Home | History | Annotate | Download | only in AMDGPU
      1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 /// Custom DAG lowering for SI
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifdef _MSC_VER
     16 // Provide M_PI.
     17 #define _USE_MATH_DEFINES
     18 #endif
     19 
     20 #include "SIISelLowering.h"
     21 #include "AMDGPU.h"
     22 #include "AMDGPUIntrinsicInfo.h"
     23 #include "AMDGPUSubtarget.h"
     24 #include "AMDGPUTargetMachine.h"
     25 #include "SIDefines.h"
     26 #include "SIInstrInfo.h"
     27 #include "SIMachineFunctionInfo.h"
     28 #include "SIRegisterInfo.h"
     29 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
     30 #include "Utils/AMDGPUBaseInfo.h"
     31 #include "llvm/ADT/APFloat.h"
     32 #include "llvm/ADT/APInt.h"
     33 #include "llvm/ADT/ArrayRef.h"
     34 #include "llvm/ADT/BitVector.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/ADT/StringRef.h"
     38 #include "llvm/ADT/StringSwitch.h"
     39 #include "llvm/ADT/Twine.h"
     40 #include "llvm/CodeGen/Analysis.h"
     41 #include "llvm/CodeGen/CallingConvLower.h"
     42 #include "llvm/CodeGen/DAGCombine.h"
     43 #include "llvm/CodeGen/ISDOpcodes.h"
     44 #include "llvm/CodeGen/MachineBasicBlock.h"
     45 #include "llvm/CodeGen/MachineFrameInfo.h"
     46 #include "llvm/CodeGen/MachineFunction.h"
     47 #include "llvm/CodeGen/MachineInstr.h"
     48 #include "llvm/CodeGen/MachineInstrBuilder.h"
     49 #include "llvm/CodeGen/MachineMemOperand.h"
     50 #include "llvm/CodeGen/MachineModuleInfo.h"
     51 #include "llvm/CodeGen/MachineOperand.h"
     52 #include "llvm/CodeGen/MachineRegisterInfo.h"
     53 #include "llvm/CodeGen/SelectionDAG.h"
     54 #include "llvm/CodeGen/SelectionDAGNodes.h"
     55 #include "llvm/CodeGen/TargetCallingConv.h"
     56 #include "llvm/CodeGen/TargetRegisterInfo.h"
     57 #include "llvm/CodeGen/ValueTypes.h"
     58 #include "llvm/IR/Constants.h"
     59 #include "llvm/IR/DataLayout.h"
     60 #include "llvm/IR/DebugLoc.h"
     61 #include "llvm/IR/DerivedTypes.h"
     62 #include "llvm/IR/DiagnosticInfo.h"
     63 #include "llvm/IR/Function.h"
     64 #include "llvm/IR/GlobalValue.h"
     65 #include "llvm/IR/InstrTypes.h"
     66 #include "llvm/IR/Instruction.h"
     67 #include "llvm/IR/Instructions.h"
     68 #include "llvm/IR/IntrinsicInst.h"
     69 #include "llvm/IR/Type.h"
     70 #include "llvm/Support/Casting.h"
     71 #include "llvm/Support/CodeGen.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Compiler.h"
     74 #include "llvm/Support/ErrorHandling.h"
     75 #include "llvm/Support/KnownBits.h"
     76 #include "llvm/Support/MachineValueType.h"
     77 #include "llvm/Support/MathExtras.h"
     78 #include "llvm/Target/TargetOptions.h"
     79 #include <cassert>
     80 #include <cmath>
     81 #include <cstdint>
     82 #include <iterator>
     83 #include <tuple>
     84 #include <utility>
     85 #include <vector>
     86 
     87 using namespace llvm;
     88 
     89 #define DEBUG_TYPE "si-lower"
     90 
     91 STATISTIC(NumTailCalls, "Number of tail calls");
     92 
     93 static cl::opt<bool> EnableVGPRIndexMode(
     94   "amdgpu-vgpr-index-mode",
     95   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
     96   cl::init(false));
     97 
     98 static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
     99   "amdgpu-frame-index-zero-bits",
    100   cl::desc("High bits of frame index assumed to be zero"),
    101   cl::init(5),
    102   cl::ReallyHidden);
    103 
    104 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
    105   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
    106   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
    107     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
    108       return AMDGPU::SGPR0 + Reg;
    109     }
    110   }
    111   llvm_unreachable("Cannot allocate sgpr");
    112 }
    113 
    114 SITargetLowering::SITargetLowering(const TargetMachine &TM,
    115                                    const GCNSubtarget &STI)
    116     : AMDGPUTargetLowering(TM, STI),
    117       Subtarget(&STI) {
    118   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
    119   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
    120 
    121   addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
    122   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
    123 
    124   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
    125   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
    126   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
    127 
    128   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
    129   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
    130 
    131   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
    132   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
    133 
    134   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
    135   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
    136 
    137   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
    138   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
    139 
    140   if (Subtarget->has16BitInsts()) {
    141     addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
    142     addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
    143 
    144     // Unless there are also VOP3P operations, not operations are really legal.
    145     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
    146     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
    147     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
    148     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
    149   }
    150 
    151   computeRegisterProperties(Subtarget->getRegisterInfo());
    152 
    153   // We need to custom lower vector stores from local memory
    154   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
    155   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
    156   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
    157   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
    158   setOperationAction(ISD::LOAD, MVT::i1, Custom);
    159 
    160   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
    161   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
    162   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
    163   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
    164   setOperationAction(ISD::STORE, MVT::i1, Custom);
    165 
    166   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
    167   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
    168   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
    169   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
    170   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
    171   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
    172   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
    173   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
    174   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
    175   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
    176 
    177   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    178   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    179 
    180   setOperationAction(ISD::SELECT, MVT::i1, Promote);
    181   setOperationAction(ISD::SELECT, MVT::i64, Custom);
    182   setOperationAction(ISD::SELECT, MVT::f64, Promote);
    183   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
    184 
    185   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
    186   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
    187   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    188   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
    189   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
    190 
    191   setOperationAction(ISD::SETCC, MVT::i1, Promote);
    192   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
    193   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
    194   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
    195 
    196   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
    197   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
    198 
    199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
    200   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
    201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    202   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
    203   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    204   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
    205   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
    206 
    207   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    208   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
    209   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
    210   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
    211   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
    212 
    213   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
    214   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
    215   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    216 
    217   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
    218   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
    219   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
    220   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
    221 
    222   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
    223   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
    224   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
    225   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
    226   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
    227   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
    228 
    229   setOperationAction(ISD::UADDO, MVT::i32, Legal);
    230   setOperationAction(ISD::USUBO, MVT::i32, Legal);
    231 
    232   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
    233   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
    234 
    235 #if 0
    236   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
    237   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
    238 #endif
    239 
    240   // We only support LOAD/STORE and vector manipulation ops for vectors
    241   // with > 4 elements.
    242   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
    243         MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16 }) {
    244     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
    245       switch (Op) {
    246       case ISD::LOAD:
    247       case ISD::STORE:
    248       case ISD::BUILD_VECTOR:
    249       case ISD::BITCAST:
    250       case ISD::EXTRACT_VECTOR_ELT:
    251       case ISD::INSERT_VECTOR_ELT:
    252       case ISD::INSERT_SUBVECTOR:
    253       case ISD::EXTRACT_SUBVECTOR:
    254       case ISD::SCALAR_TO_VECTOR:
    255         break;
    256       case ISD::CONCAT_VECTORS:
    257         setOperationAction(Op, VT, Custom);
    258         break;
    259       default:
    260         setOperationAction(Op, VT, Expand);
    261         break;
    262       }
    263     }
    264   }
    265 
    266   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
    267 
    268   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
    269   // is expanded to avoid having two separate loops in case the index is a VGPR.
    270 
    271   // Most operations are naturally 32-bit vector operations. We only support
    272   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
    273   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
    274     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
    275     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
    276 
    277     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
    278     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
    279 
    280     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
    281     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
    282 
    283     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
    284     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
    285   }
    286 
    287   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
    288   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
    289   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
    290   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
    291 
    292   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
    293   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
    294 
    295   // Avoid stack access for these.
    296   // TODO: Generalize to more vector types.
    297   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
    298   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
    299   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
    300   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
    301 
    302   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
    303   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
    304   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
    305   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
    306   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
    307 
    308   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
    309   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
    310   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
    311 
    312   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
    313   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
    314   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
    315   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
    316 
    317   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
    318   // and output demarshalling
    319   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
    320   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
    321 
    322   // We can't return success/failure, only the old value,
    323   // let LLVM add the comparison
    324   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
    325   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
    326 
    327   if (Subtarget->hasFlatAddressSpace()) {
    328     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
    329     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
    330   }
    331 
    332   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
    333   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    334 
    335   // On SI this is s_memtime and s_memrealtime on VI.
    336   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
    337   setOperationAction(ISD::TRAP, MVT::Other, Custom);
    338   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
    339 
    340   if (Subtarget->has16BitInsts()) {
    341     setOperationAction(ISD::FLOG, MVT::f16, Custom);
    342     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
    343   }
    344 
    345   // v_mad_f32 does not support denormals according to some sources.
    346   if (!Subtarget->hasFP32Denormals())
    347     setOperationAction(ISD::FMAD, MVT::f32, Legal);
    348 
    349   if (!Subtarget->hasBFI()) {
    350     // fcopysign can be done in a single instruction with BFI.
    351     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    352     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    353   }
    354 
    355   if (!Subtarget->hasBCNT(32))
    356     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    357 
    358   if (!Subtarget->hasBCNT(64))
    359     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
    360 
    361   if (Subtarget->hasFFBH())
    362     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
    363 
    364   if (Subtarget->hasFFBL())
    365     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
    366 
    367   // We only really have 32-bit BFE instructions (and 16-bit on VI).
    368   //
    369   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
    370   // effort to match them now. We want this to be false for i64 cases when the
    371   // extraction isn't restricted to the upper or lower half. Ideally we would
    372   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
    373   // span the midpoint are probably relatively rare, so don't worry about them
    374   // for now.
    375   if (Subtarget->hasBFE())
    376     setHasExtractBitsInsn(true);
    377 
    378   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
    379   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    380 
    381   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
    382     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    383     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
    384     setOperationAction(ISD::FRINT, MVT::f64, Legal);
    385   } else {
    386     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
    387     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
    388     setOperationAction(ISD::FRINT, MVT::f64, Custom);
    389     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
    390   }
    391 
    392   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    393 
    394   setOperationAction(ISD::FSIN, MVT::f32, Custom);
    395   setOperationAction(ISD::FCOS, MVT::f32, Custom);
    396   setOperationAction(ISD::FDIV, MVT::f32, Custom);
    397   setOperationAction(ISD::FDIV, MVT::f64, Custom);
    398 
    399   if (Subtarget->has16BitInsts()) {
    400     setOperationAction(ISD::Constant, MVT::i16, Legal);
    401 
    402     setOperationAction(ISD::SMIN, MVT::i16, Legal);
    403     setOperationAction(ISD::SMAX, MVT::i16, Legal);
    404 
    405     setOperationAction(ISD::UMIN, MVT::i16, Legal);
    406     setOperationAction(ISD::UMAX, MVT::i16, Legal);
    407 
    408     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
    409     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
    410 
    411     setOperationAction(ISD::ROTR, MVT::i16, Promote);
    412     setOperationAction(ISD::ROTL, MVT::i16, Promote);
    413 
    414     setOperationAction(ISD::SDIV, MVT::i16, Promote);
    415     setOperationAction(ISD::UDIV, MVT::i16, Promote);
    416     setOperationAction(ISD::SREM, MVT::i16, Promote);
    417     setOperationAction(ISD::UREM, MVT::i16, Promote);
    418 
    419     setOperationAction(ISD::BSWAP, MVT::i16, Promote);
    420     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
    421 
    422     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
    423     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
    424     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
    425     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
    426     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
    427 
    428     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
    429 
    430     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
    431 
    432     setOperationAction(ISD::LOAD, MVT::i16, Custom);
    433 
    434     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    435 
    436     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
    437     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
    438     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
    439     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
    440 
    441     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
    442     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
    443     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
    444     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
    445 
    446     // F16 - Constant Actions.
    447     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
    448 
    449     // F16 - Load/Store Actions.
    450     setOperationAction(ISD::LOAD, MVT::f16, Promote);
    451     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
    452     setOperationAction(ISD::STORE, MVT::f16, Promote);
    453     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
    454 
    455     // F16 - VOP1 Actions.
    456     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
    457     setOperationAction(ISD::FCOS, MVT::f16, Promote);
    458     setOperationAction(ISD::FSIN, MVT::f16, Promote);
    459     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
    460     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
    461     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
    462     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
    463     setOperationAction(ISD::FROUND, MVT::f16, Custom);
    464 
    465     // F16 - VOP2 Actions.
    466     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
    467     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
    468     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
    469     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
    470     setOperationAction(ISD::FDIV, MVT::f16, Custom);
    471 
    472     // F16 - VOP3 Actions.
    473     setOperationAction(ISD::FMA, MVT::f16, Legal);
    474     if (!Subtarget->hasFP16Denormals())
    475       setOperationAction(ISD::FMAD, MVT::f16, Legal);
    476 
    477     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
    478       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
    479         switch (Op) {
    480         case ISD::LOAD:
    481         case ISD::STORE:
    482         case ISD::BUILD_VECTOR:
    483         case ISD::BITCAST:
    484         case ISD::EXTRACT_VECTOR_ELT:
    485         case ISD::INSERT_VECTOR_ELT:
    486         case ISD::INSERT_SUBVECTOR:
    487         case ISD::EXTRACT_SUBVECTOR:
    488         case ISD::SCALAR_TO_VECTOR:
    489           break;
    490         case ISD::CONCAT_VECTORS:
    491           setOperationAction(Op, VT, Custom);
    492           break;
    493         default:
    494           setOperationAction(Op, VT, Expand);
    495           break;
    496         }
    497       }
    498     }
    499 
    500     // XXX - Do these do anything? Vector constants turn into build_vector.
    501     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
    502     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
    503 
    504     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
    505     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
    506 
    507     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
    508     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
    509     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
    510     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
    511 
    512     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
    513     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
    514     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
    515     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
    516 
    517     setOperationAction(ISD::AND, MVT::v2i16, Promote);
    518     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
    519     setOperationAction(ISD::OR, MVT::v2i16, Promote);
    520     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
    521     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
    522     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
    523 
    524     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
    525     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
    526     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
    527     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
    528 
    529     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
    530     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
    531     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
    532     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
    533 
    534     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
    535     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
    536     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
    537     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
    538 
    539     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
    540     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
    541     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
    542 
    543     if (!Subtarget->hasVOP3PInsts()) {
    544       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
    545       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
    546     }
    547 
    548     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
    549     // This isn't really legal, but this avoids the legalizer unrolling it (and
    550     // allows matching fneg (fabs x) patterns)
    551     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
    552   }
    553 
    554   if (Subtarget->hasVOP3PInsts()) {
    555     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
    556     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
    557     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
    558     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
    559     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
    560     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
    561     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
    562     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
    563     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
    564     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
    565 
    566     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
    567     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
    568     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
    569     setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
    570     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);
    571     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
    572 
    573     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
    574     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
    575 
    576     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
    577     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
    578     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
    579     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
    580     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
    581     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
    582 
    583     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
    584     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
    585     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
    586     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
    587 
    588     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
    589     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
    590     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
    591     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
    592 
    593     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
    594     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
    595   }
    596 
    597   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
    598   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
    599 
    600   if (Subtarget->has16BitInsts()) {
    601     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
    602     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
    603     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
    604     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
    605   } else {
    606     // Legalization hack.
    607     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
    608     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
    609 
    610     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
    611     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
    612   }
    613 
    614   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
    615     setOperationAction(ISD::SELECT, VT, Custom);
    616   }
    617 
    618   setTargetDAGCombine(ISD::ADD);
    619   setTargetDAGCombine(ISD::ADDCARRY);
    620   setTargetDAGCombine(ISD::SUB);
    621   setTargetDAGCombine(ISD::SUBCARRY);
    622   setTargetDAGCombine(ISD::FADD);
    623   setTargetDAGCombine(ISD::FSUB);
    624   setTargetDAGCombine(ISD::FMINNUM);
    625   setTargetDAGCombine(ISD::FMAXNUM);
    626   setTargetDAGCombine(ISD::FMA);
    627   setTargetDAGCombine(ISD::SMIN);
    628   setTargetDAGCombine(ISD::SMAX);
    629   setTargetDAGCombine(ISD::UMIN);
    630   setTargetDAGCombine(ISD::UMAX);
    631   setTargetDAGCombine(ISD::SETCC);
    632   setTargetDAGCombine(ISD::AND);
    633   setTargetDAGCombine(ISD::OR);
    634   setTargetDAGCombine(ISD::XOR);
    635   setTargetDAGCombine(ISD::SINT_TO_FP);
    636   setTargetDAGCombine(ISD::UINT_TO_FP);
    637   setTargetDAGCombine(ISD::FCANONICALIZE);
    638   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
    639   setTargetDAGCombine(ISD::ZERO_EXTEND);
    640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
    641   setTargetDAGCombine(ISD::BUILD_VECTOR);
    642 
    643   // All memory operations. Some folding on the pointer operand is done to help
    644   // matching the constant offsets in the addressing modes.
    645   setTargetDAGCombine(ISD::LOAD);
    646   setTargetDAGCombine(ISD::STORE);
    647   setTargetDAGCombine(ISD::ATOMIC_LOAD);
    648   setTargetDAGCombine(ISD::ATOMIC_STORE);
    649   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
    650   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
    651   setTargetDAGCombine(ISD::ATOMIC_SWAP);
    652   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
    653   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
    654   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
    655   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
    656   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
    657   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
    658   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
    659   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
    660   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
    661   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
    662 
    663   setSchedulingPreference(Sched::RegPressure);
    664 
    665   // SI at least has hardware support for floating point exceptions, but no way
    666   // of using or handling them is implemented. They are also optional in OpenCL
    667   // (Section 7.3)
    668   setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
    669 }
    670 
    671 const GCNSubtarget *SITargetLowering::getSubtarget() const {
    672   return Subtarget;
    673 }
    674 
    675 //===----------------------------------------------------------------------===//
    676 // TargetLowering queries
    677 //===----------------------------------------------------------------------===//
    678 
    679 // v_mad_mix* support a conversion from f16 to f32.
    680 //
    681 // There is only one special case when denormals are enabled we don't currently,
    682 // where this is OK to use.
    683 bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
    684                                            EVT DestVT, EVT SrcVT) const {
    685   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
    686           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
    687          DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
    688          SrcVT.getScalarType() == MVT::f16;
    689 }
    690 
    691 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
    692   // SI has some legal vector types, but no legal vector operations. Say no
    693   // shuffles are legal in order to prefer scalarizing some vector operations.
    694   return false;
    695 }
    696 
    697 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
    698                                                     CallingConv::ID CC,
    699                                                     EVT VT) const {
    700   // TODO: Consider splitting all arguments into 32-bit pieces.
    701   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
    702     EVT ScalarVT = VT.getScalarType();
    703     unsigned Size = ScalarVT.getSizeInBits();
    704     if (Size == 32)
    705       return ScalarVT.getSimpleVT();
    706 
    707     if (Size == 64)
    708       return MVT::i32;
    709 
    710     if (Size == 16 &&
    711         Subtarget->has16BitInsts() &&
    712         isPowerOf2_32(VT.getVectorNumElements()))
    713       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
    714   }
    715 
    716   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
    717 }
    718 
    719 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
    720                                                          CallingConv::ID CC,
    721                                                          EVT VT) const {
    722   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
    723     unsigned NumElts = VT.getVectorNumElements();
    724     EVT ScalarVT = VT.getScalarType();
    725     unsigned Size = ScalarVT.getSizeInBits();
    726 
    727     if (Size == 32)
    728       return NumElts;
    729 
    730     if (Size == 64)
    731       return 2 * NumElts;
    732 
    733     // FIXME: Fails to break down as we want with v3.
    734     if (Size == 16 && Subtarget->has16BitInsts() && isPowerOf2_32(NumElts))
    735       return VT.getVectorNumElements() / 2;
    736   }
    737 
    738   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
    739 }
    740 
    741 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
    742   LLVMContext &Context, CallingConv::ID CC,
    743   EVT VT, EVT &IntermediateVT,
    744   unsigned &NumIntermediates, MVT &RegisterVT) const {
    745   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
    746     unsigned NumElts = VT.getVectorNumElements();
    747     EVT ScalarVT = VT.getScalarType();
    748     unsigned Size = ScalarVT.getSizeInBits();
    749     if (Size == 32) {
    750       RegisterVT = ScalarVT.getSimpleVT();
    751       IntermediateVT = RegisterVT;
    752       NumIntermediates = NumElts;
    753       return NumIntermediates;
    754     }
    755 
    756     if (Size == 64) {
    757       RegisterVT = MVT::i32;
    758       IntermediateVT = RegisterVT;
    759       NumIntermediates = 2 * NumElts;
    760       return NumIntermediates;
    761     }
    762 
    763     // FIXME: We should fix the ABI to be the same on targets without 16-bit
    764     // support, but unless we can properly handle 3-vectors, it will be still be
    765     // inconsistent.
    766     if (Size == 16 && Subtarget->has16BitInsts() && isPowerOf2_32(NumElts)) {
    767       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
    768       IntermediateVT = RegisterVT;
    769       NumIntermediates = NumElts / 2;
    770       return NumIntermediates;
    771     }
    772   }
    773 
    774   return TargetLowering::getVectorTypeBreakdownForCallingConv(
    775     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
    776 }
    777 
    778 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
    779                                           const CallInst &CI,
    780                                           MachineFunction &MF,
    781                                           unsigned IntrID) const {
    782   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
    783           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
    784     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
    785                                                   (Intrinsic::ID)IntrID);
    786     if (Attr.hasFnAttribute(Attribute::ReadNone))
    787       return false;
    788 
    789     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
    790 
    791     if (RsrcIntr->IsImage) {
    792       Info.ptrVal = MFI->getImagePSV(
    793         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
    794         CI.getArgOperand(RsrcIntr->RsrcArg));
    795       Info.align = 0;
    796     } else {
    797       Info.ptrVal = MFI->getBufferPSV(
    798         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
    799         CI.getArgOperand(RsrcIntr->RsrcArg));
    800     }
    801 
    802     Info.flags = MachineMemOperand::MODereferenceable;
    803     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
    804       Info.opc = ISD::INTRINSIC_W_CHAIN;
    805       Info.memVT = MVT::getVT(CI.getType());
    806       Info.flags |= MachineMemOperand::MOLoad;
    807     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
    808       Info.opc = ISD::INTRINSIC_VOID;
    809       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
    810       Info.flags |= MachineMemOperand::MOStore;
    811     } else {
    812       // Atomic
    813       Info.opc = ISD::INTRINSIC_W_CHAIN;
    814       Info.memVT = MVT::getVT(CI.getType());
    815       Info.flags = MachineMemOperand::MOLoad |
    816                    MachineMemOperand::MOStore |
    817                    MachineMemOperand::MODereferenceable;
    818 
    819       // XXX - Should this be volatile without known ordering?
    820       Info.flags |= MachineMemOperand::MOVolatile;
    821     }
    822     return true;
    823   }
    824 
    825   switch (IntrID) {
    826   case Intrinsic::amdgcn_atomic_inc:
    827   case Intrinsic::amdgcn_atomic_dec:
    828   case Intrinsic::amdgcn_ds_fadd:
    829   case Intrinsic::amdgcn_ds_fmin:
    830   case Intrinsic::amdgcn_ds_fmax: {
    831     Info.opc = ISD::INTRINSIC_W_CHAIN;
    832     Info.memVT = MVT::getVT(CI.getType());
    833     Info.ptrVal = CI.getOperand(0);
    834     Info.align = 0;
    835     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
    836 
    837     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
    838     if (!Vol || !Vol->isZero())
    839       Info.flags |= MachineMemOperand::MOVolatile;
    840 
    841     return true;
    842   }
    843 
    844   default:
    845     return false;
    846   }
    847 }
    848 
    849 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
    850                                             SmallVectorImpl<Value*> &Ops,
    851                                             Type *&AccessTy) const {
    852   switch (II->getIntrinsicID()) {
    853   case Intrinsic::amdgcn_atomic_inc:
    854   case Intrinsic::amdgcn_atomic_dec:
    855   case Intrinsic::amdgcn_ds_fadd:
    856   case Intrinsic::amdgcn_ds_fmin:
    857   case Intrinsic::amdgcn_ds_fmax: {
    858     Value *Ptr = II->getArgOperand(0);
    859     AccessTy = II->getType();
    860     Ops.push_back(Ptr);
    861     return true;
    862   }
    863   default:
    864     return false;
    865   }
    866 }
    867 
    868 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
    869   if (!Subtarget->hasFlatInstOffsets()) {
    870     // Flat instructions do not have offsets, and only have the register
    871     // address.
    872     return AM.BaseOffs == 0 && AM.Scale == 0;
    873   }
    874 
    875   // GFX9 added a 13-bit signed offset. When using regular flat instructions,
    876   // the sign bit is ignored and is treated as a 12-bit unsigned offset.
    877 
    878   // Just r + i
    879   return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
    880 }
    881 
    882 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
    883   if (Subtarget->hasFlatGlobalInsts())
    884     return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
    885 
    886   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
    887       // Assume the we will use FLAT for all global memory accesses
    888       // on VI.
    889       // FIXME: This assumption is currently wrong.  On VI we still use
    890       // MUBUF instructions for the r + i addressing mode.  As currently
    891       // implemented, the MUBUF instructions only work on buffer < 4GB.
    892       // It may be possible to support > 4GB buffers with MUBUF instructions,
    893       // by setting the stride value in the resource descriptor which would
    894       // increase the size limit to (stride * 4GB).  However, this is risky,
    895       // because it has never been validated.
    896     return isLegalFlatAddressingMode(AM);
    897   }
    898 
    899   return isLegalMUBUFAddressingMode(AM);
    900 }
    901 
    902 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
    903   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
    904   // additionally can do r + r + i with addr64. 32-bit has more addressing
    905   // mode options. Depending on the resource constant, it can also do
    906   // (i64 r0) + (i32 r1) * (i14 i).
    907   //
    908   // Private arrays end up using a scratch buffer most of the time, so also
    909   // assume those use MUBUF instructions. Scratch loads / stores are currently
    910   // implemented as mubuf instructions with offen bit set, so slightly
    911   // different than the normal addr64.
    912   if (!isUInt<12>(AM.BaseOffs))
    913     return false;
    914 
    915   // FIXME: Since we can split immediate into soffset and immediate offset,
    916   // would it make sense to allow any immediate?
    917 
    918   switch (AM.Scale) {
    919   case 0: // r + i or just i, depending on HasBaseReg.
    920     return true;
    921   case 1:
    922     return true; // We have r + r or r + i.
    923   case 2:
    924     if (AM.HasBaseReg) {
    925       // Reject 2 * r + r.
    926       return false;
    927     }
    928 
    929     // Allow 2 * r as r + r
    930     // Or  2 * r + i is allowed as r + r + i.
    931     return true;
    932   default: // Don't allow n * r
    933     return false;
    934   }
    935 }
    936 
    937 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
    938                                              const AddrMode &AM, Type *Ty,
    939                                              unsigned AS, Instruction *I) const {
    940   // No global is ever allowed as a base.
    941   if (AM.BaseGV)
    942     return false;
    943 
    944   if (AS == AMDGPUASI.GLOBAL_ADDRESS)
    945     return isLegalGlobalAddressingMode(AM);
    946 
    947   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
    948       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
    949     // If the offset isn't a multiple of 4, it probably isn't going to be
    950     // correctly aligned.
    951     // FIXME: Can we get the real alignment here?
    952     if (AM.BaseOffs % 4 != 0)
    953       return isLegalMUBUFAddressingMode(AM);
    954 
    955     // There are no SMRD extloads, so if we have to do a small type access we
    956     // will use a MUBUF load.
    957     // FIXME?: We also need to do this if unaligned, but we don't know the
    958     // alignment here.
    959     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
    960       return isLegalGlobalAddressingMode(AM);
    961 
    962     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
    963       // SMRD instructions have an 8-bit, dword offset on SI.
    964       if (!isUInt<8>(AM.BaseOffs / 4))
    965         return false;
    966     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
    967       // On CI+, this can also be a 32-bit literal constant offset. If it fits
    968       // in 8-bits, it can use a smaller encoding.
    969       if (!isUInt<32>(AM.BaseOffs / 4))
    970         return false;
    971     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
    972       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
    973       if (!isUInt<20>(AM.BaseOffs))
    974         return false;
    975     } else
    976       llvm_unreachable("unhandled generation");
    977 
    978     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
    979       return true;
    980 
    981     if (AM.Scale == 1 && AM.HasBaseReg)
    982       return true;
    983 
    984     return false;
    985 
    986   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
    987     return isLegalMUBUFAddressingMode(AM);
    988   } else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
    989              AS == AMDGPUASI.REGION_ADDRESS) {
    990     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
    991     // field.
    992     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
    993     // an 8-bit dword offset but we don't know the alignment here.
    994     if (!isUInt<16>(AM.BaseOffs))
    995       return false;
    996 
    997     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
    998       return true;
    999 
   1000     if (AM.Scale == 1 && AM.HasBaseReg)
   1001       return true;
   1002 
   1003     return false;
   1004   } else if (AS == AMDGPUASI.FLAT_ADDRESS ||
   1005              AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
   1006     // For an unknown address space, this usually means that this is for some
   1007     // reason being used for pure arithmetic, and not based on some addressing
   1008     // computation. We don't have instructions that compute pointers with any
   1009     // addressing modes, so treat them as having no offset like flat
   1010     // instructions.
   1011     return isLegalFlatAddressingMode(AM);
   1012   } else {
   1013     llvm_unreachable("unhandled address space");
   1014   }
   1015 }
   1016 
   1017 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
   1018                                         const SelectionDAG &DAG) const {
   1019   if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) {
   1020     return (MemVT.getSizeInBits() <= 4 * 32);
   1021   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
   1022     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
   1023     return (MemVT.getSizeInBits() <= MaxPrivateBits);
   1024   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
   1025     return (MemVT.getSizeInBits() <= 2 * 32);
   1026   }
   1027   return true;
   1028 }
   1029 
   1030 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   1031                                                       unsigned AddrSpace,
   1032                                                       unsigned Align,
   1033                                                       bool *IsFast) const {
   1034   if (IsFast)
   1035     *IsFast = false;
   1036 
   1037   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
   1038   // which isn't a simple VT.
   1039   // Until MVT is extended to handle this, simply check for the size and
   1040   // rely on the condition below: allow accesses if the size is a multiple of 4.
   1041   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
   1042                            VT.getStoreSize() > 16)) {
   1043     return false;
   1044   }
   1045 
   1046   if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
   1047       AddrSpace == AMDGPUASI.REGION_ADDRESS) {
   1048     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
   1049     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
   1050     // with adjacent offsets.
   1051     bool AlignedBy4 = (Align % 4 == 0);
   1052     if (IsFast)
   1053       *IsFast = AlignedBy4;
   1054 
   1055     return AlignedBy4;
   1056   }
   1057 
   1058   // FIXME: We have to be conservative here and assume that flat operations
   1059   // will access scratch.  If we had access to the IR function, then we
   1060   // could determine if any private memory was used in the function.
