Home | History | Annotate | Download | only in CodeGen
      1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file describes how to lower LLVM code to machine code.  This has two
     12 /// main components:
     13 ///
     14 ///  1. Which ValueTypes are natively supported by the target.
     15 ///  2. Which operations are supported for supported ValueTypes.
     16 ///  3. Cost thresholds for alternative implementations of certain operations.
     17 ///
     18 /// In addition it has a few other components, like information about FP
     19 /// immediates.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
     24 #define LLVM_CODEGEN_TARGETLOWERING_H
     25 
     26 #include "llvm/ADT/APInt.h"
     27 #include "llvm/ADT/ArrayRef.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/StringRef.h"
     32 #include "llvm/Analysis/DivergenceAnalysis.h"
     33 #include "llvm/CodeGen/DAGCombine.h"
     34 #include "llvm/CodeGen/ISDOpcodes.h"
     35 #include "llvm/CodeGen/RuntimeLibcalls.h"
     36 #include "llvm/CodeGen/SelectionDAG.h"
     37 #include "llvm/CodeGen/SelectionDAGNodes.h"
     38 #include "llvm/CodeGen/TargetCallingConv.h"
     39 #include "llvm/CodeGen/ValueTypes.h"
     40 #include "llvm/IR/Attributes.h"
     41 #include "llvm/IR/CallSite.h"
     42 #include "llvm/IR/CallingConv.h"
     43 #include "llvm/IR/DataLayout.h"
     44 #include "llvm/IR/DerivedTypes.h"
     45 #include "llvm/IR/Function.h"
     46 #include "llvm/IR/IRBuilder.h"
     47 #include "llvm/IR/InlineAsm.h"
     48 #include "llvm/IR/Instruction.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/Type.h"
     51 #include "llvm/MC/MCRegisterInfo.h"
     52 #include "llvm/Support/AtomicOrdering.h"
     53 #include "llvm/Support/Casting.h"
     54 #include "llvm/Support/ErrorHandling.h"
     55 #include "llvm/Support/MachineValueType.h"
     56 #include "llvm/Target/TargetMachine.h"
     57 #include <algorithm>
     58 #include <cassert>
     59 #include <climits>
     60 #include <cstdint>
     61 #include <iterator>
     62 #include <map>
     63 #include <string>
     64 #include <utility>
     65 #include <vector>
     66 
     67 namespace llvm {
     68 
     69 class BranchProbability;
     70 class CCState;
     71 class CCValAssign;
     72 class Constant;
     73 class FastISel;
     74 class FunctionLoweringInfo;
     75 class GlobalValue;
     76 class IntrinsicInst;
     77 struct KnownBits;
     78 class LLVMContext;
     79 class MachineBasicBlock;
     80 class MachineFunction;
     81 class MachineInstr;
     82 class MachineJumpTableInfo;
     83 class MachineLoop;
     84 class MachineRegisterInfo;
     85 class MCContext;
     86 class MCExpr;
     87 class Module;
     88 class TargetRegisterClass;
     89 class TargetLibraryInfo;
     90 class TargetRegisterInfo;
     91 class Value;
     92 
     93 namespace Sched {
     94 
     95   enum Preference {
     96     None,             // No preference
     97     Source,           // Follow source order.
     98     RegPressure,      // Scheduling for lowest register pressure.
     99     Hybrid,           // Scheduling for both latency and register pressure.
    100     ILP,              // Scheduling for ILP in low register pressure mode.
    101     VLIW              // Scheduling for VLIW targets.
    102   };
    103 
    104 } // end namespace Sched
    105 
    106 /// This base class for TargetLowering contains the SelectionDAG-independent
    107 /// parts that can be used from the rest of CodeGen.
    108 class TargetLoweringBase {
    109 public:
    110   /// This enum indicates whether operations are valid for a target, and if not,
    111   /// what action should be used to make them valid.
    112   enum LegalizeAction : uint8_t {
    113     Legal,      // The target natively supports this operation.
    114     Promote,    // This operation should be executed in a larger type.
    115     Expand,     // Try to expand this to other ops, otherwise use a libcall.
    116     LibCall,    // Don't try to expand this to other ops, always use a libcall.
    117     Custom      // Use the LowerOperation hook to implement custom lowering.
    118   };
    119 
    120   /// This enum indicates whether a types are legal for a target, and if not,
    121   /// what action should be used to make them valid.
    122   enum LegalizeTypeAction : uint8_t {
    123     TypeLegal,           // The target natively supports this type.
    124     TypePromoteInteger,  // Replace this integer with a larger one.
    125     TypeExpandInteger,   // Split this integer into two of half the size.
    126     TypeSoftenFloat,     // Convert this float to a same size integer type,
    127                          // if an operation is not supported in target HW.
    128     TypeExpandFloat,     // Split this float into two of half the size.
    129     TypeScalarizeVector, // Replace this one-element vector with its element.
    130     TypeSplitVector,     // Split this vector into two of half the size.
    131     TypeWidenVector,     // This vector should be widened into a larger vector.
    132     TypePromoteFloat     // Replace this float with a larger one.
    133   };
    134 
    135   /// LegalizeKind holds the legalization kind that needs to happen to EVT
    136   /// in order to type-legalize it.
    137   using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
    138 
    139   /// Enum that describes how the target represents true/false values.
    140   enum BooleanContent {
    141     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    142     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    143     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    144   };
    145 
    146   /// Enum that describes what type of support for selects the target has.
    147   enum SelectSupportKind {
    148     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    149     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    150                           // and vector values (ex: cmov).
    151     VectorMaskSelect      // The target supports vector selects with a vector
    152                           // mask (ex: x86 blends).
    153   };
    154 
    155   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
    156   /// to, if at all. Exists because different targets have different levels of
    157   /// support for these atomic instructions, and also have different options
    158   /// w.r.t. what they should expand to.
    159   enum class AtomicExpansionKind {
    160     None,    // Don't expand the instruction.
    161     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
    162              // by ARM/AArch64.
    163     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
    164              // greater atomic guarantees than a normal load.
    165     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
    166   };
    167 
    168   /// Enum that specifies when a multiplication should be expanded.
    169   enum class MulExpansionKind {
    170     Always,            // Always expand the instruction.
    171     OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
    172                        // or custom.
    173   };
    174 
    175   class ArgListEntry {
    176   public:
    177     Value *Val = nullptr;
    178     SDValue Node = SDValue();
    179     Type *Ty = nullptr;
    180     bool IsSExt : 1;
    181     bool IsZExt : 1;
    182     bool IsInReg : 1;
    183     bool IsSRet : 1;
    184     bool IsNest : 1;
    185     bool IsByVal : 1;
    186     bool IsInAlloca : 1;
    187     bool IsReturned : 1;
    188     bool IsSwiftSelf : 1;
    189     bool IsSwiftError : 1;
    190     uint16_t Alignment = 0;
    191 
    192     ArgListEntry()
    193         : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
    194           IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
    195           IsSwiftSelf(false), IsSwiftError(false) {}
    196 
    197     void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx);
    198   };
    199   using ArgListTy = std::vector<ArgListEntry>;
    200 
    201   virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
    202                                      ArgListTy &Args) const {};
    203 
    204   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    205     switch (Content) {
    206     case UndefinedBooleanContent:
    207       // Extend by adding rubbish bits.
    208       return ISD::ANY_EXTEND;
    209     case ZeroOrOneBooleanContent:
    210       // Extend by adding zero bits.
    211       return ISD::ZERO_EXTEND;
    212     case ZeroOrNegativeOneBooleanContent:
    213       // Extend by copying the sign bit.
    214       return ISD::SIGN_EXTEND;
    215     }
    216     llvm_unreachable("Invalid content kind");
    217   }
    218 
    219   /// NOTE: The TargetMachine owns TLOF.
    220   explicit TargetLoweringBase(const TargetMachine &TM);
    221   TargetLoweringBase(const TargetLoweringBase &) = delete;
    222   TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
    223   virtual ~TargetLoweringBase() = default;
    224 
    225 protected:
    226   /// Initialize all of the actions to default values.
    227   void initActions();
    228 
    229 public:
    230   const TargetMachine &getTargetMachine() const { return TM; }
    231 
    232   virtual bool useSoftFloat() const { return false; }
    233 
    234   /// Return the pointer type for the given address space, defaults to
    235   /// the pointer type from the data layout.
    236   /// FIXME: The default needs to be removed once all the code is updated.
    237   MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
    238     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
    239   }
    240 
    241   /// Return the type for frame index, which is determined by
    242   /// the alloca address space specified through the data layout.
    243   MVT getFrameIndexTy(const DataLayout &DL) const {
    244     return getPointerTy(DL, DL.getAllocaAddrSpace());
    245   }
    246 
    247   /// Return the type for operands of fence.
    248   /// TODO: Let fence operands be of i32 type and remove this.
    249   virtual MVT getFenceOperandTy(const DataLayout &DL) const {
    250     return getPointerTy(DL);
    251   }
    252 
    253   /// EVT is not used in-tree, but is used by out-of-tree target.
    254   /// A documentation for this function would be nice...
    255   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
    256 
    257   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
    258                        bool LegalTypes = true) const;
    259 
    260   /// Returns the type to be used for the index operand of:
    261   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
    262   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
    263   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
    264     return getPointerTy(DL);
    265   }
    266 
    267   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    268     return true;
    269   }
    270 
    271   /// Return true if multiple condition registers are available.
    272   bool hasMultipleConditionRegisters() const {
    273     return HasMultipleConditionRegisters;
    274   }
    275 
    276   /// Return true if the target has BitExtract instructions.
    277   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
    278 
    279   /// Return the preferred vector type legalization action.
    280   virtual TargetLoweringBase::LegalizeTypeAction
    281   getPreferredVectorAction(EVT VT) const {
    282     // The default action for one element vectors is to scalarize
    283     if (VT.getVectorNumElements() == 1)
    284       return TypeScalarizeVector;
    285     // The default action for other vectors is to promote
    286     return TypePromoteInteger;
    287   }
    288 
    289   // There are two general methods for expanding a BUILD_VECTOR node:
    290   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
    291   //     them together.
    292   //  2. Build the vector on the stack and then load it.
    293   // If this function returns true, then method (1) will be used, subject to
    294   // the constraint that all of the necessary shuffles are legal (as determined
    295   // by isShuffleMaskLegal). If this function returns false, then method (2) is
    296   // always used. The vector type, and the number of defined values, are
    297   // provided.
    298   virtual bool
    299   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
    300                                       unsigned DefinedValues) const {
    301     return DefinedValues < 3;
    302   }
    303 
    304   /// Return true if integer divide is usually cheaper than a sequence of
    305   /// several shifts, adds, and multiplies for this target.
    306   /// The definition of "cheaper" may depend on whether we're optimizing
    307   /// for speed or for size.
    308   virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
    309 
    310   /// Return true if the target can handle a standalone remainder operation.
    311   virtual bool hasStandaloneRem(EVT VT) const {
    312     return true;
    313   }
    314 
    315   /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
    316   virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
    317     // Default behavior is to replace SQRT(X) with X*RSQRT(X).
    318     return false;
    319   }
    320 
    321   /// Reciprocal estimate status values used by the functions below.
    322   enum ReciprocalEstimate : int {
    323     Unspecified = -1,
    324     Disabled = 0,
    325     Enabled = 1
    326   };
    327 
    328   /// Return a ReciprocalEstimate enum value for a square root of the given type
    329   /// based on the function's attributes. If the operation is not overridden by
    330   /// the function's attributes, "Unspecified" is returned and target defaults
    331   /// are expected to be used for instruction selection.
    332   int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
    333 
    334   /// Return a ReciprocalEstimate enum value for a division of the given type
    335   /// based on the function's attributes. If the operation is not overridden by
    336   /// the function's attributes, "Unspecified" is returned and target defaults
    337   /// are expected to be used for instruction selection.
    338   int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
    339 
    340   /// Return the refinement step count for a square root of the given type based
    341   /// on the function's attributes. If the operation is not overridden by
    342   /// the function's attributes, "Unspecified" is returned and target defaults
    343   /// are expected to be used for instruction selection.
    344   int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
    345 
    346   /// Return the refinement step count for a division of the given type based
    347   /// on the function's attributes. If the operation is not overridden by
    348   /// the function's attributes, "Unspecified" is returned and target defaults
    349   /// are expected to be used for instruction selection.
    350   int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
    351 
    352   /// Returns true if target has indicated at least one type should be bypassed.
    353   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
    354 
    355   /// Returns map of slow types for division or remainder with corresponding
    356   /// fast types
    357   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    358     return BypassSlowDivWidths;
    359   }
    360 
    361   /// Return true if Flow Control is an expensive operation that should be
    362   /// avoided.
    363   bool isJumpExpensive() const { return JumpIsExpensive; }
    364 
    365   /// Return true if selects are only cheaper than branches if the branch is
    366   /// unlikely to be predicted right.
    367   bool isPredictableSelectExpensive() const {
    368     return PredictableSelectIsExpensive;
    369   }
    370 
    371   /// If a branch or a select condition is skewed in one direction by more than
    372   /// this factor, it is very likely to be predicted correctly.
    373   virtual BranchProbability getPredictableBranchThreshold() const;
    374 
    375   /// Return true if the following transform is beneficial:
    376   /// fold (conv (load x)) -> (load (conv*)x)
    377   /// On architectures that don't natively support some vector loads
    378   /// efficiently, casting the load to a smaller vector of larger types and
    379   /// loading is more efficient, however, this can be undone by optimizations in
    380   /// dag combiner.
    381   virtual bool isLoadBitCastBeneficial(EVT LoadVT,
    382                                        EVT BitcastVT) const {
    383     // Don't do if we could do an indexed load on the original type, but not on
    384     // the new one.
    385     if (!LoadVT.isSimple() || !BitcastVT.isSimple())
    386       return true;
    387 
    388     MVT LoadMVT = LoadVT.getSimpleVT();
    389 
    390     // Don't bother doing this if it's just going to be promoted again later, as
    391     // doing so might interfere with other combines.
    392     if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
    393         getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
    394       return false;
    395 
    396     return true;
    397   }
    398 
    399   /// Return true if the following transform is beneficial:
    400   /// (store (y (conv x)), y*)) -> (store x, (x*))
    401   virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const {
    402     // Default to the same logic as loads.
    403     return isLoadBitCastBeneficial(StoreVT, BitcastVT);
    404   }
    405 
    406   /// Return true if it is expected to be cheaper to do a store of a non-zero
    407   /// vector constant with the given size and type for the address space than to
    408   /// store the individual scalar element constants.
    409   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
    410                                             unsigned NumElem,
    411                                             unsigned AddrSpace) const {
    412     return false;
    413   }
    414 
    415   /// Allow store merging after legalization in addition to before legalization.
    416   /// This may catch stores that do not exist earlier (eg, stores created from
    417   /// intrinsics).
    418   virtual bool mergeStoresAfterLegalization() const { return true; }
    419 
    420   /// Returns if it's reasonable to merge stores to MemVT size.
    421   virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
    422                                 const SelectionDAG &DAG) const {
    423     return true;
    424   }
    425 
    426   /// Return true if it is cheap to speculate a call to intrinsic cttz.
    427   virtual bool isCheapToSpeculateCttz() const {
    428     return false;
    429   }
    430 
    431   /// Return true if it is cheap to speculate a call to intrinsic ctlz.
    432   virtual bool isCheapToSpeculateCtlz() const {
    433     return false;
    434   }
    435 
    436   /// Return true if ctlz instruction is fast.
    437   virtual bool isCtlzFast() const {
    438     return false;
    439   }
    440 
    441   /// Return true if it is safe to transform an integer-domain bitwise operation
    442   /// into the equivalent floating-point operation. This should be set to true
    443   /// if the target has IEEE-754-compliant fabs/fneg operations for the input
    444   /// type.
    445   virtual bool hasBitPreservingFPLogic(EVT VT) const {
    446     return false;
    447   }
    448 
    449   /// Return true if it is cheaper to split the store of a merged int val
    450   /// from a pair of smaller values into multiple stores.
    451   virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
    452     return false;
    453   }
    454 
    455   /// Return if the target supports combining a
    456   /// chain like:
    457   /// \code
    458   ///   %andResult = and %val1, #mask
    459   ///   %icmpResult = icmp %andResult, 0
    460   /// \endcode
    461   /// into a single machine instruction of a form like:
    462   /// \code
    463   ///   cc = test %register, #mask
    464   /// \endcode
    465   virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
    466     return false;
    467   }
    468 
    469   /// Use bitwise logic to make pairs of compares more efficient. For example:
    470   /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
    471   /// This should be true when it takes more than one instruction to lower
    472   /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
    473   /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
    474   virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
    475     return false;
    476   }
    477 
    478   /// Return the preferred operand type if the target has a quick way to compare
    479   /// integer values of the given size. Assume that any legal integer type can
    480   /// be compared efficiently. Targets may override this to allow illegal wide
    481   /// types to return a vector type if there is support to compare that type.
    482   virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
    483     MVT VT = MVT::getIntegerVT(NumBits);
    484     return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
    485   }
    486 
    487   /// Return true if the target should transform:
    488   /// (X & Y) == Y ---> (~X & Y) == 0
    489   /// (X & Y) != Y ---> (~X & Y) != 0
    490   ///
    491   /// This may be profitable if the target has a bitwise and-not operation that
    492   /// sets comparison flags. A target may want to limit the transformation based
    493   /// on the type of Y or if Y is a constant.
