     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
   1008     // Unordered/Monotonic case.
   1009     if (!InsertFencesForAtomic) {
   1010       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
   1011       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
   1012     }
   1013   }
   1014 
   1015   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
   1016 
   1017   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
   1018   if (!Subtarget->hasV6Ops()) {
   1019     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
   1020     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
   1021   }
   1022   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
   1023 
   1024   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
   1025       !Subtarget->isThumb1Only()) {
   1026     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
   1027     // iff target supports vfp2.
   1028     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
   1029     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
   1030   }
   1031 
   1032   // We want to custom lower some of our intrinsics.
   1033   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1034   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
   1035   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
   1036   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
   1037   if (Subtarget->useSjLjEH())
   1038     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
   1039 
   1040   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
   1041   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
   1042   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
   1043   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
   1044   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
   1045   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
   1046   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
   1047   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
   1048   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
   1049   if (Subtarget->hasFullFP16()) {
   1050     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
   1051     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
   1052     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
   1053   }
   1054 
   1055   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
   1056 
   1057   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
   1058   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
   1059   if (Subtarget->hasFullFP16())
   1060       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
   1061   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
   1062   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
   1063   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
   1064 
   1065   // We don't support sin/cos/fmod/copysign/pow
   1066   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
   1067   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
   1068   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
   1069   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
   1070   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
   1071   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
   1072   setOperationAction(ISD::FREM,      MVT::f64, Expand);
   1073   setOperationAction(ISD::FREM,      MVT::f32, Expand);
   1074   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
   1075       !Subtarget->isThumb1Only()) {
   1076     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
   1077     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
   1078   }
   1079   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
   1080   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
   1081 
   1082   if (!Subtarget->hasVFP4()) {
   1083     setOperationAction(ISD::FMA, MVT::f64, Expand);
   1084     setOperationAction(ISD::FMA, MVT::f32, Expand);
   1085   }
   1086 
   1087   // Various VFP goodness
   1088   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
   1089     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
   1090     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
   1091       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
   1092       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
   1093     }
   1094 
   1095     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
   1096     if (!Subtarget->hasFP16()) {
   1097       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
   1098       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
   1099     }
   1100   }
   1101 
   1102   // Use __sincos_stret if available.
   1103   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
   1104       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
   1105     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
   1106     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
   1107   }
   1108 
   1109   // FP-ARMv8 implements a lot of rounding-like FP operations.
   1110   if (Subtarget->hasFPARMv8()) {
   1111     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
   1112     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
   1113     setOperationAction(ISD::FROUND, MVT::f32, Legal);
   1114     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
   1115     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
   1116     setOperationAction(ISD::FRINT, MVT::f32, Legal);
   1117     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
   1118     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
   1119     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
   1120     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
   1121     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
   1122     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
   1123 
   1124     if (!Subtarget->isFPOnlySP()) {
   1125       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
   1126       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
   1127       setOperationAction(ISD::FROUND, MVT::f64, Legal);
   1128       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
   1129       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
   1130       setOperationAction(ISD::FRINT, MVT::f64, Legal);
   1131       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
   1132       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
   1133     }
   1134   }
   1135 
   1136   if (Subtarget->hasNEON()) {
   1137     // vmin and vmax aren't available in a scalar form, so we use
   1138     // a NEON instruction with an undef lane instead.
   1139     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
   1140     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
   1141     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
   1142     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
   1143     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
   1144     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
   1145     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
   1146     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
   1147   }
   1148 
   1149   // We have target-specific dag combine patterns for the following nodes:
   1150   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
   1151   setTargetDAGCombine(ISD::ADD);
   1152   setTargetDAGCombine(ISD::SUB);
   1153   setTargetDAGCombine(ISD::MUL);
   1154   setTargetDAGCombine(ISD::AND);
   1155   setTargetDAGCombine(ISD::OR);
   1156   setTargetDAGCombine(ISD::XOR);
   1157 
   1158   if (Subtarget->hasV6Ops())
   1159     setTargetDAGCombine(ISD::SRL);
   1160 
   1161   setStackPointerRegisterToSaveRestore(ARM::SP);
   1162 
   1163   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
   1164       !Subtarget->hasVFP2())
   1165     setSchedulingPreference(Sched::RegPressure);
   1166   else
   1167     setSchedulingPreference(Sched::Hybrid);
   1168 
   1169   //// temporary - rewrite interface to use type
   1170   MaxStoresPerMemset = 8;
   1171   MaxStoresPerMemsetOptSize = 4;
   1172   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
   1173   MaxStoresPerMemcpyOptSize = 2;
   1174   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
   1175   MaxStoresPerMemmoveOptSize = 2;
   1176 
   1177   // On ARM arguments smaller than 4 bytes are extended, so all arguments
   1178   // are at least 4 bytes aligned.
   1179   setMinStackArgumentAlignment(4);
   1180 
   1181   // Prefer likely predicted branches to selects on out-of-order cores.
   1182   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
   1183 
   1184   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
   1185 }
   1186 
   1187 bool ARMTargetLowering::useSoftFloat() const {
   1188   return Subtarget->useSoftFloat();
   1189 }
   1190 
   1191 // FIXME: It might make sense to define the representative register class as the
   1192 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
   1193 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
   1194 // SPR's representative would be DPR_VFP2. This should work well if register
   1195 // pressure tracking were modified such that a register use would increment the
   1196 // pressure of the register class's representative and all of it's super
   1197 // classes' representatives transitively. We have not implemented this because
   1198 // of the difficulty prior to coalescing of modeling operand register classes
   1199 // due to the common occurrence of cross class copies and subregister insertions
   1200 // and extractions.
   1201 std::pair<const TargetRegisterClass *, uint8_t>
   1202 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1203                                            MVT VT) const {
   1204   const TargetRegisterClass *RRC = nullptr;
   1205   uint8_t Cost = 1;
   1206   switch (VT.SimpleTy) {
   1207   default:
   1208     return TargetLowering::findRepresentativeClass(TRI, VT);
   1209   // Use DPR as representative register class for all floating point
   1210   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
   1211   // the cost is 1 for both f32 and f64.
   1212   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
   1213   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
   1214     RRC = &ARM::DPRRegClass;
   1215     // When NEON is used for SP, only half of the register file is available
   1216     // because operations that define both SP and DP results will be constrained
   1217     // to the VFP2 class (D0-D15). We currently model this constraint prior to
   1218     // coalescing by double-counting the SP regs. See the FIXME above.
   1219     if (Subtarget->useNEONForSinglePrecisionFP())
   1220       Cost = 2;
   1221     break;
   1222   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1223   case MVT::v4f32: case MVT::v2f64:
   1224     RRC = &ARM::DPRRegClass;
   1225     Cost = 2;
   1226     break;
   1227   case MVT::v4i64:
   1228     RRC = &ARM::DPRRegClass;
   1229     Cost = 4;
   1230     break;
   1231   case MVT::v8i64:
   1232     RRC = &ARM::DPRRegClass;
   1233     Cost = 8;
   1234     break;
   1235   }
   1236   return std::make_pair(RRC, Cost);
   1237 }
   1238 
   1239 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1240   switch ((ARMISD::NodeType)Opcode) {
   1241   case ARMISD::FIRST_NUMBER:  break;
   1242   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
   1243   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
   1244   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
   1245   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
   1246   case ARMISD::CALL:          return "ARMISD::CALL";
   1247   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
   1248   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
   1249   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
   1250   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
   1251   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
   1252   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
   1253   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
   1254   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
   1255   case ARMISD::CMP:           return "ARMISD::CMP";
   1256   case ARMISD::CMN:           return "ARMISD::CMN";
   1257   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
   1258   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
   1259   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
   1260   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
   1261   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
   1262 
   1263   case ARMISD::CMOV:          return "ARMISD::CMOV";
   1264 
   1265   case ARMISD::SSAT:          return "ARMISD::SSAT";
   1266   case ARMISD::USAT:          return "ARMISD::USAT";
   1267 
   1268   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
   1269   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
   1270   case ARMISD::RRX:           return "ARMISD::RRX";
   1271 
   1272   case ARMISD::ADDC:          return "ARMISD::ADDC";
   1273   case ARMISD::ADDE:          return "ARMISD::ADDE";
   1274   case ARMISD::SUBC:          return "ARMISD::SUBC";
   1275   case ARMISD::SUBE:          return "ARMISD::SUBE";
   1276 
   1277   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
   1278   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
   1279   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
   1280   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
   1281   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
   1282 
   1283   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
   1284   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
   1285   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
   1286 
   1287   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
   1288 
   1289   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
   1290 
   1291   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
   1292 
   1293   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
   1294 
   1295   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
   1296 
   1297   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
   1298   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
   1299 
   1300   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
   1301   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
   1302   case ARMISD::VCGE:          return "ARMISD::VCGE";
   1303   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
   1304   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
   1305   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
   1306   case ARMISD::VCGT:          return "ARMISD::VCGT";
   1307   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
   1308   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
   1309   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
   1310   case ARMISD::VTST:          return "ARMISD::VTST";
   1311 
   1312   case ARMISD::VSHL:          return "ARMISD::VSHL";
   1313   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
   1314   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
   1315   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
   1316   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
   1317   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
   1318   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
   1319   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
   1320   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
   1321   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
   1322   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
   1323   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
   1324   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
   1325   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
   1326   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
   1327   case ARMISD::VSLI:          return "ARMISD::VSLI";
   1328   case ARMISD::VSRI:          return "ARMISD::VSRI";
   1329   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
   1330   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
   1331   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
   1332   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
   1333   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
   1334   case ARMISD::VDUP:          return "ARMISD::VDUP";
   1335   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
   1336   case ARMISD::VEXT:          return "ARMISD::VEXT";
   1337   case ARMISD::VREV64:        return "ARMISD::VREV64";
   1338   case ARMISD::VREV32:        return "ARMISD::VREV32";
   1339   case ARMISD::VREV16:        return "ARMISD::VREV16";
   1340   case ARMISD::VZIP:          return "ARMISD::VZIP";
   1341   case ARMISD::VUZP:          return "ARMISD::VUZP";
   1342   case ARMISD::VTRN:          return "ARMISD::VTRN";
   1343   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
   1344   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
   1345   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
   1346   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
   1347   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
   1348   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
   1349   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
   1350   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
   1351   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
   1352   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
   1353   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
   1354   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
   1355   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
   1356   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
   1357   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
   1358   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
   1359   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
   1360   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
   1361   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
   1362   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
   1363   case ARMISD::BFI:           return "ARMISD::BFI";
   1364   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
   1365   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
   1366   case ARMISD::VBSL:          return "ARMISD::VBSL";
   1367   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
   1368   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
   1369   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
   1370   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
   1371   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
   1372   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1373   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1374   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1375   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1376   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1377   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1378   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1379   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
   1380   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1381   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1382   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1383   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1384   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1385   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1386   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1387   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1388   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1389   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1390   }
   1391   return nullptr;
   1392 }
   1393 
   1394 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
   1395                                           EVT VT) const {
   1396   if (!VT.isVector())
   1397     return getPointerTy(DL);
   1398   return VT.changeVectorElementTypeToInteger();
   1399 }
   1400 
   1401 /// getRegClassFor - Return the register class that should be used for the
   1402 /// specified value type.
   1403 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
   1404   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1405   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1406   // load / store 4 to 8 consecutive D registers.
   1407   if (Subtarget->hasNEON()) {
   1408     if (VT == MVT::v4i64)
   1409       return &ARM::QQPRRegClass;
   1410     if (VT == MVT::v8i64)
   1411       return &ARM::QQQQPRRegClass;
   1412   }
   1413   return TargetLowering::getRegClassFor(VT);
   1414 }
   1415 
   1416 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
   1417 // source/dest is aligned and the copy size is large enough. We therefore want
   1418 // to align such objects passed to memory intrinsics.
   1419 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
   1420                                                unsigned &PrefAlign) const {
   1421   if (!isa<MemIntrinsic>(CI))
   1422     return false;
   1423   MinSize = 8;
   1424   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
   1425   // cycle faster than 4-byte aligned LDM.
   1426   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
   1427   return true;
   1428 }
   1429 
   1430 // Create a fast isel object.
   1431 FastISel *
   1432 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1433                                   const TargetLibraryInfo *libInfo) const {
   1434   return ARM::createFastISel(funcInfo, libInfo);
   1435 }
   1436 
   1437 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1438   unsigned NumVals = N->getNumValues();
   1439   if (!NumVals)
   1440     return Sched::RegPressure;
   1441 
   1442   for (unsigned i = 0; i != NumVals; ++i) {
   1443     EVT VT = N->getValueType(i);
   1444     if (VT == MVT::Glue || VT == MVT::Other)
   1445       continue;
   1446     if (VT.isFloatingPoint() || VT.isVector())
   1447       return Sched::ILP;
   1448   }
   1449 
   1450   if (!N->isMachineOpcode())
   1451     return Sched::RegPressure;
   1452 
   1453   // Load are scheduled for latency even if there instruction itinerary
   1454   // is not available.
   1455   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1456   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1457 
   1458   if (MCID.getNumDefs() == 0)
   1459     return Sched::RegPressure;
   1460   if (!Itins->isEmpty() &&
   1461       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1462     return Sched::ILP;
   1463 
   1464   return Sched::RegPressure;
   1465 }
   1466 
   1467 //===----------------------------------------------------------------------===//
   1468 // Lowering Code
   1469 //===----------------------------------------------------------------------===//
   1470 
   1471 static bool isSRL16(const SDValue &Op) {
   1472   if (Op.getOpcode() != ISD::SRL)
   1473     return false;
   1474   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
   1475     return Const->getZExtValue() == 16;
   1476   return false;
   1477 }
   1478 
   1479 static bool isSRA16(const SDValue &Op) {
   1480   if (Op.getOpcode() != ISD::SRA)
   1481     return false;
   1482   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
   1483     return Const->getZExtValue() == 16;
   1484   return false;
   1485 }
   1486 
   1487 static bool isSHL16(const SDValue &Op) {
   1488   if (Op.getOpcode() != ISD::SHL)
   1489     return false;
   1490   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
   1491     return Const->getZExtValue() == 16;
   1492   return false;
   1493 }
   1494 
   1495 // Check for a signed 16-bit value. We special case SRA because it makes it
   1496 // more simple when also looking for SRAs that aren't sign extending a
   1497 // smaller value. Without the check, we'd need to take extra care with
   1498 // checking order for some operations.
   1499 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
   1500   if (isSRA16(Op))
   1501     return isSHL16(Op.getOperand(0));
   1502   return DAG.ComputeNumSignBits(Op) == 17;
   1503 }
   1504 
   1505 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1506 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1507   switch (CC) {
   1508   default: llvm_unreachable("Unknown condition code!");
   1509   case ISD::SETNE:  return ARMCC::NE;
   1510   case ISD::SETEQ:  return ARMCC::EQ;
   1511   case ISD::SETGT:  return ARMCC::GT;
   1512   case ISD::SETGE:  return ARMCC::GE;
   1513   case ISD::SETLT:  return ARMCC::LT;
   1514   case ISD::SETLE:  return ARMCC::LE;
   1515   case ISD::SETUGT: return ARMCC::HI;
   1516   case ISD::SETUGE: return ARMCC::HS;
   1517   case ISD::SETULT: return ARMCC::LO;
   1518   case ISD::SETULE: return ARMCC::LS;
   1519   }
   1520 }
   1521 
   1522 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1523 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1524                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
   1525   CondCode2 = ARMCC::AL;
   1526   InvalidOnQNaN = true;
   1527   switch (CC) {
   1528   default: llvm_unreachable("Unknown FP condition!");
   1529   case ISD::SETEQ:
   1530   case ISD::SETOEQ:
   1531     CondCode = ARMCC::EQ;
   1532     InvalidOnQNaN = false;
   1533     break;
   1534   case ISD::SETGT:
   1535   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1536   case ISD::SETGE:
   1537   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1538   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1539   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1540   case ISD::SETONE:
   1541     CondCode = ARMCC::MI;
   1542     CondCode2 = ARMCC::GT;
   1543     InvalidOnQNaN = false;
   1544     break;
   1545   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1546   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1547   case ISD::SETUEQ:
   1548     CondCode = ARMCC::EQ;
   1549     CondCode2 = ARMCC::VS;
   1550     InvalidOnQNaN = false;
   1551     break;
   1552   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1553   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1554   case ISD::SETLT:
   1555   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1556   case ISD::SETLE:
   1557   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1558   case ISD::SETNE:
   1559   case ISD::SETUNE:
   1560     CondCode = ARMCC::NE;
   1561     InvalidOnQNaN = false;
   1562     break;
   1563   }
   1564 }
   1565 
   1566 //===----------------------------------------------------------------------===//
   1567 //                      Calling Convention Implementation
   1568 //===----------------------------------------------------------------------===//
   1569 
   1570 #include "ARMGenCallingConv.inc"
   1571 
   1572 /// getEffectiveCallingConv - Get the effective calling convention, taking into
   1573 /// account presence of floating point hardware and calling convention
   1574 /// limitations, such as support for variadic functions.
   1575 CallingConv::ID
   1576 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
   1577                                            bool isVarArg) const {
   1578   switch (CC) {
   1579   default:
   1580     report_fatal_error("Unsupported calling convention");
   1581   case CallingConv::ARM_AAPCS:
   1582   case CallingConv::ARM_APCS:
   1583   case CallingConv::GHC:
   1584     return CC;
   1585   case CallingConv::PreserveMost:
   1586     return CallingConv::PreserveMost;
   1587   case CallingConv::ARM_AAPCS_VFP:
   1588   case CallingConv::Swift:
   1589     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
   1590   case CallingConv::C:
   1591     if (!Subtarget->isAAPCS_ABI())
   1592       return CallingConv::ARM_APCS;
   1593     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
   1594              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1595              !isVarArg)
   1596       return CallingConv::ARM_AAPCS_VFP;
   1597     else
   1598       return CallingConv::ARM_AAPCS;
   1599   case CallingConv::Fast:
   1600   case CallingConv::CXX_FAST_TLS:
   1601     if (!Subtarget->isAAPCS_ABI()) {
   1602       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1603         return CallingConv::Fast;
   1604       return CallingConv::ARM_APCS;
   1605     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1606       return CallingConv::ARM_AAPCS_VFP;
   1607     else
   1608       return CallingConv::ARM_AAPCS;
   1609   }
   1610 }
   1611 
   1612 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
   1613                                                  bool isVarArg) const {
   1614   return CCAssignFnForNode(CC, false, isVarArg);
   1615 }
   1616 
   1617 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
   1618                                                    bool isVarArg) const {
   1619   return CCAssignFnForNode(CC, true, isVarArg);
   1620 }
   1621 
   1622 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
   1623 /// CallingConvention.
   1624 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1625                                                  bool Return,
   1626                                                  bool isVarArg) const {
   1627   switch (getEffectiveCallingConv(CC, isVarArg)) {
   1628   default:
   1629     report_fatal_error("Unsupported calling convention");
   1630   case CallingConv::ARM_APCS:
   1631     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1632   case CallingConv::ARM_AAPCS:
   1633     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1634   case CallingConv::ARM_AAPCS_VFP:
   1635     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1636   case CallingConv::Fast:
   1637     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1638   case CallingConv::GHC:
   1639     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1640   case CallingConv::PreserveMost:
   1641     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1642   }
   1643 }
   1644 
   1645 /// LowerCallResult - Lower the result values of a call into the
   1646 /// appropriate copies out of appropriate physical registers.
   1647 SDValue ARMTargetLowering::LowerCallResult(
   1648     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
   1649     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   1650     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
   1651     SDValue ThisVal) const {
   1652   // Assign locations to each value returned by this call.
   1653   SmallVector<CCValAssign, 16> RVLocs;
   1654   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1655                  *DAG.getContext());
   1656   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
   1657 
   1658   // Copy all of the result registers out of their specified physreg.
   1659   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1660     CCValAssign VA = RVLocs[i];
   1661 
   1662     // Pass 'this' value directly from the argument to return value, to avoid
   1663     // reg unit interference
   1664     if (i == 0 && isThisReturn) {
   1665       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
   1666              "unexpected return calling convention register assignment");
   1667       InVals.push_back(ThisVal);
   1668       continue;
   1669     }
   1670 
   1671     SDValue Val;
   1672     if (VA.needsCustom()) {
   1673       // Handle f64 or half of a v2f64.
   1674       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1675                                       InFlag);
   1676       Chain = Lo.getValue(1);
   1677       InFlag = Lo.getValue(2);
   1678       VA = RVLocs[++i]; // skip ahead to next loc
   1679       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1680                                       InFlag);
   1681       Chain = Hi.getValue(1);
   1682       InFlag = Hi.getValue(2);
   1683       if (!Subtarget->isLittle())
   1684         std::swap (Lo, Hi);
   1685       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1686 
   1687       if (VA.getLocVT() == MVT::v2f64) {
   1688         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1689         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1690                           DAG.getConstant(0, dl, MVT::i32));
   1691 
   1692         VA = RVLocs[++i]; // skip ahead to next loc
   1693         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1694         Chain = Lo.getValue(1);
   1695         InFlag = Lo.getValue(2);
   1696         VA = RVLocs[++i]; // skip ahead to next loc
   1697         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1698         Chain = Hi.getValue(1);
   1699         InFlag = Hi.getValue(2);
   1700         if (!Subtarget->isLittle())
   1701           std::swap (Lo, Hi);
   1702         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1703         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1704                           DAG.getConstant(1, dl, MVT::i32));
   1705       }
   1706     } else {
   1707       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1708                                InFlag);
   1709       Chain = Val.getValue(1);
   1710       InFlag = Val.getValue(2);
   1711     }
   1712 
   1713     switch (VA.getLocInfo()) {
   1714     default: llvm_unreachable("Unknown loc info!");
   1715     case CCValAssign::Full: break;
   1716     case CCValAssign::BCvt:
   1717       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1718       break;
   1719     }
   1720 
   1721     InVals.push_back(Val);
   1722   }
   1723 
   1724   return Chain;
   1725 }
   1726 
   1727 /// LowerMemOpCallTo - Store the argument to the stack.
   1728 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
   1729                                             SDValue Arg, const SDLoc &dl,
   1730                                             SelectionDAG &DAG,
   1731                                             const CCValAssign &VA,
   1732                                             ISD::ArgFlagsTy Flags) const {
   1733   unsigned LocMemOffset = VA.getLocMemOffset();
   1734   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1735   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
   1736                        StackPtr, PtrOff);
   1737   return DAG.getStore(
   1738       Chain, dl, Arg, PtrOff,
   1739       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
   1740 }
   1741 
   1742 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
   1743                                          SDValue Chain, SDValue &Arg,
   1744                                          RegsToPassVector &RegsToPass,
   1745                                          CCValAssign &VA, CCValAssign &NextVA,
   1746                                          SDValue &StackPtr,
   1747                                          SmallVectorImpl<SDValue> &MemOpChains,
   1748                                          ISD::ArgFlagsTy Flags) const {
   1749   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1750                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1751   unsigned id = Subtarget->isLittle() ? 0 : 1;
   1752   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
   1753 
   1754   if (NextVA.isRegLoc())
   1755     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
   1756   else {
   1757     assert(NextVA.isMemLoc());
   1758     if (!StackPtr.getNode())
   1759       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
   1760                                     getPointerTy(DAG.getDataLayout()));
   1761 
   1762     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
   1763                                            dl, DAG, NextVA,
   1764                                            Flags));
   1765   }
   1766 }
   1767 
   1768 /// LowerCall - Lowering a call into a callseq_start <-
   1769 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1770 /// nodes.
   1771 SDValue
   1772 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1773                              SmallVectorImpl<SDValue> &InVals) const {
   1774   SelectionDAG &DAG                     = CLI.DAG;
   1775   SDLoc &dl                             = CLI.DL;
   1776   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1777   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1778   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1779   SDValue Chain                         = CLI.Chain;
   1780   SDValue Callee                        = CLI.Callee;
   1781   bool &isTailCall                      = CLI.IsTailCall;
   1782   CallingConv::ID CallConv              = CLI.CallConv;
   1783   bool doesNotRet                       = CLI.DoesNotReturn;
   1784   bool isVarArg                         = CLI.IsVarArg;
   1785 
   1786   MachineFunction &MF = DAG.getMachineFunction();
   1787   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1788   bool isThisReturn   = false;
   1789   bool isSibCall      = false;
   1790   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
   1791 
   1792   // Disable tail calls if they're not supported.
   1793   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
   1794     isTailCall = false;
   1795 
   1796   if (isTailCall) {
   1797     // Check if it's really possible to do a tail call.
   1798     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1799                     isVarArg, isStructRet, MF.getFunction().hasStructRetAttr(),
   1800                                                    Outs, OutVals, Ins, DAG);
   1801     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
   1802       report_fatal_error("failed to perform tail call elimination on a call "
   1803                          "site marked musttail");
   1804     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1805     // detected sibcalls.
   1806     if (isTailCall) {
   1807       ++NumTailCalls;
   1808       isSibCall = true;
   1809     }
   1810   }
   1811 
   1812   // Analyze operands of the call, assigning locations to each operand.
   1813   SmallVector<CCValAssign, 16> ArgLocs;
   1814   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1815                  *DAG.getContext());
   1816   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
   1817 
   1818   // Get a count of how many bytes are to be pushed on the stack.
   1819   unsigned NumBytes = CCInfo.getNextStackOffset();
   1820 
   1821   // For tail calls, memory operands are available in our caller's stack.
   1822   if (isSibCall)
   1823     NumBytes = 0;
   1824 
   1825   // Adjust the stack pointer for the new arguments...
   1826   // These operations are automatically eliminated by the prolog/epilog pass
   1827   if (!isSibCall)
   1828     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
   1829 
   1830   SDValue StackPtr =
   1831       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
   1832 
   1833   RegsToPassVector RegsToPass;
   1834   SmallVector<SDValue, 8> MemOpChains;
   1835 
   1836   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1837   // of tail call optimization, arguments are handled later.
   1838   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1839        i != e;
   1840        ++i, ++realArgIdx) {
   1841     CCValAssign &VA = ArgLocs[i];
   1842     SDValue Arg = OutVals[realArgIdx];
   1843     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1844     bool isByVal = Flags.isByVal();
   1845 
   1846     // Promote the value if needed.
   1847     switch (VA.getLocInfo()) {
   1848     default: llvm_unreachable("Unknown loc info!");
   1849     case CCValAssign::Full: break;
   1850     case CCValAssign::SExt:
   1851       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1852       break;
   1853     case CCValAssign::ZExt:
   1854       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1855       break;
   1856     case CCValAssign::AExt:
   1857       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1858       break;
   1859     case CCValAssign::BCvt:
   1860       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1861       break;
   1862     }
   1863 
   1864     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1865     if (VA.needsCustom()) {
   1866       if (VA.getLocVT() == MVT::v2f64) {
   1867         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1868                                   DAG.getConstant(0, dl, MVT::i32));
   1869         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1870                                   DAG.getConstant(1, dl, MVT::i32));
   1871 
   1872         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1873                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1874 
   1875         VA = ArgLocs[++i]; // skip ahead to next loc
   1876         if (VA.isRegLoc()) {
   1877           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1878                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1879         } else {
   1880           assert(VA.isMemLoc());
   1881 
   1882           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1883                                                  dl, DAG, VA, Flags));
   1884         }
   1885       } else {
   1886         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1887                          StackPtr, MemOpChains, Flags);
   1888       }
   1889     } else if (VA.isRegLoc()) {
   1890       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
   1891           Outs[0].VT == MVT::i32) {
   1892         assert(VA.getLocVT() == MVT::i32 &&
   1893                "unexpected calling convention register assignment");
   1894         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
   1895                "unexpected use of 'returned'");
   1896         isThisReturn = true;
   1897       }
   1898       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1899     } else if (isByVal) {
   1900       assert(VA.isMemLoc());
   1901       unsigned offset = 0;
   1902 
   1903       // True if this byval aggregate will be split between registers
   1904       // and memory.
   1905       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
   1906       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
   1907 
   1908       if (CurByValIdx < ByValArgsCount) {
   1909 
   1910         unsigned RegBegin, RegEnd;
   1911         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
   1912 
   1913         EVT PtrVT =
   1914             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   1915         unsigned int i, j;
   1916         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
   1917           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
   1918           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1919           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1920                                      MachinePointerInfo(),
   1921                                      DAG.InferPtrAlignment(AddArg));
   1922           MemOpChains.push_back(Load.getValue(1));
   1923           RegsToPass.push_back(std::make_pair(j, Load));
   1924         }
   1925 
   1926         // If parameter size outsides register area, "offset" value
   1927         // helps us to calculate stack slot for remained part properly.
   1928         offset = RegEnd - RegBegin;
   1929 
   1930         CCInfo.nextInRegsParam();
   1931       }
   1932 
   1933       if (Flags.getByValSize() > 4*offset) {
   1934         auto PtrVT = getPointerTy(DAG.getDataLayout());
   1935         unsigned LocMemOffset = VA.getLocMemOffset();
   1936         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1937         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
   1938         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
   1939         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
   1940         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
   1941                                            MVT::i32);
   1942         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
   1943                                             MVT::i32);
   1944 
   1945         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1946         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1947         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1948                                           Ops));
   1949       }
   1950     } else if (!isSibCall) {
   1951       assert(VA.isMemLoc());
   1952 
   1953       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1954                                              dl, DAG, VA, Flags));
   1955     }
   1956   }
   1957 
   1958   if (!MemOpChains.empty())
   1959     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1960 
   1961   // Build a sequence of copy-to-reg nodes chained together with token chain
   1962   // and flag operands which copy the outgoing args into the appropriate regs.
   1963   SDValue InFlag;
   1964   // Tail call byval lowering might overwrite argument registers so in case of
   1965   // tail call optimization the copies to registers are lowered later.
   1966   if (!isTailCall)
   1967     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1968       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1969                                RegsToPass[i].second, InFlag);
   1970       InFlag = Chain.getValue(1);
   1971     }
   1972 
   1973   // For tail calls lower the arguments to the 'real' stack slot.
   1974   if (isTailCall) {
   1975     // Force all the incoming stack arguments to be loaded from the stack
   1976     // before any new outgoing arguments are stored to the stack, because the
   1977     // outgoing stack slots may alias the incoming argument stack slots, and
   1978     // the alias isn't otherwise explicit. This is slightly more conservative
   1979     // than necessary, because it means that each store effectively depends
   1980     // on every argument instead of just those arguments it would clobber.
   1981 
   1982     // Do not flag preceding copytoreg stuff together with the following stuff.
   1983     InFlag = SDValue();
   1984     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1985       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1986                                RegsToPass[i].second, InFlag);
   1987       InFlag = Chain.getValue(1);
   1988     }
   1989     InFlag = SDValue();
   1990   }
   1991 
   1992   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1993   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1994   // node so that legalize doesn't hack it.
   1995   bool isDirect = false;
   1996 
   1997   const TargetMachine &TM = getTargetMachine();
   1998   const Module *Mod = MF.getFunction().getParent();
   1999   const GlobalValue *GV = nullptr;
   2000   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   2001     GV = G->getGlobal();
   2002   bool isStub =
   2003       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
   2004 
   2005   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   2006   bool isLocalARMFunc = false;
   2007   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2008   auto PtrVt = getPointerTy(DAG.getDataLayout());
   2009 
   2010   if (Subtarget->genLongCalls()) {
   2011     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
   2012            "long-calls codegen is not position independent!");
   2013     // Handle a global address or an external symbol. If it's not one of
   2014     // those, the target's already in a register, so we don't need to do
   2015     // anything extra.
   2016     if (isa<GlobalAddressSDNode>(Callee)) {
   2017       // Create a constant pool entry for the callee address
   2018       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2019       ARMConstantPoolValue *CPV =
   2020         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   2021 
   2022       // Get the address of the callee into a register
   2023       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   2024       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2025       Callee = DAG.getLoad(
   2026           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   2027           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2028     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2029       const char *Sym = S->getSymbol();
   2030 
   2031       // Create a constant pool entry for the callee address
   2032       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2033       ARMConstantPoolValue *CPV =
   2034         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   2035                                       ARMPCLabelIndex, 0);
   2036       // Get the address of the callee into a register
   2037       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   2038       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2039       Callee = DAG.getLoad(
   2040           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   2041           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2042     }
   2043   } else if (isa<GlobalAddressSDNode>(Callee)) {
   2044     // If we're optimizing for minimum size and the function is called three or
   2045     // more times in this block, we can improve codesize by calling indirectly
   2046     // as BLXr has a 16-bit encoding.
   2047     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
   2048     auto *BB = CLI.CS.getParent();
   2049     bool PreferIndirect =
   2050         Subtarget->isThumb() && MF.getFunction().optForMinSize() &&
   2051         count_if(GV->users(), [&BB](const User *U) {
   2052           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
   2053         }) > 2;
   2054 
   2055     if (!PreferIndirect) {
   2056       isDirect = true;
   2057       bool isDef = GV->isStrongDefinitionForLinker();
   2058 
   2059       // ARM call to a local ARM function is predicable.
   2060       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
   2061       // tBX takes a register source operand.
   2062       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   2063         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
   2064         Callee = DAG.getNode(
   2065             ARMISD::WrapperPIC, dl, PtrVt,
   2066             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
   2067         Callee = DAG.getLoad(
   2068             PtrVt, dl, DAG.getEntryNode(), Callee,
   2069             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2070             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
   2071                                      MachineMemOperand::MOInvariant);
   2072       } else if (Subtarget->isTargetCOFF()) {
   2073         assert(Subtarget->isTargetWindows() &&
   2074                "Windows is the only supported COFF target");
   2075         unsigned TargetFlags = GV->hasDLLImportStorageClass()
   2076                                    ? ARMII::MO_DLLIMPORT
   2077                                    : ARMII::MO_NO_FLAG;
   2078         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
   2079                                             TargetFlags);
   2080         if (GV->hasDLLImportStorageClass())
   2081           Callee =
   2082               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
   2083                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
   2084                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   2085       } else {
   2086         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
   2087       }
   2088     }
   2089   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2090     isDirect = true;
   2091     // tBX takes a register source operand.
   2092     const char *Sym = S->getSymbol();
   2093     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   2094       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2095       ARMConstantPoolValue *CPV =
   2096         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   2097                                       ARMPCLabelIndex, 4);
   2098       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   2099       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2100       Callee = DAG.getLoad(
   2101           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   2102           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2103       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2104       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
   2105     } else {
   2106       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
   2107     }
   2108   }
   2109 
   2110   // FIXME: handle tail calls differently.
   2111   unsigned CallOpc;
   2112   if (Subtarget->isThumb()) {
   2113     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   2114       CallOpc = ARMISD::CALL_NOLINK;
   2115     else
   2116       CallOpc = ARMISD::CALL;
   2117   } else {
   2118     if (!isDirect && !Subtarget->hasV5TOps())
   2119       CallOpc = ARMISD::CALL_NOLINK;
   2120     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
   2121              // Emit regular call when code size is the priority
   2122              !MF.getFunction().optForMinSize())
   2123       // "mov lr, pc; b _foo" to avoid confusing the RSP
   2124       CallOpc = ARMISD::CALL_NOLINK;
   2125     else
   2126       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   2127   }
   2128 
   2129   std::vector<SDValue> Ops;
   2130   Ops.push_back(Chain);
   2131   Ops.push_back(Callee);
   2132 
   2133   // Add argument registers to the end of the list so that they are known live
   2134   // into the call.
   2135   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2136     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2137                                   RegsToPass[i].second.getValueType()));
   2138 
   2139   // Add a register mask operand representing the call-preserved registers.
   2140   if (!isTailCall) {
   2141     const uint32_t *Mask;
   2142     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
   2143     if (isThisReturn) {
   2144       // For 'this' returns, use the R0-preserving mask if applicable
   2145       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
   2146       if (!Mask) {
   2147         // Set isThisReturn to false if the calling convention is not one that
   2148         // allows 'returned' to be modeled in this way, so LowerCallResult does
   2149         // not try to pass 'this' straight through
   2150         isThisReturn = false;
   2151         Mask = ARI->getCallPreservedMask(MF, CallConv);
   2152       }
   2153     } else
   2154       Mask = ARI->getCallPreservedMask(MF, CallConv);
   2155 
   2156     assert(Mask && "Missing call preserved mask for calling convention");
   2157     Ops.push_back(DAG.getRegisterMask(Mask));
   2158   }
   2159 
   2160   if (InFlag.getNode())
   2161     Ops.push_back(InFlag);
   2162 
   2163   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2164   if (isTailCall) {
   2165     MF.getFrameInfo().setHasTailCall();
   2166     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
   2167   }
   2168 
   2169   // Returns a chain and a flag for retval copy to use.
   2170   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   2171   InFlag = Chain.getValue(1);
   2172 
   2173   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   2174                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   2175   if (!Ins.empty())
   2176     InFlag = Chain.getValue(1);
   2177 
   2178   // Handle result values, copying them out of physregs into vregs that we
   2179   // return.
   2180   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
   2181                          InVals, isThisReturn,
   2182                          isThisReturn ? OutVals[0] : SDValue());
   2183 }
   2184 
   2185 /// HandleByVal - Every parameter *after* a byval parameter is passed
   2186 /// on the stack.  Remember the next parameter register to allocate,
   2187 /// and then confiscate the rest of the parameter registers to insure
   2188 /// this.
   2189 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
   2190                                     unsigned Align) const {
   2191   // Byval (as with any stack) slots are always at least 4 byte aligned.
   2192   Align = std::max(Align, 4U);
   2193 
   2194   unsigned Reg = State->AllocateReg(GPRArgRegs);
   2195   if (!Reg)
   2196     return;
   2197 
   2198   unsigned AlignInRegs = Align / 4;
   2199   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
   2200   for (unsigned i = 0; i < Waste; ++i)
   2201     Reg = State->AllocateReg(GPRArgRegs);
   2202 
   2203   if (!Reg)
   2204     return;
   2205 
   2206   unsigned Excess = 4 * (ARM::R4 - Reg);
   2207 
   2208   // Special case when NSAA != SP and parameter size greater than size of
   2209   // all remained GPR regs. In that case we can't split parameter, we must
   2210   // send it to stack. We also must set NCRN to R4, so waste all
   2211   // remained registers.
   2212   const unsigned NSAAOffset = State->getNextStackOffset();
   2213   if (NSAAOffset != 0 && Size > Excess) {
   2214     while (State->AllocateReg(GPRArgRegs))
   2215       ;
   2216     return;
   2217   }
   2218 
   2219   // First register for byval parameter is the first register that wasn't
   2220   // allocated before this method call, so it would be "reg".
   2221   // If parameter is small enough to be saved in range [reg, r4), then
   2222   // the end (first after last) register would be reg + param-size-in-regs,
   2223   // else parameter would be splitted between registers and stack,
   2224   // end register would be r4 in this case.
   2225   unsigned ByValRegBegin = Reg;
   2226   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
   2227   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
   2228   // Note, first register is allocated in the beginning of function already,
   2229   // allocate remained amount of registers we need.
   2230   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
   2231     State->AllocateReg(GPRArgRegs);
   2232   // A byval parameter that is split between registers and memory needs its
   2233   // size truncated here.
   2234   // In the case where the entire structure fits in registers, we set the
   2235   // size in memory to zero.
   2236   Size = std::max<int>(Size - Excess, 0);
   2237 }
   2238 
   2239 /// MatchingStackOffset - Return true if the given stack call argument is
   2240 /// already available in the same position (relatively) of the caller's
   2241 /// incoming argument stack.
   2242 static
   2243 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2244                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
   2245                          const TargetInstrInfo *TII) {
   2246   unsigned Bytes = Arg.getValueSizeInBits() / 8;
   2247   int FI = std::numeric_limits<int>::max();
   2248   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2249     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2250     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2251       return false;
   2252     MachineInstr *Def = MRI->getVRegDef(VR);
   2253     if (!Def)
   2254       return false;
   2255     if (!Flags.isByVal()) {
   2256       if (!TII->isLoadFromStackSlot(*Def, FI))
   2257         return false;
   2258     } else {
   2259       return false;
   2260     }
   2261   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2262     if (Flags.isByVal())
   2263       // ByVal argument is passed in as a pointer but it's now being
   2264       // dereferenced. e.g.
   2265       // define @foo(%struct.X* %A) {
   2266       //   tail call @bar(%struct.X* byval %A)
   2267       // }
   2268       return false;
   2269     SDValue Ptr = Ld->getBasePtr();
   2270     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2271     if (!FINode)
   2272       return false;
   2273     FI = FINode->getIndex();
   2274   } else
   2275     return false;
   2276 
   2277   assert(FI != std::numeric_limits<int>::max());
   2278   if (!MFI.isFixedObjectIndex(FI))
   2279     return false;
   2280   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
   2281 }
   2282 
   2283 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2284 /// for tail call optimization. Targets which want to do tail call
   2285 /// optimization should implement this function.
   2286 bool
   2287 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2288                                                      CallingConv::ID CalleeCC,
   2289                                                      bool isVarArg,
   2290                                                      bool isCalleeStructRet,
   2291                                                      bool isCallerStructRet,
   2292                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2293                                     const SmallVectorImpl<SDValue> &OutVals,
   2294                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2295                                                      SelectionDAG& DAG) const {
   2296   MachineFunction &MF = DAG.getMachineFunction();
   2297   const Function &CallerF = MF.getFunction();
   2298   CallingConv::ID CallerCC = CallerF.getCallingConv();
   2299 
   2300   assert(Subtarget->supportsTailCall());
   2301 
   2302   // Tail calls to function pointers cannot be optimized for Thumb1 if the args
   2303   // to the call take up r0-r3. The reason is that there are no legal registers
   2304   // left to hold the pointer to the function to be called.
   2305   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
   2306       !isa<GlobalAddressSDNode>(Callee.getNode()))
   2307       return false;
   2308 
   2309   // Look for obvious safe cases to perform tail call optimization that do not
   2310   // require ABI changes. This is what gcc calls sibcall.
   2311 
   2312   // Exception-handling functions need a special set of instructions to indicate
   2313   // a return to the hardware. Tail-calling another function would probably
   2314   // break this.
   2315   if (CallerF.hasFnAttribute("interrupt"))
   2316     return false;
   2317 
   2318   // Also avoid sibcall optimization if either caller or callee uses struct
   2319   // return semantics.
   2320   if (isCalleeStructRet || isCallerStructRet)
   2321     return false;
   2322 
   2323   // Externally-defined functions with weak linkage should not be
   2324   // tail-called on ARM when the OS does not support dynamic
   2325   // pre-emption of symbols, as the AAELF spec requires normal calls
   2326   // to undefined weak functions to be replaced with a NOP or jump to the
   2327   // next instruction. The behaviour of branch instructions in this
   2328   // situation (as used for tail calls) is implementation-defined, so we
   2329   // cannot rely on the linker replacing the tail call with a return.
   2330   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2331     const GlobalValue *GV = G->getGlobal();
   2332     const Triple &TT = getTargetMachine().getTargetTriple();
   2333     if (GV->hasExternalWeakLinkage() &&
   2334         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
   2335       return false;
   2336   }
   2337 
   2338   // Check that the call results are passed in the same way.
   2339   LLVMContext &C = *DAG.getContext();
   2340   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
   2341                                   CCAssignFnForReturn(CalleeCC, isVarArg),
   2342                                   CCAssignFnForReturn(CallerCC, isVarArg)))
   2343     return false;
   2344   // The callee has to preserve all registers the caller needs to preserve.
   2345   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2346   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
   2347   if (CalleeCC != CallerCC) {
   2348     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
   2349     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
   2350       return false;
   2351   }
   2352 
   2353   // If Caller's vararg or byval argument has been split between registers and
   2354   // stack, do not perform tail call, since part of the argument is in caller's
   2355   // local frame.
   2356   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
   2357   if (AFI_Caller->getArgRegsSaveSize())
   2358     return false;
   2359 
   2360   // If the callee takes no arguments then go on to check the results of the
   2361   // call.
   2362   if (!Outs.empty()) {
   2363     // Check if stack adjustment is needed. For now, do not do this if any
   2364     // argument is passed on the stack.
   2365     SmallVector<CCValAssign, 16> ArgLocs;
   2366     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
   2367     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
   2368     if (CCInfo.getNextStackOffset()) {
   2369       // Check if the arguments are already laid out in the right way as
   2370       // the caller's fixed stack objects.
   2371       MachineFrameInfo &MFI = MF.getFrameInfo();
   2372       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2373       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   2374       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   2375            i != e;
   2376            ++i, ++realArgIdx) {
   2377         CCValAssign &VA = ArgLocs[i];
   2378         EVT RegVT = VA.getLocVT();
   2379         SDValue Arg = OutVals[realArgIdx];
   2380         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2381         if (VA.getLocInfo() == CCValAssign::Indirect)
   2382           return false;
   2383         if (VA.needsCustom()) {
   2384           // f64 and vector types are split into multiple registers or
   2385           // register/stack-slot combinations.  The types will not match
   2386           // the registers; give up on memory f64 refs until we figure
   2387           // out what to do about this.
   2388           if (!VA.isRegLoc())
   2389             return false;
   2390           if (!ArgLocs[++i].isRegLoc())
   2391             return false;
   2392           if (RegVT == MVT::v2f64) {
   2393             if (!ArgLocs[++i].isRegLoc())
   2394               return false;
   2395             if (!ArgLocs[++i].isRegLoc())
   2396               return false;
   2397           }
   2398         } else if (!VA.isRegLoc()) {
   2399           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2400                                    MFI, MRI, TII))
   2401             return false;
   2402         }
   2403       }
   2404     }
   2405 
   2406     const MachineRegisterInfo &MRI = MF.getRegInfo();
   2407     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
   2408       return false;
   2409   }
   2410 
   2411   return true;
   2412 }
   2413 
   2414 bool
   2415 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2416                                   MachineFunction &MF, bool isVarArg,
   2417                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2418                                   LLVMContext &Context) const {
   2419   SmallVector<CCValAssign, 16> RVLocs;
   2420   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   2421   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
   2422 }
   2423 
   2424 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   2425                                     const SDLoc &DL, SelectionDAG &DAG) {
   2426   const MachineFunction &MF = DAG.getMachineFunction();
   2427   const Function &F = MF.getFunction();
   2428 
   2429   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
   2430 
   2431   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
   2432   // version of the "preferred return address". These offsets affect the return
   2433   // instruction if this is a return from PL1 without hypervisor extensions.
   2434   //    IRQ/FIQ: +4     "subs pc, lr, #4"
   2435   //    SWI:     0      "subs pc, lr, #0"
   2436   //    ABORT:   +4     "subs pc, lr, #4"
   2437   //    UNDEF:   +4/+2  "subs pc, lr, #0"
   2438   // UNDEF varies depending on where the exception came from ARM or Thumb
   2439   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
   2440 
   2441   int64_t LROffset;
   2442   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
   2443       IntKind == "ABORT")
   2444     LROffset = 4;
   2445   else if (IntKind == "SWI" || IntKind == "UNDEF")
   2446     LROffset = 0;
   2447   else
   2448     report_fatal_error("Unsupported interrupt attribute. If present, value "
   2449                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
   2450 
   2451   RetOps.insert(RetOps.begin() + 1,
   2452                 DAG.getConstant(LROffset, DL, MVT::i32, false));
   2453 
   2454   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
   2455 }
   2456 
   2457 SDValue
   2458 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   2459                                bool isVarArg,
   2460                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   2461                                const SmallVectorImpl<SDValue> &OutVals,
   2462                                const SDLoc &dl, SelectionDAG &DAG) const {
   2463   // CCValAssign - represent the assignment of the return value to a location.
   2464   SmallVector<CCValAssign, 16> RVLocs;
   2465 
   2466   // CCState - Info about the registers and stack slots.
   2467   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   2468                  *DAG.getContext());
   2469 
   2470   // Analyze outgoing return values.
   2471   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
   2472 
   2473   SDValue Flag;
   2474   SmallVector<SDValue, 4> RetOps;
   2475   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2476   bool isLittleEndian = Subtarget->isLittle();
   2477 
   2478   MachineFunction &MF = DAG.getMachineFunction();
   2479   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2480   AFI->setReturnRegsCount(RVLocs.size());
   2481 
   2482   // Copy the result values into the output registers.
   2483   for (unsigned i = 0, realRVLocIdx = 0;
   2484        i != RVLocs.size();
   2485        ++i, ++realRVLocIdx) {
   2486     CCValAssign &VA = RVLocs[i];
   2487     assert(VA.isRegLoc() && "Can only return in registers!");
   2488 
   2489     SDValue Arg = OutVals[realRVLocIdx];
   2490     bool ReturnF16 = false;
   2491 
   2492     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
   2493       // Half-precision return values can be returned like this:
   2494       //
   2495       // t11 f16 = fadd ...
   2496       // t12: i16 = bitcast t11
   2497       //   t13: i32 = zero_extend t12
   2498       // t14: f32 = bitcast t13  <~~~~~~~ Arg
   2499       //
   2500       // to avoid code generation for bitcasts, we simply set Arg to the node
   2501       // that produces the f16 value, t11 in this case.
   2502       //
   2503       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
   2504         SDValue ZE = Arg.getOperand(0);
   2505         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
   2506           SDValue BC = ZE.getOperand(0);
   2507           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
   2508             Arg = BC.getOperand(0);
   2509             ReturnF16 = true;
   2510           }
   2511         }
   2512       }
   2513     }
   2514 
   2515     switch (VA.getLocInfo()) {
   2516     default: llvm_unreachable("Unknown loc info!");
   2517     case CCValAssign::Full: break;
   2518     case CCValAssign::BCvt:
   2519       if (!ReturnF16)
   2520         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   2521       break;
   2522     }
   2523 
   2524     if (VA.needsCustom()) {
   2525       if (VA.getLocVT() == MVT::v2f64) {
   2526         // Extract the first half and return it in two registers.
   2527         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2528                                    DAG.getConstant(0, dl, MVT::i32));
   2529         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   2530                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   2531 
   2532         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2533                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
   2534                                  Flag);
   2535         Flag = Chain.getValue(1);
   2536         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2537         VA = RVLocs[++i]; // skip ahead to next loc
   2538         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2539                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
   2540                                  Flag);
   2541         Flag = Chain.getValue(1);
   2542         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2543         VA = RVLocs[++i]; // skip ahead to next loc
   2544 
   2545         // Extract the 2nd half and fall through to handle it as an f64 value.
   2546         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2547                           DAG.getConstant(1, dl, MVT::i32));
   2548       }
   2549       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   2550       // available.
   2551       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   2552                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
   2553       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2554                                fmrrd.getValue(isLittleEndian ? 0 : 1),
   2555                                Flag);
   2556       Flag = Chain.getValue(1);
   2557       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2558       VA = RVLocs[++i]; // skip ahead to next loc
   2559       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2560                                fmrrd.getValue(isLittleEndian ? 1 : 0),
   2561                                Flag);
   2562     } else
   2563       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   2564 
   2565     // Guarantee that all emitted copies are
   2566     // stuck together, avoiding something bad.
   2567     Flag = Chain.getValue(1);
   2568     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
   2569                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
   2570   }
   2571   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2572   const MCPhysReg *I =
   2573       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   2574   if (I) {
   2575     for (; *I; ++I) {
   2576       if (ARM::GPRRegClass.contains(*I))
   2577         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
   2578       else if (ARM::DPRRegClass.contains(*I))
   2579         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
   2580       else
   2581         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   2582     }
   2583   }
   2584 
   2585   // Update chain and glue.
   2586   RetOps[0] = Chain;
   2587   if (Flag.getNode())
   2588     RetOps.push_back(Flag);
   2589 
   2590   // CPUs which aren't M-class use a special sequence to return from
   2591   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
   2592   // though we use "subs pc, lr, #N").
   2593   //
   2594   // M-class CPUs actually use a normal return sequence with a special
   2595   // (hardware-provided) value in LR, so the normal code path works.
   2596   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
   2597       !Subtarget->isMClass()) {
   2598     if (Subtarget->isThumb1Only())
   2599       report_fatal_error("interrupt attribute is not supported in Thumb1");
   2600     return LowerInterruptReturn(RetOps, dl, DAG);
   2601   }
   2602 
   2603   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
   2604 }
   2605 
   2606 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   2607   if (N->getNumValues() != 1)
   2608     return false;
   2609   if (!N->hasNUsesOfValue(1, 0))
   2610     return false;
   2611 
   2612   SDValue TCChain = Chain;
   2613   SDNode *Copy = *N->use_begin();
   2614   if (Copy->getOpcode() == ISD::CopyToReg) {
   2615     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2616     // perform a tail call.
   2617     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2618       return false;
   2619     TCChain = Copy->getOperand(0);
   2620   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   2621     SDNode *VMov = Copy;
   2622     // f64 returned in a pair of GPRs.
   2623     SmallPtrSet<SDNode*, 2> Copies;
   2624     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2625          UI != UE; ++UI) {
   2626       if (UI->getOpcode() != ISD::CopyToReg)
   2627         return false;
   2628       Copies.insert(*UI);
   2629     }
   2630     if (Copies.size() > 2)
   2631       return false;
   2632 
   2633     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2634          UI != UE; ++UI) {
   2635       SDValue UseChain = UI->getOperand(0);
   2636       if (Copies.count(UseChain.getNode()))
   2637         // Second CopyToReg
   2638         Copy = *UI;
   2639       else {
   2640         // We are at the top of this chain.
   2641         // If the copy has a glue operand, we conservatively assume it
   2642         // isn't safe to perform a tail call.
   2643         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
   2644           return false;
   2645         // First CopyToReg
   2646         TCChain = UseChain;
   2647       }
   2648     }
   2649   } else if (Copy->getOpcode() == ISD::BITCAST) {
   2650     // f32 returned in a single GPR.
   2651     if (!Copy->hasOneUse())
   2652       return false;
   2653     Copy = *Copy->use_begin();
   2654     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   2655       return false;
   2656     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2657     // perform a tail call.
   2658     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2659       return false;
   2660     TCChain = Copy->getOperand(0);
   2661   } else {
   2662     return false;
   2663   }
   2664 
   2665   bool HasRet = false;
   2666   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2667        UI != UE; ++UI) {
   2668     if (UI->getOpcode() != ARMISD::RET_FLAG &&
   2669         UI->getOpcode() != ARMISD::INTRET_FLAG)
   2670       return false;
   2671     HasRet = true;
   2672   }
   2673 
   2674   if (!HasRet)
   2675     return false;
   2676 
   2677   Chain = TCChain;
   2678   return true;
   2679 }
   2680 
   2681 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
   2682   if (!Subtarget->supportsTailCall())
   2683     return false;
   2684 
   2685   auto Attr =
   2686       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
   2687   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
   2688     return false;
   2689 
   2690   return true;
   2691 }
   2692 
   2693 // Trying to write a 64 bit value so need to split into two 32 bit values first,
   2694 // and pass the lower and high parts through.
   2695 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
   2696   SDLoc DL(Op);
   2697   SDValue WriteValue = Op->getOperand(2);
   2698 
   2699   // This function is only supposed to be called for i64 type argument.
   2700   assert(WriteValue.getValueType() == MVT::i64
   2701           && "LowerWRITE_REGISTER called for non-i64 type argument.");
   2702 
   2703   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2704                            DAG.getConstant(0, DL, MVT::i32));
   2705   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2706                            DAG.getConstant(1, DL, MVT::i32));
   2707   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
   2708   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
   2709 }
   2710 
   2711 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2712 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2713 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2714 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2715 // be used to form addressing mode. These wrapped nodes will be selected
   2716 // into MOVi.
   2717 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
   2718                                              SelectionDAG &DAG) const {
   2719   EVT PtrVT = Op.getValueType();
   2720   // FIXME there is no actual debug info here
   2721   SDLoc dl(Op);
   2722   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2723   SDValue Res;
   2724 
   2725   // When generating execute-only code Constant Pools must be promoted to the
   2726   // global data section. It's a bit ugly that we can't share them across basic
   2727   // blocks, but this way we guarantee that execute-only behaves correct with
   2728   // position-independent addressing modes.
   2729   if (Subtarget->genExecuteOnly()) {
   2730     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   2731     auto T = const_cast<Type*>(CP->getType());
   2732     auto C = const_cast<Constant*>(CP->getConstVal());
   2733     auto M = const_cast<Module*>(DAG.getMachineFunction().
   2734                                  getFunction().getParent());
   2735     auto GV = new GlobalVariable(
   2736                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
   2737                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
   2738                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
   2739                     Twine(AFI->createPICLabelUId())
   2740                   );
   2741     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
   2742                                             dl, PtrVT);
   2743     return LowerGlobalAddress(GA, DAG);
   2744   }
   2745 
   2746   if (CP->isMachineConstantPoolEntry())
   2747     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2748                                     CP->getAlignment());
   2749   else
   2750     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2751                                     CP->getAlignment());
   2752   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2753 }
   2754 
   2755 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2756   return MachineJumpTableInfo::EK_Inline;
   2757 }
   2758 
   2759 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2760                                              SelectionDAG &DAG) const {
   2761   MachineFunction &MF = DAG.getMachineFunction();
   2762   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2763   unsigned ARMPCLabelIndex = 0;
   2764   SDLoc DL(Op);
   2765   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2766   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2767   SDValue CPAddr;
   2768   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
   2769   if (!IsPositionIndependent) {
   2770     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2771   } else {
   2772     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2773     ARMPCLabelIndex = AFI->createPICLabelUId();
   2774     ARMConstantPoolValue *CPV =
   2775       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2776                                       ARMCP::CPBlockAddress, PCAdj);
   2777     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2778   }
   2779   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2780   SDValue Result = DAG.getLoad(
   2781       PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2782       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2783   if (!IsPositionIndependent)
   2784     return Result;
   2785   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
   2786   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2787 }
   2788 
   2789 /// Convert a TLS address reference into the correct sequence of loads
   2790 /// and calls to compute the variable's address for Darwin, and return an
   2791 /// SDValue containing the final node.
   2792 
   2793 /// Darwin only has one TLS scheme which must be capable of dealing with the
   2794 /// fully general situation, in the worst case. This means:
   2795 ///     + "extern __thread" declaration.
   2796 ///     + Defined in a possibly unknown dynamic library.
   2797 ///
   2798 /// The general system is that each __thread variable has a [3 x i32] descriptor
   2799 /// which contains information used by the runtime to calculate the address. The
   2800 /// only part of this the compiler needs to know about is the first word, which
   2801 /// contains a function pointer that must be called with the address of the
   2802 /// entire descriptor in "r0".