   1061   if (!Subtarget->hasUnalignedScratchAccess() &&
   1062       (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
   1063        AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
   1064     return false;
   1065   }
   1066 
   1067   if (Subtarget->hasUnalignedBufferAccess()) {
   1068     // If we have an uniform constant load, it still requires using a slow
   1069     // buffer instruction if unaligned.
   1070     if (IsFast) {
   1071       *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS ||
   1072                  AddrSpace == AMDGPUASI.CONSTANT_ADDRESS_32BIT) ?
   1073         (Align % 4 == 0) : true;
   1074     }
   1075 
   1076     return true;
   1077   }
   1078 
   1079   // Smaller than dword value must be aligned.
   1080   if (VT.bitsLT(MVT::i32))
   1081     return false;
   1082 
   1083   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
   1084   // byte-address are ignored, thus forcing Dword alignment.
   1085   // This applies to private, global, and constant memory.
   1086   if (IsFast)
   1087     *IsFast = true;
   1088 
   1089   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
   1090 }
   1091 
   1092 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
   1093                                           unsigned SrcAlign, bool IsMemset,
   1094                                           bool ZeroMemset,
   1095                                           bool MemcpyStrSrc,
   1096                                           MachineFunction &MF) const {
   1097   // FIXME: Should account for address space here.
   1098 
   1099   // The default fallback uses the private pointer size as a guess for a type to
   1100   // use. Make sure we switch these to 64-bit accesses.
   1101 
   1102   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
   1103     return MVT::v4i32;
   1104 
   1105   if (Size >= 8 && DstAlign >= 4)
   1106     return MVT::v2i32;
   1107 
   1108   // Use the default.
   1109   return MVT::Other;
   1110 }
   1111 
   1112 static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
   1113   return AS == AMDGPUASI.GLOBAL_ADDRESS ||
   1114          AS == AMDGPUASI.FLAT_ADDRESS ||
   1115          AS == AMDGPUASI.CONSTANT_ADDRESS ||
   1116          AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT;
   1117 }
   1118 
   1119 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
   1120                                            unsigned DestAS) const {
   1121   return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
   1122          isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
   1123 }
   1124 
   1125 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
   1126   const MemSDNode *MemNode = cast<MemSDNode>(N);
   1127   const Value *Ptr = MemNode->getMemOperand()->getValue();
   1128   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
   1129   return I && I->getMetadata("amdgpu.noclobber");
   1130 }
   1131 
   1132 bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
   1133                                             unsigned DestAS) const {
   1134   // Flat -> private/local is a simple truncate.
   1135   // Flat -> global is no-op
   1136   if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
   1137     return true;
   1138 
   1139   return isNoopAddrSpaceCast(SrcAS, DestAS);
   1140 }
   1141 
   1142 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
   1143   const MemSDNode *MemNode = cast<MemSDNode>(N);
   1144 
   1145   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
   1146 }
   1147 
   1148 TargetLoweringBase::LegalizeTypeAction
   1149 SITargetLowering::getPreferredVectorAction(EVT VT) const {
   1150   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
   1151     return TypeSplitVector;
   1152 
   1153   return TargetLoweringBase::getPreferredVectorAction(VT);
   1154 }
   1155 
   1156 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   1157                                                          Type *Ty) const {
   1158   // FIXME: Could be smarter if called for vector constants.
   1159   return true;
   1160 }
   1161 
   1162 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
   1163   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
   1164     switch (Op) {
   1165     case ISD::LOAD:
   1166     case ISD::STORE:
   1167 
   1168     // These operations are done with 32-bit instructions anyway.
   1169     case ISD::AND:
   1170     case ISD::OR:
   1171     case ISD::XOR:
   1172     case ISD::SELECT:
   1173       // TODO: Extensions?
   1174       return true;
   1175     default:
   1176       return false;
   1177     }
   1178   }
   1179 
   1180   // SimplifySetCC uses this function to determine whether or not it should
   1181   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
   1182   if (VT == MVT::i1 && Op == ISD::SETCC)
   1183     return false;
   1184 
   1185   return TargetLowering::isTypeDesirableForOp(Op, VT);
   1186 }
   1187 
   1188 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
   1189                                                    const SDLoc &SL,
   1190                                                    SDValue Chain,
   1191                                                    uint64_t Offset) const {
   1192   const DataLayout &DL = DAG.getDataLayout();
   1193   MachineFunction &MF = DAG.getMachineFunction();
   1194   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   1195 
   1196   const ArgDescriptor *InputPtrReg;
   1197   const TargetRegisterClass *RC;
   1198 
   1199   std::tie(InputPtrReg, RC)
   1200     = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
   1201 
   1202   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   1203   MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
   1204   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
   1205     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
   1206 
   1207   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
   1208 }
   1209 
   1210 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
   1211                                             const SDLoc &SL) const {
   1212   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
   1213                                                FIRST_IMPLICIT);
   1214   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
   1215 }
   1216 
   1217 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
   1218                                          const SDLoc &SL, SDValue Val,
   1219                                          bool Signed,
   1220                                          const ISD::InputArg *Arg) const {
   1221   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
   1222       VT.bitsLT(MemVT)) {
   1223     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
   1224     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
   1225   }
   1226 
   1227   if (MemVT.isFloatingPoint())
   1228     Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
   1229   else if (Signed)
   1230     Val = DAG.getSExtOrTrunc(Val, SL, VT);
   1231   else
   1232     Val = DAG.getZExtOrTrunc(Val, SL, VT);
   1233 
   1234   return Val;
   1235 }
   1236 
   1237 SDValue SITargetLowering::lowerKernargMemParameter(
   1238   SelectionDAG &DAG, EVT VT, EVT MemVT,
   1239   const SDLoc &SL, SDValue Chain,
   1240   uint64_t Offset, unsigned Align, bool Signed,
   1241   const ISD::InputArg *Arg) const {
   1242   Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
   1243   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
   1244   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
   1245 
   1246   // Try to avoid using an extload by loading earlier than the argument address,
   1247   // and extracting the relevant bits. The load should hopefully be merged with
   1248   // the previous argument.
   1249   if (MemVT.getStoreSize() < 4 && Align < 4) {
   1250     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
   1251     int64_t AlignDownOffset = alignDown(Offset, 4);
   1252     int64_t OffsetDiff = Offset - AlignDownOffset;
   1253 
   1254     EVT IntVT = MemVT.changeTypeToInteger();
   1255 
   1256     // TODO: If we passed in the base kernel offset we could have a better
   1257     // alignment than 4, but we don't really need it.
   1258     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
   1259     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
   1260                                MachineMemOperand::MODereferenceable |
   1261                                MachineMemOperand::MOInvariant);
   1262 
   1263     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
   1264     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
   1265 
   1266     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
   1267     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
   1268     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
   1269 
   1270 
   1271     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
   1272   }
   1273 
   1274   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
   1275   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
   1276                              MachineMemOperand::MODereferenceable |
   1277                              MachineMemOperand::MOInvariant);
   1278 
   1279   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
   1280   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
   1281 }
   1282 
   1283 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
   1284                                               const SDLoc &SL, SDValue Chain,
   1285                                               const ISD::InputArg &Arg) const {
   1286   MachineFunction &MF = DAG.getMachineFunction();
   1287   MachineFrameInfo &MFI = MF.getFrameInfo();
   1288 
   1289   if (Arg.Flags.isByVal()) {
   1290     unsigned Size = Arg.Flags.getByValSize();
   1291     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
   1292     return DAG.getFrameIndex(FrameIdx, MVT::i32);
   1293   }
   1294 
   1295   unsigned ArgOffset = VA.getLocMemOffset();
   1296   unsigned ArgSize = VA.getValVT().getStoreSize();
   1297 
   1298   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
   1299 
   1300   // Create load nodes to retrieve arguments from the stack.
   1301   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1302   SDValue ArgValue;
   1303 
   1304   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
   1305   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
   1306   MVT MemVT = VA.getValVT();
   1307 
   1308   switch (VA.getLocInfo()) {
   1309   default:
   1310     break;
   1311   case CCValAssign::BCvt:
   1312     MemVT = VA.getLocVT();
   1313     break;
   1314   case CCValAssign::SExt:
   1315     ExtType = ISD::SEXTLOAD;
   1316     break;
   1317   case CCValAssign::ZExt:
   1318     ExtType = ISD::ZEXTLOAD;
   1319     break;
   1320   case CCValAssign::AExt:
   1321     ExtType = ISD::EXTLOAD;
   1322     break;
   1323   }
   1324 
   1325   ArgValue = DAG.getExtLoad(
   1326     ExtType, SL, VA.getLocVT(), Chain, FIN,
   1327     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   1328     MemVT);
   1329   return ArgValue;
   1330 }
   1331 
   1332 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
   1333   const SIMachineFunctionInfo &MFI,
   1334   EVT VT,
   1335   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
   1336   const ArgDescriptor *Reg;
   1337   const TargetRegisterClass *RC;
   1338 
   1339   std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
   1340   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
   1341 }
   1342 
   1343 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
   1344                                    CallingConv::ID CallConv,
   1345                                    ArrayRef<ISD::InputArg> Ins,
   1346                                    BitVector &Skipped,
   1347                                    FunctionType *FType,
   1348                                    SIMachineFunctionInfo *Info) {
   1349   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
   1350     const ISD::InputArg *Arg = &Ins[I];
   1351 
   1352     assert(!Arg->VT.isVector() && "vector type argument should have been split");
   1353 
   1354     // First check if it's a PS input addr.
   1355     if (CallConv == CallingConv::AMDGPU_PS &&
   1356         !Arg->Flags.isInReg() && !Arg->Flags.isByVal() && PSInputNum <= 15) {
   1357 
   1358       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
   1359 
   1360       // Inconveniently only the first part of the split is marked as isSplit,
   1361       // so skip to the end. We only want to increment PSInputNum once for the
   1362       // entire split argument.
   1363       if (Arg->Flags.isSplit()) {
   1364         while (!Arg->Flags.isSplitEnd()) {
   1365           assert(!Arg->VT.isVector() &&
   1366                  "unexpected vector split in ps argument type");
   1367           if (!SkipArg)
   1368             Splits.push_back(*Arg);
   1369           Arg = &Ins[++I];
   1370         }
   1371       }
   1372 
   1373       if (SkipArg) {
   1374         // We can safely skip PS inputs.
   1375         Skipped.set(Arg->getOrigArgIndex());
   1376         ++PSInputNum;
   1377         continue;
   1378       }
   1379 
   1380       Info->markPSInputAllocated(PSInputNum);
   1381       if (Arg->Used)
   1382         Info->markPSInputEnabled(PSInputNum);
   1383 
   1384       ++PSInputNum;
   1385     }
   1386 
   1387     Splits.push_back(*Arg);
   1388   }
   1389 }
   1390 
   1391 // Allocate special inputs passed in VGPRs.
   1392 static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
   1393                                            MachineFunction &MF,
   1394                                            const SIRegisterInfo &TRI,
   1395                                            SIMachineFunctionInfo &Info) {
   1396   if (Info.hasWorkItemIDX()) {
   1397     unsigned Reg = AMDGPU::VGPR0;
   1398     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
   1399 
   1400     CCInfo.AllocateReg(Reg);
   1401     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
   1402   }
   1403 
   1404   if (Info.hasWorkItemIDY()) {
   1405     unsigned Reg = AMDGPU::VGPR1;
   1406     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
   1407 
   1408     CCInfo.AllocateReg(Reg);
   1409     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
   1410   }
   1411 
   1412   if (Info.hasWorkItemIDZ()) {
   1413     unsigned Reg = AMDGPU::VGPR2;
   1414     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
   1415 
   1416     CCInfo.AllocateReg(Reg);
   1417     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
   1418   }
   1419 }
   1420 
   1421 // Try to allocate a VGPR at the end of the argument list, or if no argument
   1422 // VGPRs are left allocating a stack slot.
   1423 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
   1424   ArrayRef<MCPhysReg> ArgVGPRs
   1425     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
   1426   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
   1427   if (RegIdx == ArgVGPRs.size()) {
   1428     // Spill to stack required.
   1429     int64_t Offset = CCInfo.AllocateStack(4, 4);
   1430 
   1431     return ArgDescriptor::createStack(Offset);
   1432   }
   1433 
   1434   unsigned Reg = ArgVGPRs[RegIdx];
   1435   Reg = CCInfo.AllocateReg(Reg);
   1436   assert(Reg != AMDGPU::NoRegister);
   1437 
   1438   MachineFunction &MF = CCInfo.getMachineFunction();
   1439   MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
   1440   return ArgDescriptor::createRegister(Reg);
   1441 }
   1442 
   1443 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
   1444                                              const TargetRegisterClass *RC,
   1445                                              unsigned NumArgRegs) {
   1446   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
   1447   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
   1448   if (RegIdx == ArgSGPRs.size())
   1449     report_fatal_error("ran out of SGPRs for arguments");
   1450 
   1451   unsigned Reg = ArgSGPRs[RegIdx];
   1452   Reg = CCInfo.AllocateReg(Reg);
   1453   assert(Reg != AMDGPU::NoRegister);
   1454 
   1455   MachineFunction &MF = CCInfo.getMachineFunction();
   1456   MF.addLiveIn(Reg, RC);
   1457   return ArgDescriptor::createRegister(Reg);
   1458 }
   1459 
   1460 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
   1461   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
   1462 }
   1463 
   1464 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
   1465   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
   1466 }
   1467 
   1468 static void allocateSpecialInputVGPRs(CCState &CCInfo,
   1469                                       MachineFunction &MF,
   1470                                       const SIRegisterInfo &TRI,
   1471                                       SIMachineFunctionInfo &Info) {
   1472   if (Info.hasWorkItemIDX())
   1473     Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
   1474 
   1475   if (Info.hasWorkItemIDY())
   1476     Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
   1477 
   1478   if (Info.hasWorkItemIDZ())
   1479     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
   1480 }
   1481 
   1482 static void allocateSpecialInputSGPRs(CCState &CCInfo,
   1483                                       MachineFunction &MF,
   1484                                       const SIRegisterInfo &TRI,
   1485                                       SIMachineFunctionInfo &Info) {
   1486   auto &ArgInfo = Info.getArgInfo();
   1487 
   1488   // TODO: Unify handling with private memory pointers.
   1489 
   1490   if (Info.hasDispatchPtr())
   1491     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
   1492 
   1493   if (Info.hasQueuePtr())
   1494     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
   1495 
   1496   if (Info.hasKernargSegmentPtr())
   1497     ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
   1498 
   1499   if (Info.hasDispatchID())
   1500     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
   1501 
   1502   // flat_scratch_init is not applicable for non-kernel functions.
   1503 
   1504   if (Info.hasWorkGroupIDX())
   1505     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
   1506 
   1507   if (Info.hasWorkGroupIDY())
   1508     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
   1509 
   1510   if (Info.hasWorkGroupIDZ())
   1511     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
   1512 
   1513   if (Info.hasImplicitArgPtr())
   1514     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
   1515 }
   1516 
   1517 // Allocate special inputs passed in user SGPRs.
   1518 static void allocateHSAUserSGPRs(CCState &CCInfo,
   1519                                  MachineFunction &MF,
   1520                                  const SIRegisterInfo &TRI,
   1521                                  SIMachineFunctionInfo &Info) {
   1522   if (Info.hasImplicitBufferPtr()) {
   1523     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
   1524     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
   1525     CCInfo.AllocateReg(ImplicitBufferPtrReg);
   1526   }
   1527 
   1528   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
   1529   if (Info.hasPrivateSegmentBuffer()) {
   1530     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
   1531     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
   1532     CCInfo.AllocateReg(PrivateSegmentBufferReg);
   1533   }
   1534 
   1535   if (Info.hasDispatchPtr()) {
   1536     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
   1537     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
   1538     CCInfo.AllocateReg(DispatchPtrReg);
   1539   }
   1540 
   1541   if (Info.hasQueuePtr()) {
   1542     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
   1543     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
   1544     CCInfo.AllocateReg(QueuePtrReg);
   1545   }
   1546 
   1547   if (Info.hasKernargSegmentPtr()) {
   1548     unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
   1549     MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
   1550     CCInfo.AllocateReg(InputPtrReg);
   1551   }
   1552 
   1553   if (Info.hasDispatchID()) {
   1554     unsigned DispatchIDReg = Info.addDispatchID(TRI);
   1555     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
   1556     CCInfo.AllocateReg(DispatchIDReg);
   1557   }
   1558 
   1559   if (Info.hasFlatScratchInit()) {
   1560     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
   1561     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
   1562     CCInfo.AllocateReg(FlatScratchInitReg);
   1563   }
   1564 
   1565   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
   1566   // these from the dispatch pointer.
   1567 }
   1568 
   1569 // Allocate special input registers that are initialized per-wave.
   1570 static void allocateSystemSGPRs(CCState &CCInfo,
   1571                                 MachineFunction &MF,
   1572                                 SIMachineFunctionInfo &Info,
   1573                                 CallingConv::ID CallConv,
   1574                                 bool IsShader) {
   1575   if (Info.hasWorkGroupIDX()) {
   1576     unsigned Reg = Info.addWorkGroupIDX();
   1577     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
   1578     CCInfo.AllocateReg(Reg);
   1579   }
   1580 
   1581   if (Info.hasWorkGroupIDY()) {
   1582     unsigned Reg = Info.addWorkGroupIDY();
   1583     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
   1584     CCInfo.AllocateReg(Reg);
   1585   }
   1586 
   1587   if (Info.hasWorkGroupIDZ()) {
   1588     unsigned Reg = Info.addWorkGroupIDZ();
   1589     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
   1590     CCInfo.AllocateReg(Reg);
   1591   }
   1592 
   1593   if (Info.hasWorkGroupInfo()) {
   1594     unsigned Reg = Info.addWorkGroupInfo();
   1595     MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
   1596     CCInfo.AllocateReg(Reg);
   1597   }
   1598 
   1599   if (Info.hasPrivateSegmentWaveByteOffset()) {
   1600     // Scratch wave offset passed in system SGPR.
   1601     unsigned PrivateSegmentWaveByteOffsetReg;
   1602 
   1603     if (IsShader) {
   1604       PrivateSegmentWaveByteOffsetReg =
   1605         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
   1606 
   1607       // This is true if the scratch wave byte offset doesn't have a fixed
   1608       // location.
   1609       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
   1610         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
   1611         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
   1612       }
   1613     } else
   1614       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
   1615 
   1616     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
   1617     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
   1618   }
   1619 }
   1620 
   1621 static void reservePrivateMemoryRegs(const TargetMachine &TM,
   1622                                      MachineFunction &MF,
   1623                                      const SIRegisterInfo &TRI,
   1624                                      SIMachineFunctionInfo &Info) {
   1625   // Now that we've figured out where the scratch register inputs are, see if
   1626   // should reserve the arguments and use them directly.
   1627   MachineFrameInfo &MFI = MF.getFrameInfo();
   1628   bool HasStackObjects = MFI.hasStackObjects();
   1629 
   1630   // Record that we know we have non-spill stack objects so we don't need to
   1631   // check all stack objects later.
   1632   if (HasStackObjects)
   1633     Info.setHasNonSpillStackObjects(true);
   1634 
   1635   // Everything live out of a block is spilled with fast regalloc, so it's
   1636   // almost certain that spilling will be required.
   1637   if (TM.getOptLevel() == CodeGenOpt::None)
   1638     HasStackObjects = true;
   1639 
   1640   // For now assume stack access is needed in any callee functions, so we need
   1641   // the scratch registers to pass in.
   1642   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
   1643 
   1644   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
   1645   if (ST.isAmdCodeObjectV2(MF.getFunction())) {
   1646     if (RequiresStackAccess) {
   1647       // If we have stack objects, we unquestionably need the private buffer
   1648       // resource. For the Code Object V2 ABI, this will be the first 4 user
   1649       // SGPR inputs. We can reserve those and use them directly.
   1650 
   1651       unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
   1652         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
   1653       Info.setScratchRSrcReg(PrivateSegmentBufferReg);
   1654 
   1655       if (MFI.hasCalls()) {
   1656         // If we have calls, we need to keep the frame register in a register
   1657         // that won't be clobbered by a call, so ensure it is copied somewhere.
   1658 
   1659         // This is not a problem for the scratch wave offset, because the same
   1660         // registers are reserved in all functions.
   1661 
   1662         // FIXME: Nothing is really ensuring this is a call preserved register,
   1663         // it's just selected from the end so it happens to be.
   1664         unsigned ReservedOffsetReg
   1665           = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
   1666         Info.setScratchWaveOffsetReg(ReservedOffsetReg);
   1667       } else {
   1668         unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
   1669           AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
   1670         Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
   1671       }
   1672     } else {
   1673       unsigned ReservedBufferReg
   1674         = TRI.reservedPrivateSegmentBufferReg(MF);
   1675       unsigned ReservedOffsetReg
   1676         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
   1677 
   1678       // We tentatively reserve the last registers (skipping the last two
   1679       // which may contain VCC). After register allocation, we'll replace
   1680       // these with the ones immediately after those which were really
   1681       // allocated. In the prologue copies will be inserted from the argument
   1682       // to these reserved registers.
   1683       Info.setScratchRSrcReg(ReservedBufferReg);
   1684       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
   1685     }
   1686   } else {
   1687     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
   1688 
   1689     // Without HSA, relocations are used for the scratch pointer and the
   1690     // buffer resource setup is always inserted in the prologue. Scratch wave
   1691     // offset is still in an input SGPR.
   1692     Info.setScratchRSrcReg(ReservedBufferReg);
   1693 
   1694     if (HasStackObjects && !MFI.hasCalls()) {
   1695       unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
   1696         AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
   1697       Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
   1698     } else {
   1699       unsigned ReservedOffsetReg
   1700         = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
   1701       Info.setScratchWaveOffsetReg(ReservedOffsetReg);
   1702     }
   1703   }
   1704 }
   1705 
   1706 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
   1707   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
   1708   return !Info->isEntryFunction();
   1709 }
   1710 
   1711 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   1712 
   1713 }
   1714 
   1715 void SITargetLowering::insertCopiesSplitCSR(
   1716   MachineBasicBlock *Entry,
   1717   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   1718   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
   1719 
   1720   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   1721   if (!IStart)
   1722     return;
   1723 
   1724   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1725   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   1726   MachineBasicBlock::iterator MBBI = Entry->begin();
   1727   for (const MCPhysReg *I = IStart; *I; ++I) {
   1728     const TargetRegisterClass *RC = nullptr;
   1729     if (AMDGPU::SReg_64RegClass.contains(*I))
   1730       RC = &AMDGPU::SGPR_64RegClass;
   1731     else if (AMDGPU::SReg_32RegClass.contains(*I))
   1732       RC = &AMDGPU::SGPR_32RegClass;
   1733     else
   1734       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   1735 
   1736     unsigned NewVR = MRI->createVirtualRegister(RC);
   1737     // Create copy from CSR to a virtual register.
   1738     Entry->addLiveIn(*I);
   1739     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   1740       .addReg(*I);
   1741 
   1742     // Insert the copy-back instructions right before the terminator.
   1743     for (auto *Exit : Exits)
   1744       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   1745               TII->get(TargetOpcode::COPY), *I)
   1746         .addReg(NewVR);
   1747   }
   1748 }
   1749 
   1750 SDValue SITargetLowering::LowerFormalArguments(
   1751     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   1752     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   1753     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   1754   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
   1755 
   1756   MachineFunction &MF = DAG.getMachineFunction();
   1757   const Function &Fn = MF.getFunction();
   1758   FunctionType *FType = MF.getFunction().getFunctionType();
   1759   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   1760   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
   1761 
   1762   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
   1763     DiagnosticInfoUnsupported NoGraphicsHSA(
   1764         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
   1765     DAG.getContext()->diagnose(NoGraphicsHSA);
   1766     return DAG.getEntryNode();
   1767   }
   1768 
   1769   // Create stack objects that are used for emitting debugger prologue if
   1770   // "amdgpu-debugger-emit-prologue" attribute was specified.
   1771   if (ST.debuggerEmitPrologue())
   1772     createDebuggerPrologueStackObjects(MF);
   1773 
   1774   SmallVector<ISD::InputArg, 16> Splits;
   1775   SmallVector<CCValAssign, 16> ArgLocs;
   1776   BitVector Skipped(Ins.size());
   1777   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1778                  *DAG.getContext());
   1779 
   1780   bool IsShader = AMDGPU::isShader(CallConv);
   1781   bool IsKernel = AMDGPU::isKernel(CallConv);
   1782   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
   1783 
   1784   if (!IsEntryFunc) {
   1785     // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
   1786     // this when allocating argument fixed offsets.
   1787     CCInfo.AllocateStack(4, 4);
   1788   }
   1789 
   1790   if (IsShader) {
   1791     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
   1792 
   1793     // At least one interpolation mode must be enabled or else the GPU will
   1794     // hang.
   1795     //
   1796     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
   1797     // set PSInputAddr, the user wants to enable some bits after the compilation
   1798     // based on run-time states. Since we can't know what the final PSInputEna
   1799     // will look like, so we shouldn't do anything here and the user should take
   1800     // responsibility for the correct programming.
   1801     //
   1802     // Otherwise, the following restrictions apply:
   1803     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
   1804     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
   1805     //   enabled too.
   1806     if (CallConv == CallingConv::AMDGPU_PS) {
   1807       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
   1808            ((Info->getPSInputAddr() & 0xF) == 0 &&
   1809             Info->isPSInputAllocated(11))) {
   1810         CCInfo.AllocateReg(AMDGPU::VGPR0);
   1811         CCInfo.AllocateReg(AMDGPU::VGPR1);
   1812         Info->markPSInputAllocated(0);
   1813         Info->markPSInputEnabled(0);
   1814       }
   1815       if (Subtarget->isAmdPalOS()) {
   1816         // For isAmdPalOS, the user does not enable some bits after compilation
   1817         // based on run-time states; the register values being generated here are
   1818         // the final ones set in hardware. Therefore we need to apply the
   1819         // workaround to PSInputAddr and PSInputEnable together.  (The case where
   1820         // a bit is set in PSInputAddr but not PSInputEnable is where the
   1821         // frontend set up an input arg for a particular interpolation mode, but
   1822         // nothing uses that input arg. Really we should have an earlier pass
   1823         // that removes such an arg.)
   1824         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
   1825         if ((PsInputBits & 0x7F) == 0 ||
   1826             ((PsInputBits & 0xF) == 0 &&
   1827              (PsInputBits >> 11 & 1)))
   1828           Info->markPSInputEnabled(
   1829               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
   1830       }
   1831     }
   1832 
   1833     assert(!Info->hasDispatchPtr() &&
   1834            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
   1835            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
   1836            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
   1837            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
   1838            !Info->hasWorkItemIDZ());
   1839   } else if (IsKernel) {
   1840     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
   1841   } else {
   1842     Splits.append(Ins.begin(), Ins.end());
   1843   }
   1844 
   1845   if (IsEntryFunc) {
   1846     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
   1847     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
   1848   }
   1849 
   1850   if (IsKernel) {
   1851     analyzeFormalArgumentsCompute(CCInfo, Ins);
   1852   } else {
   1853     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
   1854     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
   1855   }
   1856 
   1857   SmallVector<SDValue, 16> Chains;
   1858 
   1859   // FIXME: This is the minimum kernel argument alignment. We should improve
   1860   // this to the maximum alignment of the arguments.
   1861   //
   1862   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
   1863   // kern arg offset.
   1864   const unsigned KernelArgBaseAlign = 16;
   1865 
   1866    for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
   1867     const ISD::InputArg &Arg = Ins[i];
   1868     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
   1869       InVals.push_back(DAG.getUNDEF(Arg.VT));
   1870       continue;
   1871     }
   1872 
   1873     CCValAssign &VA = ArgLocs[ArgIdx++];
   1874     MVT VT = VA.getLocVT();
   1875 
   1876     if (IsEntryFunc && VA.isMemLoc()) {
   1877       VT = Ins[i].VT;
   1878       EVT MemVT = VA.getLocVT();
   1879 
   1880       const uint64_t Offset = VA.getLocMemOffset();
   1881       unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
   1882 
   1883       SDValue Arg = lowerKernargMemParameter(
   1884         DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
   1885       Chains.push_back(Arg.getValue(1));
   1886 
   1887       auto *ParamTy =
   1888         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
   1889       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
   1890           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
   1891         // On SI local pointers are just offsets into LDS, so they are always
   1892         // less than 16-bits.  On CI and newer they could potentially be
   1893         // real pointers, so we can't guarantee their size.
   1894         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
   1895                           DAG.getValueType(MVT::i16));
   1896       }
   1897 
   1898       InVals.push_back(Arg);
   1899       continue;
   1900     } else if (!IsEntryFunc && VA.isMemLoc()) {
   1901       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
   1902       InVals.push_back(Val);
   1903       if (!Arg.Flags.isByVal())
   1904         Chains.push_back(Val.getValue(1));
   1905       continue;
   1906     }
   1907 
   1908     assert(VA.isRegLoc() && "Parameter must be in a register!");
   1909 
   1910     unsigned Reg = VA.getLocReg();
   1911     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
   1912     EVT ValVT = VA.getValVT();
   1913 
   1914     Reg = MF.addLiveIn(Reg, RC);
   1915     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
   1916 
   1917     if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
   1918       // The return object should be reasonably addressable.
   1919 
   1920       // FIXME: This helps when the return is a real sret. If it is a
   1921       // automatically inserted sret (i.e. CanLowerReturn returns false), an
   1922       // extra copy is inserted in SelectionDAGBuilder which obscures this.
   1923       unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
   1924       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
   1925         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
   1926     }
   1927 
   1928     // If this is an 8 or 16-bit value, it is really passed promoted
   1929     // to 32 bits. Insert an assert[sz]ext to capture this, then
   1930     // truncate to the right size.
   1931     switch (VA.getLocInfo()) {
   1932     case CCValAssign::Full:
   1933       break;
   1934     case CCValAssign::BCvt:
   1935       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
   1936       break;
   1937     case CCValAssign::SExt:
   1938       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
   1939                         DAG.getValueType(ValVT));
   1940       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   1941       break;
   1942     case CCValAssign::ZExt:
   1943       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
   1944                         DAG.getValueType(ValVT));
   1945       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   1946       break;
   1947     case CCValAssign::AExt:
   1948       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
   1949       break;
   1950     default:
   1951       llvm_unreachable("Unknown loc info!");
   1952     }
   1953 
   1954     if (IsShader && Arg.VT.isVector()) {
   1955       // Build a vector from the registers
   1956       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
   1957       unsigned NumElements = ParamType->getVectorNumElements();
   1958 
   1959       SmallVector<SDValue, 4> Regs;
   1960       Regs.push_back(Val);
   1961       for (unsigned j = 1; j != NumElements; ++j) {
   1962         Reg = ArgLocs[ArgIdx++].getLocReg();
   1963         Reg = MF.addLiveIn(Reg, RC);
   1964 
   1965         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
   1966         Regs.push_back(Copy);
   1967       }
   1968 
   1969       // Fill up the missing vector elements
   1970       NumElements = Arg.VT.getVectorNumElements() - NumElements;
   1971       Regs.append(NumElements, DAG.getUNDEF(VT));
   1972 
   1973       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
   1974       continue;
   1975     }
   1976 
   1977     InVals.push_back(Val);
   1978   }
   1979 
   1980   if (!IsEntryFunc) {
   1981     // Special inputs come after user arguments.