    494   ///
    495   /// Note that the transform will not occur if Y is known to be a power-of-2
    496   /// because a mask and compare of a single bit can be handled by inverting the
    497   /// predicate, for example:
    498   /// (X & 8) == 8 ---> (X & 8) != 0
    499   virtual bool hasAndNotCompare(SDValue Y) const {
    500     return false;
    501   }
    502 
    503   /// Return true if the target has a bitwise and-not operation:
    504   /// X = ~A & B
    505   /// This can be used to simplify select or other instructions.
    506   virtual bool hasAndNot(SDValue X) const {
    507     // If the target has the more complex version of this operation, assume that
    508     // it has this operation too.
    509     return hasAndNotCompare(X);
    510   }
    511 
    512   /// There are two ways to clear extreme bits (either low or high):
    513   /// Mask:    x &  (-1 << y)  (the instcombine canonical form)
    514   /// Shifts:  x >> y << y
    515   /// Return true if the variant with 2 shifts is preferred.
    516   /// Return false if there is no preference.
    517   virtual bool preferShiftsToClearExtremeBits(SDValue X) const {
    518     // By default, let's assume that no one prefers shifts.
    519     return false;
    520   }
    521 
    522   /// Should we tranform the IR-optimal check for whether given truncation
    523   /// down into KeptBits would be truncating or not:
    524   ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
    525   /// Into it's more traditional form:
    526   ///   ((%x << C) a>> C) dstcond %x
    527   /// Return true if we should transform.
    528   /// Return false if there is no preference.
    529   virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
    530                                                     unsigned KeptBits) const {
    531     // By default, let's assume that no one prefers shifts.
    532     return false;
    533   }
    534 
    535   /// Return true if the target wants to use the optimization that
    536   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
    537   /// promotedInst1(...(promotedInstN(ext(load)))).
    538   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
    539 
    540   /// Return true if the target can combine store(extractelement VectorTy,
    541   /// Idx).
    542   /// \p Cost[out] gives the cost of that transformation when this is true.
    543   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
    544                                          unsigned &Cost) const {
    545     return false;
    546   }
    547 
    548   /// Return true if target supports floating point exceptions.
    549   bool hasFloatingPointExceptions() const {
    550     return HasFloatingPointExceptions;
    551   }
    552 
    553   /// Return true if target always beneficiates from combining into FMA for a
    554   /// given value type. This must typically return false on targets where FMA
    555   /// takes more cycles to execute than FADD.
    556   virtual bool enableAggressiveFMAFusion(EVT VT) const {
    557     return false;
    558   }
    559 
    560   /// Return the ValueType of the result of SETCC operations.
    561   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    562                                  EVT VT) const;
    563 
    564   /// Return the ValueType for comparison libcalls. Comparions libcalls include
    565   /// floating point comparion calls, and Ordered/Unordered check calls on
    566   /// floating point numbers.
    567   virtual
    568   MVT::SimpleValueType getCmpLibcallReturnType() const;
    569 
    570   /// For targets without i1 registers, this gives the nature of the high-bits
    571   /// of boolean values held in types wider than i1.
    572   ///
    573   /// "Boolean values" are special true/false values produced by nodes like
    574   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    575   /// Not to be confused with general values promoted from i1.  Some cpus
    576   /// distinguish between vectors of boolean and scalars; the isVec parameter
    577   /// selects between the two kinds.  For example on X86 a scalar boolean should
    578   /// be zero extended from i1, while the elements of a vector of booleans
    579   /// should be sign extended from i1.
    580   ///
    581   /// Some cpus also treat floating point types the same way as they treat
    582   /// vectors instead of the way they treat scalars.
    583   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
    584     if (isVec)
    585       return BooleanVectorContents;
    586     return isFloat ? BooleanFloatContents : BooleanContents;
    587   }
    588 
    589   BooleanContent getBooleanContents(EVT Type) const {
    590     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
    591   }
    592 
    593   /// Return target scheduling preference.
    594   Sched::Preference getSchedulingPreference() const {
    595     return SchedPreferenceInfo;
    596   }
    597 
    598   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
    599   /// for different nodes. This function returns the preference (or none) for
    600   /// the given node.
    601   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    602     return Sched::None;
    603   }
    604 
    605   /// Return the register class that should be used for the specified value
    606   /// type.
    607   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    608     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    609     assert(RC && "This value type is not natively supported!");
    610     return RC;
    611   }
    612 
    613   /// Return the 'representative' register class for the specified value
    614   /// type.
    615   ///
    616   /// The 'representative' register class is the largest legal super-reg
    617   /// register class for the register class of the value type.  For example, on
    618   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
    619   /// register class is GR64 on x86_64.
    620   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    621     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    622     return RC;
    623   }
    624 
    625   /// Return the cost of the 'representative' register class for the specified
    626   /// value type.
    627   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    628     return RepRegClassCostForVT[VT.SimpleTy];
    629   }
    630 
    631   /// Return true if the target has native support for the specified value type.
    632   /// This means that it has a register that directly holds it without
    633   /// promotions or expansions.
    634   bool isTypeLegal(EVT VT) const {
    635     assert(!VT.isSimple() ||
    636            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    637     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
    638   }
    639 
    640   class ValueTypeActionImpl {
    641     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    642     /// that indicates how instruction selection should deal with the type.
    643     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
    644 
    645   public:
    646     ValueTypeActionImpl() {
    647       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
    648                 TypeLegal);
    649     }
    650 
    651     LegalizeTypeAction getTypeAction(MVT VT) const {
    652       return ValueTypeActions[VT.SimpleTy];
    653     }
    654 
    655     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
    656       ValueTypeActions[VT.SimpleTy] = Action;
    657     }
    658   };
    659 
    660   const ValueTypeActionImpl &getValueTypeActions() const {
    661     return ValueTypeActions;
    662   }
    663 
    664   /// Return how we should legalize values of this type, either it is already
    665   /// legal (return 'Legal') or we need to promote it to a larger type (return
    666   /// 'Promote'), or we need to expand it into multiple registers of smaller
    667   /// integer type (return 'Expand').  'Custom' is not an option.
    668   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    669     return getTypeConversion(Context, VT).first;
    670   }
    671   LegalizeTypeAction getTypeAction(MVT VT) const {
    672     return ValueTypeActions.getTypeAction(VT);
    673   }
    674 
    675   /// For types supported by the target, this is an identity function.  For
    676   /// types that must be promoted to larger types, this returns the larger type
    677   /// to promote to.  For integer types that are larger than the largest integer
    678   /// register, this contains one step in the expansion to get to the smaller
    679   /// register. For illegal floating point types, this returns the integer type
    680   /// to transform to.
    681   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    682     return getTypeConversion(Context, VT).second;
    683   }
    684 
    685   /// For types supported by the target, this is an identity function.  For
    686   /// types that must be expanded (i.e. integer types that are larger than the
    687   /// largest integer register or illegal floating point types), this returns
    688   /// the largest legal type it will be expanded to.
    689   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    690     assert(!VT.isVector());
    691     while (true) {
    692       switch (getTypeAction(Context, VT)) {
    693       case TypeLegal:
    694         return VT;
    695       case TypeExpandInteger:
    696         VT = getTypeToTransformTo(Context, VT);
    697         break;
    698       default:
    699         llvm_unreachable("Type is not legal nor is it to be expanded!");
    700       }
    701     }
    702   }
    703 
    704   /// Vector types are broken down into some number of legal first class types.
    705   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
    706   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
    707   /// turns into 4 EVT::i32 values with both PPC and X86.
    708   ///
    709   /// This method returns the number of registers needed, and the VT for each
    710   /// register.  It also returns the VT and quantity of the intermediate values
    711   /// before they are promoted/expanded.
    712   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    713                                   EVT &IntermediateVT,
    714                                   unsigned &NumIntermediates,
    715                                   MVT &RegisterVT) const;
    716 
    717   /// Certain targets such as MIPS require that some types such as vectors are
    718   /// always broken down into scalars in some contexts. This occurs even if the
    719   /// vector type is legal.
    720   virtual unsigned getVectorTypeBreakdownForCallingConv(
    721       LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
    722       unsigned &NumIntermediates, MVT &RegisterVT) const {
    723     return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
    724                                   RegisterVT);
    725   }
    726 
    727   struct IntrinsicInfo {
    728     unsigned     opc = 0;          // target opcode
    729     EVT          memVT;            // memory VT
    730 
    731     // value representing memory location
    732     PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
    733 
    734     int          offset = 0;       // offset off of ptrVal
    735     unsigned     size = 0;         // the size of the memory location
    736                                    // (taken from memVT if zero)
    737     unsigned     align = 1;        // alignment
    738 
    739     MachineMemOperand::Flags flags = MachineMemOperand::MONone;
    740     IntrinsicInfo() = default;
    741   };
    742 
    743   /// Given an intrinsic, checks if on the target the intrinsic will need to map
    744   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    745   /// true and store the intrinsic information into the IntrinsicInfo that was
    746   /// passed to the function.
    747   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    748                                   MachineFunction &,
    749                                   unsigned /*Intrinsic*/) const {
    750     return false;
    751   }
    752 
    753   /// Returns true if the target can instruction select the specified FP
    754   /// immediate natively. If false, the legalizer will materialize the FP
    755   /// immediate as a load from a constant pool.
    756   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    757     return false;
    758   }
    759 
    760   /// Targets can use this to indicate that they only support *some*
    761   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
    762   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
    763   /// legal.
    764   virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
    765     return true;
    766   }
    767 
    768   /// Returns true if the operation can trap for the value type.
    769   ///
    770   /// VT must be a legal type. By default, we optimistically assume most
    771   /// operations don't trap except for integer divide and remainder.
    772   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    773 
    774   /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
    775   /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
    776   /// constant pool entry.
    777   virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
    778                                       EVT /*VT*/) const {
    779     return false;
    780   }
    781 
    782   /// Return how this operation should be treated: either it is legal, needs to
    783   /// be promoted to a larger size, needs to be expanded to some other code
    784   /// sequence, or the target has a custom expander for it.
    785   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    786     if (VT.isExtended()) return Expand;
    787     // If a target-specific SDNode requires legalization, require the target
    788     // to provide custom legalization for it.
    789     if (Op >= array_lengthof(OpActions[0])) return Custom;
    790     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
    791   }
    792 
    793   LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
    794     unsigned EqOpc;
    795     switch (Op) {
    796       default: llvm_unreachable("Unexpected FP pseudo-opcode");
    797       case ISD::STRICT_FADD: EqOpc = ISD::FADD; break;
    798       case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break;
    799       case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break;
    800       case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break;
    801       case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break;
    802       case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break;
    803       case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break;
    804       case ISD::STRICT_FMA: EqOpc = ISD::FMA; break;
    805       case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break;
    806       case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break;
    807       case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break;
    808       case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break;
    809       case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break;
    810       case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break;
    811       case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break;
    812       case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break;
    813       case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break;
    814     }
    815 
    816     auto Action = getOperationAction(EqOpc, VT);
    817 
    818     // We don't currently handle Custom or Promote for strict FP pseudo-ops.
    819     // For now, we just expand for those cases.
    820     if (Action != Legal)
    821       Action = Expand;
    822 
    823     return Action;
    824   }
    825 
    826   /// Return true if the specified operation is legal on this target or can be
    827   /// made legal with custom lowering. This is used to help guide high-level
    828   /// lowering decisions.
    829   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    830     return (VT == MVT::Other || isTypeLegal(VT)) &&
    831       (getOperationAction(Op, VT) == Legal ||
    832        getOperationAction(Op, VT) == Custom);
    833   }
    834 
    835   /// Return true if the specified operation is legal on this target or can be
    836   /// made legal using promotion. This is used to help guide high-level lowering
    837   /// decisions.
    838   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    839     return (VT == MVT::Other || isTypeLegal(VT)) &&
    840       (getOperationAction(Op, VT) == Legal ||
    841        getOperationAction(Op, VT) == Promote);
    842   }
    843 
    844   /// Return true if the specified operation is legal on this target or can be
    845   /// made legal with custom lowering or using promotion. This is used to help
    846   /// guide high-level lowering decisions.
    847   bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
    848     return (VT == MVT::Other || isTypeLegal(VT)) &&
    849       (getOperationAction(Op, VT) == Legal ||
    850        getOperationAction(Op, VT) == Custom ||
    851        getOperationAction(Op, VT) == Promote);
    852   }
    853 
    854   /// Return true if the operation uses custom lowering, regardless of whether
    855   /// the type is legal or not.
    856   bool isOperationCustom(unsigned Op, EVT VT) const {
    857     return getOperationAction(Op, VT) == Custom;
    858   }
    859 
    860   /// Return true if lowering to a jump table is allowed.
    861   virtual bool areJTsAllowed(const Function *Fn) const {
    862     if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
    863       return false;
    864 
    865     return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
    866            isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
    867   }
    868 
    869   /// Check whether the range [Low,High] fits in a machine word.
    870   bool rangeFitsInWord(const APInt &Low, const APInt &High,
    871                        const DataLayout &DL) const {
    872     // FIXME: Using the pointer type doesn't seem ideal.
    873     uint64_t BW = DL.getIndexSizeInBits(0u);
    874     uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
    875     return Range <= BW;
    876   }
    877 
    878   /// Return true if lowering to a jump table is suitable for a set of case
    879   /// clusters which may contain \p NumCases cases, \p Range range of values.
    880   /// FIXME: This function check the maximum table size and density, but the
    881   /// minimum size is not checked. It would be nice if the minimum size is
    882   /// also combined within this function. Currently, the minimum size check is
    883   /// performed in findJumpTable() in SelectionDAGBuiler and
    884   /// getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
    885   virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
    886                                       uint64_t Range) const {
    887     const bool OptForSize = SI->getParent()->getParent()->optForSize();
    888     const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
    889     const unsigned MaxJumpTableSize =
    890         OptForSize || getMaximumJumpTableSize() == 0
    891             ? UINT_MAX
    892             : getMaximumJumpTableSize();
    893     // Check whether a range of clusters is dense enough for a jump table.
    894     if (Range <= MaxJumpTableSize &&
    895         (NumCases * 100 >= Range * MinDensity)) {
    896       return true;
    897     }
    898     return false;
    899   }
    900 
    901   /// Return true if lowering to a bit test is suitable for a set of case
    902   /// clusters which contains \p NumDests unique destinations, \p Low and
    903   /// \p High as its lowest and highest case values, and expects \p NumCmps
    904   /// case value comparisons. Check if the number of destinations, comparison
    905   /// metric, and range are all suitable.
    906   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
    907                              const APInt &Low, const APInt &High,
    908                              const DataLayout &DL) const {
    909     // FIXME: I don't think NumCmps is the correct metric: a single case and a
    910     // range of cases both require only one branch to lower. Just looking at the
    911     // number of clusters and destinations should be enough to decide whether to
    912     // build bit tests.
    913 
    914     // To lower a range with bit tests, the range must fit the bitwidth of a
    915     // machine word.
    916     if (!rangeFitsInWord(Low, High, DL))
    917       return false;
    918 
    919     // Decide whether it's profitable to lower this range with bit tests. Each
    920     // destination requires a bit test and branch, and there is an overall range
    921     // check branch. For a small number of clusters, separate comparisons might
    922     // be cheaper, and for many destinations, splitting the range might be
    923     // better.
    924     return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
    925            (NumDests == 3 && NumCmps >= 6);
    926   }
    927 
    928   /// Return true if the specified operation is illegal on this target or
    929   /// unlikely to be made legal with custom lowering. This is used to help guide
    930   /// high-level lowering decisions.
    931   bool isOperationExpand(unsigned Op, EVT VT) const {
    932     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
    933   }
    934 
    935   /// Return true if the specified operation is legal on this target.
    936   bool isOperationLegal(unsigned Op, EVT VT) const {
    937     return (VT == MVT::Other || isTypeLegal(VT)) &&
    938            getOperationAction(Op, VT) == Legal;
    939   }
    940 
    941   /// Return how this load with extension should be treated: either it is legal,
    942   /// needs to be promoted to a larger size, needs to be expanded to some other
    943   /// code sequence, or the target has a custom expander for it.
    944   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
    945                                   EVT MemVT) const {
    946     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    947     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    948     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    949     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
    950            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
    951     unsigned Shift = 4 * ExtType;
    952     return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
    953   }
    954 
    955   /// Return true if the specified load with extension is legal on this target.
    956   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    957     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
    958   }
    959 
    960   /// Return true if the specified load with extension is legal or custom
    961   /// on this target.
    962   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    963     return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
    964            getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
    965   }
    966 
    967   /// Return how this store with truncation should be treated: either it is
    968   /// legal, needs to be promoted to a larger size, needs to be expanded to some
    969   /// other code sequence, or the target has a custom expander for it.
    970   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    971     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    972     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    973     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    974     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
    975            "Table isn't big enough!");
    976     return TruncStoreActions[ValI][MemI];
    977   }
    978 
    979   /// Return true if the specified store with truncation is legal on this
    980   /// target.
    981   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    982     return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
    983   }
    984 
    985   /// Return true if the specified store with truncation has solution on this
    986   /// target.
    987   bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
    988     return isTypeLegal(ValVT) &&
    989       (getTruncStoreAction(ValVT, MemVT) == Legal ||
    990        getTruncStoreAction(ValVT, MemVT) == Custom);
    991   }
    992 
    993   /// Return how the indexed load should be treated: either it is legal, needs
    994   /// to be promoted to a larger size, needs to be expanded to some other code
    995   /// sequence, or the target has a custom expander for it.