   2803 ///
   2804 /// Since this descriptor may be in a different unit, in general access must
   2805 /// proceed along the usual ARM rules. A common sequence to produce is:
   2806 ///
   2807 ///     movw rT1, :lower16:_var$non_lazy_ptr
   2808 ///     movt rT1, :upper16:_var$non_lazy_ptr
   2809 ///     ldr r0, [rT1]
   2810 ///     ldr rT2, [r0]
   2811 ///     blx rT2
   2812 ///     [...address now in r0...]
   2813 SDValue
   2814 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
   2815                                                SelectionDAG &DAG) const {
   2816   assert(Subtarget->isTargetDarwin() &&
   2817          "This function expects a Darwin target");
   2818   SDLoc DL(Op);
   2819 
   2820   // First step is to get the address of the actua global symbol. This is where
   2821   // the TLS descriptor lives.
   2822   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
   2823 
   2824   // The first entry in the descriptor is a function pointer that we must call
   2825   // to obtain the address of the variable.
   2826   SDValue Chain = DAG.getEntryNode();
   2827   SDValue FuncTLVGet = DAG.getLoad(
   2828       MVT::i32, DL, Chain, DescAddr,
   2829       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2830       /* Alignment = */ 4,
   2831       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
   2832           MachineMemOperand::MOInvariant);
   2833   Chain = FuncTLVGet.getValue(1);
   2834 
   2835   MachineFunction &F = DAG.getMachineFunction();
   2836   MachineFrameInfo &MFI = F.getFrameInfo();
   2837   MFI.setAdjustsStack(true);
   2838 
   2839   // TLS calls preserve all registers except those that absolutely must be
   2840   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
   2841   // silly).
   2842   auto TRI =
   2843       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
   2844   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
   2845   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
   2846 
   2847   // Finally, we can make the call. This is just a degenerate version of a
   2848   // normal AArch64 call node: r0 takes the address of the descriptor, and
   2849   // returns the address of the variable in this thread.
   2850   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
   2851   Chain =
   2852       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
   2853                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
   2854                   DAG.getRegisterMask(Mask), Chain.getValue(1));
   2855   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
   2856 }
   2857 
   2858 SDValue
   2859 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
   2860                                                 SelectionDAG &DAG) const {
   2861   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
   2862 
   2863   SDValue Chain = DAG.getEntryNode();
   2864   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2865   SDLoc DL(Op);
   2866 
   2867   // Load the current TEB (thread environment block)
   2868   SDValue Ops[] = {Chain,
   2869                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
   2870                    DAG.getConstant(15, DL, MVT::i32),
   2871                    DAG.getConstant(0, DL, MVT::i32),
   2872                    DAG.getConstant(13, DL, MVT::i32),
   2873                    DAG.getConstant(0, DL, MVT::i32),
   2874                    DAG.getConstant(2, DL, MVT::i32)};
   2875   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   2876                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
   2877 
   2878   SDValue TEB = CurrentTEB.getValue(0);
   2879   Chain = CurrentTEB.getValue(1);
   2880 
   2881   // Load the ThreadLocalStoragePointer from the TEB
   2882   // A pointer to the TLS array is located at offset 0x2c from the TEB.
   2883   SDValue TLSArray =
   2884       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
   2885   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
   2886 
   2887   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
   2888   // offset into the TLSArray.
   2889 
   2890   // Load the TLS index from the C runtime
   2891   SDValue TLSIndex =
   2892       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
   2893   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
   2894   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
   2895 
   2896   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
   2897                               DAG.getConstant(2, DL, MVT::i32));
   2898   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
   2899                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
   2900                             MachinePointerInfo());
   2901 
   2902   // Get the offset of the start of the .tls section (section base)
   2903   const auto *GA = cast<GlobalAddressSDNode>(Op);
   2904   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
   2905   SDValue Offset = DAG.getLoad(
   2906       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
   2907                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
   2908       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2909 
   2910   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
   2911 }
   2912 
   2913 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2914 SDValue
   2915 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2916                                                  SelectionDAG &DAG) const {
   2917   SDLoc dl(GA);
   2918   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2919   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2920   MachineFunction &MF = DAG.getMachineFunction();
   2921   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2922   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2923   ARMConstantPoolValue *CPV =
   2924     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2925                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2926   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2927   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2928   Argument = DAG.getLoad(
   2929       PtrVT, dl, DAG.getEntryNode(), Argument,
   2930       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2931   SDValue Chain = Argument.getValue(1);
   2932 
   2933   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2934   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2935 
   2936   // call __tls_get_addr.
   2937   ArgListTy Args;
   2938   ArgListEntry Entry;
   2939   Entry.Node = Argument;
   2940   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2941   Args.push_back(Entry);
   2942 
   2943   // FIXME: is there useful debug info available here?
   2944   TargetLowering::CallLoweringInfo CLI(DAG);
   2945   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
   2946       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
   2947       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
   2948 
   2949   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2950   return CallResult.first;
   2951 }
   2952 
   2953 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2954 // "local exec" model.
   2955 SDValue
   2956 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2957                                         SelectionDAG &DAG,
   2958                                         TLSModel::Model model) const {
   2959   const GlobalValue *GV = GA->getGlobal();
   2960   SDLoc dl(GA);
   2961   SDValue Offset;
   2962   SDValue Chain = DAG.getEntryNode();
   2963   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2964   // Get the Thread Pointer
   2965   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2966 
   2967   if (model == TLSModel::InitialExec) {
   2968     MachineFunction &MF = DAG.getMachineFunction();
   2969     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2970     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2971     // Initial exec model.
   2972     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2973     ARMConstantPoolValue *CPV =
   2974       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2975                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2976                                       true);
   2977     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2978     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2979     Offset = DAG.getLoad(
   2980         PtrVT, dl, Chain, Offset,
   2981         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2982     Chain = Offset.getValue(1);
   2983 
   2984     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2985     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2986 
   2987     Offset = DAG.getLoad(
   2988         PtrVT, dl, Chain, Offset,
   2989         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   2990   } else {
   2991     // local exec model
   2992     assert(model == TLSModel::LocalExec);
   2993     ARMConstantPoolValue *CPV =
   2994       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2995     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2996     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2997     Offset = DAG.getLoad(
   2998         PtrVT, dl, Chain, Offset,
   2999         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   3000   }
   3001 
   3002   // The address of the thread local variable is the add of the thread
   3003   // pointer with the offset of the variable.
   3004   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   3005 }
   3006 
   3007 SDValue
   3008 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   3009   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   3010   if (DAG.getTarget().useEmulatedTLS())
   3011     return LowerToTLSEmulatedModel(GA, DAG);
   3012 
   3013   if (Subtarget->isTargetDarwin())
   3014     return LowerGlobalTLSAddressDarwin(Op, DAG);
   3015 
   3016   if (Subtarget->isTargetWindows())
   3017     return LowerGlobalTLSAddressWindows(Op, DAG);
   3018 
   3019   // TODO: implement the "local dynamic" model
   3020   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
   3021   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   3022 
   3023   switch (model) {
   3024     case TLSModel::GeneralDynamic:
   3025     case TLSModel::LocalDynamic:
   3026       return LowerToTLSGeneralDynamicModel(GA, DAG);
   3027     case TLSModel::InitialExec:
   3028     case TLSModel::LocalExec:
   3029       return LowerToTLSExecModels(GA, DAG, model);
   3030   }
   3031   llvm_unreachable("bogus TLS model");
   3032 }
   3033 
   3034 /// Return true if all users of V are within function F, looking through
   3035 /// ConstantExprs.
   3036 static bool allUsersAreInFunction(const Value *V, const Function *F) {
   3037   SmallVector<const User*,4> Worklist;
   3038   for (auto *U : V->users())
   3039     Worklist.push_back(U);
   3040   while (!Worklist.empty()) {
   3041     auto *U = Worklist.pop_back_val();
   3042     if (isa<ConstantExpr>(U)) {
   3043       for (auto *UU : U->users())
   3044         Worklist.push_back(UU);
   3045       continue;
   3046     }
   3047 
   3048     auto *I = dyn_cast<Instruction>(U);
   3049     if (!I || I->getParent()->getParent() != F)
   3050       return false;
   3051   }
   3052   return true;
   3053 }
   3054 
   3055 /// Return true if all users of V are within some (any) function, looking through
   3056 /// ConstantExprs. In other words, are there any global constant users?
   3057 static bool allUsersAreInFunctions(const Value *V) {
   3058   SmallVector<const User*,4> Worklist;
   3059   for (auto *U : V->users())
   3060     Worklist.push_back(U);
   3061   while (!Worklist.empty()) {
   3062     auto *U = Worklist.pop_back_val();
   3063     if (isa<ConstantExpr>(U)) {
   3064       for (auto *UU : U->users())
   3065         Worklist.push_back(UU);
   3066       continue;
   3067     }
   3068 
   3069     if (!isa<Instruction>(U))
   3070       return false;
   3071   }
   3072   return true;
   3073 }
   3074 
   3075 // Return true if T is an integer, float or an array/vector of either.
   3076 static bool isSimpleType(Type *T) {
   3077   if (T->isIntegerTy() || T->isFloatingPointTy())
   3078     return true;
   3079   Type *SubT = nullptr;
   3080   if (T->isArrayTy())
   3081     SubT = T->getArrayElementType();
   3082   else if (T->isVectorTy())
   3083     SubT = T->getVectorElementType();
   3084   else
   3085     return false;
   3086   return SubT->isIntegerTy() || SubT->isFloatingPointTy();
   3087 }
   3088 
   3089 static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
   3090                                      EVT PtrVT, const SDLoc &dl) {
   3091   // If we're creating a pool entry for a constant global with unnamed address,
   3092   // and the global is small enough, we can emit it inline into the constant pool
   3093   // to save ourselves an indirection.
   3094   //
   3095   // This is a win if the constant is only used in one function (so it doesn't
   3096   // need to be duplicated) or duplicating the constant wouldn't increase code
   3097   // size (implying the constant is no larger than 4 bytes).
   3098   const Function &F = DAG.getMachineFunction().getFunction();
   3099 
   3100   // We rely on this decision to inline being idemopotent and unrelated to the
   3101   // use-site. We know that if we inline a variable at one use site, we'll
   3102   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
   3103   // doesn't know about this optimization, so bail out if it's enabled else
   3104   // we could decide to inline here (and thus never emit the GV) but require
   3105   // the GV from fast-isel generated code.
   3106   if (!EnableConstpoolPromotion ||
   3107       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
   3108       return SDValue();
   3109 
   3110   auto *GVar = dyn_cast<GlobalVariable>(GV);
   3111   if (!GVar || !GVar->hasInitializer() ||
   3112       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
   3113       !GVar->hasLocalLinkage())
   3114     return SDValue();
   3115 
   3116   // Ensure that we don't try and inline any type that contains pointers. If
   3117   // we inline a value that contains relocations, we move the relocations from
   3118   // .data to .text which is not ideal.
   3119   auto *Init = GVar->getInitializer();
   3120   if (!isSimpleType(Init->getType()))
   3121     return SDValue();
   3122 
   3123   // The constant islands pass can only really deal with alignment requests
   3124   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
   3125   // any type wanting greater alignment requirements than 4 bytes. We also
   3126   // can only promote constants that are multiples of 4 bytes in size or
   3127   // are paddable to a multiple of 4. Currently we only try and pad constants
   3128   // that are strings for simplicity.
   3129   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
   3130   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
   3131   unsigned Align = GVar->getAlignment();
   3132   unsigned RequiredPadding = 4 - (Size % 4);
   3133   bool PaddingPossible =
   3134     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
   3135   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
   3136       Size == 0)
   3137     return SDValue();
   3138 
   3139   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
   3140   MachineFunction &MF = DAG.getMachineFunction();
   3141   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3142 
   3143   // We can't bloat the constant pool too much, else the ConstantIslands pass
   3144   // may fail to converge. If we haven't promoted this global yet (it may have
   3145   // multiple uses), and promoting it would increase the constant pool size (Sz
   3146   // > 4), ensure we have space to do so up to MaxTotal.
   3147   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
   3148     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
   3149         ConstpoolPromotionMaxTotal)
   3150       return SDValue();
   3151 
   3152   // This is only valid if all users are in a single function OR it has users
   3153   // in multiple functions but it no larger than a pointer. We also check if
   3154   // GVar has constant (non-ConstantExpr) users. If so, it essentially has its
   3155   // address taken.
   3156   if (!allUsersAreInFunction(GVar, &F) &&
   3157       !(Size <= 4 && allUsersAreInFunctions(GVar)))
   3158     return SDValue();
   3159 
   3160   // We're going to inline this global. Pad it out if needed.
   3161   if (RequiredPadding != 4) {
   3162     StringRef S = CDAInit->getAsString();
   3163 
   3164     SmallVector<uint8_t,16> V(S.size());
   3165     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
   3166     while (RequiredPadding--)
   3167       V.push_back(0);
   3168     Init = ConstantDataArray::get(*DAG.getContext(), V);
   3169   }
   3170 
   3171   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
   3172   SDValue CPAddr =
   3173     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
   3174   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
   3175     AFI->markGlobalAsPromotedToConstantPool(GVar);
   3176     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
   3177                                       PaddedSize - 4);
   3178   }
   3179   ++NumConstpoolPromoted;
   3180   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   3181 }
   3182 
   3183 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
   3184   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   3185     GV = GA->getBaseObject();
   3186   return (isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
   3187          isa<Function>(GV);
   3188 }
   3189 
   3190 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
   3191                                               SelectionDAG &DAG) const {
   3192   switch (Subtarget->getTargetTriple().getObjectFormat()) {
   3193   default: llvm_unreachable("unknown object format");
   3194   case Triple::COFF:
   3195     return LowerGlobalAddressWindows(Op, DAG);
   3196   case Triple::ELF:
   3197     return LowerGlobalAddressELF(Op, DAG);
   3198   case Triple::MachO:
   3199     return LowerGlobalAddressDarwin(Op, DAG);
   3200   }
   3201 }
   3202 
   3203 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   3204                                                  SelectionDAG &DAG) const {
   3205   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3206   SDLoc dl(Op);
   3207   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   3208   const TargetMachine &TM = getTargetMachine();
   3209   bool IsRO = isReadOnly(GV);
   3210 
   3211   // promoteToConstantPool only if not generating XO text section
   3212   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
   3213     if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
   3214       return V;
   3215 
   3216   if (isPositionIndependent()) {
   3217     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
   3218     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   3219                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
   3220     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
   3221     if (UseGOT_PREL)
   3222       Result =
   3223           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   3224                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   3225     return Result;
   3226   } else if (Subtarget->isROPI() && IsRO) {
   3227     // PC-relative.
   3228     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
   3229     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
   3230     return Result;
   3231   } else if (Subtarget->isRWPI() && !IsRO) {
   3232     // SB-relative.
   3233     SDValue RelAddr;
   3234     if (Subtarget->useMovt(DAG.getMachineFunction())) {
   3235       ++NumMovwMovt;
   3236       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
   3237       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
   3238     } else { // use literal pool for address constant
   3239       ARMConstantPoolValue *CPV =
   3240         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
   3241       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   3242       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   3243       RelAddr = DAG.getLoad(
   3244           PtrVT, dl, DAG.getEntryNode(), CPAddr,
   3245           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   3246     }
   3247     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
   3248     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
   3249     return Result;
   3250   }
   3251 
   3252   // If we have T2 ops, we can materialize the address directly via movt/movw
   3253   // pair. This is always cheaper.
   3254   if (Subtarget->useMovt(DAG.getMachineFunction())) {
   3255     ++NumMovwMovt;
   3256     // FIXME: Once remat is capable of dealing with instructions with register
   3257     // operands, expand this into two nodes.
   3258     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   3259                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   3260   } else {
   3261     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   3262     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   3263     return DAG.getLoad(
   3264         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   3265         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   3266   }
   3267 }
   3268 
   3269 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   3270                                                     SelectionDAG &DAG) const {
   3271   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
   3272          "ROPI/RWPI not currently supported for Darwin");
   3273   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3274   SDLoc dl(Op);
   3275   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   3276 
   3277   if (Subtarget->useMovt(DAG.getMachineFunction()))
   3278     ++NumMovwMovt;
   3279 
   3280   // FIXME: Once remat is capable of dealing with instructions with register
   3281   // operands, expand this into multiple nodes
   3282   unsigned Wrapper =
   3283       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
   3284 
   3285   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
   3286   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
   3287 
   3288   if (Subtarget->isGVIndirectSymbol(GV))
   3289     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   3290                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   3291   return Result;
   3292 }
   3293 
   3294 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
   3295                                                      SelectionDAG &DAG) const {
   3296   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
   3297   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
   3298          "Windows on ARM expects to use movw/movt");
   3299   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
   3300          "ROPI/RWPI not currently supported for Windows");
   3301 
   3302   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   3303   const ARMII::TOF TargetFlags =
   3304     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
   3305   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3306   SDValue Result;
   3307   SDLoc DL(Op);
   3308 
   3309   ++NumMovwMovt;
   3310 
   3311   // FIXME: Once remat is capable of dealing with instructions with register
   3312   // operands, expand this into two nodes.
   3313   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
   3314                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
   3315                                                   TargetFlags));
   3316   if (GV->hasDLLImportStorageClass())
   3317     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   3318                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
   3319   return Result;
   3320 }
   3321 
   3322 SDValue
   3323 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   3324   SDLoc dl(Op);
   3325   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
   3326   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   3327                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   3328                      Op.getOperand(1), Val);
   3329 }
   3330 
   3331 SDValue
   3332 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   3333   SDLoc dl(Op);
   3334   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   3335                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
   3336 }
   3337 
   3338 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
   3339                                                       SelectionDAG &DAG) const {
   3340   SDLoc dl(Op);
   3341   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
   3342                      Op.getOperand(0));
   3343 }
   3344 
   3345 SDValue
   3346 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   3347                                           const ARMSubtarget *Subtarget) const {
   3348   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3349   SDLoc dl(Op);
   3350   switch (IntNo) {
   3351   default: return SDValue();    // Don't custom lower most intrinsics.
   3352   case Intrinsic::thread_pointer: {
   3353     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3354     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   3355   }
   3356   case Intrinsic::eh_sjlj_lsda: {
   3357     MachineFunction &MF = DAG.getMachineFunction();
   3358     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3359     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   3360     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3361     SDValue CPAddr;
   3362     bool IsPositionIndependent = isPositionIndependent();
   3363     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
   3364     ARMConstantPoolValue *CPV =
   3365       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
   3366                                       ARMCP::CPLSDA, PCAdj);
   3367     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   3368     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   3369     SDValue Result = DAG.getLoad(
   3370         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   3371         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   3372 
   3373     if (IsPositionIndependent) {
   3374       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   3375       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   3376     }
   3377     return Result;
   3378   }
   3379   case Intrinsic::arm_neon_vabs:
   3380     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
   3381                         Op.getOperand(1));
   3382   case Intrinsic::arm_neon_vmulls:
   3383   case Intrinsic::arm_neon_vmullu: {
   3384     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   3385       ? ARMISD::VMULLs : ARMISD::VMULLu;
   3386     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   3387                        Op.getOperand(1), Op.getOperand(2));
   3388   }
   3389   case Intrinsic::arm_neon_vminnm:
   3390   case Intrinsic::arm_neon_vmaxnm: {
   3391     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
   3392       ? ISD::FMINNUM : ISD::FMAXNUM;
   3393     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   3394                        Op.getOperand(1), Op.getOperand(2));
   3395   }
   3396   case Intrinsic::arm_neon_vminu:
   3397   case Intrinsic::arm_neon_vmaxu: {
   3398     if (Op.getValueType().isFloatingPoint())
   3399       return SDValue();
   3400     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
   3401       ? ISD::UMIN : ISD::UMAX;
   3402     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   3403                          Op.getOperand(1), Op.getOperand(2));
   3404   }
   3405   case Intrinsic::arm_neon_vmins:
   3406   case Intrinsic::arm_neon_vmaxs: {
   3407     // v{min,max}s is overloaded between signed integers and floats.
   3408     if (!Op.getValueType().isFloatingPoint()) {
   3409       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   3410         ? ISD::SMIN : ISD::SMAX;
   3411       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   3412                          Op.getOperand(1), Op.getOperand(2));
   3413     }
   3414     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   3415       ? ISD::FMINNAN : ISD::FMAXNAN;
   3416     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   3417                        Op.getOperand(1), Op.getOperand(2));
   3418   }
   3419   case Intrinsic::arm_neon_vtbl1:
   3420     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
   3421                        Op.getOperand(1), Op.getOperand(2));
   3422   case Intrinsic::arm_neon_vtbl2:
   3423     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
   3424                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   3425   }
   3426 }
   3427 
   3428 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   3429                                  const ARMSubtarget *Subtarget) {
   3430   SDLoc dl(Op);
   3431   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
   3432   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
   3433   if (SSID == SyncScope::SingleThread)
   3434     return Op;
   3435 
   3436   if (!Subtarget->hasDataBarrier()) {
   3437     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   3438     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   3439     // here.
   3440     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   3441            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
   3442     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   3443                        DAG.getConstant(0, dl, MVT::i32));
   3444   }
   3445 
   3446   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
   3447   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
   3448   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
   3449   if (Subtarget->isMClass()) {
   3450     // Only a full system barrier exists in the M-class architectures.
   3451     Domain = ARM_MB::SY;
   3452   } else if (Subtarget->preferISHSTBarriers() &&
   3453              Ord == AtomicOrdering::Release) {
   3454     // Swift happens to implement ISHST barriers in a way that's compatible with
   3455     // Release semantics but weaker than ISH so we'd be fools not to use
   3456     // it. Beware: other processors probably don't!
   3457     Domain = ARM_MB::ISHST;
   3458   }
   3459 
   3460   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
   3461                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
   3462                      DAG.getConstant(Domain, dl, MVT::i32));
   3463 }
   3464 
   3465 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   3466                              const ARMSubtarget *Subtarget) {
   3467   // ARM pre v5TE and Thumb1 does not have preload instructions.
   3468   if (!(Subtarget->isThumb2() ||
   3469         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   3470     // Just preserve the chain.
   3471     return Op.getOperand(0);
   3472 
   3473   SDLoc dl(Op);
   3474   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   3475   if (!isRead &&
   3476       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   3477     // ARMv7 with MP extension has PLDW.
   3478     return Op.getOperand(0);
   3479 
   3480   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   3481   if (Subtarget->isThumb()) {
   3482     // Invert the bits.
   3483     isRead = ~isRead & 1;
   3484     isData = ~isData & 1;
   3485   }
   3486 
   3487   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   3488                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
   3489                      DAG.getConstant(isData, dl, MVT::i32));
   3490 }
   3491 
   3492 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   3493   MachineFunction &MF = DAG.getMachineFunction();
   3494   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   3495 
   3496   // vastart just stores the address of the VarArgsFrameIndex slot into the
   3497   // memory location argument.
   3498   SDLoc dl(Op);
   3499   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   3500   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3501   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   3502   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   3503                       MachinePointerInfo(SV));
   3504 }
   3505 
   3506 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
   3507                                                 CCValAssign &NextVA,
   3508                                                 SDValue &Root,
   3509                                                 SelectionDAG &DAG,
   3510                                                 const SDLoc &dl) const {
   3511   MachineFunction &MF = DAG.getMachineFunction();
   3512   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3513 
   3514   const TargetRegisterClass *RC;
   3515   if (AFI->isThumb1OnlyFunction())
   3516     RC = &ARM::tGPRRegClass;
   3517   else
   3518     RC = &ARM::GPRRegClass;
   3519 
   3520   // Transform the arguments stored in physical registers into virtual ones.
   3521   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3522   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   3523 
   3524   SDValue ArgValue2;
   3525   if (NextVA.isMemLoc()) {
   3526     MachineFrameInfo &MFI = MF.getFrameInfo();
   3527     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   3528 
   3529     // Create load node to retrieve arguments from the stack.
   3530     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   3531     ArgValue2 = DAG.getLoad(
   3532         MVT::i32, dl, Root, FIN,
   3533         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
   3534   } else {
   3535     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   3536     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   3537   }
   3538   if (!Subtarget->isLittle())
   3539     std::swap (ArgValue, ArgValue2);
   3540   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   3541 }
   3542 
   3543 // The remaining GPRs hold either the beginning of variable-argument
   3544 // data, or the beginning of an aggregate passed by value (usually
   3545 // byval).  Either way, we allocate stack slots adjacent to the data
   3546 // provided by our caller, and store the unallocated registers there.
   3547 // If this is a variadic function, the va_list pointer will begin with
   3548 // these values; otherwise, this reassembles a (byval) structure that
   3549 // was split between registers and memory.
   3550 // Return: The frame index registers were stored into.
   3551 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
   3552                                       const SDLoc &dl, SDValue &Chain,
   3553                                       const Value *OrigArg,
   3554                                       unsigned InRegsParamRecordIdx,
   3555                                       int ArgOffset, unsigned ArgSize) const {
   3556   // Currently, two use-cases possible:
   3557   // Case #1. Non-var-args function, and we meet first byval parameter.
   3558   //          Setup first unallocated register as first byval register;
   3559   //          eat all remained registers
   3560   //          (these two actions are performed by HandleByVal method).
   3561   //          Then, here, we initialize stack frame with
   3562   //          "store-reg" instructions.
   3563   // Case #2. Var-args function, that doesn't contain byval parameters.
   3564   //          The same: eat all remained unallocated registers,
   3565   //          initialize stack frame.
   3566 
   3567   MachineFunction &MF = DAG.getMachineFunction();
   3568   MachineFrameInfo &MFI = MF.getFrameInfo();
   3569   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3570   unsigned RBegin, REnd;
   3571   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   3572     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   3573   } else {
   3574     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3575     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
   3576     REnd = ARM::R4;
   3577   }
   3578 
   3579   if (REnd != RBegin)
   3580     ArgOffset = -4 * (ARM::R4 - RBegin);
   3581 
   3582   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3583   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
   3584   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
   3585 
   3586   SmallVector<SDValue, 4> MemOps;
   3587   const TargetRegisterClass *RC =
   3588       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   3589 
   3590   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
   3591     unsigned VReg = MF.addLiveIn(Reg, RC);
   3592     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3593     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3594                                  MachinePointerInfo(OrigArg, 4 * i));
   3595     MemOps.push_back(Store);
   3596     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
   3597   }
   3598 
   3599   if (!MemOps.empty())
   3600     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3601   return FrameIndex;
   3602 }
   3603 
   3604 // Setup stack frame, the va_list pointer will start from.
   3605 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   3606                                              const SDLoc &dl, SDValue &Chain,
   3607                                              unsigned ArgOffset,
   3608                                              unsigned TotalArgRegsSaveSize,
   3609                                              bool ForceMutable) const {
   3610   MachineFunction &MF = DAG.getMachineFunction();
   3611   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3612 
   3613   // Try to store any remaining integer argument regs
   3614   // to their spots on the stack so that they may be loaded by dereferencing
   3615   // the result of va_next.
   3616   // If there is no regs to be stored, just point address after last
   3617   // argument passed via stack.
   3618   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
   3619                                   CCInfo.getInRegsParamsCount(),
   3620                                   CCInfo.getNextStackOffset(), 4);
   3621   AFI->setVarArgsFrameIndex(FrameIndex);
   3622 }
   3623 
   3624 SDValue ARMTargetLowering::LowerFormalArguments(
   3625     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3626     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3627     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3628   MachineFunction &MF = DAG.getMachineFunction();
   3629   MachineFrameInfo &MFI = MF.getFrameInfo();
   3630 
   3631   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3632 
   3633   // Assign locations to all of the incoming arguments.
   3634   SmallVector<CCValAssign, 16> ArgLocs;
   3635   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   3636                  *DAG.getContext());
   3637   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
   3638 
   3639   SmallVector<SDValue, 16> ArgValues;
   3640   SDValue ArgValue;
   3641   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
   3642   unsigned CurArgIdx = 0;
   3643 
   3644   // Initially ArgRegsSaveSize is zero.
   3645   // Then we increase this value each time we meet byval parameter.
   3646   // We also increase this value in case of varargs function.
   3647   AFI->setArgRegsSaveSize(0);
   3648 
   3649   // Calculate the amount of stack space that we need to allocate to store
   3650   // byval and variadic arguments that are passed in registers.
   3651   // We need to know this before we allocate the first byval or variadic
   3652   // argument, as they will be allocated a stack slot below the CFA (Canonical
   3653   // Frame Address, the stack pointer at entry to the function).
   3654   unsigned ArgRegBegin = ARM::R4;
   3655   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3656     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
   3657       break;
   3658 
   3659     CCValAssign &VA = ArgLocs[i];
   3660     unsigned Index = VA.getValNo();
   3661     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
   3662     if (!Flags.isByVal())
   3663       continue;
   3664 
   3665     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
   3666     unsigned RBegin, REnd;
   3667     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
   3668     ArgRegBegin = std::min(ArgRegBegin, RBegin);
   3669 
   3670     CCInfo.nextInRegsParam();
   3671   }
   3672   CCInfo.rewindByValRegsInfo();
   3673 
   3674   int lastInsIndex = -1;
   3675   if (isVarArg && MFI.hasVAStart()) {
   3676     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3677     if (RegIdx != array_lengthof(GPRArgRegs))
   3678       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
   3679   }
   3680 
   3681   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
   3682   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
   3683   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3684 
   3685   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3686     CCValAssign &VA = ArgLocs[i];
   3687     if (Ins[VA.getValNo()].isOrigArg()) {
   3688       std::advance(CurOrigArg,
   3689                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
   3690       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
   3691     }
   3692     // Arguments stored in registers.
   3693     if (VA.isRegLoc()) {
   3694       EVT RegVT = VA.getLocVT();
   3695 
   3696       if (VA.needsCustom()) {
   3697         // f64 and vector types are split up into multiple registers or
   3698         // combinations of registers and stack slots.
   3699         if (VA.getLocVT() == MVT::v2f64) {
   3700           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   3701                                                    Chain, DAG, dl);
   3702           VA = ArgLocs[++i]; // skip ahead to next loc
   3703           SDValue ArgValue2;
   3704           if (VA.isMemLoc()) {
   3705             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
   3706             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3707             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   3708                                     MachinePointerInfo::getFixedStack(
   3709                                         DAG.getMachineFunction(), FI));
   3710           } else {
   3711             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   3712                                              Chain, DAG, dl);
   3713           }
   3714           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   3715           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3716                                  ArgValue, ArgValue1,
   3717                                  DAG.getIntPtrConstant(0, dl));
   3718           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3719                                  ArgValue, ArgValue2,
   3720                                  DAG.getIntPtrConstant(1, dl));
   3721         } else
   3722           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   3723       } else {
   3724         const TargetRegisterClass *RC;
   3725 
   3726 
   3727         if (RegVT == MVT::f16)
   3728           RC = &ARM::HPRRegClass;
   3729         else if (RegVT == MVT::f32)
   3730           RC = &ARM::SPRRegClass;
   3731         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
   3732           RC = &ARM::DPRRegClass;
   3733         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
   3734           RC = &ARM::QPRRegClass;
   3735         else if (RegVT == MVT::i32)
   3736           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
   3737                                            : &ARM::GPRRegClass;
   3738         else
   3739           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3740 
   3741         // Transform the arguments in physical registers into virtual ones.
   3742         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3743         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   3744       }
   3745 
   3746       // If this is an 8 or 16-bit value, it is really passed promoted
   3747       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   3748       // truncate to the right size.
   3749       switch (VA.getLocInfo()) {
   3750       default: llvm_unreachable("Unknown loc info!");
   3751       case CCValAssign::Full: break;
   3752       case CCValAssign::BCvt:
   3753         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   3754         break;
   3755       case CCValAssign::SExt:
   3756         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   3757                                DAG.getValueType(VA.getValVT()));
   3758         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3759         break;
   3760       case CCValAssign::ZExt:
   3761         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   3762                                DAG.getValueType(VA.getValVT()));
   3763         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3764         break;
   3765       }
   3766 
   3767       InVals.push_back(ArgValue);
   3768     } else { // VA.isRegLoc()
   3769       // sanity check
   3770       assert(VA.isMemLoc());
   3771       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   3772 
   3773       int index = VA.getValNo();
   3774 
   3775       // Some Ins[] entries become multiple ArgLoc[] entries.
   3776       // Process them only once.
   3777       if (index != lastInsIndex)
   3778         {
   3779           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   3780           // FIXME: For now, all byval parameter objects are marked mutable.
   3781           // This can be changed with more analysis.
   3782           // In case of tail call optimization mark all arguments mutable.
   3783           // Since they could be overwritten by lowering of arguments in case of
   3784           // a tail call.
   3785           if (Flags.isByVal()) {
   3786             assert(Ins[index].isOrigArg() &&
   3787                    "Byval arguments cannot be implicit");
   3788             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
   3789 
   3790             int FrameIndex = StoreByValRegs(
   3791                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
   3792                 VA.getLocMemOffset(), Flags.getByValSize());
   3793             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
   3794             CCInfo.nextInRegsParam();
   3795           } else {
   3796             unsigned FIOffset = VA.getLocMemOffset();
   3797             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   3798                                            FIOffset, true);
   3799 
   3800             // Create load nodes to retrieve arguments from the stack.
   3801             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3802             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   3803                                          MachinePointerInfo::getFixedStack(
   3804                                              DAG.getMachineFunction(), FI)));
   3805           }
   3806           lastInsIndex = index;
   3807         }
   3808     }
   3809   }
   3810 
   3811   // varargs
   3812   if (isVarArg && MFI.hasVAStart())
   3813     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
   3814                          CCInfo.getNextStackOffset(),
   3815                          TotalArgRegsSaveSize);
   3816 
   3817   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
   3818 
   3819   return Chain;
   3820 }
   3821 
   3822 /// isFloatingPointZero - Return true if this is +0.0.
   3823 static bool isFloatingPointZero(SDValue Op) {
   3824   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   3825     return CFP->getValueAPF().isPosZero();
   3826   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   3827     // Maybe this has already been legalized into the constant pool?
   3828     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   3829       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   3830       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   3831         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   3832           return CFP->getValueAPF().isPosZero();
   3833     }
   3834   } else if (Op->getOpcode() == ISD::BITCAST &&
   3835              Op->getValueType(0) == MVT::f64) {
   3836     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
   3837     // created by LowerConstantFP().
   3838     SDValue BitcastOp = Op->getOperand(0);
   3839     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
   3840         isNullConstant(BitcastOp->getOperand(0)))
   3841       return true;
   3842   }
   3843   return false;
   3844 }
   3845 
   3846 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   3847 /// the given operands.
   3848 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3849                                      SDValue &ARMcc, SelectionDAG &DAG,
   3850                                      const SDLoc &dl) const {
   3851   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   3852     unsigned C = RHSC->getZExtValue();
   3853     if (!isLegalICmpImmediate((int32_t)C)) {
   3854       // Constant does not fit, try adjusting it by one.
   3855       switch (CC) {
   3856       default: break;
   3857       case ISD::SETLT:
   3858       case ISD::SETGE:
   3859         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   3860           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   3861           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3862         }
   3863         break;
   3864       case ISD::SETULT:
   3865       case ISD::SETUGE:
   3866         if (C != 0 && isLegalICmpImmediate(C-1)) {
   3867           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   3868           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3869         }
   3870         break;
   3871       case ISD::SETLE:
   3872       case ISD::SETGT:
   3873         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   3874           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   3875           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3876         }
   3877         break;
   3878       case ISD::SETULE:
   3879       case ISD::SETUGT:
   3880         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   3881           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   3882           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3883         }
   3884         break;
   3885       }
   3886     }
   3887   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
   3888              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
   3889     // In ARM and Thumb-2, the compare instructions can shift their second
   3890     // operand.
   3891     CC = ISD::getSetCCSwappedOperands(CC);
   3892     std::swap(LHS, RHS);
   3893   }
   3894 
   3895   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3896   ARMISD::NodeType CompareType;
   3897   switch (CondCode) {
   3898   default:
   3899     CompareType = ARMISD::CMP;
   3900     break;
   3901   case ARMCC::EQ:
   3902   case ARMCC::NE:
   3903     // Uses only Z Flag
   3904     CompareType = ARMISD::CMPZ;
   3905     break;
   3906   }
   3907   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3908   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   3909 }
   3910 
   3911 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   3912 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
   3913                                      SelectionDAG &DAG, const SDLoc &dl,
   3914                                      bool InvalidOnQNaN) const {
   3915   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
   3916   SDValue Cmp;
   3917   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
   3918   if (!isFloatingPointZero(RHS))
   3919     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
   3920   else
   3921     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
   3922   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   3923 }
   3924 
   3925 /// duplicateCmp - Glue values can have only one use, so this function
   3926 /// duplicates a comparison node.
   3927 SDValue
   3928 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   3929   unsigned Opc = Cmp.getOpcode();
   3930   SDLoc DL(Cmp);
   3931   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   3932     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3933 
   3934   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   3935   Cmp = Cmp.getOperand(0);
   3936   Opc = Cmp.getOpcode();
   3937   if (Opc == ARMISD::CMPFP)
   3938     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
   3939                       Cmp.getOperand(1), Cmp.getOperand(2));
   3940   else {
   3941     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   3942     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
   3943                       Cmp.getOperand(1));
   3944   }
   3945   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   3946 }
   3947 
   3948 // This function returns three things: the arithmetic computation itself
   3949 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
   3950 // comparison and the condition code define the case in which the arithmetic
   3951 // computation *does not* overflow.
   3952 std::pair<SDValue, SDValue>
   3953 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
   3954                                  SDValue &ARMcc) const {
   3955   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
   3956 
   3957   SDValue Value, OverflowCmp;
   3958   SDValue LHS = Op.getOperand(0);
   3959   SDValue RHS = Op.getOperand(1);
   3960   SDLoc dl(Op);
   3961 
   3962   // FIXME: We are currently always generating CMPs because we don't support
   3963   // generating CMN through the backend. This is not as good as the natural
   3964   // CMP case because it causes a register dependency and cannot be folded
   3965   // later.
   3966 
   3967   switch (Op.getOpcode()) {
   3968   default:
   3969     llvm_unreachable("Unknown overflow instruction!");
   3970   case ISD::SADDO:
   3971     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3972     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
   3973     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3974     break;
   3975   case ISD::UADDO:
   3976     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3977     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
   3978     // We do not use it in the USUBO case as Value may not be used.
   3979     Value = DAG.getNode(ARMISD::ADDC, dl,
   3980                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
   3981                 .getValue(0);
   3982     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3983     break;
   3984   case ISD::SSUBO:
   3985     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3986     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3987     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3988     break;
   3989   case ISD::USUBO:
   3990     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3991     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3992     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3993     break;
   3994   case ISD::UMULO:
   3995     // We generate a UMUL_LOHI and then check if the high word is 0.
   3996     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
   3997     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
   3998                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
   3999                         LHS, RHS);
   4000     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
   4001                               DAG.getConstant(0, dl, MVT::i32));
   4002     Value = Value.getValue(0); // We only want the low 32 bits for the result.
   4003     break;
   4004   case ISD::SMULO:
   4005     // We generate a SMUL_LOHI and then check if all the bits of the high word
   4006     // are the same as the sign bit of the low word.
   4007     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
   4008     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
   4009                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
   4010                         LHS, RHS);
   4011     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
   4012                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
   4013                                           Value.getValue(0),
   4014                                           DAG.getConstant(31, dl, MVT::i32)));
   4015     Value = Value.getValue(0); // We only want the low 32 bits for the result.
   4016     break;
   4017   } // switch (...)
   4018 
   4019   return std::make_pair(Value, OverflowCmp);
   4020 }
   4021 
   4022 SDValue
   4023 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
   4024   // Let legalize expand this if it isn't a legal type yet.
   4025   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   4026     return SDValue();
   4027 
   4028   SDValue Value, OverflowCmp;
   4029   SDValue ARMcc;
   4030   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
   4031   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4032   SDLoc dl(Op);
   4033   // We use 0 and 1 as false and true values.
   4034   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
   4035   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
   4036   EVT VT = Op.getValueType();
   4037 
   4038   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
   4039                                  ARMcc, CCR, OverflowCmp);
   4040 
   4041   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   4042   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
   4043 }
   4044 
   4045 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
   4046                                               SelectionDAG &DAG) {
   4047   SDLoc DL(BoolCarry);
   4048   EVT CarryVT = BoolCarry.getValueType();
   4049 
   4050   // This converts the boolean value carry into the carry flag by doing
   4051   // ARMISD::SUBC Carry, 1
   4052   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
   4053                               DAG.getVTList(CarryVT, MVT::i32),
   4054                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
   4055   return Carry.getValue(1);
   4056 }
   4057 
   4058 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
   4059                                               SelectionDAG &DAG) {
   4060   SDLoc DL(Flags);
   4061 
   4062   // Now convert the carry flag into a boolean carry. We do this
   4063   // using ARMISD:ADDE 0, 0, Carry
   4064   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
   4065                      DAG.getConstant(0, DL, MVT::i32),
   4066                      DAG.getConstant(0, DL, MVT::i32), Flags);
   4067 }
   4068 
   4069 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
   4070                                              SelectionDAG &DAG) const {
   4071   // Let legalize expand this if it isn't a legal type yet.
   4072   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   4073     return SDValue();
   4074 
   4075   SDValue LHS = Op.getOperand(0);
   4076   SDValue RHS = Op.getOperand(1);
   4077   SDLoc dl(Op);
   4078 
   4079   EVT VT = Op.getValueType();
   4080   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   4081   SDValue Value;
   4082   SDValue Overflow;
   4083   switch (Op.getOpcode()) {
   4084   default:
   4085     llvm_unreachable("Unknown overflow instruction!");
   4086   case ISD::UADDO:
   4087     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
   4088     // Convert the carry flag into a boolean value.
   4089     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
   4090     break;
   4091   case ISD::USUBO: {
   4092     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
   4093     // Convert the carry flag into a boolean value.
   4094     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
   4095     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
   4096     // value. So compute 1 - C.
   4097     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4098                            DAG.getConstant(1, dl, MVT::i32), Overflow);
   4099     break;
   4100   }
   4101   }
   4102 
   4103   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
   4104 }
   4105 
   4106 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   4107   SDValue Cond = Op.getOperand(0);
   4108   SDValue SelectTrue = Op.getOperand(1);
   4109   SDValue SelectFalse = Op.getOperand(2);
   4110   SDLoc dl(Op);
   4111   unsigned Opc = Cond.getOpcode();
   4112 
   4113   if (Cond.getResNo() == 1 &&
   4114       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   4115        Opc == ISD::USUBO)) {
   4116     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   4117       return SDValue();
   4118 
   4119     SDValue Value, OverflowCmp;
   4120     SDValue ARMcc;
   4121     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   4122     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4123     EVT VT = Op.getValueType();
   4124 
   4125     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
   4126                    OverflowCmp, DAG);
   4127   }
   4128 
   4129   // Convert:
   4130   //
   4131   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   4132   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   4133   //
   4134   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   4135     const ConstantSDNode *CMOVTrue =
   4136       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   4137     const ConstantSDNode *CMOVFalse =
   4138       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   4139 
   4140     if (CMOVTrue && CMOVFalse) {
   4141       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   4142       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   4143 
   4144       SDValue True;
   4145       SDValue False;
   4146       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   4147         True = SelectTrue;
   4148         False = SelectFalse;
   4149       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   4150         True = SelectFalse;
   4151         False = SelectTrue;
   4152       }
   4153 
   4154       if (True.getNode() && False.getNode()) {
   4155         EVT VT = Op.getValueType();
   4156         SDValue ARMcc = Cond.getOperand(2);
   4157         SDValue CCR = Cond.getOperand(3);
   4158         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   4159         assert(True.getValueType() == VT);
   4160         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
   4161       }
   4162     }
   4163   }
   4164 
   4165   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   4166   // undefined bits before doing a full-word comparison with zero.
   4167   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   4168                      DAG.getConstant(1, dl, Cond.getValueType()));
   4169 
   4170   return DAG.getSelectCC(dl, Cond,
   4171                          DAG.getConstant(0, dl, Cond.getValueType()),
   4172                          SelectTrue, SelectFalse, ISD::SETNE);
   4173 }
   4174 
   4175 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   4176                                  bool &swpCmpOps, bool &swpVselOps) {
   4177   // Start by selecting the GE condition code for opcodes that return true for
   4178   // 'equality'
   4179   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
   4180       CC == ISD::SETULE)
   4181     CondCode = ARMCC::GE;
   4182 
   4183   // and GT for opcodes that return false for 'equality'.
   4184   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
   4185            CC == ISD::SETULT)
   4186     CondCode = ARMCC::GT;
   4187 
   4188   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
   4189   // to swap the compare operands.
   4190   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
   4191       CC == ISD::SETULT)
   4192     swpCmpOps = true;
   4193 
   4194   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
   4195   // If we have an unordered opcode, we need to swap the operands to the VSEL
   4196   // instruction (effectively negating the condition).
   4197   //
   4198   // This also has the effect of swapping which one of 'less' or 'greater'
   4199   // returns true, so we also swap the compare operands. It also switches
   4200   // whether we return true for 'equality', so we compensate by picking the
   4201   // opposite condition code to our original choice.
   4202   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
   4203       CC == ISD::SETUGT) {
   4204     swpCmpOps = !swpCmpOps;
   4205     swpVselOps = !swpVselOps;
   4206     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
   4207   }
   4208 
   4209   // 'ordered' is 'anything but unordered', so use the VS condition code and
   4210   // swap the VSEL operands.
   4211   if (CC == ISD::SETO) {
   4212     CondCode = ARMCC::VS;
   4213     swpVselOps = true;
   4214   }
   4215 
   4216   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
   4217   // code and swap the VSEL operands.
   4218   if (CC == ISD::SETUNE) {
   4219     CondCode = ARMCC::EQ;
   4220     swpVselOps = true;
   4221   }
   4222 }
   4223 
   4224 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
   4225                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
   4226                                    SDValue Cmp, SelectionDAG &DAG) const {
   4227   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
   4228     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   4229                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
   4230     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   4231                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
   4232 
   4233     SDValue TrueLow = TrueVal.getValue(0);
   4234     SDValue TrueHigh = TrueVal.getValue(1);
   4235     SDValue FalseLow = FalseVal.getValue(0);
   4236     SDValue FalseHigh = FalseVal.getValue(1);
   4237 
   4238     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
   4239                               ARMcc, CCR, Cmp);
   4240     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
   4241                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
   4242 
   4243     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
   4244   } else {
   4245     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
   4246                        Cmp);
   4247   }
   4248 }
   4249 
   4250 static bool isGTorGE(ISD::CondCode CC) {
   4251   return CC == ISD::SETGT || CC == ISD::SETGE;
   4252 }
   4253 
   4254 static bool isLTorLE(ISD::CondCode CC) {
   4255   return CC == ISD::SETLT || CC == ISD::SETLE;
   4256 }
   4257 
   4258 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
   4259 // All of these conditions (and their <= and >= counterparts) will do:
   4260 //          x < k ? k : x
   4261 //          x > k ? x : k
   4262 //          k < x ? x : k
   4263 //          k > x ? k : x
   4264 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
   4265                             const SDValue TrueVal, const SDValue FalseVal,
   4266                             const ISD::CondCode CC, const SDValue K) {
   4267   return (isGTorGE(CC) &&
   4268           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
   4269          (isLTorLE(CC) &&
   4270           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
   4271 }
   4272 
   4273 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
   4274 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
   4275                             const SDValue TrueVal, const SDValue FalseVal,
   4276                             const ISD::CondCode CC, const SDValue K) {
   4277   return (isGTorGE(CC) &&
   4278           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
   4279          (isLTorLE(CC) &&
   4280           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
   4281 }
   4282 
   4283 // Check if two chained conditionals could be converted into SSAT or USAT.
   4284 //
   4285 // SSAT can replace a set of two conditional selectors that bound a number to an
   4286 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
   4287 //
   4288 //     x < -k ? -k : (x > k ? k : x)
   4289 //     x < -k ? -k : (x < k ? x : k)
   4290 //     x > -k ? (x > k ? k : x) : -k
   4291 //     x < k ? (x < -k ? -k : x) : k
   4292 //     etc.
   4293 //
   4294 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
   4295 // a power of 2.
   4296 //
   4297 // It returns true if the conversion can be done, false otherwise.
   4298 // Additionally, the variable is returned in parameter V, the constant in K and
   4299 // usat is set to true if the conditional represents an unsigned saturation
   4300 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
   4301                                     uint64_t &K, bool &usat) {
   4302   SDValue LHS1 = Op.getOperand(0);
   4303   SDValue RHS1 = Op.getOperand(1);
   4304   SDValue TrueVal1 = Op.getOperand(2);
   4305   SDValue FalseVal1 = Op.getOperand(3);
   4306   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4307 
   4308   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
   4309   if (Op2.getOpcode() != ISD::SELECT_CC)
   4310     return false;
   4311 
   4312   SDValue LHS2 = Op2.getOperand(0);
   4313   SDValue RHS2 = Op2.getOperand(1);
   4314   SDValue TrueVal2 = Op2.getOperand(2);
   4315   SDValue FalseVal2 = Op2.getOperand(3);
   4316   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
   4317 
   4318   // Find out which are the constants and which are the variables
   4319   // in each conditional
   4320   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
   4321                                                         ? &RHS1
   4322                                                         : nullptr;
   4323   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
   4324                                                         ? &RHS2
   4325                                                         : nullptr;
   4326   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
   4327   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
   4328   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
   4329   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
   4330 
   4331   // We must detect cases where the original operations worked with 16- or
   4332   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
   4333   // must work with sign-extended values but the select operations return
   4334   // the original non-extended value.
   4335   SDValue V2TmpReg = V2Tmp;
   4336   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
   4337     V2TmpReg = V2Tmp->getOperand(0);
   4338 
   4339   // Check that the registers and the constants have the correct values
   4340   // in both conditionals
   4341   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
   4342       V2TmpReg != V2)
   4343     return false;
   4344 
   4345   // Figure out which conditional is saturating the lower/upper bound.
   4346   const SDValue *LowerCheckOp =
   4347       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
   4348           ? &Op
   4349           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
   4350                 ? &Op2
   4351                 : nullptr;
   4352   const SDValue *UpperCheckOp =
   4353       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
   4354           ? &Op
   4355           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
   4356                 ? &Op2
   4357                 : nullptr;
   4358 
   4359   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
   4360     return false;
   4361 
   4362   // Check that the constant in the lower-bound check is
   4363   // the opposite of the constant in the upper-bound check
   4364   // in 1's complement.
   4365   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
   4366   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
   4367   int64_t PosVal = std::max(Val1, Val2);
   4368   int64_t NegVal = std::min(Val1, Val2);
   4369 
   4370   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
   4371        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
   4372       isPowerOf2_64(PosVal + 1)) {
   4373 
   4374     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
   4375     if (Val1 == ~Val2)
   4376       usat = false;
   4377     else if (NegVal == 0)
   4378       usat = true;
   4379     else
   4380       return false;
   4381 
   4382     V = V2;
   4383     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
   4384 
   4385     return true;
   4386   }
   4387 
   4388   return false;
   4389 }
   4390 
   4391 // Check if a condition of the type x < k ? k : x can be converted into a
   4392 // bit operation instead of conditional moves.
   4393 // Currently this is allowed given:
   4394 // - The conditions and values match up
   4395 // - k is 0 or -1 (all ones)
   4396 // This function will not check the last condition, thats up to the caller
   4397 // It returns true if the transformation can be made, and in such case
   4398 // returns x in V, and k in SatK.
   4399 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
   4400                                          SDValue &SatK)
   4401 {
   4402   SDValue LHS = Op.getOperand(0);
   4403   SDValue RHS = Op.getOperand(1);
   4404   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4405   SDValue TrueVal = Op.getOperand(2);
   4406   SDValue FalseVal = Op.getOperand(3);
   4407 
   4408   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
   4409                                                ? &RHS
   4410                                                : nullptr;
   4411 
   4412   // No constant operation in comparison, early out
   4413   if (!K)
   4414     return false;
   4415 
   4416   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
   4417   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
   4418   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
   4419 
   4420   // If the constant on left and right side, or variable on left and right,
   4421   // does not match, early out
   4422   if (*K != KTmp || V != VTmp)
   4423     return false;
   4424 
   4425   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
   4426     SatK = *K;
   4427     return true;
   4428   }
   4429 
   4430   return false;
   4431 }
   4432 
   4433 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   4434   EVT VT = Op.getValueType();
   4435   SDLoc dl(Op);
   4436 
   4437   // Try to convert two saturating conditional selects into a single SSAT
   4438   SDValue SatValue;
   4439   uint64_t SatConstant;
   4440   bool SatUSat;
   4441   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
   4442       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
   4443     if (SatUSat)
   4444       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
   4445                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
   4446     else
   4447       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
   4448                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
   4449   }
   4450 
   4451   // Try to convert expressions of the form x < k ? k : x (and similar forms)
   4452   // into more efficient bit operations, which is possible when k is 0 or -1
   4453   // On ARM and Thumb-2 which have flexible operand 2 this will result in
   4454   // single instructions. On Thumb the shift and the bit operation will be two
   4455   // instructions.
   4456   // Only allow this transformation on full-width (32-bit) operations
   4457   SDValue LowerSatConstant;
   4458   if (VT == MVT::i32 &&
   4459       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
   4460     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
   4461                                  DAG.getConstant(31, dl, VT));
   4462     if (isNullConstant(LowerSatConstant)) {
   4463       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
   4464                                       DAG.getAllOnesConstant(dl, VT));
   4465       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
   4466     } else if (isAllOnesConstant(LowerSatConstant))
   4467       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
   4468   }
   4469 
   4470   SDValue LHS = Op.getOperand(0);
   4471   SDValue RHS = Op.getOperand(1);
   4472   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   4473   SDValue TrueVal = Op.getOperand(2);
   4474   SDValue FalseVal = Op.getOperand(3);
   4475 
   4476   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   4477     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   4478                                                     dl);
   4479 
   4480     // If softenSetCCOperands only returned one value, we should compare it to
   4481     // zero.
   4482     if (!RHS.getNode()) {
   4483       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   4484       CC = ISD::SETNE;
   4485     }
   4486   }
   4487 
   4488   if (LHS.getValueType() == MVT::i32) {
   4489     // Try to generate VSEL on ARMv8.
   4490     // The VSEL instruction can't use all the usual ARM condition
   4491     // codes: it only has two bits to select the condition code, so it's
   4492     // constrained to use only GE, GT, VS and EQ.
   4493     //
   4494     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
   4495     // swap the operands of the previous compare instruction (effectively
   4496     // inverting the compare condition, swapping 'less' and 'greater') and
   4497     // sometimes need to swap the operands to the VSEL (which inverts the
   4498     // condition in the sense of firing whenever the previous condition didn't)
   4499     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   4500                                     TrueVal.getValueType() == MVT::f64)) {
   4501       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   4502       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
   4503           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
   4504         CC = ISD::getSetCCInverse(CC, true);
   4505         std::swap(TrueVal, FalseVal);
   4506       }
   4507     }
   4508 
   4509     SDValue ARMcc;
   4510     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4511     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   4512     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   4513   }
   4514 
   4515   ARMCC::CondCodes CondCode, CondCode2;
   4516   bool InvalidOnQNaN;
   4517   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
   4518 
   4519   // Normalize the fp compare. If RHS is zero we keep it there so we match
   4520   // CMPFPw0 instead of CMPFP.
   4521   if (Subtarget->hasFPARMv8() && !isFloatingPointZero(RHS) &&
   4522      (TrueVal.getValueType() == MVT::f16 ||
   4523       TrueVal.getValueType() == MVT::f32 ||
   4524       TrueVal.getValueType() == MVT::f64)) {
   4525     bool swpCmpOps = false;
   4526     bool swpVselOps = false;
   4527     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
   4528 
   4529     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
   4530         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
   4531       if (swpCmpOps)
   4532         std::swap(LHS, RHS);
   4533       if (swpVselOps)
   4534         std::swap(TrueVal, FalseVal);
   4535     }
   4536   }
   4537 
   4538   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   4539   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
   4540   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4541   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   4542   if (CondCode2 != ARMCC::AL) {
   4543     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
   4544     // FIXME: Needs another CMP because flag can have but one use.
   4545     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
   4546     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
   4547   }
   4548   return Result;
   4549 }
   4550 
   4551 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   4552 /// to morph to an integer compare sequence.
   4553 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   4554                            const ARMSubtarget *Subtarget) {
   4555   SDNode *N = Op.getNode();
   4556   if (!N->hasOneUse())
   4557     // Otherwise it requires moving the value from fp to integer registers.
   4558     return false;
   4559   if (!N->getNumValues())
   4560     return false;
   4561   EVT VT = Op.getValueType();
   4562   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   4563     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   4564     // vmrs are very slow, e.g. cortex-a8.
   4565     return false;
   4566 
   4567   if (isFloatingPointZero(Op)) {
   4568     SeenZero = true;
   4569     return true;
   4570   }
   4571   return ISD::isNormalLoad(N);
   4572 }
   4573 
   4574 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   4575   if (isFloatingPointZero(Op))
   4576     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
   4577 
   4578   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   4579     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
   4580                        Ld->getPointerInfo(), Ld->getAlignment(),
   4581                        Ld->getMemOperand()->getFlags());
   4582 
   4583   llvm_unreachable("Unknown VFP cmp argument!");
   4584 }
   4585 
   4586 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   4587                            SDValue &RetVal1, SDValue &RetVal2) {
   4588   SDLoc dl(Op);
   4589 
   4590   if (isFloatingPointZero(Op)) {
   4591     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
   4592     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
   4593     return;
   4594   }
   4595 
   4596   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   4597     SDValue Ptr = Ld->getBasePtr();
   4598     RetVal1 =
   4599         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
   4600                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
   4601 
   4602     EVT PtrType = Ptr.getValueType();
   4603     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   4604     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
   4605                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
   4606     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
   4607                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
   4608                           Ld->getMemOperand()->getFlags());
   4609     return;
   4610   }
   4611 
   4612   llvm_unreachable("Unknown VFP cmp argument!");
   4613 }
   4614 
   4615 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   4616 /// f32 and even f64 comparisons to integer ones.
   4617 SDValue
   4618 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   4619   SDValue Chain = Op.getOperand(0);
   4620   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   4621   SDValue LHS = Op.getOperand(2);
   4622   SDValue RHS = Op.getOperand(3);
   4623   SDValue Dest = Op.getOperand(4);
   4624   SDLoc dl(Op);
   4625 
   4626   bool LHSSeenZero = false;
   4627   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   4628   bool RHSSeenZero = false;
   4629   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   4630   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   4631     // If unsafe fp math optimization is enabled and there are no other uses of
   4632     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   4633     // to an integer comparison.