   1982     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
   1983   }
   1984 
   1985   // Start adding system SGPRs.
   1986   if (IsEntryFunc) {
   1987     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
   1988   } else {
   1989     CCInfo.AllocateReg(Info->getScratchRSrcReg());
   1990     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
   1991     CCInfo.AllocateReg(Info->getFrameOffsetReg());
   1992     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
   1993   }
   1994 
   1995   auto &ArgUsageInfo =
   1996     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
   1997   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
   1998 
   1999   unsigned StackArgSize = CCInfo.getNextStackOffset();
   2000   Info->setBytesInStackArgArea(StackArgSize);
   2001 
   2002   return Chains.empty() ? Chain :
   2003     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   2004 }
   2005 
   2006 // TODO: If return values can't fit in registers, we should return as many as
   2007 // possible in registers before passing on stack.
   2008 bool SITargetLowering::CanLowerReturn(
   2009   CallingConv::ID CallConv,
   2010   MachineFunction &MF, bool IsVarArg,
   2011   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2012   LLVMContext &Context) const {
   2013   // Replacing returns with sret/stack usage doesn't make sense for shaders.
   2014   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
   2015   // for shaders. Vector types should be explicitly handled by CC.
   2016   if (AMDGPU::isEntryFunctionCC(CallConv))
   2017     return true;
   2018 
   2019   SmallVector<CCValAssign, 16> RVLocs;
   2020   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
   2021   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
   2022 }
   2023 
   2024 SDValue
   2025 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   2026                               bool isVarArg,
   2027                               const SmallVectorImpl<ISD::OutputArg> &Outs,
   2028                               const SmallVectorImpl<SDValue> &OutVals,
   2029                               const SDLoc &DL, SelectionDAG &DAG) const {
   2030   MachineFunction &MF = DAG.getMachineFunction();
   2031   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   2032 
   2033   if (AMDGPU::isKernel(CallConv)) {
   2034     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
   2035                                              OutVals, DL, DAG);
   2036   }
   2037 
   2038   bool IsShader = AMDGPU::isShader(CallConv);
   2039 
   2040   Info->setIfReturnsVoid(Outs.size() == 0);
   2041   bool IsWaveEnd = Info->returnsVoid() && IsShader;
   2042 
   2043   SmallVector<ISD::OutputArg, 48> Splits;
   2044   SmallVector<SDValue, 48> SplitVals;
   2045 
   2046   // Split vectors into their elements.
   2047   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
   2048     const ISD::OutputArg &Out = Outs[i];
   2049 
   2050     if (IsShader && Out.VT.isVector()) {
   2051       MVT VT = Out.VT.getVectorElementType();
   2052       ISD::OutputArg NewOut = Out;
   2053       NewOut.Flags.setSplit();
   2054       NewOut.VT = VT;
   2055 
   2056       // We want the original number of vector elements here, e.g.
   2057       // three or five, not four or eight.
   2058       unsigned NumElements = Out.ArgVT.getVectorNumElements();
   2059 
   2060       for (unsigned j = 0; j != NumElements; ++j) {
   2061         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
   2062                                    DAG.getConstant(j, DL, MVT::i32));
   2063         SplitVals.push_back(Elem);
   2064         Splits.push_back(NewOut);
   2065         NewOut.PartOffset += NewOut.VT.getStoreSize();
   2066       }
   2067     } else {
   2068       SplitVals.push_back(OutVals[i]);
   2069       Splits.push_back(Out);
   2070     }
   2071   }
   2072 
   2073   // CCValAssign - represent the assignment of the return value to a location.
   2074   SmallVector<CCValAssign, 48> RVLocs;
   2075 
   2076   // CCState - Info about the registers and stack slots.
   2077   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   2078                  *DAG.getContext());
   2079 
   2080   // Analyze outgoing return values.
   2081   CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg));
   2082 
   2083   SDValue Flag;
   2084   SmallVector<SDValue, 48> RetOps;
   2085   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2086 
   2087   // Add return address for callable functions.
   2088   if (!Info->isEntryFunction()) {
   2089     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
   2090     SDValue ReturnAddrReg = CreateLiveInRegister(
   2091       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
   2092 
   2093     // FIXME: Should be able to use a vreg here, but need a way to prevent it
   2094     // from being allcoated to a CSR.
   2095 
   2096     SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
   2097                                                 MVT::i64);
   2098 
   2099     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
   2100     Flag = Chain.getValue(1);
   2101 
   2102     RetOps.push_back(PhysReturnAddrReg);
   2103   }
   2104 
   2105   // Copy the result values into the output registers.
   2106   for (unsigned i = 0, realRVLocIdx = 0;
   2107        i != RVLocs.size();
   2108        ++i, ++realRVLocIdx) {
   2109     CCValAssign &VA = RVLocs[i];
   2110     assert(VA.isRegLoc() && "Can only return in registers!");
   2111     // TODO: Partially return in registers if return values don't fit.
   2112 
   2113     SDValue Arg = SplitVals[realRVLocIdx];
   2114 
   2115     // Copied from other backends.
   2116     switch (VA.getLocInfo()) {
   2117     case CCValAssign::Full:
   2118       break;
   2119     case CCValAssign::BCvt:
   2120       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
   2121       break;
   2122     case CCValAssign::SExt:
   2123       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
   2124       break;
   2125     case CCValAssign::ZExt:
   2126       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
   2127       break;
   2128     case CCValAssign::AExt:
   2129       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
   2130       break;
   2131     default:
   2132       llvm_unreachable("Unknown loc info!");
   2133     }
   2134 
   2135     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
   2136     Flag = Chain.getValue(1);
   2137     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2138   }
   2139 
   2140   // FIXME: Does sret work properly?
   2141   if (!Info->isEntryFunction()) {
   2142     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2143     const MCPhysReg *I =
   2144       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   2145     if (I) {
   2146       for (; *I; ++I) {
   2147         if (AMDGPU::SReg_64RegClass.contains(*I))
   2148           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
   2149         else if (AMDGPU::SReg_32RegClass.contains(*I))
   2150           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
   2151         else
   2152           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   2153       }
   2154     }
   2155   }
   2156 
   2157   // Update chain and glue.
   2158   RetOps[0] = Chain;
   2159   if (Flag.getNode())
   2160     RetOps.push_back(Flag);
   2161 
   2162   unsigned Opc = AMDGPUISD::ENDPGM;
   2163   if (!IsWaveEnd)
   2164     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
   2165   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
   2166 }
   2167 
   2168 SDValue SITargetLowering::LowerCallResult(
   2169     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
   2170     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
   2171     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
   2172     SDValue ThisVal) const {
   2173   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
   2174 
   2175   // Assign locations to each value returned by this call.
   2176   SmallVector<CCValAssign, 16> RVLocs;
   2177   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
   2178                  *DAG.getContext());
   2179   CCInfo.AnalyzeCallResult(Ins, RetCC);
   2180 
   2181   // Copy all of the result registers out of their specified physreg.
   2182   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2183     CCValAssign VA = RVLocs[i];
   2184     SDValue Val;
   2185 
   2186     if (VA.isRegLoc()) {
   2187       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
   2188       Chain = Val.getValue(1);
   2189       InFlag = Val.getValue(2);
   2190     } else if (VA.isMemLoc()) {
   2191       report_fatal_error("TODO: return values in memory");
   2192     } else
   2193       llvm_unreachable("unknown argument location type");
   2194 
   2195     switch (VA.getLocInfo()) {
   2196     case CCValAssign::Full:
   2197       break;
   2198     case CCValAssign::BCvt:
   2199       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
   2200       break;
   2201     case CCValAssign::ZExt:
   2202       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
   2203                         DAG.getValueType(VA.getValVT()));
   2204       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2205       break;
   2206     case CCValAssign::SExt:
   2207       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
   2208                         DAG.getValueType(VA.getValVT()));
   2209       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2210       break;
   2211     case CCValAssign::AExt:
   2212       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
   2213       break;
   2214     default:
   2215       llvm_unreachable("Unknown loc info!");
   2216     }
   2217 
   2218     InVals.push_back(Val);
   2219   }
   2220 
   2221   return Chain;
   2222 }
   2223 
   2224 // Add code to pass special inputs required depending on used features separate
   2225 // from the explicit user arguments present in the IR.
   2226 void SITargetLowering::passSpecialInputs(
   2227     CallLoweringInfo &CLI,
   2228     const SIMachineFunctionInfo &Info,
   2229     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
   2230     SmallVectorImpl<SDValue> &MemOpChains,
   2231     SDValue Chain,
   2232     SDValue StackPtr) const {
   2233   // If we don't have a call site, this was a call inserted by
   2234   // legalization. These can never use special inputs.
   2235   if (!CLI.CS)
   2236     return;
   2237 
   2238   const Function *CalleeFunc = CLI.CS.getCalledFunction();
   2239   assert(CalleeFunc);
   2240 
   2241   SelectionDAG &DAG = CLI.DAG;
   2242   const SDLoc &DL = CLI.DL;
   2243 
   2244   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
   2245 
   2246   auto &ArgUsageInfo =
   2247     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
   2248   const AMDGPUFunctionArgInfo &CalleeArgInfo
   2249     = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
   2250 
   2251   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
   2252 
   2253   // TODO: Unify with private memory register handling. This is complicated by
   2254   // the fact that at least in kernels, the input argument is not necessarily
   2255   // in the same location as the input.
   2256   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
   2257     AMDGPUFunctionArgInfo::DISPATCH_PTR,
   2258     AMDGPUFunctionArgInfo::QUEUE_PTR,
   2259     AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
   2260     AMDGPUFunctionArgInfo::DISPATCH_ID,
   2261     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
   2262     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
   2263     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
   2264     AMDGPUFunctionArgInfo::WORKITEM_ID_X,
   2265     AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
   2266     AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
   2267     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
   2268   };
   2269 
   2270   for (auto InputID : InputRegs) {
   2271     const ArgDescriptor *OutgoingArg;
   2272     const TargetRegisterClass *ArgRC;
   2273 
   2274     std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
   2275     if (!OutgoingArg)
   2276       continue;
   2277 
   2278     const ArgDescriptor *IncomingArg;
   2279     const TargetRegisterClass *IncomingArgRC;
   2280     std::tie(IncomingArg, IncomingArgRC)
   2281       = CallerArgInfo.getPreloadedValue(InputID);
   2282     assert(IncomingArgRC == ArgRC);
   2283 
   2284     // All special arguments are ints for now.
   2285     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
   2286     SDValue InputReg;
   2287 
   2288     if (IncomingArg) {
   2289       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
   2290     } else {
   2291       // The implicit arg ptr is special because it doesn't have a corresponding
   2292       // input for kernels, and is computed from the kernarg segment pointer.
   2293       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
   2294       InputReg = getImplicitArgPtr(DAG, DL);
   2295     }
   2296 
   2297     if (OutgoingArg->isRegister()) {
   2298       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
   2299     } else {
   2300       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr,
   2301                                               InputReg,
   2302                                               OutgoingArg->getStackOffset());
   2303       MemOpChains.push_back(ArgStore);
   2304     }
   2305   }
   2306 }
   2307 
   2308 static bool canGuaranteeTCO(CallingConv::ID CC) {
   2309   return CC == CallingConv::Fast;
   2310 }
   2311 
   2312 /// Return true if we might ever do TCO for calls with this calling convention.
   2313 static bool mayTailCallThisCC(CallingConv::ID CC) {
   2314   switch (CC) {
   2315   case CallingConv::C:
   2316     return true;
   2317   default:
   2318     return canGuaranteeTCO(CC);
   2319   }
   2320 }
   2321 
   2322 bool SITargetLowering::isEligibleForTailCallOptimization(
   2323     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
   2324     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2325     const SmallVectorImpl<SDValue> &OutVals,
   2326     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
   2327   if (!mayTailCallThisCC(CalleeCC))
   2328     return false;
   2329 
   2330   MachineFunction &MF = DAG.getMachineFunction();
   2331   const Function &CallerF = MF.getFunction();
   2332   CallingConv::ID CallerCC = CallerF.getCallingConv();
   2333   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
   2334   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
   2335 
   2336   // Kernels aren't callable, and don't have a live in return address so it
   2337   // doesn't make sense to do a tail call with entry functions.
   2338   if (!CallerPreserved)
   2339     return false;
   2340 
   2341   bool CCMatch = CallerCC == CalleeCC;
   2342 
   2343   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
   2344     if (canGuaranteeTCO(CalleeCC) && CCMatch)
   2345       return true;
   2346     return false;
   2347   }
   2348 
   2349   // TODO: Can we handle var args?
   2350   if (IsVarArg)
   2351     return false;
   2352 
   2353   for (const Argument &Arg : CallerF.args()) {
   2354     if (Arg.hasByValAttr())
   2355       return false;
   2356   }
   2357 
   2358   LLVMContext &Ctx = *DAG.getContext();
   2359 
   2360   // Check that the call results are passed in the same way.
   2361   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
   2362                                   CCAssignFnForCall(CalleeCC, IsVarArg),
   2363                                   CCAssignFnForCall(CallerCC, IsVarArg)))
   2364     return false;
   2365 
   2366   // The callee has to preserve all registers the caller needs to preserve.
   2367   if (!CCMatch) {
   2368     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
   2369     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
   2370       return false;
   2371   }
   2372 
   2373   // Nothing more to check if the callee is taking no arguments.
   2374   if (Outs.empty())
   2375     return true;
   2376 
   2377   SmallVector<CCValAssign, 16> ArgLocs;
   2378   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
   2379 
   2380   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
   2381 
   2382   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
   2383   // If the stack arguments for this call do not fit into our own save area then
   2384   // the call cannot be made tail.
   2385   // TODO: Is this really necessary?
   2386   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
   2387     return false;
   2388 
   2389   const MachineRegisterInfo &MRI = MF.getRegInfo();
   2390   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
   2391 }
   2392 
   2393 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
   2394   if (!CI->isTailCall())
   2395     return false;
   2396 
   2397   const Function *ParentFn = CI->getParent()->getParent();
   2398   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
   2399     return false;
   2400 
   2401   auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
   2402   return (Attr.getValueAsString() != "true");
   2403 }
   2404 
   2405 // The wave scratch offset register is used as the global base pointer.
   2406 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
   2407                                     SmallVectorImpl<SDValue> &InVals) const {
   2408   SelectionDAG &DAG = CLI.DAG;
   2409   const SDLoc &DL = CLI.DL;
   2410   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   2411   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
   2412   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
   2413   SDValue Chain = CLI.Chain;
   2414   SDValue Callee = CLI.Callee;
   2415   bool &IsTailCall = CLI.IsTailCall;
   2416   CallingConv::ID CallConv = CLI.CallConv;
   2417   bool IsVarArg = CLI.IsVarArg;
   2418   bool IsSibCall = false;
   2419   bool IsThisReturn = false;
   2420   MachineFunction &MF = DAG.getMachineFunction();
   2421 
   2422   if (IsVarArg) {
   2423     return lowerUnhandledCall(CLI, InVals,
   2424                               "unsupported call to variadic function ");
   2425   }
   2426 
   2427   if (!CLI.CS.getCalledFunction()) {
   2428     return lowerUnhandledCall(CLI, InVals,
   2429                               "unsupported indirect call to function ");
   2430   }
   2431 
   2432   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
   2433     return lowerUnhandledCall(CLI, InVals,
   2434                               "unsupported required tail call to function ");
   2435   }
   2436 
   2437   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
   2438     // Note the issue is with the CC of the calling function, not of the call
   2439     // itself.
   2440     return lowerUnhandledCall(CLI, InVals,
   2441                           "unsupported call from graphics shader of function ");
   2442   }
   2443 
   2444   // The first 4 bytes are reserved for the callee's emergency stack slot.
   2445   const unsigned CalleeUsableStackOffset = 4;
   2446 
   2447   if (IsTailCall) {
   2448     IsTailCall = isEligibleForTailCallOptimization(
   2449       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
   2450     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
   2451       report_fatal_error("failed to perform tail call elimination on a call "
   2452                          "site marked musttail");
   2453     }
   2454 
   2455     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
   2456 
   2457     // A sibling call is one where we're under the usual C ABI and not planning
   2458     // to change that but can still do a tail call:
   2459     if (!TailCallOpt && IsTailCall)
   2460       IsSibCall = true;
   2461 
   2462     if (IsTailCall)
   2463       ++NumTailCalls;
   2464   }
   2465 
   2466   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2467     // FIXME: Remove this hack for function pointer types after removing
   2468     // support of old address space mapping. In the new address space
   2469     // mapping the pointer in default address space is 64 bit, therefore
   2470     // does not need this hack.
   2471     if (Callee.getValueType() == MVT::i32) {
   2472       const GlobalValue *GV = GA->getGlobal();
   2473       Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false,
   2474                                     GA->getTargetFlags());
   2475     }
   2476   }
   2477   assert(Callee.getValueType() == MVT::i64);
   2478 
   2479   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   2480 
   2481   // Analyze operands of the call, assigning locations to each operand.
   2482   SmallVector<CCValAssign, 16> ArgLocs;
   2483   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   2484   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
   2485   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
   2486 
   2487   // Get a count of how many bytes are to be pushed on the stack.
   2488   unsigned NumBytes = CCInfo.getNextStackOffset();
   2489 
   2490   if (IsSibCall) {
   2491     // Since we're not changing the ABI to make this a tail call, the memory
   2492     // operands are already available in the caller's incoming argument space.
   2493     NumBytes = 0;
   2494   }
   2495 
   2496   // FPDiff is the byte offset of the call's argument area from the callee's.
   2497   // Stores to callee stack arguments will be placed in FixedStackSlots offset
   2498   // by this amount for a tail call. In a sibling call it must be 0 because the
   2499   // caller will deallocate the entire stack and the callee still expects its
   2500   // arguments to begin at SP+0. Completely unused for non-tail calls.
   2501   int32_t FPDiff = 0;
   2502   MachineFrameInfo &MFI = MF.getFrameInfo();
   2503   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2504 
   2505   SDValue CallerSavedFP;
   2506 
   2507   // Adjust the stack pointer for the new arguments...
   2508   // These operations are automatically eliminated by the prolog/epilog pass
   2509   if (!IsSibCall) {
   2510     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
   2511 
   2512     unsigned OffsetReg = Info->getScratchWaveOffsetReg();
   2513 
   2514     // In the HSA case, this should be an identity copy.
   2515     SDValue ScratchRSrcReg
   2516       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
   2517     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
   2518 
   2519     // TODO: Don't hardcode these registers and get from the callee function.
   2520     SDValue ScratchWaveOffsetReg
   2521       = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
   2522     RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
   2523 
   2524     if (!Info->isEntryFunction()) {
   2525       // Avoid clobbering this function's FP value. In the current convention
   2526       // callee will overwrite this, so do save/restore around the call site.
   2527       CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
   2528                                          Info->getFrameOffsetReg(), MVT::i32);
   2529     }
   2530   }
   2531 
   2532   // Stack pointer relative accesses are done by changing the offset SGPR. This
   2533   // is just the VGPR offset component.
   2534   SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32);
   2535 
   2536   SmallVector<SDValue, 8> MemOpChains;
   2537   MVT PtrVT = MVT::i32;
   2538 
   2539   // Walk the register/memloc assignments, inserting copies/loads.
   2540   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
   2541        ++i, ++realArgIdx) {
   2542     CCValAssign &VA = ArgLocs[i];
   2543     SDValue Arg = OutVals[realArgIdx];
   2544 
   2545     // Promote the value if needed.
   2546     switch (VA.getLocInfo()) {
   2547     case CCValAssign::Full:
   2548       break;
   2549     case CCValAssign::BCvt:
   2550       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
   2551       break;
   2552     case CCValAssign::ZExt:
   2553       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
   2554       break;
   2555     case CCValAssign::SExt:
   2556       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
   2557       break;
   2558     case CCValAssign::AExt:
   2559       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
   2560       break;
   2561     case CCValAssign::FPExt:
   2562       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
   2563       break;
   2564     default:
   2565       llvm_unreachable("Unknown loc info!");
   2566     }
   2567 
   2568     if (VA.isRegLoc()) {
   2569       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2570     } else {
   2571       assert(VA.isMemLoc());
   2572 
   2573       SDValue DstAddr;
   2574       MachinePointerInfo DstInfo;
   2575 
   2576       unsigned LocMemOffset = VA.getLocMemOffset();
   2577       int32_t Offset = LocMemOffset;
   2578 
   2579       SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset);
   2580 
   2581       if (IsTailCall) {
   2582         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2583         unsigned OpSize = Flags.isByVal() ?
   2584           Flags.getByValSize() : VA.getValVT().getStoreSize();
   2585 
   2586         Offset = Offset + FPDiff;
   2587         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
   2588 
   2589         DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT),
   2590                                          StackPtr);
   2591         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
   2592 
   2593         // Make sure any stack arguments overlapping with where we're storing
   2594         // are loaded before this eventual operation. Otherwise they'll be
   2595         // clobbered.
   2596 
   2597         // FIXME: Why is this really necessary? This seems to just result in a
   2598         // lot of code to copy the stack and write them back to the same
   2599         // locations, which are supposed to be immutable?
   2600         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
   2601       } else {
   2602         DstAddr = PtrOff;
   2603         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
   2604       }
   2605 
   2606       if (Outs[i].Flags.isByVal()) {
   2607         SDValue SizeNode =
   2608             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
   2609         SDValue Cpy = DAG.getMemcpy(
   2610             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
   2611             /*isVol = */ false, /*AlwaysInline = */ true,
   2612             /*isTailCall = */ false, DstInfo,
   2613             MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
   2614                 *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS))));
   2615 
   2616         MemOpChains.push_back(Cpy);
   2617       } else {
   2618         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
   2619         MemOpChains.push_back(Store);
   2620       }
   2621     }
   2622   }
   2623 
   2624   // Copy special input registers after user input arguments.
   2625   passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr);
   2626 
   2627   if (!MemOpChains.empty())
   2628     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   2629 
   2630   // Build a sequence of copy-to-reg nodes chained together with token chain
   2631   // and flag operands which copy the outgoing args into the appropriate regs.
   2632   SDValue InFlag;
   2633   for (auto &RegToPass : RegsToPass) {
   2634     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
   2635                              RegToPass.second, InFlag);
   2636     InFlag = Chain.getValue(1);
   2637   }
   2638 
   2639 
   2640   SDValue PhysReturnAddrReg;
   2641   if (IsTailCall) {
   2642     // Since the return is being combined with the call, we need to pass on the
   2643     // return address.
   2644 
   2645     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
   2646     SDValue ReturnAddrReg = CreateLiveInRegister(
   2647       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
   2648 
   2649     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
   2650                                         MVT::i64);
   2651     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
   2652     InFlag = Chain.getValue(1);
   2653   }
   2654 
   2655   // We don't usually want to end the call-sequence here because we would tidy
   2656   // the frame up *after* the call, however in the ABI-changing tail-call case
   2657   // we've carefully laid out the parameters so that when sp is reset they'll be
   2658   // in the correct location.
   2659   if (IsTailCall && !IsSibCall) {
   2660     Chain = DAG.getCALLSEQ_END(Chain,
   2661                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
   2662                                DAG.getTargetConstant(0, DL, MVT::i32),
   2663                                InFlag, DL);
   2664     InFlag = Chain.getValue(1);
   2665   }
   2666 
   2667   std::vector<SDValue> Ops;
   2668   Ops.push_back(Chain);
   2669   Ops.push_back(Callee);
   2670 
   2671   if (IsTailCall) {
   2672     // Each tail call may have to adjust the stack by a different amount, so
   2673     // this information must travel along with the operation for eventual
   2674     // consumption by emitEpilogue.
   2675     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
   2676 
   2677     Ops.push_back(PhysReturnAddrReg);
   2678   }
   2679 
   2680   // Add argument registers to the end of the list so that they are known live
   2681   // into the call.
   2682   for (auto &RegToPass : RegsToPass) {
   2683     Ops.push_back(DAG.getRegister(RegToPass.first,
   2684                                   RegToPass.second.getValueType()));
   2685   }
   2686 
   2687   // Add a register mask operand representing the call-preserved registers.
   2688 
   2689   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
   2690   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   2691   assert(Mask && "Missing call preserved mask for calling convention");
   2692   Ops.push_back(DAG.getRegisterMask(Mask));
   2693 
   2694   if (InFlag.getNode())
   2695     Ops.push_back(InFlag);
   2696 
   2697   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2698 
   2699   // If we're doing a tall call, use a TC_RETURN here rather than an
   2700   // actual call instruction.
   2701   if (IsTailCall) {
   2702     MFI.setHasTailCall();
   2703     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
   2704   }
   2705 
   2706   // Returns a chain and a flag for retval copy to use.
   2707   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
   2708   Chain = Call.getValue(0);
   2709   InFlag = Call.getValue(1);
   2710 
   2711   if (CallerSavedFP) {
   2712     SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
   2713     Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
   2714     InFlag = Chain.getValue(1);
   2715   }
   2716 
   2717   uint64_t CalleePopBytes = NumBytes;
   2718   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
   2719                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
   2720                              InFlag, DL);
   2721   if (!Ins.empty())
   2722     InFlag = Chain.getValue(1);
   2723 
   2724   // Handle result values, copying them out of physregs into vregs that we
   2725   // return.
   2726   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
   2727                          InVals, IsThisReturn,
   2728                          IsThisReturn ? OutVals[0] : SDValue());
   2729 }
   2730 
   2731 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
   2732                                              SelectionDAG &DAG) const {
   2733   unsigned Reg = StringSwitch<unsigned>(RegName)
   2734     .Case("m0", AMDGPU::M0)
   2735     .Case("exec", AMDGPU::EXEC)
   2736     .Case("exec_lo", AMDGPU::EXEC_LO)
   2737     .Case("exec_hi", AMDGPU::EXEC_HI)
   2738     .Case("flat_scratch", AMDGPU::FLAT_SCR)
   2739     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
   2740     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
   2741     .Default(AMDGPU::NoRegister);
   2742 
   2743   if (Reg == AMDGPU::NoRegister) {
   2744     report_fatal_error(Twine("invalid register name \""
   2745                              + StringRef(RegName)  + "\"."));
   2746 
   2747   }
   2748 
   2749   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
   2750       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
   2751     report_fatal_error(Twine("invalid register \""
   2752                              + StringRef(RegName)  + "\" for subtarget."));
   2753   }
   2754 
   2755   switch (Reg) {
   2756   case AMDGPU::M0:
   2757   case AMDGPU::EXEC_LO:
   2758   case AMDGPU::EXEC_HI:
   2759   case AMDGPU::FLAT_SCR_LO:
   2760   case AMDGPU::FLAT_SCR_HI:
   2761     if (VT.getSizeInBits() == 32)
   2762       return Reg;
   2763     break;
   2764   case AMDGPU::EXEC:
   2765   case AMDGPU::FLAT_SCR:
   2766     if (VT.getSizeInBits() == 64)
   2767       return Reg;
   2768     break;
   2769   default:
   2770     llvm_unreachable("missing register type checking");
   2771   }
   2772 
   2773   report_fatal_error(Twine("invalid type for register \""
   2774                            + StringRef(RegName) + "\"."));
   2775 }
   2776 
   2777 // If kill is not the last instruction, split the block so kill is always a
   2778 // proper terminator.
   2779 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
   2780                                                     MachineBasicBlock *BB) const {
   2781   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   2782 
   2783   MachineBasicBlock::iterator SplitPoint(&MI);
   2784   ++SplitPoint;
   2785 
   2786   if (SplitPoint == BB->end()) {
   2787     // Don't bother with a new block.
   2788     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
   2789     return BB;
   2790   }
   2791 
   2792   MachineFunction *MF = BB->getParent();
   2793   MachineBasicBlock *SplitBB
   2794     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
   2795 
   2796   MF->insert(++MachineFunction::iterator(BB), SplitBB);
   2797   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
   2798 
   2799   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
   2800   BB->addSuccessor(SplitBB);
   2801 
   2802   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
   2803   return SplitBB;
   2804 }
   2805 
   2806 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
   2807 // wavefront. If the value is uniform and just happens to be in a VGPR, this
   2808 // will only do one iteration. In the worst case, this will loop 64 times.
   2809 //
   2810 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
   2811 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
   2812   const SIInstrInfo *TII,
   2813   MachineRegisterInfo &MRI,
   2814   MachineBasicBlock &OrigBB,
   2815   MachineBasicBlock &LoopBB,
   2816   const DebugLoc &DL,
   2817   const MachineOperand &IdxReg,
   2818   unsigned InitReg,
   2819   unsigned ResultReg,
   2820   unsigned PhiReg,
   2821   unsigned InitSaveExecReg,
   2822   int Offset,
   2823   bool UseGPRIdxMode,
   2824   bool IsIndirectSrc) {
   2825   MachineBasicBlock::iterator I = LoopBB.begin();
   2826 
   2827   unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
   2828   unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
   2829   unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
   2830   unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
   2831 
   2832   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
   2833     .addReg(InitReg)
   2834     .addMBB(&OrigBB)
   2835     .addReg(ResultReg)
   2836     .addMBB(&LoopBB);
   2837 
   2838   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
   2839     .addReg(InitSaveExecReg)
   2840     .addMBB(&OrigBB)
   2841     .addReg(NewExec)
   2842     .addMBB(&LoopBB);
   2843 
   2844   // Read the next variant <- also loop target.
   2845   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
   2846     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
   2847 
   2848   // Compare the just read M0 value to all possible Idx values.
   2849   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
   2850     .addReg(CurrentIdxReg)
   2851     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
   2852 
   2853   // Update EXEC, save the original EXEC value to VCC.
   2854   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
   2855     .addReg(CondReg, RegState::Kill);
   2856 
   2857   MRI.setSimpleHint(NewExec, CondReg);
   2858 
   2859   if (UseGPRIdxMode) {
   2860     unsigned IdxReg;
   2861     if (Offset == 0) {
   2862       IdxReg = CurrentIdxReg;
   2863     } else {
   2864       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
   2865       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
   2866         .addReg(CurrentIdxReg, RegState::Kill)
   2867         .addImm(Offset);
   2868     }
   2869     unsigned IdxMode = IsIndirectSrc ?
   2870       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
   2871     MachineInstr *SetOn =
   2872       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
   2873       .addReg(IdxReg, RegState::Kill)
   2874       .addImm(IdxMode);
   2875     SetOn->getOperand(3).setIsUndef();
   2876   } else {
   2877     // Move index from VCC into M0
   2878     if (Offset == 0) {
   2879       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
   2880         .addReg(CurrentIdxReg, RegState::Kill);
   2881     } else {
   2882       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
   2883         .addReg(CurrentIdxReg, RegState::Kill)
   2884         .addImm(Offset);
   2885     }
   2886   }
   2887 
   2888   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
   2889   MachineInstr *InsertPt =
   2890     BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
   2891     .addReg(AMDGPU::EXEC)
   2892     .addReg(NewExec);
   2893 
   2894   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
   2895   // s_cbranch_scc0?
   2896 
   2897   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
   2898   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
   2899     .addMBB(&LoopBB);
   2900 
   2901   return InsertPt->getIterator();
   2902 }
   2903 
   2904 // This has slightly sub-optimal regalloc when the source vector is killed by
   2905 // the read. The register allocator does not understand that the kill is
   2906 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
   2907 // subregister from it, using 1 more VGPR than necessary. This was saved when
   2908 // this was expanded after register allocation.