    996   LegalizeAction
    997   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    998     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    999            "Table isn't big enough!");
   1000     unsigned Ty = (unsigned)VT.SimpleTy;
   1001     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
   1002   }
   1003 
   1004   /// Return true if the specified indexed load is legal on this target.
   1005   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
   1006     return VT.isSimple() &&
   1007       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
   1008        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
   1009   }
   1010 
   1011   /// Return how the indexed store should be treated: either it is legal, needs
   1012   /// to be promoted to a larger size, needs to be expanded to some other code
   1013   /// sequence, or the target has a custom expander for it.
   1014   LegalizeAction
   1015   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
   1016     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
   1017            "Table isn't big enough!");
   1018     unsigned Ty = (unsigned)VT.SimpleTy;
   1019     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
   1020   }
   1021 
   1022   /// Return true if the specified indexed load is legal on this target.
   1023   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
   1024     return VT.isSimple() &&
   1025       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
   1026        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
   1027   }
   1028 
   1029   /// Return how the condition code should be treated: either it is legal, needs
   1030   /// to be expanded to some other code sequence, or the target has a custom
   1031   /// expander for it.
   1032   LegalizeAction
   1033   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
   1034     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
   1035            ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
   1036            "Table isn't big enough!");
   1037     // See setCondCodeAction for how this is encoded.
   1038     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
   1039     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
   1040     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
   1041     assert(Action != Promote && "Can't promote condition code!");
   1042     return Action;
   1043   }
   1044 
   1045   /// Return true if the specified condition code is legal on this target.
   1046   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
   1047     return getCondCodeAction(CC, VT) == Legal;
   1048   }
   1049 
   1050   /// Return true if the specified condition code is legal or custom on this
   1051   /// target.
   1052   bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
   1053     return getCondCodeAction(CC, VT) == Legal ||
   1054            getCondCodeAction(CC, VT) == Custom;
   1055   }
   1056 
   1057   /// If the action for this operation is to promote, this method returns the
   1058   /// ValueType to promote to.
   1059   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
   1060     assert(getOperationAction(Op, VT) == Promote &&
   1061            "This operation isn't promoted!");
   1062 
   1063     // See if this has an explicit type specified.
   1064     std::map<std::pair<unsigned, MVT::SimpleValueType>,
   1065              MVT::SimpleValueType>::const_iterator PTTI =
   1066       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
   1067     if (PTTI != PromoteToType.end()) return PTTI->second;
   1068 
   1069     assert((VT.isInteger() || VT.isFloatingPoint()) &&
   1070            "Cannot autopromote this type, add it with AddPromotedToType.");
   1071 
   1072     MVT NVT = VT;
   1073     do {
   1074       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
   1075       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
   1076              "Didn't find type to promote to!");
   1077     } while (!isTypeLegal(NVT) ||
   1078               getOperationAction(Op, NVT) == Promote);
   1079     return NVT;
   1080   }
   1081 
   1082   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
   1083   /// operations except for the pointer size.  If AllowUnknown is true, this
   1084   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
   1085   /// otherwise it will assert.
   1086   EVT getValueType(const DataLayout &DL, Type *Ty,
   1087                    bool AllowUnknown = false) const {
   1088     // Lower scalar pointers to native pointer types.
   1089     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   1090       return getPointerTy(DL, PTy->getAddressSpace());
   1091 
   1092     if (Ty->isVectorTy()) {
   1093       VectorType *VTy = cast<VectorType>(Ty);
   1094       Type *Elm = VTy->getElementType();
   1095       // Lower vectors of pointers to native pointer types.
   1096       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
   1097         EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
   1098         Elm = PointerTy.getTypeForEVT(Ty->getContext());
   1099       }
   1100 
   1101       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
   1102                        VTy->getNumElements());
   1103     }
   1104     return EVT::getEVT(Ty, AllowUnknown);
   1105   }
   1106 
   1107   /// Return the MVT corresponding to this LLVM type. See getValueType.
   1108   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
   1109                          bool AllowUnknown = false) const {
   1110     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
   1111   }
   1112 
   1113   /// Return the desired alignment for ByVal or InAlloca aggregate function
   1114   /// arguments in the caller parameter area.  This is the actual alignment, not
   1115   /// its logarithm.
   1116   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
   1117 
   1118   /// Return the type of registers that this ValueType will eventually require.
   1119   MVT getRegisterType(MVT VT) const {
   1120     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
   1121     return RegisterTypeForVT[VT.SimpleTy];
   1122   }
   1123 
   1124   /// Return the type of registers that this ValueType will eventually require.
   1125   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
   1126     if (VT.isSimple()) {
   1127       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1128                 array_lengthof(RegisterTypeForVT));
   1129       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
   1130     }
   1131     if (VT.isVector()) {
   1132       EVT VT1;
   1133       MVT RegisterVT;
   1134       unsigned NumIntermediates;
   1135       (void)getVectorTypeBreakdown(Context, VT, VT1,
   1136                                    NumIntermediates, RegisterVT);
   1137       return RegisterVT;
   1138     }
   1139     if (VT.isInteger()) {
   1140       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
   1141     }
   1142     llvm_unreachable("Unsupported extended type!");
   1143   }
   1144 
   1145   /// Return the number of registers that this ValueType will eventually
   1146   /// require.
   1147   ///
   1148   /// This is one for any types promoted to live in larger registers, but may be
   1149   /// more than one for types (like i64) that are split into pieces.  For types
   1150   /// like i140, which are first promoted then expanded, it is the number of
   1151   /// registers needed to hold all the bits of the original type.  For an i140
   1152   /// on a 32 bit machine this means 5 registers.
   1153   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
   1154     if (VT.isSimple()) {
   1155       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1156                 array_lengthof(NumRegistersForVT));
   1157       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
   1158     }
   1159     if (VT.isVector()) {
   1160       EVT VT1;
   1161       MVT VT2;
   1162       unsigned NumIntermediates;
   1163       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
   1164     }
   1165     if (VT.isInteger()) {
   1166       unsigned BitWidth = VT.getSizeInBits();
   1167       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
   1168       return (BitWidth + RegWidth - 1) / RegWidth;
   1169     }
   1170     llvm_unreachable("Unsupported extended type!");
   1171   }
   1172 
   1173   /// Certain combinations of ABIs, Targets and features require that types
   1174   /// are legal for some operations and not for other operations.
   1175   /// For MIPS all vector types must be passed through the integer register set.
   1176   virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
   1177                                             CallingConv::ID CC, EVT VT) const {
   1178     return getRegisterType(Context, VT);
   1179   }
   1180 
   1181   /// Certain targets require unusual breakdowns of certain types. For MIPS,
   1182   /// this occurs when a vector type is used, as vector are passed through the
   1183   /// integer register set.
   1184   virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
   1185                                                  CallingConv::ID CC,
   1186                                                  EVT VT) const {
   1187     return getNumRegisters(Context, VT);
   1188   }
   1189 
   1190   /// Certain targets have context senstive alignment requirements, where one
   1191   /// type has the alignment requirement of another type.
   1192   virtual unsigned getABIAlignmentForCallingConv(Type *ArgTy,
   1193                                                  DataLayout DL) const {
   1194     return DL.getABITypeAlignment(ArgTy);
   1195   }
   1196 
   1197   /// If true, then instruction selection should seek to shrink the FP constant
   1198   /// of the specified type to a smaller type in order to save space and / or
   1199   /// reduce runtime.
   1200   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
   1201 
   1202   // Return true if it is profitable to reduce the given load node to a smaller
   1203   // type.
   1204   //
   1205   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
   1206   virtual bool shouldReduceLoadWidth(SDNode *Load,
   1207                                      ISD::LoadExtType ExtTy,
   1208                                      EVT NewVT) const {
   1209     return true;
   1210   }
   1211 
   1212   /// When splitting a value of the specified type into parts, does the Lo
   1213   /// or Hi part come first?  This usually follows the endianness, except
   1214   /// for ppcf128, where the Hi part always comes first.
   1215   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
   1216     return DL.isBigEndian() || VT == MVT::ppcf128;
   1217   }
   1218 
   1219   /// If true, the target has custom DAG combine transformations that it can
   1220   /// perform for the specified node.
   1221   bool hasTargetDAGCombine(ISD::NodeType NT) const {
   1222     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1223     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
   1224   }
   1225 
   1226   unsigned getGatherAllAliasesMaxDepth() const {
   1227     return GatherAllAliasesMaxDepth;
   1228   }
   1229 
   1230   /// Returns the size of the platform's va_list object.
   1231   virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
   1232     return getPointerTy(DL).getSizeInBits();
   1233   }
   1234 
   1235   /// Get maximum # of store operations permitted for llvm.memset
   1236   ///
   1237   /// This function returns the maximum number of store operations permitted
   1238   /// to replace a call to llvm.memset. The value is set by the target at the
   1239   /// performance threshold for such a replacement. If OptSize is true,
   1240   /// return the limit for functions that have OptSize attribute.
   1241   unsigned getMaxStoresPerMemset(bool OptSize) const {
   1242     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
   1243   }
   1244 
   1245   /// Get maximum # of store operations permitted for llvm.memcpy
   1246   ///
   1247   /// This function returns the maximum number of store operations permitted
   1248   /// to replace a call to llvm.memcpy. The value is set by the target at the
   1249   /// performance threshold for such a replacement. If OptSize is true,
   1250   /// return the limit for functions that have OptSize attribute.
   1251   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
   1252     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
   1253   }
   1254 
   1255   /// \brief Get maximum # of store operations to be glued together
   1256   ///
   1257   /// This function returns the maximum number of store operations permitted
   1258   /// to glue together during lowering of llvm.memcpy. The value is set by
   1259   //  the target at the performance threshold for such a replacement.
   1260   virtual unsigned getMaxGluedStoresPerMemcpy() const {
   1261     return MaxGluedStoresPerMemcpy;
   1262   }
   1263 
   1264   /// Get maximum # of load operations permitted for memcmp
   1265   ///
   1266   /// This function returns the maximum number of load operations permitted
   1267   /// to replace a call to memcmp. The value is set by the target at the
   1268   /// performance threshold for such a replacement. If OptSize is true,
   1269   /// return the limit for functions that have OptSize attribute.
   1270   unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
   1271     return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
   1272   }
   1273 
   1274   /// For memcmp expansion when the memcmp result is only compared equal or
   1275   /// not-equal to 0, allow up to this number of load pairs per block. As an
   1276   /// example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
   1277   ///   a0 = load2bytes &a[0]
   1278   ///   b0 = load2bytes &b[0]
   1279   ///   a2 = load1byte  &a[2]
   1280   ///   b2 = load1byte  &b[2]
   1281   ///   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
   1282   virtual unsigned getMemcmpEqZeroLoadsPerBlock() const {
   1283     return 1;
   1284   }
   1285 
   1286   /// Get maximum # of store operations permitted for llvm.memmove
   1287   ///
   1288   /// This function returns the maximum number of store operations permitted
   1289   /// to replace a call to llvm.memmove. The value is set by the target at the
   1290   /// performance threshold for such a replacement. If OptSize is true,
   1291   /// return the limit for functions that have OptSize attribute.
   1292   unsigned getMaxStoresPerMemmove(bool OptSize) const {
   1293     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
   1294   }
   1295 
   1296   /// Determine if the target supports unaligned memory accesses.
   1297   ///
   1298   /// This function returns true if the target allows unaligned memory accesses
   1299   /// of the specified type in the given address space. If true, it also returns
   1300   /// whether the unaligned memory access is "fast" in the last argument by
   1301   /// reference. This is used, for example, in situations where an array
   1302   /// copy/move/set is converted to a sequence of store operations. Its use
   1303   /// helps to ensure that such replacements don't generate code that causes an
   1304   /// alignment error (trap) on the target machine.
   1305   virtual bool allowsMisalignedMemoryAccesses(EVT,
   1306                                               unsigned AddrSpace = 0,
   1307                                               unsigned Align = 1,
   1308                                               bool * /*Fast*/ = nullptr) const {
   1309     return false;
   1310   }
   1311 
   1312   /// Return true if the target supports a memory access of this type for the
   1313   /// given address space and alignment. If the access is allowed, the optional
   1314   /// final parameter returns if the access is also fast (as defined by the
   1315   /// target).
   1316   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
   1317                           unsigned AddrSpace = 0, unsigned Alignment = 1,
   1318                           bool *Fast = nullptr) const;
   1319 
   1320   /// Returns the target specific optimal type for load and store operations as
   1321   /// a result of memset, memcpy, and memmove lowering.
   1322   ///
   1323   /// If DstAlign is zero that means it's safe to destination alignment can
   1324   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
   1325   /// a need to check it against alignment requirement, probably because the
   1326   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
   1327   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
   1328   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
   1329   /// does not need to be loaded.  It returns EVT::Other if the type should be
   1330   /// determined using generic target-independent logic.
   1331   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
   1332                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
   1333                                   bool /*IsMemset*/,
   1334                                   bool /*ZeroMemset*/,
   1335                                   bool /*MemcpyStrSrc*/,
   1336                                   MachineFunction &/*MF*/) const {
   1337     return MVT::Other;
   1338   }
   1339 
   1340   /// Returns true if it's safe to use load / store of the specified type to
   1341   /// expand memcpy / memset inline.
   1342   ///
   1343   /// This is mostly true for all types except for some special cases. For
   1344   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
   1345   /// fstpl which also does type conversion. Note the specified type doesn't
   1346   /// have to be legal as the hook is used before type legalization.
   1347   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
   1348 
   1349   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
   1350   bool usesUnderscoreSetJmp() const {
   1351     return UseUnderscoreSetJmp;
   1352   }
   1353 
   1354   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
   1355   bool usesUnderscoreLongJmp() const {
   1356     return UseUnderscoreLongJmp;
   1357   }
   1358 
   1359   /// Return lower limit for number of blocks in a jump table.
   1360   virtual unsigned getMinimumJumpTableEntries() const;
   1361 
   1362   /// Return lower limit of the density in a jump table.
   1363   unsigned getMinimumJumpTableDensity(bool OptForSize) const;
   1364 
   1365   /// Return upper limit for number of entries in a jump table.
   1366   /// Zero if no limit.
   1367   unsigned getMaximumJumpTableSize() const;
   1368 
   1369   virtual bool isJumpTableRelative() const {
   1370     return TM.isPositionIndependent();
   1371   }
   1372 
   1373   /// If a physical register, this specifies the register that
   1374   /// llvm.savestack/llvm.restorestack should save and restore.
   1375   unsigned getStackPointerRegisterToSaveRestore() const {
   1376     return StackPointerRegisterToSaveRestore;
   1377   }
   1378 
   1379   /// If a physical register, this returns the register that receives the
   1380   /// exception address on entry to an EH pad.
   1381   virtual unsigned
   1382   getExceptionPointerRegister(const Constant *PersonalityFn) const {
   1383     // 0 is guaranteed to be the NoRegister value on all targets
   1384     return 0;
   1385   }
   1386 
   1387   /// If a physical register, this returns the register that receives the
   1388   /// exception typeid on entry to a landing pad.
   1389   virtual unsigned
   1390   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
   1391     // 0 is guaranteed to be the NoRegister value on all targets
   1392     return 0;
   1393   }
   1394 
   1395   virtual bool needsFixedCatchObjects() const {
   1396     report_fatal_error("Funclet EH is not implemented for this target");
   1397   }
   1398 
   1399   /// Returns the target's jmp_buf size in bytes (if never set, the default is
   1400   /// 200)
   1401   unsigned getJumpBufSize() const {
   1402     return JumpBufSize;
   1403   }
   1404 
   1405   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
   1406   /// is 0)
   1407   unsigned getJumpBufAlignment() const {
   1408     return JumpBufAlignment;
   1409   }
   1410 
   1411   /// Return the minimum stack alignment of an argument.
   1412   unsigned getMinStackArgumentAlignment() const {
   1413     return MinStackArgumentAlignment;
   1414   }
   1415 
   1416   /// Return the minimum function alignment.
   1417   unsigned getMinFunctionAlignment() const {
   1418     return MinFunctionAlignment;
   1419   }
   1420 
   1421   /// Return the preferred function alignment.
   1422   unsigned getPrefFunctionAlignment() const {
   1423     return PrefFunctionAlignment;
   1424   }
   1425 
   1426   /// Return the preferred loop alignment.
   1427   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
   1428     return PrefLoopAlignment;
   1429   }
   1430 
   1431   /// If the target has a standard location for the stack protector guard,
   1432   /// returns the address of that location. Otherwise, returns nullptr.
   1433   /// DEPRECATED: please override useLoadStackGuardNode and customize
   1434   ///             LOAD_STACK_GUARD, or customize \@llvm.stackguard().
   1435   virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
   1436 
   1437   /// Inserts necessary declarations for SSP (stack protection) purpose.
   1438   /// Should be used only when getIRStackGuard returns nullptr.
   1439   virtual void insertSSPDeclarations(Module &M) const;
   1440 
   1441   /// Return the variable that's previously inserted by insertSSPDeclarations,
   1442   /// if any, otherwise return nullptr. Should be used only when
   1443   /// getIRStackGuard returns nullptr.
   1444   virtual Value *getSDagStackGuard(const Module &M) const;
   1445 
   1446   /// If this function returns true, stack protection checks should XOR the
   1447   /// frame pointer (or whichever pointer is used to address locals) into the
   1448   /// stack guard value before checking it. getIRStackGuard must return nullptr
   1449   /// if this returns true.
   1450   virtual bool useStackGuardXorFP() const { return false; }
   1451 
   1452   /// If the target has a standard stack protection check function that
   1453   /// performs validation and error handling, returns the function. Otherwise,
   1454   /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
   1455   /// Should be used only when getIRStackGuard returns nullptr.