   4634     if (CC == ISD::SETOEQ)
   4635       CC = ISD::SETEQ;
   4636     else if (CC == ISD::SETUNE)
   4637       CC = ISD::SETNE;
   4638 
   4639     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   4640     SDValue ARMcc;
   4641     if (LHS.getValueType() == MVT::f32) {
   4642       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   4643                         bitcastf32Toi32(LHS, DAG), Mask);
   4644       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   4645                         bitcastf32Toi32(RHS, DAG), Mask);
   4646       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   4647       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4648       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   4649                          Chain, Dest, ARMcc, CCR, Cmp);
   4650     }
   4651 
   4652     SDValue LHS1, LHS2;
   4653     SDValue RHS1, RHS2;
   4654     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   4655     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   4656     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   4657     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   4658     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   4659     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   4660     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   4661     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   4662     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
   4663   }
   4664 
   4665   return SDValue();
   4666 }
   4667 
   4668 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   4669   SDValue Chain = Op.getOperand(0);
   4670   SDValue Cond = Op.getOperand(1);
   4671   SDValue Dest = Op.getOperand(2);
   4672   SDLoc dl(Op);
   4673 
   4674   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
   4675   // instruction.
   4676   unsigned Opc = Cond.getOpcode();
   4677   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
   4678                       !Subtarget->isThumb1Only();
   4679   if (Cond.getResNo() == 1 &&
   4680       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   4681        Opc == ISD::USUBO || OptimizeMul)) {
   4682     // Only lower legal XALUO ops.
   4683     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   4684       return SDValue();
   4685 
   4686     // The actual operation with overflow check.
   4687     SDValue Value, OverflowCmp;
   4688     SDValue ARMcc;
   4689     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   4690 
   4691     // Reverse the condition code.
   4692     ARMCC::CondCodes CondCode =
   4693         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
   4694     CondCode = ARMCC::getOppositeCondition(CondCode);
   4695     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
   4696     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4697 
   4698     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
   4699                        OverflowCmp);
   4700   }
   4701 
   4702   return SDValue();
   4703 }
   4704 
   4705 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   4706   SDValue Chain = Op.getOperand(0);
   4707   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   4708   SDValue LHS = Op.getOperand(2);
   4709   SDValue RHS = Op.getOperand(3);
   4710   SDValue Dest = Op.getOperand(4);
   4711   SDLoc dl(Op);
   4712 
   4713   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   4714     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   4715                                                     dl);
   4716 
   4717     // If softenSetCCOperands only returned one value, we should compare it to
   4718     // zero.
   4719     if (!RHS.getNode()) {
   4720       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   4721       CC = ISD::SETNE;
   4722     }
   4723   }
   4724 
   4725   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
   4726   // instruction.
   4727   unsigned Opc = LHS.getOpcode();
   4728   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
   4729                       !Subtarget->isThumb1Only();
   4730   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
   4731       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   4732        Opc == ISD::USUBO || OptimizeMul) &&
   4733       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   4734     // Only lower legal XALUO ops.
   4735     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
   4736       return SDValue();
   4737 
   4738     // The actual operation with overflow check.
   4739     SDValue Value, OverflowCmp;
   4740     SDValue ARMcc;
   4741     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
   4742 
   4743     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
   4744       // Reverse the condition code.
   4745       ARMCC::CondCodes CondCode =
   4746           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
   4747       CondCode = ARMCC::getOppositeCondition(CondCode);
   4748       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
   4749     }
   4750     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4751 
   4752     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
   4753                        OverflowCmp);
   4754   }
   4755 
   4756   if (LHS.getValueType() == MVT::i32) {
   4757     SDValue ARMcc;
   4758     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   4759     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4760     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   4761                        Chain, Dest, ARMcc, CCR, Cmp);
   4762   }
   4763 
   4764   if (getTargetMachine().Options.UnsafeFPMath &&
   4765       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   4766        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   4767     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
   4768       return Result;
   4769   }
   4770 
   4771   ARMCC::CondCodes CondCode, CondCode2;
   4772   bool InvalidOnQNaN;
   4773   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
   4774 
   4775   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   4776   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
   4777   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4778   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   4779   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   4780   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   4781   if (CondCode2 != ARMCC::AL) {
   4782     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
   4783     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   4784     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   4785   }
   4786   return Res;
   4787 }
   4788 
   4789 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   4790   SDValue Chain = Op.getOperand(0);
   4791   SDValue Table = Op.getOperand(1);
   4792   SDValue Index = Op.getOperand(2);
   4793   SDLoc dl(Op);
   4794 
   4795   EVT PTy = getPointerTy(DAG.getDataLayout());
   4796   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   4797   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   4798   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
   4799   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
   4800   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
   4801   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
   4802     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
   4803     // which does another jump to the destination. This also makes it easier
   4804     // to translate it to TBB / TBH later (Thumb2 only).
   4805     // FIXME: This might not work if the function is extremely large.
   4806     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   4807                        Addr, Op.getOperand(2), JTI);
   4808   }
   4809   if (isPositionIndependent() || Subtarget->isROPI()) {
   4810     Addr =
   4811         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   4812                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
   4813     Chain = Addr.getValue(1);
   4814     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
   4815     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   4816   } else {
   4817     Addr =
   4818         DAG.getLoad(PTy, dl, Chain, Addr,
   4819                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
   4820     Chain = Addr.getValue(1);
   4821     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   4822   }
   4823 }
   4824 
   4825 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   4826   EVT VT = Op.getValueType();
   4827   SDLoc dl(Op);
   4828 
   4829   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   4830     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   4831       return Op;
   4832     return DAG.UnrollVectorOp(Op.getNode());
   4833   }
   4834 
   4835   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   4836          "Invalid type for custom lowering!");
   4837   if (VT != MVT::v4i16)
   4838     return DAG.UnrollVectorOp(Op.getNode());
   4839 
   4840   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   4841   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   4842 }
   4843 
   4844 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
   4845   EVT VT = Op.getValueType();
   4846   if (VT.isVector())
   4847     return LowerVectorFP_TO_INT(Op, DAG);
   4848   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
   4849     RTLIB::Libcall LC;
   4850     if (Op.getOpcode() == ISD::FP_TO_SINT)
   4851       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
   4852                               Op.getValueType());
   4853     else
   4854       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
   4855                               Op.getValueType());
   4856     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   4857                        /*isSigned*/ false, SDLoc(Op)).first;
   4858   }
   4859 
   4860   return Op;
   4861 }
   4862 
   4863 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   4864   EVT VT = Op.getValueType();
   4865   SDLoc dl(Op);
   4866 
   4867   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   4868     if (VT.getVectorElementType() == MVT::f32)
   4869       return Op;
   4870     return DAG.UnrollVectorOp(Op.getNode());
   4871   }
   4872 
   4873   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   4874          "Invalid type for custom lowering!");
   4875   if (VT != MVT::v4f32)
   4876     return DAG.UnrollVectorOp(Op.getNode());
   4877 
   4878   unsigned CastOpc;
   4879   unsigned Opc;
   4880   switch (Op.getOpcode()) {
   4881   default: llvm_unreachable("Invalid opcode!");
   4882   case ISD::SINT_TO_FP:
   4883     CastOpc = ISD::SIGN_EXTEND;
   4884     Opc = ISD::SINT_TO_FP;
   4885     break;
   4886   case ISD::UINT_TO_FP:
   4887     CastOpc = ISD::ZERO_EXTEND;
   4888     Opc = ISD::UINT_TO_FP;
   4889     break;
   4890   }
   4891 
   4892   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   4893   return DAG.getNode(Opc, dl, VT, Op);
   4894 }
   4895 
   4896 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
   4897   EVT VT = Op.getValueType();
   4898   if (VT.isVector())
   4899     return LowerVectorINT_TO_FP(Op, DAG);
   4900   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
   4901     RTLIB::Libcall LC;
   4902     if (Op.getOpcode() == ISD::SINT_TO_FP)
   4903       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
   4904                               Op.getValueType());
   4905     else
   4906       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
   4907                               Op.getValueType());
   4908     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   4909                        /*isSigned*/ false, SDLoc(Op)).first;
   4910   }
   4911 
   4912   return Op;
   4913 }
   4914 
   4915 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   4916   // Implement fcopysign with a fabs and a conditional fneg.
   4917   SDValue Tmp0 = Op.getOperand(0);
   4918   SDValue Tmp1 = Op.getOperand(1);
   4919   SDLoc dl(Op);
   4920   EVT VT = Op.getValueType();
   4921   EVT SrcVT = Tmp1.getValueType();
   4922   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   4923     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   4924   bool UseNEON = !InGPR && Subtarget->hasNEON();
   4925 
   4926   if (UseNEON) {
   4927     // Use VBSL to copy the sign bit.
   4928     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   4929     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   4930                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
   4931     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   4932     if (VT == MVT::f64)
   4933       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   4934                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   4935                          DAG.getConstant(32, dl, MVT::i32));
   4936     else /*if (VT == MVT::f32)*/
   4937       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   4938     if (SrcVT == MVT::f32) {
   4939       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   4940       if (VT == MVT::f64)
   4941         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   4942                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   4943                            DAG.getConstant(32, dl, MVT::i32));
   4944     } else if (VT == MVT::f32)
   4945       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   4946                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   4947                          DAG.getConstant(32, dl, MVT::i32));
   4948     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   4949     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   4950 
   4951     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   4952                                             dl, MVT::i32);
   4953     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   4954     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   4955                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   4956 
   4957     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   4958                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   4959                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   4960     if (VT == MVT::f32) {
   4961       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   4962       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   4963                         DAG.getConstant(0, dl, MVT::i32));
   4964     } else {
   4965       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   4966     }
   4967 
   4968     return Res;
   4969   }
   4970 
   4971   // Bitcast operand 1 to i32.
   4972   if (SrcVT == MVT::f64)
   4973     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4974                        Tmp1).getValue(1);
   4975   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   4976 
   4977   // Or in the signbit with integer operations.
   4978   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
   4979   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   4980   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   4981   if (VT == MVT::f32) {
   4982     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   4983                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   4984     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   4985                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   4986   }
   4987 
   4988   // f64: Or the high part with signbit and then combine two parts.
   4989   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4990                      Tmp0);
   4991   SDValue Lo = Tmp0.getValue(0);
   4992   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   4993   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   4994   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   4995 }
   4996 
   4997 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   4998   MachineFunction &MF = DAG.getMachineFunction();
   4999   MachineFrameInfo &MFI = MF.getFrameInfo();
   5000   MFI.setReturnAddressIsTaken(true);
   5001 
   5002   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   5003     return SDValue();
   5004 
   5005   EVT VT = Op.getValueType();
   5006   SDLoc dl(Op);
   5007   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5008   if (Depth) {
   5009     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   5010     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
   5011     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   5012                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   5013                        MachinePointerInfo());
   5014   }
   5015 
   5016   // Return LR, which contains the return address. Mark it an implicit live-in.
   5017   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   5018   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   5019 }
   5020 
   5021 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   5022   const ARMBaseRegisterInfo &ARI =
   5023     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
   5024   MachineFunction &MF = DAG.getMachineFunction();
   5025   MachineFrameInfo &MFI = MF.getFrameInfo();
   5026   MFI.setFrameAddressIsTaken(true);
   5027 
   5028   EVT VT = Op.getValueType();
   5029   SDLoc dl(Op);  // FIXME probably not meaningful
   5030   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   5031   unsigned FrameReg = ARI.getFrameRegister(MF);
   5032   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   5033   while (Depth--)
   5034     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   5035                             MachinePointerInfo());
   5036   return FrameAddr;
   5037 }
   5038 
   5039 // FIXME? Maybe this could be a TableGen attribute on some registers and
   5040 // this table could be generated automatically from RegInfo.
   5041 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   5042                                               SelectionDAG &DAG) const {
   5043   unsigned Reg = StringSwitch<unsigned>(RegName)
   5044                        .Case("sp", ARM::SP)
   5045                        .Default(0);
   5046   if (Reg)
   5047     return Reg;
   5048   report_fatal_error(Twine("Invalid register name \""
   5049                               + StringRef(RegName)  + "\"."));
   5050 }
   5051 
   5052 // Result is 64 bit value so split into two 32 bit values and return as a
   5053 // pair of values.
   5054 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
   5055                                 SelectionDAG &DAG) {
   5056   SDLoc DL(N);
   5057 
   5058   // This function is only supposed to be called for i64 type destination.
   5059   assert(N->getValueType(0) == MVT::i64
   5060           && "ExpandREAD_REGISTER called for non-i64 type result.");
   5061 
   5062   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
   5063                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
   5064                              N->getOperand(0),
   5065                              N->getOperand(1));
   5066 
   5067   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
   5068                     Read.getValue(1)));
   5069   Results.push_back(Read.getOperand(0));
   5070 }
   5071 
   5072 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
   5073 /// When \p DstVT, the destination type of \p BC, is on the vector
   5074 /// register bank and the source of bitcast, \p Op, operates on the same bank,
   5075 /// it might be possible to combine them, such that everything stays on the
   5076 /// vector register bank.
   5077 /// \p return The node that would replace \p BT, if the combine
   5078 /// is possible.
   5079 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
   5080                                                 SelectionDAG &DAG) {
   5081   SDValue Op = BC->getOperand(0);
   5082   EVT DstVT = BC->getValueType(0);
   5083 
   5084   // The only vector instruction that can produce a scalar (remember,
   5085   // since the bitcast was about to be turned into VMOVDRR, the source
   5086   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
   5087   // Moreover, we can do this combine only if there is one use.
   5088   // Finally, if the destination type is not a vector, there is not
   5089   // much point on forcing everything on the vector bank.
   5090   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   5091       !Op.hasOneUse())
   5092     return SDValue();
   5093 
   5094   // If the index is not constant, we will introduce an additional
   5095   // multiply that will stick.
   5096   // Give up in that case.
   5097   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   5098   if (!Index)
   5099     return SDValue();
   5100   unsigned DstNumElt = DstVT.getVectorNumElements();
   5101 
   5102   // Compute the new index.
   5103   const APInt &APIntIndex = Index->getAPIntValue();
   5104   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
   5105   NewIndex *= APIntIndex;
   5106   // Check if the new constant index fits into i32.
   5107   if (NewIndex.getBitWidth() > 32)
   5108     return SDValue();
   5109 
   5110   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
   5111   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
   5112   SDLoc dl(Op);
   5113   SDValue ExtractSrc = Op.getOperand(0);
   5114   EVT VecVT = EVT::getVectorVT(
   5115       *DAG.getContext(), DstVT.getScalarType(),
   5116       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
   5117   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
   5118   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
   5119                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
   5120 }
   5121 
   5122 /// ExpandBITCAST - If the target supports VFP, this function is called to
   5123 /// expand a bit convert where either the source or destination type is i64 to
   5124 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   5125 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   5126 /// vectors), since the legalizer won't know what to do with that.
   5127 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
   5128                              const ARMSubtarget *Subtarget) {
   5129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   5130   SDLoc dl(N);
   5131   SDValue Op = N->getOperand(0);
   5132 
   5133   // This function is only supposed to be called for i64 types, either as the
   5134   // source or destination of the bit convert.
   5135   EVT SrcVT = Op.getValueType();
   5136   EVT DstVT = N->getValueType(0);
   5137   const bool HasFullFP16 = Subtarget->hasFullFP16();
   5138 
   5139   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
   5140      // FullFP16: half values are passed in S-registers, and we don't
   5141      // need any of the bitcast and moves:
   5142      //
   5143      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
   5144      //   t5: i32 = bitcast t2
   5145      // t18: f16 = ARMISD::VMOVhr t5
   5146      if (Op.getOpcode() != ISD::CopyFromReg ||
   5147          Op.getValueType() != MVT::f32)
   5148        return SDValue();
   5149 
   5150      auto Move = N->use_begin();
   5151      if (Move->getOpcode() != ARMISD::VMOVhr)
   5152        return SDValue();
   5153 
   5154      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
   5155      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
   5156      DAG.ReplaceAllUsesWith(*Move, &Copy);
   5157      return Copy;
   5158   }
   5159 
   5160   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
   5161     if (!HasFullFP16)
   5162       return SDValue();
   5163     // SoftFP: read half-precision arguments:
   5164     //
   5165     // t2: i32,ch = ...
   5166     //        t7: i16 = truncate t2 <~~~~ Op
   5167     //      t8: f16 = bitcast t7    <~~~~ N
   5168     //
   5169     if (Op.getOperand(0).getValueType() == MVT::i32)
   5170       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
   5171                          MVT::f16, Op.getOperand(0));
   5172 
   5173     return SDValue();
   5174   }
   5175 
   5176   // Half-precision return values
   5177   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
   5178     if (!HasFullFP16)
   5179       return SDValue();
   5180     //
   5181     //          t11: f16 = fadd t8, t10
   5182     //        t12: i16 = bitcast t11       <~~~ SDNode N
   5183     //      t13: i32 = zero_extend t12
   5184     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
   5185     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
   5186     //
   5187     // transform this into:
   5188     //
   5189     //    t20: i32 = ARMISD::VMOVrh t11
   5190     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
   5191     //
   5192     auto ZeroExtend = N->use_begin();
   5193     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
   5194         ZeroExtend->getValueType(0) != MVT::i32)
   5195       return SDValue();
   5196 
   5197     auto Copy = ZeroExtend->use_begin();
   5198     if (Copy->getOpcode() == ISD::CopyToReg &&
   5199         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
   5200       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
   5201       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
   5202       return Cvt;
   5203     }
   5204     return SDValue();
   5205   }
   5206 
   5207   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
   5208     return SDValue();
   5209 
   5210   // Turn i64->f64 into VMOVDRR.
   5211   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   5212     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
   5213     // if we can combine the bitcast with its source.
   5214     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
   5215       return Val;
   5216 
   5217     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   5218                              DAG.getConstant(0, dl, MVT::i32));
   5219     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   5220                              DAG.getConstant(1, dl, MVT::i32));
   5221     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   5222                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   5223   }
   5224 
   5225   // Turn f64->i64 into VMOVRRD.
   5226   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   5227     SDValue Cvt;
   5228     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
   5229         SrcVT.getVectorNumElements() > 1)
   5230       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   5231                         DAG.getVTList(MVT::i32, MVT::i32),
   5232                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
   5233     else
   5234       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   5235                         DAG.getVTList(MVT::i32, MVT::i32), Op);
   5236     // Merge the pieces into a single i64 value.
   5237     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   5238   }
   5239 
   5240   return SDValue();
   5241 }
   5242 
   5243 /// getZeroVector - Returns a vector of specified type with all zero elements.
   5244 /// Zero vectors are used to represent vector negation and in those cases
   5245 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   5246 /// not support i64 elements, so sometimes the zero vectors will need to be
   5247 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   5248 /// zero vector.
   5249 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
   5250   assert(VT.isVector() && "Expected a vector type");
   5251   // The canonical modified immediate encoding of a zero vector is....0!
   5252   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
   5253   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   5254   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   5255   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5256 }
   5257 
   5258 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   5259 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   5260 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   5261                                                 SelectionDAG &DAG) const {
   5262   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   5263   EVT VT = Op.getValueType();
   5264   unsigned VTBits = VT.getSizeInBits();
   5265   SDLoc dl(Op);
   5266   SDValue ShOpLo = Op.getOperand(0);
   5267   SDValue ShOpHi = Op.getOperand(1);
   5268   SDValue ShAmt  = Op.getOperand(2);
   5269   SDValue ARMcc;
   5270   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   5271   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   5272 
   5273   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   5274 
   5275   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   5276                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   5277   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   5278   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   5279                                    DAG.getConstant(VTBits, dl, MVT::i32));
   5280   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   5281   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   5282   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   5283   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   5284                             ISD::SETGE, ARMcc, DAG, dl);
   5285   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
   5286                            ARMcc, CCR, CmpLo);
   5287 
   5288   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   5289   SDValue HiBigShift = Opc == ISD::SRA
   5290                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
   5291                                          DAG.getConstant(VTBits - 1, dl, VT))
   5292                            : DAG.getConstant(0, dl, VT);
   5293   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   5294                             ISD::SETGE, ARMcc, DAG, dl);
   5295   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
   5296                            ARMcc, CCR, CmpHi);
   5297 
   5298   SDValue Ops[2] = { Lo, Hi };
   5299   return DAG.getMergeValues(Ops, dl);
   5300 }
   5301 
   5302 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   5303 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   5304 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   5305                                                SelectionDAG &DAG) const {
   5306   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   5307   EVT VT = Op.getValueType();
   5308   unsigned VTBits = VT.getSizeInBits();
   5309   SDLoc dl(Op);
   5310   SDValue ShOpLo = Op.getOperand(0);
   5311   SDValue ShOpHi = Op.getOperand(1);
   5312   SDValue ShAmt  = Op.getOperand(2);
   5313   SDValue ARMcc;
   5314   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   5315 
   5316   assert(Op.getOpcode() == ISD::SHL_PARTS);
   5317   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   5318                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   5319   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   5320   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   5321   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   5322 
   5323   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   5324                                    DAG.getConstant(VTBits, dl, MVT::i32));
   5325   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   5326   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   5327                             ISD::SETGE, ARMcc, DAG, dl);
   5328   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
   5329                            ARMcc, CCR, CmpHi);
   5330 
   5331   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   5332                           ISD::SETGE, ARMcc, DAG, dl);
   5333   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   5334   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
   5335                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
   5336 
   5337   SDValue Ops[2] = { Lo, Hi };
   5338   return DAG.getMergeValues(Ops, dl);
   5339 }
   5340 
   5341 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   5342                                             SelectionDAG &DAG) const {
   5343   // The rounding mode is in bits 23:22 of the FPSCR.
   5344   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   5345   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   5346   // so that the shift + and get folded into a bitfield extract.
   5347   SDLoc dl(Op);
   5348   SDValue Ops[] = { DAG.getEntryNode(),
   5349                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
   5350 
   5351   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
   5352   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   5353                                   DAG.getConstant(1U << 22, dl, MVT::i32));
   5354   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   5355                               DAG.getConstant(22, dl, MVT::i32));
   5356   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   5357                      DAG.getConstant(3, dl, MVT::i32));
   5358 }
   5359 
   5360 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   5361                          const ARMSubtarget *ST) {
   5362   SDLoc dl(N);
   5363   EVT VT = N->getValueType(0);
   5364   if (VT.isVector()) {
   5365     assert(ST->hasNEON());
   5366 
   5367     // Compute the least significant set bit: LSB = X & -X
   5368     SDValue X = N->getOperand(0);
   5369     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
   5370     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
   5371 
   5372     EVT ElemTy = VT.getVectorElementType();
   5373 
   5374     if (ElemTy == MVT::i8) {
   5375       // Compute with: cttz(x) = ctpop(lsb - 1)
   5376       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   5377                                 DAG.getTargetConstant(1, dl, ElemTy));
   5378       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   5379       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
   5380     }
   5381 
   5382     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
   5383         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
   5384       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
   5385       unsigned NumBits = ElemTy.getSizeInBits();
   5386       SDValue WidthMinus1 =
   5387           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   5388                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
   5389       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
   5390       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
   5391     }
   5392 
   5393     // Compute with: cttz(x) = ctpop(lsb - 1)
   5394 
   5395     // Since we can only compute the number of bits in a byte with vcnt.8, we
   5396     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
   5397     // and i64.
   5398 
   5399     // Compute LSB - 1.
   5400     SDValue Bits;
   5401     if (ElemTy == MVT::i64) {
   5402       // Load constant 0xffff'ffff'ffff'ffff to register.
   5403       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   5404                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
   5405       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
   5406     } else {
   5407       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   5408                                 DAG.getTargetConstant(1, dl, ElemTy));
   5409       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   5410     }
   5411 
   5412     // Count #bits with vcnt.8.
   5413     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   5414     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
   5415     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
   5416 
   5417     // Gather the #bits with vpaddl (pairwise add.)
   5418     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   5419     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
   5420         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   5421         Cnt8);
   5422     if (ElemTy == MVT::i16)
   5423       return Cnt16;
   5424 
   5425     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
   5426     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
   5427         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   5428         Cnt16);
   5429     if (ElemTy == MVT::i32)
   5430       return Cnt32;
   5431 
   5432     assert(ElemTy == MVT::i64);
   5433     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   5434         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   5435         Cnt32);
   5436     return Cnt64;
   5437   }
   5438 
   5439   if (!ST->hasV6T2Ops())
   5440     return SDValue();
   5441 
   5442   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
   5443   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   5444 }
   5445 
   5446 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
   5447 /// for each 16-bit element from operand, repeated.  The basic idea is to
   5448 /// leverage vcnt to get the 8-bit counts, gather and add the results.
   5449 ///
   5450 /// Trace for v4i16:
   5451 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
   5452 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
   5453 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
   5454 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
   5455 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
   5456 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
   5457 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
   5458 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
   5459 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
   5460   EVT VT = N->getValueType(0);
   5461   SDLoc DL(N);
   5462 
   5463   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   5464   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
   5465   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
   5466   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
   5467   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
   5468   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
   5469 }
   5470 
   5471 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
   5472 /// bit-count for each 16-bit element from the operand.  We need slightly
   5473 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
   5474 /// 64/128-bit registers.
   5475 ///
   5476 /// Trace for v4i16:
   5477 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
   5478 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
   5479 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
   5480 /// v4i16:Extracted = [k0    k1    k2    k3    ]
   5481 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
   5482   EVT VT = N->getValueType(0);
   5483   SDLoc DL(N);
   5484 
   5485   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
   5486   if (VT.is64BitVector()) {
   5487     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
   5488     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
   5489                        DAG.getIntPtrConstant(0, DL));
   5490   } else {
   5491     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
   5492                                     BitCounts, DAG.getIntPtrConstant(0, DL));
   5493     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
   5494   }
   5495 }
   5496 
   5497 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
   5498 /// bit-count for each 32-bit element from the operand.  The idea here is
   5499 /// to split the vector into 16-bit elements, leverage the 16-bit count
   5500 /// routine, and then combine the results.
   5501 ///
   5502 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
   5503 /// input    = [v0    v1    ] (vi: 32-bit elements)
   5504 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
   5505 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
   5506 /// vrev: N0 = [k1 k0 k3 k2 ]
   5507 ///            [k0 k1 k2 k3 ]
   5508 ///       N1 =+[k1 k0 k3 k2 ]
   5509 ///            [k0 k2 k1 k3 ]
   5510 ///       N2 =+[k1 k3 k0 k2 ]
   5511 ///            [k0    k2    k1    k3    ]
   5512 /// Extended =+[k1    k3    k0    k2    ]
   5513 ///            [k0    k2    ]
   5514 /// Extracted=+[k1    k3    ]
   5515 ///
   5516 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
   5517   EVT VT = N->getValueType(0);
   5518   SDLoc DL(N);
   5519 
   5520   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   5521 
   5522   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
   5523   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
   5524   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
   5525   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
   5526   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
   5527 
   5528   if (VT.is64BitVector()) {
   5529     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
   5530     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
   5531                        DAG.getIntPtrConstant(0, DL));
   5532   } else {
   5533     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
   5534                                     DAG.getIntPtrConstant(0, DL));
   5535     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
   5536   }
   5537 }
   5538 
   5539 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
   5540                           const ARMSubtarget *ST) {
   5541   EVT VT = N->getValueType(0);
   5542 
   5543   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
   5544   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
   5545           VT == MVT::v4i16 || VT == MVT::v8i16) &&
   5546          "Unexpected type for custom ctpop lowering");
   5547 
   5548   if (VT.getVectorElementType() == MVT::i32)
   5549     return lowerCTPOP32BitElements(N, DAG);
   5550   else
   5551     return lowerCTPOP16BitElements(N, DAG);
   5552 }
   5553 
   5554 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   5555                           const ARMSubtarget *ST) {
   5556   EVT VT = N->getValueType(0);
   5557   SDLoc dl(N);
   5558 
   5559   if (!VT.isVector())
   5560     return SDValue();
   5561 
   5562   // Lower vector shifts on NEON to use VSHL.
   5563   assert(ST->hasNEON() && "unexpected vector shift");
   5564 
   5565   // Left shifts translate directly to the vshiftu intrinsic.
   5566   if (N->getOpcode() == ISD::SHL)
   5567     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   5568                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
   5569                                        MVT::i32),
   5570                        N->getOperand(0), N->getOperand(1));
   5571 
   5572   assert((N->getOpcode() == ISD::SRA ||
   5573           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   5574 
   5575   // NEON uses the same intrinsics for both left and right shifts.  For
   5576   // right shifts, the shift amounts are negative, so negate the vector of
   5577   // shift amounts.
   5578   EVT ShiftVT = N->getOperand(1).getValueType();
   5579   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   5580                                      getZeroVector(ShiftVT, DAG, dl),
   5581                                      N->getOperand(1));
   5582   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   5583                              Intrinsic::arm_neon_vshifts :
   5584                              Intrinsic::arm_neon_vshiftu);
   5585   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   5586                      DAG.getConstant(vshiftInt, dl, MVT::i32),
   5587                      N->getOperand(0), NegatedCount);
   5588 }
   5589 
   5590 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   5591                                 const ARMSubtarget *ST) {
   5592   EVT VT = N->getValueType(0);
   5593   SDLoc dl(N);
   5594 
   5595   // We can get here for a node like i32 = ISD::SHL i32, i64
   5596   if (VT != MVT::i64)
   5597     return SDValue();
   5598 
   5599   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   5600          "Unknown shift to lower!");
   5601 
   5602   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   5603   if (!isOneConstant(N->getOperand(1)))
   5604     return SDValue();
   5605 
   5606   // If we are in thumb mode, we don't have RRX.
   5607   if (ST->isThumb1Only()) return SDValue();
   5608 
   5609   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   5610   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   5611                            DAG.getConstant(0, dl, MVT::i32));
   5612   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   5613                            DAG.getConstant(1, dl, MVT::i32));
   5614 
   5615   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   5616   // captures the result into a carry flag.
   5617   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   5618   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
   5619 
   5620   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   5621   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   5622 
   5623   // Merge the pieces into a single i64 value.
   5624  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   5625 }
   5626 
   5627 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   5628   SDValue TmpOp0, TmpOp1;
   5629   bool Invert = false;
   5630   bool Swap = false;
   5631   unsigned Opc = 0;
   5632 
   5633   SDValue Op0 = Op.getOperand(0);
   5634   SDValue Op1 = Op.getOperand(1);
   5635   SDValue CC = Op.getOperand(2);
   5636   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
   5637   EVT VT = Op.getValueType();
   5638   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   5639   SDLoc dl(Op);
   5640 
   5641   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
   5642       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
   5643     // Special-case integer 64-bit equality comparisons. They aren't legal,
   5644     // but they can be lowered with a few vector instructions.
   5645     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
   5646     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
   5647     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
   5648     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
   5649     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
   5650                               DAG.getCondCode(ISD::SETEQ));
   5651     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
   5652     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
   5653     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
   5654     if (SetCCOpcode == ISD::SETNE)
   5655       Merged = DAG.getNOT(dl, Merged, CmpVT);
   5656     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
   5657     return Merged;
   5658   }
   5659 
   5660   if (CmpVT.getVectorElementType() == MVT::i64)
   5661     // 64-bit comparisons are not legal in general.
   5662     return SDValue();
   5663 
   5664   if (Op1.getValueType().isFloatingPoint()) {
   5665     switch (SetCCOpcode) {
   5666     default: llvm_unreachable("Illegal FP comparison");
   5667     case ISD::SETUNE:
   5668     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
   5669     case ISD::SETOEQ:
   5670     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   5671     case ISD::SETOLT:
   5672     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
   5673     case ISD::SETOGT:
   5674     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   5675     case ISD::SETOLE:
   5676     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
   5677     case ISD::SETOGE:
   5678     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   5679     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
   5680     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   5681     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
   5682     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   5683     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
   5684     case ISD::SETONE:
   5685       // Expand this to (OLT | OGT).
   5686       TmpOp0 = Op0;
   5687       TmpOp1 = Op1;
   5688       Opc = ISD::OR;
   5689       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   5690       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
   5691       break;
   5692     case ISD::SETUO:
   5693       Invert = true;
   5694       LLVM_FALLTHROUGH;
   5695     case ISD::SETO:
   5696       // Expand this to (OLT | OGE).
   5697       TmpOp0 = Op0;
   5698       TmpOp1 = Op1;
   5699       Opc = ISD::OR;
   5700       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   5701       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
   5702       break;
   5703     }
   5704   } else {
   5705     // Integer comparisons.
   5706     switch (SetCCOpcode) {
   5707     default: llvm_unreachable("Illegal integer comparison");
   5708     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
   5709     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   5710     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
   5711     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   5712     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
   5713     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   5714     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
   5715     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   5716     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
   5717     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   5718     }
   5719 
   5720     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   5721     if (Opc == ARMISD::VCEQ) {
   5722       SDValue AndOp;
   5723       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   5724         AndOp = Op0;
   5725       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   5726         AndOp = Op1;
   5727 
   5728       // Ignore bitconvert.
   5729       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   5730         AndOp = AndOp.getOperand(0);
   5731 
   5732       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   5733         Opc = ARMISD::VTST;
   5734         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
   5735         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
   5736         Invert = !Invert;
   5737       }
   5738     }
   5739   }
   5740 
   5741   if (Swap)
   5742     std::swap(Op0, Op1);
   5743 
   5744   // If one of the operands is a constant vector zero, attempt to fold the
   5745   // comparison to a specialized compare-against-zero form.
   5746   SDValue SingleOp;
   5747   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   5748     SingleOp = Op0;
   5749   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   5750     if (Opc == ARMISD::VCGE)
   5751       Opc = ARMISD::VCLEZ;
   5752     else if (Opc == ARMISD::VCGT)
   5753       Opc = ARMISD::VCLTZ;
   5754     SingleOp = Op1;
   5755   }
   5756 
   5757   SDValue Result;
   5758   if (SingleOp.getNode()) {
   5759     switch (Opc) {
   5760     case ARMISD::VCEQ:
   5761       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
   5762     case ARMISD::VCGE:
   5763       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
   5764     case ARMISD::VCLEZ:
   5765       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
   5766     case ARMISD::VCGT:
   5767       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
   5768     case ARMISD::VCLTZ:
   5769       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
   5770     default:
   5771       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   5772     }
   5773   } else {
   5774      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   5775   }
   5776 
   5777   Result = DAG.getSExtOrTrunc(Result, dl, VT);
   5778 
   5779   if (Invert)
   5780     Result = DAG.getNOT(dl, Result, VT);
   5781 
   5782   return Result;
   5783 }
   5784 
   5785 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
   5786   SDValue LHS = Op.getOperand(0);
   5787   SDValue RHS = Op.getOperand(1);
   5788   SDValue Carry = Op.getOperand(2);
   5789   SDValue Cond = Op.getOperand(3);
   5790   SDLoc DL(Op);
   5791 
   5792   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
   5793 
   5794   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
   5795   // have to invert the carry first.
   5796   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
   5797                       DAG.getConstant(1, DL, MVT::i32), Carry);
   5798   // This converts the boolean value carry into the carry flag.
   5799   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
   5800 
   5801   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   5802   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
   5803 
   5804   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
   5805   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
   5806   SDValue ARMcc = DAG.getConstant(
   5807       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
   5808   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   5809   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
   5810                                    Cmp.getValue(1), SDValue());
   5811   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
   5812                      CCR, Chain.getValue(1));
   5813 }
   5814 
   5815 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   5816 /// valid vector constant for a NEON instruction with a "modified immediate"
   5817 /// operand (e.g., VMOV).  If so, return the encoded value.
   5818 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   5819                                  unsigned SplatBitSize, SelectionDAG &DAG,
   5820                                  const SDLoc &dl, EVT &VT, bool is128Bits,
   5821                                  NEONModImmType type) {
   5822   unsigned OpCmode, Imm;
   5823 
   5824   // SplatBitSize is set to the smallest size that splats the vector, so a
   5825   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   5826   // immediate instructions others than VMOV do not support the 8-bit encoding
   5827   // of a zero vector, and the default encoding of zero is supposed to be the
   5828   // 32-bit version.
   5829   if (SplatBits == 0)
   5830     SplatBitSize = 32;
   5831 
   5832   switch (SplatBitSize) {
   5833   case 8:
   5834     if (type != VMOVModImm)
   5835       return SDValue();
   5836     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   5837     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   5838     OpCmode = 0xe;
   5839     Imm = SplatBits;
   5840     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   5841     break;
   5842 
   5843   case 16:
   5844     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   5845     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   5846     if ((SplatBits & ~0xff) == 0) {
   5847       // Value = 0x00nn: Op=x, Cmode=100x.
   5848       OpCmode = 0x8;
   5849       Imm = SplatBits;
   5850       break;
   5851     }
   5852     if ((SplatBits & ~0xff00) == 0) {
   5853       // Value = 0xnn00: Op=x, Cmode=101x.
   5854       OpCmode = 0xa;
   5855       Imm = SplatBits >> 8;
   5856       break;
   5857     }
   5858     return SDValue();
   5859 
   5860   case 32:
   5861     // NEON's 32-bit VMOV supports splat values where:
   5862     // * only one byte is nonzero, or
   5863     // * the least significant byte is 0xff and the second byte is nonzero, or
   5864     // * the least significant 2 bytes are 0xff and the third is nonzero.
   5865     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   5866     if ((SplatBits & ~0xff) == 0) {
   5867       // Value = 0x000000nn: Op=x, Cmode=000x.
   5868       OpCmode = 0;
   5869       Imm = SplatBits;
   5870       break;
   5871     }
   5872     if ((SplatBits & ~0xff00) == 0) {
   5873       // Value = 0x0000nn00: Op=x, Cmode=001x.
   5874       OpCmode = 0x2;
   5875       Imm = SplatBits >> 8;
   5876       break;
   5877     }
   5878     if ((SplatBits & ~0xff0000) == 0) {
   5879       // Value = 0x00nn0000: Op=x, Cmode=010x.
   5880       OpCmode = 0x4;
   5881       Imm = SplatBits >> 16;
   5882       break;
   5883     }
   5884     if ((SplatBits & ~0xff000000) == 0) {
   5885       // Value = 0xnn000000: Op=x, Cmode=011x.
   5886       OpCmode = 0x6;
   5887       Imm = SplatBits >> 24;
   5888       break;
   5889     }
   5890 
   5891     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   5892     if (type == OtherModImm) return SDValue();
   5893 
   5894     if ((SplatBits & ~0xffff) == 0 &&
   5895         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   5896       // Value = 0x0000nnff: Op=x, Cmode=1100.
   5897       OpCmode = 0xc;
   5898       Imm = SplatBits >> 8;
   5899       break;
   5900     }
   5901 
   5902     if ((SplatBits & ~0xffffff) == 0 &&
   5903         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   5904       // Value = 0x00nnffff: Op=x, Cmode=1101.
   5905       OpCmode = 0xd;
   5906       Imm = SplatBits >> 16;
   5907       break;
   5908     }
   5909 
   5910     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   5911     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   5912     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   5913     // and fall through here to test for a valid 64-bit splat.  But, then the
   5914     // caller would also need to check and handle the change in size.
   5915     return SDValue();
   5916 
   5917   case 64: {
   5918     if (type != VMOVModImm)
   5919       return SDValue();
   5920     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   5921     uint64_t BitMask = 0xff;
   5922     uint64_t Val = 0;
   5923     unsigned ImmMask = 1;
   5924     Imm = 0;
   5925     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   5926       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   5927         Val |= BitMask;
   5928         Imm |= ImmMask;
   5929       } else if ((SplatBits & BitMask) != 0) {
   5930         return SDValue();
   5931       }
   5932       BitMask <<= 8;
   5933       ImmMask <<= 1;
   5934     }
   5935 
   5936     if (DAG.getDataLayout().isBigEndian())
   5937       // swap higher and lower 32 bit word
   5938       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
   5939 
   5940     // Op=1, Cmode=1110.
   5941     OpCmode = 0x1e;
   5942     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   5943     break;
   5944   }
   5945 
   5946   default:
   5947     llvm_unreachable("unexpected size for isNEONModifiedImm");
   5948   }
   5949 
   5950   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   5951   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
   5952 }
   5953 
   5954 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   5955                                            const ARMSubtarget *ST) const {
   5956   EVT VT = Op.getValueType();
   5957   bool IsDouble = (VT == MVT::f64);
   5958   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   5959   const APFloat &FPVal = CFP->getValueAPF();
   5960 
   5961   // Prevent floating-point constants from using literal loads
   5962   // when execute-only is enabled.
   5963   if (ST->genExecuteOnly()) {
   5964     // If we can represent the constant as an immediate, don't lower it
   5965     if (isFPImmLegal(FPVal, VT))
   5966       return Op;
   5967     // Otherwise, construct as integer, and move to float register
   5968     APInt INTVal = FPVal.bitcastToAPInt();
   5969     SDLoc DL(CFP);
   5970     switch (VT.getSimpleVT().SimpleTy) {
   5971       default:
   5972         llvm_unreachable("Unknown floating point type!");
   5973         break;
   5974       case MVT::f64: {
   5975         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
   5976         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
   5977         if (!ST->isLittle())
   5978           std::swap(Lo, Hi);
   5979         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
   5980       }
   5981       case MVT::f32:
   5982           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
   5983               DAG.getConstant(INTVal, DL, MVT::i32));
   5984     }
   5985   }
   5986 
   5987   if (!ST->hasVFP3())
   5988     return SDValue();
   5989 
   5990   // Use the default (constant pool) lowering for double constants when we have
   5991   // an SP-only FPU
   5992   if (IsDouble && Subtarget->isFPOnlySP())
   5993     return SDValue();
   5994 
   5995   // Try splatting with a VMOV.f32...
   5996   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
   5997 
   5998   if (ImmVal != -1) {
   5999     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
   6000       // We have code in place to select a valid ConstantFP already, no need to
   6001       // do any mangling.
   6002       return Op;
   6003     }
   6004 
   6005     // It's a float and we are trying to use NEON operations where
   6006     // possible. Lower it to a splat followed by an extract.
   6007     SDLoc DL(Op);
   6008     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
   6009     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   6010                                       NewVal);
   6011     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   6012                        DAG.getConstant(0, DL, MVT::i32));
   6013   }
   6014 
   6015   // The rest of our options are NEON only, make sure that's allowed before
   6016   // proceeding..
   6017   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
   6018     return SDValue();
   6019 
   6020   EVT VMovVT;
   6021   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
   6022 
   6023   // It wouldn't really be worth bothering for doubles except for one very
   6024   // important value, which does happen to match: 0.0. So make sure we don't do
   6025   // anything stupid.
   6026   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
   6027     return SDValue();
   6028 
   6029   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
   6030   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
   6031                                      VMovVT, false, VMOVModImm);
   6032   if (NewVal != SDValue()) {
   6033     SDLoc DL(Op);
   6034     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   6035                                       NewVal);
   6036     if (IsDouble)
   6037       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   6038 
   6039     // It's a float: cast and extract a vector element.
   6040     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   6041                                        VecConstant);
   6042     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   6043                        DAG.getConstant(0, DL, MVT::i32));
   6044   }
   6045 
   6046   // Finally, try a VMVN.i32
   6047   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
   6048                              false, VMVNModImm);
   6049   if (NewVal != SDValue()) {
   6050     SDLoc DL(Op);
   6051     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   6052 
   6053     if (IsDouble)
   6054       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   6055 
   6056     // It's a float: cast and extract a vector element.
   6057     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   6058                                        VecConstant);
   6059     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   6060                        DAG.getConstant(0, DL, MVT::i32));
   6061   }
   6062 
   6063   return SDValue();
   6064 }
   6065 
   6066 // check if an VEXT instruction can handle the shuffle mask when the
   6067 // vector sources of the shuffle are the same.
   6068 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   6069   unsigned NumElts = VT.getVectorNumElements();
   6070 
   6071   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   6072   if (M[0] < 0)
   6073     return false;
   6074 
   6075   Imm = M[0];
   6076 
   6077   // If this is a VEXT shuffle, the immediate value is the index of the first
   6078   // element.  The other shuffle indices must be the successive elements after
   6079   // the first one.
   6080   unsigned ExpectedElt = Imm;
   6081   for (unsigned i = 1; i < NumElts; ++i) {
   6082     // Increment the expected index.  If it wraps around, just follow it
   6083     // back to index zero and keep going.
   6084     ++ExpectedElt;
   6085     if (ExpectedElt == NumElts)
   6086       ExpectedElt = 0;
   6087 
   6088     if (M[i] < 0) continue; // ignore UNDEF indices
   6089     if (ExpectedElt != static_cast<unsigned>(M[i]))
   6090       return false;
   6091   }
   6092 
   6093   return true;
   6094 }
   6095 
   6096 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   6097                        bool &ReverseVEXT, unsigned &Imm) {
   6098   unsigned NumElts = VT.getVectorNumElements();
   6099   ReverseVEXT = false;
   6100 
   6101   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   6102   if (M[0] < 0)
   6103     return false;
   6104 
   6105   Imm = M[0];
   6106 
   6107   // If this is a VEXT shuffle, the immediate value is the index of the first
   6108   // element.  The other shuffle indices must be the successive elements after
   6109   // the first one.
   6110   unsigned ExpectedElt = Imm;
   6111   for (unsigned i = 1; i < NumElts; ++i) {
   6112     // Increment the expected index.  If it wraps around, it may still be
   6113     // a VEXT but the source vectors must be swapped.
   6114     ExpectedElt += 1;
   6115     if (ExpectedElt == NumElts * 2) {
   6116       ExpectedElt = 0;
   6117       ReverseVEXT = true;
   6118     }
   6119 
   6120     if (M[i] < 0) continue; // ignore UNDEF indices
   6121     if (ExpectedElt != static_cast<unsigned>(M[i]))
   6122       return false;
   6123   }
   6124 
   6125   // Adjust the index value if the source operands will be swapped.
   6126   if (ReverseVEXT)
   6127     Imm -= NumElts;
   6128 
   6129   return true;
   6130 }
   6131 
   6132 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   6133 /// instruction with the specified blocksize.  (The order of the elements
   6134 /// within each block of the vector is reversed.)
   6135 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   6136   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   6137          "Only possible block sizes for VREV are: 16, 32, 64");
   6138 
   6139   unsigned EltSz = VT.getScalarSizeInBits();
   6140   if (EltSz == 64)
   6141     return false;
   6142 
   6143   unsigned NumElts = VT.getVectorNumElements();
   6144   unsigned BlockElts = M[0] + 1;
   6145   // If the first shuffle index is UNDEF, be optimistic.
   6146   if (M[0] < 0)
   6147     BlockElts = BlockSize / EltSz;
   6148 
   6149   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   6150     return false;
   6151 
   6152   for (unsigned i = 0; i < NumElts; ++i) {
   6153     if (M[i] < 0) continue; // ignore UNDEF indices
   6154     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   6155       return false;
   6156   }
   6157 
   6158   return true;
   6159 }
   6160 
   6161 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   6162   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   6163   // range, then 0 is placed into the resulting vector. So pretty much any mask
   6164   // of 8 elements can work here.
   6165   return VT == MVT::v8i8 && M.size() == 8;
   6166 }
   6167 
   6168 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
   6169                                unsigned Index) {
   6170   if (Mask.size() == Elements * 2)
   6171     return Index / Elements;
   6172   return Mask[Index] == 0 ? 0 : 1;
   6173 }
   6174 
   6175 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
   6176 // checking that pairs of elements in the shuffle mask represent the same index
   6177 // in each vector, incrementing the expected index by 2 at each step.
   6178 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
   6179 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
   6180 //  v2={e,f,g,h}
   6181 // WhichResult gives the offset for each element in the mask based on which
   6182 // of the two results it belongs to.
   6183 //
   6184 // The transpose can be represented either as:
   6185 // result1 = shufflevector v1, v2, result1_shuffle_mask
   6186 // result2 = shufflevector v1, v2, result2_shuffle_mask
   6187 // where v1/v2 and the shuffle masks have the same number of elements
   6188 // (here WhichResult (see below) indicates which result is being checked)
   6189 //
   6190 // or as:
   6191 // results = shufflevector v1, v2, shuffle_mask
   6192 // where both results are returned in one vector and the shuffle mask has twice
   6193 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
   6194 // want to check the low half and high half of the shuffle mask as if it were
   6195 // the other case
   6196 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6197   unsigned EltSz = VT.getScalarSizeInBits();
   6198   if (EltSz == 64)
   6199     return false;
   6200 
   6201   unsigned NumElts = VT.getVectorNumElements();
   6202   if (M.size() != NumElts && M.size() != NumElts*2)
   6203     return false;
   6204 
   6205   // If the mask is twice as long as the input vector then we need to check the
   6206   // upper and lower parts of the mask with a matching value for WhichResult
   6207   // FIXME: A mask with only even values will be rejected in case the first
   6208   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
   6209   // M[0] is used to determine WhichResult
   6210   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6211     WhichResult = SelectPairHalf(NumElts, M, i);
   6212     for (unsigned j = 0; j < NumElts; j += 2) {
   6213       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   6214           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
   6215         return false;
   6216     }
   6217   }
   6218 
   6219   if (M.size() == NumElts*2)
   6220     WhichResult = 0;
   6221 
   6222   return true;
   6223 }
   6224 
   6225 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   6226 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6227 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   6228 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   6229   unsigned EltSz = VT.getScalarSizeInBits();
   6230   if (EltSz == 64)
   6231     return false;
   6232 
   6233   unsigned NumElts = VT.getVectorNumElements();
   6234   if (M.size() != NumElts && M.size() != NumElts*2)
   6235     return false;
   6236 
   6237   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6238     WhichResult = SelectPairHalf(NumElts, M, i);
   6239     for (unsigned j = 0; j < NumElts; j += 2) {
   6240       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   6241           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
   6242         return false;
   6243     }
   6244   }
   6245 
   6246   if (M.size() == NumElts*2)
   6247     WhichResult = 0;
   6248 
   6249   return true;
   6250 }
   6251 
   6252 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
   6253 // that the mask elements are either all even and in steps of size 2 or all odd
   6254 // and in steps of size 2.
   6255 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
   6256 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
   6257 //  v2={e,f,g,h}
   6258 // Requires similar checks to that of isVTRNMask with
   6259 // respect the how results are returned.
   6260 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6261   unsigned EltSz = VT.getScalarSizeInBits();
   6262   if (EltSz == 64)
   6263     return false;
   6264 
   6265   unsigned NumElts = VT.getVectorNumElements();
   6266   if (M.size() != NumElts && M.size() != NumElts*2)
   6267     return false;
   6268 
   6269   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6270     WhichResult = SelectPairHalf(NumElts, M, i);
   6271     for (unsigned j = 0; j < NumElts; ++j) {
   6272       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
   6273         return false;
   6274     }
   6275   }
   6276 
   6277   if (M.size() == NumElts*2)
   6278     WhichResult = 0;
   6279 
   6280   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   6281   if (VT.is64BitVector() && EltSz == 32)
   6282     return false;
   6283 
   6284   return true;
   6285 }
   6286 
   6287 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   6288 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6289 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   6290 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   6291   unsigned EltSz = VT.getScalarSizeInBits();
   6292   if (EltSz == 64)
   6293     return false;
   6294 
   6295   unsigned NumElts = VT.getVectorNumElements();
   6296   if (M.size() != NumElts && M.size() != NumElts*2)
   6297     return false;
   6298 
   6299   unsigned Half = NumElts / 2;
   6300   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6301     WhichResult = SelectPairHalf(NumElts, M, i);
   6302     for (unsigned j = 0; j < NumElts; j += Half) {
   6303       unsigned Idx = WhichResult;
   6304       for (unsigned k = 0; k < Half; ++k) {
   6305         int MIdx = M[i + j + k];
   6306         if (MIdx >= 0 && (unsigned) MIdx != Idx)
   6307           return false;
   6308         Idx += 2;
   6309       }
   6310     }
   6311   }
   6312 
   6313   if (M.size() == NumElts*2)
   6314     WhichResult = 0;
   6315 
   6316   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   6317   if (VT.is64BitVector() && EltSz == 32)
   6318     return false;
   6319 
   6320   return true;
   6321 }
   6322 
   6323 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
   6324 // that pairs of elements of the shufflemask represent the same index in each
   6325 // vector incrementing sequentially through the vectors.
   6326 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
   6327 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
   6328 //  v2={e,f,g,h}
   6329 // Requires similar checks to that of isVTRNMask with respect the how results
   6330 // are returned.
   6331 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   6332   unsigned EltSz = VT.getScalarSizeInBits();
   6333   if (EltSz == 64)
   6334     return false;
   6335 
   6336   unsigned NumElts = VT.getVectorNumElements();
   6337   if (M.size() != NumElts && M.size() != NumElts*2)
   6338     return false;
   6339 
   6340   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6341     WhichResult = SelectPairHalf(NumElts, M, i);
   6342     unsigned Idx = WhichResult * NumElts / 2;
   6343     for (unsigned j = 0; j < NumElts; j += 2) {
   6344       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   6345           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
   6346         return false;
   6347       Idx += 1;
   6348     }
   6349   }
   6350 
   6351   if (M.size() == NumElts*2)
   6352     WhichResult = 0;
   6353 
   6354   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   6355   if (VT.is64BitVector() && EltSz == 32)
   6356     return false;
   6357 
   6358   return true;
   6359 }
   6360 
   6361 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   6362 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   6363 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   6364 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   6365   unsigned EltSz = VT.getScalarSizeInBits();
   6366   if (EltSz == 64)
   6367     return false;
   6368 
   6369   unsigned NumElts = VT.getVectorNumElements();
   6370   if (M.size() != NumElts && M.size() != NumElts*2)
   6371     return false;
   6372 
   6373   for (unsigned i = 0; i < M.size(); i += NumElts) {
   6374     WhichResult = SelectPairHalf(NumElts, M, i);
   6375     unsigned Idx = WhichResult * NumElts / 2;
   6376     for (unsigned j = 0; j < NumElts; j += 2) {
   6377       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   6378           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
   6379         return false;
   6380       Idx += 1;
   6381     }
   6382   }
   6383 
   6384   if (M.size() == NumElts*2)
   6385     WhichResult = 0;
   6386 
   6387   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   6388   if (VT.is64BitVector() && EltSz == 32)
   6389     return false;
   6390 
   6391   return true;
   6392 }
   6393 
   6394 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
   6395 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
   6396 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
   6397                                            unsigned &WhichResult,
   6398                                            bool &isV_UNDEF) {
   6399   isV_UNDEF = false;
   6400   if (isVTRNMask(ShuffleMask, VT, WhichResult))
   6401     return ARMISD::VTRN;
   6402   if (isVUZPMask(ShuffleMask, VT, WhichResult))
   6403     return ARMISD::VUZP;
   6404   if (isVZIPMask(ShuffleMask, VT, WhichResult))
   6405     return ARMISD::VZIP;
   6406 
   6407   isV_UNDEF = true;
   6408   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   6409     return ARMISD::VTRN;
   6410   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   6411     return ARMISD::VUZP;
   6412   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   6413     return ARMISD::VZIP;
   6414 
   6415   return 0;
   6416 }
   6417 
   6418 /// \return true if this is a reverse operation on an vector.
   6419 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
   6420   unsigned NumElts = VT.getVectorNumElements();
   6421   // Make sure the mask has the right size.
   6422   if (NumElts != M.size())
   6423       return false;
   6424 
   6425   // Look for <15, ..., 3, -1, 1, 0>.
   6426   for (unsigned i = 0; i != NumElts; ++i)
   6427     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
   6428       return false;
   6429 
   6430   return true;
   6431 }
   6432 
   6433 // If N is an integer constant that can be moved into a register in one
   6434 // instruction, return an SDValue of such a constant (will become a MOV
   6435 // instruction).  Otherwise return null.
   6436 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   6437                                      const ARMSubtarget *ST, const SDLoc &dl) {
   6438   uint64_t Val;
   6439   if (!isa<ConstantSDNode>(N))
   6440     return SDValue();
   6441   Val = cast<ConstantSDNode>(N)->getZExtValue();
   6442 
   6443   if (ST->isThumb1Only()) {
   6444     if (Val <= 255 || ~Val <= 255)
   6445       return DAG.getConstant(Val, dl, MVT::i32);
   6446   } else {
   6447     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   6448       return DAG.getConstant(Val, dl, MVT::i32);
   6449   }
   6450   return SDValue();
   6451 }
   6452 
   6453 // If this is a case we can't handle, return null and let the default
   6454 // expansion code take care of it.
   6455 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   6456                                              const ARMSubtarget *ST) const {
   6457   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   6458   SDLoc dl(Op);
   6459   EVT VT = Op.getValueType();
   6460 
   6461   APInt SplatBits, SplatUndef;
   6462   unsigned SplatBitSize;
   6463   bool HasAnyUndefs;
   6464   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   6465     if (SplatUndef.isAllOnesValue())
   6466       return DAG.getUNDEF(VT);
   6467 
   6468     if (SplatBitSize <= 64) {
   6469       // Check if an immediate VMOV works.
   6470       EVT VmovVT;
   6471       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   6472                                       SplatUndef.getZExtValue(), SplatBitSize,
   6473                                       DAG, dl, VmovVT, VT.is128BitVector(),
   6474                                       VMOVModImm);
   6475       if (Val.getNode()) {
   6476         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   6477         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   6478       }
   6479 
   6480       // Try an immediate VMVN.
   6481       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   6482       Val = isNEONModifiedImm(NegatedImm,
   6483                                       SplatUndef.getZExtValue(), SplatBitSize,
   6484                                       DAG, dl, VmovVT, VT.is128BitVector(),
   6485                                       VMVNModImm);
   6486       if (Val.getNode()) {
   6487         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   6488         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   6489       }
   6490 
   6491       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   6492       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   6493         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   6494         if (ImmVal != -1) {
   6495           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
   6496           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   6497         }
   6498       }
   6499     }
   6500   }
   6501 
   6502   // Scan through the operands to see if only one value is used.
   6503   //
   6504   // As an optimisation, even if more than one value is used it may be more
   6505   // profitable to splat with one value then change some lanes.
   6506   //
   6507   // Heuristically we decide to do this if the vector has a "dominant" value,
   6508   // defined as splatted to more than half of the lanes.
   6509   unsigned NumElts = VT.getVectorNumElements();
   6510   bool isOnlyLowElement = true;
   6511   bool usesOnlyOneValue = true;
   6512   bool hasDominantValue = false;
   6513   bool isConstant = true;
   6514 
   6515   // Map of the number of times a particular SDValue appears in the
   6516   // element list.