   2909 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
   2910                                                   MachineBasicBlock &MBB,
   2911                                                   MachineInstr &MI,
   2912                                                   unsigned InitResultReg,
   2913                                                   unsigned PhiReg,
   2914                                                   int Offset,
   2915                                                   bool UseGPRIdxMode,
   2916                                                   bool IsIndirectSrc) {
   2917   MachineFunction *MF = MBB.getParent();
   2918   MachineRegisterInfo &MRI = MF->getRegInfo();
   2919   const DebugLoc &DL = MI.getDebugLoc();
   2920   MachineBasicBlock::iterator I(&MI);
   2921 
   2922   unsigned DstReg = MI.getOperand(0).getReg();
   2923   unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
   2924   unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
   2925 
   2926   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
   2927 
   2928   // Save the EXEC mask
   2929   BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
   2930     .addReg(AMDGPU::EXEC);
   2931 
   2932   // To insert the loop we need to split the block. Move everything after this
   2933   // point to a new block, and insert a new empty block between the two.
   2934   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
   2935   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
   2936   MachineFunction::iterator MBBI(MBB);
   2937   ++MBBI;
   2938 
   2939   MF->insert(MBBI, LoopBB);
   2940   MF->insert(MBBI, RemainderBB);
   2941 
   2942   LoopBB->addSuccessor(LoopBB);
   2943   LoopBB->addSuccessor(RemainderBB);
   2944 
   2945   // Move the rest of the block into a new block.
   2946   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
   2947   RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
   2948 
   2949   MBB.addSuccessor(LoopBB);
   2950 
   2951   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
   2952 
   2953   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
   2954                                       InitResultReg, DstReg, PhiReg, TmpExec,
   2955                                       Offset, UseGPRIdxMode, IsIndirectSrc);
   2956 
   2957   MachineBasicBlock::iterator First = RemainderBB->begin();
   2958   BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
   2959     .addReg(SaveExec);
   2960 
   2961   return InsPt;
   2962 }
   2963 
   2964 // Returns subreg index, offset
   2965 static std::pair<unsigned, int>
   2966 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
   2967                             const TargetRegisterClass *SuperRC,
   2968                             unsigned VecReg,
   2969                             int Offset) {
   2970   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
   2971 
   2972   // Skip out of bounds offsets, or else we would end up using an undefined
   2973   // register.
   2974   if (Offset >= NumElts || Offset < 0)
   2975     return std::make_pair(AMDGPU::sub0, Offset);
   2976 
   2977   return std::make_pair(AMDGPU::sub0 + Offset, 0);
   2978 }
   2979 
   2980 // Return true if the index is an SGPR and was set.
   2981 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
   2982                                  MachineRegisterInfo &MRI,
   2983                                  MachineInstr &MI,
   2984                                  int Offset,
   2985                                  bool UseGPRIdxMode,
   2986                                  bool IsIndirectSrc) {
   2987   MachineBasicBlock *MBB = MI.getParent();
   2988   const DebugLoc &DL = MI.getDebugLoc();
   2989   MachineBasicBlock::iterator I(&MI);
   2990 
   2991   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
   2992   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
   2993 
   2994   assert(Idx->getReg() != AMDGPU::NoRegister);
   2995 
   2996   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
   2997     return false;
   2998 
   2999   if (UseGPRIdxMode) {
   3000     unsigned IdxMode = IsIndirectSrc ?
   3001       VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
   3002     if (Offset == 0) {
   3003       MachineInstr *SetOn =
   3004           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
   3005               .add(*Idx)
   3006               .addImm(IdxMode);
   3007 
   3008       SetOn->getOperand(3).setIsUndef();
   3009     } else {
   3010       unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
   3011       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
   3012           .add(*Idx)
   3013           .addImm(Offset);
   3014       MachineInstr *SetOn =
   3015         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
   3016         .addReg(Tmp, RegState::Kill)
   3017         .addImm(IdxMode);
   3018 
   3019       SetOn->getOperand(3).setIsUndef();
   3020     }
   3021 
   3022     return true;
   3023   }
   3024 
   3025   if (Offset == 0) {
   3026     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
   3027       .add(*Idx);
   3028   } else {
   3029     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
   3030       .add(*Idx)
   3031       .addImm(Offset);
   3032   }
   3033 
   3034   return true;
   3035 }
   3036 
   3037 // Control flow needs to be inserted if indexing with a VGPR.
   3038 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
   3039                                           MachineBasicBlock &MBB,
   3040                                           const GCNSubtarget &ST) {
   3041   const SIInstrInfo *TII = ST.getInstrInfo();
   3042   const SIRegisterInfo &TRI = TII->getRegisterInfo();
   3043   MachineFunction *MF = MBB.getParent();
   3044   MachineRegisterInfo &MRI = MF->getRegInfo();
   3045 
   3046   unsigned Dst = MI.getOperand(0).getReg();
   3047   unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
   3048   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
   3049 
   3050   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
   3051 
   3052   unsigned SubReg;
   3053   std::tie(SubReg, Offset)
   3054     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
   3055 
   3056   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
   3057 
   3058   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
   3059     MachineBasicBlock::iterator I(&MI);
   3060     const DebugLoc &DL = MI.getDebugLoc();
   3061 
   3062     if (UseGPRIdxMode) {
   3063       // TODO: Look at the uses to avoid the copy. This may require rescheduling
   3064       // to avoid interfering with other uses, so probably requires a new
   3065       // optimization pass.
   3066       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
   3067         .addReg(SrcReg, RegState::Undef, SubReg)
   3068         .addReg(SrcReg, RegState::Implicit)
   3069         .addReg(AMDGPU::M0, RegState::Implicit);
   3070       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
   3071     } else {
   3072       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
   3073         .addReg(SrcReg, RegState::Undef, SubReg)
   3074         .addReg(SrcReg, RegState::Implicit);
   3075     }
   3076 
   3077     MI.eraseFromParent();
   3078 
   3079     return &MBB;
   3080   }
   3081 
   3082   const DebugLoc &DL = MI.getDebugLoc();
   3083   MachineBasicBlock::iterator I(&MI);
   3084 
   3085   unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
   3086   unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
   3087 
   3088   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
   3089 
   3090   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
   3091                               Offset, UseGPRIdxMode, true);
   3092   MachineBasicBlock *LoopBB = InsPt->getParent();
   3093 
   3094   if (UseGPRIdxMode) {
   3095     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
   3096       .addReg(SrcReg, RegState::Undef, SubReg)
   3097       .addReg(SrcReg, RegState::Implicit)
   3098       .addReg(AMDGPU::M0, RegState::Implicit);
   3099     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
   3100   } else {
   3101     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
   3102       .addReg(SrcReg, RegState::Undef, SubReg)
   3103       .addReg(SrcReg, RegState::Implicit);
   3104   }
   3105 
   3106   MI.eraseFromParent();
   3107 
   3108   return LoopBB;
   3109 }
   3110 
   3111 static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
   3112                                  const TargetRegisterClass *VecRC) {
   3113   switch (TRI.getRegSizeInBits(*VecRC)) {
   3114   case 32: // 4 bytes
   3115     return AMDGPU::V_MOVRELD_B32_V1;
   3116   case 64: // 8 bytes
   3117     return AMDGPU::V_MOVRELD_B32_V2;
   3118   case 128: // 16 bytes
   3119     return AMDGPU::V_MOVRELD_B32_V4;
   3120   case 256: // 32 bytes
   3121     return AMDGPU::V_MOVRELD_B32_V8;
   3122   case 512: // 64 bytes
   3123     return AMDGPU::V_MOVRELD_B32_V16;
   3124   default:
   3125     llvm_unreachable("unsupported size for MOVRELD pseudos");
   3126   }
   3127 }
   3128 
   3129 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
   3130                                           MachineBasicBlock &MBB,
   3131                                           const GCNSubtarget &ST) {
   3132   const SIInstrInfo *TII = ST.getInstrInfo();
   3133   const SIRegisterInfo &TRI = TII->getRegisterInfo();
   3134   MachineFunction *MF = MBB.getParent();
   3135   MachineRegisterInfo &MRI = MF->getRegInfo();
   3136 
   3137   unsigned Dst = MI.getOperand(0).getReg();
   3138   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
   3139   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
   3140   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
   3141   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
   3142   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
   3143 
   3144   // This can be an immediate, but will be folded later.
   3145   assert(Val->getReg());
   3146 
   3147   unsigned SubReg;
   3148   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
   3149                                                          SrcVec->getReg(),
   3150                                                          Offset);
   3151   bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
   3152 
   3153   if (Idx->getReg() == AMDGPU::NoRegister) {
   3154     MachineBasicBlock::iterator I(&MI);
   3155     const DebugLoc &DL = MI.getDebugLoc();
   3156 
   3157     assert(Offset == 0);
   3158 
   3159     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
   3160         .add(*SrcVec)
   3161         .add(*Val)
   3162         .addImm(SubReg);
   3163 
   3164     MI.eraseFromParent();
   3165     return &MBB;
   3166   }
   3167 
   3168   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
   3169     MachineBasicBlock::iterator I(&MI);
   3170     const DebugLoc &DL = MI.getDebugLoc();
   3171 
   3172     if (UseGPRIdxMode) {
   3173       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
   3174           .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
   3175           .add(*Val)
   3176           .addReg(Dst, RegState::ImplicitDefine)
   3177           .addReg(SrcVec->getReg(), RegState::Implicit)
   3178           .addReg(AMDGPU::M0, RegState::Implicit);
   3179 
   3180       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
   3181     } else {
   3182       const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
   3183 
   3184       BuildMI(MBB, I, DL, MovRelDesc)
   3185           .addReg(Dst, RegState::Define)
   3186           .addReg(SrcVec->getReg())
   3187           .add(*Val)
   3188           .addImm(SubReg - AMDGPU::sub0);
   3189     }
   3190 
   3191     MI.eraseFromParent();
   3192     return &MBB;
   3193   }
   3194 
   3195   if (Val->isReg())
   3196     MRI.clearKillFlags(Val->getReg());
   3197 
   3198   const DebugLoc &DL = MI.getDebugLoc();
   3199 
   3200   unsigned PhiReg = MRI.createVirtualRegister(VecRC);
   3201 
   3202   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
   3203                               Offset, UseGPRIdxMode, false);
   3204   MachineBasicBlock *LoopBB = InsPt->getParent();
   3205 
   3206   if (UseGPRIdxMode) {
   3207     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
   3208         .addReg(PhiReg, RegState::Undef, SubReg) // vdst
   3209         .add(*Val)                               // src0
   3210         .addReg(Dst, RegState::ImplicitDefine)
   3211         .addReg(PhiReg, RegState::Implicit)
   3212         .addReg(AMDGPU::M0, RegState::Implicit);
   3213     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
   3214   } else {
   3215     const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
   3216 
   3217     BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
   3218         .addReg(Dst, RegState::Define)
   3219         .addReg(PhiReg)
   3220         .add(*Val)
   3221         .addImm(SubReg - AMDGPU::sub0);
   3222   }
   3223 
   3224   MI.eraseFromParent();
   3225 
   3226   return LoopBB;
   3227 }
   3228 
   3229 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
   3230   MachineInstr &MI, MachineBasicBlock *BB) const {
   3231 
   3232   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   3233   MachineFunction *MF = BB->getParent();
   3234   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
   3235 
   3236   if (TII->isMIMG(MI)) {
   3237     if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
   3238       report_fatal_error("missing mem operand from MIMG instruction");
   3239     }
   3240     // Add a memoperand for mimg instructions so that they aren't assumed to
   3241     // be ordered memory instuctions.
   3242 
   3243     return BB;
   3244   }
   3245 
   3246   switch (MI.getOpcode()) {
   3247   case AMDGPU::S_ADD_U64_PSEUDO:
   3248   case AMDGPU::S_SUB_U64_PSEUDO: {
   3249     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   3250     const DebugLoc &DL = MI.getDebugLoc();
   3251 
   3252     MachineOperand &Dest = MI.getOperand(0);
   3253     MachineOperand &Src0 = MI.getOperand(1);
   3254     MachineOperand &Src1 = MI.getOperand(2);
   3255 
   3256     unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
   3257     unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
   3258 
   3259     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
   3260      Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
   3261      &AMDGPU::SReg_32_XM0RegClass);
   3262     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
   3263       Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
   3264       &AMDGPU::SReg_32_XM0RegClass);
   3265 
   3266     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
   3267       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
   3268       &AMDGPU::SReg_32_XM0RegClass);
   3269     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
   3270       Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
   3271       &AMDGPU::SReg_32_XM0RegClass);
   3272 
   3273     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
   3274 
   3275     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
   3276     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
   3277     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
   3278       .add(Src0Sub0)
   3279       .add(Src1Sub0);
   3280     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
   3281       .add(Src0Sub1)
   3282       .add(Src1Sub1);
   3283     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
   3284       .addReg(DestSub0)
   3285       .addImm(AMDGPU::sub0)
   3286       .addReg(DestSub1)
   3287       .addImm(AMDGPU::sub1);
   3288     MI.eraseFromParent();
   3289     return BB;
   3290   }
   3291   case AMDGPU::SI_INIT_M0: {
   3292     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
   3293             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
   3294         .add(MI.getOperand(0));
   3295     MI.eraseFromParent();
   3296     return BB;
   3297   }
   3298   case AMDGPU::SI_INIT_EXEC:
   3299     // This should be before all vector instructions.
   3300     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
   3301             AMDGPU::EXEC)
   3302         .addImm(MI.getOperand(0).getImm());
   3303     MI.eraseFromParent();
   3304     return BB;
   3305 
   3306   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
   3307     // Extract the thread count from an SGPR input and set EXEC accordingly.
   3308     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
   3309     //
   3310     // S_BFE_U32 count, input, {shift, 7}
   3311     // S_BFM_B64 exec, count, 0
   3312     // S_CMP_EQ_U32 count, 64
   3313     // S_CMOV_B64 exec, -1
   3314     MachineInstr *FirstMI = &*BB->begin();
   3315     MachineRegisterInfo &MRI = MF->getRegInfo();
   3316     unsigned InputReg = MI.getOperand(0).getReg();
   3317     unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
   3318     bool Found = false;
   3319 
   3320     // Move the COPY of the input reg to the beginning, so that we can use it.
   3321     for (auto I = BB->begin(); I != &MI; I++) {
   3322       if (I->getOpcode() != TargetOpcode::COPY ||
   3323           I->getOperand(0).getReg() != InputReg)
   3324         continue;
   3325 
   3326       if (I == FirstMI) {
   3327         FirstMI = &*++BB->begin();
   3328       } else {
   3329         I->removeFromParent();
   3330         BB->insert(FirstMI, &*I);
   3331       }
   3332       Found = true;
   3333       break;
   3334     }
   3335     assert(Found);
   3336     (void)Found;
   3337 
   3338     // This should be before all vector instructions.
   3339     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
   3340         .addReg(InputReg)
   3341         .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
   3342     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
   3343             AMDGPU::EXEC)
   3344         .addReg(CountReg)
   3345         .addImm(0);
   3346     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
   3347         .addReg(CountReg, RegState::Kill)
   3348         .addImm(64);
   3349     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
   3350             AMDGPU::EXEC)
   3351         .addImm(-1);
   3352     MI.eraseFromParent();
   3353     return BB;
   3354   }
   3355 
   3356   case AMDGPU::GET_GROUPSTATICSIZE: {
   3357     DebugLoc DL = MI.getDebugLoc();
   3358     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
   3359         .add(MI.getOperand(0))
   3360         .addImm(MFI->getLDSSize());
   3361     MI.eraseFromParent();
   3362     return BB;
   3363   }
   3364   case AMDGPU::SI_INDIRECT_SRC_V1:
   3365   case AMDGPU::SI_INDIRECT_SRC_V2:
   3366   case AMDGPU::SI_INDIRECT_SRC_V4:
   3367   case AMDGPU::SI_INDIRECT_SRC_V8:
   3368   case AMDGPU::SI_INDIRECT_SRC_V16:
   3369     return emitIndirectSrc(MI, *BB, *getSubtarget());
   3370   case AMDGPU::SI_INDIRECT_DST_V1:
   3371   case AMDGPU::SI_INDIRECT_DST_V2:
   3372   case AMDGPU::SI_INDIRECT_DST_V4:
   3373   case AMDGPU::SI_INDIRECT_DST_V8:
   3374   case AMDGPU::SI_INDIRECT_DST_V16:
   3375     return emitIndirectDst(MI, *BB, *getSubtarget());
   3376   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
   3377   case AMDGPU::SI_KILL_I1_PSEUDO:
   3378     return splitKillBlock(MI, BB);
   3379   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
   3380     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   3381 
   3382     unsigned Dst = MI.getOperand(0).getReg();
   3383     unsigned Src0 = MI.getOperand(1).getReg();
   3384     unsigned Src1 = MI.getOperand(2).getReg();
   3385     const DebugLoc &DL = MI.getDebugLoc();
   3386     unsigned SrcCond = MI.getOperand(3).getReg();
   3387 
   3388     unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
   3389     unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
   3390     unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
   3391 
   3392     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
   3393       .addReg(SrcCond);
   3394     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
   3395       .addReg(Src0, 0, AMDGPU::sub0)
   3396       .addReg(Src1, 0, AMDGPU::sub0)
   3397       .addReg(SrcCondCopy);
   3398     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
   3399       .addReg(Src0, 0, AMDGPU::sub1)
   3400       .addReg(Src1, 0, AMDGPU::sub1)
   3401       .addReg(SrcCondCopy);
   3402 
   3403     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
   3404       .addReg(DstLo)
   3405       .addImm(AMDGPU::sub0)
   3406       .addReg(DstHi)
   3407       .addImm(AMDGPU::sub1);
   3408     MI.eraseFromParent();
   3409     return BB;
   3410   }
   3411   case AMDGPU::SI_BR_UNDEF: {
   3412     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   3413     const DebugLoc &DL = MI.getDebugLoc();
   3414     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
   3415                            .add(MI.getOperand(0));
   3416     Br->getOperand(1).setIsUndef(true); // read undef SCC
   3417     MI.eraseFromParent();
   3418     return BB;
   3419   }
   3420   case AMDGPU::ADJCALLSTACKUP:
   3421   case AMDGPU::ADJCALLSTACKDOWN: {
   3422     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
   3423     MachineInstrBuilder MIB(*MF, &MI);
   3424 
   3425     // Add an implicit use of the frame offset reg to prevent the restore copy
   3426     // inserted after the call from being reorderd after stack operations in the
   3427     // the caller's frame.
   3428     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
   3429         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
   3430         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
   3431     return BB;
   3432   }
   3433   case AMDGPU::SI_CALL_ISEL:
   3434   case AMDGPU::SI_TCRETURN_ISEL: {
   3435     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   3436     const DebugLoc &DL = MI.getDebugLoc();
   3437     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
   3438 
   3439     MachineRegisterInfo &MRI = MF->getRegInfo();
   3440     unsigned GlobalAddrReg = MI.getOperand(0).getReg();
   3441     MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
   3442     assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET);
   3443 
   3444     const GlobalValue *G = PCRel->getOperand(1).getGlobal();
   3445 
   3446     MachineInstrBuilder MIB;
   3447     if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
   3448       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
   3449         .add(MI.getOperand(0))
   3450         .addGlobalAddress(G);
   3451     } else {
   3452       MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
   3453         .add(MI.getOperand(0))
   3454         .addGlobalAddress(G);
   3455 
   3456       // There is an additional imm operand for tcreturn, but it should be in the
   3457       // right place already.
   3458     }
   3459 
   3460     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
   3461       MIB.add(MI.getOperand(I));
   3462 
   3463     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   3464     MI.eraseFromParent();
   3465     return BB;
   3466   }
   3467   default:
   3468     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
   3469   }
   3470 }
   3471 
   3472 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
   3473   return isTypeLegal(VT.getScalarType());
   3474 }
   3475 
   3476 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   3477   // This currently forces unfolding various combinations of fsub into fma with
   3478   // free fneg'd operands. As long as we have fast FMA (controlled by
   3479   // isFMAFasterThanFMulAndFAdd), we should perform these.
   3480 
   3481   // When fma is quarter rate, for f64 where add / sub are at best half rate,
   3482   // most of these combines appear to be cycle neutral but save on instruction
   3483   // count / code size.
   3484   return true;
   3485 }
   3486 
   3487 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
   3488                                          EVT VT) const {
   3489   if (!VT.isVector()) {
   3490     return MVT::i1;
   3491   }
   3492   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
   3493 }
   3494 
   3495 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
   3496   // TODO: Should i16 be used always if legal? For now it would force VALU
   3497   // shifts.
   3498   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
   3499 }
   3500 
   3501 // Answering this is somewhat tricky and depends on the specific device which
   3502 // have different rates for fma or all f64 operations.
   3503 //
   3504 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
   3505 // regardless of which device (although the number of cycles differs between
   3506 // devices), so it is always profitable for f64.
   3507 //
   3508 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
   3509 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
   3510 // which we can always do even without fused FP ops since it returns the same
   3511 // result as the separate operations and since it is always full
   3512 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
   3513 // however does not support denormals, so we do report fma as faster if we have
   3514 // a fast fma device and require denormals.
   3515 //
   3516 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   3517   VT = VT.getScalarType();
   3518 
   3519   switch (VT.getSimpleVT().SimpleTy) {
   3520   case MVT::f32: {
   3521     // This is as fast on some subtargets. However, we always have full rate f32
   3522     // mad available which returns the same result as the separate operations
   3523     // which we should prefer over fma. We can't use this if we want to support
   3524     // denormals, so only report this in these cases.
   3525     if (Subtarget->hasFP32Denormals())
   3526       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
   3527 
   3528     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
   3529     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
   3530   }
   3531   case MVT::f64:
   3532     return true;
   3533   case MVT::f16:
   3534     return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
   3535   default:
   3536     break;
   3537   }
   3538 
   3539   return false;
   3540 }
   3541 
   3542 //===----------------------------------------------------------------------===//
   3543 // Custom DAG Lowering Operations
   3544 //===----------------------------------------------------------------------===//
   3545 
   3546 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
   3547 // wider vector type is legal.
   3548 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
   3549                                              SelectionDAG &DAG) const {
   3550   unsigned Opc = Op.getOpcode();
   3551   EVT VT = Op.getValueType();
   3552   assert(VT == MVT::v4f16);
   3553 
   3554   SDValue Lo, Hi;
   3555   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
   3556 
   3557   SDLoc SL(Op);
   3558   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
   3559                              Op->getFlags());
   3560   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
   3561                              Op->getFlags());
   3562 
   3563   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
   3564 }
   3565 
   3566 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
   3567 // wider vector type is legal.
   3568 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
   3569                                               SelectionDAG &DAG) const {
   3570   unsigned Opc = Op.getOpcode();
   3571   EVT VT = Op.getValueType();
   3572   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
   3573 
   3574   SDValue Lo0, Hi0;
   3575   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
   3576   SDValue Lo1, Hi1;
   3577   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
   3578 
   3579   SDLoc SL(Op);
   3580 
   3581   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
   3582                              Op->getFlags());
   3583   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
   3584                              Op->getFlags());
   3585 
   3586   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
   3587 }
   3588 
   3589 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   3590   switch (Op.getOpcode()) {
   3591   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
   3592   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
   3593   case ISD::LOAD: {
   3594     SDValue Result = LowerLOAD(Op, DAG);
   3595     assert((!Result.getNode() ||
   3596             Result.getNode()->getNumValues() == 2) &&
   3597            "Load should return a value and a chain");
   3598     return Result;
   3599   }
   3600 
   3601   case ISD::FSIN:
   3602   case ISD::FCOS:
   3603     return LowerTrig(Op, DAG);
   3604   case ISD::SELECT: return LowerSELECT(Op, DAG);
   3605   case ISD::FDIV: return LowerFDIV(Op, DAG);
   3606   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
   3607   case ISD::STORE: return LowerSTORE(Op, DAG);
   3608   case ISD::GlobalAddress: {
   3609     MachineFunction &MF = DAG.getMachineFunction();
   3610     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
   3611     return LowerGlobalAddress(MFI, Op, DAG);
   3612   }
   3613   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   3614   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
   3615   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
   3616   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
   3617   case ISD::INSERT_VECTOR_ELT:
   3618     return lowerINSERT_VECTOR_ELT(Op, DAG);
   3619   case ISD::EXTRACT_VECTOR_ELT:
   3620     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
   3621   case ISD::BUILD_VECTOR:
   3622     return lowerBUILD_VECTOR(Op, DAG);
   3623   case ISD::FP_ROUND:
   3624     return lowerFP_ROUND(Op, DAG);
   3625   case ISD::TRAP:
   3626     return lowerTRAP(Op, DAG);
   3627   case ISD::DEBUGTRAP:
   3628     return lowerDEBUGTRAP(Op, DAG);
   3629   case ISD::FABS:
   3630   case ISD::FNEG:
   3631     return splitUnaryVectorOp(Op, DAG);
   3632   case ISD::SHL:
   3633   case ISD::SRA:
   3634   case ISD::SRL:
   3635   case ISD::ADD:
   3636   case ISD::SUB:
   3637   case ISD::MUL:
   3638   case ISD::SMIN:
   3639   case ISD::SMAX:
   3640   case ISD::UMIN:
   3641   case ISD::UMAX:
   3642   case ISD::FMINNUM:
   3643   case ISD::FMAXNUM:
   3644   case ISD::FADD:
   3645   case ISD::FMUL:
   3646     return splitBinaryVectorOp(Op, DAG);
   3647   }
   3648   return SDValue();
   3649 }
   3650 
   3651 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
   3652                                        const SDLoc &DL,
   3653                                        SelectionDAG &DAG, bool Unpacked) {
   3654   if (!LoadVT.isVector())
   3655     return Result;
   3656 
   3657   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
   3658     // Truncate to v2i16/v4i16.
   3659     EVT IntLoadVT = LoadVT.changeTypeToInteger();
   3660 
   3661     // Workaround legalizer not scalarizing truncate after vector op
   3662     // legalization byt not creating intermediate vector trunc.
   3663     SmallVector<SDValue, 4> Elts;
   3664     DAG.ExtractVectorElements(Result, Elts);
   3665     for (SDValue &Elt : Elts)
   3666       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
   3667 
   3668     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
   3669 
   3670     // Bitcast to original type (v2f16/v4f16).
   3671     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
   3672   }
   3673 
   3674   // Cast back to the original packed type.
   3675   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
   3676 }
   3677 
   3678 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
   3679                                               MemSDNode *M,
   3680                                               SelectionDAG &DAG,
   3681                                               bool IsIntrinsic) const {
   3682   SDLoc DL(M);
   3683   SmallVector<SDValue, 10> Ops;
   3684   Ops.reserve(M->getNumOperands());
   3685 
   3686   Ops.push_back(M->getOperand(0));
   3687   if (IsIntrinsic)
   3688     Ops.push_back(DAG.getConstant(Opcode, DL, MVT::i32));
   3689 
   3690   // Skip 1, as it is the intrinsic ID.
   3691   for (unsigned I = 2, E = M->getNumOperands(); I != E; ++I)
   3692     Ops.push_back(M->getOperand(I));
   3693 
   3694   bool Unpacked = Subtarget->hasUnpackedD16VMem();
   3695   EVT LoadVT = M->getValueType(0);
   3696 
   3697   EVT EquivLoadVT = LoadVT;
   3698   if (Unpacked && LoadVT.isVector()) {
   3699     EquivLoadVT = LoadVT.isVector() ?
   3700       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
   3701                        LoadVT.getVectorNumElements()) : LoadVT;
   3702   }
   3703 
   3704   // Change from v4f16/v2f16 to EquivLoadVT.
   3705   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
   3706 
   3707   SDValue Load
   3708     = DAG.getMemIntrinsicNode(
   3709       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
   3710       VTList, Ops, M->getMemoryVT(),
   3711       M->getMemOperand());
   3712   if (!Unpacked) // Just adjusted the opcode.
   3713     return Load;
   3714 
   3715   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
   3716 
   3717   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
   3718 }
   3719 
   3720 void SITargetLowering::ReplaceNodeResults(SDNode *N,
   3721                                           SmallVectorImpl<SDValue> &Results,
   3722                                           SelectionDAG &DAG) const {
   3723   switch (N->getOpcode()) {
   3724   case ISD::INSERT_VECTOR_ELT: {
   3725     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
   3726       Results.push_back(Res);
   3727     return;
   3728   }
   3729   case ISD::EXTRACT_VECTOR_ELT: {
   3730     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
   3731       Results.push_back(Res);
   3732     return;
   3733   }
   3734   case ISD::INTRINSIC_WO_CHAIN: {
   3735     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   3736     switch (IID) {
   3737     case Intrinsic::amdgcn_cvt_pkrtz: {
   3738       SDValue Src0 = N->getOperand(1);
   3739       SDValue Src1 = N->getOperand(2);
   3740       SDLoc SL(N);
   3741       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
   3742                                 Src0, Src1);
   3743       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
   3744       return;
   3745     }
   3746     case Intrinsic::amdgcn_cvt_pknorm_i16:
   3747     case Intrinsic::amdgcn_cvt_pknorm_u16:
   3748     case Intrinsic::amdgcn_cvt_pk_i16:
   3749     case Intrinsic::amdgcn_cvt_pk_u16: {
   3750       SDValue Src0 = N->getOperand(1);
   3751       SDValue Src1 = N->getOperand(2);
   3752       SDLoc SL(N);
   3753       unsigned Opcode;
   3754 
   3755       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
   3756         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
   3757       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
   3758         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
   3759       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
   3760         Opcode = AMDGPUISD::CVT_PK_I16_I32;
   3761       else
   3762         Opcode = AMDGPUISD::CVT_PK_U16_U32;
   3763 
   3764       SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
   3765       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
   3766       return;
   3767     }
   3768     }
   3769     break;
   3770   }
   3771   case ISD::INTRINSIC_W_CHAIN: {
   3772     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
   3773       Results.push_back(Res);
   3774       Results.push_back(Res.getValue(1));
   3775       return;
   3776     }
   3777 
   3778     break;
   3779   }
   3780   case ISD::SELECT: {
   3781     SDLoc SL(N);
   3782     EVT VT = N->getValueType(0);
   3783     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
   3784     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
   3785     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
   3786 
   3787     EVT SelectVT = NewVT;
   3788     if (NewVT.bitsLT(MVT::i32)) {
   3789       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
   3790       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
   3791       SelectVT = MVT::i32;
   3792     }
   3793 
   3794     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
   3795                                     N->getOperand(0), LHS, RHS);
   3796 
   3797     if (NewVT != SelectVT)
   3798       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
   3799     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
   3800     return;
   3801   }
   3802   case ISD::FNEG: {
   3803     if (N->getValueType(0) != MVT::v2f16)
   3804       break;
   3805 
   3806     SDLoc SL(N);
   3807     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
   3808 
   3809     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
   3810                              BC,
   3811                              DAG.getConstant(0x80008000, SL, MVT::i32));
   3812     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
   3813     return;
   3814   }
   3815   case ISD::FABS: {
   3816     if (N->getValueType(0) != MVT::v2f16)
   3817       break;
   3818 
   3819     SDLoc SL(N);
   3820     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
   3821 
   3822     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
   3823                              BC,
   3824                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
   3825     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
   3826     return;
   3827   }
   3828   default:
   3829     break;
   3830   }
   3831 }
   3832 
   3833 /// Helper function for LowerBRCOND
   3834 static SDNode *findUser(SDValue Value, unsigned Opcode) {
   3835 
   3836   SDNode *Parent = Value.getNode();
   3837   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
   3838        I != E; ++I) {
   3839 
   3840     if (I.getUse().get() != Value)
   3841       continue;
   3842 
   3843     if (I->getOpcode() == Opcode)
   3844       return *I;
   3845   }
   3846   return nullptr;
   3847 }
   3848 
   3849 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
   3850   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
   3851     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
   3852     case Intrinsic::amdgcn_if:
   3853       return AMDGPUISD::IF;
   3854     case Intrinsic::amdgcn_else:
   3855       return AMDGPUISD::ELSE;
   3856     case Intrinsic::amdgcn_loop:
   3857       return AMDGPUISD::LOOP;
   3858     case Intrinsic::amdgcn_end_cf:
   3859       llvm_unreachable("should not occur");
   3860     default:
   3861       return 0;
   3862     }
   3863   }
   3864 
   3865   // break, if_break, else_break are all only used as inputs to loop, not
   3866   // directly as branch conditions.