   1456   virtual Value *getSSPStackGuardCheck(const Module &M) const;
   1457 
   1458 protected:
   1459   Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
   1460                                             bool UseTLS) const;
   1461 
   1462 public:
   1463   /// Returns the target-specific address of the unsafe stack pointer.
   1464   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
   1465 
   1466   /// Returns the name of the symbol used to emit stack probes or the empty
   1467   /// string if not applicable.
   1468   virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
   1469     return "";
   1470   }
   1471 
   1472   /// Returns true if a cast between SrcAS and DestAS is a noop.
   1473   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
   1474     return false;
   1475   }
   1476 
   1477   /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
   1478   /// are happy to sink it into basic blocks.
   1479   virtual bool isCheapAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
   1480     return isNoopAddrSpaceCast(SrcAS, DestAS);
   1481   }
   1482 
   1483   /// Return true if the pointer arguments to CI should be aligned by aligning
   1484   /// the object whose address is being passed. If so then MinSize is set to the
   1485   /// minimum size the object must be to be aligned and PrefAlign is set to the
   1486   /// preferred alignment.
   1487   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
   1488                                       unsigned & /*PrefAlign*/) const {
   1489     return false;
   1490   }
   1491 
   1492   //===--------------------------------------------------------------------===//
   1493   /// \name Helpers for TargetTransformInfo implementations
   1494   /// @{
   1495 
   1496   /// Get the ISD node that corresponds to the Instruction class opcode.
   1497   int InstructionOpcodeToISD(unsigned Opcode) const;
   1498 
   1499   /// Estimate the cost of type-legalization and the legalized type.
   1500   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
   1501                                               Type *Ty) const;
   1502 
   1503   /// @}
   1504 
   1505   //===--------------------------------------------------------------------===//
   1506   /// \name Helpers for atomic expansion.
   1507   /// @{
   1508 
   1509   /// Returns the maximum atomic operation size (in bits) supported by
   1510   /// the backend. Atomic operations greater than this size (as well
   1511   /// as ones that are not naturally aligned), will be expanded by
   1512   /// AtomicExpandPass into an __atomic_* library call.
   1513   unsigned getMaxAtomicSizeInBitsSupported() const {
   1514     return MaxAtomicSizeInBitsSupported;
   1515   }
   1516 
   1517   /// Returns the size of the smallest cmpxchg or ll/sc instruction
   1518   /// the backend supports.  Any smaller operations are widened in
   1519   /// AtomicExpandPass.
   1520   ///
   1521   /// Note that *unlike* operations above the maximum size, atomic ops
   1522   /// are still natively supported below the minimum; they just
   1523   /// require a more complex expansion.
   1524   unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
   1525 
   1526   /// Whether the target supports unaligned atomic operations.
   1527   bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
   1528 
   1529   /// Whether AtomicExpandPass should automatically insert fences and reduce
   1530   /// ordering for this atomic. This should be true for most architectures with
   1531   /// weak memory ordering. Defaults to false.
   1532   virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
   1533     return false;
   1534   }
   1535 
   1536   /// Perform a load-linked operation on Addr, returning a "Value *" with the
   1537   /// corresponding pointee type. This may entail some non-trivial operations to
   1538   /// truncate or reconstruct types that will be illegal in the backend. See
   1539   /// ARMISelLowering for an example implementation.
   1540   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   1541                                 AtomicOrdering Ord) const {
   1542     llvm_unreachable("Load linked unimplemented on this target");
   1543   }
   1544 
   1545   /// Perform a store-conditional operation to Addr. Return the status of the
   1546   /// store. This should be 0 if the store succeeded, non-zero otherwise.
   1547   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   1548                                       Value *Addr, AtomicOrdering Ord) const {
   1549     llvm_unreachable("Store conditional unimplemented on this target");
   1550   }
   1551 
   1552   /// Inserts in the IR a target-specific intrinsic specifying a fence.
   1553   /// It is called by AtomicExpandPass before expanding an
   1554   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
   1555   ///   if shouldInsertFencesForAtomic returns true.
   1556   ///
   1557   /// Inst is the original atomic instruction, prior to other expansions that
   1558   /// may be performed.
   1559   ///
   1560   /// This function should either return a nullptr, or a pointer to an IR-level
   1561   ///   Instruction*. Even complex fence sequences can be represented by a
   1562   ///   single Instruction* through an intrinsic to be lowered later.
   1563   /// Backends should override this method to produce target-specific intrinsic
   1564   ///   for their fences.
   1565   /// FIXME: Please note that the default implementation here in terms of
   1566   ///   IR-level fences exists for historical/compatibility reasons and is
   1567   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
   1568   ///   consistency. For example, consider the following example:
   1569   /// atomic<int> x = y = 0;
   1570   /// int r1, r2, r3, r4;
   1571   /// Thread 0:
   1572   ///   x.store(1);
   1573   /// Thread 1:
   1574   ///   y.store(1);
   1575   /// Thread 2:
   1576   ///   r1 = x.load();
   1577   ///   r2 = y.load();
   1578   /// Thread 3:
   1579   ///   r3 = y.load();
   1580   ///   r4 = x.load();
   1581   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
   1582   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
   1583   ///  IR-level fences can prevent it.
   1584   /// @{
   1585   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
   1586                                         AtomicOrdering Ord) const {
   1587     if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
   1588       return Builder.CreateFence(Ord);
   1589     else
   1590       return nullptr;
   1591   }
   1592 
   1593   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
   1594                                          Instruction *Inst,
   1595                                          AtomicOrdering Ord) const {
   1596     if (isAcquireOrStronger(Ord))
   1597       return Builder.CreateFence(Ord);
   1598     else
   1599       return nullptr;
   1600   }
   1601   /// @}
   1602 
   1603   // Emits code that executes when the comparison result in the ll/sc
   1604   // expansion of a cmpxchg instruction is such that the store-conditional will
   1605   // not execute.  This makes it possible to balance out the load-linked with
   1606   // a dedicated instruction, if desired.
   1607   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
   1608   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
   1609   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
   1610 
   1611   /// Returns true if the given (atomic) store should be expanded by the
   1612   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
   1613   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   1614     return false;
   1615   }
   1616 
   1617   /// Returns true if arguments should be sign-extended in lib calls.
   1618   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
   1619     return IsSigned;
   1620   }
   1621 
   1622   /// Returns how the given (atomic) load should be expanded by the
   1623   /// IR-level AtomicExpand pass.
   1624   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   1625     return AtomicExpansionKind::None;
   1626   }
   1627 
   1628   /// Returns true if the given atomic cmpxchg should be expanded by the
   1629   /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
   1630   /// (through emitLoadLinked() and emitStoreConditional()).
   1631   virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
   1632     return false;
   1633   }
   1634 
   1635   /// Returns how the IR-level AtomicExpand pass should expand the given
   1636   /// AtomicRMW, if at all. Default is to never expand.
   1637   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
   1638     return AtomicExpansionKind::None;
   1639   }
   1640 
   1641   /// On some platforms, an AtomicRMW that never actually modifies the value
   1642   /// (such as fetch_add of 0) can be turned into a fence followed by an
   1643   /// atomic load. This may sound useless, but it makes it possible for the
   1644   /// processor to keep the cacheline shared, dramatically improving
   1645   /// performance. And such idempotent RMWs are useful for implementing some
   1646   /// kinds of locks, see for example (justification + benchmarks):
   1647   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
   1648   /// This method tries doing that transformation, returning the atomic load if
   1649   /// it succeeds, and nullptr otherwise.
   1650   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
   1651   /// another round of expansion.
   1652   virtual LoadInst *
   1653   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
   1654     return nullptr;
   1655   }
   1656 
   1657   /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
   1658   /// SIGN_EXTEND, or ANY_EXTEND).
   1659   virtual ISD::NodeType getExtendForAtomicOps() const {
   1660     return ISD::ZERO_EXTEND;
   1661   }
   1662 
   1663   /// @}
   1664 
   1665   /// Returns true if we should normalize
   1666   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
   1667   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
   1668   /// that it saves us from materializing N0 and N1 in an integer register.
   1669   /// Targets that are able to perform and/or on flags should return false here.
   1670   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
   1671                                                EVT VT) const {
   1672     // If a target has multiple condition registers, then it likely has logical
   1673     // operations on those registers.
   1674     if (hasMultipleConditionRegisters())
   1675       return false;
   1676     // Only do the transform if the value won't be split into multiple
   1677     // registers.
   1678     LegalizeTypeAction Action = getTypeAction(Context, VT);
   1679     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
   1680       Action != TypeSplitVector;
   1681   }
   1682 
   1683   /// Return true if a select of constants (select Cond, C1, C2) should be
   1684   /// transformed into simple math ops with the condition value. For example:
   1685   /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
   1686   virtual bool convertSelectOfConstantsToMath(EVT VT) const {
   1687     return false;
   1688   }
   1689 
   1690   //===--------------------------------------------------------------------===//
   1691   // TargetLowering Configuration Methods - These methods should be invoked by
   1692   // the derived class constructor to configure this object for the target.
   1693   //
   1694 protected:
   1695   /// Specify how the target extends the result of integer and floating point
   1696   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1697   void setBooleanContents(BooleanContent Ty) {
   1698     BooleanContents = Ty;
   1699     BooleanFloatContents = Ty;
   1700   }
   1701 
   1702   /// Specify how the target extends the result of integer and floating point
   1703   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1704   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
   1705     BooleanContents = IntTy;
   1706     BooleanFloatContents = FloatTy;
   1707   }
   1708 
   1709   /// Specify how the target extends the result of a vector boolean value from a
   1710   /// vector of i1 to a wider type.  See getBooleanContents.
   1711   void setBooleanVectorContents(BooleanContent Ty) {
   1712     BooleanVectorContents = Ty;
   1713   }
   1714 
   1715   /// Specify the target scheduling preference.
   1716   void setSchedulingPreference(Sched::Preference Pref) {
   1717     SchedPreferenceInfo = Pref;
   1718   }
   1719 
   1720   /// Indicate whether this target prefers to use _setjmp to implement
   1721   /// llvm.setjmp or the version without _.  Defaults to false.
   1722   void setUseUnderscoreSetJmp(bool Val) {
   1723     UseUnderscoreSetJmp = Val;
   1724   }
   1725 
   1726   /// Indicate whether this target prefers to use _longjmp to implement
   1727   /// llvm.longjmp or the version without _.  Defaults to false.
   1728   void setUseUnderscoreLongJmp(bool Val) {
   1729     UseUnderscoreLongJmp = Val;
   1730   }
   1731 
   1732   /// Indicate the minimum number of blocks to generate jump tables.
   1733   void setMinimumJumpTableEntries(unsigned Val);
   1734 
   1735   /// Indicate the maximum number of entries in jump tables.
   1736   /// Set to zero to generate unlimited jump tables.
   1737   void setMaximumJumpTableSize(unsigned);
   1738 
   1739   /// If set to a physical register, this specifies the register that
   1740   /// llvm.savestack/llvm.restorestack should save and restore.
   1741   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1742     StackPointerRegisterToSaveRestore = R;
   1743   }
   1744 
   1745   /// Tells the code generator that the target has multiple (allocatable)
   1746   /// condition registers that can be used to store the results of comparisons
   1747   /// for use by selects and conditional branches. With multiple condition
   1748   /// registers, the code generator will not aggressively sink comparisons into
   1749   /// the blocks of their users.
   1750   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
   1751     HasMultipleConditionRegisters = hasManyRegs;
   1752   }
   1753 
   1754   /// Tells the code generator that the target has BitExtract instructions.
   1755   /// The code generator will aggressively sink "shift"s into the blocks of
   1756   /// their users if the users will generate "and" instructions which can be
   1757   /// combined with "shift" to BitExtract instructions.
   1758   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
   1759     HasExtractBitsInsn = hasExtractInsn;
   1760   }
   1761 
   1762   /// Tells the code generator not to expand logic operations on comparison
   1763   /// predicates into separate sequences that increase the amount of flow
   1764   /// control.
   1765   void setJumpIsExpensive(bool isExpensive = true);
   1766 
   1767   /// Tells the code generator that this target supports floating point
   1768   /// exceptions and cares about preserving floating point exception behavior.
   1769   void setHasFloatingPointExceptions(bool FPExceptions = true) {
   1770     HasFloatingPointExceptions = FPExceptions;
   1771   }
   1772 
   1773   /// Tells the code generator which bitwidths to bypass.
   1774   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
   1775     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
   1776   }
   1777 
   1778   /// Add the specified register class as an available regclass for the
   1779   /// specified value type. This indicates the selector can handle values of
   1780   /// that class natively.
   1781   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
   1782     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
   1783     RegClassForVT[VT.SimpleTy] = RC;
   1784   }
   1785 
   1786   /// Return the largest legal super-reg register class of the register class
   1787   /// for the specified type and its associated "cost".
   1788   virtual std::pair<const TargetRegisterClass *, uint8_t>
   1789   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
   1790 
   1791   /// Once all of the register classes are added, this allows us to compute
   1792   /// derived properties we expose.
   1793   void computeRegisterProperties(const TargetRegisterInfo *TRI);
   1794 
   1795   /// Indicate that the specified operation does not work with the specified
   1796   /// type and indicate what to do about it. Note that VT may refer to either
   1797   /// the type of a result or that of an operand of Op.
   1798   void setOperationAction(unsigned Op, MVT VT,
   1799                           LegalizeAction Action) {
   1800     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1801     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
   1802   }
   1803 
   1804   /// Indicate that the specified load with extension does not work with the
   1805   /// specified type and indicate what to do about it.
   1806   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
   1807                         LegalizeAction Action) {
   1808     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
   1809            MemVT.isValid() && "Table isn't big enough!");
   1810     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
   1811     unsigned Shift = 4 * ExtType;
   1812     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
   1813     LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
   1814   }
   1815 
   1816   /// Indicate that the specified truncating store does not work with the
   1817   /// specified type and indicate what to do about it.
   1818   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1819                            LegalizeAction Action) {
   1820     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
   1821     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
   1822   }
   1823 
   1824   /// Indicate that the specified indexed load does or does not work with the
   1825   /// specified type and indicate what to do abort it.
   1826   ///
   1827   /// NOTE: All indexed mode loads are initialized to Expand in
   1828   /// TargetLowering.cpp
   1829   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1830                             LegalizeAction Action) {
   1831     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1832            (unsigned)Action < 0xf && "Table isn't big enough!");
   1833     // Load action are kept in the upper half.
   1834     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1835     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1836   }
   1837 
   1838   /// Indicate that the specified indexed store does or does not work with the
   1839   /// specified type and indicate what to do about it.
   1840   ///
   1841   /// NOTE: All indexed mode stores are initialized to Expand in
   1842   /// TargetLowering.cpp
   1843   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1844                              LegalizeAction Action) {
   1845     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1846            (unsigned)Action < 0xf && "Table isn't big enough!");
   1847     // Store action are kept in the lower half.
   1848     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1849     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1850   }
   1851 
   1852   /// Indicate that the specified condition code is or isn't supported on the
   1853   /// target and indicate what to do about it.
   1854   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1855                          LegalizeAction Action) {
   1856     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
   1857            "Table isn't big enough!");
   1858     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
   1859     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
   1860     /// value and the upper 29 bits index into the second dimension of the array
   1861     /// to select what 32-bit value to use.
   1862     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
   1863     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
   1864     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
   1865   }
   1866 
   1867   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
   1868   /// to trying a larger integer/fp until it can find one that works. If that
   1869   /// default is insufficient, this method can be used by the target to override
   1870   /// the default.
   1871   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1872     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1873   }
   1874 
   1875   /// Convenience method to set an operation to Promote and specify the type
   1876   /// in a single call.
   1877   void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1878     setOperationAction(Opc, OrigVT, Promote);
   1879     AddPromotedToType(Opc, OrigVT, DestVT);
   1880   }
   1881 
   1882   /// Targets should invoke this method for each target independent node that
   1883   /// they want to provide a custom DAG combiner for by implementing the
   1884   /// PerformDAGCombine virtual method.
   1885   void setTargetDAGCombine(ISD::NodeType NT) {
   1886     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1887     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1888   }
   1889 
   1890   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
   1891   void setJumpBufSize(unsigned Size) {
   1892     JumpBufSize = Size;
   1893   }
   1894 
   1895   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
   1896   /// 0
   1897   void setJumpBufAlignment(unsigned Align) {
   1898     JumpBufAlignment = Align;
   1899   }
   1900 
   1901   /// Set the target's minimum function alignment (in log2(bytes))
   1902   void setMinFunctionAlignment(unsigned Align) {
   1903     MinFunctionAlignment = Align;
   1904   }
   1905 
   1906   /// Set the target's preferred function alignment.  This should be set if
   1907   /// there is a performance benefit to higher-than-minimum alignment (in
   1908   /// log2(bytes))
   1909   void setPrefFunctionAlignment(unsigned Align) {
   1910     PrefFunctionAlignment = Align;
   1911   }
   1912 
   1913   /// Set the target's preferred loop alignment. Default alignment is zero, it
   1914   /// means the target does not care about loop alignment.  The alignment is
   1915   /// specified in log2(bytes). The target may also override
   1916   /// getPrefLoopAlignment to provide per-loop values.
   1917   void setPrefLoopAlignment(unsigned Align) {
   1918     PrefLoopAlignment = Align;
   1919   }
   1920 
   1921   /// Set the minimum stack alignment of an argument (in log2(bytes)).