   6517   DenseMap<SDValue, unsigned> ValueCounts;
   6518   SDValue Value;
   6519   for (unsigned i = 0; i < NumElts; ++i) {
   6520     SDValue V = Op.getOperand(i);
   6521     if (V.isUndef())
   6522       continue;
   6523     if (i > 0)
   6524       isOnlyLowElement = false;
   6525     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   6526       isConstant = false;
   6527 
   6528     ValueCounts.insert(std::make_pair(V, 0));
   6529     unsigned &Count = ValueCounts[V];
   6530 
   6531     // Is this value dominant? (takes up more than half of the lanes)
   6532     if (++Count > (NumElts / 2)) {
   6533       hasDominantValue = true;
   6534       Value = V;
   6535     }
   6536   }
   6537   if (ValueCounts.size() != 1)
   6538     usesOnlyOneValue = false;
   6539   if (!Value.getNode() && !ValueCounts.empty())
   6540     Value = ValueCounts.begin()->first;
   6541 
   6542   if (ValueCounts.empty())
   6543     return DAG.getUNDEF(VT);
   6544 
   6545   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
   6546   // Keep going if we are hitting this case.
   6547   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
   6548     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   6549 
   6550   unsigned EltSize = VT.getScalarSizeInBits();
   6551 
   6552   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   6553   // i32 and try again.
   6554   if (hasDominantValue && EltSize <= 32) {
   6555     if (!isConstant) {
   6556       SDValue N;
   6557 
   6558       // If we are VDUPing a value that comes directly from a vector, that will
   6559       // cause an unnecessary move to and from a GPR, where instead we could
   6560       // just use VDUPLANE. We can only do this if the lane being extracted
   6561       // is at a constant index, as the VDUP from lane instructions only have
   6562       // constant-index forms.
   6563       ConstantSDNode *constIndex;
   6564       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   6565           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
   6566         // We need to create a new undef vector to use for the VDUPLANE if the
   6567         // size of the vector from which we get the value is different than the
   6568         // size of the vector that we need to create. We will insert the element
   6569         // such that the register coalescer will remove unnecessary copies.
   6570         if (VT != Value->getOperand(0).getValueType()) {
   6571           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
   6572                              VT.getVectorNumElements();
   6573           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   6574                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
   6575                         Value, DAG.getConstant(index, dl, MVT::i32)),
   6576                            DAG.getConstant(index, dl, MVT::i32));
   6577         } else
   6578           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   6579                         Value->getOperand(0), Value->getOperand(1));
   6580       } else
   6581         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   6582 
   6583       if (!usesOnlyOneValue) {
   6584         // The dominant value was splatted as 'N', but we now have to insert
   6585         // all differing elements.
   6586         for (unsigned I = 0; I < NumElts; ++I) {
   6587           if (Op.getOperand(I) == Value)
   6588             continue;
   6589           SmallVector<SDValue, 3> Ops;
   6590           Ops.push_back(N);
   6591           Ops.push_back(Op.getOperand(I));
   6592           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
   6593           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
   6594         }
   6595       }
   6596       return N;
   6597     }
   6598     if (VT.getVectorElementType().isFloatingPoint()) {
   6599       SmallVector<SDValue, 8> Ops;
   6600       for (unsigned i = 0; i < NumElts; ++i)
   6601         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   6602                                   Op.getOperand(i)));
   6603       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   6604       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
   6605       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   6606       if (Val.getNode())
   6607         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   6608     }
   6609     if (usesOnlyOneValue) {
   6610       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   6611       if (isConstant && Val.getNode())
   6612         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   6613     }
   6614   }
   6615 
   6616   // If all elements are constants and the case above didn't get hit, fall back
   6617   // to the default expansion, which will generate a load from the constant
   6618   // pool.
   6619   if (isConstant)
   6620     return SDValue();
   6621 
   6622   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   6623   if (NumElts >= 4) {
   6624     SDValue shuffle = ReconstructShuffle(Op, DAG);
   6625     if (shuffle != SDValue())
   6626       return shuffle;
   6627   }
   6628 
   6629   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
   6630     // If we haven't found an efficient lowering, try splitting a 128-bit vector
   6631     // into two 64-bit vectors; we might discover a better way to lower it.
   6632     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
   6633     EVT ExtVT = VT.getVectorElementType();
   6634     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
   6635     SDValue Lower =
   6636         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
   6637     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
   6638       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
   6639     SDValue Upper = DAG.getBuildVector(
   6640         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
   6641     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
   6642       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
   6643     if (Lower && Upper)
   6644       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
   6645   }
   6646 
   6647   // Vectors with 32- or 64-bit elements can be built by directly assigning
   6648   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   6649   // will be legalized.
   6650   if (EltSize >= 32) {
   6651     // Do the expansion with floating-point types, since that is what the VFP
   6652     // registers are defined to use, and since i64 is not legal.
   6653     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   6654     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   6655     SmallVector<SDValue, 8> Ops;
   6656     for (unsigned i = 0; i < NumElts; ++i)
   6657       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   6658     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   6659     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   6660   }
   6661 
   6662   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   6663   // know the default expansion would otherwise fall back on something even
   6664   // worse. For a vector with one or two non-undef values, that's
   6665   // scalar_to_vector for the elements followed by a shuffle (provided the
   6666   // shuffle is valid for the target) and materialization element by element
   6667   // on the stack followed by a load for everything else.
   6668   if (!isConstant && !usesOnlyOneValue) {
   6669     SDValue Vec = DAG.getUNDEF(VT);
   6670     for (unsigned i = 0 ; i < NumElts; ++i) {
   6671       SDValue V = Op.getOperand(i);
   6672       if (V.isUndef())
   6673         continue;
   6674       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
   6675       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   6676     }
   6677     return Vec;
   6678   }
   6679 
   6680   return SDValue();
   6681 }
   6682 
   6683 // Gather data to see if the operation can be modelled as a
   6684 // shuffle in combination with VEXTs.
   6685 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   6686                                               SelectionDAG &DAG) const {
   6687   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
   6688   SDLoc dl(Op);
   6689   EVT VT = Op.getValueType();
   6690   unsigned NumElts = VT.getVectorNumElements();
   6691 
   6692   struct ShuffleSourceInfo {
   6693     SDValue Vec;
   6694     unsigned MinElt = std::numeric_limits<unsigned>::max();
   6695     unsigned MaxElt = 0;
   6696 
   6697     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
   6698     // be compatible with the shuffle we intend to construct. As a result
   6699     // ShuffleVec will be some sliding window into the original Vec.
   6700     SDValue ShuffleVec;
   6701 
   6702     // Code should guarantee that element i in Vec starts at element "WindowBase
   6703     // + i * WindowScale in ShuffleVec".
   6704     int WindowBase = 0;
   6705     int WindowScale = 1;
   6706 
   6707     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
   6708 
   6709     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
   6710   };
   6711 
   6712   // First gather all vectors used as an immediate source for this BUILD_VECTOR
   6713   // node.
   6714   SmallVector<ShuffleSourceInfo, 2> Sources;
   6715   for (unsigned i = 0; i < NumElts; ++i) {
   6716     SDValue V = Op.getOperand(i);
   6717     if (V.isUndef())
   6718       continue;
   6719     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   6720       // A shuffle can only come from building a vector from various
   6721       // elements of other vectors.
   6722       return SDValue();
   6723     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
   6724       // Furthermore, shuffles require a constant mask, whereas extractelts
   6725       // accept variable indices.
   6726       return SDValue();
   6727     }
   6728 
   6729     // Add this element source to the list if it's not already there.
   6730     SDValue SourceVec = V.getOperand(0);
   6731     auto Source = llvm::find(Sources, SourceVec);
   6732     if (Source == Sources.end())
   6733       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
   6734 
   6735     // Update the minimum and maximum lane number seen.
   6736     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   6737     Source->MinElt = std::min(Source->MinElt, EltNo);
   6738     Source->MaxElt = std::max(Source->MaxElt, EltNo);
   6739   }
   6740 
   6741   // Currently only do something sane when at most two source vectors
   6742   // are involved.
   6743   if (Sources.size() > 2)
   6744     return SDValue();
   6745 
   6746   // Find out the smallest element size among result and two sources, and use
   6747   // it as element size to build the shuffle_vector.
   6748   EVT SmallestEltTy = VT.getVectorElementType();
   6749   for (auto &Source : Sources) {
   6750     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
   6751     if (SrcEltTy.bitsLT(SmallestEltTy))
   6752       SmallestEltTy = SrcEltTy;
   6753   }
   6754   unsigned ResMultiplier =
   6755       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
   6756   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
   6757   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
   6758 
   6759   // If the source vector is too wide or too narrow, we may nevertheless be able
   6760   // to construct a compatible shuffle either by concatenating it with UNDEF or
   6761   // extracting a suitable range of elements.
   6762   for (auto &Src : Sources) {
   6763     EVT SrcVT = Src.ShuffleVec.getValueType();
   6764 
   6765     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
   6766       continue;
   6767 
   6768     // This stage of the search produces a source with the same element type as
   6769     // the original, but with a total width matching the BUILD_VECTOR output.
   6770     EVT EltVT = SrcVT.getVectorElementType();
   6771     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
   6772     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
   6773 
   6774     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
   6775       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
   6776         return SDValue();
   6777       // We can pad out the smaller vector for free, so if it's part of a
   6778       // shuffle...
   6779       Src.ShuffleVec =
   6780           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
   6781                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
   6782       continue;
   6783     }
   6784 
   6785     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
   6786       return SDValue();
   6787 
   6788     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
   6789       // Span too large for a VEXT to cope
   6790       return SDValue();
   6791     }
   6792 
   6793     if (Src.MinElt >= NumSrcElts) {
   6794       // The extraction can just take the second half
   6795       Src.ShuffleVec =
   6796           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   6797                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   6798       Src.WindowBase = -NumSrcElts;
   6799     } else if (Src.MaxElt < NumSrcElts) {
   6800       // The extraction can just take the first half
   6801       Src.ShuffleVec =
   6802           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   6803                       DAG.getConstant(0, dl, MVT::i32));
   6804     } else {
   6805       // An actual VEXT is needed
   6806       SDValue VEXTSrc1 =
   6807           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   6808                       DAG.getConstant(0, dl, MVT::i32));
   6809       SDValue VEXTSrc2 =
   6810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   6811                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   6812 
   6813       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
   6814                                    VEXTSrc2,
   6815                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
   6816       Src.WindowBase = -Src.MinElt;
   6817     }
   6818   }
   6819 
   6820   // Another possible incompatibility occurs from the vector element types. We
   6821   // can fix this by bitcasting the source vectors to the same type we intend
   6822   // for the shuffle.
   6823   for (auto &Src : Sources) {
   6824     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
   6825     if (SrcEltTy == SmallestEltTy)
   6826       continue;
   6827     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
   6828     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
   6829     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
   6830     Src.WindowBase *= Src.WindowScale;
   6831   }
   6832 
   6833   // Final sanity check before we try to actually produce a shuffle.
   6834   LLVM_DEBUG(for (auto Src
   6835                   : Sources)
   6836                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
   6837 
   6838   // The stars all align, our next step is to produce the mask for the shuffle.
   6839   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
   6840   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
   6841   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   6842     SDValue Entry = Op.getOperand(i);
   6843     if (Entry.isUndef())
   6844       continue;
   6845 
   6846     auto Src = llvm::find(Sources, Entry.getOperand(0));
   6847     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
   6848 
   6849     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
   6850     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
   6851     // segment.
   6852     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
   6853     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
   6854                                VT.getScalarSizeInBits());
   6855     int LanesDefined = BitsDefined / BitsPerShuffleLane;
   6856 
   6857     // This source is expected to fill ResMultiplier lanes of the final shuffle,
   6858     // starting at the appropriate offset.
   6859     int *LaneMask = &Mask[i * ResMultiplier];
   6860 
   6861     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
   6862     ExtractBase += NumElts * (Src - Sources.begin());
   6863     for (int j = 0; j < LanesDefined; ++j)
   6864       LaneMask[j] = ExtractBase + j;
   6865   }
   6866 
   6867   // Final check before we try to produce nonsense...
   6868   if (!isShuffleMaskLegal(Mask, ShuffleVT))
   6869     return SDValue();
   6870 
   6871   // We can't handle more than two sources. This should have already
   6872   // been checked before this point.
   6873   assert(Sources.size() <= 2 && "Too many sources!");
   6874 
   6875   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
   6876   for (unsigned i = 0; i < Sources.size(); ++i)
   6877     ShuffleOps[i] = Sources[i].ShuffleVec;
   6878 
   6879   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
   6880                                          ShuffleOps[1], Mask);
   6881   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   6882 }
   6883 
   6884 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   6885 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   6886 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   6887 /// are assumed to be legal.
   6888 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
   6889   if (VT.getVectorNumElements() == 4 &&
   6890       (VT.is128BitVector() || VT.is64BitVector())) {
   6891     unsigned PFIndexes[4];
   6892     for (unsigned i = 0; i != 4; ++i) {
   6893       if (M[i] < 0)
   6894         PFIndexes[i] = 8;
   6895       else
   6896         PFIndexes[i] = M[i];
   6897     }
   6898 
   6899     // Compute the index in the perfect shuffle table.
   6900     unsigned PFTableIndex =
   6901       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   6902     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   6903     unsigned Cost = (PFEntry >> 30);
   6904 
   6905     if (Cost <= 4)
   6906       return true;
   6907   }
   6908 
   6909   bool ReverseVEXT, isV_UNDEF;
   6910   unsigned Imm, WhichResult;
   6911 
   6912   unsigned EltSize = VT.getScalarSizeInBits();
   6913   return (EltSize >= 32 ||
   6914           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   6915           isVREVMask(M, VT, 64) ||
   6916           isVREVMask(M, VT, 32) ||
   6917           isVREVMask(M, VT, 16) ||
   6918           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   6919           isVTBLMask(M, VT) ||
   6920           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
   6921           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
   6922 }
   6923 
   6924 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   6925 /// the specified operations to build the shuffle.
   6926 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   6927                                       SDValue RHS, SelectionDAG &DAG,
   6928                                       const SDLoc &dl) {
   6929   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   6930   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   6931   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   6932 
   6933   enum {
   6934     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   6935     OP_VREV,
   6936     OP_VDUP0,
   6937     OP_VDUP1,
   6938     OP_VDUP2,
   6939     OP_VDUP3,
   6940     OP_VEXT1,
   6941     OP_VEXT2,
   6942     OP_VEXT3,
   6943     OP_VUZPL, // VUZP, left result
   6944     OP_VUZPR, // VUZP, right result
   6945     OP_VZIPL, // VZIP, left result
   6946     OP_VZIPR, // VZIP, right result
   6947     OP_VTRNL, // VTRN, left result
   6948     OP_VTRNR  // VTRN, right result
   6949   };
   6950 
   6951   if (OpNum == OP_COPY) {
   6952     if (LHSID == (1*9+2)*9+3) return LHS;
   6953     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   6954     return RHS;
   6955   }
   6956 
   6957   SDValue OpLHS, OpRHS;
   6958   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   6959   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   6960   EVT VT = OpLHS.getValueType();
   6961 
   6962   switch (OpNum) {
   6963   default: llvm_unreachable("Unknown shuffle opcode!");
   6964   case OP_VREV:
   6965     // VREV divides the vector in half and swaps within the half.
   6966     if (VT.getVectorElementType() == MVT::i32 ||
   6967         VT.getVectorElementType() == MVT::f32)
   6968       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   6969     // vrev <4 x i16> -> VREV32
   6970     if (VT.getVectorElementType() == MVT::i16)
   6971       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   6972     // vrev <4 x i8> -> VREV16
   6973     assert(VT.getVectorElementType() == MVT::i8);
   6974     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   6975   case OP_VDUP0:
   6976   case OP_VDUP1:
   6977   case OP_VDUP2:
   6978   case OP_VDUP3:
   6979     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   6980                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
   6981   case OP_VEXT1:
   6982   case OP_VEXT2:
   6983   case OP_VEXT3:
   6984     return DAG.getNode(ARMISD::VEXT, dl, VT,
   6985                        OpLHS, OpRHS,
   6986                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
   6987   case OP_VUZPL:
   6988   case OP_VUZPR:
   6989     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   6990                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   6991   case OP_VZIPL:
   6992   case OP_VZIPR:
   6993     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   6994                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   6995   case OP_VTRNL:
   6996   case OP_VTRNR:
   6997     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   6998                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   6999   }
   7000 }
   7001 
   7002 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   7003                                        ArrayRef<int> ShuffleMask,
   7004                                        SelectionDAG &DAG) {
   7005   // Check to see if we can use the VTBL instruction.
   7006   SDValue V1 = Op.getOperand(0);
   7007   SDValue V2 = Op.getOperand(1);
   7008   SDLoc DL(Op);
   7009 
   7010   SmallVector<SDValue, 8> VTBLMask;
   7011   for (ArrayRef<int>::iterator
   7012          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   7013     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
   7014 
   7015   if (V2.getNode()->isUndef())
   7016     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   7017                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
   7018 
   7019   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   7020                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
   7021 }
   7022 
   7023 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
   7024                                                       SelectionDAG &DAG) {
   7025   SDLoc DL(Op);
   7026   SDValue OpLHS = Op.getOperand(0);
   7027   EVT VT = OpLHS.getValueType();
   7028 
   7029   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
   7030          "Expect an v8i16/v16i8 type");
   7031   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
   7032   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
   7033   // extract the first 8 bytes into the top double word and the last 8 bytes
   7034   // into the bottom double word. The v8i16 case is similar.
   7035   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
   7036   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
   7037                      DAG.getConstant(ExtractNum, DL, MVT::i32));
   7038 }
   7039 
   7040 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   7041   SDValue V1 = Op.getOperand(0);
   7042   SDValue V2 = Op.getOperand(1);
   7043   SDLoc dl(Op);
   7044   EVT VT = Op.getValueType();
   7045   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   7046 
   7047   // Convert shuffles that are directly supported on NEON to target-specific
   7048   // DAG nodes, instead of keeping them as shuffles and matching them again
   7049   // during code selection.  This is more efficient and avoids the possibility
   7050   // of inconsistencies between legalization and selection.
   7051   // FIXME: floating-point vectors should be canonicalized to integer vectors
   7052   // of the same time so that they get CSEd properly.
   7053   ArrayRef<int> ShuffleMask = SVN->getMask();
   7054 
   7055   unsigned EltSize = VT.getScalarSizeInBits();
   7056   if (EltSize <= 32) {
   7057     if (SVN->isSplat()) {
   7058       int Lane = SVN->getSplatIndex();
   7059       // If this is undef splat, generate it via "just" vdup, if possible.
   7060       if (Lane == -1) Lane = 0;
   7061 
   7062       // Test if V1 is a SCALAR_TO_VECTOR.
   7063       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   7064         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   7065       }
   7066       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   7067       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   7068       // reaches it).
   7069       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   7070           !isa<ConstantSDNode>(V1.getOperand(0))) {
   7071         bool IsScalarToVector = true;
   7072         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   7073           if (!V1.getOperand(i).isUndef()) {
   7074             IsScalarToVector = false;
   7075             break;
   7076           }
   7077         if (IsScalarToVector)
   7078           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   7079       }
   7080       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   7081                          DAG.getConstant(Lane, dl, MVT::i32));
   7082     }
   7083 
   7084     bool ReverseVEXT;
   7085     unsigned Imm;
   7086     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   7087       if (ReverseVEXT)
   7088         std::swap(V1, V2);
   7089       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   7090                          DAG.getConstant(Imm, dl, MVT::i32));
   7091     }
   7092 
   7093     if (isVREVMask(ShuffleMask, VT, 64))
   7094       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   7095     if (isVREVMask(ShuffleMask, VT, 32))
   7096       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   7097     if (isVREVMask(ShuffleMask, VT, 16))
   7098       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   7099 
   7100     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
   7101       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
   7102                          DAG.getConstant(Imm, dl, MVT::i32));
   7103     }
   7104 
   7105     // Check for Neon shuffles that modify both input vectors in place.
   7106     // If both results are used, i.e., if there are two shuffles with the same
   7107     // source operands and with masks corresponding to both results of one of
   7108     // these operations, DAG memoization will ensure that a single node is
   7109     // used for both shuffles.
   7110     unsigned WhichResult;
   7111     bool isV_UNDEF;
   7112     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   7113             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
   7114       if (isV_UNDEF)
   7115         V2 = V1;
   7116       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
   7117           .getValue(WhichResult);
   7118     }
   7119 
   7120     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
   7121     // shuffles that produce a result larger than their operands with:
   7122     //   shuffle(concat(v1, undef), concat(v2, undef))
   7123     // ->
   7124     //   shuffle(concat(v1, v2), undef)
   7125     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
   7126     //
   7127     // This is useful in the general case, but there are special cases where
   7128     // native shuffles produce larger results: the two-result ops.
   7129     //
   7130     // Look through the concat when lowering them:
   7131     //   shuffle(concat(v1, v2), undef)
   7132     // ->
   7133     //   concat(VZIP(v1, v2):0, :1)
   7134     //
   7135     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
   7136       SDValue SubV1 = V1->getOperand(0);
   7137       SDValue SubV2 = V1->getOperand(1);
   7138       EVT SubVT = SubV1.getValueType();
   7139 
   7140       // We expect these to have been canonicalized to -1.
   7141       assert(llvm::all_of(ShuffleMask, [&](int i) {
   7142         return i < (int)VT.getVectorNumElements();
   7143       }) && "Unexpected shuffle index into UNDEF operand!");
   7144 
   7145       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   7146               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
   7147         if (isV_UNDEF)
   7148           SubV2 = SubV1;
   7149         assert((WhichResult == 0) &&
   7150                "In-place shuffle of concat can only have one result!");
   7151         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
   7152                                   SubV1, SubV2);
   7153         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
   7154                            Res.getValue(1));
   7155       }
   7156     }
   7157   }
   7158 
   7159   // If the shuffle is not directly supported and it has 4 elements, use
   7160   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   7161   unsigned NumElts = VT.getVectorNumElements();
   7162   if (NumElts == 4) {
   7163     unsigned PFIndexes[4];
   7164     for (unsigned i = 0; i != 4; ++i) {
   7165       if (ShuffleMask[i] < 0)
   7166         PFIndexes[i] = 8;
   7167       else
   7168         PFIndexes[i] = ShuffleMask[i];
   7169     }
   7170 
   7171     // Compute the index in the perfect shuffle table.
   7172     unsigned PFTableIndex =
   7173       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   7174     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   7175     unsigned Cost = (PFEntry >> 30);
   7176 
   7177     if (Cost <= 4)
   7178       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   7179   }
   7180 
   7181   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   7182   if (EltSize >= 32) {
   7183     // Do the expansion with floating-point types, since that is what the VFP
   7184     // registers are defined to use, and since i64 is not legal.
   7185     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   7186     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   7187     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   7188     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   7189     SmallVector<SDValue, 8> Ops;
   7190     for (unsigned i = 0; i < NumElts; ++i) {
   7191       if (ShuffleMask[i] < 0)
   7192         Ops.push_back(DAG.getUNDEF(EltVT));
   7193       else
   7194         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   7195                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   7196                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   7197                                                   dl, MVT::i32)));
   7198     }
   7199     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   7200     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   7201   }
   7202 
   7203   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
   7204     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
   7205 
   7206   if (VT == MVT::v8i8)
   7207     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
   7208       return NewOp;
   7209 
   7210   return SDValue();
   7211 }
   7212 
   7213 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   7214   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   7215   SDValue Lane = Op.getOperand(2);
   7216   if (!isa<ConstantSDNode>(Lane))
   7217     return SDValue();
   7218 
   7219   return Op;
   7220 }
   7221 
   7222 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   7223   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   7224   SDValue Lane = Op.getOperand(1);
   7225   if (!isa<ConstantSDNode>(Lane))
   7226     return SDValue();
   7227 
   7228   SDValue Vec = Op.getOperand(0);
   7229   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
   7230     SDLoc dl(Op);
   7231     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   7232   }
   7233 
   7234   return Op;
   7235 }
   7236 
   7237 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   7238   // The only time a CONCAT_VECTORS operation can have legal types is when
   7239   // two 64-bit vectors are concatenated to a 128-bit vector.
   7240   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   7241          "unexpected CONCAT_VECTORS");
   7242   SDLoc dl(Op);
   7243   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   7244   SDValue Op0 = Op.getOperand(0);
   7245   SDValue Op1 = Op.getOperand(1);
   7246   if (!Op0.isUndef())
   7247     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   7248                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   7249                       DAG.getIntPtrConstant(0, dl));
   7250   if (!Op1.isUndef())
   7251     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   7252                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   7253                       DAG.getIntPtrConstant(1, dl));
   7254   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   7255 }
   7256 
   7257 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   7258 /// element has been zero/sign-extended, depending on the isSigned parameter,
   7259 /// from an integer type half its size.
   7260 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   7261                                    bool isSigned) {
   7262   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   7263   EVT VT = N->getValueType(0);
   7264   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   7265     SDNode *BVN = N->getOperand(0).getNode();
   7266     if (BVN->getValueType(0) != MVT::v4i32 ||
   7267         BVN->getOpcode() != ISD::BUILD_VECTOR)
   7268       return false;
   7269     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   7270     unsigned HiElt = 1 - LoElt;
   7271     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   7272     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   7273     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   7274     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   7275     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   7276       return false;
   7277     if (isSigned) {
   7278       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   7279           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   7280         return true;
   7281     } else {
   7282       if (Hi0->isNullValue() && Hi1->isNullValue())
   7283         return true;
   7284     }
   7285     return false;
   7286   }
   7287 
   7288   if (N->getOpcode() != ISD::BUILD_VECTOR)
   7289     return false;
   7290 
   7291   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   7292     SDNode *Elt = N->getOperand(i).getNode();
   7293     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   7294       unsigned EltSize = VT.getScalarSizeInBits();
   7295       unsigned HalfSize = EltSize / 2;
   7296       if (isSigned) {
   7297         if (!isIntN(HalfSize, C->getSExtValue()))
   7298           return false;
   7299       } else {
   7300         if (!isUIntN(HalfSize, C->getZExtValue()))
   7301           return false;
   7302       }
   7303       continue;
   7304     }
   7305     return false;
   7306   }
   7307 
   7308   return true;
   7309 }
   7310 
   7311 /// isSignExtended - Check if a node is a vector value that is sign-extended
   7312 /// or a constant BUILD_VECTOR with sign-extended elements.
   7313 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   7314   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   7315     return true;
   7316   if (isExtendedBUILD_VECTOR(N, DAG, true))
   7317     return true;
   7318   return false;
   7319 }
   7320 
   7321 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   7322 /// or a constant BUILD_VECTOR with zero-extended elements.
   7323 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   7324   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   7325     return true;
   7326   if (isExtendedBUILD_VECTOR(N, DAG, false))
   7327     return true;
   7328   return false;
   7329 }
   7330 
   7331 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   7332   if (OrigVT.getSizeInBits() >= 64)
   7333     return OrigVT;
   7334 
   7335   assert(OrigVT.isSimple() && "Expecting a simple value type");
   7336 
   7337   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   7338   switch (OrigSimpleTy) {
   7339   default: llvm_unreachable("Unexpected Vector Type");
   7340   case MVT::v2i8:
   7341   case MVT::v2i16:
   7342      return MVT::v2i32;
   7343   case MVT::v4i8:
   7344     return  MVT::v4i16;
   7345   }
   7346 }
   7347 
   7348 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
   7349 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
   7350 /// We insert the required extension here to get the vector to fill a D register.
   7351 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
   7352                                             const EVT &OrigTy,
   7353                                             const EVT &ExtTy,
   7354                                             unsigned ExtOpcode) {
   7355   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   7356   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   7357   // 64-bits we need to insert a new extension so that it will be 64-bits.
   7358   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   7359   if (OrigTy.getSizeInBits() >= 64)
   7360     return N;
   7361 
   7362   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   7363   EVT NewVT = getExtensionTo64Bits(OrigTy);
   7364 
   7365   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   7366 }
   7367 
   7368 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
   7369 /// does not do any sign/zero extension. If the original vector is less
   7370 /// than 64 bits, an appropriate extension will be added after the load to
   7371 /// reach a total size of 64 bits. We have to add the extension separately
   7372 /// because ARM does not have a sign/zero extending load for vectors.
   7373 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
   7374   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
   7375 
   7376   // The load already has the right type.
   7377   if (ExtendedTy == LD->getMemoryVT())
   7378     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
   7379                        LD->getBasePtr(), LD->getPointerInfo(),
   7380                        LD->getAlignment(), LD->getMemOperand()->getFlags());
   7381 
   7382   // We need to create a zextload/sextload. We cannot just create a load
   7383   // followed by a zext/zext node because LowerMUL is also run during normal
   7384   // operation legalization where we can't create illegal types.
   7385   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
   7386                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
   7387                         LD->getMemoryVT(), LD->getAlignment(),
   7388                         LD->getMemOperand()->getFlags());
   7389 }
   7390 
   7391 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
   7392 /// extending load, or BUILD_VECTOR with extended elements, return the
   7393 /// unextended value. The unextended vector should be 64 bits so that it can
   7394 /// be used as an operand to a VMULL instruction. If the original vector size
   7395 /// before extension is less than 64 bits we add a an extension to resize
   7396 /// the vector to 64 bits.
   7397 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
   7398   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   7399     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
   7400                                         N->getOperand(0)->getValueType(0),
   7401                                         N->getValueType(0),
   7402                                         N->getOpcode());
   7403 
   7404   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   7405     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
   7406            "Expected extending load");
   7407 
   7408     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
   7409     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
   7410     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   7411     SDValue extLoad =
   7412         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
   7413     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
   7414 
   7415     return newLoad;
   7416   }
   7417 
   7418   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   7419   // have been legalized as a BITCAST from v4i32.
   7420   if (N->getOpcode() == ISD::BITCAST) {
   7421     SDNode *BVN = N->getOperand(0).getNode();
   7422     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   7423            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   7424     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   7425     return DAG.getBuildVector(
   7426         MVT::v2i32, SDLoc(N),
   7427         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
   7428   }
   7429   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   7430   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   7431   EVT VT = N->getValueType(0);
   7432   unsigned EltSize = VT.getScalarSizeInBits() / 2;
   7433   unsigned NumElts = VT.getVectorNumElements();
   7434   MVT TruncVT = MVT::getIntegerVT(EltSize);
   7435   SmallVector<SDValue, 8> Ops;
   7436   SDLoc dl(N);
   7437   for (unsigned i = 0; i != NumElts; ++i) {
   7438     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   7439     const APInt &CInt = C->getAPIntValue();
   7440     // Element types smaller than 32 bits are not legal, so use i32 elements.
   7441     // The values are implicitly truncated so sext vs. zext doesn't matter.
   7442     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
   7443   }
   7444   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
   7445 }
   7446 
   7447 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   7448   unsigned Opcode = N->getOpcode();
   7449   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   7450     SDNode *N0 = N->getOperand(0).getNode();
   7451     SDNode *N1 = N->getOperand(1).getNode();
   7452     return N0->hasOneUse() && N1->hasOneUse() &&
   7453       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   7454   }
   7455   return false;
   7456 }
   7457 
   7458 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   7459   unsigned Opcode = N->getOpcode();
   7460   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   7461     SDNode *N0 = N->getOperand(0).getNode();
   7462     SDNode *N1 = N->getOperand(1).getNode();
   7463     return N0->hasOneUse() && N1->hasOneUse() &&
   7464       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   7465   }
   7466   return false;
   7467 }
   7468 
   7469 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   7470   // Multiplications are only custom-lowered for 128-bit vectors so that
   7471   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   7472   EVT VT = Op.getValueType();
   7473   assert(VT.is128BitVector() && VT.isInteger() &&
   7474          "unexpected type for custom-lowering ISD::MUL");
   7475   SDNode *N0 = Op.getOperand(0).getNode();
   7476   SDNode *N1 = Op.getOperand(1).getNode();
   7477   unsigned NewOpc = 0;
   7478   bool isMLA = false;
   7479   bool isN0SExt = isSignExtended(N0, DAG);
   7480   bool isN1SExt = isSignExtended(N1, DAG);
   7481   if (isN0SExt && isN1SExt)
   7482     NewOpc = ARMISD::VMULLs;
   7483   else {
   7484     bool isN0ZExt = isZeroExtended(N0, DAG);
   7485     bool isN1ZExt = isZeroExtended(N1, DAG);
   7486     if (isN0ZExt && isN1ZExt)
   7487       NewOpc = ARMISD::VMULLu;
   7488     else if (isN1SExt || isN1ZExt) {
   7489       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   7490       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   7491       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   7492         NewOpc = ARMISD::VMULLs;
   7493         isMLA = true;
   7494       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   7495         NewOpc = ARMISD::VMULLu;
   7496         isMLA = true;
   7497       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   7498         std::swap(N0, N1);
   7499         NewOpc = ARMISD::VMULLu;
   7500         isMLA = true;
   7501       }
   7502     }
   7503 
   7504     if (!NewOpc) {
   7505       if (VT == MVT::v2i64)
   7506         // Fall through to expand this.  It is not legal.
   7507         return SDValue();
   7508       else
   7509         // Other vector multiplications are legal.
   7510         return Op;
   7511     }
   7512   }
   7513 
   7514   // Legalize to a VMULL instruction.
   7515   SDLoc DL(Op);
   7516   SDValue Op0;
   7517   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
   7518   if (!isMLA) {
   7519     Op0 = SkipExtensionForVMULL(N0, DAG);
   7520     assert(Op0.getValueType().is64BitVector() &&
   7521            Op1.getValueType().is64BitVector() &&
   7522            "unexpected types for extended operands to VMULL");
   7523     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   7524   }
   7525 
   7526   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   7527   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   7528   //   vmull q0, d4, d6
   7529   //   vmlal q0, d5, d6
   7530   // is faster than
   7531   //   vaddl q0, d4, d5
   7532   //   vmovl q1, d6
   7533   //   vmul  q0, q0, q1
   7534   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
   7535   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
   7536   EVT Op1VT = Op1.getValueType();
   7537   return DAG.getNode(N0->getOpcode(), DL, VT,
   7538                      DAG.getNode(NewOpc, DL, VT,
   7539                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   7540                      DAG.getNode(NewOpc, DL, VT,
   7541                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   7542 }
   7543 
   7544 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
   7545                               SelectionDAG &DAG) {
   7546   // TODO: Should this propagate fast-math-flags?
   7547 
   7548   // Convert to float
   7549   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   7550   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   7551   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   7552   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   7553   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   7554   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   7555   // Get reciprocal estimate.
   7556   // float4 recip = vrecpeq_f32(yf);
   7557   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7558                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   7559                    Y);
   7560   // Because char has a smaller range than uchar, we can actually get away
   7561   // without any newton steps.  This requires that we use a weird bias
   7562   // of 0xb000, however (again, this has been exhaustively tested).
   7563   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   7564   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   7565   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   7566   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
   7567   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   7568   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   7569   // Convert back to short.
   7570   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   7571   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   7572   return X;
   7573 }
   7574 
   7575 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
   7576                                SelectionDAG &DAG) {
   7577   // TODO: Should this propagate fast-math-flags?
   7578 
   7579   SDValue N2;
   7580   // Convert to float.
   7581   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   7582   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   7583   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   7584   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   7585   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   7586   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   7587 
   7588   // Use reciprocal estimate and one refinement step.
   7589   // float4 recip = vrecpeq_f32(yf);
   7590   // recip *= vrecpsq_f32(yf, recip);
   7591   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7592                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   7593                    N1);
   7594   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7595                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   7596                    N1, N2);
   7597   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   7598   // Because short has a smaller range than ushort, we can actually get away
   7599   // with only a single newton step.  This requires that we use a weird bias
   7600   // of 89, however (again, this has been exhaustively tested).
   7601   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   7602   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   7603   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   7604   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
   7605   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   7606   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   7607   // Convert back to integer and return.
   7608   // return vmovn_s32(vcvt_s32_f32(result));
   7609   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   7610   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   7611   return N0;
   7612 }
   7613 
   7614 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   7615   EVT VT = Op.getValueType();
   7616   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   7617          "unexpected type for custom-lowering ISD::SDIV");
   7618 
   7619   SDLoc dl(Op);
   7620   SDValue N0 = Op.getOperand(0);
   7621   SDValue N1 = Op.getOperand(1);
   7622   SDValue N2, N3;
   7623 
   7624   if (VT == MVT::v8i8) {
   7625     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   7626     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   7627 
   7628     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   7629                      DAG.getIntPtrConstant(4, dl));
   7630     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   7631                      DAG.getIntPtrConstant(4, dl));
   7632     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   7633                      DAG.getIntPtrConstant(0, dl));
   7634     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   7635                      DAG.getIntPtrConstant(0, dl));
   7636 
   7637     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   7638     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   7639 
   7640     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   7641     N0 = LowerCONCAT_VECTORS(N0, DAG);
   7642 
   7643     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   7644     return N0;
   7645   }
   7646   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   7647 }
   7648 
   7649 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   7650   // TODO: Should this propagate fast-math-flags?
   7651   EVT VT = Op.getValueType();
   7652   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   7653          "unexpected type for custom-lowering ISD::UDIV");
   7654 
   7655   SDLoc dl(Op);
   7656   SDValue N0 = Op.getOperand(0);
   7657   SDValue N1 = Op.getOperand(1);
   7658   SDValue N2, N3;
   7659 
   7660   if (VT == MVT::v8i8) {
   7661     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   7662     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   7663 
   7664     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   7665                      DAG.getIntPtrConstant(4, dl));
   7666     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   7667                      DAG.getIntPtrConstant(4, dl));
   7668     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   7669                      DAG.getIntPtrConstant(0, dl));
   7670     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   7671                      DAG.getIntPtrConstant(0, dl));
   7672 
   7673     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   7674     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   7675 
   7676     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   7677     N0 = LowerCONCAT_VECTORS(N0, DAG);
   7678 
   7679     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   7680                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
   7681                                      MVT::i32),
   7682                      N0);
   7683     return N0;
   7684   }
   7685 
   7686   // v4i16 sdiv ... Convert to float.
   7687   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   7688   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   7689   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   7690   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   7691   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   7692   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   7693 
   7694   // Use reciprocal estimate and two refinement steps.
   7695   // float4 recip = vrecpeq_f32(yf);
   7696   // recip *= vrecpsq_f32(yf, recip);
   7697   // recip *= vrecpsq_f32(yf, recip);
   7698   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7699                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   7700                    BN1);
   7701   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7702                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   7703                    BN1, N2);
   7704   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   7705   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   7706                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   7707                    BN1, N2);
   7708   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   7709   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   7710   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   7711   // and that it will never cause us to return an answer too large).
   7712   // float4 result = as_float4(as_int4(xf*recip) + 2);
   7713   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   7714   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   7715   N1 = DAG.getConstant(2, dl, MVT::v4i32);
   7716   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   7717   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   7718   // Convert back to integer and return.
   7719   // return vmovn_u32(vcvt_s32_f32(result));
   7720   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   7721   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   7722   return N0;
   7723 }
   7724 
   7725 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
   7726   SDNode *N = Op.getNode();
   7727   EVT VT = N->getValueType(0);
   7728   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   7729 
   7730   SDValue Carry = Op.getOperand(2);
   7731 
   7732   SDLoc DL(Op);
   7733 
   7734   SDValue Result;
   7735   if (Op.getOpcode() == ISD::ADDCARRY) {
   7736     // This converts the boolean value carry into the carry flag.
   7737     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
   7738 
   7739     // Do the addition proper using the carry flag we wanted.
   7740     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
   7741                          Op.getOperand(1), Carry);
   7742 
   7743     // Now convert the carry flag into a boolean value.
   7744     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
   7745   } else {
   7746     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
   7747     // have to invert the carry first.
   7748     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
   7749                         DAG.getConstant(1, DL, MVT::i32), Carry);
   7750     // This converts the boolean value carry into the carry flag.
   7751     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
   7752 
   7753     // Do the subtraction proper using the carry flag we wanted.
   7754     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
   7755                          Op.getOperand(1), Carry);
   7756 
   7757     // Now convert the carry flag into a boolean value.
   7758     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
   7759     // But the carry returned by ARMISD::SUBE is not a borrow as expected
   7760     // by ISD::SUBCARRY, so compute 1 - C.
   7761     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
   7762                         DAG.getConstant(1, DL, MVT::i32), Carry);
   7763   }
   7764 
   7765   // Return both values.
   7766   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
   7767 }
   7768 
   7769 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   7770   assert(Subtarget->isTargetDarwin());
   7771 
   7772   // For iOS, we want to call an alternative entry point: __sincos_stret,
   7773   // return values are passed via sret.
   7774   SDLoc dl(Op);
   7775   SDValue Arg = Op.getOperand(0);
   7776   EVT ArgVT = Arg.getValueType();
   7777   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   7778   auto PtrVT = getPointerTy(DAG.getDataLayout());
   7779 
   7780   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   7781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7782 
   7783   // Pair of floats / doubles used to pass the result.
   7784   Type *RetTy = StructType::get(ArgTy, ArgTy);
   7785   auto &DL = DAG.getDataLayout();
   7786 
   7787   ArgListTy Args;
   7788   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
   7789   SDValue SRet;
   7790   if (ShouldUseSRet) {
   7791     // Create stack object for sret.
   7792     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
   7793     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
   7794     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
   7795     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
   7796 
   7797     ArgListEntry Entry;
   7798     Entry.Node = SRet;
   7799     Entry.Ty = RetTy->getPointerTo();
   7800     Entry.IsSExt = false;
   7801     Entry.IsZExt = false;
   7802     Entry.IsSRet = true;
   7803     Args.push_back(Entry);
   7804     RetTy = Type::getVoidTy(*DAG.getContext());
   7805   }
   7806 
   7807   ArgListEntry Entry;
   7808   Entry.Node = Arg;
   7809   Entry.Ty = ArgTy;
   7810   Entry.IsSExt = false;
   7811   Entry.IsZExt = false;
   7812   Args.push_back(Entry);
   7813 
   7814   RTLIB::Libcall LC =
   7815       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
   7816   const char *LibcallName = getLibcallName(LC);
   7817   CallingConv::ID CC = getLibcallCallingConv(LC);
   7818   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
   7819 
   7820   TargetLowering::CallLoweringInfo CLI(DAG);
   7821   CLI.setDebugLoc(dl)
   7822       .setChain(DAG.getEntryNode())
   7823       .setCallee(CC, RetTy, Callee, std::move(Args))
   7824       .setDiscardResult(ShouldUseSRet);
   7825   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   7826 
   7827   if (!ShouldUseSRet)
   7828     return CallResult.first;
   7829 
   7830   SDValue LoadSin =
   7831       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
   7832 
   7833   // Address of cos field.
   7834   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
   7835                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
   7836   SDValue LoadCos =
   7837       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
   7838 
   7839   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   7840   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
   7841                      LoadSin.getValue(0), LoadCos.getValue(0));
   7842 }
   7843 
   7844 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
   7845                                                   bool Signed,
   7846                                                   SDValue &Chain) const {
   7847   EVT VT = Op.getValueType();
   7848   assert((VT == MVT::i32 || VT == MVT::i64) &&
   7849          "unexpected type for custom lowering DIV");
   7850   SDLoc dl(Op);
   7851 
   7852   const auto &DL = DAG.getDataLayout();
   7853   const auto &TLI = DAG.getTargetLoweringInfo();
   7854 
   7855   const char *Name = nullptr;
   7856   if (Signed)
   7857     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
   7858   else
   7859     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
   7860 
   7861   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
   7862 
   7863   ARMTargetLowering::ArgListTy Args;
   7864 
   7865   for (auto AI : {1, 0}) {
   7866     ArgListEntry Arg;
   7867     Arg.Node = Op.getOperand(AI);
   7868     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
   7869     Args.push_back(Arg);
   7870   }
   7871 
   7872   CallLoweringInfo CLI(DAG);
   7873   CLI.setDebugLoc(dl)
   7874     .setChain(Chain)
   7875     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
   7876                ES, std::move(Args));
   7877 
   7878   return LowerCallTo(CLI).first;
   7879 }
   7880 
   7881 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
   7882                                             bool Signed) const {
   7883   assert(Op.getValueType() == MVT::i32 &&
   7884          "unexpected type for custom lowering DIV");
   7885   SDLoc dl(Op);
   7886 
   7887   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
   7888                                DAG.getEntryNode(), Op.getOperand(1));
   7889 
   7890   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   7891 }
   7892 
   7893 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
   7894   SDLoc DL(N);
   7895   SDValue Op = N->getOperand(1);
   7896   if (N->getValueType(0) == MVT::i32)
   7897     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
   7898   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
   7899                            DAG.getConstant(0, DL, MVT::i32));
   7900   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
   7901                            DAG.getConstant(1, DL, MVT::i32));
   7902   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
   7903                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
   7904 }
   7905 
   7906 void ARMTargetLowering::ExpandDIV_Windows(
   7907     SDValue Op, SelectionDAG &DAG, bool Signed,
   7908     SmallVectorImpl<SDValue> &Results) const {
   7909   const auto &DL = DAG.getDataLayout();
   7910   const auto &TLI = DAG.getTargetLoweringInfo();
   7911 
   7912   assert(Op.getValueType() == MVT::i64 &&
   7913          "unexpected type for custom lowering DIV");
   7914   SDLoc dl(Op);
   7915 
   7916   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
   7917 
   7918   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   7919 
   7920   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
   7921   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
   7922                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
   7923   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
   7924 
   7925   Results.push_back(Lower);
   7926   Results.push_back(Upper);
   7927 }
   7928 
   7929 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   7930   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
   7931     // Acquire/Release load/store is not legal for targets without a dmb or
   7932     // equivalent available.
   7933     return SDValue();
   7934 
   7935   // Monotonic load/store is legal for all targets.
   7936   return Op;
   7937 }
   7938 
   7939 static void ReplaceREADCYCLECOUNTER(SDNode *N,
   7940                                     SmallVectorImpl<SDValue> &Results,
   7941                                     SelectionDAG &DAG,
   7942                                     const ARMSubtarget *Subtarget) {
   7943   SDLoc DL(N);
   7944   // Under Power Management extensions, the cycle-count is:
   7945   //    mrc p15, #0, <Rt>, c9, c13, #0
   7946   SDValue Ops[] = { N->getOperand(0), // Chain
   7947                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
   7948                     DAG.getConstant(15, DL, MVT::i32),
   7949                     DAG.getConstant(0, DL, MVT::i32),
   7950                     DAG.getConstant(9, DL, MVT::i32),
   7951                     DAG.getConstant(13, DL, MVT::i32),
   7952                     DAG.getConstant(0, DL, MVT::i32)
   7953   };
   7954 
   7955   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   7956                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
   7957   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
   7958                                 DAG.getConstant(0, DL, MVT::i32)));
   7959   Results.push_back(Cycles32.getValue(1));
   7960 }
   7961 
   7962 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
   7963   SDLoc dl(V.getNode());
   7964   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
   7965   SDValue VHi = DAG.getAnyExtOrTrunc(
   7966       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
   7967       dl, MVT::i32);
   7968   bool isBigEndian = DAG.getDataLayout().isBigEndian();
   7969   if (isBigEndian)
   7970     std::swap (VLo, VHi);
   7971   SDValue RegClass =
   7972       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
   7973   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
   7974   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
   7975   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
   7976   return SDValue(
   7977       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
   7978 }
   7979 
   7980 static void ReplaceCMP_SWAP_64Results(SDNode *N,
   7981                                        SmallVectorImpl<SDValue> & Results,
   7982                                        SelectionDAG &DAG) {
   7983   assert(N->getValueType(0) == MVT::i64 &&
   7984          "AtomicCmpSwap on types less than 64 should be legal");
   7985   SDValue Ops[] = {N->getOperand(1),
   7986                    createGPRPairNode(DAG, N->getOperand(2)),
   7987                    createGPRPairNode(DAG, N->getOperand(3)),
   7988                    N->getOperand(0)};
   7989   SDNode *CmpSwap = DAG.getMachineNode(
   7990       ARM::CMP_SWAP_64, SDLoc(N),
   7991       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
   7992 
   7993   MachineFunction &MF = DAG.getMachineFunction();
   7994   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
   7995   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   7996   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
   7997 
   7998   bool isBigEndian = DAG.getDataLayout().isBigEndian();
   7999 
   8000   Results.push_back(
   8001       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
   8002                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
   8003   Results.push_back(
   8004       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
   8005                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
   8006   Results.push_back(SDValue(CmpSwap, 2));
   8007 }
   8008 
   8009 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
   8010                           SelectionDAG &DAG) {
   8011   const auto &TLI = DAG.getTargetLoweringInfo();
   8012 
   8013   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
   8014          "Custom lowering is MSVCRT specific!");
   8015 
   8016   SDLoc dl(Op);
   8017   SDValue Val = Op.getOperand(0);
   8018   MVT Ty = Val->getSimpleValueType(0);
   8019   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
   8020   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
   8021                                          TLI.getPointerTy(DAG.getDataLayout()));
   8022 
   8023   TargetLowering::ArgListTy Args;
   8024   TargetLowering::ArgListEntry Entry;
   8025 
   8026   Entry.Node = Val;
   8027   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
   8028   Entry.IsZExt = true;
   8029   Args.push_back(Entry);
   8030 
   8031   Entry.Node = Exponent;
   8032   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
   8033   Entry.IsZExt = true;
   8034   Args.push_back(Entry);
   8035 
   8036   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
   8037 
   8038   // In the in-chain to the call is the entry node  If we are emitting a
   8039   // tailcall, the chain will be mutated if the node has a non-entry input
   8040   // chain.
   8041   SDValue InChain = DAG.getEntryNode();
   8042   SDValue TCChain = InChain;
   8043 
   8044   const Function &F = DAG.getMachineFunction().getFunction();
   8045   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
   8046               F.getReturnType() == LCRTy;
   8047   if (IsTC)
   8048     InChain = TCChain;
   8049 
   8050   TargetLowering::CallLoweringInfo CLI(DAG);
   8051   CLI.setDebugLoc(dl)
   8052       .setChain(InChain)
   8053       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
   8054       .setTailCall(IsTC);
   8055   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
   8056 
   8057   // Return the chain (the DAG root) if it is a tail call
   8058   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
   8059 }
   8060 
   8061 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   8062   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
   8063   switch (Op.getOpcode()) {
   8064   default: llvm_unreachable("Don't know how to custom lower this!");
   8065   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
   8066   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
   8067   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   8068   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
   8069   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   8070   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   8071   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   8072   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
   8073   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   8074   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   8075   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   8076   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   8077   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   8078   case ISD::SINT_TO_FP:
   8079   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   8080   case ISD::FP_TO_SINT:
   8081   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   8082   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   8083   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   8084   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   8085   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   8086   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   8087   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
   8088   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   8089                                                                Subtarget);
   8090   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
   8091   case ISD::SHL:
   8092   case ISD::SRL:
   8093   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   8094   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
   8095   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
   8096   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   8097   case ISD::SRL_PARTS:
   8098   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   8099   case ISD::CTTZ:
   8100   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   8101   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
   8102   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   8103   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
   8104   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   8105   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   8106   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   8107   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   8108   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   8109   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   8110   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   8111   case ISD::MUL:           return LowerMUL(Op, DAG);
   8112   case ISD::SDIV:
   8113     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
   8114       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
   8115     return LowerSDIV(Op, DAG);
   8116   case ISD::UDIV:
   8117     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
   8118       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
   8119     return LowerUDIV(Op, DAG);
   8120   case ISD::ADDCARRY:
   8121   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
   8122   case ISD::SADDO:
   8123   case ISD::SSUBO:
   8124     return LowerSignedALUO(Op, DAG);
   8125   case ISD::UADDO:
   8126   case ISD::USUBO:
   8127     return LowerUnsignedALUO(Op, DAG);
   8128   case ISD::ATOMIC_LOAD:
   8129   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   8130   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
   8131   case ISD::SDIVREM:
   8132   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
   8133   case ISD::DYNAMIC_STACKALLOC:
   8134     if (Subtarget->isTargetWindows())
   8135       return LowerDYNAMIC_STACKALLOC(Op, DAG);
   8136     llvm_unreachable("Don't know how to custom lower this!");
   8137   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
   8138   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
   8139   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
   8140   case ARMISD::WIN__DBZCHK: return SDValue();
   8141   }
   8142 }
   8143 
   8144 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
   8145                                  SelectionDAG &DAG) {
   8146   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   8147   unsigned Opc = 0;
   8148   if (IntNo == Intrinsic::arm_smlald)
   8149     Opc = ARMISD::SMLALD;
   8150   else if (IntNo == Intrinsic::arm_smlaldx)
   8151     Opc = ARMISD::SMLALDX;
   8152   else if (IntNo == Intrinsic::arm_smlsld)
   8153     Opc = ARMISD::SMLSLD;
   8154   else if (IntNo == Intrinsic::arm_smlsldx)
   8155     Opc = ARMISD::SMLSLDX;
   8156   else
   8157     return;
   8158 
   8159   SDLoc dl(N);
   8160   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   8161                            N->getOperand(3),
   8162                            DAG.getConstant(0, dl, MVT::i32));
   8163   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   8164                            N->getOperand(3),
   8165                            DAG.getConstant(1, dl, MVT::i32));
   8166 
   8167   SDValue LongMul = DAG.getNode(Opc, dl,
   8168                                 DAG.getVTList(MVT::i32, MVT::i32),
   8169                                 N->getOperand(1), N->getOperand(2),
   8170                                 Lo, Hi);
   8171   Results.push_back(LongMul.getValue(0));
   8172   Results.push_back(LongMul.getValue(1));
   8173 }
   8174 
   8175 /// ReplaceNodeResults - Replace the results of node with an illegal result
   8176 /// type with new values built out of custom code.
   8177 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   8178                                            SmallVectorImpl<SDValue> &Results,
   8179                                            SelectionDAG &DAG) const {
   8180   SDValue Res;
   8181   switch (N->getOpcode()) {
   8182   default:
   8183     llvm_unreachable("Don't know how to custom expand this!");
   8184   case ISD::READ_REGISTER:
   8185     ExpandREAD_REGISTER(N, Results, DAG);
   8186     break;
   8187   case ISD::BITCAST:
   8188     Res = ExpandBITCAST(N, DAG, Subtarget);
   8189     break;
   8190   case ISD::SRL:
   8191   case ISD::SRA:
   8192     Res = Expand64BitShift(N, DAG, Subtarget);
   8193     break;
   8194   case ISD::SREM:
   8195   case ISD::UREM:
   8196     Res = LowerREM(N, DAG);
   8197     break;
   8198   case ISD::SDIVREM:
   8199   case ISD::UDIVREM:
   8200     Res = LowerDivRem(SDValue(N, 0), DAG);
   8201     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
   8202     Results.push_back(Res.getValue(0));
   8203     Results.push_back(Res.getValue(1));
   8204     return;
   8205   case ISD::READCYCLECOUNTER:
   8206     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
   8207     return;
   8208   case ISD::UDIV:
   8209   case ISD::SDIV:
   8210     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
   8211     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
   8212                              Results);
   8213   case ISD::ATOMIC_CMP_SWAP:
   8214     ReplaceCMP_SWAP_64Results(N, Results, DAG);
   8215     return;
   8216   case ISD::INTRINSIC_WO_CHAIN:
   8217     return ReplaceLongIntrinsic(N, Results, DAG);
   8218   }
   8219   if (Res.getNode())
   8220     Results.push_back(Res);
   8221 }
   8222 
   8223 //===----------------------------------------------------------------------===//
   8224 //                           ARM Scheduler Hooks
   8225 //===----------------------------------------------------------------------===//
   8226 
   8227 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   8228 /// registers the function context.
   8229 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
   8230                                                MachineBasicBlock *MBB,
   8231                                                MachineBasicBlock *DispatchBB,
   8232                                                int FI) const {
   8233   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
   8234          "ROPI/RWPI not currently supported with SjLj");
   8235   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   8236   DebugLoc dl = MI.getDebugLoc();
   8237   MachineFunction *MF = MBB->getParent();
   8238   MachineRegisterInfo *MRI = &MF->getRegInfo();
   8239   MachineConstantPool *MCP = MF->getConstantPool();
   8240   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   8241   const Function &F = MF->getFunction();
   8242 
   8243   bool isThumb = Subtarget->isThumb();
   8244   bool isThumb2 = Subtarget->isThumb2();
   8245 
   8246   unsigned PCLabelId = AFI->createPICLabelUId();
   8247   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   8248   ARMConstantPoolValue *CPV =
   8249     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
   8250   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   8251 
   8252   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
   8253                                            : &ARM::GPRRegClass;
   8254 
   8255   // Grab constant pool and fixed stack memory operands.
   8256   MachineMemOperand *CPMMO =
   8257       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
   8258                                MachineMemOperand::MOLoad, 4, 4);
   8259 
   8260   MachineMemOperand *FIMMOSt =
   8261       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
   8262                                MachineMemOperand::MOStore, 4, 4);
   8263 
   8264   // Load the address of the dispatch MBB into the jump buffer.
   8265   if (isThumb2) {
   8266     // Incoming value: jbuf
   8267     //   ldr.n  r5, LCPI1_1
   8268     //   orr    r5, r5, #1
   8269     //   add    r5, pc
   8270     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   8271     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8272     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   8273         .addConstantPoolIndex(CPI)
   8274         .addMemOperand(CPMMO)
   8275         .add(predOps(ARMCC::AL));
   8276     // Set the low bit because of thumb mode.
   8277     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   8278     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   8279         .addReg(NewVReg1, RegState::Kill)
   8280         .addImm(0x01)
   8281         .add(predOps(ARMCC::AL))
   8282         .add(condCodeOp());
   8283     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   8284     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   8285       .addReg(NewVReg2, RegState::Kill)
   8286       .addImm(PCLabelId);
   8287     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   8288         .addReg(NewVReg3, RegState::Kill)
   8289         .addFrameIndex(FI)
   8290         .addImm(36) // &jbuf[1] :: pc
   8291         .addMemOperand(FIMMOSt)
   8292         .add(predOps(ARMCC::AL));
   8293   } else if (isThumb) {
   8294     // Incoming value: jbuf
   8295     //   ldr.n  r1, LCPI1_4
   8296     //   add    r1, pc
   8297     //   mov    r2, #1
   8298     //   orrs   r1, r2
   8299     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   8300     //   str    r1, [r2]
   8301     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8302     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   8303         .addConstantPoolIndex(CPI)
   8304         .addMemOperand(CPMMO)
   8305         .add(predOps(ARMCC::AL));
   8306     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   8307     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   8308       .addReg(NewVReg1, RegState::Kill)
   8309       .addImm(PCLabelId);
   8310     // Set the low bit because of thumb mode.