   3867   return 0;
   3868 }
   3869 
   3870 void SITargetLowering::createDebuggerPrologueStackObjects(
   3871     MachineFunction &MF) const {
   3872   // Create stack objects that are used for emitting debugger prologue.
   3873   //
   3874   // Debugger prologue writes work group IDs and work item IDs to scratch memory
   3875   // at fixed location in the following format:
   3876   //   offset 0:  work group ID x
   3877   //   offset 4:  work group ID y
   3878   //   offset 8:  work group ID z
   3879   //   offset 16: work item ID x
   3880   //   offset 20: work item ID y
   3881   //   offset 24: work item ID z
   3882   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   3883   int ObjectIdx = 0;
   3884 
   3885   // For each dimension:
   3886   for (unsigned i = 0; i < 3; ++i) {
   3887     // Create fixed stack object for work group ID.
   3888     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
   3889     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
   3890     // Create fixed stack object for work item ID.
   3891     ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
   3892     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
   3893   }
   3894 }
   3895 
   3896 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
   3897   const Triple &TT = getTargetMachine().getTargetTriple();
   3898   return (GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
   3899           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
   3900          AMDGPU::shouldEmitConstantsToTextSection(TT);
   3901 }
   3902 
   3903 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
   3904   return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
   3905           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
   3906           GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
   3907          !shouldEmitFixup(GV) &&
   3908          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
   3909 }
   3910 
   3911 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
   3912   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
   3913 }
   3914 
   3915 /// This transforms the control flow intrinsics to get the branch destination as
   3916 /// last parameter, also switches branch target with BR if the need arise
   3917 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
   3918                                       SelectionDAG &DAG) const {
   3919   SDLoc DL(BRCOND);
   3920 
   3921   SDNode *Intr = BRCOND.getOperand(1).getNode();
   3922   SDValue Target = BRCOND.getOperand(2);
   3923   SDNode *BR = nullptr;
   3924   SDNode *SetCC = nullptr;
   3925 
   3926   if (Intr->getOpcode() == ISD::SETCC) {
   3927     // As long as we negate the condition everything is fine
   3928     SetCC = Intr;
   3929     Intr = SetCC->getOperand(0).getNode();
   3930 
   3931   } else {
   3932     // Get the target from BR if we don't negate the condition
   3933     BR = findUser(BRCOND, ISD::BR);
   3934     Target = BR->getOperand(1);
   3935   }
   3936 
   3937   // FIXME: This changes the types of the intrinsics instead of introducing new
   3938   // nodes with the correct types.
   3939   // e.g. llvm.amdgcn.loop
   3940 
   3941   // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
   3942   // =>     t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
   3943 
   3944   unsigned CFNode = isCFIntrinsic(Intr);
   3945   if (CFNode == 0) {
   3946     // This is a uniform branch so we don't need to legalize.
   3947     return BRCOND;
   3948   }
   3949 
   3950   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
   3951                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
   3952 
   3953   assert(!SetCC ||
   3954         (SetCC->getConstantOperandVal(1) == 1 &&
   3955          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
   3956                                                              ISD::SETNE));
   3957 
   3958   // operands of the new intrinsic call
   3959   SmallVector<SDValue, 4> Ops;
   3960   if (HaveChain)
   3961     Ops.push_back(BRCOND.getOperand(0));
   3962 
   3963   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
   3964   Ops.push_back(Target);
   3965 
   3966   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
   3967 
   3968   // build the new intrinsic call
   3969   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
   3970 
   3971   if (!HaveChain) {
   3972     SDValue Ops[] =  {
   3973       SDValue(Result, 0),
   3974       BRCOND.getOperand(0)
   3975     };
   3976 
   3977     Result = DAG.getMergeValues(Ops, DL).getNode();
   3978   }
   3979 
   3980   if (BR) {
   3981     // Give the branch instruction our target
   3982     SDValue Ops[] = {
   3983       BR->getOperand(0),
   3984       BRCOND.getOperand(2)
   3985     };
   3986     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
   3987     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
   3988     BR = NewBR.getNode();
   3989   }
   3990 
   3991   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
   3992 
   3993   // Copy the intrinsic results to registers
   3994   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
   3995     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
   3996     if (!CopyToReg)
   3997       continue;
   3998 
   3999     Chain = DAG.getCopyToReg(
   4000       Chain, DL,
   4001       CopyToReg->getOperand(1),
   4002       SDValue(Result, i - 1),
   4003       SDValue());
   4004 
   4005     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
   4006   }
   4007 
   4008   // Remove the old intrinsic from the chain
   4009   DAG.ReplaceAllUsesOfValueWith(
   4010     SDValue(Intr, Intr->getNumValues() - 1),
   4011     Intr->getOperand(0));
   4012 
   4013   return Chain;
   4014 }
   4015 
   4016 SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
   4017                                             SDValue Op,
   4018                                             const SDLoc &DL,
   4019                                             EVT VT) const {
   4020   return Op.getValueType().bitsLE(VT) ?
   4021       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
   4022       DAG.getNode(ISD::FTRUNC, DL, VT, Op);
   4023 }
   4024 
   4025 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
   4026   assert(Op.getValueType() == MVT::f16 &&
   4027          "Do not know how to custom lower FP_ROUND for non-f16 type");
   4028 
   4029   SDValue Src = Op.getOperand(0);
   4030   EVT SrcVT = Src.getValueType();
   4031   if (SrcVT != MVT::f64)
   4032     return Op;
   4033 
   4034   SDLoc DL(Op);
   4035 
   4036   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
   4037   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
   4038   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
   4039 }
   4040 
   4041 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
   4042   SDLoc SL(Op);
   4043   SDValue Chain = Op.getOperand(0);
   4044 
   4045   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
   4046       !Subtarget->isTrapHandlerEnabled())
   4047     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
   4048 
   4049   MachineFunction &MF = DAG.getMachineFunction();
   4050   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   4051   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
   4052   assert(UserSGPR != AMDGPU::NoRegister);
   4053   SDValue QueuePtr = CreateLiveInRegister(
   4054     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
   4055   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
   4056   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
   4057                                    QueuePtr, SDValue());
   4058   SDValue Ops[] = {
   4059     ToReg,
   4060     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
   4061     SGPR01,
   4062     ToReg.getValue(1)
   4063   };
   4064   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
   4065 }
   4066 
   4067 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
   4068   SDLoc SL(Op);
   4069   SDValue Chain = Op.getOperand(0);
   4070   MachineFunction &MF = DAG.getMachineFunction();
   4071 
   4072   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
   4073       !Subtarget->isTrapHandlerEnabled()) {
   4074     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
   4075                                      "debugtrap handler not supported",
   4076                                      Op.getDebugLoc(),
   4077                                      DS_Warning);
   4078     LLVMContext &Ctx = MF.getFunction().getContext();
   4079     Ctx.diagnose(NoTrap);
   4080     return Chain;
   4081   }
   4082 
   4083   SDValue Ops[] = {
   4084     Chain,
   4085     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
   4086   };
   4087   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
   4088 }
   4089 
   4090 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
   4091                                              SelectionDAG &DAG) const {
   4092   // FIXME: Use inline constants (src_{shared, private}_base) instead.
   4093   if (Subtarget->hasApertureRegs()) {
   4094     unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
   4095         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
   4096         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
   4097     unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
   4098         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
   4099         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
   4100     unsigned Encoding =
   4101         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
   4102         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
   4103         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
   4104 
   4105     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
   4106     SDValue ApertureReg = SDValue(
   4107         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
   4108     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
   4109     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
   4110   }
   4111 
   4112   MachineFunction &MF = DAG.getMachineFunction();
   4113   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   4114   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
   4115   assert(UserSGPR != AMDGPU::NoRegister);
   4116 
   4117   SDValue QueuePtr = CreateLiveInRegister(
   4118     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
   4119 
   4120   // Offset into amd_queue_t for group_segment_aperture_base_hi /
   4121   // private_segment_aperture_base_hi.
   4122   uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;
   4123 
   4124   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
   4125 
   4126   // TODO: Use custom target PseudoSourceValue.
   4127   // TODO: We should use the value from the IR intrinsic call, but it might not
   4128   // be available and how do we get it?
   4129   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
   4130                                               AMDGPUASI.CONSTANT_ADDRESS));
   4131 
   4132   MachinePointerInfo PtrInfo(V, StructOffset);
   4133   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
   4134                      MinAlign(64, StructOffset),
   4135                      MachineMemOperand::MODereferenceable |
   4136                          MachineMemOperand::MOInvariant);
   4137 }
   4138 
   4139 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
   4140                                              SelectionDAG &DAG) const {
   4141   SDLoc SL(Op);
   4142   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
   4143 
   4144   SDValue Src = ASC->getOperand(0);
   4145   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
   4146 
   4147   const AMDGPUTargetMachine &TM =
   4148     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
   4149 
   4150   // flat -> local/private
   4151   if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
   4152     unsigned DestAS = ASC->getDestAddressSpace();
   4153 
   4154     if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
   4155         DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
   4156       unsigned NullVal = TM.getNullPointerValue(DestAS);
   4157       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
   4158       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
   4159       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
   4160 
   4161       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
   4162                          NonNull, Ptr, SegmentNullPtr);
   4163     }
   4164   }
   4165 
   4166   // local/private -> flat
   4167   if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
   4168     unsigned SrcAS = ASC->getSrcAddressSpace();
   4169 
   4170     if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
   4171         SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
   4172       unsigned NullVal = TM.getNullPointerValue(SrcAS);
   4173       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
   4174 
   4175       SDValue NonNull
   4176         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
   4177 
   4178       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
   4179       SDValue CvtPtr
   4180         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
   4181 
   4182       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
   4183                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
   4184                          FlatNullPtr);
   4185     }
   4186   }
   4187 
   4188   // global <-> flat are no-ops and never emitted.
   4189 
   4190   const MachineFunction &MF = DAG.getMachineFunction();
   4191   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
   4192     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
   4193   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
   4194 
   4195   return DAG.getUNDEF(ASC->getValueType(0));
   4196 }
   4197 
   4198 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
   4199                                                  SelectionDAG &DAG) const {
   4200   SDValue Vec = Op.getOperand(0);
   4201   SDValue InsVal = Op.getOperand(1);
   4202   SDValue Idx = Op.getOperand(2);
   4203   EVT VecVT = Vec.getValueType();
   4204   EVT EltVT = VecVT.getVectorElementType();
   4205   unsigned VecSize = VecVT.getSizeInBits();
   4206   unsigned EltSize = EltVT.getSizeInBits();
   4207 
   4208 
   4209   assert(VecSize <= 64);
   4210 
   4211   unsigned NumElts = VecVT.getVectorNumElements();
   4212   SDLoc SL(Op);
   4213   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
   4214 
   4215   if (NumElts == 4 && EltSize == 16 && KIdx) {
   4216     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
   4217 
   4218     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
   4219                                  DAG.getConstant(0, SL, MVT::i32));
   4220     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
   4221                                  DAG.getConstant(1, SL, MVT::i32));
   4222 
   4223     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
   4224     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
   4225 
   4226     unsigned Idx = KIdx->getZExtValue();
   4227     bool InsertLo = Idx < 2;
   4228     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
   4229       InsertLo ? LoVec : HiVec,
   4230       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
   4231       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
   4232 
   4233     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
   4234 
   4235     SDValue Concat = InsertLo ?
   4236       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
   4237       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
   4238 
   4239     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
   4240   }
   4241 
   4242   if (isa<ConstantSDNode>(Idx))
   4243     return SDValue();
   4244 
   4245   MVT IntVT = MVT::getIntegerVT(VecSize);
   4246 
   4247   // Avoid stack access for dynamic indexing.
   4248   SDValue Val = InsVal;
   4249   if (InsVal.getValueType() == MVT::f16)
   4250       Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal);
   4251 
   4252   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
   4253   SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Val);
   4254 
   4255   assert(isPowerOf2_32(EltSize));
   4256   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
   4257 
   4258   // Convert vector index to bit-index.
   4259   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
   4260 
   4261   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
   4262   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
   4263                             DAG.getConstant(0xffff, SL, IntVT),
   4264                             ScaledIdx);
   4265 
   4266   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
   4267   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
   4268                             DAG.getNOT(SL, BFM, IntVT), BCVec);
   4269 
   4270   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
   4271   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
   4272 }
   4273 
   4274 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
   4275                                                   SelectionDAG &DAG) const {
   4276   SDLoc SL(Op);
   4277 
   4278   EVT ResultVT = Op.getValueType();
   4279   SDValue Vec = Op.getOperand(0);
   4280   SDValue Idx = Op.getOperand(1);
   4281   EVT VecVT = Vec.getValueType();
   4282   unsigned VecSize = VecVT.getSizeInBits();
   4283   EVT EltVT = VecVT.getVectorElementType();
   4284   assert(VecSize <= 64);
   4285 
   4286   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
   4287 
   4288   // Make sure we do any optimizations that will make it easier to fold
   4289   // source modifiers before obscuring it with bit operations.
   4290 
   4291   // XXX - Why doesn't this get called when vector_shuffle is expanded?
   4292   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
   4293     return Combined;
   4294 
   4295   unsigned EltSize = EltVT.getSizeInBits();
   4296   assert(isPowerOf2_32(EltSize));
   4297 
   4298   MVT IntVT = MVT::getIntegerVT(VecSize);
   4299   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
   4300 
   4301   // Convert vector index to bit-index (* EltSize)
   4302   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
   4303 
   4304   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
   4305   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
   4306 
   4307   if (ResultVT == MVT::f16) {
   4308     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
   4309     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
   4310   }
   4311 
   4312   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
   4313 }
   4314 
   4315 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
   4316                                             SelectionDAG &DAG) const {
   4317   SDLoc SL(Op);
   4318   EVT VT = Op.getValueType();
   4319 
   4320   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
   4321     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
   4322 
   4323     // Turn into pair of packed build_vectors.
   4324     // TODO: Special case for constants that can be materialized with s_mov_b64.
   4325     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
   4326                                     { Op.getOperand(0), Op.getOperand(1) });
   4327     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
   4328                                     { Op.getOperand(2), Op.getOperand(3) });
   4329 
   4330     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
   4331     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
   4332 
   4333     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
   4334     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
   4335   }
   4336 
   4337   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
   4338 
   4339   SDValue Lo = Op.getOperand(0);
   4340   SDValue Hi = Op.getOperand(1);
   4341 
   4342   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
   4343   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
   4344 
   4345   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
   4346   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
   4347 
   4348   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
   4349                               DAG.getConstant(16, SL, MVT::i32));
   4350 
   4351   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
   4352 
   4353   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
   4354 }
   4355 
   4356 bool
   4357 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   4358   // We can fold offsets for anything that doesn't require a GOT relocation.
   4359   return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
   4360           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
   4361           GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
   4362          !shouldEmitGOTReloc(GA->getGlobal());
   4363 }
   4364 
   4365 static SDValue
   4366 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
   4367                         const SDLoc &DL, unsigned Offset, EVT PtrVT,
   4368                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
   4369   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
   4370   // lowered to the following code sequence:
   4371   //
   4372   // For constant address space:
   4373   //   s_getpc_b64 s[0:1]
   4374   //   s_add_u32 s0, s0, $symbol
   4375   //   s_addc_u32 s1, s1, 0
   4376   //
   4377   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
   4378   //   a fixup or relocation is emitted to replace $symbol with a literal
   4379   //   constant, which is a pc-relative offset from the encoding of the $symbol
   4380   //   operand to the global variable.
   4381   //
   4382   // For global address space:
   4383   //   s_getpc_b64 s[0:1]
   4384   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
   4385   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
   4386   //
   4387   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
   4388   //   fixups or relocations are emitted to replace $symbol@*@lo and
   4389   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
   4390   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
   4391   //   operand to the global variable.
   4392   //
   4393   // What we want here is an offset from the value returned by s_getpc
   4394   // (which is the address of the s_add_u32 instruction) to the global
   4395   // variable, but since the encoding of $symbol starts 4 bytes after the start
   4396   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
   4397   // small. This requires us to add 4 to the global variable offset in order to
   4398   // compute the correct address.
   4399   SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
   4400                                              GAFlags);
   4401   SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
   4402                                              GAFlags == SIInstrInfo::MO_NONE ?
   4403                                              GAFlags : GAFlags + 1);
   4404   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
   4405 }
   4406 
   4407 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
   4408                                              SDValue Op,
   4409                                              SelectionDAG &DAG) const {
   4410   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
   4411   const GlobalValue *GV = GSD->getGlobal();
   4412 
   4413   if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
   4414       GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT &&
   4415       GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS &&
   4416       // FIXME: It isn't correct to rely on the type of the pointer. This should
   4417       // be removed when address space 0 is 64-bit.
   4418       !GV->getType()->getElementType()->isFunctionTy())
   4419     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
   4420 
   4421   SDLoc DL(GSD);
   4422   EVT PtrVT = Op.getValueType();
   4423 
   4424   if (shouldEmitFixup(GV))
   4425     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
   4426   else if (shouldEmitPCReloc(GV))
   4427     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
   4428                                    SIInstrInfo::MO_REL32);
   4429 
   4430   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
   4431                                             SIInstrInfo::MO_GOTPCREL32);
   4432 
   4433   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
   4434   PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
   4435   const DataLayout &DataLayout = DAG.getDataLayout();
   4436   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
   4437   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
   4438   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
   4439 
   4440   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
   4441                      MachineMemOperand::MODereferenceable |
   4442                          MachineMemOperand::MOInvariant);
   4443 }
   4444 
   4445 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
   4446                                    const SDLoc &DL, SDValue V) const {
   4447   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
   4448   // the destination register.
   4449   //
   4450   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
   4451   // so we will end up with redundant moves to m0.
   4452   //
   4453   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
   4454 
   4455   // A Null SDValue creates a glue result.
   4456   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
   4457                                   V, Chain);
   4458   return SDValue(M0, 0);
   4459 }
   4460 
   4461 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
   4462                                                  SDValue Op,
   4463                                                  MVT VT,
   4464                                                  unsigned Offset) const {
   4465   SDLoc SL(Op);
   4466   SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
   4467                                            DAG.getEntryNode(), Offset, 4, false);
   4468   // The local size values will have the hi 16-bits as zero.
   4469   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
   4470                      DAG.getValueType(VT));
   4471 }
   4472 
   4473 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
   4474                                         EVT VT) {
   4475   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
   4476                                       "non-hsa intrinsic with hsa target",
   4477                                       DL.getDebugLoc());
   4478   DAG.getContext()->diagnose(BadIntrin);
   4479   return DAG.getUNDEF(VT);
   4480 }
   4481 
   4482 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
   4483                                          EVT VT) {
   4484   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
   4485                                       "intrinsic not supported on subtarget",
   4486                                       DL.getDebugLoc());
   4487   DAG.getContext()->diagnose(BadIntrin);
   4488   return DAG.getUNDEF(VT);
   4489 }
   4490 
   4491 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
   4492                                     ArrayRef<SDValue> Elts) {
   4493   assert(!Elts.empty());
   4494   MVT Type;
   4495   unsigned NumElts;
   4496 
   4497   if (Elts.size() == 1) {
   4498     Type = MVT::f32;
   4499     NumElts = 1;
   4500   } else if (Elts.size() == 2) {
   4501     Type = MVT::v2f32;
   4502     NumElts = 2;
   4503   } else if (Elts.size() <= 4) {
   4504     Type = MVT::v4f32;
   4505     NumElts = 4;
   4506   } else if (Elts.size() <= 8) {
   4507     Type = MVT::v8f32;
   4508     NumElts = 8;
   4509   } else {
   4510     assert(Elts.size() <= 16);
   4511     Type = MVT::v16f32;
   4512     NumElts = 16;
   4513   }
   4514 
   4515   SmallVector<SDValue, 16> VecElts(NumElts);
   4516   for (unsigned i = 0; i < Elts.size(); ++i) {
   4517     SDValue Elt = Elts[i];
   4518     if (Elt.getValueType() != MVT::f32)
   4519       Elt = DAG.getBitcast(MVT::f32, Elt);
   4520     VecElts[i] = Elt;
   4521   }
   4522   for (unsigned i = Elts.size(); i < NumElts; ++i)
   4523     VecElts[i] = DAG.getUNDEF(MVT::f32);
   4524 
   4525   if (NumElts == 1)
   4526     return VecElts[0];
   4527   return DAG.getBuildVector(Type, DL, VecElts);
   4528 }
   4529 
   4530 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
   4531                              SDValue *GLC, SDValue *SLC) {
   4532   auto CachePolicyConst = dyn_cast<ConstantSDNode>(CachePolicy.getNode());
   4533   if (!CachePolicyConst)
   4534     return false;
   4535 
   4536   uint64_t Value = CachePolicyConst->getZExtValue();
   4537   SDLoc DL(CachePolicy);
   4538   if (GLC) {
   4539     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
   4540     Value &= ~(uint64_t)0x1;
   4541   }
   4542   if (SLC) {
   4543     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
   4544     Value &= ~(uint64_t)0x2;
   4545   }
   4546 
   4547   return Value == 0;
   4548 }
   4549 
   4550 SDValue SITargetLowering::lowerImage(SDValue Op,
   4551                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
   4552                                      SelectionDAG &DAG) const {
   4553   SDLoc DL(Op);
   4554   MachineFunction &MF = DAG.getMachineFunction();
   4555   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
   4556       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
   4557   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
   4558   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
   4559       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
   4560   unsigned IntrOpcode = Intr->BaseOpcode;
   4561 
   4562   SmallVector<EVT, 2> ResultTypes(Op->value_begin(), Op->value_end());
   4563   bool IsD16 = false;
   4564   SDValue VData;
   4565   int NumVDataDwords;
   4566   unsigned AddrIdx; // Index of first address argument
   4567   unsigned DMask;
   4568 
   4569   if (BaseOpcode->Atomic) {
   4570     VData = Op.getOperand(2);
   4571 
   4572     bool Is64Bit = VData.getValueType() == MVT::i64;
   4573     if (BaseOpcode->AtomicX2) {
   4574       SDValue VData2 = Op.getOperand(3);
   4575       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
   4576                                  {VData, VData2});
   4577       if (Is64Bit)
   4578         VData = DAG.getBitcast(MVT::v4i32, VData);
   4579 
   4580       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
   4581       DMask = Is64Bit ? 0xf : 0x3;
   4582       NumVDataDwords = Is64Bit ? 4 : 2;
   4583       AddrIdx = 4;
   4584     } else {
   4585       DMask = Is64Bit ? 0x3 : 0x1;
   4586       NumVDataDwords = Is64Bit ? 2 : 1;
   4587       AddrIdx = 3;
   4588     }
   4589   } else {
   4590     unsigned DMaskIdx;
   4591 
   4592     if (BaseOpcode->Store) {
   4593       VData = Op.getOperand(2);
   4594 
   4595       MVT StoreVT = VData.getSimpleValueType();
   4596       if (StoreVT.getScalarType() == MVT::f16) {
   4597         if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
   4598             !BaseOpcode->HasD16)
   4599           return Op; // D16 is unsupported for this instruction
   4600 
   4601         IsD16 = true;
   4602         VData = handleD16VData(VData, DAG);
   4603       }
   4604 
   4605       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
   4606       DMaskIdx = 3;
   4607     } else {
   4608       MVT LoadVT = Op.getSimpleValueType();
   4609       if (LoadVT.getScalarType() == MVT::f16) {
   4610         if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS ||
   4611             !BaseOpcode->HasD16)
   4612           return Op; // D16 is unsupported for this instruction
   4613 
   4614         IsD16 = true;
   4615         if (LoadVT.isVector() && Subtarget->hasUnpackedD16VMem())
   4616           ResultTypes[0] = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
   4617       }
   4618 
   4619       NumVDataDwords = (ResultTypes[0].getSizeInBits() + 31) / 32;
   4620       DMaskIdx = isa<MemSDNode>(Op) ? 2 : 1;
   4621     }
   4622 
   4623     auto DMaskConst = dyn_cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
   4624     if (!DMaskConst)
   4625       return Op;
   4626 
   4627     AddrIdx = DMaskIdx + 1;
   4628     DMask = DMaskConst->getZExtValue();
   4629     if (!DMask && !BaseOpcode->Store) {
   4630       // Eliminate no-op loads. Stores with dmask == 0 are *not* no-op: they
   4631       // store the channels' default values.
   4632       SDValue Undef = DAG.getUNDEF(Op.getValueType());
   4633       if (isa<MemSDNode>(Op))
   4634         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
   4635       return Undef;
   4636     }
   4637   }
   4638 
   4639   unsigned NumVAddrs = BaseOpcode->NumExtraArgs +
   4640                        (BaseOpcode->Gradients ? DimInfo->NumGradients : 0) +
   4641                        (BaseOpcode->Coordinates ? DimInfo->NumCoords : 0) +
   4642                        (BaseOpcode->LodOrClampOrMip ? 1 : 0);
   4643   SmallVector<SDValue, 4> VAddrs;
   4644   for (unsigned i = 0; i < NumVAddrs; ++i)
   4645     VAddrs.push_back(Op.getOperand(AddrIdx + i));
   4646 
   4647   // Optimize _L to _LZ when _L is zero
   4648   if (LZMappingInfo) {
   4649     if (auto ConstantLod =
   4650          dyn_cast<ConstantFPSDNode>(VAddrs[NumVAddrs-1].getNode())) {
   4651       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
   4652         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
   4653         VAddrs.pop_back();               // remove 'lod'
   4654       }
   4655     }
   4656   }
   4657 
   4658   SDValue VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
   4659 
   4660   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
   4661   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
   4662   unsigned CtrlIdx; // Index of texfailctrl argument
   4663   SDValue Unorm;
   4664   if (!BaseOpcode->Sampler) {
   4665     Unorm = True;
   4666     CtrlIdx = AddrIdx + NumVAddrs + 1;
   4667   } else {
   4668     auto UnormConst =
   4669         dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
   4670     if (!UnormConst)
   4671       return Op;
   4672 
   4673     Unorm = UnormConst->getZExtValue() ? True : False;
   4674     CtrlIdx = AddrIdx + NumVAddrs + 3;
   4675   }
   4676 
   4677   SDValue TexFail = Op.getOperand(CtrlIdx);
   4678   auto TexFailConst = dyn_cast<ConstantSDNode>(TexFail.getNode());
   4679   if (!TexFailConst || TexFailConst->getZExtValue() != 0)
   4680     return Op;
   4681 
   4682   SDValue GLC;
   4683   SDValue SLC;
   4684   if (BaseOpcode->Atomic) {
   4685     GLC = True; // TODO no-return optimization
   4686     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC))
   4687       return Op;
   4688   } else {
   4689     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC))
   4690       return Op;
   4691   }
   4692 
   4693   SmallVector<SDValue, 14> Ops;
   4694   if (BaseOpcode->Store || BaseOpcode->Atomic)
   4695     Ops.push_back(VData); // vdata
   4696   Ops.push_back(VAddr);
   4697   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
   4698   if (BaseOpcode->Sampler)
   4699     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
   4700   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
   4701   Ops.push_back(Unorm);
   4702   Ops.push_back(GLC);
   4703   Ops.push_back(SLC);
   4704   Ops.push_back(False); // r128
   4705   Ops.push_back(False); // tfe
   4706   Ops.push_back(False); // lwe
   4707   Ops.push_back(DimInfo->DA ? True : False);
   4708   if (BaseOpcode->HasD16)
   4709     Ops.push_back(IsD16 ? True : False);
   4710   if (isa<MemSDNode>(Op))
   4711     Ops.push_back(Op.getOperand(0)); // chain
   4712 
   4713   int NumVAddrDwords = VAddr.getValueType().getSizeInBits() / 32;
   4714   int Opcode = -1;
   4715 
   4716   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
   4717     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
   4718                                    NumVDataDwords, NumVAddrDwords);
   4719   if (Opcode == -1)
   4720     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
   4721                                    NumVDataDwords, NumVAddrDwords);
   4722   assert(Opcode != -1);
   4723 
   4724   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
   4725   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
   4726     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
   4727     *MemRefs = MemOp->getMemOperand();
   4728     NewNode->setMemRefs(MemRefs, MemRefs + 1);
   4729   }
   4730 
   4731   if (BaseOpcode->AtomicX2) {
   4732     SmallVector<SDValue, 1> Elt;
   4733     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
   4734     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
   4735   } else if (IsD16 && !BaseOpcode->Store) {
   4736     MVT LoadVT = Op.getSimpleValueType();
   4737     SDValue Adjusted = adjustLoadValueTypeImpl(
   4738         SDValue(NewNode, 0), LoadVT, DL, DAG, Subtarget->hasUnpackedD16VMem());
   4739     return DAG.getMergeValues({Adjusted, SDValue(NewNode, 1)}, DL);
   4740   }
   4741 
   4742   return SDValue(NewNode, 0);
   4743 }
   4744 
   4745 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   4746                                                   SelectionDAG &DAG) const {
   4747   MachineFunction &MF = DAG.getMachineFunction();
   4748   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
   4749 
   4750   EVT VT = Op.getValueType();
   4751   SDLoc DL(Op);
   4752   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4753 
   4754   // TODO: Should this propagate fast-math-flags?