   1922   void setMinStackArgumentAlignment(unsigned Align) {
   1923     MinStackArgumentAlignment = Align;
   1924   }
   1925 
   1926   /// Set the maximum atomic operation size supported by the
   1927   /// backend. Atomic operations greater than this size (as well as
   1928   /// ones that are not naturally aligned), will be expanded by
   1929   /// AtomicExpandPass into an __atomic_* library call.
   1930   void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
   1931     MaxAtomicSizeInBitsSupported = SizeInBits;
   1932   }
   1933 
   1934   /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
   1935   void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
   1936     MinCmpXchgSizeInBits = SizeInBits;
   1937   }
   1938 
   1939   /// Sets whether unaligned atomic operations are supported.
   1940   void setSupportsUnalignedAtomics(bool UnalignedSupported) {
   1941     SupportsUnalignedAtomics = UnalignedSupported;
   1942   }
   1943 
   1944 public:
   1945   //===--------------------------------------------------------------------===//
   1946   // Addressing mode description hooks (used by LSR etc).
   1947   //
   1948 
   1949   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
   1950   /// instructions reading the address. This allows as much computation as
   1951   /// possible to be done in the address mode for that operand. This hook lets
   1952   /// targets also pass back when this should be done on intrinsics which
   1953   /// load/store.
   1954   virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
   1955                                     SmallVectorImpl<Value*> &/*Ops*/,
   1956                                     Type *&/*AccessTy*/) const {
   1957     return false;
   1958   }
   1959 
   1960   /// This represents an addressing mode of:
   1961   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1962   /// If BaseGV is null,  there is no BaseGV.
   1963   /// If BaseOffs is zero, there is no base offset.
   1964   /// If HasBaseReg is false, there is no base register.
   1965   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1966   /// no scale.
   1967   struct AddrMode {
   1968     GlobalValue *BaseGV = nullptr;
   1969     int64_t      BaseOffs = 0;
   1970     bool         HasBaseReg = false;
   1971     int64_t      Scale = 0;
   1972     AddrMode() = default;
   1973   };
   1974 
   1975   /// Return true if the addressing mode represented by AM is legal for this
   1976   /// target, for a load/store of the specified type.
   1977   ///
   1978   /// The type may be VoidTy, in which case only return true if the addressing
   1979   /// mode is legal for a load/store of any legal type.  TODO: Handle
   1980   /// pre/postinc as well.
   1981   ///
   1982   /// If the address space cannot be determined, it will be -1.
   1983   ///
   1984   /// TODO: Remove default argument
   1985   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
   1986                                      Type *Ty, unsigned AddrSpace,
   1987                                      Instruction *I = nullptr) const;
   1988 
   1989   /// Return the cost of the scaling factor used in the addressing mode
   1990   /// represented by AM for this target, for a load/store of the specified type.
   1991   ///
   1992   /// If the AM is supported, the return value must be >= 0.
   1993   /// If the AM is not supported, it returns a negative value.
   1994   /// TODO: Handle pre/postinc as well.
   1995   /// TODO: Remove default argument
   1996   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
   1997                                    Type *Ty, unsigned AS = 0) const {
   1998     // Default: assume that any scaling factor used in a legal AM is free.
   1999     if (isLegalAddressingMode(DL, AM, Ty, AS))
   2000       return 0;
   2001     return -1;
   2002   }
   2003 
   2004   /// Return true if the specified immediate is legal icmp immediate, that is
   2005   /// the target has icmp instructions which can compare a register against the
   2006   /// immediate without having to materialize the immediate into a register.
   2007   virtual bool isLegalICmpImmediate(int64_t) const {
   2008     return true;
   2009   }
   2010 
   2011   /// Return true if the specified immediate is legal add immediate, that is the
   2012   /// target has add instructions which can add a register with the immediate
   2013   /// without having to materialize the immediate into a register.
   2014   virtual bool isLegalAddImmediate(int64_t) const {
   2015     return true;
   2016   }
   2017 
   2018   /// Return true if it's significantly cheaper to shift a vector by a uniform
   2019   /// scalar than by an amount which will vary across each lane. On x86, for
   2020   /// example, there is a "psllw" instruction for the former case, but no simple
   2021   /// instruction for a general "a << b" operation on vectors.
   2022   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
   2023     return false;
   2024   }
   2025 
   2026   /// Returns true if the opcode is a commutative binary operation.
   2027   virtual bool isCommutativeBinOp(unsigned Opcode) const {
   2028     // FIXME: This should get its info from the td file.
   2029     switch (Opcode) {
   2030     case ISD::ADD:
   2031     case ISD::SMIN:
   2032     case ISD::SMAX:
   2033     case ISD::UMIN:
   2034     case ISD::UMAX:
   2035     case ISD::MUL:
   2036     case ISD::MULHU:
   2037     case ISD::MULHS:
   2038     case ISD::SMUL_LOHI:
   2039     case ISD::UMUL_LOHI:
   2040     case ISD::FADD:
   2041     case ISD::FMUL:
   2042     case ISD::AND:
   2043     case ISD::OR:
   2044     case ISD::XOR:
   2045     case ISD::SADDO:
   2046     case ISD::UADDO:
   2047     case ISD::ADDC:
   2048     case ISD::ADDE:
   2049     case ISD::FMINNUM:
   2050     case ISD::FMAXNUM:
   2051     case ISD::FMINNAN:
   2052     case ISD::FMAXNAN:
   2053       return true;
   2054     default: return false;
   2055     }
   2056   }
   2057 
   2058   /// Return true if it's free to truncate a value of type FromTy to type
   2059   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
   2060   /// by referencing its sub-register AX.
   2061   /// Targets must return false when FromTy <= ToTy.
   2062   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
   2063     return false;
   2064   }
   2065 
   2066   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
   2067   /// whether a call is in tail position. Typically this means that both results
   2068   /// would be assigned to the same register or stack slot, but it could mean
   2069   /// the target performs adequate checks of its own before proceeding with the
   2070   /// tail call.  Targets must return false when FromTy <= ToTy.
   2071   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
   2072     return false;
   2073   }
   2074 
   2075   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
   2076     return false;
   2077   }
   2078 
   2079   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
   2080 
   2081   /// Return true if the extension represented by \p I is free.
   2082   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
   2083   /// this method can use the context provided by \p I to decide
   2084   /// whether or not \p I is free.
   2085   /// This method extends the behavior of the is[Z|FP]ExtFree family.
   2086   /// In other words, if is[Z|FP]Free returns true, then this method
   2087   /// returns true as well. The converse is not true.
   2088   /// The target can perform the adequate checks by overriding isExtFreeImpl.
   2089   /// \pre \p I must be a sign, zero, or fp extension.
   2090   bool isExtFree(const Instruction *I) const {
   2091     switch (I->getOpcode()) {
   2092     case Instruction::FPExt:
   2093       if (isFPExtFree(EVT::getEVT(I->getType()),
   2094                       EVT::getEVT(I->getOperand(0)->getType())))
   2095         return true;
   2096       break;
   2097     case Instruction::ZExt:
   2098       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
   2099         return true;
   2100       break;
   2101     case Instruction::SExt:
   2102       break;
   2103     default:
   2104       llvm_unreachable("Instruction is not an extension");
   2105     }
   2106     return isExtFreeImpl(I);
   2107   }
   2108 
   2109   /// Return true if \p Load and \p Ext can form an ExtLoad.
   2110   /// For example, in AArch64
   2111   ///   %L = load i8, i8* %ptr
   2112   ///   %E = zext i8 %L to i32
   2113   /// can be lowered into one load instruction
   2114   ///   ldrb w0, [x0]
   2115   bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
   2116                  const DataLayout &DL) const {
   2117     EVT VT = getValueType(DL, Ext->getType());
   2118     EVT LoadVT = getValueType(DL, Load->getType());
   2119 
   2120     // If the load has other users and the truncate is not free, the ext
   2121     // probably isn't free.
   2122     if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
   2123         !isTruncateFree(Ext->getType(), Load->getType()))
   2124       return false;
   2125 
   2126     // Check whether the target supports casts folded into loads.
   2127     unsigned LType;
   2128     if (isa<ZExtInst>(Ext))
   2129       LType = ISD::ZEXTLOAD;
   2130     else {
   2131       assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
   2132       LType = ISD::SEXTLOAD;
   2133     }
   2134 
   2135     return isLoadExtLegal(LType, VT, LoadVT);
   2136   }
   2137 
   2138   /// Return true if any actual instruction that defines a value of type FromTy
   2139   /// implicitly zero-extends the value to ToTy in the result register.
   2140   ///
   2141   /// The function should return true when it is likely that the truncate can
   2142   /// be freely folded with an instruction defining a value of FromTy. If
   2143   /// the defining instruction is unknown (because you're looking at a
   2144   /// function argument, PHI, etc.) then the target may require an
   2145   /// explicit truncate, which is not necessarily free, but this function
   2146   /// does not deal with those cases.
   2147   /// Targets must return false when FromTy >= ToTy.
   2148   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
   2149     return false;
   2150   }
   2151 
   2152   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
   2153     return false;
   2154   }
   2155 
   2156   /// Return true if the target supplies and combines to a paired load
   2157   /// two loaded values of type LoadedType next to each other in memory.
   2158   /// RequiredAlignment gives the minimal alignment constraints that must be met
   2159   /// to be able to select this paired load.
   2160   ///
   2161   /// This information is *not* used to generate actual paired loads, but it is
   2162   /// used to generate a sequence of loads that is easier to combine into a
   2163   /// paired load.
   2164   /// For instance, something like this:
   2165   /// a = load i64* addr
   2166   /// b = trunc i64 a to i32
   2167   /// c = lshr i64 a, 32
   2168   /// d = trunc i64 c to i32
   2169   /// will be optimized into:
   2170   /// b = load i32* addr1
   2171   /// d = load i32* addr2
   2172   /// Where addr1 = addr2 +/- sizeof(i32).
   2173   ///
   2174   /// In other words, unless the target performs a post-isel load combining,
   2175   /// this information should not be provided because it will generate more
   2176   /// loads.
   2177   virtual bool hasPairedLoad(EVT /*LoadedType*/,
   2178                              unsigned & /*RequiredAlignment*/) const {
   2179     return false;
   2180   }
   2181 
   2182   /// Return true if the target has a vector blend instruction.
   2183   virtual bool hasVectorBlend() const { return false; }
   2184 
   2185   /// Get the maximum supported factor for interleaved memory accesses.
   2186   /// Default to be the minimum interleave factor: 2.
   2187   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
   2188 
   2189   /// Lower an interleaved load to target specific intrinsics. Return
   2190   /// true on success.
   2191   ///
   2192   /// \p LI is the vector load instruction.
   2193   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
   2194   /// \p Indices is the corresponding indices for each shufflevector.
   2195   /// \p Factor is the interleave factor.
   2196   virtual bool lowerInterleavedLoad(LoadInst *LI,
   2197                                     ArrayRef<ShuffleVectorInst *> Shuffles,
   2198                                     ArrayRef<unsigned> Indices,
   2199                                     unsigned Factor) const {
   2200     return false;
   2201   }
   2202 
   2203   /// Lower an interleaved store to target specific intrinsics. Return
   2204   /// true on success.
   2205   ///
   2206   /// \p SI is the vector store instruction.
   2207   /// \p SVI is the shufflevector to RE-interleave the stored vector.
   2208   /// \p Factor is the interleave factor.
   2209   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
   2210                                      unsigned Factor) const {
   2211     return false;
   2212   }
   2213 
   2214   /// Return true if zero-extending the specific node Val to type VT2 is free
   2215   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
   2216   /// because it's folded such as X86 zero-extending loads).
   2217   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
   2218     return isZExtFree(Val.getValueType(), VT2);
   2219   }
   2220 
   2221   /// Return true if an fpext operation is free (for instance, because
   2222   /// single-precision floating-point numbers are implicitly extended to
   2223   /// double-precision).
   2224   virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
   2225     assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
   2226            "invalid fpext types");
   2227     return false;
   2228   }
   2229 
   2230   /// Return true if an fpext operation input to an \p Opcode operation is free
   2231   /// (for instance, because half-precision floating-point numbers are
   2232   /// implicitly extended to float-precision) for an FMA instruction.
   2233   virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const {
   2234     assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
   2235            "invalid fpext types");
   2236     return isFPExtFree(DestVT, SrcVT);
   2237   }
   2238 
   2239   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
   2240   /// extend node) is profitable.
   2241   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
   2242 
   2243   /// Return true if an fneg operation is free to the point where it is never
   2244   /// worthwhile to replace it with a bitwise operation.
   2245   virtual bool isFNegFree(EVT VT) const {
   2246     assert(VT.isFloatingPoint());
   2247     return false;
   2248   }
   2249 
   2250   /// Return true if an fabs operation is free to the point where it is never
   2251   /// worthwhile to replace it with a bitwise operation.
   2252   virtual bool isFAbsFree(EVT VT) const {
   2253     assert(VT.isFloatingPoint());
   2254     return false;
   2255   }
   2256 
   2257   /// Return true if an FMA operation is faster than a pair of fmul and fadd
   2258   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
   2259   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
   2260   ///
   2261   /// NOTE: This may be called before legalization on types for which FMAs are
   2262   /// not legal, but should return true if those types will eventually legalize
   2263   /// to types that support FMAs. After legalization, it will only be called on
   2264   /// types that support FMAs (via Legal or Custom actions)
   2265   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
   2266     return false;
   2267   }
   2268 
   2269   /// Return true if it's profitable to narrow operations of type VT1 to
   2270   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
   2271   /// i32 to i16.
   2272   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   2273     return false;
   2274   }
   2275 
   2276   /// Return true if it is beneficial to convert a load of a constant to
   2277   /// just the constant itself.
   2278   /// On some targets it might be more efficient to use a combination of
   2279   /// arithmetic instructions to materialize the constant instead of loading it
   2280   /// from a constant pool.
   2281   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
   2282                                                  Type *Ty) const {
   2283     return false;
   2284   }
   2285 
   2286   /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
   2287   /// from this source type with this index. This is needed because
   2288   /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
   2289   /// the first element, and only the target knows which lowering is cheap.
   2290   virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
   2291                                        unsigned Index) const {
   2292     return false;
   2293   }
   2294 
   2295   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
   2296   // even if the vector itself has multiple uses.
   2297   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
   2298     return false;
   2299   }
   2300 
   2301   // Return true if CodeGenPrepare should consider splitting large offset of a
   2302   // GEP to make the GEP fit into the addressing mode and can be sunk into the
   2303   // same blocks of its users.
   2304   virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
   2305 
   2306   //===--------------------------------------------------------------------===//
   2307   // Runtime Library hooks
   2308   //
   2309 
   2310   /// Rename the default libcall routine name for the specified libcall.
   2311   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   2312     LibcallRoutineNames[Call] = Name;
   2313   }
   2314 
   2315   /// Get the libcall routine name for the specified libcall.
   2316   const char *getLibcallName(RTLIB::Libcall Call) const {
   2317     return LibcallRoutineNames[Call];
   2318   }
   2319 
   2320   /// Override the default CondCode to be used to test the result of the
   2321   /// comparison libcall against zero.
   2322   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   2323     CmpLibcallCCs[Call] = CC;
   2324   }
   2325 
   2326   /// Get the CondCode that's to be used to test the result of the comparison
   2327   /// libcall against zero.
   2328   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   2329     return CmpLibcallCCs[Call];
   2330   }
   2331 
   2332   /// Set the CallingConv that should be used for the specified libcall.
   2333   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   2334     LibcallCallingConvs[Call] = CC;
   2335   }
   2336 
   2337   /// Get the CallingConv that should be used for the specified libcall.
   2338   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   2339     return LibcallCallingConvs[Call];
   2340   }
   2341 
   2342   /// Execute target specific actions to finalize target lowering.
   2343   /// This is used to set extra flags in MachineFrameInformation and freezing
   2344   /// the set of reserved registers.
   2345   /// The default implementation just freezes the set of reserved registers.
   2346   virtual void finalizeLowering(MachineFunction &MF) const;
   2347 
   2348 private:
   2349   const TargetMachine &TM;
   2350 
   2351   /// Tells the code generator that the target has multiple (allocatable)
   2352   /// condition registers that can be used to store the results of comparisons
   2353   /// for use by selects and conditional branches. With multiple condition
   2354   /// registers, the code generator will not aggressively sink comparisons into
   2355   /// the blocks of their users.
   2356   bool HasMultipleConditionRegisters;
   2357 
   2358   /// Tells the code generator that the target has BitExtract instructions.
   2359   /// The code generator will aggressively sink "shift"s into the blocks of
   2360   /// their users if the users will generate "and" instructions which can be
   2361   /// combined with "shift" to BitExtract instructions.
   2362   bool HasExtractBitsInsn;
   2363 
   2364   /// Tells the code generator to bypass slow divide or remainder
   2365   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
   2366   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
   2367   /// div/rem when the operands are positive and less than 256.
   2368   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
   2369 
   2370   /// Tells the code generator that it shouldn't generate extra flow control
   2371   /// instructions and should attempt to combine flow control instructions via
   2372   /// predication.
   2373   bool JumpIsExpensive;
   2374 
   2375   /// Whether the target supports or cares about preserving floating point
   2376   /// exception behavior.
   2377   bool HasFloatingPointExceptions;
   2378 
   2379   /// This target prefers to use _setjmp to implement llvm.setjmp.
   2380   ///
   2381   /// Defaults to false.
   2382   bool UseUnderscoreSetJmp;
   2383 
   2384   /// This target prefers to use _longjmp to implement llvm.longjmp.
   2385   ///
   2386   /// Defaults to false.