   8311     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   8312     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   8313         .addReg(ARM::CPSR, RegState::Define)
   8314         .addImm(1)
   8315         .add(predOps(ARMCC::AL));
   8316     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   8317     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   8318         .addReg(ARM::CPSR, RegState::Define)
   8319         .addReg(NewVReg2, RegState::Kill)
   8320         .addReg(NewVReg3, RegState::Kill)
   8321         .add(predOps(ARMCC::AL));
   8322     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   8323     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
   8324             .addFrameIndex(FI)
   8325             .addImm(36); // &jbuf[1] :: pc
   8326     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   8327         .addReg(NewVReg4, RegState::Kill)
   8328         .addReg(NewVReg5, RegState::Kill)
   8329         .addImm(0)
   8330         .addMemOperand(FIMMOSt)
   8331         .add(predOps(ARMCC::AL));
   8332   } else {
   8333     // Incoming value: jbuf
   8334     //   ldr  r1, LCPI1_1
   8335     //   add  r1, pc, r1
   8336     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   8337     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8338     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
   8339         .addConstantPoolIndex(CPI)
   8340         .addImm(0)
   8341         .addMemOperand(CPMMO)
   8342         .add(predOps(ARMCC::AL));
   8343     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   8344     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   8345         .addReg(NewVReg1, RegState::Kill)
   8346         .addImm(PCLabelId)
   8347         .add(predOps(ARMCC::AL));
   8348     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   8349         .addReg(NewVReg2, RegState::Kill)
   8350         .addFrameIndex(FI)
   8351         .addImm(36) // &jbuf[1] :: pc
   8352         .addMemOperand(FIMMOSt)
   8353         .add(predOps(ARMCC::AL));
   8354   }
   8355 }
   8356 
   8357 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
   8358                                               MachineBasicBlock *MBB) const {
   8359   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   8360   DebugLoc dl = MI.getDebugLoc();
   8361   MachineFunction *MF = MBB->getParent();
   8362   MachineRegisterInfo *MRI = &MF->getRegInfo();
   8363   MachineFrameInfo &MFI = MF->getFrameInfo();
   8364   int FI = MFI.getFunctionContextIndex();
   8365 
   8366   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
   8367                                                         : &ARM::GPRnopcRegClass;
   8368 
   8369   // Get a mapping of the call site numbers to all of the landing pads they're
   8370   // associated with.
   8371   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
   8372   unsigned MaxCSNum = 0;
   8373   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   8374        ++BB) {
   8375     if (!BB->isEHPad()) continue;
   8376 
   8377     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   8378     // pad.
   8379     for (MachineBasicBlock::iterator
   8380            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   8381       if (!II->isEHLabel()) continue;
   8382 
   8383       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   8384       if (!MF->hasCallSiteLandingPad(Sym)) continue;
   8385 
   8386       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
   8387       for (SmallVectorImpl<unsigned>::iterator
   8388              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   8389            CSI != CSE; ++CSI) {
   8390         CallSiteNumToLPad[*CSI].push_back(&*BB);
   8391         MaxCSNum = std::max(MaxCSNum, *CSI);
   8392       }
   8393       break;
   8394     }
   8395   }
   8396 
   8397   // Get an ordered list of the machine basic blocks for the jump table.
   8398   std::vector<MachineBasicBlock*> LPadList;
   8399   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
   8400   LPadList.reserve(CallSiteNumToLPad.size());
   8401   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   8402     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   8403     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   8404            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   8405       LPadList.push_back(*II);
   8406       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   8407     }
   8408   }
   8409 
   8410   assert(!LPadList.empty() &&
   8411          "No landing pad destinations for the dispatch jump table!");
   8412 
   8413   // Create the jump table and associated information.
   8414   MachineJumpTableInfo *JTI =
   8415     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   8416   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   8417 
   8418   // Create the MBBs for the dispatch code.
   8419 
   8420   // Shove the dispatch's address into the return slot in the function context.
   8421   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   8422   DispatchBB->setIsEHPad();
   8423 
   8424   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   8425   unsigned trap_opcode;
   8426   if (Subtarget->isThumb())
   8427     trap_opcode = ARM::tTRAP;
   8428   else
   8429     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
   8430 
   8431   BuildMI(TrapBB, dl, TII->get(trap_opcode));
   8432   DispatchBB->addSuccessor(TrapBB);
   8433 
   8434   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   8435   DispatchBB->addSuccessor(DispContBB);
   8436 
   8437   // Insert and MBBs.
   8438   MF->insert(MF->end(), DispatchBB);
   8439   MF->insert(MF->end(), DispContBB);
   8440   MF->insert(MF->end(), TrapBB);
   8441 
   8442   // Insert code into the entry block that creates and registers the function
   8443   // context.
   8444   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   8445 
   8446   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
   8447       MachinePointerInfo::getFixedStack(*MF, FI),
   8448       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
   8449 
   8450   MachineInstrBuilder MIB;
   8451   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   8452 
   8453   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   8454   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   8455 
   8456   // Add a register mask with no preserved registers.  This results in all
   8457   // registers being marked as clobbered. This can't work if the dispatch block
   8458   // is in a Thumb1 function and is linked with ARM code which uses the FP
   8459   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
   8460   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
   8461 
   8462   bool IsPositionIndependent = isPositionIndependent();
   8463   unsigned NumLPads = LPadList.size();
   8464   if (Subtarget->isThumb2()) {
   8465     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8466     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   8467         .addFrameIndex(FI)
   8468         .addImm(4)
   8469         .addMemOperand(FIMMOLd)
   8470         .add(predOps(ARMCC::AL));
   8471 
   8472     if (NumLPads < 256) {
   8473       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   8474           .addReg(NewVReg1)
   8475           .addImm(LPadList.size())
   8476           .add(predOps(ARMCC::AL));
   8477     } else {
   8478       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   8479       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   8480           .addImm(NumLPads & 0xFFFF)
   8481           .add(predOps(ARMCC::AL));
   8482 
   8483       unsigned VReg2 = VReg1;
   8484       if ((NumLPads & 0xFFFF0000) != 0) {
   8485         VReg2 = MRI->createVirtualRegister(TRC);
   8486         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   8487             .addReg(VReg1)
   8488             .addImm(NumLPads >> 16)
   8489             .add(predOps(ARMCC::AL));
   8490       }
   8491 
   8492       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   8493           .addReg(NewVReg1)
   8494           .addReg(VReg2)
   8495           .add(predOps(ARMCC::AL));
   8496     }
   8497 
   8498     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   8499       .addMBB(TrapBB)
   8500       .addImm(ARMCC::HI)
   8501       .addReg(ARM::CPSR);
   8502 
   8503     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   8504     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
   8505         .addJumpTableIndex(MJTI)
   8506         .add(predOps(ARMCC::AL));
   8507 
   8508     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   8509     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   8510         .addReg(NewVReg3, RegState::Kill)
   8511         .addReg(NewVReg1)
   8512         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
   8513         .add(predOps(ARMCC::AL))
   8514         .add(condCodeOp());
   8515 
   8516     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   8517       .addReg(NewVReg4, RegState::Kill)
   8518       .addReg(NewVReg1)
   8519       .addJumpTableIndex(MJTI);
   8520   } else if (Subtarget->isThumb()) {
   8521     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8522     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   8523         .addFrameIndex(FI)
   8524         .addImm(1)
   8525         .addMemOperand(FIMMOLd)
   8526         .add(predOps(ARMCC::AL));
   8527 
   8528     if (NumLPads < 256) {
   8529       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   8530           .addReg(NewVReg1)
   8531           .addImm(NumLPads)
   8532           .add(predOps(ARMCC::AL));
   8533     } else {
   8534       MachineConstantPool *ConstantPool = MF->getConstantPool();
   8535       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
   8536       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   8537 
   8538       // MachineConstantPool wants an explicit alignment.
   8539       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   8540       if (Align == 0)
   8541         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   8542       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   8543 
   8544       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   8545       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   8546           .addReg(VReg1, RegState::Define)
   8547           .addConstantPoolIndex(Idx)
   8548           .add(predOps(ARMCC::AL));
   8549       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   8550           .addReg(NewVReg1)
   8551           .addReg(VReg1)
   8552           .add(predOps(ARMCC::AL));
   8553     }
   8554 
   8555     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   8556       .addMBB(TrapBB)
   8557       .addImm(ARMCC::HI)
   8558       .addReg(ARM::CPSR);
   8559 
   8560     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   8561     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   8562         .addReg(ARM::CPSR, RegState::Define)
   8563         .addReg(NewVReg1)
   8564         .addImm(2)
   8565         .add(predOps(ARMCC::AL));
   8566 
   8567     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   8568     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   8569         .addJumpTableIndex(MJTI)
   8570         .add(predOps(ARMCC::AL));
   8571 
   8572     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   8573     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   8574         .addReg(ARM::CPSR, RegState::Define)
   8575         .addReg(NewVReg2, RegState::Kill)
   8576         .addReg(NewVReg3)
   8577         .add(predOps(ARMCC::AL));
   8578 
   8579     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   8580         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   8581 
   8582     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   8583     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   8584         .addReg(NewVReg4, RegState::Kill)
   8585         .addImm(0)
   8586         .addMemOperand(JTMMOLd)
   8587         .add(predOps(ARMCC::AL));
   8588 
   8589     unsigned NewVReg6 = NewVReg5;
   8590     if (IsPositionIndependent) {
   8591       NewVReg6 = MRI->createVirtualRegister(TRC);
   8592       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   8593           .addReg(ARM::CPSR, RegState::Define)
   8594           .addReg(NewVReg5, RegState::Kill)
   8595           .addReg(NewVReg3)
   8596           .add(predOps(ARMCC::AL));
   8597     }
   8598 
   8599     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   8600       .addReg(NewVReg6, RegState::Kill)
   8601       .addJumpTableIndex(MJTI);
   8602   } else {
   8603     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   8604     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   8605         .addFrameIndex(FI)
   8606         .addImm(4)
   8607         .addMemOperand(FIMMOLd)
   8608         .add(predOps(ARMCC::AL));
   8609 
   8610     if (NumLPads < 256) {
   8611       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   8612           .addReg(NewVReg1)
   8613           .addImm(NumLPads)
   8614           .add(predOps(ARMCC::AL));
   8615     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   8616       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   8617       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   8618           .addImm(NumLPads & 0xFFFF)
   8619           .add(predOps(ARMCC::AL));
   8620 
   8621       unsigned VReg2 = VReg1;
   8622       if ((NumLPads & 0xFFFF0000) != 0) {
   8623         VReg2 = MRI->createVirtualRegister(TRC);
   8624         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   8625             .addReg(VReg1)
   8626             .addImm(NumLPads >> 16)
   8627             .add(predOps(ARMCC::AL));
   8628       }
   8629 
   8630       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   8631           .addReg(NewVReg1)
   8632           .addReg(VReg2)
   8633           .add(predOps(ARMCC::AL));
   8634     } else {
   8635       MachineConstantPool *ConstantPool = MF->getConstantPool();
   8636       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
   8637       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   8638 
   8639       // MachineConstantPool wants an explicit alignment.
   8640       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   8641       if (Align == 0)
   8642         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   8643       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   8644 
   8645       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   8646       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   8647           .addReg(VReg1, RegState::Define)
   8648           .addConstantPoolIndex(Idx)
   8649           .addImm(0)
   8650           .add(predOps(ARMCC::AL));
   8651       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   8652           .addReg(NewVReg1)
   8653           .addReg(VReg1, RegState::Kill)
   8654           .add(predOps(ARMCC::AL));
   8655     }
   8656 
   8657     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   8658       .addMBB(TrapBB)
   8659       .addImm(ARMCC::HI)
   8660       .addReg(ARM::CPSR);
   8661 
   8662     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   8663     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   8664         .addReg(NewVReg1)
   8665         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
   8666         .add(predOps(ARMCC::AL))
   8667         .add(condCodeOp());
   8668     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   8669     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   8670         .addJumpTableIndex(MJTI)
   8671         .add(predOps(ARMCC::AL));
   8672 
   8673     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   8674         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   8675     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   8676     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   8677         .addReg(NewVReg3, RegState::Kill)
   8678         .addReg(NewVReg4)
   8679         .addImm(0)
   8680         .addMemOperand(JTMMOLd)
   8681         .add(predOps(ARMCC::AL));
   8682 
   8683     if (IsPositionIndependent) {
   8684       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   8685         .addReg(NewVReg5, RegState::Kill)
   8686         .addReg(NewVReg4)
   8687         .addJumpTableIndex(MJTI);
   8688     } else {
   8689       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
   8690         .addReg(NewVReg5, RegState::Kill)
   8691         .addJumpTableIndex(MJTI);
   8692     }
   8693   }
   8694 
   8695   // Add the jump table entries as successors to the MBB.
   8696   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   8697   for (std::vector<MachineBasicBlock*>::iterator
   8698          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   8699     MachineBasicBlock *CurMBB = *I;
   8700     if (SeenMBBs.insert(CurMBB).second)
   8701       DispContBB->addSuccessor(CurMBB);
   8702   }
   8703 
   8704   // N.B. the order the invoke BBs are processed in doesn't matter here.
   8705   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
   8706   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   8707   for (MachineBasicBlock *BB : InvokeBBs) {
   8708 
   8709     // Remove the landing pad successor from the invoke block and replace it
   8710     // with the new dispatch block.
   8711     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   8712                                                   BB->succ_end());
   8713     while (!Successors.empty()) {
   8714       MachineBasicBlock *SMBB = Successors.pop_back_val();
   8715       if (SMBB->isEHPad()) {
   8716         BB->removeSuccessor(SMBB);
   8717         MBBLPads.push_back(SMBB);
   8718       }
   8719     }
   8720 
   8721     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
   8722     BB->normalizeSuccProbs();
   8723 
   8724     // Find the invoke call and mark all of the callee-saved registers as
   8725     // 'implicit defined' so that they're spilled. This prevents code from
   8726     // moving instructions to before the EH block, where they will never be
   8727     // executed.
   8728     for (MachineBasicBlock::reverse_iterator
   8729            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   8730       if (!II->isCall()) continue;
   8731 
   8732       DenseMap<unsigned, bool> DefRegs;
   8733       for (MachineInstr::mop_iterator
   8734              OI = II->operands_begin(), OE = II->operands_end();
   8735            OI != OE; ++OI) {
   8736         if (!OI->isReg()) continue;
   8737         DefRegs[OI->getReg()] = true;
   8738       }
   8739 
   8740       MachineInstrBuilder MIB(*MF, &*II);
   8741 
   8742       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   8743         unsigned Reg = SavedRegs[i];
   8744         if (Subtarget->isThumb2() &&
   8745             !ARM::tGPRRegClass.contains(Reg) &&
   8746             !ARM::hGPRRegClass.contains(Reg))
   8747           continue;
   8748         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   8749           continue;
   8750         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   8751           continue;
   8752         if (!DefRegs[Reg])
   8753           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   8754       }
   8755 
   8756       break;
   8757     }
   8758   }
   8759 
   8760   // Mark all former landing pads as non-landing pads. The dispatch is the only
   8761   // landing pad now.
   8762   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   8763          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   8764     (*I)->setIsEHPad(false);
   8765 
   8766   // The instruction is gone now.
   8767   MI.eraseFromParent();
   8768 }
   8769 
   8770 static
   8771 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   8772   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   8773        E = MBB->succ_end(); I != E; ++I)
   8774     if (*I != Succ)
   8775       return *I;
   8776   llvm_unreachable("Expecting a BB with two successors!");
   8777 }
   8778 
   8779 /// Return the load opcode for a given load size. If load size >= 8,
   8780 /// neon opcode will be returned.
   8781 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
   8782   if (LdSize >= 8)
   8783     return LdSize == 16 ? ARM::VLD1q32wb_fixed
   8784                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
   8785   if (IsThumb1)
   8786     return LdSize == 4 ? ARM::tLDRi
   8787                        : LdSize == 2 ? ARM::tLDRHi
   8788                                      : LdSize == 1 ? ARM::tLDRBi : 0;
   8789   if (IsThumb2)
   8790     return LdSize == 4 ? ARM::t2LDR_POST
   8791                        : LdSize == 2 ? ARM::t2LDRH_POST
   8792                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
   8793   return LdSize == 4 ? ARM::LDR_POST_IMM
   8794                      : LdSize == 2 ? ARM::LDRH_POST
   8795                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
   8796 }
   8797 
   8798 /// Return the store opcode for a given store size. If store size >= 8,
   8799 /// neon opcode will be returned.
   8800 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
   8801   if (StSize >= 8)
   8802     return StSize == 16 ? ARM::VST1q32wb_fixed
   8803                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
   8804   if (IsThumb1)
   8805     return StSize == 4 ? ARM::tSTRi
   8806                        : StSize == 2 ? ARM::tSTRHi
   8807                                      : StSize == 1 ? ARM::tSTRBi : 0;
   8808   if (IsThumb2)
   8809     return StSize == 4 ? ARM::t2STR_POST
   8810                        : StSize == 2 ? ARM::t2STRH_POST
   8811                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
   8812   return StSize == 4 ? ARM::STR_POST_IMM
   8813                      : StSize == 2 ? ARM::STRH_POST
   8814                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
   8815 }
   8816 
   8817 /// Emit a post-increment load operation with given size. The instructions
   8818 /// will be added to BB at Pos.
   8819 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
   8820                        const TargetInstrInfo *TII, const DebugLoc &dl,
   8821                        unsigned LdSize, unsigned Data, unsigned AddrIn,
   8822                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   8823   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
   8824   assert(LdOpc != 0 && "Should have a load opcode");
   8825   if (LdSize >= 8) {
   8826     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   8827         .addReg(AddrOut, RegState::Define)
   8828         .addReg(AddrIn)
   8829         .addImm(0)
   8830         .add(predOps(ARMCC::AL));
   8831   } else if (IsThumb1) {
   8832     // load + update AddrIn
   8833     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   8834         .addReg(AddrIn)
   8835         .addImm(0)
   8836         .add(predOps(ARMCC::AL));
   8837     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
   8838         .add(t1CondCodeOp())
   8839         .addReg(AddrIn)
   8840         .addImm(LdSize)
   8841         .add(predOps(ARMCC::AL));
   8842   } else if (IsThumb2) {
   8843     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   8844         .addReg(AddrOut, RegState::Define)
   8845         .addReg(AddrIn)
   8846         .addImm(LdSize)
   8847         .add(predOps(ARMCC::AL));
   8848   } else { // arm
   8849     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   8850         .addReg(AddrOut, RegState::Define)
   8851         .addReg(AddrIn)
   8852         .addReg(0)
   8853         .addImm(LdSize)
   8854         .add(predOps(ARMCC::AL));
   8855   }
   8856 }
   8857 
   8858 /// Emit a post-increment store operation with given size. The instructions
   8859 /// will be added to BB at Pos.
   8860 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
   8861                        const TargetInstrInfo *TII, const DebugLoc &dl,
   8862                        unsigned StSize, unsigned Data, unsigned AddrIn,
   8863                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   8864   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
   8865   assert(StOpc != 0 && "Should have a store opcode");
   8866   if (StSize >= 8) {
   8867     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   8868         .addReg(AddrIn)
   8869         .addImm(0)
   8870         .addReg(Data)
   8871         .add(predOps(ARMCC::AL));
   8872   } else if (IsThumb1) {
   8873     // store + update AddrIn
   8874     BuildMI(*BB, Pos, dl, TII->get(StOpc))
   8875         .addReg(Data)
   8876         .addReg(AddrIn)
   8877         .addImm(0)
   8878         .add(predOps(ARMCC::AL));
   8879     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
   8880         .add(t1CondCodeOp())
   8881         .addReg(AddrIn)
   8882         .addImm(StSize)
   8883         .add(predOps(ARMCC::AL));
   8884   } else if (IsThumb2) {
   8885     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   8886         .addReg(Data)
   8887         .addReg(AddrIn)
   8888         .addImm(StSize)
   8889         .add(predOps(ARMCC::AL));
   8890   } else { // arm
   8891     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   8892         .addReg(Data)
   8893         .addReg(AddrIn)
   8894         .addReg(0)
   8895         .addImm(StSize)
   8896         .add(predOps(ARMCC::AL));
   8897   }
   8898 }
   8899 
   8900 MachineBasicBlock *
   8901 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
   8902                                    MachineBasicBlock *BB) const {
   8903   // This pseudo instruction has 3 operands: dst, src, size
   8904   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   8905   // Otherwise, we will generate unrolled scalar copies.
   8906   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   8907   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8908   MachineFunction::iterator It = ++BB->getIterator();
   8909 
   8910   unsigned dest = MI.getOperand(0).getReg();
   8911   unsigned src = MI.getOperand(1).getReg();
   8912   unsigned SizeVal = MI.getOperand(2).getImm();
   8913   unsigned Align = MI.getOperand(3).getImm();
   8914   DebugLoc dl = MI.getDebugLoc();
   8915 
   8916   MachineFunction *MF = BB->getParent();
   8917   MachineRegisterInfo &MRI = MF->getRegInfo();
   8918   unsigned UnitSize = 0;
   8919   const TargetRegisterClass *TRC = nullptr;
   8920   const TargetRegisterClass *VecTRC = nullptr;
   8921 
   8922   bool IsThumb1 = Subtarget->isThumb1Only();
   8923   bool IsThumb2 = Subtarget->isThumb2();
   8924   bool IsThumb = Subtarget->isThumb();
   8925 
   8926   if (Align & 1) {
   8927     UnitSize = 1;
   8928   } else if (Align & 2) {
   8929     UnitSize = 2;
   8930   } else {
   8931     // Check whether we can use NEON instructions.
   8932     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
   8933         Subtarget->hasNEON()) {
   8934       if ((Align % 16 == 0) && SizeVal >= 16)
   8935         UnitSize = 16;
   8936       else if ((Align % 8 == 0) && SizeVal >= 8)
   8937         UnitSize = 8;
   8938     }
   8939     // Can't use NEON instructions.
   8940     if (UnitSize == 0)
   8941       UnitSize = 4;
   8942   }
   8943 
   8944   // Select the correct opcode and register class for unit size load/store
   8945   bool IsNeon = UnitSize >= 8;
   8946   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   8947   if (IsNeon)
   8948     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
   8949                             : UnitSize == 8 ? &ARM::DPRRegClass
   8950                                             : nullptr;
   8951 
   8952   unsigned BytesLeft = SizeVal % UnitSize;
   8953   unsigned LoopSize = SizeVal - BytesLeft;
   8954 
   8955   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   8956     // Use LDR and STR to copy.
   8957     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   8958     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   8959     unsigned srcIn = src;
   8960     unsigned destIn = dest;
   8961     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   8962       unsigned srcOut = MRI.createVirtualRegister(TRC);
   8963       unsigned destOut = MRI.createVirtualRegister(TRC);
   8964       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   8965       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
   8966                  IsThumb1, IsThumb2);
   8967       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
   8968                  IsThumb1, IsThumb2);
   8969       srcIn = srcOut;
   8970       destIn = destOut;
   8971     }
   8972 
   8973     // Handle the leftover bytes with LDRB and STRB.
   8974     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   8975     // [destOut] = STRB_POST(scratch, destIn, 1)
   8976     for (unsigned i = 0; i < BytesLeft; i++) {
   8977       unsigned srcOut = MRI.createVirtualRegister(TRC);
   8978       unsigned destOut = MRI.createVirtualRegister(TRC);
   8979       unsigned scratch = MRI.createVirtualRegister(TRC);
   8980       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
   8981                  IsThumb1, IsThumb2);
   8982       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
   8983                  IsThumb1, IsThumb2);
   8984       srcIn = srcOut;
   8985       destIn = destOut;
   8986     }
   8987     MI.eraseFromParent(); // The instruction is gone now.
   8988     return BB;
   8989   }
   8990 
   8991   // Expand the pseudo op to a loop.
   8992   // thisMBB:
   8993   //   ...
   8994   //   movw varEnd, # --> with thumb2
   8995   //   movt varEnd, #
   8996   //   ldrcp varEnd, idx --> without thumb2
   8997   //   fallthrough --> loopMBB
   8998   // loopMBB:
   8999   //   PHI varPhi, varEnd, varLoop
   9000   //   PHI srcPhi, src, srcLoop
   9001   //   PHI destPhi, dst, destLoop
   9002   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   9003   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   9004   //   subs varLoop, varPhi, #UnitSize
   9005   //   bne loopMBB
   9006   //   fallthrough --> exitMBB
   9007   // exitMBB:
   9008   //   epilogue to handle left-over bytes
   9009   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   9010   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   9011   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   9012   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   9013   MF->insert(It, loopMBB);
   9014   MF->insert(It, exitMBB);
   9015 
   9016   // Transfer the remainder of BB and its successor edges to exitMBB.
   9017   exitMBB->splice(exitMBB->begin(), BB,
   9018                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9019   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   9020 
   9021   // Load an immediate to varEnd.
   9022   unsigned varEnd = MRI.createVirtualRegister(TRC);
   9023   if (Subtarget->useMovt(*MF)) {
   9024     unsigned Vtmp = varEnd;
   9025     if ((LoopSize & 0xFFFF0000) != 0)
   9026       Vtmp = MRI.createVirtualRegister(TRC);
   9027     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
   9028         .addImm(LoopSize & 0xFFFF)
   9029         .add(predOps(ARMCC::AL));
   9030 
   9031     if ((LoopSize & 0xFFFF0000) != 0)
   9032       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
   9033           .addReg(Vtmp)
   9034           .addImm(LoopSize >> 16)
   9035           .add(predOps(ARMCC::AL));
   9036   } else {
   9037     MachineConstantPool *ConstantPool = MF->getConstantPool();
   9038     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
   9039     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   9040 
   9041     // MachineConstantPool wants an explicit alignment.
   9042     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   9043     if (Align == 0)
   9044       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   9045     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   9046 
   9047     if (IsThumb)
   9048       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
   9049           .addReg(varEnd, RegState::Define)
   9050           .addConstantPoolIndex(Idx)
   9051           .add(predOps(ARMCC::AL));
   9052     else
   9053       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
   9054           .addReg(varEnd, RegState::Define)
   9055           .addConstantPoolIndex(Idx)
   9056           .addImm(0)
   9057           .add(predOps(ARMCC::AL));
   9058   }
   9059   BB->addSuccessor(loopMBB);
   9060 
   9061   // Generate the loop body:
   9062   //   varPhi = PHI(varLoop, varEnd)
   9063   //   srcPhi = PHI(srcLoop, src)
   9064   //   destPhi = PHI(destLoop, dst)
   9065   MachineBasicBlock *entryBB = BB;
   9066   BB = loopMBB;
   9067   unsigned varLoop = MRI.createVirtualRegister(TRC);
   9068   unsigned varPhi = MRI.createVirtualRegister(TRC);
   9069   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   9070   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   9071   unsigned destLoop = MRI.createVirtualRegister(TRC);
   9072   unsigned destPhi = MRI.createVirtualRegister(TRC);
   9073 
   9074   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   9075     .addReg(varLoop).addMBB(loopMBB)
   9076     .addReg(varEnd).addMBB(entryBB);
   9077   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   9078     .addReg(srcLoop).addMBB(loopMBB)
   9079     .addReg(src).addMBB(entryBB);
   9080   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   9081     .addReg(destLoop).addMBB(loopMBB)
   9082     .addReg(dest).addMBB(entryBB);
   9083 
   9084   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   9085   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   9086   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   9087   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
   9088              IsThumb1, IsThumb2);
   9089   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
   9090              IsThumb1, IsThumb2);
   9091 
   9092   // Decrement loop variable by UnitSize.
   9093   if (IsThumb1) {
   9094     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
   9095         .add(t1CondCodeOp())
   9096         .addReg(varPhi)
   9097         .addImm(UnitSize)
   9098         .add(predOps(ARMCC::AL));
   9099   } else {
   9100     MachineInstrBuilder MIB =
   9101         BuildMI(*BB, BB->end(), dl,
   9102                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   9103     MIB.addReg(varPhi)
   9104         .addImm(UnitSize)
   9105         .add(predOps(ARMCC::AL))
   9106         .add(condCodeOp());
   9107     MIB->getOperand(5).setReg(ARM::CPSR);
   9108     MIB->getOperand(5).setIsDef(true);
   9109   }
   9110   BuildMI(*BB, BB->end(), dl,
   9111           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
   9112       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   9113 
   9114   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   9115   BB->addSuccessor(loopMBB);
   9116   BB->addSuccessor(exitMBB);
   9117 
   9118   // Add epilogue to handle BytesLeft.
   9119   BB = exitMBB;
   9120   auto StartOfExit = exitMBB->begin();
   9121 
   9122   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   9123   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   9124   unsigned srcIn = srcLoop;
   9125   unsigned destIn = destLoop;
   9126   for (unsigned i = 0; i < BytesLeft; i++) {
   9127     unsigned srcOut = MRI.createVirtualRegister(TRC);
   9128     unsigned destOut = MRI.createVirtualRegister(TRC);
   9129     unsigned scratch = MRI.createVirtualRegister(TRC);
   9130     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
   9131                IsThumb1, IsThumb2);
   9132     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
   9133                IsThumb1, IsThumb2);
   9134     srcIn = srcOut;
   9135     destIn = destOut;
   9136   }
   9137 
   9138   MI.eraseFromParent(); // The instruction is gone now.
   9139   return BB;
   9140 }
   9141 
   9142 MachineBasicBlock *
   9143 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
   9144                                        MachineBasicBlock *MBB) const {
   9145   const TargetMachine &TM = getTargetMachine();
   9146   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
   9147   DebugLoc DL = MI.getDebugLoc();
   9148 
   9149   assert(Subtarget->isTargetWindows() &&
   9150          "__chkstk is only supported on Windows");
   9151   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
   9152 
   9153   // __chkstk takes the number of words to allocate on the stack in R4, and
   9154   // returns the stack adjustment in number of bytes in R4.  This will not
   9155   // clober any other registers (other than the obvious lr).
   9156   //
   9157   // Although, technically, IP should be considered a register which may be
   9158   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
   9159   // thumb-2 environment, so there is no interworking required.  As a result, we
   9160   // do not expect a veneer to be emitted by the linker, clobbering IP.
   9161   //
   9162   // Each module receives its own copy of __chkstk, so no import thunk is
   9163   // required, again, ensuring that IP is not clobbered.
   9164   //
   9165   // Finally, although some linkers may theoretically provide a trampoline for
   9166   // out of range calls (which is quite common due to a 32M range limitation of
   9167   // branches for Thumb), we can generate the long-call version via
   9168   // -mcmodel=large, alleviating the need for the trampoline which may clobber
   9169   // IP.
   9170 
   9171   switch (TM.getCodeModel()) {
   9172   case CodeModel::Small:
   9173   case CodeModel::Medium:
   9174   case CodeModel::Kernel:
   9175     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
   9176         .add(predOps(ARMCC::AL))
   9177         .addExternalSymbol("__chkstk")
   9178         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   9179         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   9180         .addReg(ARM::R12,
   9181                 RegState::Implicit | RegState::Define | RegState::Dead)
   9182         .addReg(ARM::CPSR,
   9183                 RegState::Implicit | RegState::Define | RegState::Dead);
   9184     break;
   9185   case CodeModel::Large: {
   9186     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   9187     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
   9188 
   9189     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
   9190       .addExternalSymbol("__chkstk");
   9191     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
   9192         .add(predOps(ARMCC::AL))
   9193         .addReg(Reg, RegState::Kill)
   9194         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   9195         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   9196         .addReg(ARM::R12,
   9197                 RegState::Implicit | RegState::Define | RegState::Dead)
   9198         .addReg(ARM::CPSR,
   9199                 RegState::Implicit | RegState::Define | RegState::Dead);
   9200     break;
   9201   }
   9202   }
   9203 
   9204   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
   9205       .addReg(ARM::SP, RegState::Kill)
   9206       .addReg(ARM::R4, RegState::Kill)
   9207       .setMIFlags(MachineInstr::FrameSetup)
   9208       .add(predOps(ARMCC::AL))
   9209       .add(condCodeOp());
   9210 
   9211   MI.eraseFromParent();
   9212   return MBB;
   9213 }
   9214 
   9215 MachineBasicBlock *
   9216 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
   9217                                        MachineBasicBlock *MBB) const {
   9218   DebugLoc DL = MI.getDebugLoc();
   9219   MachineFunction *MF = MBB->getParent();
   9220   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   9221 
   9222   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
   9223   MF->insert(++MBB->getIterator(), ContBB);
   9224   ContBB->splice(ContBB->begin(), MBB,
   9225                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   9226   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
   9227   MBB->addSuccessor(ContBB);
   9228 
   9229   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   9230   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
   9231   MF->push_back(TrapBB);
   9232   MBB->addSuccessor(TrapBB);
   9233 
   9234   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
   9235       .addReg(MI.getOperand(0).getReg())
   9236       .addImm(0)
   9237       .add(predOps(ARMCC::AL));
   9238   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
   9239       .addMBB(TrapBB)
   9240       .addImm(ARMCC::EQ)
   9241       .addReg(ARM::CPSR);
   9242 
   9243   MI.eraseFromParent();
   9244   return ContBB;
   9245 }
   9246 
   9247 MachineBasicBlock *
   9248 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   9249                                                MachineBasicBlock *BB) const {
   9250   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   9251   DebugLoc dl = MI.getDebugLoc();
   9252   bool isThumb2 = Subtarget->isThumb2();
   9253   switch (MI.getOpcode()) {
   9254   default: {
   9255     MI.print(errs());
   9256     llvm_unreachable("Unexpected instr type to insert");
   9257   }
   9258 
   9259   // Thumb1 post-indexed loads are really just single-register LDMs.
   9260   case ARM::tLDR_postidx: {
   9261     MachineOperand Def(MI.getOperand(1));
   9262     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
   9263         .add(Def)  // Rn_wb
   9264         .add(MI.getOperand(2))  // Rn
   9265         .add(MI.getOperand(3))  // PredImm
   9266         .add(MI.getOperand(4))  // PredReg
   9267         .add(MI.getOperand(0)); // Rt
   9268     MI.eraseFromParent();
   9269     return BB;
   9270   }
   9271 
   9272   // The Thumb2 pre-indexed stores have the same MI operands, they just
   9273   // define them differently in the .td files from the isel patterns, so
   9274   // they need pseudos.
   9275   case ARM::t2STR_preidx:
   9276     MI.setDesc(TII->get(ARM::t2STR_PRE));
   9277     return BB;
   9278   case ARM::t2STRB_preidx:
   9279     MI.setDesc(TII->get(ARM::t2STRB_PRE));
   9280     return BB;
   9281   case ARM::t2STRH_preidx:
   9282     MI.setDesc(TII->get(ARM::t2STRH_PRE));
   9283     return BB;
   9284 
   9285   case ARM::STRi_preidx:
   9286   case ARM::STRBi_preidx: {
   9287     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
   9288                                                          : ARM::STRB_PRE_IMM;
   9289     // Decode the offset.
   9290     unsigned Offset = MI.getOperand(4).getImm();
   9291     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   9292     Offset = ARM_AM::getAM2Offset(Offset);
   9293     if (isSub)
   9294       Offset = -Offset;
   9295 
   9296     MachineMemOperand *MMO = *MI.memoperands_begin();
   9297     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   9298         .add(MI.getOperand(0)) // Rn_wb
   9299         .add(MI.getOperand(1)) // Rt
   9300         .add(MI.getOperand(2)) // Rn
   9301         .addImm(Offset)        // offset (skip GPR==zero_reg)
   9302         .add(MI.getOperand(5)) // pred
   9303         .add(MI.getOperand(6))
   9304         .addMemOperand(MMO);
   9305     MI.eraseFromParent();
   9306     return BB;
   9307   }
   9308   case ARM::STRr_preidx:
   9309   case ARM::STRBr_preidx:
   9310   case ARM::STRH_preidx: {
   9311     unsigned NewOpc;
   9312     switch (MI.getOpcode()) {
   9313     default: llvm_unreachable("unexpected opcode!");
   9314     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   9315     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   9316     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   9317     }
   9318     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   9319     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
   9320       MIB.add(MI.getOperand(i));
   9321     MI.eraseFromParent();
   9322     return BB;
   9323   }
   9324 
   9325   case ARM::tMOVCCr_pseudo: {
   9326     // To "insert" a SELECT_CC instruction, we actually have to insert the
   9327     // diamond control-flow pattern.  The incoming instruction knows the
   9328     // destination vreg to set, the condition code register to branch on, the
   9329     // true/false values to select between, and a branch opcode to use.
   9330     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   9331     MachineFunction::iterator It = ++BB->getIterator();
   9332 
   9333     //  thisMBB:
   9334     //  ...
   9335     //   TrueVal = ...
   9336     //   cmpTY ccX, r1, r2
   9337     //   bCC copy1MBB
   9338     //   fallthrough --> copy0MBB
   9339     MachineBasicBlock *thisMBB  = BB;
   9340     MachineFunction *F = BB->getParent();
   9341     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   9342     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   9343     F->insert(It, copy0MBB);
   9344     F->insert(It, sinkMBB);
   9345 
   9346     // Transfer the remainder of BB and its successor edges to sinkMBB.
   9347     sinkMBB->splice(sinkMBB->begin(), BB,
   9348                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9349     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   9350 
   9351     BB->addSuccessor(copy0MBB);
   9352     BB->addSuccessor(sinkMBB);
   9353 
   9354     BuildMI(BB, dl, TII->get(ARM::tBcc))
   9355         .addMBB(sinkMBB)
   9356         .addImm(MI.getOperand(3).getImm())
   9357         .addReg(MI.getOperand(4).getReg());
   9358 
   9359     //  copy0MBB:
   9360     //   %FalseValue = ...
   9361     //   # fallthrough to sinkMBB
   9362     BB = copy0MBB;
   9363 
   9364     // Update machine-CFG edges
   9365     BB->addSuccessor(sinkMBB);
   9366 
   9367     //  sinkMBB:
   9368     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   9369     //  ...
   9370     BB = sinkMBB;
   9371     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
   9372         .addReg(MI.getOperand(1).getReg())
   9373         .addMBB(copy0MBB)
   9374         .addReg(MI.getOperand(2).getReg())
   9375         .addMBB(thisMBB);
   9376 
   9377     MI.eraseFromParent(); // The pseudo instruction is gone now.
   9378     return BB;
   9379   }
   9380 
   9381   case ARM::BCCi64:
   9382   case ARM::BCCZi64: {
   9383     // If there is an unconditional branch to the other successor, remove it.
   9384     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9385 
   9386     // Compare both parts that make up the double comparison separately for
   9387     // equality.
   9388     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
   9389 
   9390     unsigned LHS1 = MI.getOperand(1).getReg();
   9391     unsigned LHS2 = MI.getOperand(2).getReg();
   9392     if (RHSisZero) {
   9393       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   9394           .addReg(LHS1)
   9395           .addImm(0)
   9396           .add(predOps(ARMCC::AL));
   9397       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   9398         .addReg(LHS2).addImm(0)
   9399         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   9400     } else {
   9401       unsigned RHS1 = MI.getOperand(3).getReg();
   9402       unsigned RHS2 = MI.getOperand(4).getReg();
   9403       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   9404           .addReg(LHS1)
   9405           .addReg(RHS1)
   9406           .add(predOps(ARMCC::AL));
   9407       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   9408         .addReg(LHS2).addReg(RHS2)
   9409         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   9410     }
   9411 
   9412     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
   9413     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   9414     if (MI.getOperand(0).getImm() == ARMCC::NE)
   9415       std::swap(destMBB, exitMBB);
   9416 
   9417     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   9418       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   9419     if (isThumb2)
   9420       BuildMI(BB, dl, TII->get(ARM::t2B))
   9421           .addMBB(exitMBB)
   9422           .add(predOps(ARMCC::AL));
   9423     else
   9424       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   9425 
   9426     MI.eraseFromParent(); // The pseudo instruction is gone now.
   9427     return BB;
   9428   }
   9429 
   9430   case ARM::Int_eh_sjlj_setjmp:
   9431   case ARM::Int_eh_sjlj_setjmp_nofp:
   9432   case ARM::tInt_eh_sjlj_setjmp:
   9433   case ARM::t2Int_eh_sjlj_setjmp:
   9434   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   9435     return BB;
   9436 
   9437   case ARM::Int_eh_sjlj_setup_dispatch:
   9438     EmitSjLjDispatchBlock(MI, BB);
   9439     return BB;
   9440 
   9441   case ARM::ABS:
   9442   case ARM::t2ABS: {
   9443     // To insert an ABS instruction, we have to insert the
   9444     // diamond control-flow pattern.  The incoming instruction knows the
   9445     // source vreg to test against 0, the destination vreg to set,
   9446     // the condition code register to branch on, the
   9447     // true/false values to select between, and a branch opcode to use.
   9448     // It transforms
   9449     //     V1 = ABS V0
   9450     // into
   9451     //     V2 = MOVS V0
   9452     //     BCC                      (branch to SinkBB if V0 >= 0)
   9453     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   9454     //     SinkBB: V1 = PHI(V2, V3)
   9455     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   9456     MachineFunction::iterator BBI = ++BB->getIterator();
   9457     MachineFunction *Fn = BB->getParent();
   9458     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   9459     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   9460     Fn->insert(BBI, RSBBB);
   9461     Fn->insert(BBI, SinkBB);
   9462 
   9463     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
   9464     unsigned int ABSDstReg = MI.getOperand(0).getReg();
   9465     bool ABSSrcKIll = MI.getOperand(1).isKill();
   9466     bool isThumb2 = Subtarget->isThumb2();
   9467     MachineRegisterInfo &MRI = Fn->getRegInfo();
   9468     // In Thumb mode S must not be specified if source register is the SP or
   9469     // PC and if destination register is the SP, so restrict register class
   9470     unsigned NewRsbDstReg =
   9471       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
   9472 
   9473     // Transfer the remainder of BB and its successor edges to sinkMBB.
   9474     SinkBB->splice(SinkBB->begin(), BB,
   9475                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9476     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   9477 
   9478     BB->addSuccessor(RSBBB);
   9479     BB->addSuccessor(SinkBB);
   9480 
   9481     // fall through to SinkMBB
   9482     RSBBB->addSuccessor(SinkBB);
   9483 
   9484     // insert a cmp at the end of BB
   9485     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   9486         .addReg(ABSSrcReg)
   9487         .addImm(0)
   9488         .add(predOps(ARMCC::AL));
   9489 
   9490     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   9491     BuildMI(BB, dl,
   9492       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   9493       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   9494 
   9495     // insert rsbri in RSBBB
   9496     // Note: BCC and rsbri will be converted into predicated rsbmi
   9497     // by if-conversion pass
   9498     BuildMI(*RSBBB, RSBBB->begin(), dl,
   9499             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   9500         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
   9501         .addImm(0)
   9502         .add(predOps(ARMCC::AL))
   9503         .add(condCodeOp());
   9504 
   9505     // insert PHI in SinkBB,
   9506     // reuse ABSDstReg to not change uses of ABS instruction
   9507     BuildMI(*SinkBB, SinkBB->begin(), dl,
   9508       TII->get(ARM::PHI), ABSDstReg)
   9509       .addReg(NewRsbDstReg).addMBB(RSBBB)
   9510       .addReg(ABSSrcReg).addMBB(BB);
   9511 
   9512     // remove ABS instruction
   9513     MI.eraseFromParent();
   9514 
   9515     // return last added BB
   9516     return SinkBB;
   9517   }
   9518   case ARM::COPY_STRUCT_BYVAL_I32:
   9519     ++NumLoopByVals;
   9520     return EmitStructByval(MI, BB);
   9521   case ARM::WIN__CHKSTK:
   9522     return EmitLowered__chkstk(MI, BB);
   9523   case ARM::WIN__DBZCHK:
   9524     return EmitLowered__dbzchk(MI, BB);
   9525   }
   9526 }
   9527 
   9528 /// Attaches vregs to MEMCPY that it will use as scratch registers
   9529 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
   9530 /// instead of as a custom inserter because we need the use list from the SDNode.
   9531 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
   9532                                     MachineInstr &MI, const SDNode *Node) {
   9533   bool isThumb1 = Subtarget->isThumb1Only();
   9534 
   9535   DebugLoc DL = MI.getDebugLoc();
   9536   MachineFunction *MF = MI.getParent()->getParent();
   9537   MachineRegisterInfo &MRI = MF->getRegInfo();
   9538   MachineInstrBuilder MIB(*MF, MI);
   9539 
   9540   // If the new dst/src is unused mark it as dead.
   9541   if (!Node->hasAnyUseOfValue(0)) {
   9542     MI.getOperand(0).setIsDead(true);
   9543   }
   9544   if (!Node->hasAnyUseOfValue(1)) {
   9545     MI.getOperand(1).setIsDead(true);
   9546   }
   9547 
   9548   // The MEMCPY both defines and kills the scratch registers.
   9549   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
   9550     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
   9551                                                          : &ARM::GPRRegClass);
   9552     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
   9553   }
   9554 }
   9555 
   9556 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
   9557                                                       SDNode *Node) const {
   9558   if (MI.getOpcode() == ARM::MEMCPY) {
   9559     attachMEMCPYScratchRegs(Subtarget, MI, Node);
   9560     return;
   9561   }
   9562 
   9563   const MCInstrDesc *MCID = &MI.getDesc();
   9564   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   9565   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   9566   // operand is still set to noreg. If needed, set the optional operand's
   9567   // register to CPSR, and remove the redundant implicit def.
   9568   //
   9569   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
   9570 
   9571   // Rename pseudo opcodes.
   9572   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
   9573   unsigned ccOutIdx;
   9574   if (NewOpc) {
   9575     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
   9576     MCID = &TII->get(NewOpc);
   9577 
   9578     assert(MCID->getNumOperands() ==
   9579            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
   9580         && "converted opcode should be the same except for cc_out"
   9581            " (and, on Thumb1, pred)");
   9582 
   9583     MI.setDesc(*MCID);
   9584 
   9585     // Add the optional cc_out operand
   9586     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   9587 
   9588     // On Thumb1, move all input operands to the end, then add the predicate
   9589     if (Subtarget->isThumb1Only()) {
   9590       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
   9591         MI.addOperand(MI.getOperand(1));
   9592         MI.RemoveOperand(1);
   9593       }
   9594 
   9595       // Restore the ties
   9596       for (unsigned i = MI.getNumOperands(); i--;) {
   9597         const MachineOperand& op = MI.getOperand(i);
   9598         if (op.isReg() && op.isUse()) {
   9599           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
   9600           if (DefIdx != -1)
   9601             MI.tieOperands(DefIdx, i);
   9602         }
   9603       }
   9604 
   9605       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
   9606       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
   9607       ccOutIdx = 1;
   9608     } else
   9609       ccOutIdx = MCID->getNumOperands() - 1;
   9610   } else
   9611     ccOutIdx = MCID->getNumOperands() - 1;
   9612 
   9613   // Any ARM instruction that sets the 's' bit should specify an optional
   9614   // "cc_out" operand in the last operand position.
   9615   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   9616     assert(!NewOpc && "Optional cc_out operand required");
   9617     return;
   9618   }
   9619   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   9620   // since we already have an optional CPSR def.
   9621   bool definesCPSR = false;
   9622   bool deadCPSR = false;
   9623   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
   9624        ++i) {
   9625     const MachineOperand &MO = MI.getOperand(i);
   9626     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   9627       definesCPSR = true;
   9628       if (MO.isDead())
   9629         deadCPSR = true;
   9630       MI.RemoveOperand(i);
   9631       break;
   9632     }
   9633   }
   9634   if (!definesCPSR) {
   9635     assert(!NewOpc && "Optional cc_out operand required");
   9636     return;
   9637   }
   9638   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   9639   if (deadCPSR) {
   9640     assert(!MI.getOperand(ccOutIdx).getReg() &&
   9641            "expect uninitialized optional cc_out operand");
   9642     // Thumb1 instructions must have the S bit even if the CPSR is dead.
   9643     if (!Subtarget->isThumb1Only())
   9644       return;
   9645   }
   9646 
   9647   // If this instruction was defined with an optional CPSR def and its dag node
   9648   // had a live implicit CPSR def, then activate the optional CPSR def.
   9649   MachineOperand &MO = MI.getOperand(ccOutIdx);
   9650   MO.setReg(ARM::CPSR);
   9651   MO.setIsDef(true);
   9652 }
   9653 
   9654 //===----------------------------------------------------------------------===//
   9655 //                           ARM Optimization Hooks
   9656 //===----------------------------------------------------------------------===//
   9657 
   9658 // Helper function that checks if N is a null or all ones constant.
   9659 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   9660   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
   9661 }
   9662 
   9663 // Return true if N is conditionally 0 or all ones.
   9664 // Detects these expressions where cc is an i1 value:
   9665 //
   9666 //   (select cc 0, y)   [AllOnes=0]
   9667 //   (select cc y, 0)   [AllOnes=0]
   9668 //   (zext cc)          [AllOnes=0]
   9669 //   (sext cc)          [AllOnes=0/1]
   9670 //   (select cc -1, y)  [AllOnes=1]
   9671 //   (select cc y, -1)  [AllOnes=1]
   9672 //
   9673 // Invert is set when N is the null/all ones constant when CC is false.
   9674 // OtherOp is set to the alternative value of N.
   9675 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   9676                                        SDValue &CC, bool &Invert,
   9677                                        SDValue &OtherOp,
   9678                                        SelectionDAG &DAG) {
   9679   switch (N->getOpcode()) {
   9680   default: return false;
   9681   case ISD::SELECT: {
   9682     CC = N->getOperand(0);
   9683     SDValue N1 = N->getOperand(1);
   9684     SDValue N2 = N->getOperand(2);
   9685     if (isZeroOrAllOnes(N1, AllOnes)) {
   9686       Invert = false;
   9687       OtherOp = N2;
   9688       return true;
   9689     }
   9690     if (isZeroOrAllOnes(N2, AllOnes)) {
   9691       Invert = true;
   9692       OtherOp = N1;
   9693       return true;
   9694     }
   9695     return false;
   9696   }
   9697   case ISD::ZERO_EXTEND:
   9698     // (zext cc) can never be the all ones value.
   9699     if (AllOnes)
   9700       return false;
   9701     LLVM_FALLTHROUGH;
   9702   case ISD::SIGN_EXTEND: {
   9703     SDLoc dl(N);
   9704     EVT VT = N->getValueType(0);
   9705     CC = N->getOperand(0);
   9706     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
   9707       return false;
   9708     Invert = !AllOnes;
   9709     if (AllOnes)
   9710       // When looking for an AllOnes constant, N is an sext, and the 'other'
   9711       // value is 0.
   9712       OtherOp = DAG.getConstant(0, dl, VT);
   9713     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   9714       // When looking for a 0 constant, N can be zext or sext.
   9715       OtherOp = DAG.getConstant(1, dl, VT);
   9716     else
   9717       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
   9718                                 VT);
   9719     return true;
   9720   }
   9721   }
   9722 }
   9723 
   9724 // Combine a constant select operand into its use:
   9725 //
   9726 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   9727 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   9728 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   9729 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   9730 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   9731 //
   9732 // The transform is rejected if the select doesn't have a constant operand that
   9733 // is null, or all ones when AllOnes is set.
   9734 //
   9735 // Also recognize sext/zext from i1:
   9736 //
   9737 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   9738 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   9739 //
   9740 // These transformations eventually create predicated instructions.
   9741 //
   9742 // @param N       The node to transform.
   9743 // @param Slct    The N operand that is a select.
   9744 // @param OtherOp The other N operand (x above).
   9745 // @param DCI     Context.
   9746 // @param AllOnes Require the select constant to be all ones instead of null.
   9747 // @returns The new node, or SDValue() on failure.
   9748 static
   9749 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   9750                             TargetLowering::DAGCombinerInfo &DCI,
   9751                             bool AllOnes = false) {
   9752   SelectionDAG &DAG = DCI.DAG;
   9753   EVT VT = N->getValueType(0);
   9754   SDValue NonConstantVal;
   9755   SDValue CCOp;
   9756   bool SwapSelectOps;
   9757   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   9758                                   NonConstantVal, DAG))
   9759     return SDValue();
   9760 
   9761   // Slct is now know to be the desired identity constant when CC is true.
   9762   SDValue TrueVal = OtherOp;
   9763   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
   9764                                  OtherOp, NonConstantVal);
   9765   // Unless SwapSelectOps says CC should be false.
   9766   if (SwapSelectOps)
   9767     std::swap(TrueVal, FalseVal);
   9768 
   9769   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
   9770                      CCOp, TrueVal, FalseVal);
   9771 }
   9772 
   9773 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   9774 static
   9775 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   9776                                        TargetLowering::DAGCombinerInfo &DCI) {
   9777   SDValue N0 = N->getOperand(0);
   9778   SDValue N1 = N->getOperand(1);
   9779   if (N0.getNode()->hasOneUse())
   9780     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
   9781       return Result;
   9782   if (N1.getNode()->hasOneUse())
   9783     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
   9784       return Result;
   9785   return SDValue();
   9786 }
   9787 
   9788 static bool IsVUZPShuffleNode(SDNode *N) {
   9789   // VUZP shuffle node.
   9790   if (N->getOpcode() == ARMISD::VUZP)
   9791     return true;
   9792 
   9793   // "VUZP" on i32 is an alias for VTRN.
   9794   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
   9795     return true;
   9796 
   9797   return false;
   9798 }
   9799 
   9800 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
   9801                                  TargetLowering::DAGCombinerInfo &DCI,
   9802                                  const ARMSubtarget *Subtarget) {
   9803   // Look for ADD(VUZP.0, VUZP.1).
   9804   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
   9805       N0 == N1)
   9806    return SDValue();
   9807 
   9808   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
   9809   if (!N->getValueType(0).is64BitVector())
   9810     return SDValue();
   9811 
   9812   // Generate vpadd.
   9813   SelectionDAG &DAG = DCI.DAG;
   9814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9815   SDLoc dl(N);
   9816   SDNode *Unzip = N0.getNode();
   9817   EVT VT = N->getValueType(0);
   9818 
   9819   SmallVector<SDValue, 8> Ops;
   9820   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
   9821                                 TLI.getPointerTy(DAG.getDataLayout())));
   9822   Ops.push_back(Unzip->getOperand(0));
   9823   Ops.push_back(Unzip->getOperand(1));
   9824 
   9825   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
   9826 }
   9827 
   9828 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   9829                                       TargetLowering::DAGCombinerInfo &DCI,
   9830                                       const ARMSubtarget *Subtarget) {
   9831   // Check for two extended operands.
   9832   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
   9833         N1.getOpcode() == ISD::SIGN_EXTEND) &&
   9834       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
   9835         N1.getOpcode() == ISD::ZERO_EXTEND))
   9836     return SDValue();
   9837 
   9838   SDValue N00 = N0.getOperand(0);
   9839   SDValue N10 = N1.getOperand(0);
   9840 
   9841   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
   9842   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
   9843       N00 == N10)
   9844     return SDValue();
   9845 
   9846   // We only recognize Q register paddl here; this can't be reached until
   9847   // after type legalization.
   9848   if (!N00.getValueType().is64BitVector() ||
   9849       !N0.getValueType().is128BitVector())
   9850     return SDValue();
   9851 
   9852   // Generate vpaddl.
   9853   SelectionDAG &DAG = DCI.DAG;
   9854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9855   SDLoc dl(N);
   9856   EVT VT = N->getValueType(0);
   9857 
   9858   SmallVector<SDValue, 8> Ops;
   9859   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
   9860   unsigned Opcode;
   9861   if (N0.getOpcode() == ISD::SIGN_EXTEND)
   9862     Opcode = Intrinsic::arm_neon_vpaddls;
   9863   else
   9864     Opcode = Intrinsic::arm_neon_vpaddlu;
   9865   Ops.push_back(DAG.getConstant(Opcode, dl,
   9866                                 TLI.getPointerTy(DAG.getDataLayout())));
   9867   EVT ElemTy = N00.getValueType().getVectorElementType();
   9868   unsigned NumElts = VT.getVectorNumElements();
   9869   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
   9870   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
   9871                                N00.getOperand(0), N00.getOperand(1));
   9872   Ops.push_back(Concat);
   9873 
   9874   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
   9875 }
   9876 
   9877 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
   9878 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
   9879 // much easier to match.
   9880 static SDValue
   9881 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   9882                                TargetLowering::DAGCombinerInfo &DCI,
   9883                                const ARMSubtarget *Subtarget) {
   9884   // Only perform optimization if after legalize, and if NEON is available. We
   9885   // also expected both operands to be BUILD_VECTORs.
   9886   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   9887       || N0.getOpcode() != ISD::BUILD_VECTOR
   9888       || N1.getOpcode() != ISD::BUILD_VECTOR)
   9889     return SDValue();
   9890 
   9891   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   9892   EVT VT = N->getValueType(0);
   9893   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   9894     return SDValue();
   9895 
   9896   // Check that the vector operands are of the right form.
   9897   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   9898   // operands, where N is the size of the formed vector.
   9899   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   9900   // index such that we have a pair wise add pattern.
   9901 
   9902   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   9903   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   9904     return SDValue();
   9905   SDValue Vec = N0->getOperand(0)->getOperand(0);
   9906   SDNode *V = Vec.getNode();
   9907   unsigned nextIndex = 0;
   9908 
   9909   // For each operands to the ADD which are BUILD_VECTORs,
   9910   // check to see if each of their operands are an EXTRACT_VECTOR with
   9911   // the same vector and appropriate index.
   9912   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   9913     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   9914         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9915 
   9916       SDValue ExtVec0 = N0->getOperand(i);
   9917       SDValue ExtVec1 = N1->getOperand(i);
   9918 
   9919       // First operand is the vector, verify its the same.
   9920       if (V != ExtVec0->getOperand(0).getNode() ||
   9921           V != ExtVec1->getOperand(0).getNode())
   9922         return SDValue();
   9923 
   9924       // Second is the constant, verify its correct.
   9925       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   9926       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   9927 
   9928       // For the constant, we want to see all the even or all the odd.
   9929       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   9930           || C1->getZExtValue() != nextIndex+1)
   9931         return SDValue();
   9932 
   9933       // Increment index.
   9934       nextIndex+=2;
   9935     } else
   9936       return SDValue();
   9937   }
   9938 
   9939   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
   9940   // we're using the entire input vector, otherwise there's a size/legality
   9941   // mismatch somewhere.