   4755 
   4756   switch (IntrinsicID) {
   4757   case Intrinsic::amdgcn_implicit_buffer_ptr: {
   4758     if (getSubtarget()->isAmdCodeObjectV2(MF.getFunction()))
   4759       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4760     return getPreloadedValue(DAG, *MFI, VT,
   4761                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
   4762   }
   4763   case Intrinsic::amdgcn_dispatch_ptr:
   4764   case Intrinsic::amdgcn_queue_ptr: {
   4765     if (!Subtarget->isAmdCodeObjectV2(MF.getFunction())) {
   4766       DiagnosticInfoUnsupported BadIntrin(
   4767           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
   4768           DL.getDebugLoc());
   4769       DAG.getContext()->diagnose(BadIntrin);
   4770       return DAG.getUNDEF(VT);
   4771     }
   4772 
   4773     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
   4774       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
   4775     return getPreloadedValue(DAG, *MFI, VT, RegID);
   4776   }
   4777   case Intrinsic::amdgcn_implicitarg_ptr: {
   4778     if (MFI->isEntryFunction())
   4779       return getImplicitArgPtr(DAG, DL);
   4780     return getPreloadedValue(DAG, *MFI, VT,
   4781                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
   4782   }
   4783   case Intrinsic::amdgcn_kernarg_segment_ptr: {
   4784     return getPreloadedValue(DAG, *MFI, VT,
   4785                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
   4786   }
   4787   case Intrinsic::amdgcn_dispatch_id: {
   4788     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
   4789   }
   4790   case Intrinsic::amdgcn_rcp:
   4791     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
   4792   case Intrinsic::amdgcn_rsq:
   4793     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
   4794   case Intrinsic::amdgcn_rsq_legacy:
   4795     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
   4796       return emitRemovedIntrinsicError(DAG, DL, VT);
   4797 
   4798     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
   4799   case Intrinsic::amdgcn_rcp_legacy:
   4800     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
   4801       return emitRemovedIntrinsicError(DAG, DL, VT);
   4802     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
   4803   case Intrinsic::amdgcn_rsq_clamp: {
   4804     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
   4805       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
   4806 
   4807     Type *Type = VT.getTypeForEVT(*DAG.getContext());
   4808     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
   4809     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
   4810 
   4811     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
   4812     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
   4813                               DAG.getConstantFP(Max, DL, VT));
   4814     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
   4815                        DAG.getConstantFP(Min, DL, VT));
   4816   }
   4817   case Intrinsic::r600_read_ngroups_x:
   4818     if (Subtarget->isAmdHsaOS())
   4819       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4820 
   4821     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4822                                     SI::KernelInputOffsets::NGROUPS_X, 4, false);
   4823   case Intrinsic::r600_read_ngroups_y:
   4824     if (Subtarget->isAmdHsaOS())
   4825       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4826 
   4827     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4828                                     SI::KernelInputOffsets::NGROUPS_Y, 4, false);
   4829   case Intrinsic::r600_read_ngroups_z:
   4830     if (Subtarget->isAmdHsaOS())
   4831       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4832 
   4833     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4834                                     SI::KernelInputOffsets::NGROUPS_Z, 4, false);
   4835   case Intrinsic::r600_read_global_size_x:
   4836     if (Subtarget->isAmdHsaOS())
   4837       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4838 
   4839     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4840                                     SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
   4841   case Intrinsic::r600_read_global_size_y:
   4842     if (Subtarget->isAmdHsaOS())
   4843       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4844 
   4845     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4846                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
   4847   case Intrinsic::r600_read_global_size_z:
   4848     if (Subtarget->isAmdHsaOS())
   4849       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4850 
   4851     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
   4852                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
   4853   case Intrinsic::r600_read_local_size_x:
   4854     if (Subtarget->isAmdHsaOS())
   4855       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4856 
   4857     return lowerImplicitZextParam(DAG, Op, MVT::i16,
   4858                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
   4859   case Intrinsic::r600_read_local_size_y:
   4860     if (Subtarget->isAmdHsaOS())
   4861       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4862 
   4863     return lowerImplicitZextParam(DAG, Op, MVT::i16,
   4864                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
   4865   case Intrinsic::r600_read_local_size_z:
   4866     if (Subtarget->isAmdHsaOS())
   4867       return emitNonHSAIntrinsicError(DAG, DL, VT);
   4868 
   4869     return lowerImplicitZextParam(DAG, Op, MVT::i16,
   4870                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
   4871   case Intrinsic::amdgcn_workgroup_id_x:
   4872   case Intrinsic::r600_read_tgid_x:
   4873     return getPreloadedValue(DAG, *MFI, VT,
   4874                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
   4875   case Intrinsic::amdgcn_workgroup_id_y:
   4876   case Intrinsic::r600_read_tgid_y:
   4877     return getPreloadedValue(DAG, *MFI, VT,
   4878                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
   4879   case Intrinsic::amdgcn_workgroup_id_z:
   4880   case Intrinsic::r600_read_tgid_z:
   4881     return getPreloadedValue(DAG, *MFI, VT,
   4882                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
   4883   case Intrinsic::amdgcn_workitem_id_x:
   4884   case Intrinsic::r600_read_tidig_x:
   4885     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
   4886                           SDLoc(DAG.getEntryNode()),
   4887                           MFI->getArgInfo().WorkItemIDX);
   4888   case Intrinsic::amdgcn_workitem_id_y:
   4889   case Intrinsic::r600_read_tidig_y:
   4890     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
   4891                           SDLoc(DAG.getEntryNode()),
   4892                           MFI->getArgInfo().WorkItemIDY);
   4893   case Intrinsic::amdgcn_workitem_id_z:
   4894   case Intrinsic::r600_read_tidig_z:
   4895     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
   4896                           SDLoc(DAG.getEntryNode()),
   4897                           MFI->getArgInfo().WorkItemIDZ);
   4898   case AMDGPUIntrinsic::SI_load_const: {
   4899     SDValue Ops[] = {
   4900       Op.getOperand(1),
   4901       Op.getOperand(2)
   4902     };
   4903 
   4904     MachineMemOperand *MMO = MF.getMachineMemOperand(
   4905         MachinePointerInfo(),
   4906         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
   4907             MachineMemOperand::MOInvariant,
   4908         VT.getStoreSize(), 4);
   4909     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
   4910                                    Op->getVTList(), Ops, VT, MMO);
   4911   }
   4912   case Intrinsic::amdgcn_fdiv_fast:
   4913     return lowerFDIV_FAST(Op, DAG);
   4914   case Intrinsic::amdgcn_interp_mov: {
   4915     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
   4916     SDValue Glue = M0.getValue(1);
   4917     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
   4918                        Op.getOperand(2), Op.getOperand(3), Glue);
   4919   }
   4920   case Intrinsic::amdgcn_interp_p1: {
   4921     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
   4922     SDValue Glue = M0.getValue(1);
   4923     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
   4924                        Op.getOperand(2), Op.getOperand(3), Glue);
   4925   }
   4926   case Intrinsic::amdgcn_interp_p2: {
   4927     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
   4928     SDValue Glue = SDValue(M0.getNode(), 1);
   4929     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
   4930                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
   4931                        Glue);
   4932   }
   4933   case Intrinsic::amdgcn_sin:
   4934     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
   4935 
   4936   case Intrinsic::amdgcn_cos:
   4937     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
   4938 
   4939   case Intrinsic::amdgcn_log_clamp: {
   4940     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
   4941       return SDValue();
   4942 
   4943     DiagnosticInfoUnsupported BadIntrin(
   4944       MF.getFunction(), "intrinsic not supported on subtarget",
   4945       DL.getDebugLoc());
   4946       DAG.getContext()->diagnose(BadIntrin);
   4947       return DAG.getUNDEF(VT);
   4948   }
   4949   case Intrinsic::amdgcn_ldexp:
   4950     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
   4951                        Op.getOperand(1), Op.getOperand(2));
   4952 
   4953   case Intrinsic::amdgcn_fract:
   4954     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
   4955 
   4956   case Intrinsic::amdgcn_class:
   4957     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
   4958                        Op.getOperand(1), Op.getOperand(2));
   4959   case Intrinsic::amdgcn_div_fmas:
   4960     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
   4961                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
   4962                        Op.getOperand(4));
   4963 
   4964   case Intrinsic::amdgcn_div_fixup:
   4965     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
   4966                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   4967 
   4968   case Intrinsic::amdgcn_trig_preop:
   4969     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
   4970                        Op.getOperand(1), Op.getOperand(2));
   4971   case Intrinsic::amdgcn_div_scale: {
   4972     // 3rd parameter required to be a constant.
   4973     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
   4974     if (!Param)
   4975       return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);
   4976 
   4977     // Translate to the operands expected by the machine instruction. The
   4978     // first parameter must be the same as the first instruction.
   4979     SDValue Numerator = Op.getOperand(1);
   4980     SDValue Denominator = Op.getOperand(2);
   4981 
   4982     // Note this order is opposite of the machine instruction's operations,
   4983     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
   4984     // intrinsic has the numerator as the first operand to match a normal
   4985     // division operation.
   4986 
   4987     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
   4988 
   4989     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
   4990                        Denominator, Numerator);
   4991   }
   4992   case Intrinsic::amdgcn_icmp: {
   4993     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
   4994     if (!CD)
   4995       return DAG.getUNDEF(VT);
   4996 
   4997     int CondCode = CD->getSExtValue();
   4998     if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
   4999         CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
   5000       return DAG.getUNDEF(VT);
   5001 
   5002     ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
   5003     ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
   5004     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
   5005                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
   5006   }
   5007   case Intrinsic::amdgcn_fcmp: {
   5008     const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
   5009     if (!CD)
   5010       return DAG.getUNDEF(VT);
   5011 
   5012     int CondCode = CD->getSExtValue();
   5013     if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
   5014         CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
   5015       return DAG.getUNDEF(VT);
   5016 
   5017     FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
   5018     ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
   5019     return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
   5020                        Op.getOperand(2), DAG.getCondCode(CCOpcode));
   5021   }
   5022   case Intrinsic::amdgcn_fmed3:
   5023     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
   5024                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   5025   case Intrinsic::amdgcn_fdot2:
   5026     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
   5027                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
   5028                        Op.getOperand(4));
   5029   case Intrinsic::amdgcn_fmul_legacy:
   5030     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
   5031                        Op.getOperand(1), Op.getOperand(2));
   5032   case Intrinsic::amdgcn_sffbh:
   5033     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
   5034   case Intrinsic::amdgcn_sbfe:
   5035     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
   5036                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   5037   case Intrinsic::amdgcn_ubfe:
   5038     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
   5039                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   5040   case Intrinsic::amdgcn_cvt_pkrtz:
   5041   case Intrinsic::amdgcn_cvt_pknorm_i16:
   5042   case Intrinsic::amdgcn_cvt_pknorm_u16:
   5043   case Intrinsic::amdgcn_cvt_pk_i16:
   5044   case Intrinsic::amdgcn_cvt_pk_u16: {
   5045     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
   5046     EVT VT = Op.getValueType();
   5047     unsigned Opcode;
   5048 
   5049     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
   5050       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
   5051     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
   5052       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
   5053     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
   5054       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
   5055     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
   5056       Opcode = AMDGPUISD::CVT_PK_I16_I32;
   5057     else
   5058       Opcode = AMDGPUISD::CVT_PK_U16_U32;
   5059 
   5060     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
   5061                                Op.getOperand(1), Op.getOperand(2));
   5062     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
   5063   }
   5064   case Intrinsic::amdgcn_wqm: {
   5065     SDValue Src = Op.getOperand(1);
   5066     return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
   5067                    0);
   5068   }
   5069   case Intrinsic::amdgcn_wwm: {
   5070     SDValue Src = Op.getOperand(1);
   5071     return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
   5072                    0);
   5073   }
   5074   case Intrinsic::amdgcn_fmad_ftz:
   5075     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
   5076                        Op.getOperand(2), Op.getOperand(3));
   5077   default:
   5078     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
   5079             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
   5080       return lowerImage(Op, ImageDimIntr, DAG);
   5081 
   5082     return Op;
   5083   }
   5084 }
   5085 
   5086 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
   5087                                                  SelectionDAG &DAG) const {
   5088   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   5089   SDLoc DL(Op);
   5090 
   5091   switch (IntrID) {
   5092   case Intrinsic::amdgcn_atomic_inc:
   5093   case Intrinsic::amdgcn_atomic_dec:
   5094   case Intrinsic::amdgcn_ds_fadd:
   5095   case Intrinsic::amdgcn_ds_fmin:
   5096   case Intrinsic::amdgcn_ds_fmax: {
   5097     MemSDNode *M = cast<MemSDNode>(Op);
   5098     unsigned Opc;
   5099     switch (IntrID) {
   5100     case Intrinsic::amdgcn_atomic_inc:
   5101       Opc = AMDGPUISD::ATOMIC_INC;
   5102       break;
   5103     case Intrinsic::amdgcn_atomic_dec:
   5104       Opc = AMDGPUISD::ATOMIC_DEC;
   5105       break;
   5106     case Intrinsic::amdgcn_ds_fadd:
   5107       Opc = AMDGPUISD::ATOMIC_LOAD_FADD;
   5108       break;
   5109     case Intrinsic::amdgcn_ds_fmin:
   5110       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
   5111       break;
   5112     case Intrinsic::amdgcn_ds_fmax:
   5113       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
   5114       break;
   5115     default:
   5116       llvm_unreachable("Unknown intrinsic!");
   5117     }
   5118     SDValue Ops[] = {
   5119       M->getOperand(0), // Chain
   5120       M->getOperand(2), // Ptr
   5121       M->getOperand(3)  // Value
   5122     };
   5123 
   5124     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
   5125                                    M->getMemoryVT(), M->getMemOperand());
   5126   }
   5127   case Intrinsic::amdgcn_buffer_load:
   5128   case Intrinsic::amdgcn_buffer_load_format: {
   5129     SDValue Ops[] = {
   5130       Op.getOperand(0), // Chain
   5131       Op.getOperand(2), // rsrc
   5132       Op.getOperand(3), // vindex
   5133       Op.getOperand(4), // offset
   5134       Op.getOperand(5), // glc
   5135       Op.getOperand(6)  // slc
   5136     };
   5137 
   5138     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
   5139         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
   5140     EVT VT = Op.getValueType();
   5141     EVT IntVT = VT.changeTypeToInteger();
   5142     auto *M = cast<MemSDNode>(Op);
   5143     EVT LoadVT = Op.getValueType();
   5144     bool IsD16 = LoadVT.getScalarType() == MVT::f16;
   5145     if (IsD16)
   5146       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG);
   5147 
   5148     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
   5149                                    M->getMemOperand());
   5150   }
   5151   case Intrinsic::amdgcn_tbuffer_load: {
   5152     MemSDNode *M = cast<MemSDNode>(Op);
   5153     EVT LoadVT = Op.getValueType();
   5154     bool IsD16 = LoadVT.getScalarType() == MVT::f16;
   5155     if (IsD16) {
   5156       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG);
   5157     }
   5158 
   5159     SDValue Ops[] = {
   5160       Op.getOperand(0),  // Chain
   5161       Op.getOperand(2),  // rsrc
   5162       Op.getOperand(3),  // vindex
   5163       Op.getOperand(4),  // voffset
   5164       Op.getOperand(5),  // soffset
   5165       Op.getOperand(6),  // offset
   5166       Op.getOperand(7),  // dfmt
   5167       Op.getOperand(8),  // nfmt
   5168       Op.getOperand(9),  // glc
   5169       Op.getOperand(10)   // slc
   5170     };
   5171 
   5172     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
   5173                                    Op->getVTList(), Ops, LoadVT,
   5174                                    M->getMemOperand());
   5175   }
   5176   case Intrinsic::amdgcn_buffer_atomic_swap:
   5177   case Intrinsic::amdgcn_buffer_atomic_add:
   5178   case Intrinsic::amdgcn_buffer_atomic_sub:
   5179   case Intrinsic::amdgcn_buffer_atomic_smin:
   5180   case Intrinsic::amdgcn_buffer_atomic_umin:
   5181   case Intrinsic::amdgcn_buffer_atomic_smax:
   5182   case Intrinsic::amdgcn_buffer_atomic_umax:
   5183   case Intrinsic::amdgcn_buffer_atomic_and:
   5184   case Intrinsic::amdgcn_buffer_atomic_or:
   5185   case Intrinsic::amdgcn_buffer_atomic_xor: {
   5186     SDValue Ops[] = {
   5187       Op.getOperand(0), // Chain
   5188       Op.getOperand(2), // vdata
   5189       Op.getOperand(3), // rsrc
   5190       Op.getOperand(4), // vindex
   5191       Op.getOperand(5), // offset
   5192       Op.getOperand(6)  // slc
   5193     };
   5194     EVT VT = Op.getValueType();
   5195 
   5196     auto *M = cast<MemSDNode>(Op);
   5197     unsigned Opcode = 0;
   5198 
   5199     switch (IntrID) {
   5200     case Intrinsic::amdgcn_buffer_atomic_swap:
   5201       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
   5202       break;
   5203     case Intrinsic::amdgcn_buffer_atomic_add:
   5204       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
   5205       break;
   5206     case Intrinsic::amdgcn_buffer_atomic_sub:
   5207       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
   5208       break;
   5209     case Intrinsic::amdgcn_buffer_atomic_smin:
   5210       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
   5211       break;
   5212     case Intrinsic::amdgcn_buffer_atomic_umin:
   5213       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
   5214       break;
   5215     case Intrinsic::amdgcn_buffer_atomic_smax:
   5216       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
   5217       break;
   5218     case Intrinsic::amdgcn_buffer_atomic_umax:
   5219       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
   5220       break;
   5221     case Intrinsic::amdgcn_buffer_atomic_and:
   5222       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
   5223       break;
   5224     case Intrinsic::amdgcn_buffer_atomic_or:
   5225       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
   5226       break;
   5227     case Intrinsic::amdgcn_buffer_atomic_xor:
   5228       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
   5229       break;
   5230     default:
   5231       llvm_unreachable("unhandled atomic opcode");
   5232     }
   5233 
   5234     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
   5235                                    M->getMemOperand());
   5236   }
   5237 
   5238   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
   5239     SDValue Ops[] = {
   5240       Op.getOperand(0), // Chain
   5241       Op.getOperand(2), // src
   5242       Op.getOperand(3), // cmp
   5243       Op.getOperand(4), // rsrc
   5244       Op.getOperand(5), // vindex
   5245       Op.getOperand(6), // offset
   5246       Op.getOperand(7)  // slc
   5247     };
   5248     EVT VT = Op.getValueType();
   5249     auto *M = cast<MemSDNode>(Op);
   5250 
   5251     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
   5252                                    Op->getVTList(), Ops, VT, M->getMemOperand());
   5253   }
   5254 
   5255   default:
   5256     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
   5257             AMDGPU::getImageDimIntrinsicInfo(IntrID))
   5258       return lowerImage(Op, ImageDimIntr, DAG);
   5259 
   5260     return SDValue();
   5261   }
   5262 }
   5263 
   5264 SDValue SITargetLowering::handleD16VData(SDValue VData,
   5265                                          SelectionDAG &DAG) const {
   5266   EVT StoreVT = VData.getValueType();
   5267 
   5268   // No change for f16 and legal vector D16 types.
   5269   if (!StoreVT.isVector())
   5270     return VData;
   5271 
   5272   SDLoc DL(VData);
   5273   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
   5274 
   5275   if (Subtarget->hasUnpackedD16VMem()) {
   5276     // We need to unpack the packed data to store.
   5277     EVT IntStoreVT = StoreVT.changeTypeToInteger();
   5278     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
   5279 
   5280     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
   5281                                         StoreVT.getVectorNumElements());
   5282     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
   5283     return DAG.UnrollVectorOp(ZExt.getNode());
   5284   }
   5285 
   5286   assert(isTypeLegal(StoreVT));
   5287   return VData;
   5288 }
   5289 
   5290 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
   5291                                               SelectionDAG &DAG) const {
   5292   SDLoc DL(Op);
   5293   SDValue Chain = Op.getOperand(0);
   5294   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   5295   MachineFunction &MF = DAG.getMachineFunction();
   5296 
   5297   switch (IntrinsicID) {
   5298   case Intrinsic::amdgcn_exp: {
   5299     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
   5300     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
   5301     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
   5302     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
   5303 
   5304     const SDValue Ops[] = {
   5305       Chain,
   5306       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
   5307       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
   5308       Op.getOperand(4), // src0
   5309       Op.getOperand(5), // src1
   5310       Op.getOperand(6), // src2
   5311       Op.getOperand(7), // src3
   5312       DAG.getTargetConstant(0, DL, MVT::i1), // compr
   5313       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
   5314     };
   5315 
   5316     unsigned Opc = Done->isNullValue() ?
   5317       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
   5318     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
   5319   }
   5320   case Intrinsic::amdgcn_exp_compr: {
   5321     const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
   5322     const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
   5323     SDValue Src0 = Op.getOperand(4);
   5324     SDValue Src1 = Op.getOperand(5);
   5325     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
   5326     const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
   5327 
   5328     SDValue Undef = DAG.getUNDEF(MVT::f32);
   5329     const SDValue Ops[] = {
   5330       Chain,
   5331       DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
   5332       DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),  // en
   5333       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
   5334       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
   5335       Undef, // src2
   5336       Undef, // src3
   5337       DAG.getTargetConstant(1, DL, MVT::i1), // compr
   5338       DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
   5339     };
   5340 
   5341     unsigned Opc = Done->isNullValue() ?
   5342       AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
   5343     return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
   5344   }
   5345   case Intrinsic::amdgcn_s_sendmsg:
   5346   case Intrinsic::amdgcn_s_sendmsghalt: {
   5347     unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
   5348       AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
   5349     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
   5350     SDValue Glue = Chain.getValue(1);
   5351     return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
   5352                        Op.getOperand(2), Glue);
   5353   }
   5354   case Intrinsic::amdgcn_init_exec: {
   5355     return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
   5356                        Op.getOperand(2));
   5357   }
   5358   case Intrinsic::amdgcn_init_exec_from_input: {
   5359     return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
   5360                        Op.getOperand(2), Op.getOperand(3));
   5361   }
   5362   case AMDGPUIntrinsic::AMDGPU_kill: {
   5363     SDValue Src = Op.getOperand(2);
   5364     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
   5365       if (!K->isNegative())
   5366         return Chain;
   5367 
   5368       SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
   5369       return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
   5370     }
   5371 
   5372     SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
   5373     return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
   5374   }
   5375   case Intrinsic::amdgcn_s_barrier: {
   5376     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
   5377       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
   5378       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
   5379       if (WGSize <= ST.getWavefrontSize())
   5380         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
   5381                                           Op.getOperand(0)), 0);
   5382     }
   5383     return SDValue();
   5384   };
   5385   case AMDGPUIntrinsic::SI_tbuffer_store: {
   5386 
   5387     // Extract vindex and voffset from vaddr as appropriate
   5388     const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10));
   5389     const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11));
   5390     SDValue VAddr = Op.getOperand(5);
   5391 
   5392     SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
   5393 
   5394     assert(!(OffEn->isOne() && IdxEn->isOne()) &&
   5395            "Legacy intrinsic doesn't support both offset and index - use new version");
   5396 
   5397     SDValue VIndex = IdxEn->isOne() ? VAddr : Zero;
   5398     SDValue VOffset = OffEn->isOne() ? VAddr : Zero;
   5399 
   5400     // Deal with the vec-3 case
   5401     const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4));
   5402     auto Opcode = NumChannels->getZExtValue() == 3 ?
   5403       AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT;
   5404 
   5405     SDValue Ops[] = {
   5406      Chain,
   5407      Op.getOperand(3),  // vdata
   5408      Op.getOperand(2),  // rsrc
   5409      VIndex,
   5410      VOffset,
   5411      Op.getOperand(6),  // soffset
   5412      Op.getOperand(7),  // inst_offset
   5413      Op.getOperand(8),  // dfmt
   5414      Op.getOperand(9),  // nfmt
   5415      Op.getOperand(12), // glc
   5416      Op.getOperand(13), // slc
   5417     };
   5418 
   5419     assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 &&
   5420            "Value of tfe other than zero is unsupported");
   5421 
   5422     EVT VT = Op.getOperand(3).getValueType();
   5423     MachineMemOperand *MMO = MF.getMachineMemOperand(
   5424       MachinePointerInfo(),
   5425       MachineMemOperand::MOStore,
   5426       VT.getStoreSize(), 4);
   5427     return DAG.getMemIntrinsicNode(Opcode, DL,
   5428                                    Op->getVTList(), Ops, VT, MMO);
   5429   }
   5430 
   5431   case Intrinsic::amdgcn_tbuffer_store: {
   5432     SDValue VData = Op.getOperand(2);
   5433     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
   5434     if (IsD16)
   5435       VData = handleD16VData(VData, DAG);
   5436     SDValue Ops[] = {
   5437       Chain,
   5438       VData,             // vdata
   5439       Op.getOperand(3),  // rsrc
   5440       Op.getOperand(4),  // vindex
   5441       Op.getOperand(5),  // voffset
   5442       Op.getOperand(6),  // soffset
   5443       Op.getOperand(7),  // offset
   5444       Op.getOperand(8),  // dfmt
   5445       Op.getOperand(9),  // nfmt
   5446       Op.getOperand(10), // glc
   5447       Op.getOperand(11)  // slc
   5448     };
   5449     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
   5450                            AMDGPUISD::TBUFFER_STORE_FORMAT;
   5451     MemSDNode *M = cast<MemSDNode>(Op);
   5452     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
   5453                                    M->getMemoryVT(), M->getMemOperand());
   5454   }
   5455 
   5456   case Intrinsic::amdgcn_buffer_store:
   5457   case Intrinsic::amdgcn_buffer_store_format: {
   5458     SDValue VData = Op.getOperand(2);
   5459     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
   5460     if (IsD16)
   5461       VData = handleD16VData(VData, DAG);
   5462     SDValue Ops[] = {
   5463       Chain,
   5464       VData,            // vdata
   5465       Op.getOperand(3), // rsrc
   5466       Op.getOperand(4), // vindex
   5467       Op.getOperand(5), // offset
   5468       Op.getOperand(6), // glc
   5469       Op.getOperand(7)  // slc
   5470     };
   5471     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
   5472                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
   5473     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
   5474     MemSDNode *M = cast<MemSDNode>(Op);
   5475     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
   5476                                    M->getMemoryVT(), M->getMemOperand());
   5477   }
   5478   default: {
   5479     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
   5480             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
   5481       return lowerImage(Op, ImageDimIntr, DAG);
   5482 
   5483     return Op;
   5484   }
   5485   }
   5486 }
   5487 
   5488 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
   5489                                  ISD::LoadExtType ExtType, SDValue Op,
   5490                                  const SDLoc &SL, EVT VT) {
   5491   if (VT.bitsLT(Op.getValueType()))
   5492     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
   5493 
   5494   switch (ExtType) {
   5495   case ISD::SEXTLOAD:
   5496     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
   5497   case ISD::ZEXTLOAD:
   5498     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
   5499   case ISD::EXTLOAD:
   5500     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
   5501   case ISD::NON_EXTLOAD:
   5502     return Op;
   5503   }
   5504 
   5505   llvm_unreachable("invalid ext type");
   5506 }
   5507 
   5508 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
   5509   SelectionDAG &DAG = DCI.DAG;
   5510   if (Ld->getAlignment() < 4 || Ld->isDivergent())
   5511     return SDValue();
   5512 
   5513   // FIXME: Constant loads should all be marked invariant.
   5514   unsigned AS = Ld->getAddressSpace();
   5515   if (AS != AMDGPUASI.CONSTANT_ADDRESS &&
   5516       AS != AMDGPUASI.CONSTANT_ADDRESS_32BIT &&
   5517       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
   5518     return SDValue();
   5519 
   5520   // Don't do this early, since it may interfere with adjacent load merging for
   5521   // illegal types. We can avoid losing alignment information for exotic types
   5522   // pre-legalize.
   5523   EVT MemVT = Ld->getMemoryVT();
   5524   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
   5525       MemVT.getSizeInBits() >= 32)
   5526     return SDValue();
   5527 
   5528   SDLoc SL(Ld);
   5529 
   5530   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
   5531          "unexpected vector extload");
   5532 
   5533   // TODO: Drop only high part of range.
   5534   SDValue Ptr = Ld->getBasePtr();
   5535   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
   5536                                 MVT::i32, SL, Ld->getChain(), Ptr,
   5537                                 Ld->getOffset(),
   5538                                 Ld->getPointerInfo(), MVT::i32,
   5539                                 Ld->getAlignment(),
   5540                                 Ld->getMemOperand()->getFlags(),
   5541                                 Ld->getAAInfo(),
   5542                                 nullptr); // Drop ranges
   5543 
   5544   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
   5545   if (MemVT.isFloatingPoint()) {
   5546     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
   5547            "unexpected fp extload");
   5548     TruncVT = MemVT.changeTypeToInteger();
   5549   }
   5550 
   5551   SDValue Cvt = NewLoad;
   5552   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
   5553     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
   5554                       DAG.getValueType(TruncVT));
   5555   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
   5556              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
   5557     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
   5558   } else {
   5559     assert(Ld->getExtensionType() == ISD::EXTLOAD);
   5560   }
   5561 
   5562   EVT VT = Ld->getValueType(0);
   5563   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
   5564 
   5565   DCI.AddToWorklist(Cvt.getNode());
   5566 
   5567   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
   5568   // the appropriate extension from the 32-bit load.
   5569   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
   5570   DCI.AddToWorklist(Cvt.getNode());
   5571 
   5572   // Handle conversion back to floating point if necessary.
   5573   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
   5574 
   5575   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
   5576 }
   5577 
   5578 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   5579   SDLoc DL(Op);
   5580   LoadSDNode *Load = cast<LoadSDNode>(Op);
   5581   ISD::LoadExtType ExtType = Load->getExtensionType();
   5582   EVT MemVT = Load->getMemoryVT();
   5583 
   5584   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
   5585     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
   5586       return SDValue();
   5587 
   5588     // FIXME: Copied from PPC
   5589     // First, load into 32 bits, then truncate to 1 bit.
   5590 
   5591     SDValue Chain = Load->getChain();
   5592     SDValue BasePtr = Load->getBasePtr();
   5593     MachineMemOperand *MMO = Load->getMemOperand();
   5594 
   5595     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
   5596 
   5597     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
   5598                                    BasePtr, RealMemVT, MMO);
   5599 
   5600     SDValue Ops[] = {
   5601       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
   5602       NewLD.getValue(1)
   5603     };
   5604 
   5605     return DAG.getMergeValues(Ops, DL);
   5606   }
   5607 
   5608   if (!MemVT.isVector())
   5609     return SDValue();
   5610 
   5611   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
   5612          "Custom lowering for non-i32 vectors hasn't been implemented.");
   5613 
   5614   unsigned Alignment = Load->getAlignment();
   5615   unsigned AS = Load->getAddressSpace();
   5616   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
   5617                           AS, Alignment)) {
   5618     SDValue Ops[2];
   5619     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
   5620     return DAG.getMergeValues(Ops, DL);
   5621   }
   5622 
   5623   MachineFunction &MF = DAG.getMachineFunction();
   5624   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
   5625   // If there is a possibilty that flat instruction access scratch memory
   5626   // then we need to use the same legalization rules we use for private.
   5627   if (AS == AMDGPUASI.FLAT_ADDRESS)
   5628     AS = MFI->hasFlatScratchInit() ?
   5629          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
   5630 
   5631   unsigned NumElements = MemVT.getVectorNumElements();
   5632 
   5633   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
   5634       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
   5635     if (!Op->isDivergent() && Alignment >= 4)
   5636       return SDValue();
   5637     // Non-uniform loads will be selected to MUBUF instructions, so they
   5638     // have the same legalization requirements as global and private
   5639     // loads.
   5640     //
   5641   }
   5642 
   5643   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
   5644       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
   5645       AS == AMDGPUASI.GLOBAL_ADDRESS) {
   5646     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
   5647         !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
   5648         Alignment >= 4)
   5649       return SDValue();
   5650     // Non-uniform loads will be selected to MUBUF instructions, so they
   5651     // have the same legalization requirements as global and private
   5652     // loads.
   5653     //
   5654   }
   5655   if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
   5656       AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
   5657       AS == AMDGPUASI.GLOBAL_ADDRESS ||
   5658       AS == AMDGPUASI.FLAT_ADDRESS) {
   5659     if (NumElements > 4)
   5660       return SplitVectorLoad(Op, DAG);
   5661     // v4 loads are supported for private and global memory.