   2387   bool UseUnderscoreLongJmp;
   2388 
   2389   /// Information about the contents of the high-bits in boolean values held in
   2390   /// a type wider than i1. See getBooleanContents.
   2391   BooleanContent BooleanContents;
   2392 
   2393   /// Information about the contents of the high-bits in boolean values held in
   2394   /// a type wider than i1. See getBooleanContents.
   2395   BooleanContent BooleanFloatContents;
   2396 
   2397   /// Information about the contents of the high-bits in boolean vector values
   2398   /// when the element type is wider than i1. See getBooleanContents.
   2399   BooleanContent BooleanVectorContents;
   2400 
   2401   /// The target scheduling preference: shortest possible total cycles or lowest
   2402   /// register usage.
   2403   Sched::Preference SchedPreferenceInfo;
   2404 
   2405   /// The size, in bytes, of the target's jmp_buf buffers
   2406   unsigned JumpBufSize;
   2407 
   2408   /// The alignment, in bytes, of the target's jmp_buf buffers
   2409   unsigned JumpBufAlignment;
   2410 
   2411   /// The minimum alignment that any argument on the stack needs to have.
   2412   unsigned MinStackArgumentAlignment;
   2413 
   2414   /// The minimum function alignment (used when optimizing for size, and to
   2415   /// prevent explicitly provided alignment from leading to incorrect code).
   2416   unsigned MinFunctionAlignment;
   2417 
   2418   /// The preferred function alignment (used when alignment unspecified and
   2419   /// optimizing for speed).
   2420   unsigned PrefFunctionAlignment;
   2421 
   2422   /// The preferred loop alignment.
   2423   unsigned PrefLoopAlignment;
   2424 
   2425   /// Size in bits of the maximum atomics size the backend supports.
   2426   /// Accesses larger than this will be expanded by AtomicExpandPass.
   2427   unsigned MaxAtomicSizeInBitsSupported;
   2428 
   2429   /// Size in bits of the minimum cmpxchg or ll/sc operation the
   2430   /// backend supports.
   2431   unsigned MinCmpXchgSizeInBits;
   2432 
   2433   /// This indicates if the target supports unaligned atomic operations.
   2434   bool SupportsUnalignedAtomics;
   2435 
   2436   /// If set to a physical register, this specifies the register that
   2437   /// llvm.savestack/llvm.restorestack should save and restore.
   2438   unsigned StackPointerRegisterToSaveRestore;
   2439 
   2440   /// This indicates the default register class to use for each ValueType the
   2441   /// target supports natively.
   2442   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   2443   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   2444   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   2445 
   2446   /// This indicates the "representative" register class to use for each
   2447   /// ValueType the target supports natively. This information is used by the
   2448   /// scheduler to track register pressure. By default, the representative
   2449   /// register class is the largest legal super-reg register class of the
   2450   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
   2451   /// representative class would be GR32.
   2452   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   2453 
   2454   /// This indicates the "cost" of the "representative" register class for each
   2455   /// ValueType. The cost is used by the scheduler to approximate register
   2456   /// pressure.
   2457   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   2458 
   2459   /// For any value types we are promoting or expanding, this contains the value
   2460   /// type that we are changing to.  For Expanded types, this contains one step
   2461   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
   2462   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
   2463   /// the same type (e.g. i32 -> i32).
   2464   MVT TransformToType[MVT::LAST_VALUETYPE];
   2465 
   2466   /// For each operation and each value type, keep a LegalizeAction that
   2467   /// indicates how instruction selection should deal with the operation.  Most
   2468   /// operations are Legal (aka, supported natively by the target), but
   2469   /// operations that are not should be described.  Note that operations on
   2470   /// non-legal value types are not described here.
   2471   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   2472 
   2473   /// For each load extension type and each value type, keep a LegalizeAction
   2474   /// that indicates how instruction selection should deal with a load of a
   2475   /// specific value type and extension type. Uses 4-bits to store the action
   2476   /// for each of the 4 load ext types.
   2477   uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   2478 
   2479   /// For each value type pair keep a LegalizeAction that indicates whether a
   2480   /// truncating store of a specific value type and truncating type is legal.
   2481   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   2482 
   2483   /// For each indexed mode and each value type, keep a pair of LegalizeAction
   2484   /// that indicates how instruction selection should deal with the load /
   2485   /// store.
   2486   ///
   2487   /// The first dimension is the value_type for the reference. The second
   2488   /// dimension represents the various modes for load store.
   2489   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   2490 
   2491   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
   2492   /// indicates how instruction selection should deal with the condition code.
   2493   ///
   2494   /// Because each CC action takes up 4 bits, we need to have the array size be
   2495   /// large enough to fit all of the value types. This can be done by rounding
   2496   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
   2497   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
   2498 
   2499 protected:
   2500   ValueTypeActionImpl ValueTypeActions;
   2501 
   2502 private:
   2503   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
   2504 
   2505   /// Targets can specify ISD nodes that they would like PerformDAGCombine
   2506   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
   2507   /// array.
   2508   unsigned char
   2509   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   2510 
   2511   /// For operations that must be promoted to a specific type, this holds the
   2512   /// destination type.  This map should be sparse, so don't hold it as an
   2513   /// array.
   2514   ///
   2515   /// Targets add entries to this map with AddPromotedToType(..), clients access
   2516   /// this with getTypeToPromoteTo(..).
   2517   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   2518     PromoteToType;
   2519 
   2520   /// Stores the name each libcall.
   2521   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
   2522 
   2523   /// The ISD::CondCode that should be used to test the result of each of the
   2524   /// comparison libcall against zero.
   2525   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   2526 
   2527   /// Stores the CallingConv that should be used for each libcall.
   2528   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   2529 
   2530   /// Set default libcall names and calling conventions.
   2531   void InitLibcalls(const Triple &TT);
   2532 
   2533 protected:
   2534   /// Return true if the extension represented by \p I is free.
   2535   /// \pre \p I is a sign, zero, or fp extension and
   2536   ///      is[Z|FP]ExtFree of the related types is not true.
   2537   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
   2538 
   2539   /// Depth that GatherAllAliases should should continue looking for chain
   2540   /// dependencies when trying to find a more preferable chain. As an
   2541   /// approximation, this should be more than the number of consecutive stores
   2542   /// expected to be merged.
   2543   unsigned GatherAllAliasesMaxDepth;
   2544 
   2545   /// Specify maximum number of store instructions per memset call.
   2546   ///
   2547   /// When lowering \@llvm.memset this field specifies the maximum number of
   2548   /// store operations that may be substituted for the call to memset. Targets
   2549   /// must set this value based on the cost threshold for that target. Targets
   2550   /// should assume that the memset will be done using as many of the largest
   2551   /// store operations first, followed by smaller ones, if necessary, per
   2552   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   2553   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   2554   /// store.  This only applies to setting a constant array of a constant size.
   2555   unsigned MaxStoresPerMemset;
   2556 
   2557   /// Maximum number of stores operations that may be substituted for the call
   2558   /// to memset, used for functions with OptSize attribute.
   2559   unsigned MaxStoresPerMemsetOptSize;
   2560 
   2561   /// Specify maximum bytes of store instructions per memcpy call.
   2562   ///
   2563   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   2564   /// store operations that may be substituted for a call to memcpy. Targets
   2565   /// must set this value based on the cost threshold for that target. Targets
   2566   /// should assume that the memcpy will be done using as many of the largest
   2567   /// store operations first, followed by smaller ones, if necessary, per
   2568   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   2569   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   2570   /// and one 1-byte store. This only applies to copying a constant array of
   2571   /// constant size.
   2572   unsigned MaxStoresPerMemcpy;
   2573 
   2574 
   2575   /// \brief Specify max number of store instructions to glue in inlined memcpy.
   2576   ///
   2577   /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
   2578   /// of store instructions to keep together. This helps in pairing and
   2579   //  vectorization later on.
   2580   unsigned MaxGluedStoresPerMemcpy = 0;
   2581 
   2582   /// Maximum number of store operations that may be substituted for a call to
   2583   /// memcpy, used for functions with OptSize attribute.
   2584   unsigned MaxStoresPerMemcpyOptSize;
   2585   unsigned MaxLoadsPerMemcmp;
   2586   unsigned MaxLoadsPerMemcmpOptSize;
   2587 
   2588   /// Specify maximum bytes of store instructions per memmove call.
   2589   ///
   2590   /// When lowering \@llvm.memmove this field specifies the maximum number of
   2591   /// store instructions that may be substituted for a call to memmove. Targets
   2592   /// must set this value based on the cost threshold for that target. Targets
   2593   /// should assume that the memmove will be done using as many of the largest
   2594   /// store operations first, followed by smaller ones, if necessary, per
   2595   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   2596   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   2597   /// applies to copying a constant array of constant size.
   2598   unsigned MaxStoresPerMemmove;
   2599 
   2600   /// Maximum number of store instructions that may be substituted for a call to
   2601   /// memmove, used for functions with OptSize attribute.
   2602   unsigned MaxStoresPerMemmoveOptSize;
   2603 
   2604   /// Tells the code generator that select is more expensive than a branch if
   2605   /// the branch is usually predicted right.
   2606   bool PredictableSelectIsExpensive;
   2607 
   2608   /// \see enableExtLdPromotion.
   2609   bool EnableExtLdPromotion;
   2610 
   2611   /// Return true if the value types that can be represented by the specified
   2612   /// register class are all legal.
   2613   bool isLegalRC(const TargetRegisterInfo &TRI,
   2614                  const TargetRegisterClass &RC) const;
   2615 
   2616   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   2617   /// sequence of memory operands that is recognized by PrologEpilogInserter.
   2618   MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
   2619                                     MachineBasicBlock *MBB) const;
   2620 
   2621   /// Replace/modify the XRay custom event operands with target-dependent
   2622   /// details.
   2623   MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
   2624                                          MachineBasicBlock *MBB) const;
   2625 
   2626   /// Replace/modify the XRay typed event operands with target-dependent
   2627   /// details.
   2628   MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
   2629                                         MachineBasicBlock *MBB) const;
   2630 };
   2631 
   2632 /// This class defines information used to lower LLVM code to legal SelectionDAG
   2633 /// operators that the target instruction selector can accept natively.
   2634 ///
   2635 /// This class also defines callbacks that targets must implement to lower
   2636 /// target-specific constructs to SelectionDAG operators.
   2637 class TargetLowering : public TargetLoweringBase {
   2638 public:
   2639   struct DAGCombinerInfo;
   2640 
   2641   TargetLowering(const TargetLowering &) = delete;
   2642   TargetLowering &operator=(const TargetLowering &) = delete;
   2643 
   2644   /// NOTE: The TargetMachine owns TLOF.
   2645   explicit TargetLowering(const TargetMachine &TM);
   2646 
   2647   bool isPositionIndependent() const;
   2648 
   2649   virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
   2650                                           FunctionLoweringInfo *FLI,
   2651                                           DivergenceAnalysis *DA) const {
   2652     return false;
   2653   }
   2654 
   2655   virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
   2656     return false;
   2657   }
   2658 
   2659   /// Returns true by value, base pointer and offset pointer and addressing mode
   2660   /// by reference if the node's address can be legally represented as
   2661   /// pre-indexed load / store address.
   2662   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
   2663                                          SDValue &/*Offset*/,
   2664                                          ISD::MemIndexedMode &/*AM*/,
   2665                                          SelectionDAG &/*DAG*/) const {
   2666     return false;
   2667   }
   2668 
   2669   /// Returns true by value, base pointer and offset pointer and addressing mode
   2670   /// by reference if this node can be combined with a load / store to form a
   2671   /// post-indexed load / store.
   2672   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
   2673                                           SDValue &/*Base*/,
   2674                                           SDValue &/*Offset*/,
   2675                                           ISD::MemIndexedMode &/*AM*/,
   2676                                           SelectionDAG &/*DAG*/) const {
   2677     return false;
   2678   }
   2679 
   2680   /// Return the entry encoding for a jump table in the current function.  The
   2681   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
   2682   virtual unsigned getJumpTableEncoding() const;
   2683 
   2684   virtual const MCExpr *
   2685   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
   2686                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
   2687                             MCContext &/*Ctx*/) const {
   2688     llvm_unreachable("Need to implement this hook if target has custom JTIs");
   2689   }
   2690 
   2691   /// Returns relocation base for the given PIC jumptable.
   2692   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
   2693                                            SelectionDAG &DAG) const;
   2694 
   2695   /// This returns the relocation base for the given PIC jumptable, the same as
   2696   /// getPICJumpTableRelocBase, but as an MCExpr.
   2697   virtual const MCExpr *
   2698   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   2699                                unsigned JTI, MCContext &Ctx) const;
   2700 
   2701   /// Return true if folding a constant offset with the given GlobalAddress is
   2702   /// legal.  It is frequently not legal in PIC relocation models.
   2703   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
   2704 
   2705   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
   2706                             SDValue &Chain) const;
   2707 
   2708   void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
   2709                            SDValue &NewRHS, ISD::CondCode &CCCode,
   2710                            const SDLoc &DL) const;
   2711 
   2712   /// Returns a pair of (return value, chain).
   2713   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
   2714   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
   2715                                           EVT RetVT, ArrayRef<SDValue> Ops,
   2716                                           bool isSigned, const SDLoc &dl,
   2717                                           bool doesNotReturn = false,
   2718                                           bool isReturnValueUsed = true) const;
   2719 
   2720   /// Check whether parameters to a call that are passed in callee saved
   2721   /// registers are the same as from the calling function.  This needs to be
   2722   /// checked for tail call eligibility.
   2723   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
   2724       const uint32_t *CallerPreservedMask,
   2725       const SmallVectorImpl<CCValAssign> &ArgLocs,
   2726       const SmallVectorImpl<SDValue> &OutVals) const;
   2727 
   2728   //===--------------------------------------------------------------------===//
   2729   // TargetLowering Optimization Methods
   2730   //
   2731 
   2732   /// A convenience struct that encapsulates a DAG, and two SDValues for
   2733   /// returning information from TargetLowering to its clients that want to
   2734   /// combine.
   2735   struct TargetLoweringOpt {
   2736     SelectionDAG &DAG;
   2737     bool LegalTys;
   2738     bool LegalOps;
   2739     SDValue Old;
   2740     SDValue New;
   2741 
   2742     explicit TargetLoweringOpt(SelectionDAG &InDAG,
   2743                                bool LT, bool LO) :
   2744       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
   2745 
   2746     bool LegalTypes() const { return LegalTys; }
   2747     bool LegalOperations() const { return LegalOps; }
   2748 
   2749     bool CombineTo(SDValue O, SDValue N) {
   2750       Old = O;
   2751       New = N;
   2752       return true;
   2753     }
   2754   };
   2755 
   2756   /// Check to see if the specified operand of the specified instruction is a
   2757   /// constant integer.  If so, check to see if there are any bits set in the
   2758   /// constant that are not demanded.  If so, shrink the constant and return
   2759   /// true.
   2760   bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
   2761                               TargetLoweringOpt &TLO) const;
   2762 
   2763   // Target hook to do target-specific const optimization, which is called by
   2764   // ShrinkDemandedConstant. This function should return true if the target
   2765   // doesn't want ShrinkDemandedConstant to further optimize the constant.
   2766   virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
   2767                                             TargetLoweringOpt &TLO) const {
   2768     return false;
   2769   }
   2770 
   2771   /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
   2772   /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
   2773   /// generalized for targets with other types of implicit widening casts.
   2774   bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
   2775                         TargetLoweringOpt &TLO) const;
   2776 
   2777   /// Helper for SimplifyDemandedBits that can simplify an operation with
   2778   /// multiple uses.  This function simplifies operand \p OpIdx of \p User and
   2779   /// then updates \p User with the simplified version. No other uses of
   2780   /// \p OpIdx are updated. If \p User is the only user of \p OpIdx, this
   2781   /// function behaves exactly like function SimplifyDemandedBits declared
   2782   /// below except that it also updates the DAG by calling
   2783   /// DCI.CommitTargetLoweringOpt.
   2784   bool SimplifyDemandedBits(SDNode *User, unsigned OpIdx, const APInt &Demanded,
   2785                             DAGCombinerInfo &DCI, TargetLoweringOpt &TLO) const;
   2786 
   2787   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
   2788   /// result of Op are ever used downstream.  If we can use this information to
   2789   /// simplify Op, create a new simplified DAG node and return true, returning
   2790   /// the original and new nodes in Old and New.  Otherwise, analyze the
   2791   /// expression and return a mask of KnownOne and KnownZero bits for the
   2792   /// expression (used to simplify the caller).  The KnownZero/One bits may only
   2793   /// be accurate for those bits in the DemandedMask.
   2794   /// \p AssumeSingleUse When this parameter is true, this function will
   2795   ///    attempt to simplify \p Op even if there are multiple uses.
   2796   ///    Callers are responsible for correctly updating the DAG based on the
   2797   ///    results of this function, because simply replacing replacing TLO.Old
   2798   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
   2799   ///    has multiple uses.
   2800   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   2801                             KnownBits &Known,
   2802                             TargetLoweringOpt &TLO,
   2803                             unsigned Depth = 0,
   2804                             bool AssumeSingleUse = false) const;
   2805 
   2806   /// Helper wrapper around SimplifyDemandedBits
   2807   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   2808                             DAGCombinerInfo &DCI) const;
   2809 
   2810   /// Look at Vector Op. At this point, we know that only the DemandedElts
   2811   /// elements of the result of Op are ever used downstream.  If we can use
   2812   /// this information to simplify Op, create a new simplified DAG node and
   2813   /// return true, storing the original and new nodes in TLO.