   9942   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
   9943       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
   9944     return SDValue();
   9945 
   9946   // Create VPADDL node.
   9947   SelectionDAG &DAG = DCI.DAG;
   9948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9949 
   9950   SDLoc dl(N);
   9951 
   9952   // Build operand list.
   9953   SmallVector<SDValue, 8> Ops;
   9954   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
   9955                                 TLI.getPointerTy(DAG.getDataLayout())));
   9956 
   9957   // Input is the vector.
   9958   Ops.push_back(Vec);
   9959 
   9960   // Get widened type and narrowed type.
   9961   MVT widenType;
   9962   unsigned numElem = VT.getVectorNumElements();
   9963 
   9964   EVT inputLaneType = Vec.getValueType().getVectorElementType();
   9965   switch (inputLaneType.getSimpleVT().SimpleTy) {
   9966     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   9967     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   9968     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   9969     default:
   9970       llvm_unreachable("Invalid vector element type for padd optimization.");
   9971   }
   9972 
   9973   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
   9974   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
   9975   return DAG.getNode(ExtOp, dl, VT, tmp);
   9976 }
   9977 
   9978 static SDValue findMUL_LOHI(SDValue V) {
   9979   if (V->getOpcode() == ISD::UMUL_LOHI ||
   9980       V->getOpcode() == ISD::SMUL_LOHI)
   9981     return V;
   9982   return SDValue();
   9983 }
   9984 
   9985 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
   9986                                         TargetLowering::DAGCombinerInfo &DCI,
   9987                                         const ARMSubtarget *Subtarget) {
   9988   if (Subtarget->isThumb()) {
   9989     if (!Subtarget->hasDSP())
   9990       return SDValue();
   9991   } else if (!Subtarget->hasV5TEOps())
   9992     return SDValue();
   9993 
   9994   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
   9995   // accumulates the product into a 64-bit value. The 16-bit values will
   9996   // be sign extended somehow or SRA'd into 32-bit values
   9997   // (addc (adde (mul 16bit, 16bit), lo), hi)
   9998   SDValue Mul = AddcNode->getOperand(0);
   9999   SDValue Lo = AddcNode->getOperand(1);
   10000   if (Mul.getOpcode() != ISD::MUL) {
   10001     Lo = AddcNode->getOperand(0);
   10002     Mul = AddcNode->getOperand(1);
   10003     if (Mul.getOpcode() != ISD::MUL)
   10004       return SDValue();
   10005   }
   10006 
   10007   SDValue SRA = AddeNode->getOperand(0);
   10008   SDValue Hi = AddeNode->getOperand(1);
   10009   if (SRA.getOpcode() != ISD::SRA) {
   10010     SRA = AddeNode->getOperand(1);
   10011     Hi = AddeNode->getOperand(0);
   10012     if (SRA.getOpcode() != ISD::SRA)
   10013       return SDValue();
   10014   }
   10015   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
   10016     if (Const->getZExtValue() != 31)
   10017       return SDValue();
   10018   } else
   10019     return SDValue();
   10020 
   10021   if (SRA.getOperand(0) != Mul)
   10022     return SDValue();
   10023 
   10024   SelectionDAG &DAG = DCI.DAG;
   10025   SDLoc dl(AddcNode);
   10026   unsigned Opcode = 0;
   10027   SDValue Op0;
   10028   SDValue Op1;
   10029 
   10030   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
   10031     Opcode = ARMISD::SMLALBB;
   10032     Op0 = Mul.getOperand(0);
   10033     Op1 = Mul.getOperand(1);
   10034   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
   10035     Opcode = ARMISD::SMLALBT;
   10036     Op0 = Mul.getOperand(0);
   10037     Op1 = Mul.getOperand(1).getOperand(0);
   10038   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
   10039     Opcode = ARMISD::SMLALTB;
   10040     Op0 = Mul.getOperand(0).getOperand(0);
   10041     Op1 = Mul.getOperand(1);
   10042   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
   10043     Opcode = ARMISD::SMLALTT;
   10044     Op0 = Mul->getOperand(0).getOperand(0);
   10045     Op1 = Mul->getOperand(1).getOperand(0);
   10046   }
   10047 
   10048   if (!Op0 || !Op1)
   10049     return SDValue();
   10050 
   10051   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
   10052                               Op0, Op1, Lo, Hi);
   10053   // Replace the ADDs' nodes uses by the MLA node's values.
   10054   SDValue HiMLALResult(SMLAL.getNode(), 1);
   10055   SDValue LoMLALResult(SMLAL.getNode(), 0);
   10056 
   10057   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   10058   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   10059 
   10060   // Return original node to notify the driver to stop replacing.
   10061   SDValue resNode(AddcNode, 0);
   10062   return resNode;
   10063 }
   10064 
   10065 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
   10066                                      TargetLowering::DAGCombinerInfo &DCI,
   10067                                      const ARMSubtarget *Subtarget) {
   10068   // Look for multiply add opportunities.
   10069   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   10070   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   10071   // a glue link from the first add to the second add.
   10072   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   10073   // a S/UMLAL instruction.
   10074   //                  UMUL_LOHI
   10075   //                 / :lo    \ :hi
   10076   //                V          \          [no multiline comment]
   10077   //    loAdd ->  ADDC         |
   10078   //                 \ :carry /
   10079   //                  V      V
   10080   //                    ADDE   <- hiAdd
   10081   //
   10082   // In the special case where only the higher part of a signed result is used
   10083   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
   10084   // a constant with the exact value of 0x80000000, we recognize we are dealing
   10085   // with a "rounded multiply and add" (or subtract) and transform it into
   10086   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
   10087 
   10088   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
   10089           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
   10090          "Expect an ADDE or SUBE");
   10091 
   10092   assert(AddeSubeNode->getNumOperands() == 3 &&
   10093          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
   10094          "ADDE node has the wrong inputs");
   10095 
   10096   // Check that we are chained to the right ADDC or SUBC node.
   10097   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
   10098   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
   10099        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
   10100       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
   10101        AddcSubcNode->getOpcode() != ARMISD::SUBC))
   10102     return SDValue();
   10103 
   10104   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
   10105   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
   10106 
   10107   // Check if the two operands are from the same mul_lohi node.
   10108   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
   10109     return SDValue();
   10110 
   10111   assert(AddcSubcNode->getNumValues() == 2 &&
   10112          AddcSubcNode->getValueType(0) == MVT::i32 &&
   10113          "Expect ADDC with two result values. First: i32");
   10114 
   10115   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
   10116   // maybe a SMLAL which multiplies two 16-bit values.
   10117   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
   10118       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
   10119       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
   10120       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
   10121       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
   10122     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
   10123 
   10124   // Check for the triangle shape.
   10125   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
   10126   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
   10127 
   10128   // Make sure that the ADDE/SUBE operands are not coming from the same node.
   10129   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
   10130     return SDValue();
   10131 
   10132   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
   10133   bool IsLeftOperandMUL = false;
   10134   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
   10135   if (MULOp == SDValue())
   10136     MULOp = findMUL_LOHI(AddeSubeOp1);
   10137   else
   10138     IsLeftOperandMUL = true;
   10139   if (MULOp == SDValue())
   10140     return SDValue();
   10141 
   10142   // Figure out the right opcode.
   10143   unsigned Opc = MULOp->getOpcode();
   10144   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   10145 
   10146   // Figure out the high and low input values to the MLAL node.
   10147   SDValue *HiAddSub = nullptr;
   10148   SDValue *LoMul = nullptr;
   10149   SDValue *LowAddSub = nullptr;
   10150 
   10151   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
   10152   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
   10153     return SDValue();
   10154 
   10155   if (IsLeftOperandMUL)
   10156     HiAddSub = &AddeSubeOp1;
   10157   else
   10158     HiAddSub = &AddeSubeOp0;
   10159 
   10160   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
   10161   // whose low result is fed to the ADDC/SUBC we are checking.
   10162 
   10163   if (AddcSubcOp0 == MULOp.getValue(0)) {
   10164     LoMul = &AddcSubcOp0;
   10165     LowAddSub = &AddcSubcOp1;
   10166   }
   10167   if (AddcSubcOp1 == MULOp.getValue(0)) {
   10168     LoMul = &AddcSubcOp1;
   10169     LowAddSub = &AddcSubcOp0;
   10170   }
   10171 
   10172   if (!LoMul)
   10173     return SDValue();
   10174 
   10175   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
   10176   // the replacement below will create a cycle.
   10177   if (AddcSubcNode == HiAddSub->getNode() ||
   10178       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
   10179     return SDValue();
   10180 
   10181   // Create the merged node.
   10182   SelectionDAG &DAG = DCI.DAG;
   10183 
   10184   // Start building operand list.
   10185   SmallVector<SDValue, 8> Ops;
   10186   Ops.push_back(LoMul->getOperand(0));
   10187   Ops.push_back(LoMul->getOperand(1));
   10188 
   10189   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
   10190   // the case, we must be doing signed multiplication and only use the higher
   10191   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
   10192   // addition or subtraction with the value of 0x800000.
   10193   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
   10194       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
   10195       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
   10196       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
   10197           0x80000000) {
   10198     Ops.push_back(*HiAddSub);
   10199     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
   10200       FinalOpc = ARMISD::SMMLSR;
   10201     } else {
   10202       FinalOpc = ARMISD::SMMLAR;
   10203     }
   10204     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
   10205     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
   10206 
   10207     return SDValue(AddeSubeNode, 0);
   10208   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
   10209     // SMMLS is generated during instruction selection and the rest of this
   10210     // function can not handle the case where AddcSubcNode is a SUBC.
   10211     return SDValue();
   10212 
   10213   // Finish building the operand list for {U/S}MLAL
   10214   Ops.push_back(*LowAddSub);
   10215   Ops.push_back(*HiAddSub);
   10216 
   10217   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
   10218                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   10219 
   10220   // Replace the ADDs' nodes uses by the MLA node's values.
   10221   SDValue HiMLALResult(MLALNode.getNode(), 1);
   10222   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
   10223 
   10224   SDValue LoMLALResult(MLALNode.getNode(), 0);
   10225   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
   10226 
   10227   // Return original node to notify the driver to stop replacing.
   10228   return SDValue(AddeSubeNode, 0);
   10229 }
   10230 
   10231 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
   10232                                       TargetLowering::DAGCombinerInfo &DCI,
   10233                                       const ARMSubtarget *Subtarget) {
   10234   // UMAAL is similar to UMLAL except that it adds two unsigned values.
   10235   // While trying to combine for the other MLAL nodes, first search for the
   10236   // chance to use UMAAL. Check if Addc uses a node which has already
   10237   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
   10238   // as the addend, and it's handled in PerformUMLALCombine.
   10239 
   10240   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
   10241     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
   10242 
   10243   // Check that we have a glued ADDC node.
   10244   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
   10245   if (AddcNode->getOpcode() != ARMISD::ADDC)
   10246     return SDValue();
   10247 
   10248   // Find the converted UMAAL or quit if it doesn't exist.
   10249   SDNode *UmlalNode = nullptr;
   10250   SDValue AddHi;
   10251   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
   10252     UmlalNode = AddcNode->getOperand(0).getNode();
   10253     AddHi = AddcNode->getOperand(1);
   10254   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
   10255     UmlalNode = AddcNode->getOperand(1).getNode();
   10256     AddHi = AddcNode->getOperand(0);
   10257   } else {
   10258     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
   10259   }
   10260 
   10261   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
   10262   // the ADDC as well as Zero.
   10263   if (!isNullConstant(UmlalNode->getOperand(3)))
   10264     return SDValue();
   10265 
   10266   if ((isNullConstant(AddeNode->getOperand(0)) &&
   10267        AddeNode->getOperand(1).getNode() == UmlalNode) ||
   10268       (AddeNode->getOperand(0).getNode() == UmlalNode &&
   10269        isNullConstant(AddeNode->getOperand(1)))) {
   10270     SelectionDAG &DAG = DCI.DAG;
   10271     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
   10272                       UmlalNode->getOperand(2), AddHi };
   10273     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
   10274                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   10275 
   10276     // Replace the ADDs' nodes uses by the UMAAL node's values.
   10277     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
   10278     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
   10279 
   10280     // Return original node to notify the driver to stop replacing.
   10281     return SDValue(AddeNode, 0);
   10282   }
   10283   return SDValue();
   10284 }
   10285 
   10286 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
   10287                                    const ARMSubtarget *Subtarget) {
   10288   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
   10289     return SDValue();
   10290 
   10291   // Check that we have a pair of ADDC and ADDE as operands.
   10292   // Both addends of the ADDE must be zero.
   10293   SDNode* AddcNode = N->getOperand(2).getNode();
   10294   SDNode* AddeNode = N->getOperand(3).getNode();
   10295   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
   10296       (AddeNode->getOpcode() == ARMISD::ADDE) &&
   10297       isNullConstant(AddeNode->getOperand(0)) &&
   10298       isNullConstant(AddeNode->getOperand(1)) &&
   10299       (AddeNode->getOperand(2).getNode() == AddcNode))
   10300     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
   10301                        DAG.getVTList(MVT::i32, MVT::i32),
   10302                        {N->getOperand(0), N->getOperand(1),
   10303                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
   10304   else
   10305     return SDValue();
   10306 }
   10307 
   10308 static SDValue PerformAddcSubcCombine(SDNode *N,
   10309                                       TargetLowering::DAGCombinerInfo &DCI,
   10310                                       const ARMSubtarget *Subtarget) {
   10311   SelectionDAG &DAG(DCI.DAG);
   10312 
   10313   if (N->getOpcode() == ARMISD::SUBC) {
   10314     // (SUBC (ADDE 0, 0, C), 1) -> C
   10315     SDValue LHS = N->getOperand(0);
   10316     SDValue RHS = N->getOperand(1);
   10317     if (LHS->getOpcode() == ARMISD::ADDE &&
   10318         isNullConstant(LHS->getOperand(0)) &&
   10319         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
   10320       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
   10321     }
   10322   }
   10323 
   10324   if (Subtarget->isThumb1Only()) {
   10325     SDValue RHS = N->getOperand(1);
   10326     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
   10327       int32_t imm = C->getSExtValue();
   10328       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
   10329         SDLoc DL(N);
   10330         RHS = DAG.getConstant(-imm, DL, MVT::i32);
   10331         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
   10332                                                            : ARMISD::ADDC;
   10333         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
   10334       }
   10335     }
   10336   }
   10337 
   10338   return SDValue();
   10339 }
   10340 
   10341 static SDValue PerformAddeSubeCombine(SDNode *N,
   10342                                       TargetLowering::DAGCombinerInfo &DCI,
   10343                                       const ARMSubtarget *Subtarget) {
   10344   if (Subtarget->isThumb1Only()) {
   10345     SelectionDAG &DAG = DCI.DAG;
   10346     SDValue RHS = N->getOperand(1);
   10347     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
   10348       int64_t imm = C->getSExtValue();
   10349       if (imm < 0) {
   10350         SDLoc DL(N);
   10351 
   10352         // The with-carry-in form matches bitwise not instead of the negation.
   10353         // Effectively, the inverse interpretation of the carry flag already
   10354         // accounts for part of the negation.
   10355         RHS = DAG.getConstant(~imm, DL, MVT::i32);
   10356 
   10357         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
   10358                                                            : ARMISD::ADDE;
   10359         return DAG.getNode(Opcode, DL, N->getVTList(),
   10360                            N->getOperand(0), RHS, N->getOperand(2));
   10361       }
   10362     }
   10363   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
   10364     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
   10365   }
   10366   return SDValue();
   10367 }
   10368 
   10369 /// PerformADDECombine - Target-specific dag combine transform from
   10370 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
   10371 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
   10372 static SDValue PerformADDECombine(SDNode *N,
   10373                                   TargetLowering::DAGCombinerInfo &DCI,
   10374                                   const ARMSubtarget *Subtarget) {
   10375   // Only ARM and Thumb2 support UMLAL/SMLAL.
   10376   if (Subtarget->isThumb1Only())
   10377     return PerformAddeSubeCombine(N, DCI, Subtarget);
   10378 
   10379   // Only perform the checks after legalize when the pattern is available.
   10380   if (DCI.isBeforeLegalize()) return SDValue();
   10381 
   10382   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
   10383 }
   10384 
   10385 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   10386 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   10387 /// called with the default operands, and if that fails, with commuted
   10388 /// operands.
   10389 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   10390                                           TargetLowering::DAGCombinerInfo &DCI,
   10391                                           const ARMSubtarget *Subtarget){
   10392   // Attempt to create vpadd for this add.
   10393   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
   10394     return Result;
   10395 
   10396   // Attempt to create vpaddl for this add.
   10397   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
   10398     return Result;
   10399   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
   10400                                                       Subtarget))
   10401     return Result;
   10402 
   10403   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   10404   if (N0.getNode()->hasOneUse())
   10405     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
   10406       return Result;
   10407   return SDValue();
   10408 }
   10409 
   10410 static SDValue PerformSHLSimplify(SDNode *N,
   10411                                 TargetLowering::DAGCombinerInfo &DCI,
   10412                                 const ARMSubtarget *ST) {
   10413   // Allow the generic combiner to identify potential bswaps.
   10414   if (DCI.isBeforeLegalize())
   10415     return SDValue();
   10416 
   10417   // DAG combiner will fold:
   10418   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
   10419   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
   10420   // Other code patterns that can be also be modified have the following form:
   10421   // b + ((a << 1) | 510)
   10422   // b + ((a << 1) & 510)
   10423   // b + ((a << 1) ^ 510)
   10424   // b + ((a << 1) + 510)
   10425 
   10426   // Many instructions can  perform the shift for free, but it requires both
   10427   // the operands to be registers. If c1 << c2 is too large, a mov immediate
   10428   // instruction will needed. So, unfold back to the original pattern if:
   10429   // - if c1 and c2 are small enough that they don't require mov imms.
   10430   // - the user(s) of the node can perform an shl
   10431 
   10432   // No shifted operands for 16-bit instructions.
   10433   if (ST->isThumb() && ST->isThumb1Only())
   10434     return SDValue();
   10435 
   10436   // Check that all the users could perform the shl themselves.
   10437   for (auto U : N->uses()) {
   10438     switch(U->getOpcode()) {
   10439     default:
   10440       return SDValue();
   10441     case ISD::SUB:
   10442     case ISD::ADD:
   10443     case ISD::AND:
   10444     case ISD::OR:
   10445     case ISD::XOR:
   10446     case ISD::SETCC:
   10447     case ARMISD::CMP:
   10448       // Check that the user isn't already using a constant because there
   10449       // aren't any instructions that support an immediate operand and a
   10450       // shifted operand.
   10451       if (isa<ConstantSDNode>(U->getOperand(0)) ||
   10452           isa<ConstantSDNode>(U->getOperand(1)))
   10453         return SDValue();
   10454 
   10455       // Check that it's not already using a shift.
   10456       if (U->getOperand(0).getOpcode() == ISD::SHL ||
   10457           U->getOperand(1).getOpcode() == ISD::SHL)
   10458         return SDValue();
   10459       break;
   10460     }
   10461   }
   10462 
   10463   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
   10464       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
   10465     return SDValue();
   10466 
   10467   if (N->getOperand(0).getOpcode() != ISD::SHL)
   10468     return SDValue();
   10469 
   10470   SDValue SHL = N->getOperand(0);
   10471 
   10472   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
   10473   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
   10474   if (!C1ShlC2 || !C2)
   10475     return SDValue();
   10476 
   10477   APInt C2Int = C2->getAPIntValue();
   10478   APInt C1Int = C1ShlC2->getAPIntValue();
   10479 
   10480   // Check that performing a lshr will not lose any information.
   10481   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
   10482                                      C2Int.getBitWidth() - C2->getZExtValue());
   10483   if ((C1Int & Mask) != C1Int)
   10484     return SDValue();
   10485 
   10486   // Shift the first constant.
   10487   C1Int.lshrInPlace(C2Int);
   10488 
   10489   // The immediates are encoded as an 8-bit value that can be rotated.
   10490   auto LargeImm = [](const APInt &Imm) {
   10491     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
   10492     return Imm.getBitWidth() - Zeros > 8;
   10493   };
   10494 
   10495   if (LargeImm(C1Int) || LargeImm(C2Int))
   10496     return SDValue();
   10497 
   10498   SelectionDAG &DAG = DCI.DAG;
   10499   SDLoc dl(N);
   10500   SDValue X = SHL.getOperand(0);
   10501   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
   10502                               DAG.getConstant(C1Int, dl, MVT::i32));
   10503   // Shift left to compensate for the lshr of C1Int.
   10504   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
   10505 
   10506   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
   10507              SHL.dump(); N->dump());
   10508   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
   10509 
   10510   DAG.ReplaceAllUsesWith(SDValue(N, 0), Res);
   10511   return SDValue(N, 0);
   10512 }
   10513 
   10514 
   10515 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   10516 ///
   10517 static SDValue PerformADDCombine(SDNode *N,
   10518                                  TargetLowering::DAGCombinerInfo &DCI,
   10519                                  const ARMSubtarget *Subtarget) {
   10520   SDValue N0 = N->getOperand(0);
   10521   SDValue N1 = N->getOperand(1);
   10522 
   10523   // Only works one way, because it needs an immediate operand.
   10524   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
   10525     return Result;
   10526 
   10527   // First try with the default operand order.
   10528   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
   10529     return Result;
   10530 
   10531   // If that didn't work, try again with the operands commuted.
   10532   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   10533 }
   10534 
   10535 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   10536 ///
   10537 static SDValue PerformSUBCombine(SDNode *N,
   10538                                  TargetLowering::DAGCombinerInfo &DCI) {
   10539   SDValue N0 = N->getOperand(0);
   10540   SDValue N1 = N->getOperand(1);
   10541 
   10542   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   10543   if (N1.getNode()->hasOneUse())
   10544     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
   10545       return Result;
   10546 
   10547   return SDValue();
   10548 }
   10549 
   10550 /// PerformVMULCombine
   10551 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   10552 /// special multiplier accumulator forwarding.
   10553 ///   vmul d3, d0, d2
   10554 ///   vmla d3, d1, d2
   10555 /// is faster than
   10556 ///   vadd d3, d0, d1
   10557 ///   vmul d3, d3, d2
   10558 //  However, for (A + B) * (A + B),
   10559 //    vadd d2, d0, d1
   10560 //    vmul d3, d0, d2
   10561 //    vmla d3, d1, d2
   10562 //  is slower than
   10563 //    vadd d2, d0, d1
   10564 //    vmul d3, d2, d2
   10565 static SDValue PerformVMULCombine(SDNode *N,
   10566                                   TargetLowering::DAGCombinerInfo &DCI,
   10567                                   const ARMSubtarget *Subtarget) {
   10568   if (!Subtarget->hasVMLxForwarding())
   10569     return SDValue();
   10570 
   10571   SelectionDAG &DAG = DCI.DAG;
   10572   SDValue N0 = N->getOperand(0);
   10573   SDValue N1 = N->getOperand(1);
   10574   unsigned Opcode = N0.getOpcode();
   10575   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   10576       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   10577     Opcode = N1.getOpcode();
   10578     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   10579         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   10580       return SDValue();
   10581     std::swap(N0, N1);
   10582   }
   10583 
   10584   if (N0 == N1)
   10585     return SDValue();
   10586 
   10587   EVT VT = N->getValueType(0);
   10588   SDLoc DL(N);
   10589   SDValue N00 = N0->getOperand(0);
   10590   SDValue N01 = N0->getOperand(1);
   10591   return DAG.getNode(Opcode, DL, VT,
   10592                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   10593                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   10594 }
   10595 
   10596 static SDValue PerformMULCombine(SDNode *N,
   10597                                  TargetLowering::DAGCombinerInfo &DCI,
   10598                                  const ARMSubtarget *Subtarget) {
   10599   SelectionDAG &DAG = DCI.DAG;
   10600 
   10601   if (Subtarget->isThumb1Only())
   10602     return SDValue();
   10603 
   10604   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   10605     return SDValue();
   10606 
   10607   EVT VT = N->getValueType(0);
   10608   if (VT.is64BitVector() || VT.is128BitVector())
   10609     return PerformVMULCombine(N, DCI, Subtarget);
   10610   if (VT != MVT::i32)
   10611     return SDValue();
   10612 
   10613   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   10614   if (!C)
   10615     return SDValue();
   10616 
   10617   int64_t MulAmt = C->getSExtValue();
   10618   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
   10619 
   10620   ShiftAmt = ShiftAmt & (32 - 1);
   10621   SDValue V = N->getOperand(0);
   10622   SDLoc DL(N);
   10623 
   10624   SDValue Res;
   10625   MulAmt >>= ShiftAmt;
   10626 
   10627   if (MulAmt >= 0) {
   10628     if (isPowerOf2_32(MulAmt - 1)) {
   10629       // (mul x, 2^N + 1) => (add (shl x, N), x)
   10630       Res = DAG.getNode(ISD::ADD, DL, VT,
   10631                         V,
   10632                         DAG.getNode(ISD::SHL, DL, VT,
   10633                                     V,
   10634                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
   10635                                                     MVT::i32)));
   10636     } else if (isPowerOf2_32(MulAmt + 1)) {
   10637       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   10638       Res = DAG.getNode(ISD::SUB, DL, VT,
   10639                         DAG.getNode(ISD::SHL, DL, VT,
   10640                                     V,
   10641                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
   10642                                                     MVT::i32)),
   10643                         V);
   10644     } else
   10645       return SDValue();
   10646   } else {
   10647     uint64_t MulAmtAbs = -MulAmt;
   10648     if (isPowerOf2_32(MulAmtAbs + 1)) {
   10649       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   10650       Res = DAG.getNode(ISD::SUB, DL, VT,
   10651                         V,
   10652                         DAG.getNode(ISD::SHL, DL, VT,
   10653                                     V,
   10654                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
   10655                                                     MVT::i32)));
   10656     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   10657       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   10658       Res = DAG.getNode(ISD::ADD, DL, VT,
   10659                         V,
   10660                         DAG.getNode(ISD::SHL, DL, VT,
   10661                                     V,
   10662                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
   10663                                                     MVT::i32)));
   10664       Res = DAG.getNode(ISD::SUB, DL, VT,
   10665                         DAG.getConstant(0, DL, MVT::i32), Res);
   10666     } else
   10667       return SDValue();
   10668   }
   10669 
   10670   if (ShiftAmt != 0)
   10671     Res = DAG.getNode(ISD::SHL, DL, VT,
   10672                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
   10673 
   10674   // Do not add new nodes to DAG combiner worklist.
   10675   DCI.CombineTo(N, Res, false);
   10676   return SDValue();
   10677 }
   10678 
   10679 static SDValue CombineANDShift(SDNode *N,
   10680                                TargetLowering::DAGCombinerInfo &DCI,
   10681                                const ARMSubtarget *Subtarget) {
   10682   // Allow DAGCombine to pattern-match before we touch the canonical form.
   10683   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   10684     return SDValue();
   10685 
   10686   if (N->getValueType(0) != MVT::i32)
   10687     return SDValue();
   10688 
   10689   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   10690   if (!N1C)
   10691     return SDValue();
   10692 
   10693   uint32_t C1 = (uint32_t)N1C->getZExtValue();
   10694   // Don't transform uxtb/uxth.
   10695   if (C1 == 255 || C1 == 65535)
   10696     return SDValue();
   10697 
   10698   SDNode *N0 = N->getOperand(0).getNode();
   10699   if (!N0->hasOneUse())
   10700     return SDValue();
   10701 
   10702   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
   10703     return SDValue();
   10704 
   10705   bool LeftShift = N0->getOpcode() == ISD::SHL;
   10706 
   10707   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
   10708   if (!N01C)
   10709     return SDValue();
   10710 
   10711   uint32_t C2 = (uint32_t)N01C->getZExtValue();
   10712   if (!C2 || C2 >= 32)
   10713     return SDValue();
   10714 
   10715   SelectionDAG &DAG = DCI.DAG;
   10716   SDLoc DL(N);
   10717 
   10718   // We have a pattern of the form "(and (shl x, c2) c1)" or
   10719   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
   10720   // transform to a pair of shifts, to save materializing c1.
   10721 
   10722   // First pattern: right shift, and c1+1 is a power of two.
   10723   // FIXME: Also check reversed pattern (left shift, and ~c1+1 is a power
   10724   // of two).
   10725   // FIXME: Use demanded bits?
   10726   if (!LeftShift && isMask_32(C1)) {
   10727     uint32_t C3 = countLeadingZeros(C1);
   10728     if (C2 < C3) {
   10729       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
   10730                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
   10731       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
   10732                          DAG.getConstant(C3, DL, MVT::i32));
   10733     }
   10734   }
   10735 
   10736   // Second pattern: left shift, and (c1>>c2)+1 is a power of two.
   10737   // FIXME: Also check reversed pattern (right shift, and ~(c1<<c2)+1
   10738   // is a power of two).
   10739   // FIXME: Use demanded bits?
   10740   if (LeftShift && isShiftedMask_32(C1)) {
   10741     uint32_t C3 = countLeadingZeros(C1);
   10742     if (C2 + C3 < 32 && C1 == ((-1U << (C2 + C3)) >> C3)) {
   10743       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
   10744                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
   10745       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
   10746                         DAG.getConstant(C3, DL, MVT::i32));
   10747     }
   10748   }
   10749 
   10750   // FIXME: Transform "(and (shl x, c2) c1)" ->
   10751   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
   10752   // c1.
   10753   return SDValue();
   10754 }
   10755 
   10756 static SDValue PerformANDCombine(SDNode *N,
   10757                                  TargetLowering::DAGCombinerInfo &DCI,
   10758                                  const ARMSubtarget *Subtarget) {
   10759   // Attempt to use immediate-form VBIC
   10760   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   10761   SDLoc dl(N);
   10762   EVT VT = N->getValueType(0);
   10763   SelectionDAG &DAG = DCI.DAG;
   10764 
   10765   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   10766     return SDValue();
   10767 
   10768   APInt SplatBits, SplatUndef;
   10769   unsigned SplatBitSize;
   10770   bool HasAnyUndefs;
   10771   if (BVN &&
   10772       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   10773     if (SplatBitSize <= 64) {
   10774       EVT VbicVT;
   10775       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   10776                                       SplatUndef.getZExtValue(), SplatBitSize,
   10777                                       DAG, dl, VbicVT, VT.is128BitVector(),
   10778                                       OtherModImm);
   10779       if (Val.getNode()) {
   10780         SDValue Input =
   10781           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   10782         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   10783         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   10784       }
   10785     }
   10786   }
   10787 
   10788   if (!Subtarget->isThumb1Only()) {
   10789     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   10790     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
   10791       return Result;
   10792 
   10793     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
   10794       return Result;
   10795   }
   10796 
   10797   if (Subtarget->isThumb1Only())
   10798     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
   10799       return Result;
   10800 
   10801   return SDValue();
   10802 }
   10803 
   10804 // Try combining OR nodes to SMULWB, SMULWT.
   10805 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
   10806                                          TargetLowering::DAGCombinerInfo &DCI,
   10807                                          const ARMSubtarget *Subtarget) {
   10808   if (!Subtarget->hasV6Ops() ||
   10809       (Subtarget->isThumb() &&
   10810        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
   10811     return SDValue();
   10812 
   10813   SDValue SRL = OR->getOperand(0);
   10814   SDValue SHL = OR->getOperand(1);
   10815 
   10816   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
   10817     SRL = OR->getOperand(1);
   10818     SHL = OR->getOperand(0);
   10819   }
   10820   if (!isSRL16(SRL) || !isSHL16(SHL))
   10821     return SDValue();
   10822 
   10823   // The first operands to the shifts need to be the two results from the
   10824   // same smul_lohi node.
   10825   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
   10826        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
   10827     return SDValue();
   10828 
   10829   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
   10830   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
   10831       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
   10832     return SDValue();
   10833 
   10834   // Now we have:
   10835   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
   10836   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
   10837   // For SMUWB the 16-bit value will signed extended somehow.
   10838   // For SMULWT only the SRA is required.
   10839   // Check both sides of SMUL_LOHI
   10840   SDValue OpS16 = SMULLOHI->getOperand(0);
   10841   SDValue OpS32 = SMULLOHI->getOperand(1);
   10842 
   10843   SelectionDAG &DAG = DCI.DAG;
   10844   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
   10845     OpS16 = OpS32;
   10846     OpS32 = SMULLOHI->getOperand(0);
   10847   }
   10848 
   10849   SDLoc dl(OR);
   10850   unsigned Opcode = 0;
   10851   if (isS16(OpS16, DAG))
   10852     Opcode = ARMISD::SMULWB;
   10853   else if (isSRA16(OpS16)) {
   10854     Opcode = ARMISD::SMULWT;
   10855     OpS16 = OpS16->getOperand(0);
   10856   }
   10857   else
   10858     return SDValue();
   10859 
   10860   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
   10861   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
   10862   return SDValue(OR, 0);
   10863 }
   10864 
   10865 static SDValue PerformORCombineToBFI(SDNode *N,
   10866                                      TargetLowering::DAGCombinerInfo &DCI,
   10867                                      const ARMSubtarget *Subtarget) {
   10868   // BFI is only available on V6T2+
   10869   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   10870     return SDValue();
   10871 
   10872   EVT VT = N->getValueType(0);
   10873   SDValue N0 = N->getOperand(0);
   10874   SDValue N1 = N->getOperand(1);
   10875   SelectionDAG &DAG = DCI.DAG;
   10876   SDLoc DL(N);
   10877   // 1) or (and A, mask), val => ARMbfi A, val, mask
   10878   //      iff (val & mask) == val
   10879   //
   10880   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   10881   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   10882   //          && mask == ~mask2
   10883   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   10884   //          && ~mask == mask2
   10885   //  (i.e., copy a bitfield value into another bitfield of the same width)
   10886 
   10887   if (VT != MVT::i32)
   10888     return SDValue();
   10889 
   10890   SDValue N00 = N0.getOperand(0);
   10891 
   10892   // The value and the mask need to be constants so we can verify this is
   10893   // actually a bitfield set. If the mask is 0xffff, we can do better
   10894   // via a movt instruction, so don't use BFI in that case.
   10895   SDValue MaskOp = N0.getOperand(1);
   10896   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   10897   if (!MaskC)
   10898     return SDValue();
   10899   unsigned Mask = MaskC->getZExtValue();
   10900   if (Mask == 0xffff)
   10901     return SDValue();
   10902   SDValue Res;
   10903   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   10904   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   10905   if (N1C) {
   10906     unsigned Val = N1C->getZExtValue();
   10907     if ((Val & ~Mask) != Val)
   10908       return SDValue();
   10909 
   10910     if (ARM::isBitFieldInvertedMask(Mask)) {
   10911       Val >>= countTrailingZeros(~Mask);
   10912 
   10913       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   10914                         DAG.getConstant(Val, DL, MVT::i32),
   10915                         DAG.getConstant(Mask, DL, MVT::i32));
   10916 
   10917       DCI.CombineTo(N, Res, false);
   10918       // Return value from the original node to inform the combiner than N is
   10919       // now dead.
   10920       return SDValue(N, 0);
   10921     }
   10922   } else if (N1.getOpcode() == ISD::AND) {
   10923     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   10924     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   10925     if (!N11C)
   10926       return SDValue();
   10927     unsigned Mask2 = N11C->getZExtValue();
   10928 
   10929     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   10930     // as is to match.
   10931     if (ARM::isBitFieldInvertedMask(Mask) &&
   10932         (Mask == ~Mask2)) {
   10933       // The pack halfword instruction works better for masks that fit it,
   10934       // so use that when it's available.
   10935       if (Subtarget->hasDSP() &&
   10936           (Mask == 0xffff || Mask == 0xffff0000))
   10937         return SDValue();
   10938       // 2a
   10939       unsigned amt = countTrailingZeros(Mask2);
   10940       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   10941                         DAG.getConstant(amt, DL, MVT::i32));
   10942       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   10943                         DAG.getConstant(Mask, DL, MVT::i32));
   10944       DCI.CombineTo(N, Res, false);
   10945       // Return value from the original node to inform the combiner than N is
   10946       // now dead.
   10947       return SDValue(N, 0);
   10948     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   10949                (~Mask == Mask2)) {
   10950       // The pack halfword instruction works better for masks that fit it,
   10951       // so use that when it's available.
   10952       if (Subtarget->hasDSP() &&
   10953           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   10954         return SDValue();
   10955       // 2b
   10956       unsigned lsb = countTrailingZeros(Mask);
   10957       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   10958                         DAG.getConstant(lsb, DL, MVT::i32));
   10959       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   10960                         DAG.getConstant(Mask2, DL, MVT::i32));
   10961       DCI.CombineTo(N, Res, false);
   10962       // Return value from the original node to inform the combiner than N is
   10963       // now dead.
   10964       return SDValue(N, 0);
   10965     }
   10966   }
   10967 
   10968   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   10969       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   10970       ARM::isBitFieldInvertedMask(~Mask)) {
   10971     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   10972     // where lsb(mask) == #shamt and masked bits of B are known zero.
   10973     SDValue ShAmt = N00.getOperand(1);
   10974     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   10975     unsigned LSB = countTrailingZeros(Mask);
   10976     if (ShAmtC != LSB)
   10977       return SDValue();
   10978 
   10979     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   10980                       DAG.getConstant(~Mask, DL, MVT::i32));
   10981 
   10982     DCI.CombineTo(N, Res, false);
   10983     // Return value from the original node to inform the combiner than N is
   10984     // now dead.
   10985     return SDValue(N, 0);
   10986   }
   10987 
   10988   return SDValue();
   10989 }
   10990 
   10991 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   10992 static SDValue PerformORCombine(SDNode *N,
   10993                                 TargetLowering::DAGCombinerInfo &DCI,
   10994                                 const ARMSubtarget *Subtarget) {
   10995   // Attempt to use immediate-form VORR
   10996   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   10997   SDLoc dl(N);
   10998   EVT VT = N->getValueType(0);
   10999   SelectionDAG &DAG = DCI.DAG;
   11000 
   11001   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   11002     return SDValue();
   11003 
   11004   APInt SplatBits, SplatUndef;
   11005   unsigned SplatBitSize;
   11006   bool HasAnyUndefs;
   11007   if (BVN && Subtarget->hasNEON() &&
   11008       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   11009     if (SplatBitSize <= 64) {
   11010       EVT VorrVT;
   11011       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   11012                                       SplatUndef.getZExtValue(), SplatBitSize,
   11013                                       DAG, dl, VorrVT, VT.is128BitVector(),
   11014                                       OtherModImm);
   11015       if (Val.getNode()) {
   11016         SDValue Input =
   11017           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   11018         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   11019         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   11020       }
   11021     }
   11022   }
   11023 
   11024   if (!Subtarget->isThumb1Only()) {
   11025     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   11026     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
   11027       return Result;
   11028     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
   11029       return Result;
   11030   }
   11031 
   11032   SDValue N0 = N->getOperand(0);
   11033   SDValue N1 = N->getOperand(1);
   11034 
   11035   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   11036   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   11037       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   11038 
   11039     // The code below optimizes (or (and X, Y), Z).
   11040     // The AND operand needs to have a single user to make these optimizations
   11041     // profitable.
   11042     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   11043       return SDValue();
   11044 
   11045     APInt SplatUndef;
   11046     unsigned SplatBitSize;
   11047     bool HasAnyUndefs;
   11048 
   11049     APInt SplatBits0, SplatBits1;
   11050     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   11051     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   11052     // Ensure that the second operand of both ands are constants
   11053     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   11054                                       HasAnyUndefs) && !HasAnyUndefs) {
   11055         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   11056                                           HasAnyUndefs) && !HasAnyUndefs) {
   11057             // Ensure that the bit width of the constants are the same and that
   11058             // the splat arguments are logical inverses as per the pattern we
   11059             // are trying to simplify.
   11060             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
   11061                 SplatBits0 == ~SplatBits1) {
   11062                 // Canonicalize the vector type to make instruction selection
   11063                 // simpler.
   11064                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   11065                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   11066                                              N0->getOperand(1),
   11067                                              N0->getOperand(0),
   11068                                              N1->getOperand(0));
   11069                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   11070             }
   11071         }
   11072     }
   11073   }
   11074 
   11075   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   11076   // reasonable.
   11077   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   11078     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
   11079       return Res;
   11080   }
   11081 
   11082   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
   11083     return Result;
   11084 
   11085   return SDValue();
   11086 }
   11087 
   11088 static SDValue PerformXORCombine(SDNode *N,
   11089                                  TargetLowering::DAGCombinerInfo &DCI,
   11090                                  const ARMSubtarget *Subtarget) {
   11091   EVT VT = N->getValueType(0);
   11092   SelectionDAG &DAG = DCI.DAG;
   11093 
   11094   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   11095     return SDValue();
   11096 
   11097   if (!Subtarget->isThumb1Only()) {
   11098     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   11099     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
   11100       return Result;
   11101 
   11102     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
   11103       return Result;
   11104   }
   11105 
   11106   return SDValue();
   11107 }
   11108 
   11109 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
   11110 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
   11111 // their position in "to" (Rd).
   11112 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
   11113   assert(N->getOpcode() == ARMISD::BFI);
   11114 
   11115   SDValue From = N->getOperand(1);
   11116   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
   11117   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
   11118 
   11119   // If the Base came from a SHR #C, we can deduce that it is really testing bit
   11120   // #C in the base of the SHR.
   11121   if (From->getOpcode() == ISD::SRL &&
   11122       isa<ConstantSDNode>(From->getOperand(1))) {
   11123     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
   11124     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
   11125     FromMask <<= Shift.getLimitedValue(31);
   11126     From = From->getOperand(0);
   11127   }
   11128 
   11129   return From;
   11130 }
   11131 
   11132 // If A and B contain one contiguous set of bits, does A | B == A . B?
   11133 //
   11134 // Neither A nor B must be zero.
   11135 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
   11136   unsigned LastActiveBitInA =  A.countTrailingZeros();
   11137   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
   11138   return LastActiveBitInA - 1 == FirstActiveBitInB;
   11139 }
   11140 
   11141 static SDValue FindBFIToCombineWith(SDNode *N) {
   11142   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
   11143   // if one exists.
   11144   APInt ToMask, FromMask;
   11145   SDValue From = ParseBFI(N, ToMask, FromMask);
   11146   SDValue To = N->getOperand(0);
   11147 
   11148   // Now check for a compatible BFI to merge with. We can pass through BFIs that
   11149   // aren't compatible, but not if they set the same bit in their destination as
   11150   // we do (or that of any BFI we're going to combine with).
   11151   SDValue V = To;
   11152   APInt CombinedToMask = ToMask;
   11153   while (V.getOpcode() == ARMISD::BFI) {
   11154     APInt NewToMask, NewFromMask;
   11155     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
   11156     if (NewFrom != From) {
   11157       // This BFI has a different base. Keep going.
   11158       CombinedToMask |= NewToMask;
   11159       V = V.getOperand(0);
   11160       continue;
   11161     }
   11162 
   11163     // Do the written bits conflict with any we've seen so far?
   11164     if ((NewToMask & CombinedToMask).getBoolValue())
   11165       // Conflicting bits - bail out because going further is unsafe.
   11166       return SDValue();
   11167 
   11168     // Are the new bits contiguous when combined with the old bits?
   11169     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
   11170         BitsProperlyConcatenate(FromMask, NewFromMask))
   11171       return V;
   11172     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
   11173         BitsProperlyConcatenate(NewFromMask, FromMask))
   11174       return V;
   11175 
   11176     // We've seen a write to some bits, so track it.
   11177     CombinedToMask |= NewToMask;
   11178     // Keep going...
   11179     V = V.getOperand(0);
   11180   }
   11181 
   11182   return SDValue();
   11183 }
   11184 
   11185 static SDValue PerformBFICombine(SDNode *N,
   11186                                  TargetLowering::DAGCombinerInfo &DCI) {
   11187   SDValue N1 = N->getOperand(1);
   11188   if (N1.getOpcode() == ISD::AND) {
   11189     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   11190     // the bits being cleared by the AND are not demanded by the BFI.
   11191     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   11192     if (!N11C)
   11193       return SDValue();
   11194     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   11195     unsigned LSB = countTrailingZeros(~InvMask);
   11196     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
   11197     assert(Width <
   11198                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   11199            "undefined behavior");
   11200     unsigned Mask = (1u << Width) - 1;
   11201     unsigned Mask2 = N11C->getZExtValue();
   11202     if ((Mask & (~Mask2)) == 0)
   11203       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
   11204                              N->getOperand(0), N1.getOperand(0),
   11205                              N->getOperand(2));
   11206   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
   11207     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
   11208     // Keep track of any consecutive bits set that all come from the same base
   11209     // value. We can combine these together into a single BFI.
   11210     SDValue CombineBFI = FindBFIToCombineWith(N);
   11211     if (CombineBFI == SDValue())
   11212       return SDValue();
   11213 
   11214     // We've found a BFI.
   11215     APInt ToMask1, FromMask1;
   11216     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
   11217 
   11218     APInt ToMask2, FromMask2;
   11219     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
   11220     assert(From1 == From2);
   11221     (void)From2;
   11222 
   11223     // First, unlink CombineBFI.
   11224     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
   11225     // Then create a new BFI, combining the two together.
   11226     APInt NewFromMask = FromMask1 | FromMask2;
   11227     APInt NewToMask = ToMask1 | ToMask2;
   11228 
   11229     EVT VT = N->getValueType(0);
   11230     SDLoc dl(N);
   11231 
   11232     if (NewFromMask[0] == 0)
   11233       From1 = DCI.DAG.getNode(
   11234         ISD::SRL, dl, VT, From1,
   11235         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
   11236     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
   11237                            DCI.DAG.getConstant(~NewToMask, dl, VT));
   11238   }
   11239   return SDValue();
   11240 }
   11241 
   11242 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   11243 /// ARMISD::VMOVRRD.
   11244 static SDValue PerformVMOVRRDCombine(SDNode *N,
   11245                                      TargetLowering::DAGCombinerInfo &DCI,
   11246                                      const ARMSubtarget *Subtarget) {
   11247   // vmovrrd(vmovdrr x, y) -> x,y
   11248   SDValue InDouble = N->getOperand(0);
   11249   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
   11250     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   11251 
   11252   // vmovrrd(load f64) -> (load i32), (load i32)
   11253   SDNode *InNode = InDouble.getNode();
   11254   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   11255       InNode->getValueType(0) == MVT::f64 &&
   11256       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   11257       !cast<LoadSDNode>(InNode)->isVolatile()) {
   11258     // TODO: Should this be done for non-FrameIndex operands?
   11259     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   11260 
   11261     SelectionDAG &DAG = DCI.DAG;
   11262     SDLoc DL(LD);
   11263     SDValue BasePtr = LD->getBasePtr();
   11264     SDValue NewLD1 =
   11265         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
   11266                     LD->getAlignment(), LD->getMemOperand()->getFlags());
   11267 
   11268     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   11269                                     DAG.getConstant(4, DL, MVT::i32));
   11270     SDValue NewLD2 = DAG.getLoad(
   11271         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
   11272         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
   11273 
   11274     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   11275     if (DCI.DAG.getDataLayout().isBigEndian())
   11276       std::swap (NewLD1, NewLD2);
   11277     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   11278     return Result;
   11279   }
   11280 
   11281   return SDValue();
   11282 }
   11283 
   11284 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   11285 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   11286 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   11287   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   11288   SDValue Op0 = N->getOperand(0);
   11289   SDValue Op1 = N->getOperand(1);
   11290   if (Op0.getOpcode() == ISD::BITCAST)
   11291     Op0 = Op0.getOperand(0);
   11292   if (Op1.getOpcode() == ISD::BITCAST)
   11293     Op1 = Op1.getOperand(0);
   11294   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   11295       Op0.getNode() == Op1.getNode() &&
   11296       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   11297     return DAG.getNode(ISD::BITCAST, SDLoc(N),
   11298                        N->getValueType(0), Op0.getOperand(0));
   11299   return SDValue();
   11300 }
   11301 
   11302 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   11303 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   11304 /// i64 vector to have f64 elements, since the value can then be loaded
   11305 /// directly into a VFP register.
   11306 static bool hasNormalLoadOperand(SDNode *N) {
   11307   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   11308   for (unsigned i = 0; i < NumElts; ++i) {
   11309     SDNode *Elt = N->getOperand(i).getNode();
   11310     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   11311       return true;
   11312   }
   11313   return false;
   11314 }
   11315 
   11316 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   11317 /// ISD::BUILD_VECTOR.
   11318 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   11319                                           TargetLowering::DAGCombinerInfo &DCI,
   11320                                           const ARMSubtarget *Subtarget) {
   11321   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   11322   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   11323   // into a pair of GPRs, which is fine when the value is used as a scalar,
   11324   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   11325   SelectionDAG &DAG = DCI.DAG;
   11326   if (N->getNumOperands() == 2)
   11327     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
   11328       return RV;
   11329 
   11330   // Load i64 elements as f64 values so that type legalization does not split
   11331   // them up into i32 values.
   11332   EVT VT = N->getValueType(0);
   11333   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   11334     return SDValue();
   11335   SDLoc dl(N);
   11336   SmallVector<SDValue, 8> Ops;
   11337   unsigned NumElts = VT.getVectorNumElements();
   11338   for (unsigned i = 0; i < NumElts; ++i) {
   11339     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   11340     Ops.push_back(V);
   11341     // Make the DAGCombiner fold the bitcast.
   11342     DCI.AddToWorklist(V.getNode());
   11343   }
   11344   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   11345   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
   11346   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   11347 }
   11348 
   11349 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
   11350 static SDValue
   11351 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   11352   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
   11353   // At that time, we may have inserted bitcasts from integer to float.
   11354   // If these bitcasts have survived DAGCombine, change the lowering of this
   11355   // BUILD_VECTOR in something more vector friendly, i.e., that does not
   11356   // force to use floating point types.
   11357 
   11358   // Make sure we can change the type of the vector.
   11359   // This is possible iff:
   11360   // 1. The vector is only used in a bitcast to a integer type. I.e.,
   11361   //    1.1. Vector is used only once.
   11362   //    1.2. Use is a bit convert to an integer type.
   11363   // 2. The size of its operands are 32-bits (64-bits are not legal).
   11364   EVT VT = N->getValueType(0);
   11365   EVT EltVT = VT.getVectorElementType();
   11366 
   11367   // Check 1.1. and 2.
   11368   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
   11369     return SDValue();
   11370 
   11371   // By construction, the input type must be float.
   11372   assert(EltVT == MVT::f32 && "Unexpected type!");
   11373 
   11374   // Check 1.2.
   11375   SDNode *Use = *N->use_begin();
   11376   if (Use->getOpcode() != ISD::BITCAST ||
   11377       Use->getValueType(0).isFloatingPoint())
   11378     return SDValue();
   11379 
   11380   // Check profitability.
   11381   // Model is, if more than half of the relevant operands are bitcast from
   11382   // i32, turn the build_vector into a sequence of insert_vector_elt.
   11383   // Relevant operands are everything that is not statically
   11384   // (i.e., at compile time) bitcasted.
   11385   unsigned NumOfBitCastedElts = 0;
   11386   unsigned NumElts = VT.getVectorNumElements();
   11387   unsigned NumOfRelevantElts = NumElts;
   11388   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
   11389     SDValue Elt = N->getOperand(Idx);
   11390     if (Elt->getOpcode() == ISD::BITCAST) {
   11391       // Assume only bit cast to i32 will go away.
   11392       if (Elt->getOperand(0).getValueType() == MVT::i32)
   11393         ++NumOfBitCastedElts;
   11394     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
   11395       // Constants are statically casted, thus do not count them as
   11396       // relevant operands.
   11397       --NumOfRelevantElts;
   11398   }
   11399 
   11400   // Check if more than half of the elements require a non-free bitcast.
   11401   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
   11402     return SDValue();
   11403 
   11404   SelectionDAG &DAG = DCI.DAG;
   11405   // Create the new vector type.
   11406   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   11407   // Check if the type is legal.
   11408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   11409   if (!TLI.isTypeLegal(VecVT))
   11410     return SDValue();
   11411 
   11412   // Combine:
   11413   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
   11414   // => BITCAST INSERT_VECTOR_ELT
   11415   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
   11416   //                      (BITCAST EN), N.
   11417   SDValue Vec = DAG.getUNDEF(VecVT);
   11418   SDLoc dl(N);
   11419   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
   11420     SDValue V = N->getOperand(Idx);
   11421     if (V.isUndef())
   11422       continue;
   11423     if (V.getOpcode() == ISD::BITCAST &&
   11424         V->getOperand(0).getValueType() == MVT::i32)
   11425       // Fold obvious case.
   11426       V = V.getOperand(0);
   11427     else {
   11428       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
   11429       // Make the DAGCombiner fold the bitcasts.
   11430       DCI.AddToWorklist(V.getNode());
   11431     }
   11432     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
   11433     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
   11434   }
   11435   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   11436   // Make the DAGCombiner fold the bitcasts.
   11437   DCI.AddToWorklist(Vec.getNode());
   11438   return Vec;
   11439 }
   11440 
   11441 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   11442 /// ISD::INSERT_VECTOR_ELT.
   11443 static SDValue PerformInsertEltCombine(SDNode *N,
   11444                                        TargetLowering::DAGCombinerInfo &DCI) {
   11445   // Bitcast an i64 load inserted into a vector to f64.
   11446   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   11447   EVT VT = N->getValueType(0);
   11448   SDNode *Elt = N->getOperand(1).getNode();
   11449   if (VT.getVectorElementType() != MVT::i64 ||
   11450       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   11451     return SDValue();
   11452 
   11453   SelectionDAG &DAG = DCI.DAG;
   11454   SDLoc dl(N);
   11455   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   11456                                  VT.getVectorNumElements());
   11457   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   11458   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   11459   // Make the DAGCombiner fold the bitcasts.
   11460   DCI.AddToWorklist(Vec.getNode());
   11461   DCI.AddToWorklist(V.getNode());
   11462   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   11463                                Vec, V, N->getOperand(2));
   11464   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   11465 }
   11466 
   11467 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   11468 /// ISD::VECTOR_SHUFFLE.
   11469 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   11470   // The LLVM shufflevector instruction does not require the shuffle mask
   11471   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   11472   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   11473   // operands do not match the mask length, they are extended by concatenating
   11474   // them with undef vectors.  That is probably the right thing for other
   11475   // targets, but for NEON it is better to concatenate two double-register
   11476   // size vector operands into a single quad-register size vector.  Do that
   11477   // transformation here:
   11478   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   11479   //   shuffle(concat(v1, v2), undef)
   11480   SDValue Op0 = N->getOperand(0);
   11481   SDValue Op1 = N->getOperand(1);
   11482   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   11483       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   11484       Op0.getNumOperands() != 2 ||
   11485       Op1.getNumOperands() != 2)
   11486     return SDValue();
   11487   SDValue Concat0Op1 = Op0.getOperand(1);
   11488   SDValue Concat1Op1 = Op1.getOperand(1);
   11489   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
   11490     return SDValue();
   11491   // Skip the transformation if any of the types are illegal.
   11492   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   11493   EVT VT = N->getValueType(0);
   11494   if (!TLI.isTypeLegal(VT) ||
   11495       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   11496       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   11497     return SDValue();
   11498 
   11499   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
   11500                                   Op0.getOperand(0), Op1.getOperand(0));
   11501   // Translate the shuffle mask.
   11502   SmallVector<int, 16> NewMask;
   11503   unsigned NumElts = VT.getVectorNumElements();
   11504   unsigned HalfElts = NumElts/2;
   11505   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   11506   for (unsigned n = 0; n < NumElts; ++n) {
   11507     int MaskElt = SVN->getMaskElt(n);
   11508     int NewElt = -1;
   11509     if (MaskElt < (int)HalfElts)
   11510       NewElt = MaskElt;
   11511     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   11512       NewElt = HalfElts + MaskElt - NumElts;
   11513     NewMask.push_back(NewElt);
   11514   }
   11515   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
   11516                               DAG.getUNDEF(VT), NewMask);
   11517 }
   11518 
   11519 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
   11520 /// NEON load/store intrinsics, and generic vector load/stores, to merge
   11521 /// base address updates.
   11522 /// For generic load/stores, the memory type is assumed to be a vector.
   11523 /// The caller is assumed to have checked legality.
   11524 static SDValue CombineBaseUpdate(SDNode *N,
   11525                                  TargetLowering::DAGCombinerInfo &DCI) {
   11526   SelectionDAG &DAG = DCI.DAG;
   11527   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   11528                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   11529   const bool isStore = N->getOpcode() == ISD::STORE;
   11530   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
   11531   SDValue Addr = N->getOperand(AddrOpIdx);
   11532   MemSDNode *MemN = cast<MemSDNode>(N);
   11533   SDLoc dl(N);
   11534 
   11535   // Search for a use of the address operand that is an increment.
   11536   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   11537          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   11538     SDNode *User = *UI;
   11539     if (User->getOpcode() != ISD::ADD ||
   11540         UI.getUse().getResNo() != Addr.getResNo())
   11541       continue;
   11542 
   11543     // Check that the add is independent of the load/store.  Otherwise, folding
   11544     // it would create a cycle.
   11545     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   11546       continue;
   11547 
   11548     // Find the new opcode for the updating load/store.
   11549     bool isLoadOp = true;
   11550     bool isLaneOp = false;
   11551     unsigned NewOpc = 0;
   11552     unsigned NumVecs = 0;
   11553     if (isIntrinsic) {
   11554       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   11555       switch (IntNo) {
   11556       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   11557       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   11558         NumVecs = 1; break;
   11559       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   11560         NumVecs = 2; break;
   11561       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   11562         NumVecs = 3; break;
   11563       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   11564         NumVecs = 4; break;
   11565       case Intrinsic::arm_neon_vld2dup:
   11566       case Intrinsic::arm_neon_vld3dup:
   11567       case Intrinsic::arm_neon_vld4dup:
   11568         // TODO: Support updating VLDxDUP nodes. For now, we just skip
   11569         // combining base updates for such intrinsics.