   5662     return SDValue();
   5663   }
   5664   if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
   5665     // Depending on the setting of the private_element_size field in the
   5666     // resource descriptor, we can only make private accesses up to a certain
   5667     // size.
   5668     switch (Subtarget->getMaxPrivateElementSize()) {
   5669     case 4:
   5670       return scalarizeVectorLoad(Load, DAG);
   5671     case 8:
   5672       if (NumElements > 2)
   5673         return SplitVectorLoad(Op, DAG);
   5674       return SDValue();
   5675     case 16:
   5676       // Same as global/flat
   5677       if (NumElements > 4)
   5678         return SplitVectorLoad(Op, DAG);
   5679       return SDValue();
   5680     default:
   5681       llvm_unreachable("unsupported private_element_size");
   5682     }
   5683   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
   5684     // Use ds_read_b128 if possible.
   5685     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
   5686         MemVT.getStoreSize() == 16)
   5687       return SDValue();
   5688 
   5689     if (NumElements > 2)
   5690       return SplitVectorLoad(Op, DAG);
   5691   }
   5692   return SDValue();
   5693 }
   5694 
   5695 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   5696   EVT VT = Op.getValueType();
   5697   assert(VT.getSizeInBits() == 64);
   5698 
   5699   SDLoc DL(Op);
   5700   SDValue Cond = Op.getOperand(0);
   5701 
   5702   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
   5703   SDValue One = DAG.getConstant(1, DL, MVT::i32);
   5704 
   5705   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
   5706   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
   5707 
   5708   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
   5709   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
   5710 
   5711   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
   5712 
   5713   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
   5714   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
   5715 
   5716   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
   5717 
   5718   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
   5719   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
   5720 }
   5721 
   5722 // Catch division cases where we can use shortcuts with rcp and rsq
   5723 // instructions.
   5724 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
   5725                                               SelectionDAG &DAG) const {
   5726   SDLoc SL(Op);
   5727   SDValue LHS = Op.getOperand(0);
   5728   SDValue RHS = Op.getOperand(1);
   5729   EVT VT = Op.getValueType();
   5730   const SDNodeFlags Flags = Op->getFlags();
   5731   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasAllowReciprocal();
   5732 
   5733   if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
   5734     return SDValue();
   5735 
   5736   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
   5737     if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
   5738       if (CLHS->isExactlyValue(1.0)) {
   5739         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
   5740         // the CI documentation has a worst case error of 1 ulp.
   5741         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
   5742         // use it as long as we aren't trying to use denormals.
   5743         //
   5744         // v_rcp_f16 and v_rsq_f16 DO support denormals.
   5745 
   5746         // 1.0 / sqrt(x) -> rsq(x)
   5747 
   5748         // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
   5749         // error seems really high at 2^29 ULP.
   5750         if (RHS.getOpcode() == ISD::FSQRT)
   5751           return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
   5752 
   5753         // 1.0 / x -> rcp(x)
   5754         return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
   5755       }
   5756 
   5757       // Same as for 1.0, but expand the sign out of the constant.
   5758       if (CLHS->isExactlyValue(-1.0)) {
   5759         // -1.0 / x -> rcp (fneg x)
   5760         SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   5761         return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
   5762       }
   5763     }
   5764   }
   5765 
   5766   if (Unsafe) {
   5767     // Turn into multiply by the reciprocal.
   5768     // x / y -> x * (1.0 / y)
   5769     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
   5770     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
   5771   }
   5772 
   5773   return SDValue();
   5774 }
   5775 
   5776 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
   5777                           EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
   5778   if (GlueChain->getNumValues() <= 1) {
   5779     return DAG.getNode(Opcode, SL, VT, A, B);
   5780   }
   5781 
   5782   assert(GlueChain->getNumValues() == 3);
   5783 
   5784   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
   5785   switch (Opcode) {
   5786   default: llvm_unreachable("no chain equivalent for opcode");
   5787   case ISD::FMUL:
   5788     Opcode = AMDGPUISD::FMUL_W_CHAIN;
   5789     break;
   5790   }
   5791 
   5792   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
   5793                      GlueChain.getValue(2));
   5794 }
   5795 
   5796 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
   5797                            EVT VT, SDValue A, SDValue B, SDValue C,
   5798                            SDValue GlueChain) {
   5799   if (GlueChain->getNumValues() <= 1) {
   5800     return DAG.getNode(Opcode, SL, VT, A, B, C);
   5801   }
   5802 
   5803   assert(GlueChain->getNumValues() == 3);
   5804 
   5805   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
   5806   switch (Opcode) {
   5807   default: llvm_unreachable("no chain equivalent for opcode");
   5808   case ISD::FMA:
   5809     Opcode = AMDGPUISD::FMA_W_CHAIN;
   5810     break;
   5811   }
   5812 
   5813   return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
   5814                      GlueChain.getValue(2));
   5815 }
   5816 
   5817 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
   5818   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
   5819     return FastLowered;
   5820 
   5821   SDLoc SL(Op);
   5822   SDValue Src0 = Op.getOperand(0);
   5823   SDValue Src1 = Op.getOperand(1);
   5824 
   5825   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
   5826   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
   5827 
   5828   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
   5829   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
   5830 
   5831   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
   5832   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
   5833 
   5834   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
   5835 }
   5836 
   5837 // Faster 2.5 ULP division that does not support denormals.
   5838 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
   5839   SDLoc SL(Op);
   5840   SDValue LHS = Op.getOperand(1);
   5841   SDValue RHS = Op.getOperand(2);
   5842 
   5843   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
   5844 
   5845   const APFloat K0Val(BitsToFloat(0x6f800000));
   5846   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
   5847 
   5848   const APFloat K1Val(BitsToFloat(0x2f800000));
   5849   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
   5850 
   5851   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
   5852 
   5853   EVT SetCCVT =
   5854     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
   5855 
   5856   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
   5857 
   5858   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
   5859 
   5860   // TODO: Should this propagate fast-math-flags?
   5861   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
   5862 
   5863   // rcp does not support denormals.
   5864   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
   5865 
   5866   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
   5867 
   5868   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
   5869 }
   5870 
   5871 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
   5872   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
   5873     return FastLowered;
   5874 
   5875   SDLoc SL(Op);
   5876   SDValue LHS = Op.getOperand(0);
   5877   SDValue RHS = Op.getOperand(1);
   5878 
   5879   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
   5880 
   5881   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
   5882 
   5883   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
   5884                                           RHS, RHS, LHS);
   5885   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
   5886                                         LHS, RHS, LHS);
   5887 
   5888   // Denominator is scaled to not be denormal, so using rcp is ok.
   5889   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
   5890                                   DenominatorScaled);
   5891   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
   5892                                      DenominatorScaled);
   5893 
   5894   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
   5895                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
   5896                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
   5897 
   5898   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
   5899 
   5900   if (!Subtarget->hasFP32Denormals()) {
   5901     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   5902     const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
   5903                                                       SL, MVT::i32);
   5904     SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
   5905                                        DAG.getEntryNode(),
   5906                                        EnableDenormValue, BitField);
   5907     SDValue Ops[3] = {
   5908       NegDivScale0,
   5909       EnableDenorm.getValue(0),
   5910       EnableDenorm.getValue(1)
   5911     };
   5912 
   5913     NegDivScale0 = DAG.getMergeValues(Ops, SL);
   5914   }
   5915 
   5916   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
   5917                              ApproxRcp, One, NegDivScale0);
   5918 
   5919   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
   5920                              ApproxRcp, Fma0);
   5921 
   5922   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
   5923                            Fma1, Fma1);
   5924 
   5925   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
   5926                              NumeratorScaled, Mul);
   5927 
   5928   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
   5929 
   5930   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
   5931                              NumeratorScaled, Fma3);
   5932 
   5933   if (!Subtarget->hasFP32Denormals()) {
   5934     const SDValue DisableDenormValue =
   5935         DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
   5936     SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
   5937                                         Fma4.getValue(1),
   5938                                         DisableDenormValue,
   5939                                         BitField,
   5940                                         Fma4.getValue(2));
   5941 
   5942     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
   5943                                       DisableDenorm, DAG.getRoot());
   5944     DAG.setRoot(OutputChain);
   5945   }
   5946 
   5947   SDValue Scale = NumeratorScaled.getValue(1);
   5948   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
   5949                              Fma4, Fma1, Fma3, Scale);
   5950 
   5951   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
   5952 }
   5953 
   5954 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
   5955   if (DAG.getTarget().Options.UnsafeFPMath)
   5956     return lowerFastUnsafeFDIV(Op, DAG);
   5957 
   5958   SDLoc SL(Op);
   5959   SDValue X = Op.getOperand(0);
   5960   SDValue Y = Op.getOperand(1);
   5961 
   5962   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
   5963 
   5964   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
   5965 
   5966   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
   5967 
   5968   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
   5969 
   5970   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
   5971 
   5972   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
   5973 
   5974   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
   5975 
   5976   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
   5977 
   5978   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
   5979 
   5980   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
   5981   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
   5982 
   5983   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
   5984                              NegDivScale0, Mul, DivScale1);
   5985 
   5986   SDValue Scale;
   5987 
   5988   if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
   5989     // Workaround a hardware bug on SI where the condition output from div_scale
   5990     // is not usable.
   5991 
   5992     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
   5993 
   5994     // Figure out if the scale to use for div_fmas.
   5995     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
   5996     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
   5997     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
   5998     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
   5999 
   6000     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
   6001     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
   6002 
   6003     SDValue Scale0Hi
   6004       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
   6005     SDValue Scale1Hi
   6006       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
   6007 
   6008     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
   6009     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
   6010     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
   6011   } else {
   6012     Scale = DivScale1.getValue(1);
   6013   }
   6014 
   6015   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
   6016                              Fma4, Fma3, Mul, Scale);
   6017 
   6018   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
   6019 }
   6020 
   6021 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
   6022   EVT VT = Op.getValueType();
   6023 
   6024   if (VT == MVT::f32)
   6025     return LowerFDIV32(Op, DAG);
   6026 
   6027   if (VT == MVT::f64)
   6028     return LowerFDIV64(Op, DAG);
   6029 
   6030   if (VT == MVT::f16)
   6031     return LowerFDIV16(Op, DAG);
   6032 
   6033   llvm_unreachable("Unexpected type for fdiv");
   6034 }
   6035 
   6036 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   6037   SDLoc DL(Op);
   6038   StoreSDNode *Store = cast<StoreSDNode>(Op);
   6039   EVT VT = Store->getMemoryVT();
   6040 
   6041   if (VT == MVT::i1) {
   6042     return DAG.getTruncStore(Store->getChain(), DL,
   6043        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
   6044        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
   6045   }
   6046 
   6047   assert(VT.isVector() &&
   6048          Store->getValue().getValueType().getScalarType() == MVT::i32);
   6049 
   6050   unsigned AS = Store->getAddressSpace();
   6051   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
   6052                           AS, Store->getAlignment())) {
   6053     return expandUnalignedStore(Store, DAG);
   6054   }
   6055 
   6056   MachineFunction &MF = DAG.getMachineFunction();
   6057   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
   6058   // If there is a possibilty that flat instruction access scratch memory
   6059   // then we need to use the same legalization rules we use for private.
   6060   if (AS == AMDGPUASI.FLAT_ADDRESS)
   6061     AS = MFI->hasFlatScratchInit() ?
   6062          AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
   6063 
   6064   unsigned NumElements = VT.getVectorNumElements();
   6065   if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
   6066       AS == AMDGPUASI.FLAT_ADDRESS) {
   6067     if (NumElements > 4)
   6068       return SplitVectorStore(Op, DAG);
   6069     return SDValue();
   6070   } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
   6071     switch (Subtarget->getMaxPrivateElementSize()) {
   6072     case 4:
   6073       return scalarizeVectorStore(Store, DAG);
   6074     case 8:
   6075       if (NumElements > 2)
   6076         return SplitVectorStore(Op, DAG);
   6077       return SDValue();
   6078     case 16:
   6079       if (NumElements > 4)
   6080         return SplitVectorStore(Op, DAG);
   6081       return SDValue();
   6082     default:
   6083       llvm_unreachable("unsupported private_element_size");
   6084     }
   6085   } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
   6086     // Use ds_write_b128 if possible.
   6087     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
   6088         VT.getStoreSize() == 16)
   6089       return SDValue();
   6090 
   6091     if (NumElements > 2)
   6092       return SplitVectorStore(Op, DAG);
   6093     return SDValue();
   6094   } else {
   6095     llvm_unreachable("unhandled address space");
   6096   }
   6097 }
   6098 
   6099 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
   6100   SDLoc DL(Op);
   6101   EVT VT = Op.getValueType();
   6102   SDValue Arg = Op.getOperand(0);
   6103   // TODO: Should this propagate fast-math-flags?
   6104   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
   6105                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
   6106                                               DAG.getConstantFP(0.5/M_PI, DL,
   6107                                                                 VT)));
   6108 
   6109   switch (Op.getOpcode()) {
   6110   case ISD::FCOS:
   6111     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
   6112   case ISD::FSIN:
   6113     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
   6114   default:
   6115     llvm_unreachable("Wrong trig opcode");
   6116   }
   6117 }
   6118 
   6119 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
   6120   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
   6121   assert(AtomicNode->isCompareAndSwap());
   6122   unsigned AS = AtomicNode->getAddressSpace();
   6123 
   6124   // No custom lowering required for local address space
   6125   if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
   6126     return Op;
   6127 
   6128   // Non-local address space requires custom lowering for atomic compare
   6129   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
   6130   SDLoc DL(Op);
   6131   SDValue ChainIn = Op.getOperand(0);
   6132   SDValue Addr = Op.getOperand(1);
   6133   SDValue Old = Op.getOperand(2);
   6134   SDValue New = Op.getOperand(3);
   6135   EVT VT = Op.getValueType();
   6136   MVT SimpleVT = VT.getSimpleVT();
   6137   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
   6138 
   6139   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
   6140   SDValue Ops[] = { ChainIn, Addr, NewOld };
   6141 
   6142   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
   6143                                  Ops, VT, AtomicNode->getMemOperand());
   6144 }
   6145 
   6146 //===----------------------------------------------------------------------===//
   6147 // Custom DAG optimizations
   6148 //===----------------------------------------------------------------------===//
   6149 
   6150 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
   6151                                                      DAGCombinerInfo &DCI) const {
   6152   EVT VT = N->getValueType(0);
   6153   EVT ScalarVT = VT.getScalarType();
   6154   if (ScalarVT != MVT::f32)
   6155     return SDValue();
   6156 
   6157   SelectionDAG &DAG = DCI.DAG;
   6158   SDLoc DL(N);
   6159 
   6160   SDValue Src = N->getOperand(0);
   6161   EVT SrcVT = Src.getValueType();
   6162 
   6163   // TODO: We could try to match extracting the higher bytes, which would be
   6164   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
   6165   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
   6166   // about in practice.
   6167   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
   6168     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
   6169       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
   6170       DCI.AddToWorklist(Cvt.getNode());
   6171       return Cvt;
   6172     }
   6173   }
   6174 
   6175   return SDValue();
   6176 }
   6177 
   6178 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
   6179 
   6180 // This is a variant of
   6181 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
   6182 //
   6183 // The normal DAG combiner will do this, but only if the add has one use since
   6184 // that would increase the number of instructions.
   6185 //
   6186 // This prevents us from seeing a constant offset that can be folded into a
   6187 // memory instruction's addressing mode. If we know the resulting add offset of
   6188 // a pointer can be folded into an addressing offset, we can replace the pointer
   6189 // operand with the add of new constant offset. This eliminates one of the uses,
   6190 // and may allow the remaining use to also be simplified.
   6191 //
   6192 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
   6193                                                unsigned AddrSpace,
   6194                                                EVT MemVT,
   6195                                                DAGCombinerInfo &DCI) const {
   6196   SDValue N0 = N->getOperand(0);
   6197   SDValue N1 = N->getOperand(1);
   6198 
   6199   // We only do this to handle cases where it's profitable when there are
   6200   // multiple uses of the add, so defer to the standard combine.
   6201   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
   6202       N0->hasOneUse())
   6203     return SDValue();
   6204 
   6205   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
   6206   if (!CN1)
   6207     return SDValue();
   6208 
   6209   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   6210   if (!CAdd)
   6211     return SDValue();
   6212 
   6213   // If the resulting offset is too large, we can't fold it into the addressing
   6214   // mode offset.
   6215   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
   6216   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
   6217 
   6218   AddrMode AM;
   6219   AM.HasBaseReg = true;
   6220   AM.BaseOffs = Offset.getSExtValue();
   6221   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
   6222     return SDValue();
   6223 
   6224   SelectionDAG &DAG = DCI.DAG;
   6225   SDLoc SL(N);
   6226   EVT VT = N->getValueType(0);
   6227 
   6228   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
   6229   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
   6230 
   6231   SDNodeFlags Flags;
   6232   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
   6233                           (N0.getOpcode() == ISD::OR ||
   6234                            N0->getFlags().hasNoUnsignedWrap()));
   6235 
   6236   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
   6237 }
   6238 
   6239 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
   6240                                                   DAGCombinerInfo &DCI) const {
   6241   SDValue Ptr = N->getBasePtr();
   6242   SelectionDAG &DAG = DCI.DAG;
   6243   SDLoc SL(N);
   6244 
   6245   // TODO: We could also do this for multiplies.
   6246   if (Ptr.getOpcode() == ISD::SHL) {
   6247     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
   6248                                           N->getMemoryVT(), DCI);
   6249     if (NewPtr) {
   6250       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
   6251 
   6252       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
   6253       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
   6254     }
   6255   }
   6256 
   6257   return SDValue();
   6258 }
   6259 
   6260 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
   6261   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
   6262          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
   6263          (Opc == ISD::XOR && Val == 0);
   6264 }
   6265 
   6266 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
   6267 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
   6268 // integer combine opportunities since most 64-bit operations are decomposed
   6269 // this way.  TODO: We won't want this for SALU especially if it is an inline
   6270 // immediate.
   6271 SDValue SITargetLowering::splitBinaryBitConstantOp(
   6272   DAGCombinerInfo &DCI,
   6273   const SDLoc &SL,
   6274   unsigned Opc, SDValue LHS,
   6275   const ConstantSDNode *CRHS) const {
   6276   uint64_t Val = CRHS->getZExtValue();
   6277   uint32_t ValLo = Lo_32(Val);
   6278   uint32_t ValHi = Hi_32(Val);
   6279   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   6280 
   6281     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
   6282          bitOpWithConstantIsReducible(Opc, ValHi)) ||
   6283         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
   6284     // If we need to materialize a 64-bit immediate, it will be split up later
   6285     // anyway. Avoid creating the harder to understand 64-bit immediate
   6286     // materialization.
   6287     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
   6288   }
   6289 
   6290   return SDValue();
   6291 }
   6292 
   6293 // Returns true if argument is a boolean value which is not serialized into
   6294 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
   6295 static bool isBoolSGPR(SDValue V) {
   6296   if (V.getValueType() != MVT::i1)
   6297     return false;
   6298   switch (V.getOpcode()) {
   6299   default: break;
   6300   case ISD::SETCC:
   6301   case ISD::AND:
   6302   case ISD::OR:
   6303   case ISD::XOR:
   6304   case AMDGPUISD::FP_CLASS:
   6305     return true;
   6306   }
   6307   return false;
   6308 }
   6309 
   6310 // If a constant has all zeroes or all ones within each byte return it.
   6311 // Otherwise return 0.
   6312 static uint32_t getConstantPermuteMask(uint32_t C) {
   6313   // 0xff for any zero byte in the mask
   6314   uint32_t ZeroByteMask = 0;
   6315   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
   6316   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
   6317   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
   6318   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
   6319   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
   6320   if ((NonZeroByteMask & C) != NonZeroByteMask)
   6321     return 0; // Partial bytes selected.
   6322   return C;
   6323 }
   6324 
   6325 // Check if a node selects whole bytes from its operand 0 starting at a byte
   6326 // boundary while masking the rest. Returns select mask as in the v_perm_b32
   6327 // or -1 if not succeeded.
   6328 // Note byte select encoding:
   6329 // value 0-3 selects corresponding source byte;
   6330 // value 0xc selects zero;
   6331 // value 0xff selects 0xff.
   6332 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
   6333   assert(V.getValueSizeInBits() == 32);
   6334 
   6335   if (V.getNumOperands() != 2)
   6336     return ~0;
   6337 
   6338   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
   6339   if (!N1)
   6340     return ~0;
   6341 
   6342   uint32_t C = N1->getZExtValue();
   6343 
   6344   switch (V.getOpcode()) {
   6345   default:
   6346     break;
   6347   case ISD::AND:
   6348     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
   6349       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
   6350     }
   6351     break;
   6352 
   6353   case ISD::OR:
   6354     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
   6355       return (0x03020100 & ~ConstMask) | ConstMask;
   6356     }
   6357     break;
   6358 
   6359   case ISD::SHL:
   6360     if (C % 8)
   6361       return ~0;
   6362 
   6363     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
   6364 
   6365   case ISD::SRL:
   6366     if (C % 8)
   6367       return ~0;
   6368 
   6369     return uint32_t(0x0c0c0c0c03020100ull >> C);
   6370   }
   6371 
   6372   return ~0;
   6373 }
   6374 
   6375 SDValue SITargetLowering::performAndCombine(SDNode *N,
   6376                                             DAGCombinerInfo &DCI) const {
   6377   if (DCI.isBeforeLegalize())
   6378     return SDValue();
   6379 
   6380   SelectionDAG &DAG = DCI.DAG;
   6381   EVT VT = N->getValueType(0);
   6382   SDValue LHS = N->getOperand(0);
   6383   SDValue RHS = N->getOperand(1);
   6384 
   6385 
   6386   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
   6387   if (VT == MVT::i64 && CRHS) {
   6388     if (SDValue Split
   6389         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
   6390       return Split;
   6391   }
   6392 
   6393   if (CRHS && VT == MVT::i32) {
   6394     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
   6395     // nb = number of trailing zeroes in mask
   6396     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
   6397     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
   6398     uint64_t Mask = CRHS->getZExtValue();
   6399     unsigned Bits = countPopulation(Mask);
   6400     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
   6401         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
   6402       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
   6403         unsigned Shift = CShift->getZExtValue();
   6404         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
   6405         unsigned Offset = NB + Shift;
   6406         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
   6407           SDLoc SL(N);
   6408           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
   6409                                     LHS->getOperand(0),
   6410                                     DAG.getConstant(Offset, SL, MVT::i32),
   6411                                     DAG.getConstant(Bits, SL, MVT::i32));
   6412           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
   6413           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
   6414                                     DAG.getValueType(NarrowVT));
   6415           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
   6416                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
   6417           return Shl;
   6418         }
   6419       }
   6420     }
   6421 
   6422     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
   6423     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
   6424         isa<ConstantSDNode>(LHS.getOperand(2))) {
   6425       uint32_t Sel = getConstantPermuteMask(Mask);
   6426       if (!Sel)
   6427         return SDValue();
   6428 
   6429       // Select 0xc for all zero bytes
   6430       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
   6431       SDLoc DL(N);
   6432       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
   6433                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
   6434     }
   6435   }
   6436 
   6437   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
   6438   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
   6439   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
   6440     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
   6441     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
   6442 
   6443     SDValue X = LHS.getOperand(0);
   6444     SDValue Y = RHS.getOperand(0);
   6445     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
   6446       return SDValue();
   6447 
   6448     if (LCC == ISD::SETO) {
   6449       if (X != LHS.getOperand(1))
   6450         return SDValue();
   6451 
   6452       if (RCC == ISD::SETUNE) {
   6453         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
   6454         if (!C1 || !C1->isInfinity() || C1->isNegative())
   6455           return SDValue();
   6456 
   6457         const uint32_t Mask = SIInstrFlags::N_NORMAL |
   6458                               SIInstrFlags::N_SUBNORMAL |
   6459                               SIInstrFlags::N_ZERO |
   6460                               SIInstrFlags::P_ZERO |
   6461                               SIInstrFlags::P_SUBNORMAL |
   6462                               SIInstrFlags::P_NORMAL;
   6463 
   6464         static_assert(((~(SIInstrFlags::S_NAN |
   6465                           SIInstrFlags::Q_NAN |
   6466                           SIInstrFlags::N_INFINITY |
   6467                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
   6468                       "mask not equal");
   6469 
   6470         SDLoc DL(N);
   6471         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
   6472                            X, DAG.getConstant(Mask, DL, MVT::i32));
   6473       }
   6474     }
   6475   }
   6476 
   6477   if (VT == MVT::i32 &&
   6478       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
   6479     // and x, (sext cc from i1) => select cc, x, 0
   6480     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
   6481       std::swap(LHS, RHS);
   6482     if (isBoolSGPR(RHS.getOperand(0)))
   6483       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
   6484                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
   6485   }
   6486 
   6487   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
   6488   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   6489   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
   6490       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
   6491     uint32_t LHSMask = getPermuteMask(DAG, LHS);
   6492     uint32_t RHSMask = getPermuteMask(DAG, RHS);
   6493     if (LHSMask != ~0u && RHSMask != ~0u) {
   6494       // Canonicalize the expression in an attempt to have fewer unique masks
   6495       // and therefore fewer registers used to hold the masks.
   6496       if (LHSMask > RHSMask) {
   6497         std::swap(LHSMask, RHSMask);
   6498         std::swap(LHS, RHS);
   6499       }
   6500 
   6501       // Select 0xc for each lane used from source operand. Zero has 0xc mask
   6502       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
   6503       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
   6504       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
   6505 
   6506       // Check of we need to combine values from two sources within a byte.
   6507       if (!(LHSUsedLanes & RHSUsedLanes) &&
   6508           // If we select high and lower word keep it for SDWA.
   6509           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
   6510           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
   6511         // Each byte in each mask is either selector mask 0-3, or has higher
   6512         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
   6513         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
   6514         // mask which is not 0xff wins. By anding both masks we have a correct
   6515         // result except that 0x0c shall be corrected to give 0x0c only.
   6516         uint32_t Mask = LHSMask & RHSMask;
   6517         for (unsigned I = 0; I < 32; I += 8) {
   6518           uint32_t ByteSel = 0xff << I;
   6519           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
   6520             Mask &= (0x0c << I) & 0xffffffff;
   6521         }
   6522 
   6523         // Add 4 to each active LHS lane. It will not affect any existing 0xff
   6524         // or 0x0c.
   6525         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
   6526         SDLoc DL(N);
   6527 
   6528         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
   6529                            LHS.getOperand(0), RHS.getOperand(0),
   6530                            DAG.getConstant(Sel, DL, MVT::i32));
   6531       }
   6532     }
   6533   }
   6534 
   6535   return SDValue();
   6536 }
   6537 
   6538 SDValue SITargetLowering::performOrCombine(SDNode *N,
   6539                                            DAGCombinerInfo &DCI) const {
   6540   SelectionDAG &DAG = DCI.DAG;
   6541   SDValue LHS = N->getOperand(0);
   6542   SDValue RHS = N->getOperand(1);
   6543 
   6544   EVT VT = N->getValueType(0);
   6545   if (VT == MVT::i1) {
   6546     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
   6547     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
   6548         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
   6549       SDValue Src = LHS.getOperand(0);
   6550       if (Src != RHS.getOperand(0))
   6551         return SDValue();
   6552 
   6553       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
   6554       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
   6555       if (!CLHS || !CRHS)
   6556         return SDValue();
   6557 
   6558       // Only 10 bits are used.
   6559       static const uint32_t MaxMask = 0x3ff;
   6560 
   6561       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
   6562       SDLoc DL(N);
   6563       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
   6564                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
   6565     }
   6566 
   6567     return SDValue();
   6568   }
   6569 
   6570   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
   6571   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
   6572       LHS.getOpcode() == AMDGPUISD::PERM &&
   6573       isa<ConstantSDNode>(LHS.getOperand(2))) {
   6574     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
   6575     if (!Sel)
   6576       return SDValue();
   6577 
   6578     Sel |= LHS.getConstantOperandVal(2);
   6579     SDLoc DL(N);
   6580     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
   6581                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
   6582   }
   6583 
   6584   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
   6585   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   6586   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
   6587       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
   6588     uint32_t LHSMask = getPermuteMask(DAG, LHS);
   6589     uint32_t RHSMask = getPermuteMask(DAG, RHS);
   6590     if (LHSMask != ~0u && RHSMask != ~0u) {
   6591       // Canonicalize the expression in an attempt to have fewer unique masks
   6592       // and therefore fewer registers used to hold the masks.
   6593       if (LHSMask > RHSMask) {
   6594         std::swap(LHSMask, RHSMask);
   6595         std::swap(LHS, RHS);
   6596       }
   6597 
   6598       // Select 0xc for each lane used from source operand. Zero has 0xc mask
   6599       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
   6600       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
   6601       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
   6602 
   6603       // Check of we need to combine values from two sources within a byte.
   6604       if (!(LHSUsedLanes & RHSUsedLanes) &&
   6605           // If we select high and lower word keep it for SDWA.
   6606           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
   6607           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
   6608         // Kill zero bytes selected by other mask. Zero value is 0xc.
   6609         LHSMask &= ~RHSUsedLanes;
   6610         RHSMask &= ~LHSUsedLanes;
   6611         // Add 4 to each active LHS lane
   6612         LHSMask |= LHSUsedLanes & 0x04040404;
   6613         // Combine masks
   6614         uint32_t Sel = LHSMask | RHSMask;
   6615         SDLoc DL(N);
   6616 
   6617         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
   6618                            LHS.getOperand(0), RHS.getOperand(0),
   6619                            DAG.getConstant(Sel, DL, MVT::i32));
   6620       }
   6621     }
   6622   }
   6623 
   6624   if (VT != MVT::i64)
   6625     return SDValue();
   6626 
   6627   // TODO: This could be a generic combine with a predicate for extracting the
   6628   // high half of an integer being free.
   6629 
   6630   // (or i64:x, (zero_extend i32:y)) ->
   6631   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
   6632   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
   6633       RHS.getOpcode() != ISD::ZERO_EXTEND)
   6634     std::swap(LHS, RHS);
   6635 
   6636   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
   6637     SDValue ExtSrc = RHS.getOperand(0);
   6638     EVT SrcVT = ExtSrc.getValueType();
   6639     if (SrcVT == MVT::i32) {
   6640       SDLoc SL(N);
   6641       SDValue LowLHS, HiBits;
   6642       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
   6643       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
   6644 
   6645       DCI.AddToWorklist(LowOr.getNode());
   6646       DCI.AddToWorklist(HiBits.getNode());
   6647 
   6648       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
   6649                                 LowOr, HiBits);
   6650       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
   6651     }
   6652   }
   6653 
   6654   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
   6655   if (CRHS) {
   6656     if (SDValue Split
   6657           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
   6658       return Split;
   6659   }
   6660 
   6661   return SDValue();
   6662 }
   6663 
   6664 SDValue SITargetLowering::performXorCombine(SDNode *N,
   6665                                             DAGCombinerInfo &DCI) const {
   6666   EVT VT = N->getValueType(0);
   6667   if (VT != MVT::i64)
   6668     return SDValue();
   6669 
   6670   SDValue LHS = N->getOperand(0);
   6671   SDValue RHS = N->getOperand(1);
   6672 
   6673   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
   6674   if (CRHS) {
   6675     if (SDValue Split
   6676           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
   6677       return Split;
   6678   }
   6679 
   6680   return SDValue();
   6681 }
   6682 
   6683 // Instructions that will be lowered with a final instruction that zeros the
   6684 // high result bits.