   2814   /// Otherwise, analyze the expression and return a mask of KnownUndef and
   2815   /// KnownZero elements for the expression (used to simplify the caller).
   2816   /// The KnownUndef/Zero elements may only be accurate for those bits
   2817   /// in the DemandedMask.
   2818   /// \p AssumeSingleUse When this parameter is true, this function will
   2819   ///    attempt to simplify \p Op even if there are multiple uses.
   2820   ///    Callers are responsible for correctly updating the DAG based on the
   2821   ///    results of this function, because simply replacing replacing TLO.Old
   2822   ///    with TLO.New will be incorrect when this parameter is true and TLO.Old
   2823   ///    has multiple uses.
   2824   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
   2825                                   APInt &KnownUndef, APInt &KnownZero,
   2826                                   TargetLoweringOpt &TLO, unsigned Depth = 0,
   2827                                   bool AssumeSingleUse = false) const;
   2828 
   2829   /// Helper wrapper around SimplifyDemandedVectorElts
   2830   bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
   2831                                   APInt &KnownUndef, APInt &KnownZero,
   2832                                   DAGCombinerInfo &DCI) const;
   2833 
   2834   /// Determine which of the bits specified in Mask are known to be either zero
   2835   /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
   2836   /// argument allows us to only collect the known bits that are shared by the
   2837   /// requested vector elements.
   2838   virtual void computeKnownBitsForTargetNode(const SDValue Op,
   2839                                              KnownBits &Known,
   2840                                              const APInt &DemandedElts,
   2841                                              const SelectionDAG &DAG,
   2842                                              unsigned Depth = 0) const;
   2843 
   2844   /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
   2845   /// Default implementation computes low bits based on alignment
   2846   /// information. This should preserve known bits passed into it.
   2847   virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
   2848                                              KnownBits &Known,
   2849                                              const APInt &DemandedElts,
   2850                                              const SelectionDAG &DAG,
   2851                                              unsigned Depth = 0) const;
   2852 
   2853   /// This method can be implemented by targets that want to expose additional
   2854   /// information about sign bits to the DAG Combiner. The DemandedElts
   2855   /// argument allows us to only collect the minimum sign bits that are shared
   2856   /// by the requested vector elements.
   2857   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
   2858                                                    const APInt &DemandedElts,
   2859                                                    const SelectionDAG &DAG,
   2860                                                    unsigned Depth = 0) const;
   2861 
   2862   /// Attempt to simplify any target nodes based on the demanded vector
   2863   /// elements, returning true on success. Otherwise, analyze the expression and
   2864   /// return a mask of KnownUndef and KnownZero elements for the expression
   2865   /// (used to simplify the caller). The KnownUndef/Zero elements may only be
   2866   /// accurate for those bits in the DemandedMask
   2867   virtual bool SimplifyDemandedVectorEltsForTargetNode(
   2868       SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
   2869       APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
   2870 
   2871   struct DAGCombinerInfo {
   2872     void *DC;  // The DAG Combiner object.
   2873     CombineLevel Level;
   2874     bool CalledByLegalizer;
   2875 
   2876   public:
   2877     SelectionDAG &DAG;
   2878 
   2879     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
   2880       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
   2881 
   2882     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
   2883     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
   2884     bool isAfterLegalizeDAG() const {
   2885       return Level == AfterLegalizeDAG;
   2886     }
   2887     CombineLevel getDAGCombineLevel() { return Level; }
   2888     bool isCalledByLegalizer() const { return CalledByLegalizer; }
   2889 
   2890     void AddToWorklist(SDNode *N);
   2891     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
   2892     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
   2893     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
   2894 
   2895     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
   2896   };
   2897 
   2898   /// Return if the N is a constant or constant vector equal to the true value
   2899   /// from getBooleanContents().
   2900   bool isConstTrueVal(const SDNode *N) const;
   2901 
   2902   /// Return if the N is a constant or constant vector equal to the false value
   2903   /// from getBooleanContents().
   2904   bool isConstFalseVal(const SDNode *N) const;
   2905 
   2906   /// Return if \p N is a True value when extended to \p VT.
   2907   bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
   2908 
   2909   /// Try to simplify a setcc built with the specified operands and cc. If it is
   2910   /// unable to simplify it, return a null SDValue.
   2911   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
   2912                         bool foldBooleans, DAGCombinerInfo &DCI,
   2913                         const SDLoc &dl) const;
   2914 
   2915   // For targets which wrap address, unwrap for analysis.
   2916   virtual SDValue unwrapAddress(SDValue N) const { return N; }
   2917 
   2918   /// Returns true (and the GlobalValue and the offset) if the node is a
   2919   /// GlobalAddress + offset.
   2920   virtual bool
   2921   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
   2922 
   2923   /// This method will be invoked for all target nodes and for any
   2924   /// target-independent nodes that the target has registered with invoke it
   2925   /// for.
   2926   ///
   2927   /// The semantics are as follows:
   2928   /// Return Value:
   2929   ///   SDValue.Val == 0   - No change was made
   2930   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
   2931   ///   otherwise          - N should be replaced by the returned Operand.
   2932   ///
   2933   /// In addition, methods provided by DAGCombinerInfo may be used to perform
   2934   /// more complex transformations.
   2935   ///
   2936   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
   2937 
   2938   /// Return true if it is profitable to move a following shift through this
   2939   //  node, adjusting any immediate operands as necessary to preserve semantics.
   2940   //  This transformation may not be desirable if it disrupts a particularly
   2941   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
   2942   //  By default, it returns true.
   2943   virtual bool isDesirableToCommuteWithShift(const SDNode *N) const {
   2944     return true;
   2945   }
   2946 
   2947   // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
   2948   // to a shuffle and a truncate.
   2949   // Example of such a combine:
   2950   // v4i32 build_vector((extract_elt V, 1),
   2951   //                    (extract_elt V, 3),
   2952   //                    (extract_elt V, 5),
   2953   //                    (extract_elt V, 7))
   2954   //  -->
   2955   // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
   2956   virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
   2957       ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
   2958     return false;
   2959   }
   2960 
   2961   /// Return true if the target has native support for the specified value type
   2962   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
   2963   /// i16 is legal, but undesirable since i16 instruction encodings are longer
   2964   /// and some i16 instructions are slow.
   2965   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
   2966     // By default, assume all legal types are desirable.
   2967     return isTypeLegal(VT);
   2968   }
   2969 
   2970   /// Return true if it is profitable for dag combiner to transform a floating
   2971   /// point op of specified opcode to a equivalent op of an integer
   2972   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
   2973   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
   2974                                                  EVT /*VT*/) const {
   2975     return false;
   2976   }
   2977 
   2978   /// This method query the target whether it is beneficial for dag combiner to
   2979   /// promote the specified node. If true, it should return the desired
   2980   /// promotion type by reference.
   2981   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
   2982     return false;
   2983   }
   2984 
   2985   /// Return true if the target supports swifterror attribute. It optimizes
   2986   /// loads and stores to reading and writing a specific register.
   2987   virtual bool supportSwiftError() const {
   2988     return false;
   2989   }
   2990 
   2991   /// Return true if the target supports that a subset of CSRs for the given
   2992   /// machine function is handled explicitly via copies.
   2993   virtual bool supportSplitCSR(MachineFunction *MF) const {
   2994     return false;
   2995   }
   2996 
   2997   /// Perform necessary initialization to handle a subset of CSRs explicitly
   2998   /// via copies. This function is called at the beginning of instruction
   2999   /// selection.
   3000   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
   3001     llvm_unreachable("Not Implemented");
   3002   }
   3003 
   3004   /// Insert explicit copies in entry and exit blocks. We copy a subset of
   3005   /// CSRs to virtual registers in the entry block, and copy them back to
   3006   /// physical registers in the exit blocks. This function is called at the end
   3007   /// of instruction selection.
   3008   virtual void insertCopiesSplitCSR(
   3009       MachineBasicBlock *Entry,
   3010       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   3011     llvm_unreachable("Not Implemented");
   3012   }
   3013 
   3014   //===--------------------------------------------------------------------===//
   3015   // Lowering methods - These methods must be implemented by targets so that
   3016   // the SelectionDAGBuilder code knows how to lower these.
   3017   //
   3018 
   3019   /// This hook must be implemented to lower the incoming (formal) arguments,
   3020   /// described by the Ins array, into the specified DAG. The implementation
   3021   /// should fill in the InVals array with legal-type argument values, and
   3022   /// return the resulting token chain value.
   3023   virtual SDValue LowerFormalArguments(
   3024       SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
   3025       const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
   3026       SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
   3027     llvm_unreachable("Not Implemented");
   3028   }
   3029 
   3030   /// This structure contains all information that is necessary for lowering
   3031   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
   3032   /// needs to lower a call, and targets will see this struct in their LowerCall
   3033   /// implementation.
   3034   struct CallLoweringInfo {
   3035     SDValue Chain;
   3036     Type *RetTy = nullptr;
   3037     bool RetSExt           : 1;
   3038     bool RetZExt           : 1;
   3039     bool IsVarArg          : 1;
   3040     bool IsInReg           : 1;
   3041     bool DoesNotReturn     : 1;
   3042     bool IsReturnValueUsed : 1;
   3043     bool IsConvergent      : 1;
   3044     bool IsPatchPoint      : 1;
   3045 
   3046     // IsTailCall should be modified by implementations of
   3047     // TargetLowering::LowerCall that perform tail call conversions.
   3048     bool IsTailCall = false;
   3049 
   3050     // Is Call lowering done post SelectionDAG type legalization.
   3051     bool IsPostTypeLegalization = false;
   3052 
   3053     unsigned NumFixedArgs = -1;
   3054     CallingConv::ID CallConv = CallingConv::C;
   3055     SDValue Callee;
   3056     ArgListTy Args;
   3057     SelectionDAG &DAG;
   3058     SDLoc DL;
   3059     ImmutableCallSite CS;
   3060     SmallVector<ISD::OutputArg, 32> Outs;
   3061     SmallVector<SDValue, 32> OutVals;
   3062     SmallVector<ISD::InputArg, 32> Ins;
   3063     SmallVector<SDValue, 4> InVals;
   3064 
   3065     CallLoweringInfo(SelectionDAG &DAG)
   3066         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
   3067           DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
   3068           IsPatchPoint(false), DAG(DAG) {}
   3069 
   3070     CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
   3071       DL = dl;
   3072       return *this;
   3073     }
   3074 
   3075     CallLoweringInfo &setChain(SDValue InChain) {
   3076       Chain = InChain;
   3077       return *this;
   3078     }
   3079 
   3080     // setCallee with target/module-specific attributes
   3081     CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
   3082                                    SDValue Target, ArgListTy &&ArgsList) {
   3083       RetTy = ResultType;
   3084       Callee = Target;
   3085       CallConv = CC;
   3086       NumFixedArgs = ArgsList.size();
   3087       Args = std::move(ArgsList);
   3088 
   3089       DAG.getTargetLoweringInfo().markLibCallAttributes(
   3090           &(DAG.getMachineFunction()), CC, Args);
   3091       return *this;
   3092     }
   3093 
   3094     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
   3095                                 SDValue Target, ArgListTy &&ArgsList) {
   3096       RetTy = ResultType;
   3097       Callee = Target;
   3098       CallConv = CC;
   3099       NumFixedArgs = ArgsList.size();
   3100       Args = std::move(ArgsList);
   3101       return *this;
   3102     }
   3103 
   3104     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
   3105                                 SDValue Target, ArgListTy &&ArgsList,
   3106                                 ImmutableCallSite Call) {
   3107       RetTy = ResultType;
   3108 
   3109       IsInReg = Call.hasRetAttr(Attribute::InReg);
   3110       DoesNotReturn =
   3111           Call.doesNotReturn() ||
   3112           (!Call.isInvoke() &&
   3113            isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
   3114       IsVarArg = FTy->isVarArg();
   3115       IsReturnValueUsed = !Call.getInstruction()->use_empty();
   3116       RetSExt = Call.hasRetAttr(Attribute::SExt);
   3117       RetZExt = Call.hasRetAttr(Attribute::ZExt);
   3118 
   3119       Callee = Target;
   3120 
   3121       CallConv = Call.getCallingConv();
   3122       NumFixedArgs = FTy->getNumParams();
   3123       Args = std::move(ArgsList);
   3124 
   3125       CS = Call;
   3126 
   3127       return *this;
   3128     }
   3129 
   3130     CallLoweringInfo &setInRegister(bool Value = true) {
   3131       IsInReg = Value;
   3132       return *this;
   3133     }
   3134 
   3135     CallLoweringInfo &setNoReturn(bool Value = true) {
   3136       DoesNotReturn = Value;
   3137       return *this;
   3138     }
   3139 
   3140     CallLoweringInfo &setVarArg(bool Value = true) {
   3141       IsVarArg = Value;
   3142       return *this;
   3143     }
   3144 
   3145     CallLoweringInfo &setTailCall(bool Value = true) {
   3146       IsTailCall = Value;
   3147       return *this;
   3148     }
   3149 
   3150     CallLoweringInfo &setDiscardResult(bool Value = true) {
   3151       IsReturnValueUsed = !Value;
   3152       return *this;
   3153     }
   3154 
   3155     CallLoweringInfo &setConvergent(bool Value = true) {
   3156       IsConvergent = Value;
   3157       return *this;
   3158     }
   3159 
   3160     CallLoweringInfo &setSExtResult(bool Value = true) {
   3161       RetSExt = Value;
   3162       return *this;
   3163     }
   3164 
   3165     CallLoweringInfo &setZExtResult(bool Value = true) {
   3166       RetZExt = Value;
   3167       return *this;
   3168     }
   3169 
   3170     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
   3171       IsPatchPoint = Value;
   3172       return *this;
   3173     }
   3174 
   3175     CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
   3176       IsPostTypeLegalization = Value;
   3177       return *this;
   3178     }
   3179 
   3180     ArgListTy &getArgs() {
   3181       return Args;
   3182     }
   3183   };
   3184 
   3185   /// This function lowers an abstract call to a function into an actual call.
   3186   /// This returns a pair of operands.  The first element is the return value
   3187   /// for the function (if RetTy is not VoidTy).  The second element is the
   3188   /// outgoing token chain. It calls LowerCall to do the actual lowering.
   3189   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   3190 
   3191   /// This hook must be implemented to lower calls into the specified
   3192   /// DAG. The outgoing arguments to the call are described by the Outs array,
   3193   /// and the values to be returned by the call are described by the Ins
   3194   /// array. The implementation should fill in the InVals array with legal-type
   3195   /// return values from the call, and return the resulting token chain value.
   3196   virtual SDValue
   3197     LowerCall(CallLoweringInfo &/*CLI*/,
   3198               SmallVectorImpl<SDValue> &/*InVals*/) const {
   3199     llvm_unreachable("Not Implemented");
   3200   }
   3201 
   3202   /// Target-specific cleanup for formal ByVal parameters.
   3203   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
   3204 
   3205   /// This hook should be implemented to check whether the return values
   3206   /// described by the Outs array can fit into the return registers.  If false
   3207   /// is returned, an sret-demotion is performed.
   3208   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   3209                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   3210                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   3211                LLVMContext &/*Context*/) const
   3212   {
   3213     // Return true by default to get preexisting behavior.
   3214     return true;
   3215   }
   3216 
   3217   /// This hook must be implemented to lower outgoing return values, described
   3218   /// by the Outs array, into the specified DAG. The implementation should
   3219   /// return the resulting token chain value.
   3220   virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   3221                               bool /*isVarArg*/,
   3222                               const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
   3223                               const SmallVectorImpl<SDValue> & /*OutVals*/,
   3224                               const SDLoc & /*dl*/,
   3225                               SelectionDAG & /*DAG*/) const {
   3226     llvm_unreachable("Not Implemented");
   3227   }
   3228 
   3229   /// Return true if result of the specified node is used by a return node
   3230   /// only. It also compute and return the input chain for the tail call.
   3231   ///
   3232   /// This is used to determine whether it is possible to codegen a libcall as
   3233   /// tail call at legalization time.
   3234   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
   3235     return false;
   3236   }
   3237 
   3238   /// Return true if the target may be able emit the call instruction as a tail
   3239   /// call. This is used by optimization passes to determine if it's profitable
   3240   /// to duplicate return instructions to enable tailcall optimization.
   3241   virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
   3242     return false;
   3243   }
   3244 
   3245   /// Return the builtin name for the __builtin___clear_cache intrinsic
   3246   /// Default is to invoke the clear cache library call
   3247   virtual const char * getClearCacheBuiltinName() const {
   3248     return "__clear_cache";
   3249   }
   3250 
   3251   /// Return the register ID of the name passed in. Used by named register
   3252   /// global variables extension. There is no target-independent behaviour
   3253   /// so the default action is to bail.
   3254   virtual unsigned getRegisterByName(const char* RegName, EVT VT,
   3255                                      SelectionDAG &DAG) const {
   3256     report_fatal_error("Named registers not implemented for this target");
   3257   }
   3258 
   3259   /// Return the type that should be used to zero or sign extend a
   3260   /// zeroext/signext integer return value.  FIXME: Some C calling conventions
   3261   /// require the return type to be promoted, but this is not true all the time,
   3262   /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
   3263   /// conventions. The frontend should handle this and include all of the
   3264   /// necessary information.