   11570         continue;
   11571       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   11572         NumVecs = 2; isLaneOp = true; break;
   11573       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   11574         NumVecs = 3; isLaneOp = true; break;
   11575       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   11576         NumVecs = 4; isLaneOp = true; break;
   11577       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   11578         NumVecs = 1; isLoadOp = false; break;
   11579       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   11580         NumVecs = 2; isLoadOp = false; break;
   11581       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   11582         NumVecs = 3; isLoadOp = false; break;
   11583       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   11584         NumVecs = 4; isLoadOp = false; break;
   11585       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   11586         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
   11587       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   11588         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
   11589       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   11590         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
   11591       }
   11592     } else {
   11593       isLaneOp = true;
   11594       switch (N->getOpcode()) {
   11595       default: llvm_unreachable("unexpected opcode for Neon base update");
   11596       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
   11597       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   11598       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   11599       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   11600       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
   11601         NumVecs = 1; isLaneOp = false; break;
   11602       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
   11603         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
   11604       }
   11605     }
   11606 
   11607     // Find the size of memory referenced by the load/store.
   11608     EVT VecTy;
   11609     if (isLoadOp) {
   11610       VecTy = N->getValueType(0);
   11611     } else if (isIntrinsic) {
   11612       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   11613     } else {
   11614       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
   11615       VecTy = N->getOperand(1).getValueType();
   11616     }
   11617 
   11618     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   11619     if (isLaneOp)
   11620       NumBytes /= VecTy.getVectorNumElements();
   11621 
   11622     // If the increment is a constant, it must match the memory ref size.
   11623     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   11624     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
   11625     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
   11626       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   11627       // separate instructions that make it harder to use a non-constant update.
   11628       continue;
   11629     }
   11630 
   11631     // OK, we found an ADD we can fold into the base update.
   11632     // Now, create a _UPD node, taking care of not breaking alignment.
   11633 
   11634     EVT AlignedVecTy = VecTy;
   11635     unsigned Alignment = MemN->getAlignment();
   11636 
   11637     // If this is a less-than-standard-aligned load/store, change the type to
   11638     // match the standard alignment.
   11639     // The alignment is overlooked when selecting _UPD variants; and it's
   11640     // easier to introduce bitcasts here than fix that.
   11641     // There are 3 ways to get to this base-update combine:
   11642     // - intrinsics: they are assumed to be properly aligned (to the standard
   11643     //   alignment of the memory type), so we don't need to do anything.
   11644     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
   11645     //   intrinsics, so, likewise, there's nothing to do.
   11646     // - generic load/store instructions: the alignment is specified as an
   11647     //   explicit operand, rather than implicitly as the standard alignment
   11648     //   of the memory type (like the intrisics).  We need to change the
   11649     //   memory type to match the explicit alignment.  That way, we don't
   11650     //   generate non-standard-aligned ARMISD::VLDx nodes.
   11651     if (isa<LSBaseSDNode>(N)) {
   11652       if (Alignment == 0)
   11653         Alignment = 1;
   11654       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
   11655         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
   11656         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
   11657         assert(!isLaneOp && "Unexpected generic load/store lane.");
   11658         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
   11659         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
   11660       }
   11661       // Don't set an explicit alignment on regular load/stores that we want
   11662       // to transform to VLD/VST 1_UPD nodes.
   11663       // This matches the behavior of regular load/stores, which only get an
   11664       // explicit alignment if the MMO alignment is larger than the standard
   11665       // alignment of the memory type.
   11666       // Intrinsics, however, always get an explicit alignment, set to the
   11667       // alignment of the MMO.
   11668       Alignment = 1;
   11669     }
   11670 
   11671     // Create the new updating load/store node.
   11672     // First, create an SDVTList for the new updating node's results.
   11673     EVT Tys[6];
   11674     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
   11675     unsigned n;
   11676     for (n = 0; n < NumResultVecs; ++n)
   11677       Tys[n] = AlignedVecTy;
   11678     Tys[n++] = MVT::i32;
   11679     Tys[n] = MVT::Other;
   11680     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
   11681 
   11682     // Then, gather the new node's operands.
   11683     SmallVector<SDValue, 8> Ops;
   11684     Ops.push_back(N->getOperand(0)); // incoming chain
   11685     Ops.push_back(N->getOperand(AddrOpIdx));
   11686     Ops.push_back(Inc);
   11687 
   11688     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
   11689       // Try to match the intrinsic's signature
   11690       Ops.push_back(StN->getValue());
   11691     } else {
   11692       // Loads (and of course intrinsics) match the intrinsics' signature,
   11693       // so just add all but the alignment operand.
   11694       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
   11695         Ops.push_back(N->getOperand(i));
   11696     }
   11697 
   11698     // For all node types, the alignment operand is always the last one.
   11699     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
   11700 
   11701     // If this is a non-standard-aligned STORE, the penultimate operand is the
   11702     // stored value.  Bitcast it to the aligned type.
   11703     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
   11704       SDValue &StVal = Ops[Ops.size()-2];
   11705       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
   11706     }
   11707 
   11708     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
   11709     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
   11710                                            MemN->getMemOperand());
   11711 
   11712     // Update the uses.
   11713     SmallVector<SDValue, 5> NewResults;
   11714     for (unsigned i = 0; i < NumResultVecs; ++i)
   11715       NewResults.push_back(SDValue(UpdN.getNode(), i));
   11716 
   11717     // If this is an non-standard-aligned LOAD, the first result is the loaded
   11718     // value.  Bitcast it to the expected result type.
   11719     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
   11720       SDValue &LdVal = NewResults[0];
   11721       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
   11722     }
   11723 
   11724     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   11725     DCI.CombineTo(N, NewResults);
   11726     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   11727 
   11728     break;
   11729   }
   11730   return SDValue();
   11731 }
   11732 
   11733 static SDValue PerformVLDCombine(SDNode *N,
   11734                                  TargetLowering::DAGCombinerInfo &DCI) {
   11735   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   11736     return SDValue();
   11737 
   11738   return CombineBaseUpdate(N, DCI);
   11739 }
   11740 
   11741 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   11742 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   11743 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   11744 /// return true.
   11745 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   11746   SelectionDAG &DAG = DCI.DAG;
   11747   EVT VT = N->getValueType(0);
   11748   // vldN-dup instructions only support 64-bit vectors for N > 1.
   11749   if (!VT.is64BitVector())
   11750     return false;
   11751 
   11752   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   11753   SDNode *VLD = N->getOperand(0).getNode();
   11754   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   11755     return false;
   11756   unsigned NumVecs = 0;
   11757   unsigned NewOpc = 0;
   11758   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   11759   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   11760     NumVecs = 2;
   11761     NewOpc = ARMISD::VLD2DUP;
   11762   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   11763     NumVecs = 3;
   11764     NewOpc = ARMISD::VLD3DUP;
   11765   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   11766     NumVecs = 4;
   11767     NewOpc = ARMISD::VLD4DUP;
   11768   } else {
   11769     return false;
   11770   }
   11771 
   11772   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   11773   // numbers match the load.
   11774   unsigned VLDLaneNo =
   11775     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   11776   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   11777        UI != UE; ++UI) {
   11778     // Ignore uses of the chain result.
   11779     if (UI.getUse().getResNo() == NumVecs)
   11780       continue;
   11781     SDNode *User = *UI;
   11782     if (User->getOpcode() != ARMISD::VDUPLANE ||
   11783         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   11784       return false;
   11785   }
   11786 
   11787   // Create the vldN-dup node.
   11788   EVT Tys[5];
   11789   unsigned n;
   11790   for (n = 0; n < NumVecs; ++n)
   11791     Tys[n] = VT;
   11792   Tys[n] = MVT::Other;
   11793   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
   11794   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   11795   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   11796   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
   11797                                            Ops, VLDMemInt->getMemoryVT(),
   11798                                            VLDMemInt->getMemOperand());
   11799 
   11800   // Update the uses.
   11801   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   11802        UI != UE; ++UI) {
   11803     unsigned ResNo = UI.getUse().getResNo();
   11804     // Ignore uses of the chain result.
   11805     if (ResNo == NumVecs)
   11806       continue;
   11807     SDNode *User = *UI;
   11808     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   11809   }
   11810 
   11811   // Now the vldN-lane intrinsic is dead except for its chain result.
   11812   // Update uses of the chain.
   11813   std::vector<SDValue> VLDDupResults;
   11814   for (unsigned n = 0; n < NumVecs; ++n)
   11815     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   11816   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   11817   DCI.CombineTo(VLD, VLDDupResults);
   11818 
   11819   return true;
   11820 }
   11821 
   11822 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   11823 /// ARMISD::VDUPLANE.
   11824 static SDValue PerformVDUPLANECombine(SDNode *N,
   11825                                       TargetLowering::DAGCombinerInfo &DCI) {
   11826   SDValue Op = N->getOperand(0);
   11827 
   11828   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   11829   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   11830   if (CombineVLDDUP(N, DCI))
   11831     return SDValue(N, 0);
   11832 
   11833   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   11834   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   11835   while (Op.getOpcode() == ISD::BITCAST)
   11836     Op = Op.getOperand(0);
   11837   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   11838     return SDValue();
   11839 
   11840   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   11841   unsigned EltSize = Op.getScalarValueSizeInBits();
   11842   // The canonical VMOV for a zero vector uses a 32-bit element size.
   11843   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11844   unsigned EltBits;
   11845   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   11846     EltSize = 8;
   11847   EVT VT = N->getValueType(0);
   11848   if (EltSize > VT.getScalarSizeInBits())
   11849     return SDValue();
   11850 
   11851   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   11852 }
   11853 
   11854 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
   11855 static SDValue PerformVDUPCombine(SDNode *N,
   11856                                   TargetLowering::DAGCombinerInfo &DCI) {
   11857   SelectionDAG &DAG = DCI.DAG;
   11858   SDValue Op = N->getOperand(0);
   11859 
   11860   // Match VDUP(LOAD) -> VLD1DUP.
   11861   // We match this pattern here rather than waiting for isel because the
   11862   // transform is only legal for unindexed loads.
   11863   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
   11864   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
   11865       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
   11866     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
   11867                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
   11868     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
   11869     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
   11870                                              Ops, LD->getMemoryVT(),
   11871                                              LD->getMemOperand());
   11872     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
   11873     return VLDDup;
   11874   }
   11875 
   11876   return SDValue();
   11877 }
   11878 
   11879 static SDValue PerformLOADCombine(SDNode *N,
   11880                                   TargetLowering::DAGCombinerInfo &DCI) {
   11881   EVT VT = N->getValueType(0);
   11882 
   11883   // If this is a legal vector load, try to combine it into a VLD1_UPD.
   11884   if (ISD::isNormalLoad(N) && VT.isVector() &&
   11885       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   11886     return CombineBaseUpdate(N, DCI);
   11887 
   11888   return SDValue();
   11889 }
   11890 
   11891 /// PerformSTORECombine - Target-specific dag combine xforms for
   11892 /// ISD::STORE.
   11893 static SDValue PerformSTORECombine(SDNode *N,
   11894                                    TargetLowering::DAGCombinerInfo &DCI) {
   11895   StoreSDNode *St = cast<StoreSDNode>(N);
   11896   if (St->isVolatile())
   11897     return SDValue();
   11898 
   11899   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   11900   // pack all of the elements in one place.  Next, store to memory in fewer
   11901   // chunks.
   11902   SDValue StVal = St->getValue();
   11903   EVT VT = StVal.getValueType();
   11904   if (St->isTruncatingStore() && VT.isVector()) {
   11905     SelectionDAG &DAG = DCI.DAG;
   11906     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   11907     EVT StVT = St->getMemoryVT();
   11908     unsigned NumElems = VT.getVectorNumElements();
   11909     assert(StVT != VT && "Cannot truncate to the same type");
   11910     unsigned FromEltSz = VT.getScalarSizeInBits();
   11911     unsigned ToEltSz = StVT.getScalarSizeInBits();
   11912 
   11913     // From, To sizes and ElemCount must be pow of two
   11914     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   11915 
   11916     // We are going to use the original vector elt for storing.
   11917     // Accumulated smaller vector elements must be a multiple of the store size.
   11918     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   11919 
   11920     unsigned SizeRatio  = FromEltSz / ToEltSz;
   11921     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   11922 
   11923     // Create a type on which we perform the shuffle.
   11924     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   11925                                      NumElems*SizeRatio);
   11926     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   11927 
   11928     SDLoc DL(St);
   11929     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   11930     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   11931     for (unsigned i = 0; i < NumElems; ++i)
   11932       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
   11933                           ? (i + 1) * SizeRatio - 1
   11934                           : i * SizeRatio;
   11935 
   11936     // Can't shuffle using an illegal type.
   11937     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   11938 
   11939     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   11940                                 DAG.getUNDEF(WideVec.getValueType()),
   11941                                 ShuffleVec);
   11942     // At this point all of the data is stored at the bottom of the
   11943     // register. We now need to save it to mem.
   11944 
   11945     // Find the largest store unit
   11946     MVT StoreType = MVT::i8;
   11947     for (MVT Tp : MVT::integer_valuetypes()) {
   11948       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   11949         StoreType = Tp;
   11950     }
   11951     // Didn't find a legal store type.
   11952     if (!TLI.isTypeLegal(StoreType))
   11953       return SDValue();
   11954 
   11955     // Bitcast the original vector into a vector of store-size units
   11956     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   11957             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   11958     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   11959     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   11960     SmallVector<SDValue, 8> Chains;
   11961     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
   11962                                         TLI.getPointerTy(DAG.getDataLayout()));
   11963     SDValue BasePtr = St->getBasePtr();
   11964 
   11965     // Perform one or more big stores into memory.
   11966     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   11967     for (unsigned I = 0; I < E; I++) {
   11968       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   11969                                    StoreType, ShuffWide,
   11970                                    DAG.getIntPtrConstant(I, DL));
   11971       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   11972                                 St->getPointerInfo(), St->getAlignment(),
   11973                                 St->getMemOperand()->getFlags());
   11974       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   11975                             Increment);
   11976       Chains.push_back(Ch);
   11977     }
   11978     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   11979   }
   11980 
   11981   if (!ISD::isNormalStore(St))
   11982     return SDValue();
   11983 
   11984   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   11985   // ARM stores of arguments in the same cache line.
   11986   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   11987       StVal.getNode()->hasOneUse()) {
   11988     SelectionDAG  &DAG = DCI.DAG;
   11989     bool isBigEndian = DAG.getDataLayout().isBigEndian();
   11990     SDLoc DL(St);
   11991     SDValue BasePtr = St->getBasePtr();
   11992     SDValue NewST1 = DAG.getStore(
   11993         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
   11994         BasePtr, St->getPointerInfo(), St->getAlignment(),
   11995         St->getMemOperand()->getFlags());
   11996 
   11997     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   11998                                     DAG.getConstant(4, DL, MVT::i32));
   11999     return DAG.getStore(NewST1.getValue(0), DL,
   12000                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
   12001                         OffsetPtr, St->getPointerInfo(),
   12002                         std::min(4U, St->getAlignment() / 2),
   12003                         St->getMemOperand()->getFlags());
   12004   }
   12005 
   12006   if (StVal.getValueType() == MVT::i64 &&
   12007       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   12008 
   12009     // Bitcast an i64 store extracted from a vector to f64.
   12010     // Otherwise, the i64 value will be legalized to a pair of i32 values.
   12011     SelectionDAG &DAG = DCI.DAG;
   12012     SDLoc dl(StVal);
   12013     SDValue IntVec = StVal.getOperand(0);
   12014     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   12015                                    IntVec.getValueType().getVectorNumElements());
   12016     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   12017     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   12018                                  Vec, StVal.getOperand(1));
   12019     dl = SDLoc(N);
   12020     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   12021     // Make the DAGCombiner fold the bitcasts.
   12022     DCI.AddToWorklist(Vec.getNode());
   12023     DCI.AddToWorklist(ExtElt.getNode());
   12024     DCI.AddToWorklist(V.getNode());
   12025     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   12026                         St->getPointerInfo(), St->getAlignment(),
   12027                         St->getMemOperand()->getFlags(), St->getAAInfo());
   12028   }
   12029 
   12030   // If this is a legal vector store, try to combine it into a VST1_UPD.
   12031   if (ISD::isNormalStore(N) && VT.isVector() &&
   12032       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   12033     return CombineBaseUpdate(N, DCI);
   12034 
   12035   return SDValue();
   12036 }
   12037 
   12038 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   12039 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   12040 /// when the VMUL has a constant operand that is a power of 2.
   12041 ///
   12042 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   12043 ///  vmul.f32        d16, d17, d16
   12044 ///  vcvt.s32.f32    d16, d16
   12045 /// becomes:
   12046 ///  vcvt.s32.f32    d16, d16, #3
   12047 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
   12048                                   const ARMSubtarget *Subtarget) {
   12049   if (!Subtarget->hasNEON())
   12050     return SDValue();
   12051 
   12052   SDValue Op = N->getOperand(0);
   12053   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
   12054       Op.getOpcode() != ISD::FMUL)
   12055     return SDValue();
   12056 
   12057   SDValue ConstVec = Op->getOperand(1);
   12058   if (!isa<BuildVectorSDNode>(ConstVec))
   12059     return SDValue();
   12060 
   12061   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   12062   uint32_t FloatBits = FloatTy.getSizeInBits();
   12063   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   12064   uint32_t IntBits = IntTy.getSizeInBits();
   12065   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   12066   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   12067     // These instructions only exist converting from f32 to i32. We can handle
   12068     // smaller integers by generating an extra truncate, but larger ones would
   12069     // be lossy. We also can't handle more then 4 lanes, since these intructions
   12070     // only support v2i32/v4i32 types.
   12071     return SDValue();
   12072   }
   12073 
   12074   BitVector UndefElements;
   12075   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   12076   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   12077   if (C == -1 || C == 0 || C > 32)
   12078     return SDValue();
   12079 
   12080   SDLoc dl(N);
   12081   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   12082   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   12083     Intrinsic::arm_neon_vcvtfp2fxu;
   12084   SDValue FixConv = DAG.getNode(
   12085       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   12086       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
   12087       DAG.getConstant(C, dl, MVT::i32));
   12088 
   12089   if (IntBits < FloatBits)
   12090     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
   12091 
   12092   return FixConv;
   12093 }
   12094 
   12095 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   12096 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   12097 /// when the VDIV has a constant operand that is a power of 2.
   12098 ///
   12099 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   12100 ///  vcvt.f32.s32    d16, d16
   12101 ///  vdiv.f32        d16, d17, d16
   12102 /// becomes:
   12103 ///  vcvt.f32.s32    d16, d16, #3
   12104 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
   12105                                   const ARMSubtarget *Subtarget) {
   12106   if (!Subtarget->hasNEON())
   12107     return SDValue();
   12108 
   12109   SDValue Op = N->getOperand(0);
   12110   unsigned OpOpcode = Op.getNode()->getOpcode();
   12111   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
   12112       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   12113     return SDValue();
   12114 
   12115   SDValue ConstVec = N->getOperand(1);
   12116   if (!isa<BuildVectorSDNode>(ConstVec))
   12117     return SDValue();
   12118 
   12119   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   12120   uint32_t FloatBits = FloatTy.getSizeInBits();
   12121   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   12122   uint32_t IntBits = IntTy.getSizeInBits();
   12123   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   12124   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   12125     // These instructions only exist converting from i32 to f32. We can handle
   12126     // smaller integers by generating an extra extend, but larger ones would
   12127     // be lossy. We also can't handle more then 4 lanes, since these intructions
   12128     // only support v2i32/v4i32 types.
   12129     return SDValue();
   12130   }
   12131 
   12132   BitVector UndefElements;
   12133   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   12134   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   12135   if (C == -1 || C == 0 || C > 32)
   12136     return SDValue();
   12137 
   12138   SDLoc dl(N);
   12139   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   12140   SDValue ConvInput = Op.getOperand(0);
   12141   if (IntBits < FloatBits)
   12142     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   12143                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   12144                             ConvInput);
   12145 
   12146   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   12147     Intrinsic::arm_neon_vcvtfxu2fp;
   12148   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
   12149                      Op.getValueType(),
   12150                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
   12151                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
   12152 }
   12153 
   12154 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   12155 /// operand of a vector shift operation, where all the elements of the
   12156 /// build_vector must have the same constant integer value.
   12157 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   12158   // Ignore bit_converts.
   12159   while (Op.getOpcode() == ISD::BITCAST)
   12160     Op = Op.getOperand(0);
   12161   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   12162   APInt SplatBits, SplatUndef;
   12163   unsigned SplatBitSize;
   12164   bool HasAnyUndefs;
   12165   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   12166                                       HasAnyUndefs, ElementBits) ||
   12167       SplatBitSize > ElementBits)
   12168     return false;
   12169   Cnt = SplatBits.getSExtValue();
   12170   return true;
   12171 }
   12172 
   12173 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   12174 /// operand of a vector shift left operation.  That value must be in the range:
   12175 ///   0 <= Value < ElementBits for a left shift; or
   12176 ///   0 <= Value <= ElementBits for a long left shift.
   12177 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   12178   assert(VT.isVector() && "vector shift count is not a vector type");
   12179   int64_t ElementBits = VT.getScalarSizeInBits();
   12180   if (! getVShiftImm(Op, ElementBits, Cnt))
   12181     return false;
   12182   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   12183 }
   12184 
   12185 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   12186 /// operand of a vector shift right operation.  For a shift opcode, the value
   12187 /// is positive, but for an intrinsic the value count must be negative. The
   12188 /// absolute value must be in the range:
   12189 ///   1 <= |Value| <= ElementBits for a right shift; or
   12190 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   12191 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   12192                          int64_t &Cnt) {
   12193   assert(VT.isVector() && "vector shift count is not a vector type");
   12194   int64_t ElementBits = VT.getScalarSizeInBits();
   12195   if (! getVShiftImm(Op, ElementBits, Cnt))
   12196     return false;
   12197   if (!isIntrinsic)
   12198     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   12199   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
   12200     Cnt = -Cnt;
   12201     return true;
   12202   }
   12203   return false;
   12204 }
   12205 
   12206 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   12207 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   12208   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   12209   switch (IntNo) {
   12210   default:
   12211     // Don't do anything for most intrinsics.
   12212     break;
   12213 
   12214   // Vector shifts: check for immediate versions and lower them.
   12215   // Note: This is done during DAG combining instead of DAG legalizing because
   12216   // the build_vectors for 64-bit vector element shift counts are generally
   12217   // not legal, and it is hard to see their values after they get legalized to
   12218   // loads from a constant pool.
   12219   case Intrinsic::arm_neon_vshifts:
   12220   case Intrinsic::arm_neon_vshiftu:
   12221   case Intrinsic::arm_neon_vrshifts:
   12222   case Intrinsic::arm_neon_vrshiftu:
   12223   case Intrinsic::arm_neon_vrshiftn:
   12224   case Intrinsic::arm_neon_vqshifts:
   12225   case Intrinsic::arm_neon_vqshiftu:
   12226   case Intrinsic::arm_neon_vqshiftsu:
   12227   case Intrinsic::arm_neon_vqshiftns:
   12228   case Intrinsic::arm_neon_vqshiftnu:
   12229   case Intrinsic::arm_neon_vqshiftnsu:
   12230   case Intrinsic::arm_neon_vqrshiftns:
   12231   case Intrinsic::arm_neon_vqrshiftnu:
   12232   case Intrinsic::arm_neon_vqrshiftnsu: {
   12233     EVT VT = N->getOperand(1).getValueType();
   12234     int64_t Cnt;
   12235     unsigned VShiftOpc = 0;
   12236 
   12237     switch (IntNo) {
   12238     case Intrinsic::arm_neon_vshifts:
   12239     case Intrinsic::arm_neon_vshiftu:
   12240       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   12241         VShiftOpc = ARMISD::VSHL;
   12242         break;
   12243       }
   12244       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   12245         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   12246                      ARMISD::VSHRs : ARMISD::VSHRu);
   12247         break;
   12248       }
   12249       return SDValue();
   12250 
   12251     case Intrinsic::arm_neon_vrshifts:
   12252     case Intrinsic::arm_neon_vrshiftu:
   12253       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   12254         break;
   12255       return SDValue();
   12256 
   12257     case Intrinsic::arm_neon_vqshifts:
   12258     case Intrinsic::arm_neon_vqshiftu:
   12259       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   12260         break;
   12261       return SDValue();
   12262 
   12263     case Intrinsic::arm_neon_vqshiftsu:
   12264       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   12265         break;
   12266       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   12267 
   12268     case Intrinsic::arm_neon_vrshiftn:
   12269     case Intrinsic::arm_neon_vqshiftns:
   12270     case Intrinsic::arm_neon_vqshiftnu:
   12271     case Intrinsic::arm_neon_vqshiftnsu:
   12272     case Intrinsic::arm_neon_vqrshiftns:
   12273     case Intrinsic::arm_neon_vqrshiftnu:
   12274     case Intrinsic::arm_neon_vqrshiftnsu:
   12275       // Narrowing shifts require an immediate right shift.
   12276       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   12277         break;
   12278       llvm_unreachable("invalid shift count for narrowing vector shift "
   12279                        "intrinsic");
   12280 
   12281     default:
   12282       llvm_unreachable("unhandled vector shift");
   12283     }
   12284 
   12285     switch (IntNo) {
   12286     case Intrinsic::arm_neon_vshifts:
   12287     case Intrinsic::arm_neon_vshiftu:
   12288       // Opcode already set above.
   12289       break;
   12290     case Intrinsic::arm_neon_vrshifts:
   12291       VShiftOpc = ARMISD::VRSHRs; break;
   12292     case Intrinsic::arm_neon_vrshiftu:
   12293       VShiftOpc = ARMISD::VRSHRu; break;
   12294     case Intrinsic::arm_neon_vrshiftn:
   12295       VShiftOpc = ARMISD::VRSHRN; break;
   12296     case Intrinsic::arm_neon_vqshifts:
   12297       VShiftOpc = ARMISD::VQSHLs; break;
   12298     case Intrinsic::arm_neon_vqshiftu:
   12299       VShiftOpc = ARMISD::VQSHLu; break;
   12300     case Intrinsic::arm_neon_vqshiftsu:
   12301       VShiftOpc = ARMISD::VQSHLsu; break;
   12302     case Intrinsic::arm_neon_vqshiftns:
   12303       VShiftOpc = ARMISD::VQSHRNs; break;
   12304     case Intrinsic::arm_neon_vqshiftnu:
   12305       VShiftOpc = ARMISD::VQSHRNu; break;
   12306     case Intrinsic::arm_neon_vqshiftnsu:
   12307       VShiftOpc = ARMISD::VQSHRNsu; break;
   12308     case Intrinsic::arm_neon_vqrshiftns:
   12309       VShiftOpc = ARMISD::VQRSHRNs; break;
   12310     case Intrinsic::arm_neon_vqrshiftnu:
   12311       VShiftOpc = ARMISD::VQRSHRNu; break;
   12312     case Intrinsic::arm_neon_vqrshiftnsu:
   12313       VShiftOpc = ARMISD::VQRSHRNsu; break;
   12314     }
   12315 
   12316     SDLoc dl(N);
   12317     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   12318                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
   12319   }
   12320 
   12321   case Intrinsic::arm_neon_vshiftins: {
   12322     EVT VT = N->getOperand(1).getValueType();
   12323     int64_t Cnt;
   12324     unsigned VShiftOpc = 0;
   12325 
   12326     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   12327       VShiftOpc = ARMISD::VSLI;
   12328     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   12329       VShiftOpc = ARMISD::VSRI;
   12330     else {
   12331       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   12332     }
   12333 
   12334     SDLoc dl(N);
   12335     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   12336                        N->getOperand(1), N->getOperand(2),
   12337                        DAG.getConstant(Cnt, dl, MVT::i32));
   12338   }
   12339 
   12340   case Intrinsic::arm_neon_vqrshifts:
   12341   case Intrinsic::arm_neon_vqrshiftu:
   12342     // No immediate versions of these to check for.
   12343     break;
   12344   }
   12345 
   12346   return SDValue();
   12347 }
   12348 
   12349 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   12350 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   12351 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   12352 /// vector element shift counts are generally not legal, and it is hard to see
   12353 /// their values after they get legalized to loads from a constant pool.
   12354 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   12355                                    const ARMSubtarget *ST) {
   12356   EVT VT = N->getValueType(0);
   12357   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   12358     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   12359     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   12360     SDValue N1 = N->getOperand(1);
   12361     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   12362       SDValue N0 = N->getOperand(0);
   12363       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   12364           DAG.MaskedValueIsZero(N0.getOperand(0),
   12365                                 APInt::getHighBitsSet(32, 16)))
   12366         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
   12367     }
   12368   }
   12369 
   12370   // Nothing to be done for scalar shifts.
   12371   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12372   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   12373     return SDValue();
   12374 
   12375   assert(ST->hasNEON() && "unexpected vector shift");
   12376   int64_t Cnt;
   12377 
   12378   switch (N->getOpcode()) {
   12379   default: llvm_unreachable("unexpected shift opcode");
   12380 
   12381   case ISD::SHL:
   12382     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
   12383       SDLoc dl(N);
   12384       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
   12385                          DAG.getConstant(Cnt, dl, MVT::i32));
   12386     }
   12387     break;
   12388 
   12389   case ISD::SRA:
   12390   case ISD::SRL:
   12391     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   12392       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   12393                             ARMISD::VSHRs : ARMISD::VSHRu);
   12394       SDLoc dl(N);
   12395       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
   12396                          DAG.getConstant(Cnt, dl, MVT::i32));
   12397     }
   12398   }
   12399   return SDValue();
   12400 }
   12401 
   12402 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   12403 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   12404 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   12405                                     const ARMSubtarget *ST) {
   12406   SDValue N0 = N->getOperand(0);
   12407 
   12408   // Check for sign- and zero-extensions of vector extract operations of 8-
   12409   // and 16-bit vector elements.  NEON supports these directly.  They are
   12410   // handled during DAG combining because type legalization will promote them
   12411   // to 32-bit types and it is messy to recognize the operations after that.
   12412   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   12413     SDValue Vec = N0.getOperand(0);
   12414     SDValue Lane = N0.getOperand(1);
   12415     EVT VT = N->getValueType(0);
   12416     EVT EltVT = N0.getValueType();
   12417     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   12418 
   12419     if (VT == MVT::i32 &&
   12420         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   12421         TLI.isTypeLegal(Vec.getValueType()) &&
   12422         isa<ConstantSDNode>(Lane)) {
   12423 
   12424       unsigned Opc = 0;
   12425       switch (N->getOpcode()) {
   12426       default: llvm_unreachable("unexpected opcode");
   12427       case ISD::SIGN_EXTEND:
   12428         Opc = ARMISD::VGETLANEs;
   12429         break;
   12430       case ISD::ZERO_EXTEND:
   12431       case ISD::ANY_EXTEND:
   12432         Opc = ARMISD::VGETLANEu;
   12433         break;
   12434       }
   12435       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
   12436     }
   12437   }
   12438 
   12439   return SDValue();
   12440 }
   12441 
   12442 static const APInt *isPowerOf2Constant(SDValue V) {
   12443   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   12444   if (!C)
   12445     return nullptr;
   12446   const APInt *CV = &C->getAPIntValue();
   12447   return CV->isPowerOf2() ? CV : nullptr;
   12448 }
   12449 
   12450 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
   12451   // If we have a CMOV, OR and AND combination such as:
   12452   //   if (x & CN)
   12453   //     y |= CM;
   12454   //
   12455   // And:
   12456   //   * CN is a single bit;
   12457   //   * All bits covered by CM are known zero in y
   12458   //
   12459   // Then we can convert this into a sequence of BFI instructions. This will
   12460   // always be a win if CM is a single bit, will always be no worse than the
   12461   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
   12462   // three bits (due to the extra IT instruction).
   12463 
   12464   SDValue Op0 = CMOV->getOperand(0);
   12465   SDValue Op1 = CMOV->getOperand(1);
   12466   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
   12467   auto CC = CCNode->getAPIntValue().getLimitedValue();
   12468   SDValue CmpZ = CMOV->getOperand(4);
   12469 
   12470   // The compare must be against zero.
   12471   if (!isNullConstant(CmpZ->getOperand(1)))
   12472     return SDValue();
   12473 
   12474   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
   12475   SDValue And = CmpZ->getOperand(0);
   12476   if (And->getOpcode() != ISD::AND)
   12477     return SDValue();
   12478   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
   12479   if (!AndC)
   12480     return SDValue();
   12481   SDValue X = And->getOperand(0);
   12482 
   12483   if (CC == ARMCC::EQ) {
   12484     // We're performing an "equal to zero" compare. Swap the operands so we
   12485     // canonicalize on a "not equal to zero" compare.
   12486     std::swap(Op0, Op1);
   12487   } else {
   12488     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
   12489   }
   12490 
   12491   if (Op1->getOpcode() != ISD::OR)
   12492     return SDValue();
   12493 
   12494   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
   12495   if (!OrC)
   12496     return SDValue();
   12497   SDValue Y = Op1->getOperand(0);
   12498 
   12499   if (Op0 != Y)
   12500     return SDValue();
   12501 
   12502   // Now, is it profitable to continue?
   12503   APInt OrCI = OrC->getAPIntValue();
   12504   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
   12505   if (OrCI.countPopulation() > Heuristic)
   12506     return SDValue();
   12507 
   12508   // Lastly, can we determine that the bits defined by OrCI
   12509   // are zero in Y?
   12510   KnownBits Known;
   12511   DAG.computeKnownBits(Y, Known);
   12512   if ((OrCI & Known.Zero) != OrCI)
   12513     return SDValue();
   12514 
   12515   // OK, we can do the combine.
   12516   SDValue V = Y;
   12517   SDLoc dl(X);
   12518   EVT VT = X.getValueType();
   12519   unsigned BitInX = AndC->logBase2();
   12520 
   12521   if (BitInX != 0) {
   12522     // We must shift X first.
   12523     X = DAG.getNode(ISD::SRL, dl, VT, X,
   12524                     DAG.getConstant(BitInX, dl, VT));
   12525   }
   12526 
   12527   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
   12528        BitInY < NumActiveBits; ++BitInY) {
   12529     if (OrCI[BitInY] == 0)
   12530       continue;
   12531     APInt Mask(VT.getSizeInBits(), 0);
   12532     Mask.setBit(BitInY);
   12533     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
   12534                     // Confusingly, the operand is an *inverted* mask.
   12535                     DAG.getConstant(~Mask, dl, VT));
   12536   }
   12537 
   12538   return V;
   12539 }
   12540 
   12541 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
   12542 SDValue
   12543 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
   12544   SDValue Cmp = N->getOperand(4);
   12545   if (Cmp.getOpcode() != ARMISD::CMPZ)
   12546     // Only looking at NE cases.
   12547     return SDValue();
   12548 
   12549   EVT VT = N->getValueType(0);
   12550   SDLoc dl(N);
   12551   SDValue LHS = Cmp.getOperand(0);
   12552   SDValue RHS = Cmp.getOperand(1);
   12553   SDValue Chain = N->getOperand(0);
   12554   SDValue BB = N->getOperand(1);
   12555   SDValue ARMcc = N->getOperand(2);
   12556   ARMCC::CondCodes CC =
   12557     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   12558 
   12559   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
   12560   // -> (brcond Chain BB CC CPSR Cmp)
   12561   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
   12562       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
   12563       LHS->getOperand(0)->hasOneUse()) {
   12564     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
   12565     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
   12566     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
   12567     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
   12568     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
   12569         (LHS01C && LHS01C->getZExtValue() == 1) &&
   12570         (LHS1C && LHS1C->getZExtValue() == 1) &&
   12571         (RHSC && RHSC->getZExtValue() == 0)) {
   12572       return DAG.getNode(
   12573           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
   12574           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
   12575     }
   12576   }
   12577 
   12578   return SDValue();
   12579 }
   12580 
   12581 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   12582 SDValue
   12583 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   12584   SDValue Cmp = N->getOperand(4);
   12585   if (Cmp.getOpcode() != ARMISD::CMPZ)
   12586     // Only looking at EQ and NE cases.
   12587     return SDValue();
   12588 
   12589   EVT VT = N->getValueType(0);
   12590   SDLoc dl(N);
   12591   SDValue LHS = Cmp.getOperand(0);
   12592   SDValue RHS = Cmp.getOperand(1);
   12593   SDValue FalseVal = N->getOperand(0);
   12594   SDValue TrueVal = N->getOperand(1);
   12595   SDValue ARMcc = N->getOperand(2);
   12596   ARMCC::CondCodes CC =
   12597     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   12598 
   12599   // BFI is only available on V6T2+.
   12600   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
   12601     SDValue R = PerformCMOVToBFICombine(N, DAG);
   12602     if (R)
   12603       return R;
   12604   }
   12605 
   12606   // Simplify
   12607   //   mov     r1, r0
   12608   //   cmp     r1, x
   12609   //   mov     r0, y
   12610   //   moveq   r0, x
   12611   // to
   12612   //   cmp     r0, x
   12613   //   movne   r0, y
   12614   //
   12615   //   mov     r1, r0
   12616   //   cmp     r1, x
   12617   //   mov     r0, x
   12618   //   movne   r0, y
   12619   // to
   12620   //   cmp     r0, x
   12621   //   movne   r0, y
   12622   /// FIXME: Turn this into a target neutral optimization?
   12623   SDValue Res;
   12624   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   12625     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   12626                       N->getOperand(3), Cmp);
   12627   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   12628     SDValue ARMcc;
   12629     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   12630     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   12631                       N->getOperand(3), NewCmp);
   12632   }
   12633 
   12634   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
   12635   // -> (cmov F T CC CPSR Cmp)
   12636   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
   12637     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
   12638     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
   12639     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
   12640     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
   12641         (LHS1C && LHS1C->getZExtValue() == 1) &&
   12642         (RHSC && RHSC->getZExtValue() == 0)) {
   12643       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   12644                          LHS->getOperand(2), LHS->getOperand(3),
   12645                          LHS->getOperand(4));
   12646     }
   12647   }
   12648 
   12649   if (!VT.isInteger())
   12650       return SDValue();
   12651 
   12652   // Materialize a boolean comparison for integers so we can avoid branching.
   12653   if (isNullConstant(FalseVal)) {
   12654     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
   12655       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
   12656         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
   12657         // right 5 bits will make that 32 be 1, otherwise it will be 0.
   12658         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
   12659         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
   12660         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
   12661                           DAG.getConstant(5, dl, MVT::i32));
   12662       } else {
   12663         // CMOV 0, 1, ==, (CMPZ x, y) ->
   12664         //     (ADDCARRY (SUB x, y), t:0, t:1)
   12665         // where t = (SUBCARRY 0, (SUB x, y), 0)
   12666         //
   12667         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
   12668         // x != y. In other words, a carry C == 1 when x == y, C == 0
   12669         // otherwise.
   12670         // The final ADDCARRY computes
   12671         //     x - y + (0 - (x - y)) + C == C
   12672         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
   12673         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   12674         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
   12675         // ISD::SUBCARRY returns a borrow but we want the carry here
   12676         // actually.
   12677         SDValue Carry =
   12678             DAG.getNode(ISD::SUB, dl, MVT::i32,
   12679                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
   12680         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
   12681       }
   12682     } else if (CC == ARMCC::NE && LHS != RHS &&
   12683                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
   12684       // This seems pointless but will allow us to combine it further below.
   12685       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
   12686       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
   12687       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
   12688                         N->getOperand(3), Cmp);
   12689     }
   12690   } else if (isNullConstant(TrueVal)) {
   12691     if (CC == ARMCC::EQ && LHS != RHS &&
   12692         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
   12693       // This seems pointless but will allow us to combine it further below
   12694       // Note that we change == for != as this is the dual for the case above.
   12695       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUB x, y), z, !=, (CMPZ x, y)
   12696       SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
   12697       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
   12698                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
   12699                         N->getOperand(3), Cmp);
   12700     }
   12701   }
   12702 
   12703   // On Thumb1, the DAG above may be further combined if z is a power of 2
   12704   // (z == 2 ^ K).
   12705   // CMOV (SUB x, y), z, !=, (CMPZ x, y) ->
   12706   //       merge t3, t4
   12707   // where t1 = (SUBCARRY (SUB x, y), z, 0)
   12708   //       t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
   12709   //       t3 = if K != 0 then (SHL t2:0, K) else t2:0
   12710   //       t4 = (SUB 1, t2:1)   [ we want a carry, not a borrow ]
   12711   const APInt *TrueConst;
   12712   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
   12713       (FalseVal.getOpcode() == ISD::SUB) && (FalseVal.getOperand(0) == LHS) &&
   12714       (FalseVal.getOperand(1) == RHS) &&
   12715       (TrueConst = isPowerOf2Constant(TrueVal))) {
   12716     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   12717     unsigned ShiftAmount = TrueConst->logBase2();
   12718     if (ShiftAmount)
   12719       TrueVal = DAG.getConstant(1, dl, VT);
   12720     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
   12721     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
   12722     // Make it a carry, not a borrow.
   12723     SDValue Carry = DAG.getNode(
   12724         ISD::SUB, dl, VT, DAG.getConstant(1, dl, MVT::i32), Res.getValue(1));
   12725     Res = DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Res, Carry);
   12726 
   12727     if (ShiftAmount)
   12728       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
   12729                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
   12730   }
   12731 
   12732   if (Res.getNode()) {
   12733     KnownBits Known;
   12734     DAG.computeKnownBits(SDValue(N,0), Known);
   12735     // Capture demanded bits information that would be otherwise lost.
   12736     if (Known.Zero == 0xfffffffe)
   12737       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   12738                         DAG.getValueType(MVT::i1));
   12739     else if (Known.Zero == 0xffffff00)
   12740       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   12741                         DAG.getValueType(MVT::i8));
   12742     else if (Known.Zero == 0xffff0000)
   12743       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   12744                         DAG.getValueType(MVT::i16));
   12745   }
   12746 
   12747   return Res;
   12748 }
   12749 
   12750 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   12751                                              DAGCombinerInfo &DCI) const {
   12752   switch (N->getOpcode()) {
   12753   default: break;
   12754   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
   12755   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
   12756   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   12757   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   12758   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   12759   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   12760   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   12761   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   12762   case ARMISD::ADDC:
   12763   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
   12764   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
   12765   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   12766   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
   12767   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   12768   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   12769   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
   12770   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   12771   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   12772   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   12773   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
   12774   case ISD::FP_TO_SINT:
   12775   case ISD::FP_TO_UINT:
   12776     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
   12777   case ISD::FDIV:
   12778     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
   12779   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   12780   case ISD::SHL:
   12781   case ISD::SRA:
   12782   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   12783   case ISD::SIGN_EXTEND:
   12784   case ISD::ZERO_EXTEND:
   12785   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   12786   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   12787   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
   12788   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
   12789   case ARMISD::VLD1DUP:
   12790   case ARMISD::VLD2DUP:
   12791   case ARMISD::VLD3DUP:
   12792   case ARMISD::VLD4DUP:
   12793     return PerformVLDCombine(N, DCI);
   12794   case ARMISD::BUILD_VECTOR:
   12795     return PerformARMBUILD_VECTORCombine(N, DCI);
   12796   case ARMISD::SMULWB: {
   12797     unsigned BitWidth = N->getValueType(0).getSizeInBits();
   12798     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
   12799     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
   12800       return SDValue();
   12801     break;
   12802   }
   12803   case ARMISD::SMULWT: {
   12804     unsigned BitWidth = N->getValueType(0).getSizeInBits();
   12805     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
   12806     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
   12807       return SDValue();
   12808     break;
   12809   }
   12810   case ARMISD::SMLALBB: {
   12811     unsigned BitWidth = N->getValueType(0).getSizeInBits();
   12812     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
   12813     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
   12814         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
   12815       return SDValue();
   12816     break;
   12817   }
   12818   case ARMISD::SMLALBT: {
   12819     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
   12820     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
   12821     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
   12822     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
   12823     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
   12824         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
   12825       return SDValue();
   12826     break;
   12827   }
   12828   case ARMISD::SMLALTB: {
   12829     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
   12830     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
   12831     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
   12832     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
   12833     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
   12834         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
   12835       return SDValue();
   12836     break;
   12837   }
   12838   case ARMISD::SMLALTT: {
   12839     unsigned BitWidth = N->getValueType(0).getSizeInBits();
   12840     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
   12841     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
   12842         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
   12843       return SDValue();
   12844     break;
   12845   }
   12846   case ISD::INTRINSIC_VOID:
   12847   case ISD::INTRINSIC_W_CHAIN:
   12848     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   12849     case Intrinsic::arm_neon_vld1:
   12850     case Intrinsic::arm_neon_vld1x2:
   12851     case Intrinsic::arm_neon_vld1x3:
   12852     case Intrinsic::arm_neon_vld1x4:
   12853     case Intrinsic::arm_neon_vld2:
   12854     case Intrinsic::arm_neon_vld3:
   12855     case Intrinsic::arm_neon_vld4:
   12856     case Intrinsic::arm_neon_vld2lane:
   12857     case Intrinsic::arm_neon_vld3lane:
   12858     case Intrinsic::arm_neon_vld4lane:
   12859     case Intrinsic::arm_neon_vld2dup:
   12860     case Intrinsic::arm_neon_vld3dup:
   12861     case Intrinsic::arm_neon_vld4dup:
   12862     case Intrinsic::arm_neon_vst1:
   12863     case Intrinsic::arm_neon_vst1x2:
   12864     case Intrinsic::arm_neon_vst1x3:
   12865     case Intrinsic::arm_neon_vst1x4:
   12866     case Intrinsic::arm_neon_vst2:
   12867     case Intrinsic::arm_neon_vst3:
   12868     case Intrinsic::arm_neon_vst4:
   12869     case Intrinsic::arm_neon_vst2lane:
   12870     case Intrinsic::arm_neon_vst3lane:
   12871     case Intrinsic::arm_neon_vst4lane:
   12872       return PerformVLDCombine(N, DCI);
   12873     default: break;
   12874     }
   12875     break;
   12876   }
   12877   return SDValue();
   12878 }
   12879 
   12880 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   12881                                                           EVT VT) const {
   12882   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   12883 }
   12884 
   12885 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   12886                                                        unsigned,
   12887                                                        unsigned,
   12888                                                        bool *Fast) const {
   12889   // Depends what it gets converted into if the type is weird.
   12890   if (!VT.isSimple())
   12891     return false;
   12892 
   12893   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
   12894   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
   12895 
   12896   switch (VT.getSimpleVT().SimpleTy) {
   12897   default:
   12898     return false;
   12899   case MVT::i8:
   12900   case MVT::i16:
   12901   case MVT::i32: {
   12902     // Unaligned access can use (for example) LRDB, LRDH, LDR
   12903     if (AllowsUnaligned) {
   12904       if (Fast)
   12905         *Fast = Subtarget->hasV7Ops();
   12906       return true;
   12907     }
   12908     return false;
   12909   }
   12910   case MVT::f64:
   12911   case MVT::v2f64: {
   12912     // For any little-endian targets with neon, we can support unaligned ld/st
   12913     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
   12914     // A big-endian target may also explicitly support unaligned accesses
   12915     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
   12916       if (Fast)
   12917         *Fast = true;
   12918       return true;
   12919     }
   12920     return false;
   12921   }
   12922   }
   12923 }
   12924 
   12925 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   12926                        unsigned AlignCheck) {
   12927   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   12928           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   12929 }
   12930 
   12931 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   12932                                            unsigned DstAlign, unsigned SrcAlign,
   12933                                            bool IsMemset, bool ZeroMemset,
   12934                                            bool MemcpyStrSrc,
   12935                                            MachineFunction &MF) const {
   12936   const Function &F = MF.getFunction();
   12937 
   12938   // See if we can use NEON instructions for this...
   12939   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
   12940       !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
   12941     bool Fast;
   12942     if (Size >= 16 &&
   12943         (memOpAlign(SrcAlign, DstAlign, 16) ||
   12944          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
   12945       return MVT::v2f64;
   12946     } else if (Size >= 8 &&
   12947                (memOpAlign(SrcAlign, DstAlign, 8) ||
   12948                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
   12949                  Fast))) {
   12950       return MVT::f64;
   12951     }
   12952   }
   12953 
   12954   // Let the target-independent logic figure it out.
   12955   return MVT::Other;
   12956 }
   12957 
   12958 // 64-bit integers are split into their high and low parts and held in two
   12959 // different registers, so the trunc is free since the low register can just
   12960 // be used.
   12961 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
   12962   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
   12963     return false;
   12964   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
   12965   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
   12966   return (SrcBits == 64 && DestBits == 32);
   12967 }
   12968 
   12969 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
   12970   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
   12971       !DstVT.isInteger())
   12972     return false;
   12973   unsigned SrcBits = SrcVT.getSizeInBits();
   12974   unsigned DestBits = DstVT.getSizeInBits();
   12975   return (SrcBits == 64 && DestBits == 32);
   12976 }
   12977 
   12978 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   12979   if (Val.getOpcode() != ISD::LOAD)
   12980     return false;
   12981 
   12982   EVT VT1 = Val.getValueType();
   12983   if (!VT1.isSimple() || !VT1.isInteger() ||
   12984       !VT2.isSimple() || !VT2.isInteger())
   12985     return false;
   12986 
   12987   switch (VT1.getSimpleVT().SimpleTy) {
   12988   default: break;
   12989   case MVT::i1:
   12990   case MVT::i8:
   12991   case MVT::i16:
   12992     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
   12993     return true;
   12994   }
   12995 
   12996   return false;
   12997 }
   12998 
   12999 bool ARMTargetLowering::isFNegFree(EVT VT) const {
   13000   if (!VT.isSimple())
   13001     return false;
   13002 
   13003   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
   13004   // negate values directly (fneg is free). So, we don't want to let the DAG
   13005   // combiner rewrite fneg into xors and some other instructions.  For f16 and
   13006   // FullFP16 argument passing, some bitcast nodes may be introduced,
   13007   // triggering this DAG combine rewrite, so we are avoiding that with this.
   13008   switch (VT.getSimpleVT().SimpleTy) {
   13009   default: break;
   13010   case MVT::f16:
   13011     return Subtarget->hasFullFP16();
   13012   }
   13013 
   13014   return false;
   13015 }
   13016 
   13017 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
   13018   EVT VT = ExtVal.getValueType();
   13019 
   13020   if (!isTypeLegal(VT))
   13021     return false;
   13022 
   13023   // Don't create a loadext if we can fold the extension into a wide/long
   13024   // instruction.
   13025   // If there's more than one user instruction, the loadext is desirable no
   13026   // matter what.  There can be two uses by the same instruction.
   13027   if (ExtVal->use_empty() ||
   13028       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
   13029     return true;
   13030 
   13031   SDNode *U = *ExtVal->use_begin();
   13032   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
   13033        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
   13034     return false;
   13035 
   13036   return true;
   13037 }
   13038 
   13039 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   13040   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   13041     return false;
   13042 
   13043   if (!isTypeLegal(EVT::getEVT(Ty1)))
   13044     return false;
   13045 
   13046   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   13047 
   13048   // Assuming the caller doesn't have a zeroext or signext return parameter,
   13049   // truncation all the way down to i1 is valid.
   13050   return true;
   13051 }
   13052 
   13053 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
   13054                                                 const AddrMode &AM, Type *Ty,
   13055                                                 unsigned AS) const {
   13056   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
   13057     if (Subtarget->hasFPAO())
   13058       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
   13059     return 0;
   13060   }
   13061   return -1;
   13062 }
   13063 
   13064 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   13065   if (V < 0)
   13066     return false;
   13067 
   13068   unsigned Scale = 1;
   13069   switch (VT.getSimpleVT().SimpleTy) {
   13070   default: return false;
   13071   case MVT::i1:
   13072   case MVT::i8:
   13073     // Scale == 1;
   13074     break;
   13075   case MVT::i16:
   13076     // Scale == 2;
   13077     Scale = 2;
   13078     break;
   13079   case MVT::i32:
   13080     // Scale == 4;
   13081     Scale = 4;
   13082     break;
   13083   }
   13084 
   13085   if ((V & (Scale - 1)) != 0)
   13086     return false;
   13087   V /= Scale;
   13088   return V == (V & ((1LL << 5) - 1));
   13089 }
   13090 
   13091 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   13092                                       const ARMSubtarget *Subtarget) {
   13093   bool isNeg = false;
   13094   if (V < 0) {
   13095     isNeg = true;
   13096     V = - V;
   13097   }
   13098 
   13099   switch (VT.getSimpleVT().SimpleTy) {
   13100   default: return false;
   13101   case MVT::i1:
   13102   case MVT::i8:
   13103   case MVT::i16:
   13104   case MVT::i32:
   13105     // + imm12 or - imm8
   13106     if (isNeg)
   13107       return V == (V & ((1LL << 8) - 1));
   13108     return V == (V & ((1LL << 12) - 1));
   13109   case MVT::f32:
   13110   case MVT::f64:
   13111     // Same as ARM mode. FIXME: NEON?
   13112     if (!Subtarget->hasVFP2())
   13113       return false;
   13114     if ((V & 3) != 0)
   13115       return false;
   13116     V >>= 2;
   13117     return V == (V & ((1LL << 8) - 1));
   13118   }
   13119 }
   13120 
   13121 /// isLegalAddressImmediate - Return true if the integer value can be used
   13122 /// as the offset of the target addressing mode for load / store of the
   13123 /// given type.
   13124 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   13125                                     const ARMSubtarget *Subtarget) {
   13126   if (V == 0)
   13127     return true;
   13128 
   13129   if (!VT.isSimple())
   13130     return false;
   13131 
   13132   if (Subtarget->isThumb1Only())
   13133     return isLegalT1AddressImmediate(V, VT);
   13134   else if (Subtarget->isThumb2())
   13135     return isLegalT2AddressImmediate(V, VT, Subtarget);
   13136 
   13137   // ARM mode.
   13138   if (V < 0)
   13139     V = - V;
   13140   switch (VT.getSimpleVT().SimpleTy) {
   13141   default: return false;
   13142   case MVT::i1:
   13143   case MVT::i8:
   13144   case MVT::i32:
   13145     // +- imm12
   13146     return V == (V & ((1LL << 12) - 1));
   13147   case MVT::i16:
   13148     // +- imm8
   13149     return V == (V & ((1LL << 8) - 1));
   13150   case MVT::f32:
   13151   case MVT::f64:
   13152     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   13153       return false;
   13154     if ((V & 3) != 0)
   13155       return false;
   13156     V >>= 2;
   13157     return V == (V & ((1LL << 8) - 1));
   13158   }
   13159 }
   13160 
   13161 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   13162                                                       EVT VT) const {
   13163   int Scale = AM.Scale;
   13164   if (Scale < 0)
   13165     return false;
   13166 
   13167   switch (VT.getSimpleVT().SimpleTy) {
   13168   default: return false;
   13169   case MVT::i1:
   13170   case MVT::i8:
   13171   case MVT::i16:
   13172   case MVT::i32:
   13173     if (Scale == 1)
   13174       return true;
   13175     // r + r << imm
   13176     Scale = Scale & ~1;
   13177     return Scale == 2 || Scale == 4 || Scale == 8;
   13178   case MVT::i64:
   13179     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
   13180     // version in Thumb mode.
   13181     // r + r
   13182     if (Scale == 1)
   13183       return true;
   13184     // r * 2 (this can be lowered to r + r).
   13185     if (!AM.HasBaseReg && Scale == 2)
   13186       return true;
   13187     return false;
   13188   case MVT::isVoid:
   13189     // Note, we allow "void" uses (basically, uses that aren't loads or
   13190     // stores), because arm allows folding a scale into many arithmetic
   13191     // operations.  This should be made more precise and revisited later.
   13192 
   13193     // Allow r << imm, but the imm has to be a multiple of two.
   13194     if (Scale & 1) return false;
   13195     return isPowerOf2_32(Scale);
   13196   }
   13197 }
   13198 
   13199 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
   13200                                                       EVT VT) const {
   13201   const int Scale = AM.Scale;
   13202 
   13203   // Negative scales are not supported in Thumb1.
   13204   if (Scale < 0)
   13205     return false;
   13206 
   13207   // Thumb1 addressing modes do not support register scaling excepting the
   13208   // following cases:
   13209   // 1. Scale == 1 means no scaling.
   13210   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
   13211   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
   13212 }
   13213 
   13214 /// isLegalAddressingMode - Return true if the addressing mode represented
   13215 /// by AM is legal for this target, for a load/store of the specified type.
   13216 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   13217                                               const AddrMode &AM, Type *Ty,
   13218                                               unsigned AS, Instruction *I) const {
   13219   EVT VT = getValueType(DL, Ty, true);
   13220   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   13221     return false;
   13222 
   13223   // Can never fold addr of global into load/store.
   13224   if (AM.BaseGV)
   13225     return false;
   13226 
   13227   switch (AM.Scale) {
   13228   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   13229     break;
   13230   default:
   13231     // ARM doesn't support any R+R*scale+imm addr modes.
   13232     if (AM.BaseOffs)
   13233       return false;
   13234 
   13235     if (!VT.isSimple())
   13236       return false;
   13237 
   13238     if (Subtarget->isThumb1Only())
   13239       return isLegalT1ScaledAddressingMode(AM, VT);
   13240 
   13241     if (Subtarget->isThumb2())
   13242       return isLegalT2ScaledAddressingMode(AM, VT);
   13243 
   13244     int Scale = AM.Scale;
   13245     switch (VT.getSimpleVT().SimpleTy) {
   13246     default: return false;
   13247     case MVT::i1:
   13248     case MVT::i8:
   13249     case MVT::i32:
   13250       if (Scale < 0) Scale = -Scale;
   13251       if (Scale == 1)
   13252         return true;
   13253       // r + r << imm
   13254       return isPowerOf2_32(Scale & ~1);
   13255     case MVT::i16:
   13256     case MVT::i64:
   13257       // r +/- r
   13258       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
   13259         return true;
   13260       // r * 2 (this can be lowered to r + r).
   13261       if (!AM.HasBaseReg && Scale == 2)
   13262         return true;
   13263       return false;
   13264 
   13265     case MVT::isVoid:
   13266       // Note, we allow "void" uses (basically, uses that aren't loads or
   13267       // stores), because arm allows folding a scale into many arithmetic
   13268       // operations.  This should be made more precise and revisited later.
   13269 
   13270       // Allow r << imm, but the imm has to be a multiple of two.
   13271       if (Scale & 1) return false;
   13272       return isPowerOf2_32(Scale);
   13273     }
   13274   }
   13275   return true;
   13276 }
   13277 
   13278 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   13279 /// icmp immediate, that is the target has icmp instructions which can compare
   13280 /// a register against the immediate without having to materialize the
   13281 /// immediate into a register.
   13282 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   13283   // Thumb2 and ARM modes can use cmn for negative immediates.
   13284   if (!Subtarget->isThumb())
   13285     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
   13286            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
   13287   if (Subtarget->isThumb2())
   13288     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
   13289            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
   13290   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   13291   return Imm >= 0 && Imm <= 255;
   13292 }
   13293 
   13294 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   13295 /// *or sub* immediate, that is the target has add or sub instructions which can
   13296 /// add a register with the immediate without having to materialize the
   13297 /// immediate into a register.
   13298 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   13299   // Same encoding for add/sub, just flip the sign.
   13300   int64_t AbsImm = std::abs(Imm);
   13301   if (!Subtarget->isThumb())
   13302     return ARM_AM::getSOImmVal(AbsImm) != -1;
   13303   if (Subtarget->isThumb2())
   13304     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   13305   // Thumb1 only has 8-bit unsigned immediate.
   13306   return AbsImm >= 0 && AbsImm <= 255;
   13307 }
   13308 
   13309 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   13310                                       bool isSEXTLoad, SDValue &Base,
   13311                                       SDValue &Offset, bool &isInc,
   13312                                       SelectionDAG &DAG) {
   13313   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   13314     return false;
   13315 
   13316   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   13317     // AddressingMode 3
   13318     Base = Ptr->getOperand(0);
   13319     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   13320       int RHSC = (int)RHS->getZExtValue();
   13321       if (RHSC < 0 && RHSC > -256) {
   13322         assert(Ptr->getOpcode() == ISD::ADD);
   13323         isInc = false;
   13324         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   13325         return true;
   13326       }
   13327     }
   13328     isInc = (Ptr->getOpcode() == ISD::ADD);
   13329     Offset = Ptr->getOperand(1);
   13330     return true;
   13331   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   13332     // AddressingMode 2
   13333     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   13334       int RHSC = (int)RHS->getZExtValue();
   13335       if (RHSC < 0 && RHSC > -0x1000) {
   13336         assert(Ptr->getOpcode() == ISD::ADD);
   13337         isInc = false;
   13338         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   13339         Base = Ptr->getOperand(0);
   13340         return true;
   13341       }
   13342     }
   13343 
   13344     if (Ptr->getOpcode() == ISD::ADD) {
   13345       isInc = true;
   13346       ARM_AM::ShiftOpc ShOpcVal=
   13347         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   13348       if (ShOpcVal != ARM_AM::no_shift) {
   13349         Base = Ptr->getOperand(1);
   13350         Offset = Ptr->getOperand(0);
   13351       } else {
   13352         Base = Ptr->getOperand(0);
   13353         Offset = Ptr->getOperand(1);
   13354       }
   13355       return true;
   13356     }
   13357 
   13358     isInc = (Ptr->getOpcode() == ISD::ADD);
   13359     Base = Ptr->getOperand(0);
   13360     Offset = Ptr->getOperand(1);
   13361     return true;
   13362   }
   13363 
   13364   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   13365   return false;
   13366 }
   13367 
   13368 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   13369                                      bool isSEXTLoad, SDValue &Base,
   13370                                      SDValue &Offset, bool &isInc,
   13371                                      SelectionDAG &DAG) {
   13372   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   13373     return false;
   13374 
   13375   Base = Ptr->getOperand(0);
   13376   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   13377     int RHSC = (int)RHS->getZExtValue();
   13378     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   13379       assert(Ptr->getOpcode() == ISD::ADD);
   13380       isInc = false;
   13381       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   13382       return true;
   13383     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   13384       isInc = Ptr->getOpcode() == ISD::ADD;
   13385       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
   13386       return true;
   13387     }
   13388   }
   13389 
   13390   return false;
   13391 }
   13392 
   13393 /// getPreIndexedAddressParts - returns true by value, base pointer and
   13394 /// offset pointer and addressing mode by reference if the node's address
   13395 /// can be legally represented as pre-indexed load / store address.
   13396 bool
   13397 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   13398                                              SDValue &Offset,
   13399                                              ISD::MemIndexedMode &AM,
   13400                                              SelectionDAG &DAG) const {
   13401   if (Subtarget->isThumb1Only())
   13402     return false;
   13403 
   13404   EVT VT;
   13405   SDValue Ptr;
   13406   bool isSEXTLoad = false;
   13407   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   13408     Ptr = LD->getBasePtr();
   13409     VT  = LD->getMemoryVT();
   13410     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   13411   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   13412     Ptr = ST->getBasePtr();
   13413     VT  = ST->getMemoryVT();
   13414   } else
   13415     return false;
   13416 
   13417   bool isInc;
   13418   bool isLegal = false;
   13419   if (Subtarget->isThumb2())
   13420     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   13421                                        Offset, isInc, DAG);
   13422   else
   13423     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   13424                                         Offset, isInc, DAG);
   13425   if (!isLegal)
   13426     return false;
   13427 
   13428   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   13429   return true;
   13430 }
   13431 
   13432 /// getPostIndexedAddressParts - returns true by value, base pointer and
   13433 /// offset pointer and addressing mode by reference if this node can be
   13434 /// combined with a load / store to form a post-indexed load / store.
   13435 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   13436                                                    SDValue &Base,
   13437                                                    SDValue &Offset,
   13438                                                    ISD::MemIndexedMode &AM,
   13439                                                    SelectionDAG &DAG) const {
   13440   EVT VT;
   13441   SDValue Ptr;
   13442   bool isSEXTLoad = false, isNonExt;
   13443   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   13444     VT  = LD->getMemoryVT();
   13445     Ptr = LD->getBasePtr();
   13446     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   13447     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
   13448   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   13449     VT  = ST->getMemoryVT();
   13450     Ptr = ST->getBasePtr();
   13451     isNonExt = !ST->isTruncatingStore();
   13452   } else
   13453     return false;
   13454 
   13455   if (Subtarget->isThumb1Only()) {
   13456     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
   13457     // must be non-extending/truncating, i32, with an offset of 4.
   13458     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
   13459     if (Op->getOpcode() != ISD::ADD || !isNonExt)
   13460       return false;
   13461     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
   13462     if (!RHS || RHS->getZExtValue() != 4)
   13463       return false;
   13464 
   13465     Offset = Op->getOperand(1);
   13466     Base = Op->getOperand(0);
   13467     AM = ISD::POST_INC;
   13468     return true;
   13469   }
   13470 
   13471   bool isInc;
   13472   bool isLegal = false;
   13473   if (Subtarget->isThumb2())
   13474     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   13475                                        isInc, DAG);
   13476   else
   13477     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   13478                                         isInc, DAG);
   13479   if (!isLegal)
   13480     return false;
   13481 
   13482   if (Ptr != Base) {
   13483     // Swap base ptr and offset to catch more post-index load / store when
   13484     // it's legal. In Thumb2 mode, offset must be an immediate.
   13485     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   13486         !Subtarget->isThumb2())
   13487       std::swap(Base, Offset);
   13488 
   13489     // Post-indexed load / store update the base pointer.
   13490     if (Ptr != Base)
   13491       return false;
   13492   }
   13493 
   13494   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   13495   return true;
   13496 }
   13497 
   13498 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   13499                                                       KnownBits &Known,
   13500                                                       const APInt &DemandedElts,
   13501                                                       const SelectionDAG &DAG,
   13502                                                       unsigned Depth) const {
   13503   unsigned BitWidth = Known.getBitWidth();
   13504   Known.resetAll();
   13505   switch (Op.getOpcode()) {
   13506   default: break;
   13507   case ARMISD::ADDC:
   13508   case ARMISD::ADDE:
   13509   case ARMISD::SUBC:
   13510   case ARMISD::SUBE:
   13511     // Special cases when we convert a carry to a boolean.
   13512     if (Op.getResNo() == 0) {
   13513       SDValue LHS = Op.getOperand(0);
   13514       SDValue RHS = Op.getOperand(1);
   13515       // (ADDE 0, 0, C) will give us a single bit.
   13516       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
   13517           isNullConstant(RHS)) {
   13518         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   13519         return;
   13520       }
   13521     }
   13522     break;
   13523   case ARMISD::CMOV: {
   13524     // Bits are known zero/one if known on the LHS and RHS.
   13525     DAG.computeKnownBits(Op.getOperand(0), Known, Depth+1);
   13526     if (Known.isUnknown())
   13527       return;
   13528 
   13529     KnownBits KnownRHS;
   13530     DAG.computeKnownBits(Op.getOperand(1), KnownRHS, Depth+1);
   13531     Known.Zero &= KnownRHS.Zero;
   13532     Known.One  &= KnownRHS.One;
   13533     return;
   13534   }
   13535   case ISD::INTRINSIC_W_CHAIN: {
   13536     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   13537     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   13538     switch (IntID) {
   13539     default: return;
   13540     case Intrinsic::arm_ldaex:
   13541     case Intrinsic::arm_ldrex: {
   13542       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   13543       unsigned MemBits = VT.getScalarSizeInBits();
   13544       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   13545       return;
   13546     }
   13547     }
   13548   }
   13549   case ARMISD::BFI: {
   13550     // Conservatively, we can recurse down the first operand
   13551     // and just mask out all affected bits.
   13552     DAG.computeKnownBits(Op.getOperand(0), Known, Depth + 1);
   13553 
   13554     // The operand to BFI is already a mask suitable for removing the bits it
   13555     // sets.
   13556     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
   13557     const APInt &Mask = CI->getAPIntValue();
   13558     Known.Zero &= Mask;
   13559     Known.One &= Mask;
   13560     return;
   13561   }
   13562   }
   13563 }
   13564 
   13565 //===----------------------------------------------------------------------===//
   13566 //                           ARM Inline Assembly Support
   13567 //===----------------------------------------------------------------------===//
   13568 
   13569 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   13570   // Looking for "rev" which is V6+.
   13571   if (!Subtarget->hasV6Ops())
   13572     return false;
   13573 
   13574   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   13575   std::string AsmStr = IA->getAsmString();
   13576   SmallVector<StringRef, 4> AsmPieces;
   13577   SplitString(AsmStr, AsmPieces, ";\n");
   13578 
   13579   switch (AsmPieces.size()) {
   13580   default: return false;
   13581   case 1:
   13582     AsmStr = AsmPieces[0];
   13583     AsmPieces.clear();
   13584     SplitString(AsmStr, AsmPieces, " \t,");
   13585 
   13586     // rev $0, $1
   13587     if (AsmPieces.size() == 3 &&
   13588         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   13589         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   13590       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   13591       if (Ty && Ty->getBitWidth() == 32)
   13592         return IntrinsicLowering::LowerToByteSwap(CI);
   13593     }
   13594     break;
   13595   }
   13596 
   13597   return false;
   13598 }
   13599 
   13600 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
   13601   // At this point, we have to lower this constraint to something else, so we
   13602   // lower it to an "r" or "w". However, by doing this we will force the result
   13603   // to be in register, while the X constraint is much more permissive.
   13604   //
   13605   // Although we are correct (we are free to emit anything, without
   13606   // constraints), we might break use cases that would expect us to be more
   13607   // efficient and emit something else.
   13608   if (!Subtarget->hasVFP2())
   13609     return "r";
   13610   if (ConstraintVT.isFloatingPoint())
   13611     return "w";
   13612   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
   13613      (ConstraintVT.getSizeInBits() == 64 ||
   13614       ConstraintVT.getSizeInBits() == 128))
   13615     return "w";
   13616 
   13617   return "r";
   13618 }
   13619 
   13620 /// getConstraintType - Given a constraint letter, return the type of
   13621 /// constraint it is for this target.
   13622 ARMTargetLowering::ConstraintType
   13623 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
   13624   if (Constraint.size() == 1) {
   13625     switch (Constraint[0]) {
   13626     default:  break;
   13627     case 'l': return C_RegisterClass;
   13628     case 'w': return C_RegisterClass;
   13629     case 'h': return C_RegisterClass;
   13630     case 'x': return C_RegisterClass;
   13631     case 't': return C_RegisterClass;
   13632     case 'j': return C_Other; // Constant for movw.
   13633       // An address with a single base register. Due to the way we
   13634       // currently handle addresses it is the same as an 'r' memory constraint.
   13635     case 'Q': return C_Memory;
   13636     }
   13637   } else if (Constraint.size() == 2) {
   13638     switch (Constraint[0]) {
   13639     default: break;
   13640     // All 'U+' constraints are addresses.
   13641     case 'U': return C_Memory;
   13642     }
   13643   }
   13644   return TargetLowering::getConstraintType(Constraint);
   13645 }
   13646 
   13647 /// Examine constraint type and operand type and determine a weight value.
   13648 /// This object must already have been set up with the operand type
   13649 /// and the current alternative constraint selected.
   13650 TargetLowering::ConstraintWeight
   13651 ARMTargetLowering::getSingleConstraintMatchWeight(
   13652     AsmOperandInfo &info, const char *constraint) const {
   13653   ConstraintWeight weight = CW_Invalid;
   13654   Value *CallOperandVal = info.CallOperandVal;
   13655     // If we don't have a value, we can't do a match,
   13656     // but allow it at the lowest weight.
   13657   if (!CallOperandVal)
   13658     return CW_Default;
   13659   Type *type = CallOperandVal->getType();
   13660   // Look at the constraint type.
   13661   switch (*constraint) {
   13662   default:
   13663     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   13664     break;
   13665   case 'l':
   13666     if (type->isIntegerTy()) {
   13667       if (Subtarget->isThumb())
   13668         weight = CW_SpecificReg;
   13669       else
   13670         weight = CW_Register;
   13671     }
   13672     break;
   13673   case 'w':
   13674     if (type->isFloatingPointTy())
   13675       weight = CW_Register;
   13676     break;
   13677   }
   13678   return weight;
   13679 }
   13680 
   13681 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
   13682 
   13683 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
   13684     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
   13685   if (Constraint.size() == 1) {
   13686     // GCC ARM Constraint Letters
   13687     switch (Constraint[0]) {
   13688     case 'l': // Low regs or general regs.
   13689       if (Subtarget->isThumb())
   13690         return RCPair(0U, &ARM::tGPRRegClass);
   13691       return RCPair(0U, &ARM::GPRRegClass);
   13692     case 'h': // High regs or no regs.
   13693       if (Subtarget->isThumb())
   13694         return RCPair(0U, &ARM::hGPRRegClass);
   13695       break;
   13696     case 'r':
   13697       if (Subtarget->isThumb1Only())
   13698         return RCPair(0U, &ARM::tGPRRegClass);
   13699       return RCPair(0U, &ARM::GPRRegClass);
   13700     case 'w':
   13701       if (VT == MVT::Other)
   13702         break;
   13703       if (VT == MVT::f32)
   13704         return RCPair(0U, &ARM::SPRRegClass);
   13705       if (VT.getSizeInBits() == 64)
   13706         return RCPair(0U, &ARM::DPRRegClass);
   13707       if (VT.getSizeInBits() == 128)
   13708         return RCPair(0U, &ARM::QPRRegClass);
   13709       break;
   13710     case 'x':
   13711       if (VT == MVT::Other)
   13712         break;
   13713       if (VT == MVT::f32)
   13714         return RCPair(0U, &ARM::SPR_8RegClass);
   13715       if (VT.getSizeInBits() == 64)
   13716         return RCPair(0U, &ARM::DPR_8RegClass);
   13717       if (VT.getSizeInBits() == 128)
   13718         return RCPair(0U, &ARM::QPR_8RegClass);
   13719       break;
   13720     case 't':
   13721       if (VT == MVT::Other)
   13722         break;
   13723       if (VT == MVT::f32 || VT == MVT::i32)
   13724         return RCPair(0U, &ARM::SPRRegClass);
   13725       if (VT.getSizeInBits() == 64)
   13726         return RCPair(0U, &ARM::DPR_VFP2RegClass);
   13727       if (VT.getSizeInBits() == 128)
   13728         return RCPair(0U, &ARM::QPR_VFP2RegClass);
   13729       break;
   13730     }
   13731   }
   13732   if (StringRef("{cc}").equals_lower(Constraint))
   13733     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   13734 
   13735   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   13736 }
   13737 
   13738 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   13739 /// vector.  If it is invalid, don't add anything to Ops.
   13740 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   13741                                                      std::string &Constraint,
   13742                                                      std::vector<SDValue>&Ops,
   13743                                                      SelectionDAG &DAG) const {
   13744   SDValue Result;
   13745 
   13746   // Currently only support length 1 constraints.
   13747   if (Constraint.length() != 1) return;
   13748 
   13749   char ConstraintLetter = Constraint[0];
   13750   switch (ConstraintLetter) {
   13751   default: break;
   13752   case 'j':
   13753   case 'I': case 'J': case 'K': case 'L':
   13754   case 'M': case 'N': case 'O':
   13755     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   13756     if (!C)
   13757       return;
   13758 
   13759     int64_t CVal64 = C->getSExtValue();
   13760     int CVal = (int) CVal64;
   13761     // None of these constraints allow values larger than 32 bits.  Check
   13762     // that the value fits in an int.
   13763     if (CVal != CVal64)
   13764       return;
   13765 
   13766     switch (ConstraintLetter) {
   13767       case 'j':
   13768         // Constant suitable for movw, must be between 0 and
   13769         // 65535.
   13770         if (Subtarget->hasV6T2Ops())
   13771           if (CVal >= 0 && CVal <= 65535)
   13772             break;
   13773         return;
   13774       case 'I':
   13775         if (Subtarget->isThumb1Only()) {
   13776           // This must be a constant between 0 and 255, for ADD
   13777           // immediates.
   13778           if (CVal >= 0 && CVal <= 255)
   13779             break;
   13780         } else if (Subtarget->isThumb2()) {
   13781           // A constant that can be used as an immediate value in a
   13782           // data-processing instruction.
   13783           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   13784             break;
   13785         } else {
   13786           // A constant that can be used as an immediate value in a
   13787           // data-processing instruction.
   13788           if (ARM_AM::getSOImmVal(CVal) != -1)
   13789             break;
   13790         }
   13791         return;
   13792 
   13793       case 'J':
   13794         if (Subtarget->isThumb1Only()) {
   13795           // This must be a constant between -255 and -1, for negated ADD
   13796           // immediates. This can be used in GCC with an "n" modifier that
   13797           // prints the negated value, for use with SUB instructions. It is
   13798           // not useful otherwise but is implemented for compatibility.
   13799           if (CVal >= -255 && CVal <= -1)
   13800             break;
   13801         } else {
   13802           // This must be a constant between -4095 and 4095. It is not clear
   13803           // what this constraint is intended for. Implemented for
   13804           // compatibility with GCC.
   13805           if (CVal >= -4095 && CVal <= 4095)
   13806             break;
   13807         }
   13808         return;
   13809 
   13810       case 'K':
   13811         if (Subtarget->isThumb1Only()) {
   13812           // A 32-bit value where only one byte has a nonzero value. Exclude
   13813           // zero to match GCC. This constraint is used by GCC internally for
   13814           // constants that can be loaded with a move/shift combination.
   13815           // It is not useful otherwise but is implemented for compatibility.
   13816           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   13817             break;
   13818         } else if (Subtarget->isThumb2()) {
   13819           // A constant whose bitwise inverse can be used as an immediate
   13820           // value in a data-processing instruction. This can be used in GCC
   13821           // with a "B" modifier that prints the inverted value, for use with
   13822           // BIC and MVN instructions. It is not useful otherwise but is
   13823           // implemented for compatibility.
   13824           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   13825             break;
   13826         } else {
   13827           // A constant whose bitwise inverse can be used as an immediate
   13828           // value in a data-processing instruction. This can be used in GCC
   13829           // with a "B" modifier that prints the inverted value, for use with
   13830           // BIC and MVN instructions. It is not useful otherwise but is
   13831           // implemented for compatibility.
   13832           if (ARM_AM::getSOImmVal(~CVal) != -1)
   13833             break;
   13834         }
   13835         return;
   13836 
   13837       case 'L':
   13838         if (Subtarget->isThumb1Only()) {
   13839           // This must be a constant between -7 and 7,
   13840           // for 3-operand ADD/SUB immediate instructions.
   13841           if (CVal >= -7 && CVal < 7)
   13842             break;
   13843         } else if (Subtarget->isThumb2()) {
   13844           // A constant whose negation can be used as an immediate value in a
   13845           // data-processing instruction. This can be used in GCC with an "n"
   13846           // modifier that prints the negated value, for use with SUB
   13847           // instructions. It is not useful otherwise but is implemented for
   13848           // compatibility.
   13849           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   13850             break;
   13851         } else {
   13852           // A constant whose negation can be used as an immediate value in a
   13853           // data-processing instruction. This can be used in GCC with an "n"
   13854           // modifier that prints the negated value, for use with SUB
   13855           // instructions. It is not useful otherwise but is implemented for
   13856           // compatibility.
   13857           if (ARM_AM::getSOImmVal(-CVal) != -1)
   13858             break;
   13859         }
   13860         return;
   13861 
   13862       case 'M':
   13863         if (Subtarget->isThumb1Only()) {
   13864           // This must be a multiple of 4 between 0 and 1020, for
   13865           // ADD sp + immediate.
   13866           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   13867             break;
   13868         } else {
   13869           // A power of two or a constant between 0 and 32.  This is used in
   13870           // GCC for the shift amount on shifted register operands, but it is
   13871           // useful in general for any shift amounts.
   13872           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   13873             break;
   13874         }
   13875         return;
   13876 
   13877       case 'N':
   13878         if (Subtarget->isThumb()) {  // FIXME thumb2
   13879           // This must be a constant between 0 and 31, for shift amounts.
   13880           if (CVal >= 0 && CVal <= 31)
   13881             break;
   13882         }
   13883         return;
   13884 
   13885       case 'O':
   13886         if (Subtarget->isThumb()) {  // FIXME thumb2
   13887           // This must be a multiple of 4 between -508 and 508, for
   13888           // ADD/SUB sp = sp + immediate.
   13889           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   13890             break;
   13891         }
   13892         return;
   13893     }
   13894     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
   13895     break;
   13896   }
   13897 
   13898   if (Result.getNode()) {
   13899     Ops.push_back(Result);
   13900     return;
   13901   }
   13902   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   13903 }
   13904 
   13905 static RTLIB::Libcall getDivRemLibcall(
   13906     const SDNode *N, MVT::SimpleValueType SVT) {
   13907   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   13908           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   13909          "Unhandled Opcode in getDivRemLibcall");
   13910   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   13911                   N->getOpcode() == ISD::SREM;
   13912   RTLIB::Libcall LC;
   13913   switch (SVT) {
   13914   default: llvm_unreachable("Unexpected request for libcall!");
   13915   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   13916   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   13917   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   13918   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   13919   }
   13920   return LC;
   13921 }
   13922 
   13923 static TargetLowering::ArgListTy getDivRemArgList(
   13924     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
   13925   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   13926           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   13927          "Unhandled Opcode in getDivRemArgList");
   13928   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   13929                   N->getOpcode() == ISD::SREM;
   13930   TargetLowering::ArgListTy Args;
   13931   TargetLowering::ArgListEntry Entry;
   13932   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   13933     EVT ArgVT = N->getOperand(i).getValueType();
   13934     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
   13935     Entry.Node = N->getOperand(i);
   13936     Entry.Ty = ArgTy;
   13937     Entry.IsSExt = isSigned;
   13938     Entry.IsZExt = !isSigned;
   13939     Args.push_back(Entry);
   13940   }
   13941   if (Subtarget->isTargetWindows() && Args.size() >= 2)
   13942     std::swap(Args[0], Args[1]);
   13943   return Args;
   13944 }
   13945 
   13946 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
   13947   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
   13948           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
   13949           Subtarget->isTargetWindows()) &&
   13950          "Register-based DivRem lowering only");
   13951   unsigned Opcode = Op->getOpcode();
   13952   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
   13953          "Invalid opcode for Div/Rem lowering");
   13954   bool isSigned = (Opcode == ISD::SDIVREM);
   13955   EVT VT = Op->getValueType(0);
   13956   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
   13957   SDLoc dl(Op);
   13958 
   13959   // If the target has hardware divide, use divide + multiply + subtract:
   13960   //     div = a / b
   13961   //     rem = a - b * div
   13962   //     return {div, rem}
   13963   // This should be lowered into UDIV/SDIV + MLS later on.
   13964   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
   13965                                         : Subtarget->hasDivideInARMMode();
   13966   if (hasDivide && Op->getValueType(0).isSimple() &&
   13967       Op->getSimpleValueType(0) == MVT::i32) {
   13968     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
   13969     const SDValue Dividend = Op->getOperand(0);
   13970     const SDValue Divisor = Op->getOperand(1);
   13971     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
   13972     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
   13973     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
   13974 
   13975     SDValue Values[2] = {Div, Rem};
   13976     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
   13977   }
   13978 
   13979   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
   13980                                        VT.getSimpleVT().SimpleTy);
   13981   SDValue InChain = DAG.getEntryNode();
   13982 
   13983   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
   13984                                                     DAG.getContext(),
   13985                                                     Subtarget);
   13986 
   13987   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   13988                                          getPointerTy(DAG.getDataLayout()));
   13989 
   13990   Type *RetTy = StructType::get(Ty, Ty);
   13991 
   13992   if (Subtarget->isTargetWindows())
   13993     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
   13994 
   13995   TargetLowering::CallLoweringInfo CLI(DAG);
   13996   CLI.setDebugLoc(dl).setChain(InChain)
   13997     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
   13998     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
   13999 
   14000   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
   14001   return CallInfo.first;
   14002 }
   14003 
   14004 // Lowers REM using divmod helpers
   14005 // see RTABI section 4.2/4.3
   14006 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
   14007   // Build return types (div and rem)
   14008   std::vector<Type*> RetTyParams;
   14009   Type *RetTyElement;
   14010 
   14011   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
   14012   default: llvm_unreachable("Unexpected request for libcall!");
   14013   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
   14014   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
   14015   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
   14016   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
   14017   }
   14018 
   14019   RetTyParams.push_back(RetTyElement);
   14020   RetTyParams.push_back(RetTyElement);
   14021   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
   14022   Type *RetTy = StructType::get(*DAG.getContext(), ret);
   14023 
   14024   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
   14025                                                              SimpleTy);
   14026   SDValue InChain = DAG.getEntryNode();
   14027   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
   14028                                                     Subtarget);
   14029   bool isSigned = N->getOpcode() == ISD::SREM;
   14030   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   14031                                          getPointerTy(DAG.getDataLayout()));
   14032 
   14033   if (Subtarget->isTargetWindows())
   14034     InChain = WinDBZCheckDenominator(DAG, N, InChain);
   14035 
   14036   // Lower call
   14037   CallLoweringInfo CLI(DAG);
   14038   CLI.setChain(InChain)
   14039      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
   14040      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
   14041   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   14042 
   14043   // Return second (rem) result operand (first contains div)
   14044   SDNode *ResNode = CallResult.first.getNode();
   14045   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
   14046   return ResNode->getOperand(1);
   14047 }
   14048 
   14049 SDValue
   14050 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   14051   assert(Subtarget->isTargetWindows() && "unsupported target platform");
   14052   SDLoc DL(Op);
   14053 
   14054   // Get the inputs.
   14055   SDValue Chain = Op.getOperand(0);
   14056   SDValue Size  = Op.getOperand(1);
   14057 
   14058   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
   14059           "no-stack-arg-probe")) {
   14060     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   14061     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   14062     Chain = SP.getValue(1);
   14063     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
   14064     if (Align)
   14065       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
   14066                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
   14067     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
   14068     SDValue Ops[2] = { SP, Chain };
   14069     return DAG.getMergeValues(Ops, DL);
   14070   }
   14071 
   14072   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
   14073                               DAG.getConstant(2, DL, MVT::i32));
   14074 
   14075   SDValue Flag;
   14076   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
   14077   Flag = Chain.getValue(1);
   14078 
   14079   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   14080   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
   14081 
   14082   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   14083   Chain = NewSP.getValue(1);
   14084 
   14085   SDValue Ops[2] = { NewSP, Chain };
   14086   return DAG.getMergeValues(Ops, DL);
   14087 }
   14088 
   14089 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
   14090   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
   14091          "Unexpected type for custom-lowering FP_EXTEND");
   14092 
   14093   RTLIB::Libcall LC;
   14094   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
   14095 
   14096   SDValue SrcVal = Op.getOperand(0);
   14097   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   14098                      SDLoc(Op)).first;
   14099 }
   14100 
   14101 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
   14102   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
   14103          Subtarget->isFPOnlySP() &&
   14104          "Unexpected type for custom-lowering FP_ROUND");
   14105 
   14106   RTLIB::Libcall LC;
   14107   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
   14108 
   14109   SDValue SrcVal = Op.getOperand(0);
   14110   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   14111                      SDLoc(Op)).first;
   14112 }
   14113 
   14114 bool
   14115 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   14116   // The ARM target isn't yet aware of offsets.
   14117   return false;
   14118 }
   14119 
   14120 bool ARM::isBitFieldInvertedMask(unsigned v) {
   14121   if (v == 0xffffffff)
   14122     return false;
   14123 
   14124   // there can be 1's on either or both "outsides", all the "inside"
   14125   // bits must be 0's
   14126   return isShiftedMask_32(~v);
   14127 }
   14128 
   14129 /// isFPImmLegal - Returns true if the target can instruction select the
   14130 /// specified FP immediate natively. If false, the legalizer will
   14131 /// materialize the FP immediate as a load from a constant pool.
   14132 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   14133   if (!Subtarget->hasVFP3())
   14134     return false;
   14135   if (VT == MVT::f16 && Subtarget->hasFullFP16())
   14136     return ARM_AM::getFP16Imm(Imm) != -1;
   14137   if (VT == MVT::f32)
   14138     return ARM_AM::getFP32Imm(Imm) != -1;
   14139   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
   14140     return ARM_AM::getFP64Imm(Imm) != -1;
   14141   return false;
   14142 }
   14143 
   14144 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   14145 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   14146 /// specified in the intrinsic calls.
   14147 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   14148                                            const CallInst &I,
   14149                                            MachineFunction &MF,
   14150                                            unsigned Intrinsic) const {
   14151   switch (Intrinsic) {
   14152   case Intrinsic::arm_neon_vld1:
   14153   case Intrinsic::arm_neon_vld2:
   14154   case Intrinsic::arm_neon_vld3:
   14155   case Intrinsic::arm_neon_vld4:
   14156   case Intrinsic::arm_neon_vld2lane:
   14157   case Intrinsic::arm_neon_vld3lane:
   14158   case Intrinsic::arm_neon_vld4lane:
   14159   case Intrinsic::arm_neon_vld2dup:
   14160   case Intrinsic::arm_neon_vld3dup:
   14161   case Intrinsic::arm_neon_vld4dup: {
   14162     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14163     // Conservatively set memVT to the entire set of vectors loaded.
   14164     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14165     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
   14166     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   14167     Info.ptrVal = I.getArgOperand(0);
   14168     Info.offset = 0;
   14169     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   14170     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   14171     // volatile loads with NEON intrinsics not supported
   14172     Info.flags = MachineMemOperand::MOLoad;
   14173     return true;
   14174   }
   14175   case Intrinsic::arm_neon_vld1x2:
   14176   case Intrinsic::arm_neon_vld1x3:
   14177   case Intrinsic::arm_neon_vld1x4: {
   14178     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14179     // Conservatively set memVT to the entire set of vectors loaded.
   14180     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14181     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
   14182     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   14183     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
   14184     Info.offset = 0;
   14185     Info.align = 0;
   14186     // volatile loads with NEON intrinsics not supported
   14187     Info.flags = MachineMemOperand::MOLoad;
   14188     return true;
   14189   }
   14190   case Intrinsic::arm_neon_vst1:
   14191   case Intrinsic::arm_neon_vst2:
   14192   case Intrinsic::arm_neon_vst3:
   14193   case Intrinsic::arm_neon_vst4:
   14194   case Intrinsic::arm_neon_vst2lane:
   14195   case Intrinsic::arm_neon_vst3lane:
   14196   case Intrinsic::arm_neon_vst4lane: {
   14197     Info.opc = ISD::INTRINSIC_VOID;
   14198     // Conservatively set memVT to the entire set of vectors stored.
   14199     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14200     unsigned NumElts = 0;
   14201     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   14202       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   14203       if (!ArgTy->isVectorTy())
   14204         break;
   14205       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
   14206     }
   14207     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   14208     Info.ptrVal = I.getArgOperand(0);
   14209     Info.offset = 0;
   14210     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   14211     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   14212     // volatile stores with NEON intrinsics not supported
   14213     Info.flags = MachineMemOperand::MOStore;
   14214     return true;
   14215   }
   14216   case Intrinsic::arm_neon_vst1x2:
   14217   case Intrinsic::arm_neon_vst1x3:
   14218   case Intrinsic::arm_neon_vst1x4: {
   14219     Info.opc = ISD::INTRINSIC_VOID;
   14220     // Conservatively set memVT to the entire set of vectors stored.
   14221     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14222     unsigned NumElts = 0;
   14223     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   14224       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   14225       if (!ArgTy->isVectorTy())
   14226         break;
   14227       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
   14228     }
   14229     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   14230     Info.ptrVal = I.getArgOperand(0);
   14231     Info.offset = 0;
   14232     Info.align = 0;
   14233     // volatile stores with NEON intrinsics not supported
   14234     Info.flags = MachineMemOperand::MOStore;
   14235     return true;
   14236   }
   14237   case Intrinsic::arm_ldaex:
   14238   case Intrinsic::arm_ldrex: {
   14239     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14240     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   14241     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14242     Info.memVT = MVT::getVT(PtrTy->getElementType());
   14243     Info.ptrVal = I.getArgOperand(0);
   14244     Info.offset = 0;
   14245     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   14246     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
   14247     return true;
   14248   }
   14249   case Intrinsic::arm_stlex:
   14250   case Intrinsic::arm_strex: {
   14251     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   14252     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   14253     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14254     Info.memVT = MVT::getVT(PtrTy->getElementType());
   14255     Info.ptrVal = I.getArgOperand(1);
   14256     Info.offset = 0;
   14257     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   14258     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
   14259     return true;
   14260   }
   14261   case Intrinsic::arm_stlexd:
   14262   case Intrinsic::arm_strexd:
   14263     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14264     Info.memVT = MVT::i64;
   14265     Info.ptrVal = I.getArgOperand(2);
   14266     Info.offset = 0;
   14267     Info.align = 8;
   14268     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
   14269     return true;
   14270 
   14271   case Intrinsic::arm_ldaexd:
   14272   case Intrinsic::arm_ldrexd:
   14273     Info.opc = ISD::INTRINSIC_W_CHAIN;
   14274     Info.memVT = MVT::i64;
   14275     Info.ptrVal = I.getArgOperand(0);
   14276     Info.offset = 0;
   14277     Info.align = 8;
   14278     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
   14279     return true;
   14280 
   14281   default:
   14282     break;
   14283   }
   14284 
   14285   return false;
   14286 }
   14287 
   14288 /// Returns true if it is beneficial to convert a load of a constant
   14289 /// to just the constant itself.
   14290 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   14291                                                           Type *Ty) const {
   14292   assert(Ty->isIntegerTy());
   14293 
   14294   unsigned Bits = Ty->getPrimitiveSizeInBits();
   14295   if (Bits == 0 || Bits > 32)
   14296     return false;
   14297   return true;
   14298 }
   14299 
   14300 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
   14301                                                 unsigned Index) const {
   14302   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
   14303     return false;
   14304 
   14305   return (Index == 0 || Index == ResVT.getVectorNumElements());
   14306 }
   14307 
   14308 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
   14309                                         ARM_MB::MemBOpt Domain) const {
   14310   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   14311 
   14312   // First, if the target has no DMB, see what fallback we can use.
   14313   if (!Subtarget->hasDataBarrier()) {
   14314     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   14315     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   14316     // here.
   14317     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
   14318       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
   14319       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
   14320                         Builder.getInt32(0), Builder.getInt32(7),
   14321                         Builder.getInt32(10), Builder.getInt32(5)};
   14322       return Builder.CreateCall(MCR, args);
   14323     } else {
   14324       // Instead of using barriers, atomic accesses on these subtargets use
   14325       // libcalls.
   14326       llvm_unreachable("makeDMB on a target so old that it has no barriers");
   14327     }
   14328   } else {
   14329     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
   14330     // Only a full system barrier exists in the M-class architectures.
   14331     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
   14332     Constant *CDomain = Builder.getInt32(Domain);
   14333     return Builder.CreateCall(DMB, CDomain);
   14334   }
   14335 }
   14336 
   14337 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   14338 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   14339                                                  Instruction *Inst,
   14340                                                  AtomicOrdering Ord) const {
   14341   switch (Ord) {
   14342   case AtomicOrdering::NotAtomic:
   14343   case AtomicOrdering::Unordered:
   14344     llvm_unreachable("Invalid fence: unordered/non-atomic");
   14345   case AtomicOrdering::Monotonic:
   14346   case AtomicOrdering::Acquire:
   14347     return nullptr; // Nothing to do
   14348   case AtomicOrdering::SequentiallyConsistent:
   14349     if (!Inst->hasAtomicStore())
   14350       return nullptr; // Nothing to do
   14351     LLVM_FALLTHROUGH;
   14352   case AtomicOrdering::Release:
   14353   case AtomicOrdering::AcquireRelease:
   14354     if (Subtarget->preferISHSTBarriers())
   14355       return makeDMB(Builder, ARM_MB::ISHST);
   14356     // FIXME: add a comment with a link to documentation justifying this.
   14357     else
   14358       return makeDMB(Builder, ARM_MB::ISH);
   14359   }
   14360   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
   14361 }
   14362 
   14363 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   14364                                                   Instruction *Inst,
   14365                                                   AtomicOrdering Ord) const {
   14366   switch (Ord) {
   14367   case AtomicOrdering::NotAtomic:
   14368   case AtomicOrdering::Unordered:
   14369     llvm_unreachable("Invalid fence: unordered/not-atomic");
   14370   case AtomicOrdering::Monotonic:
   14371   case AtomicOrdering::Release:
   14372     return nullptr; // Nothing to do
   14373   case AtomicOrdering::Acquire:
   14374   case AtomicOrdering::AcquireRelease:
   14375   case AtomicOrdering::SequentiallyConsistent:
   14376     return makeDMB(Builder, ARM_MB::ISH);
   14377   }
   14378   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
   14379 }
   14380 
   14381 // Loads and stores less than 64-bits are already atomic; ones above that
   14382 // are doomed anyway, so defer to the default libcall and blame the OS when
   14383 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   14384 // anything for those.
   14385 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   14386   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   14387   return (Size == 64) && !Subtarget->isMClass();
   14388 }
   14389 
   14390 // Loads and stores less than 64-bits are already atomic; ones above that
   14391 // are doomed anyway, so defer to the default libcall and blame the OS when
   14392 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   14393 // anything for those.
   14394 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
   14395 // guarantee, see DDI0406C ARM architecture reference manual,
   14396 // sections A8.8.72-74 LDRD)
   14397 TargetLowering::AtomicExpansionKind
   14398 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   14399   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
   14400   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
   14401                                                   : AtomicExpansionKind::None;
   14402 }
   14403 
   14404 // For the real atomic operations, we have ldrex/strex up to 32 bits,
   14405 // and up to 64 bits on the non-M profiles
   14406 TargetLowering::AtomicExpansionKind
   14407 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   14408   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
   14409   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
   14410   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
   14411              ? AtomicExpansionKind::LLSC
   14412              : AtomicExpansionKind::None;
   14413 }
   14414 
   14415 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
   14416     AtomicCmpXchgInst *AI) const {
   14417   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
   14418   // implement cmpxchg without spilling. If the address being exchanged is also
   14419   // on the stack and close enough to the spill slot, this can lead to a
   14420   // situation where the monitor always gets cleared and the atomic operation
   14421   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
   14422   bool hasAtomicCmpXchg =
   14423       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
   14424   return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
   14425 }
   14426 
   14427 bool ARMTargetLowering::shouldInsertFencesForAtomic(
   14428     const Instruction *I) const {
   14429   return InsertFencesForAtomic;
   14430 }
   14431 
   14432 // This has so far only been implemented for MachO.
   14433 bool ARMTargetLowering::useLoadStackGuardNode() const {
   14434   return Subtarget->isTargetMachO();
   14435 }
   14436 
   14437 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
   14438                                                   unsigned &Cost) const {
   14439   // If we do not have NEON, vector types are not natively supported.
   14440   if (!Subtarget->hasNEON())
   14441     return false;
   14442 
   14443   // Floating point values and vector values map to the same register file.
   14444   // Therefore, although we could do a store extract of a vector type, this is
   14445   // better to leave at float as we have more freedom in the addressing mode for
   14446   // those.
   14447   if (VectorTy->isFPOrFPVectorTy())
   14448     return false;
   14449 
   14450   // If the index is unknown at compile time, this is very expensive to lower
   14451   // and it is not possible to combine the store with the extract.
   14452   if (!isa<ConstantInt>(Idx))
   14453     return false;
   14454 
   14455   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
   14456   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
   14457   // We can do a store + vector extract on any vector that fits perfectly in a D
   14458   // or Q register.
   14459   if (BitWidth == 64 || BitWidth == 128) {
   14460     Cost = 0;
   14461     return true;
   14462   }
   14463   return false;
   14464 }
   14465 
   14466 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
   14467   return Subtarget->hasV6T2Ops();
   14468 }
   14469 
   14470 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
   14471   return Subtarget->hasV6T2Ops();
   14472 }
   14473 
   14474 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   14475                                          AtomicOrdering Ord) const {
   14476   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   14477   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   14478   bool IsAcquire = isAcquireOrStronger(Ord);
   14479 
   14480   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
   14481   // intrinsic must return {i32, i32} and we have to recombine them into a
   14482   // single i64 here.
   14483   if (ValTy->getPrimitiveSizeInBits() == 64) {
   14484     Intrinsic::ID Int =
   14485         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
   14486     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
   14487 
   14488     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   14489     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
   14490 
   14491     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   14492     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   14493     if (!Subtarget->isLittle())
   14494       std::swap (Lo, Hi);
   14495     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   14496     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   14497     return Builder.CreateOr(
   14498         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
   14499   }
   14500 
   14501   Type *Tys[] = { Addr->getType() };
   14502   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
   14503   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
   14504 
   14505   return Builder.CreateTruncOrBitCast(
   14506       Builder.CreateCall(Ldrex, Addr),
   14507       cast<PointerType>(Addr->getType())->getElementType());
   14508 }
   14509 
   14510 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
   14511     IRBuilder<> &Builder) const {
   14512   if (!Subtarget->hasV7Ops())
   14513     return;
   14514   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   14515   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
   14516 }
   14517 
   14518 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   14519                                                Value *Addr,
   14520                                                AtomicOrdering Ord) const {
   14521   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   14522   bool IsRelease = isReleaseOrStronger(Ord);
   14523 
   14524   // Since the intrinsics must have legal type, the i64 intrinsics take two
   14525   // parameters: "i32, i32". We must marshal Val into the appropriate form
   14526   // before the call.
   14527   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
   14528     Intrinsic::ID Int =
   14529         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
   14530     Function *Strex = Intrinsic::getDeclaration(M, Int);
   14531     Type *Int32Ty = Type::getInt32Ty(M->getContext());
   14532 
   14533     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
   14534     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
   14535     if (!Subtarget->isLittle())
   14536       std::swap(Lo, Hi);
   14537     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   14538     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
   14539   }
   14540 
   14541   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
   14542   Type *Tys[] = { Addr->getType() };
   14543   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
   14544 
   14545   return Builder.CreateCall(
   14546       Strex, {Builder.CreateZExtOrBitCast(
   14547                   Val, Strex->getFunctionType()->getParamType(0)),
   14548               Addr});
   14549 }
   14550 
   14551 /// A helper function for determining the number of interleaved accesses we
   14552 /// will generate when lowering accesses of the given type.
   14553 unsigned
   14554 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
   14555                                              const DataLayout &DL) const {
   14556   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
   14557 }
   14558 
   14559 bool ARMTargetLowering::isLegalInterleavedAccessType(
   14560     VectorType *VecTy, const DataLayout &DL) const {
   14561 
   14562   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
   14563   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
   14564 
   14565   // Ensure the vector doesn't have f16 elements. Even though we could do an
   14566   // i16 vldN, we can't hold the f16 vectors and will end up converting via
   14567   // f32.
   14568   if (VecTy->getElementType()->isHalfTy())
   14569     return false;
   14570 
   14571   // Ensure the number of vector elements is greater than 1.
   14572   if (VecTy->getNumElements() < 2)
   14573     return false;
   14574 
   14575   // Ensure the element type is legal.
   14576   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
   14577     return false;
   14578 
   14579   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
   14580   // 128 will be split into multiple interleaved accesses.
   14581   return VecSize == 64 || VecSize % 128 == 0;
   14582 }
   14583 
   14584 /// Lower an interleaved load into a vldN intrinsic.
   14585 ///
   14586 /// E.g. Lower an interleaved load (Factor = 2):
   14587 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
   14588 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
   14589 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
   14590 ///
   14591 ///      Into:
   14592 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
   14593 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
   14594 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
   14595 bool ARMTargetLowering::lowerInterleavedLoad(
   14596     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
   14597     ArrayRef<unsigned> Indices, unsigned Factor) const {
   14598   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   14599          "Invalid interleave factor");
   14600   assert(!Shuffles.empty() && "Empty shufflevector input");
   14601   assert(Shuffles.size() == Indices.size() &&
   14602          "Unmatched number of shufflevectors and indices");
   14603 
   14604   VectorType *VecTy = Shuffles[0]->getType();
   14605   Type *EltTy = VecTy->getVectorElementType();
   14606 
   14607   const DataLayout &DL = LI->getModule()->getDataLayout();
   14608 
   14609   // Skip if we do not have NEON and skip illegal vector types. We can
   14610   // "legalize" wide vector types into multiple interleaved accesses as long as
   14611   // the vector types are divisible by 128.
   14612   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
   14613     return false;
   14614 
   14615   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
   14616 
   14617   // A pointer vector can not be the return type of the ldN intrinsics. Need to
   14618   // load integer vectors first and then convert to pointer vectors.
   14619   if (EltTy->isPointerTy())
   14620     VecTy =
   14621         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
   14622 
   14623   IRBuilder<> Builder(LI);
   14624 
   14625   // The base address of the load.
   14626   Value *BaseAddr = LI->getPointerOperand();
   14627 
   14628   if (NumLoads > 1) {
   14629     // If we're going to generate more than one load, reset the sub-vector type
   14630     // to something legal.
   14631     VecTy = VectorType::get(VecTy->getVectorElementType(),
   14632                             VecTy->getVectorNumElements() / NumLoads);
   14633 
   14634     // We will compute the pointer operand of each load from the original base
   14635     // address using GEPs. Cast the base address to a pointer to the scalar
   14636     // element type.
   14637     BaseAddr = Builder.CreateBitCast(
   14638         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
   14639                       LI->getPointerAddressSpace()));
   14640   }
   14641 
   14642   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
   14643 
   14644   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
   14645   Type *Tys[] = {VecTy, Int8Ptr};
   14646   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
   14647                                             Intrinsic::arm_neon_vld3,
   14648                                             Intrinsic::arm_neon_vld4};
   14649   Function *VldnFunc =
   14650       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
   14651 
   14652   // Holds sub-vectors extracted from the load intrinsic return values. The
   14653   // sub-vectors are associated with the shufflevector instructions they will
   14654   // replace.
   14655   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
   14656 
   14657   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
   14658     // If we're generating more than one load, compute the base address of
   14659     // subsequent loads as an offset from the previous.
   14660     if (LoadCount > 0)
   14661       BaseAddr = Builder.CreateConstGEP1_32(
   14662           BaseAddr, VecTy->getVectorNumElements() * Factor);
   14663 
   14664     SmallVector<Value *, 2> Ops;
   14665     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
   14666     Ops.push_back(Builder.getInt32(LI->getAlignment()));
   14667 
   14668     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
   14669 
   14670     // Replace uses of each shufflevector with the corresponding vector loaded
   14671     // by ldN.
   14672     for (unsigned i = 0; i < Shuffles.size(); i++) {
   14673       ShuffleVectorInst *SV = Shuffles[i];
   14674       unsigned Index = Indices[i];
   14675 
   14676       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
   14677 
   14678       // Convert the integer vector to pointer vector if the element is pointer.
   14679       if (EltTy->isPointerTy())
   14680         SubVec = Builder.CreateIntToPtr(
   14681             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
   14682                                     VecTy->getVectorNumElements()));
   14683 
   14684       SubVecs[SV].push_back(SubVec);
   14685     }
   14686   }
   14687 
   14688   // Replace uses of the shufflevector instructions with the sub-vectors
   14689   // returned by the load intrinsic. If a shufflevector instruction is
   14690   // associated with more than one sub-vector, those sub-vectors will be
   14691   // concatenated into a single wide vector.
   14692   for (ShuffleVectorInst *SVI : Shuffles) {
   14693     auto &SubVec = SubVecs[SVI];
   14694     auto *WideVec =
   14695         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
   14696     SVI->replaceAllUsesWith(WideVec);
   14697   }
   14698 
   14699   return true;
   14700 }
   14701 
   14702 /// Lower an interleaved store into a vstN intrinsic.
   14703 ///
   14704 /// E.g. Lower an interleaved store (Factor = 3):
   14705 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
   14706 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
   14707 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
   14708 ///
   14709 ///      Into:
   14710 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
   14711 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
   14712 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
   14713 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
   14714 ///
   14715 /// Note that the new shufflevectors will be removed and we'll only generate one
   14716 /// vst3 instruction in CodeGen.
   14717 ///
   14718 /// Example for a more general valid mask (Factor 3). Lower:
   14719 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
   14720 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
   14721 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
   14722 ///
   14723 ///      Into:
   14724 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
   14725 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
   14726 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
   14727 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
   14728 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
   14729                                               ShuffleVectorInst *SVI,
   14730                                               unsigned Factor) const {
   14731   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   14732          "Invalid interleave factor");
   14733 
   14734   VectorType *VecTy = SVI->getType();
   14735   assert(VecTy->getVectorNumElements() % Factor == 0 &&
   14736          "Invalid interleaved store");
   14737 
   14738   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
   14739   Type *EltTy = VecTy->getVectorElementType();
   14740   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
   14741 
   14742   const DataLayout &DL = SI->getModule()->getDataLayout();
   14743 
   14744   // Skip if we do not have NEON and skip illegal vector types. We can
   14745   // "legalize" wide vector types into multiple interleaved accesses as long as
   14746   // the vector types are divisible by 128.
   14747   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
   14748     return false;
   14749 
   14750   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
   14751 
   14752   Value *Op0 = SVI->getOperand(0);
   14753   Value *Op1 = SVI->getOperand(1);
   14754   IRBuilder<> Builder(SI);
   14755 
   14756   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
   14757   // vectors to integer vectors.
   14758   if (EltTy->isPointerTy()) {
   14759     Type *IntTy = DL.getIntPtrType(EltTy);
   14760 
   14761     // Convert to the corresponding integer vector.
   14762     Type *IntVecTy =
   14763         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
   14764     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
   14765     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
   14766 
   14767     SubVecTy = VectorType::get(IntTy, LaneLen);
   14768   }
   14769 
   14770   // The base address of the store.
   14771   Value *BaseAddr = SI->getPointerOperand();
   14772 
   14773   if (NumStores > 1) {
   14774     // If we're going to generate more than one store, reset the lane length
   14775     // and sub-vector type to something legal.
   14776     LaneLen /= NumStores;
   14777     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
   14778 
   14779     // We will compute the pointer operand of each store from the original base
   14780     // address using GEPs. Cast the base address to a pointer to the scalar
   14781     // element type.
   14782     BaseAddr = Builder.CreateBitCast(
   14783         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
   14784                       SI->getPointerAddressSpace()));
   14785   }
   14786 
   14787   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
   14788 
   14789   auto Mask = SVI->getShuffleMask();
   14790 
   14791   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
   14792   Type *Tys[] = {Int8Ptr, SubVecTy};
   14793   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
   14794                                              Intrinsic::arm_neon_vst3,
   14795                                              Intrinsic::arm_neon_vst4};
   14796 
   14797   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
   14798     // If we generating more than one store, we compute the base address of
   14799     // subsequent stores as an offset from the previous.
   14800     if (StoreCount > 0)
   14801       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
   14802 
   14803     SmallVector<Value *, 6> Ops;
   14804     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
   14805 
   14806     Function *VstNFunc =
   14807         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
   14808 
   14809     // Split the shufflevector operands into sub vectors for the new vstN call.
   14810     for (unsigned i = 0; i < Factor; i++) {
   14811       unsigned IdxI = StoreCount * LaneLen * Factor + i;
   14812       if (Mask[IdxI] >= 0) {
   14813         Ops.push_back(Builder.CreateShuffleVector(
   14814             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
   14815       } else {
   14816         unsigned StartMask = 0;
   14817         for (unsigned j = 1; j < LaneLen; j++) {
   14818           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
   14819           if (Mask[IdxJ * Factor + IdxI] >= 0) {
   14820             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
   14821             break;
   14822           }
   14823         }
   14824         // Note: If all elements in a chunk are undefs, StartMask=0!
   14825         // Note: Filling undef gaps with random elements is ok, since
   14826         // those elements were being written anyway (with undefs).
   14827         // In the case of all undefs we're defaulting to using elems from 0
   14828         // Note: StartMask cannot be negative, it's checked in
   14829         // isReInterleaveMask
   14830         Ops.push_back(Builder.CreateShuffleVector(
   14831             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
   14832       }
   14833     }
   14834 
   14835     Ops.push_back(Builder.getInt32(SI->getAlignment()));
   14836     Builder.CreateCall(VstNFunc, Ops);
   14837   }
   14838   return true;
   14839 }
   14840 
   14841 enum HABaseType {
   14842   HA_UNKNOWN = 0,
   14843   HA_FLOAT,
   14844   HA_DOUBLE,
   14845   HA_VECT64,
   14846   HA_VECT128
   14847 };
   14848 
   14849 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
   14850                                    uint64_t &Members) {
   14851   if (auto *ST = dyn_cast<StructType>(Ty)) {
   14852     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
   14853       uint64_t SubMembers = 0;
   14854       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
   14855         return false;
   14856       Members += SubMembers;
   14857     }
   14858   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
   14859     uint64_t SubMembers = 0;
   14860     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
   14861       return false;
   14862     Members += SubMembers * AT->getNumElements();
   14863   } else if (Ty->isFloatTy()) {
   14864     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
   14865       return false;
   14866     Members = 1;
   14867     Base = HA_FLOAT;
   14868   } else if (Ty->isDoubleTy()) {
   14869     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
   14870       return false;
   14871     Members = 1;
   14872     Base = HA_DOUBLE;
   14873   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
   14874     Members = 1;
   14875     switch (Base) {
   14876     case HA_FLOAT:
   14877     case HA_DOUBLE:
   14878       return false;
   14879     case HA_VECT64:
   14880       return VT->getBitWidth() == 64;
   14881     case HA_VECT128:
   14882       return VT->getBitWidth() == 128;
   14883     case HA_UNKNOWN:
   14884       switch (VT->getBitWidth()) {
   14885       case 64:
   14886         Base = HA_VECT64;
   14887         return true;
   14888       case 128:
   14889         Base = HA_VECT128;
   14890         return true;
   14891       default:
   14892         return false;
   14893       }
   14894     }
   14895   }
   14896 
   14897   return (Members > 0 && Members <= 4);
   14898 }
   14899 
   14900 /// Return the correct alignment for the current calling convention.
   14901 unsigned
   14902 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
   14903                                                  DataLayout DL) const {
   14904   if (!ArgTy->isVectorTy())
   14905     return DL.getABITypeAlignment(ArgTy);
   14906 
   14907   // Avoid over-aligning vector parameters. It would require realigning the
   14908   // stack and waste space for no real benefit.
   14909   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
   14910 }
   14911 
   14912 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
   14913 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
   14914 /// passing according to AAPCS rules.
   14915 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
   14916     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   14917   if (getEffectiveCallingConv(CallConv, isVarArg) !=
   14918       CallingConv::ARM_AAPCS_VFP)
   14919     return false;
   14920 
   14921   HABaseType Base = HA_UNKNOWN;
   14922   uint64_t Members = 0;
   14923   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
   14924   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
   14925 
   14926   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
   14927   return IsHA || IsIntArray;
   14928 }
   14929 
   14930 unsigned ARMTargetLowering::getExceptionPointerRegister(
   14931     const Constant *PersonalityFn) const {
   14932   // Platforms which do not use SjLj EH may return values in these registers
   14933   // via the personality function.
   14934   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
   14935 }
   14936 
   14937 unsigned ARMTargetLowering::getExceptionSelectorRegister(
   14938     const Constant *PersonalityFn) const {
   14939   // Platforms which do not use SjLj EH may return values in these registers
   14940   // via the personality function.
   14941   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
   14942 }
   14943 
   14944 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   14945   // Update IsSplitCSR in ARMFunctionInfo.
   14946   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
   14947   AFI->setIsSplitCSR(true);
   14948 }
   14949 
   14950 void ARMTargetLowering::insertCopiesSplitCSR(
   14951     MachineBasicBlock *Entry,
   14952     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   14953   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
   14954   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   14955   if (!IStart)
   14956     return;
   14957 
   14958   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   14959   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   14960   MachineBasicBlock::iterator MBBI = Entry->begin();
   14961   for (const MCPhysReg *I = IStart; *I; ++I) {
   14962     const TargetRegisterClass *RC = nullptr;
   14963     if (ARM::GPRRegClass.contains(*I))
   14964       RC = &ARM::GPRRegClass;
   14965     else if (ARM::DPRRegClass.contains(*I))
   14966       RC = &ARM::DPRRegClass;
   14967     else
   14968       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   14969 
   14970     unsigned NewVR = MRI->createVirtualRegister(RC);
   14971     // Create copy from CSR to a virtual register.
   14972     // FIXME: this currently does not emit CFI pseudo-instructions, it works
   14973     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
   14974     // nounwind. If we want to generalize this later, we may need to emit
   14975     // CFI pseudo-instructions.
   14976     assert(Entry->getParent()->getFunction().hasFnAttribute(
   14977                Attribute::NoUnwind) &&
   14978            "Function should be nounwind in insertCopiesSplitCSR!");
   14979     Entry->addLiveIn(*I);
   14980     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   14981         .addReg(*I);
   14982 
   14983     // Insert the copy-back instructions right before the terminator.
   14984     for (auto *Exit : Exits)
   14985       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   14986               TII->get(TargetOpcode::COPY), *I)
   14987           .addReg(NewVR);
   14988   }
   14989 }
   14990 
   14991 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
   14992   MF.getFrameInfo().computeMaxCallFrameSize(MF);
   14993   TargetLoweringBase::finalizeLowering(MF);
   14994 }
   14995