   3265   virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
   3266                                        ISD::NodeType /*ExtendKind*/) const {
   3267     EVT MinVT = getRegisterType(Context, MVT::i32);
   3268     return VT.bitsLT(MinVT) ? MinVT : VT;
   3269   }
   3270 
   3271   /// For some targets, an LLVM struct type must be broken down into multiple
   3272   /// simple types, but the calling convention specifies that the entire struct
   3273   /// must be passed in a block of consecutive registers.
   3274   virtual bool
   3275   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
   3276                                             bool isVarArg) const {
   3277     return false;
   3278   }
   3279 
   3280   /// Returns a 0 terminated array of registers that can be safely used as
   3281   /// scratch registers.
   3282   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
   3283     return nullptr;
   3284   }
   3285 
   3286   /// This callback is used to prepare for a volatile or atomic load.
   3287   /// It takes a chain node as input and returns the chain for the load itself.
   3288   ///
   3289   /// Having a callback like this is necessary for targets like SystemZ,
   3290   /// which allows a CPU to reuse the result of a previous load indefinitely,
   3291   /// even if a cache-coherent store is performed by another CPU.  The default
   3292   /// implementation does nothing.
   3293   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
   3294                                               SelectionDAG &DAG) const {
   3295     return Chain;
   3296   }
   3297 
   3298   /// This callback is used to inspect load/store instructions and add
   3299   /// target-specific MachineMemOperand flags to them.  The default
   3300   /// implementation does nothing.
   3301   virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const {
   3302     return MachineMemOperand::MONone;
   3303   }
   3304 
   3305   /// This callback is invoked by the type legalizer to legalize nodes with an
   3306   /// illegal operand type but legal result types.  It replaces the
   3307   /// LowerOperation callback in the type Legalizer.  The reason we can not do
   3308   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
   3309   /// use this callback.
   3310   ///
   3311   /// TODO: Consider merging with ReplaceNodeResults.
   3312   ///
   3313   /// The target places new result values for the node in Results (their number
   3314   /// and types must exactly match those of the original return values of
   3315   /// the node), or leaves Results empty, which indicates that the node is not
   3316   /// to be custom lowered after all.
   3317   /// The default implementation calls LowerOperation.
   3318   virtual void LowerOperationWrapper(SDNode *N,
   3319                                      SmallVectorImpl<SDValue> &Results,
   3320                                      SelectionDAG &DAG) const;
   3321 
   3322   /// This callback is invoked for operations that are unsupported by the
   3323   /// target, which are registered to use 'custom' lowering, and whose defined
   3324   /// values are all legal.  If the target has no operations that require custom
   3325   /// lowering, it need not implement this.  The default implementation of this
   3326   /// aborts.
   3327   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   3328 
   3329   /// This callback is invoked when a node result type is illegal for the
   3330   /// target, and the operation was registered to use 'custom' lowering for that
   3331   /// result type.  The target places new result values for the node in Results
   3332   /// (their number and types must exactly match those of the original return
   3333   /// values of the node), or leaves Results empty, which indicates that the
   3334   /// node is not to be custom lowered after all.
   3335   ///
   3336   /// If the target has no operations that require custom lowering, it need not
   3337   /// implement this.  The default implementation aborts.
   3338   virtual void ReplaceNodeResults(SDNode * /*N*/,
   3339                                   SmallVectorImpl<SDValue> &/*Results*/,
   3340                                   SelectionDAG &/*DAG*/) const {
   3341     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   3342   }
   3343 
   3344   /// This method returns the name of a target specific DAG node.
   3345   virtual const char *getTargetNodeName(unsigned Opcode) const;
   3346 
   3347   /// This method returns a target specific FastISel object, or null if the
   3348   /// target does not support "fast" ISel.
   3349   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   3350                                    const TargetLibraryInfo *) const {
   3351     return nullptr;
   3352   }
   3353 
   3354   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
   3355                                              SelectionDAG &DAG) const;
   3356 
   3357   //===--------------------------------------------------------------------===//
   3358   // Inline Asm Support hooks
   3359   //
   3360 
   3361   /// This hook allows the target to expand an inline asm call to be explicit
   3362   /// llvm code if it wants to.  This is useful for turning simple inline asms
   3363   /// into LLVM intrinsics, which gives the compiler more information about the
   3364   /// behavior of the code.
   3365   virtual bool ExpandInlineAsm(CallInst *) const {
   3366     return false;
   3367   }
   3368 
   3369   enum ConstraintType {
   3370     C_Register,            // Constraint represents specific register(s).
   3371     C_RegisterClass,       // Constraint represents any of register(s) in class.
   3372     C_Memory,              // Memory constraint.
   3373     C_Other,               // Something else.
   3374     C_Unknown              // Unsupported constraint.
   3375   };
   3376 
   3377   enum ConstraintWeight {
   3378     // Generic weights.
   3379     CW_Invalid  = -1,     // No match.
   3380     CW_Okay     = 0,      // Acceptable.
   3381     CW_Good     = 1,      // Good weight.
   3382     CW_Better   = 2,      // Better weight.
   3383     CW_Best     = 3,      // Best weight.
   3384 
   3385     // Well-known weights.
   3386     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   3387     CW_Register     = CW_Good,    // Register operands.
   3388     CW_Memory       = CW_Better,  // Memory operands.
   3389     CW_Constant     = CW_Best,    // Constant operand.
   3390     CW_Default      = CW_Okay     // Default or don't know type.
   3391   };
   3392 
   3393   /// This contains information for each constraint that we are lowering.
   3394   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   3395     /// This contains the actual string for the code, like "m".  TargetLowering
   3396     /// picks the 'best' code from ConstraintInfo::Codes that most closely
   3397     /// matches the operand.
   3398     std::string ConstraintCode;
   3399 
   3400     /// Information about the constraint code, e.g. Register, RegisterClass,
   3401     /// Memory, Other, Unknown.
   3402     TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
   3403 
   3404     /// If this is the result output operand or a clobber, this is null,
   3405     /// otherwise it is the incoming operand to the CallInst.  This gets
   3406     /// modified as the asm is processed.
   3407     Value *CallOperandVal = nullptr;
   3408 
   3409     /// The ValueType for the operand value.
   3410     MVT ConstraintVT = MVT::Other;
   3411 
   3412     /// Copy constructor for copying from a ConstraintInfo.
   3413     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
   3414         : InlineAsm::ConstraintInfo(std::move(Info)) {}
   3415 
   3416     /// Return true of this is an input operand that is a matching constraint
   3417     /// like "4".
   3418     bool isMatchingInputConstraint() const;
   3419 
   3420     /// If this is an input matching constraint, this method returns the output
   3421     /// operand it matches.
   3422     unsigned getMatchedOperand() const;
   3423   };
   3424 
   3425   using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
   3426 
   3427   /// Split up the constraint string from the inline assembly value into the
   3428   /// specific constraints and their prefixes, and also tie in the associated
   3429   /// operand values.  If this returns an empty vector, and if the constraint
   3430   /// string itself isn't empty, there was an error parsing.
   3431   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
   3432                                                 const TargetRegisterInfo *TRI,
   3433                                                 ImmutableCallSite CS) const;
   3434 
   3435   /// Examine constraint type and operand type and determine a weight value.
   3436   /// The operand object must already have been set up with the operand type.
   3437   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   3438       AsmOperandInfo &info, int maIndex) const;
   3439 
   3440   /// Examine constraint string and operand type and determine a weight value.
   3441   /// The operand object must already have been set up with the operand type.
   3442   virtual ConstraintWeight getSingleConstraintMatchWeight(
   3443       AsmOperandInfo &info, const char *constraint) const;
   3444 
   3445   /// Determines the constraint code and constraint type to use for the specific
   3446   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   3447   /// If the actual operand being passed in is available, it can be passed in as
   3448   /// Op, otherwise an empty SDValue can be passed.
   3449   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   3450                                       SDValue Op,
   3451                                       SelectionDAG *DAG = nullptr) const;
   3452 
   3453   /// Given a constraint, return the type of constraint it is for this target.
   3454   virtual ConstraintType getConstraintType(StringRef Constraint) const;
   3455 
   3456   /// Given a physical register constraint (e.g.  {edx}), return the register
   3457   /// number and the register class for the register.
   3458   ///
   3459   /// Given a register class constraint, like 'r', if this corresponds directly
   3460   /// to an LLVM register class, return a register of 0 and the register class
   3461   /// pointer.
   3462   ///
   3463   /// This should only be used for C_Register constraints.  On error, this
   3464   /// returns a register number of 0 and a null register class pointer.
   3465   virtual std::pair<unsigned, const TargetRegisterClass *>
   3466   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   3467                                StringRef Constraint, MVT VT) const;
   3468 
   3469   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
   3470     if (ConstraintCode == "i")
   3471       return InlineAsm::Constraint_i;
   3472     else if (ConstraintCode == "m")
   3473       return InlineAsm::Constraint_m;
   3474     return InlineAsm::Constraint_Unknown;
   3475   }
   3476 
   3477   /// Try to replace an X constraint, which matches anything, with another that
   3478   /// has more specific requirements based on the type of the corresponding
   3479   /// operand.  This returns null if there is no replacement to make.
   3480   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   3481 
   3482   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
   3483   /// add anything to Ops.
   3484   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   3485                                             std::vector<SDValue> &Ops,
   3486                                             SelectionDAG &DAG) const;
   3487 
   3488   //===--------------------------------------------------------------------===//
   3489   // Div utility functions
   3490   //
   3491   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   3492                     bool IsAfterLegalization,
   3493                     SmallVectorImpl<SDNode *> &Created) const;
   3494   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   3495                     bool IsAfterLegalization,
   3496                     SmallVectorImpl<SDNode *> &Created) const;
   3497 
   3498   /// Targets may override this function to provide custom SDIV lowering for
   3499   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
   3500   /// assumes SDIV is expensive and replaces it with a series of other integer
   3501   /// operations.
   3502   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   3503                                 SelectionDAG &DAG,
   3504                                 SmallVectorImpl<SDNode *> &Created) const;
   3505 
   3506   /// Indicate whether this target prefers to combine FDIVs with the same
   3507   /// divisor. If the transform should never be done, return zero. If the
   3508   /// transform should be done, return the minimum number of divisor uses
   3509   /// that must exist.
   3510   virtual unsigned combineRepeatedFPDivisors() const {
   3511     return 0;
   3512   }
   3513 
   3514   /// Hooks for building estimates in place of slower divisions and square
   3515   /// roots.
   3516 
   3517   /// Return either a square root or its reciprocal estimate value for the input
   3518   /// operand.
   3519   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
   3520   /// 'Enabled' as set by a potential default override attribute.
   3521   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
   3522   /// refinement iterations required to generate a sufficient (though not
   3523   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
   3524   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
   3525   /// algorithm implementation that uses either one or two constants.
   3526   /// The boolean Reciprocal is used to select whether the estimate is for the
   3527   /// square root of the input operand or the reciprocal of its square root.
   3528   /// A target may choose to implement its own refinement within this function.
   3529   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   3530   /// any further refinement of the estimate.
   3531   /// An empty SDValue return means no estimate sequence can be created.
   3532   virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
   3533                                   int Enabled, int &RefinementSteps,
   3534                                   bool &UseOneConstNR, bool Reciprocal) const {
   3535     return SDValue();
   3536   }
   3537 
   3538   /// Return a reciprocal estimate value for the input operand.
   3539   /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
   3540   /// 'Enabled' as set by a potential default override attribute.
   3541   /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
   3542   /// refinement iterations required to generate a sufficient (though not
   3543   /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
   3544   /// A target may choose to implement its own refinement within this function.
   3545   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   3546   /// any further refinement of the estimate.
   3547   /// An empty SDValue return means no estimate sequence can be created.
   3548   virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
   3549                                    int Enabled, int &RefinementSteps) const {
   3550     return SDValue();
   3551   }
   3552 
   3553   //===--------------------------------------------------------------------===//
   3554   // Legalization utility functions
   3555   //
   3556 
   3557   /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
   3558   /// respectively, each computing an n/2-bit part of the result.
   3559   /// \param Result A vector that will be filled with the parts of the result
   3560   ///        in little-endian order.
   3561   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   3562   ///        if you want to control how low bits are extracted from the LHS.
   3563   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   3564   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   3565   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   3566   /// \returns true if the node has been expanded, false if it has not
   3567   bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
   3568                       SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
   3569                       SelectionDAG &DAG, MulExpansionKind Kind,
   3570                       SDValue LL = SDValue(), SDValue LH = SDValue(),
   3571                       SDValue RL = SDValue(), SDValue RH = SDValue()) const;
   3572 
   3573   /// Expand a MUL into two nodes.  One that computes the high bits of
   3574   /// the result and one that computes the low bits.
   3575   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
   3576   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   3577   ///        if you want to control how low bits are extracted from the LHS.
   3578   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   3579   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   3580   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   3581   /// \returns true if the node has been expanded. false if it has not
   3582   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   3583                  SelectionDAG &DAG, MulExpansionKind Kind,
   3584                  SDValue LL = SDValue(), SDValue LH = SDValue(),
   3585                  SDValue RL = SDValue(), SDValue RH = SDValue()) const;
   3586 
   3587   /// Expand float(f32) to SINT(i64) conversion
   3588   /// \param N Node to expand
   3589   /// \param Result output after conversion
   3590   /// \returns True, if the expansion was successful, false otherwise
   3591   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
   3592 
   3593   /// Turn load of vector type into a load of the individual elements.
   3594   /// \param LD load to expand
   3595   /// \returns MERGE_VALUEs of the scalar loads with their chains.
   3596   SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
   3597 
   3598   // Turn a store of a vector type into stores of the individual elements.
   3599   /// \param ST Store with a vector value type
   3600   /// \returns MERGE_VALUs of the individual store chains.
   3601   SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
   3602 
   3603   /// Expands an unaligned load to 2 half-size loads for an integer, and
   3604   /// possibly more for vectors.
   3605   std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
   3606                                                   SelectionDAG &DAG) const;
   3607 
   3608   /// Expands an unaligned store to 2 half-size stores for integer values, and
   3609   /// possibly more for vectors.
   3610   SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
   3611 
   3612   /// Increments memory address \p Addr according to the type of the value
   3613   /// \p DataVT that should be stored. If the data is stored in compressed
   3614   /// form, the memory address should be incremented according to the number of
   3615   /// the stored elements. This number is equal to the number of '1's bits
   3616   /// in the \p Mask.
   3617   /// \p DataVT is a vector type. \p Mask is a vector value.
   3618   /// \p DataVT and \p Mask have the same number of vector elements.
   3619   SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
   3620                                  EVT DataVT, SelectionDAG &DAG,
   3621                                  bool IsCompressedMemory) const;
   3622 
   3623   /// Get a pointer to vector element \p Idx located in memory for a vector of
   3624   /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
   3625   /// bounds the returned pointer is unspecified, but will be within the vector
   3626   /// bounds.
   3627   SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
   3628                                   SDValue Index) const;
   3629 
   3630   //===--------------------------------------------------------------------===//
   3631   // Instruction Emitting Hooks
   3632   //
   3633 
   3634   /// This method should be implemented by targets that mark instructions with
   3635   /// the 'usesCustomInserter' flag.  These instructions are special in various
   3636   /// ways, which require special support to insert.  The specified MachineInstr
   3637   /// is created but not inserted into any basic blocks, and this method is
   3638   /// called to expand it into a sequence of instructions, potentially also
   3639   /// creating new basic blocks and control flow.
   3640   /// As long as the returned basic block is different (i.e., we created a new
   3641   /// one), the custom inserter is free to modify the rest of \p MBB.
   3642   virtual MachineBasicBlock *
   3643   EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
   3644 
   3645   /// This method should be implemented by targets that mark instructions with
   3646   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
   3647   /// instruction selection by target hooks.  e.g. To fill in optional defs for
   3648   /// ARM 's' setting instructions.
   3649   virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
   3650                                              SDNode *Node) const;
   3651 
   3652   /// If this function returns true, SelectionDAGBuilder emits a
   3653   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
   3654   virtual bool useLoadStackGuardNode() const {
   3655     return false;
   3656   }
   3657 
   3658   virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
   3659                                       const SDLoc &DL) const {
   3660     llvm_unreachable("not implemented for this target");
   3661   }
   3662 
   3663   /// Lower TLS global address SDNode for target independent emulated TLS model.
   3664   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   3665                                           SelectionDAG &DAG) const;
   3666 
   3667   /// Expands target specific indirect branch for the case of JumpTable
   3668   /// expanasion.
   3669   virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
   3670                                          SelectionDAG &DAG) const {
   3671     return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
   3672   }
   3673 
   3674   // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
   3675   // If we're comparing for equality to zero and isCtlzFast is true, expose the
   3676   // fact that this can be implemented as a ctlz/srl pair, so that the dag
   3677   // combiner can fold the new nodes.
   3678   SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
   3679 
   3680 private:
   3681   SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
   3682                                ISD::CondCode Cond, DAGCombinerInfo &DCI,
   3683                                const SDLoc &DL) const;
   3684 
   3685   SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
   3686                                                SDValue N1, ISD::CondCode Cond,
   3687                                                DAGCombinerInfo &DCI,
   3688                                                const SDLoc &DL) const;
   3689 };
   3690 
   3691 /// Given an LLVM IR type and return type attributes, compute the return value
   3692 /// EVTs and flags, and optionally also the offsets, if the return value is
   3693 /// being lowered to memory.
   3694 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
   3695                    SmallVectorImpl<ISD::OutputArg> &Outs,
   3696                    const TargetLowering &TLI, const DataLayout &DL);
   3697 
   3698 } // end namespace llvm
   3699 
   3700 #endif // LLVM_CODEGEN_TARGETLOWERING_H
   3701