   6685 // XXX - probably only need to list legal operations.
   6686 static bool fp16SrcZerosHighBits(unsigned Opc) {
   6687   switch (Opc) {
   6688   case ISD::FADD:
   6689   case ISD::FSUB:
   6690   case ISD::FMUL:
   6691   case ISD::FDIV:
   6692   case ISD::FREM:
   6693   case ISD::FMA:
   6694   case ISD::FMAD:
   6695   case ISD::FCANONICALIZE:
   6696   case ISD::FP_ROUND:
   6697   case ISD::UINT_TO_FP:
   6698   case ISD::SINT_TO_FP:
   6699   case ISD::FABS:
   6700     // Fabs is lowered to a bit operation, but it's an and which will clear the
   6701     // high bits anyway.
   6702   case ISD::FSQRT:
   6703   case ISD::FSIN:
   6704   case ISD::FCOS:
   6705   case ISD::FPOWI:
   6706   case ISD::FPOW:
   6707   case ISD::FLOG:
   6708   case ISD::FLOG2:
   6709   case ISD::FLOG10:
   6710   case ISD::FEXP:
   6711   case ISD::FEXP2:
   6712   case ISD::FCEIL:
   6713   case ISD::FTRUNC:
   6714   case ISD::FRINT:
   6715   case ISD::FNEARBYINT:
   6716   case ISD::FROUND:
   6717   case ISD::FFLOOR:
   6718   case ISD::FMINNUM:
   6719   case ISD::FMAXNUM:
   6720   case AMDGPUISD::FRACT:
   6721   case AMDGPUISD::CLAMP:
   6722   case AMDGPUISD::COS_HW:
   6723   case AMDGPUISD::SIN_HW:
   6724   case AMDGPUISD::FMIN3:
   6725   case AMDGPUISD::FMAX3:
   6726   case AMDGPUISD::FMED3:
   6727   case AMDGPUISD::FMAD_FTZ:
   6728   case AMDGPUISD::RCP:
   6729   case AMDGPUISD::RSQ:
   6730   case AMDGPUISD::RCP_IFLAG:
   6731   case AMDGPUISD::LDEXP:
   6732     return true;
   6733   default:
   6734     // fcopysign, select and others may be lowered to 32-bit bit operations
   6735     // which don't zero the high bits.
   6736     return false;
   6737   }
   6738 }
   6739 
   6740 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
   6741                                                    DAGCombinerInfo &DCI) const {
   6742   if (!Subtarget->has16BitInsts() ||
   6743       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   6744     return SDValue();
   6745 
   6746   EVT VT = N->getValueType(0);
   6747   if (VT != MVT::i32)
   6748     return SDValue();
   6749 
   6750   SDValue Src = N->getOperand(0);
   6751   if (Src.getValueType() != MVT::i16)
   6752     return SDValue();
   6753 
   6754   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
   6755   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
   6756   if (Src.getOpcode() == ISD::BITCAST) {
   6757     SDValue BCSrc = Src.getOperand(0);
   6758     if (BCSrc.getValueType() == MVT::f16 &&
   6759         fp16SrcZerosHighBits(BCSrc.getOpcode()))
   6760       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
   6761   }
   6762 
   6763   return SDValue();
   6764 }
   6765 
   6766 SDValue SITargetLowering::performClassCombine(SDNode *N,
   6767                                               DAGCombinerInfo &DCI) const {
   6768   SelectionDAG &DAG = DCI.DAG;
   6769   SDValue Mask = N->getOperand(1);
   6770 
   6771   // fp_class x, 0 -> false
   6772   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
   6773     if (CMask->isNullValue())
   6774       return DAG.getConstant(0, SDLoc(N), MVT::i1);
   6775   }
   6776 
   6777   if (N->getOperand(0).isUndef())
   6778     return DAG.getUNDEF(MVT::i1);
   6779 
   6780   return SDValue();
   6781 }
   6782 
   6783 SDValue SITargetLowering::performRcpCombine(SDNode *N,
   6784                                             DAGCombinerInfo &DCI) const {
   6785   EVT VT = N->getValueType(0);
   6786   SDValue N0 = N->getOperand(0);
   6787 
   6788   if (N0.isUndef())
   6789     return N0;
   6790 
   6791   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
   6792                          N0.getOpcode() == ISD::SINT_TO_FP)) {
   6793     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
   6794                            N->getFlags());
   6795   }
   6796 
   6797   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
   6798 }
   6799 
   6800 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
   6801   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
   6802     return true;
   6803 
   6804   return DAG.isKnownNeverNaN(Op);
   6805 }
   6806 
   6807 static bool isCanonicalized(SelectionDAG &DAG, SDValue Op,
   6808                             const GCNSubtarget *ST, unsigned MaxDepth=5) {
   6809   // If source is a result of another standard FP operation it is already in
   6810   // canonical form.
   6811 
   6812   switch (Op.getOpcode()) {
   6813   default:
   6814     break;
   6815 
   6816   // These will flush denorms if required.
   6817   case ISD::FADD:
   6818   case ISD::FSUB:
   6819   case ISD::FMUL:
   6820   case ISD::FSQRT:
   6821   case ISD::FCEIL:
   6822   case ISD::FFLOOR:
   6823   case ISD::FMA:
   6824   case ISD::FMAD:
   6825 
   6826   case ISD::FCANONICALIZE:
   6827     return true;
   6828 
   6829   case ISD::FP_ROUND:
   6830     return Op.getValueType().getScalarType() != MVT::f16 ||
   6831            ST->hasFP16Denormals();
   6832 
   6833   case ISD::FP_EXTEND:
   6834     return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 ||
   6835            ST->hasFP16Denormals();
   6836 
   6837   // It can/will be lowered or combined as a bit operation.
   6838   // Need to check their input recursively to handle.
   6839   case ISD::FNEG:
   6840   case ISD::FABS:
   6841     return (MaxDepth > 0) &&
   6842            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1);
   6843 
   6844   case ISD::FSIN:
   6845   case ISD::FCOS:
   6846   case ISD::FSINCOS:
   6847     return Op.getValueType().getScalarType() != MVT::f16;
   6848 
   6849   // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms.
   6850   // For such targets need to check their input recursively.
   6851   case ISD::FMINNUM:
   6852   case ISD::FMAXNUM:
   6853   case ISD::FMINNAN:
   6854   case ISD::FMAXNAN:
   6855 
   6856     if (ST->supportsMinMaxDenormModes() &&
   6857         DAG.isKnownNeverNaN(Op.getOperand(0)) &&
   6858         DAG.isKnownNeverNaN(Op.getOperand(1)))
   6859       return true;
   6860 
   6861     return (MaxDepth > 0) &&
   6862            isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) &&
   6863            isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1);
   6864 
   6865   case ISD::ConstantFP: {
   6866     auto F = cast<ConstantFPSDNode>(Op)->getValueAPF();
   6867     return !F.isDenormal() && !(F.isNaN() && F.isSignaling());
   6868   }
   6869   }
   6870   return false;
   6871 }
   6872 
   6873 // Constant fold canonicalize.
   6874 SDValue SITargetLowering::performFCanonicalizeCombine(
   6875   SDNode *N,
   6876   DAGCombinerInfo &DCI) const {
   6877   SelectionDAG &DAG = DCI.DAG;
   6878   SDValue N0 = N->getOperand(0);
   6879 
   6880   // fcanonicalize undef -> qnan
   6881   if (N0.isUndef()) {
   6882     EVT VT = N->getValueType(0);
   6883     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
   6884     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
   6885   }
   6886 
   6887   ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0);
   6888   if (!CFP) {
   6889     SDValue N0 = N->getOperand(0);
   6890     EVT VT = N0.getValueType().getScalarType();
   6891     auto ST = getSubtarget();
   6892 
   6893     if (((VT == MVT::f32 && ST->hasFP32Denormals()) ||
   6894          (VT == MVT::f64 && ST->hasFP64Denormals()) ||
   6895          (VT == MVT::f16 && ST->hasFP16Denormals())) &&
   6896         DAG.isKnownNeverNaN(N0))
   6897       return N0;
   6898 
   6899     bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());
   6900 
   6901     if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) &&
   6902         isCanonicalized(DAG, N0, ST))
   6903       return N0;
   6904 
   6905     return SDValue();
   6906   }
   6907 
   6908   const APFloat &C = CFP->getValueAPF();
   6909 
   6910   // Flush denormals to 0 if not enabled.
   6911   if (C.isDenormal()) {
   6912     EVT VT = N->getValueType(0);
   6913     EVT SVT = VT.getScalarType();
   6914     if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
   6915       return DAG.getConstantFP(0.0, SDLoc(N), VT);
   6916 
   6917     if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
   6918       return DAG.getConstantFP(0.0, SDLoc(N), VT);
   6919 
   6920     if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
   6921       return DAG.getConstantFP(0.0, SDLoc(N), VT);
   6922   }
   6923 
   6924   if (C.isNaN()) {
   6925     EVT VT = N->getValueType(0);
   6926     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
   6927     if (C.isSignaling()) {
   6928       // Quiet a signaling NaN.
   6929       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
   6930     }
   6931 
   6932     // Make sure it is the canonical NaN bitpattern.
   6933     //
   6934     // TODO: Can we use -1 as the canonical NaN value since it's an inline
   6935     // immediate?
   6936     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
   6937       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
   6938   }
   6939 
   6940   return N0;
   6941 }
   6942 
   6943 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
   6944   switch (Opc) {
   6945   case ISD::FMAXNUM:
   6946     return AMDGPUISD::FMAX3;
   6947   case ISD::SMAX:
   6948     return AMDGPUISD::SMAX3;
   6949   case ISD::UMAX:
   6950     return AMDGPUISD::UMAX3;
   6951   case ISD::FMINNUM:
   6952     return AMDGPUISD::FMIN3;
   6953   case ISD::SMIN:
   6954     return AMDGPUISD::SMIN3;
   6955   case ISD::UMIN:
   6956     return AMDGPUISD::UMIN3;
   6957   default:
   6958     llvm_unreachable("Not a min/max opcode");
   6959   }
   6960 }
   6961 
   6962 SDValue SITargetLowering::performIntMed3ImmCombine(
   6963   SelectionDAG &DAG, const SDLoc &SL,
   6964   SDValue Op0, SDValue Op1, bool Signed) const {
   6965   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
   6966   if (!K1)
   6967     return SDValue();
   6968 
   6969   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
   6970   if (!K0)
   6971     return SDValue();
   6972 
   6973   if (Signed) {
   6974     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
   6975       return SDValue();
   6976   } else {
   6977     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
   6978       return SDValue();
   6979   }
   6980 
   6981   EVT VT = K0->getValueType(0);
   6982   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
   6983   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
   6984     return DAG.getNode(Med3Opc, SL, VT,
   6985                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
   6986   }
   6987 
   6988   // If there isn't a 16-bit med3 operation, convert to 32-bit.
   6989   MVT NVT = MVT::i32;
   6990   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   6991 
   6992   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
   6993   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
   6994   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
   6995 
   6996   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
   6997   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
   6998 }
   6999 
   7000 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
   7001   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
   7002     return C;
   7003 
   7004   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
   7005     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
   7006       return C;
   7007   }
   7008 
   7009   return nullptr;
   7010 }
   7011 
   7012 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
   7013                                                   const SDLoc &SL,
   7014                                                   SDValue Op0,
   7015                                                   SDValue Op1) const {
   7016   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
   7017   if (!K1)
   7018     return SDValue();
   7019 
   7020   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
   7021   if (!K0)
   7022     return SDValue();
   7023 
   7024   // Ordered >= (although NaN inputs should have folded away by now).
   7025   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
   7026   if (Cmp == APFloat::cmpGreaterThan)
   7027     return SDValue();
   7028 
   7029   // TODO: Check IEEE bit enabled?
   7030   EVT VT = Op0.getValueType();
   7031   if (Subtarget->enableDX10Clamp()) {
   7032     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
   7033     // hardware fmed3 behavior converting to a min.
   7034     // FIXME: Should this be allowing -0.0?
   7035     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
   7036       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
   7037   }
   7038 
   7039   // med3 for f16 is only available on gfx9+, and not available for v2f16.
   7040   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
   7041     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
   7042     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
   7043     // then give the other result, which is different from med3 with a NaN
   7044     // input.
   7045     SDValue Var = Op0.getOperand(0);
   7046     if (!isKnownNeverSNan(DAG, Var))
   7047       return SDValue();
   7048 
   7049     return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
   7050                        Var, SDValue(K0, 0), SDValue(K1, 0));
   7051   }
   7052 
   7053   return SDValue();
   7054 }
   7055 
   7056 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
   7057                                                DAGCombinerInfo &DCI) const {
   7058   SelectionDAG &DAG = DCI.DAG;
   7059 
   7060   EVT VT = N->getValueType(0);
   7061   unsigned Opc = N->getOpcode();
   7062   SDValue Op0 = N->getOperand(0);
   7063   SDValue Op1 = N->getOperand(1);
   7064 
   7065   // Only do this if the inner op has one use since this will just increases
   7066   // register pressure for no benefit.
   7067 
   7068 
   7069   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
   7070       !VT.isVector() && VT != MVT::f64 &&
   7071       ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
   7072     // max(max(a, b), c) -> max3(a, b, c)
   7073     // min(min(a, b), c) -> min3(a, b, c)
   7074     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
   7075       SDLoc DL(N);
   7076       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
   7077                          DL,
   7078                          N->getValueType(0),
   7079                          Op0.getOperand(0),
   7080                          Op0.getOperand(1),
   7081                          Op1);
   7082     }
   7083 
   7084     // Try commuted.
   7085     // max(a, max(b, c)) -> max3(a, b, c)
   7086     // min(a, min(b, c)) -> min3(a, b, c)
   7087     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
   7088       SDLoc DL(N);
   7089       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
   7090                          DL,
   7091                          N->getValueType(0),
   7092                          Op0,
   7093                          Op1.getOperand(0),
   7094                          Op1.getOperand(1));
   7095     }
   7096   }
   7097 
   7098   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
   7099   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
   7100     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
   7101       return Med3;
   7102   }
   7103 
   7104   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
   7105     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
   7106       return Med3;
   7107   }
   7108 
   7109   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
   7110   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
   7111        (Opc == AMDGPUISD::FMIN_LEGACY &&
   7112         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
   7113       (VT == MVT::f32 || VT == MVT::f64 ||
   7114        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
   7115        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
   7116       Op0.hasOneUse()) {
   7117     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
   7118       return Res;
   7119   }
   7120 
   7121   return SDValue();
   7122 }
   7123 
   7124 static bool isClampZeroToOne(SDValue A, SDValue B) {
   7125   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
   7126     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
   7127       // FIXME: Should this be allowing -0.0?
   7128       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
   7129              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
   7130     }
   7131   }
   7132 
   7133   return false;
   7134 }
   7135 
   7136 // FIXME: Should only worry about snans for version with chain.
   7137 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
   7138                                               DAGCombinerInfo &DCI) const {
   7139   EVT VT = N->getValueType(0);
   7140   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
   7141   // NaNs. With a NaN input, the order of the operands may change the result.
   7142 
   7143   SelectionDAG &DAG = DCI.DAG;
   7144   SDLoc SL(N);
   7145 
   7146   SDValue Src0 = N->getOperand(0);
   7147   SDValue Src1 = N->getOperand(1);
   7148   SDValue Src2 = N->getOperand(2);
   7149 
   7150   if (isClampZeroToOne(Src0, Src1)) {
   7151     // const_a, const_b, x -> clamp is safe in all cases including signaling
   7152     // nans.
   7153     // FIXME: Should this be allowing -0.0?
   7154     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
   7155   }
   7156 
   7157   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
   7158   // handling no dx10-clamp?
   7159   if (Subtarget->enableDX10Clamp()) {
   7160     // If NaNs is clamped to 0, we are free to reorder the inputs.
   7161 
   7162     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
   7163       std::swap(Src0, Src1);
   7164 
   7165     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
   7166       std::swap(Src1, Src2);
   7167 
   7168     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
   7169       std::swap(Src0, Src1);
   7170 
   7171     if (isClampZeroToOne(Src1, Src2))
   7172       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
   7173   }
   7174 
   7175   return SDValue();
   7176 }
   7177 
   7178 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
   7179                                                  DAGCombinerInfo &DCI) const {
   7180   SDValue Src0 = N->getOperand(0);
   7181   SDValue Src1 = N->getOperand(1);
   7182   if (Src0.isUndef() && Src1.isUndef())
   7183     return DCI.DAG.getUNDEF(N->getValueType(0));
   7184   return SDValue();
   7185 }
   7186 
   7187 SDValue SITargetLowering::performExtractVectorEltCombine(
   7188   SDNode *N, DAGCombinerInfo &DCI) const {
   7189   SDValue Vec = N->getOperand(0);
   7190   SelectionDAG &DAG = DCI.DAG;
   7191 
   7192   EVT VecVT = Vec.getValueType();
   7193   EVT EltVT = VecVT.getVectorElementType();
   7194 
   7195   if ((Vec.getOpcode() == ISD::FNEG ||
   7196        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
   7197     SDLoc SL(N);
   7198     EVT EltVT = N->getValueType(0);
   7199     SDValue Idx = N->getOperand(1);
   7200     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
   7201                               Vec.getOperand(0), Idx);
   7202     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
   7203   }
   7204 
   7205   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
   7206   //    =>
   7207   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
   7208   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
   7209   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
   7210   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
   7211     SDLoc SL(N);
   7212     EVT EltVT = N->getValueType(0);
   7213     SDValue Idx = N->getOperand(1);
   7214     unsigned Opc = Vec.getOpcode();
   7215 
   7216     switch(Opc) {
   7217     default:
   7218       return SDValue();
   7219       // TODO: Support other binary operations.
   7220     case ISD::FADD:
   7221     case ISD::ADD:
   7222     case ISD::UMIN:
   7223     case ISD::UMAX:
   7224     case ISD::SMIN:
   7225     case ISD::SMAX:
   7226     case ISD::FMAXNUM:
   7227     case ISD::FMINNUM:
   7228       return DAG.getNode(Opc, SL, EltVT,
   7229                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
   7230                                      Vec.getOperand(0), Idx),
   7231                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
   7232                                      Vec.getOperand(1), Idx));
   7233     }
   7234   }
   7235 
   7236   if (!DCI.isBeforeLegalize())
   7237     return SDValue();
   7238 
   7239   unsigned VecSize = VecVT.getSizeInBits();
   7240   unsigned EltSize = EltVT.getSizeInBits();
   7241 
   7242   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
   7243   // elements. This exposes more load reduction opportunities by replacing
   7244   // multiple small extract_vector_elements with a single 32-bit extract.
   7245   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
   7246   if (EltSize <= 16 &&
   7247       EltVT.isByteSized() &&
   7248       VecSize > 32 &&
   7249       VecSize % 32 == 0 &&
   7250       Idx) {
   7251     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
   7252 
   7253     unsigned BitIndex = Idx->getZExtValue() * EltSize;
   7254     unsigned EltIdx = BitIndex / 32;
   7255     unsigned LeftoverBitIdx = BitIndex % 32;
   7256     SDLoc SL(N);
   7257 
   7258     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
   7259     DCI.AddToWorklist(Cast.getNode());
   7260 
   7261     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
   7262                               DAG.getConstant(EltIdx, SL, MVT::i32));
   7263     DCI.AddToWorklist(Elt.getNode());
   7264     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
   7265                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
   7266     DCI.AddToWorklist(Srl.getNode());
   7267 
   7268     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
   7269     DCI.AddToWorklist(Trunc.getNode());
   7270     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
   7271   }
   7272 
   7273   return SDValue();
   7274 }
   7275 
   7276 static bool convertBuildVectorCastElt(SelectionDAG &DAG,
   7277                                       SDValue &Lo, SDValue &Hi) {
   7278   if (Hi.getOpcode() == ISD::BITCAST &&
   7279       Hi.getOperand(0).getValueType() == MVT::f16 &&
   7280       (isa<ConstantSDNode>(Lo) || Lo.isUndef())) {
   7281     Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo);
   7282     Hi = Hi.getOperand(0);
   7283     return true;
   7284   }
   7285 
   7286   return false;
   7287 }
   7288 
   7289 SDValue SITargetLowering::performBuildVectorCombine(
   7290   SDNode *N, DAGCombinerInfo &DCI) const {
   7291   SDLoc SL(N);
   7292 
   7293   if (!isTypeLegal(MVT::v2i16))
   7294     return SDValue();
   7295   SelectionDAG &DAG = DCI.DAG;
   7296   EVT VT = N->getValueType(0);
   7297 
   7298   if (VT == MVT::v2i16) {
   7299     SDValue Lo = N->getOperand(0);
   7300     SDValue Hi = N->getOperand(1);
   7301 
   7302     // v2i16 build_vector (const|undef), (bitcast f16:$x)
   7303     // -> bitcast (v2f16 build_vector const|undef, $x
   7304     if (convertBuildVectorCastElt(DAG, Lo, Hi)) {
   7305       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi  });
   7306       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
   7307     }
   7308 
   7309     if (convertBuildVectorCastElt(DAG, Hi, Lo)) {
   7310       SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo  });
   7311       return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
   7312     }
   7313   }
   7314 
   7315   return SDValue();
   7316 }
   7317 
   7318 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
   7319                                           const SDNode *N0,
   7320                                           const SDNode *N1) const {
   7321   EVT VT = N0->getValueType(0);
   7322 
   7323   // Only do this if we are not trying to support denormals. v_mad_f32 does not
   7324   // support denormals ever.
   7325   if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
   7326       (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
   7327     return ISD::FMAD;
   7328 
   7329   const TargetOptions &Options = DAG.getTarget().Options;
   7330   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
   7331        (N0->getFlags().hasAllowContract() &&
   7332         N1->getFlags().hasAllowContract())) &&
   7333       isFMAFasterThanFMulAndFAdd(VT)) {
   7334     return ISD::FMA;
   7335   }
   7336 
   7337   return 0;
   7338 }
   7339 
   7340 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
   7341                            EVT VT,
   7342                            SDValue N0, SDValue N1, SDValue N2,
   7343                            bool Signed) {
   7344   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
   7345   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
   7346   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
   7347   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
   7348 }
   7349 
   7350 SDValue SITargetLowering::performAddCombine(SDNode *N,
   7351                                             DAGCombinerInfo &DCI) const {
   7352   SelectionDAG &DAG = DCI.DAG;
   7353   EVT VT = N->getValueType(0);
   7354   SDLoc SL(N);
   7355   SDValue LHS = N->getOperand(0);
   7356   SDValue RHS = N->getOperand(1);
   7357 
   7358   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
   7359       && Subtarget->hasMad64_32() &&
   7360       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
   7361       VT.getScalarSizeInBits() <= 64) {
   7362     if (LHS.getOpcode() != ISD::MUL)
   7363       std::swap(LHS, RHS);
   7364 
   7365     SDValue MulLHS = LHS.getOperand(0);
   7366     SDValue MulRHS = LHS.getOperand(1);
   7367     SDValue AddRHS = RHS;
   7368 
   7369     // TODO: Maybe restrict if SGPR inputs.
   7370     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
   7371         numBitsUnsigned(MulRHS, DAG) <= 32) {
   7372       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
   7373       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
   7374       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
   7375       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
   7376     }
   7377 
   7378     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
   7379       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
   7380       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
   7381       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
   7382       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
   7383     }
   7384 
   7385     return SDValue();
   7386   }
   7387 
   7388   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
   7389     return SDValue();
   7390 
   7391   // add x, zext (setcc) => addcarry x, 0, setcc
   7392   // add x, sext (setcc) => subcarry x, 0, setcc
   7393   unsigned Opc = LHS.getOpcode();
   7394   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
   7395       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
   7396     std::swap(RHS, LHS);
   7397 
   7398   Opc = RHS.getOpcode();
   7399   switch (Opc) {
   7400   default: break;
   7401   case ISD::ZERO_EXTEND:
   7402   case ISD::SIGN_EXTEND:
   7403   case ISD::ANY_EXTEND: {
   7404     auto Cond = RHS.getOperand(0);
   7405     if (!isBoolSGPR(Cond))
   7406       break;
   7407     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
   7408     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
   7409     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
   7410     return DAG.getNode(Opc, SL, VTList, Args);
   7411   }
   7412   case ISD::ADDCARRY: {
   7413     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
   7414     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
   7415     if (!C || C->getZExtValue() != 0) break;
   7416     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
   7417     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
   7418   }
   7419   }
   7420   return SDValue();
   7421 }
   7422 
   7423 SDValue SITargetLowering::performSubCombine(SDNode *N,
   7424                                             DAGCombinerInfo &DCI) const {
   7425   SelectionDAG &DAG = DCI.DAG;
   7426   EVT VT = N->getValueType(0);
   7427 
   7428   if (VT != MVT::i32)
   7429     return SDValue();
   7430 
   7431   SDLoc SL(N);
   7432   SDValue LHS = N->getOperand(0);
   7433   SDValue RHS = N->getOperand(1);
   7434 
   7435   unsigned Opc = LHS.getOpcode();
   7436   if (Opc != ISD::SUBCARRY)
   7437     std::swap(RHS, LHS);
   7438 
   7439   if (LHS.getOpcode() == ISD::SUBCARRY) {
   7440     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
   7441     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
   7442     if (!C || C->getZExtValue() != 0)
   7443       return SDValue();
   7444     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
   7445     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
   7446   }
   7447   return SDValue();
   7448 }
   7449 
   7450 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
   7451   DAGCombinerInfo &DCI) const {
   7452 
   7453   if (N->getValueType(0) != MVT::i32)
   7454     return SDValue();
   7455 
   7456   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   7457   if (!C || C->getZExtValue() != 0)
   7458     return SDValue();
   7459 
   7460   SelectionDAG &DAG = DCI.DAG;
   7461   SDValue LHS = N->getOperand(0);
   7462 
   7463   // addcarry (add x, y), 0, cc => addcarry x, y, cc
   7464   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
   7465   unsigned LHSOpc = LHS.getOpcode();
   7466   unsigned Opc = N->getOpcode();
   7467   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
   7468       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
   7469     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
   7470     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
   7471   }
   7472   return SDValue();
   7473 }
   7474 
   7475 SDValue SITargetLowering::performFAddCombine(SDNode *N,
   7476                                              DAGCombinerInfo &DCI) const {
   7477   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   7478     return SDValue();
   7479 
   7480   SelectionDAG &DAG = DCI.DAG;
   7481   EVT VT = N->getValueType(0);
   7482 
   7483   SDLoc SL(N);
   7484   SDValue LHS = N->getOperand(0);
   7485   SDValue RHS = N->getOperand(1);
   7486 
   7487   // These should really be instruction patterns, but writing patterns with
   7488   // source modiifiers is a pain.
   7489 
   7490   // fadd (fadd (a, a), b) -> mad 2.0, a, b
   7491   if (LHS.getOpcode() == ISD::FADD) {
   7492     SDValue A = LHS.getOperand(0);
   7493     if (A == LHS.getOperand(1)) {
   7494       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
   7495       if (FusedOp != 0) {
   7496         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
   7497         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
   7498       }
   7499     }
   7500   }
   7501 
   7502   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
   7503   if (RHS.getOpcode() == ISD::FADD) {
   7504     SDValue A = RHS.getOperand(0);
   7505     if (A == RHS.getOperand(1)) {
   7506       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
   7507       if (FusedOp != 0) {
   7508         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
   7509         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
   7510       }
   7511     }
   7512   }
   7513 
   7514   return SDValue();
   7515 }
   7516 
   7517 SDValue SITargetLowering::performFSubCombine(SDNode *N,
   7518                                              DAGCombinerInfo &DCI) const {
   7519   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   7520     return SDValue();
   7521 
   7522   SelectionDAG &DAG = DCI.DAG;
   7523   SDLoc SL(N);
   7524   EVT VT = N->getValueType(0);
   7525   assert(!VT.isVector());
   7526 
   7527   // Try to get the fneg to fold into the source modifier. This undoes generic
   7528   // DAG combines and folds them into the mad.
   7529   //
   7530   // Only do this if we are not trying to support denormals. v_mad_f32 does
   7531   // not support denormals ever.
   7532   SDValue LHS = N->getOperand(0);
   7533   SDValue RHS = N->getOperand(1);
   7534   if (LHS.getOpcode() == ISD::FADD) {
   7535     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
   7536     SDValue A = LHS.getOperand(0);
   7537     if (A == LHS.getOperand(1)) {
   7538       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
   7539       if (FusedOp != 0){
   7540         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
   7541         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
   7542 
   7543         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
   7544       }
   7545     }
   7546   }
   7547 
   7548   if (RHS.getOpcode() == ISD::FADD) {
   7549     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
   7550 
   7551     SDValue A = RHS.getOperand(0);
   7552     if (A == RHS.getOperand(1)) {
   7553       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
   7554       if (FusedOp != 0){
   7555         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
   7556         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
   7557       }
   7558     }
   7559   }
   7560 
   7561   return SDValue();
   7562 }
   7563 
   7564 SDValue SITargetLowering::performFMACombine(SDNode *N,
   7565                                             DAGCombinerInfo &DCI) const {
   7566   SelectionDAG &DAG = DCI.DAG;
   7567   EVT VT = N->getValueType(0);
   7568   SDLoc SL(N);
   7569 
   7570   if (!Subtarget->hasDLInsts() || VT != MVT::f32)
   7571     return SDValue();
   7572 
   7573   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
   7574   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
   7575   SDValue Op1 = N->getOperand(0);
   7576   SDValue Op2 = N->getOperand(1);
   7577   SDValue FMA = N->getOperand(2);
   7578 
   7579   if (FMA.getOpcode() != ISD::FMA ||
   7580       Op1.getOpcode() != ISD::FP_EXTEND ||
   7581       Op2.getOpcode() != ISD::FP_EXTEND)
   7582     return SDValue();
   7583 
   7584   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
   7585   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
   7586   // is sufficient to allow generaing fdot2.
   7587   const TargetOptions &Options = DAG.getTarget().Options;
   7588   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
   7589       (N->getFlags().hasAllowContract() &&
   7590        FMA->getFlags().hasAllowContract())) {
   7591     Op1 = Op1.getOperand(0);
   7592     Op2 = Op2.getOperand(0);
   7593     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   7594         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7595       return SDValue();
   7596 
   7597     SDValue Vec1 = Op1.getOperand(0);
   7598     SDValue Idx1 = Op1.getOperand(1);
   7599     SDValue Vec2 = Op2.getOperand(0);
   7600 
   7601     SDValue FMAOp1 = FMA.getOperand(0);
   7602     SDValue FMAOp2 = FMA.getOperand(1);
   7603     SDValue FMAAcc = FMA.getOperand(2);
   7604 
   7605     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
   7606         FMAOp2.getOpcode() != ISD::FP_EXTEND)
   7607       return SDValue();
   7608 
   7609     FMAOp1 = FMAOp1.getOperand(0);
   7610     FMAOp2 = FMAOp2.getOperand(0);
   7611     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   7612         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7613       return SDValue();
   7614 
   7615     SDValue Vec3 = FMAOp1.getOperand(0);
   7616     SDValue Vec4 = FMAOp2.getOperand(0);
   7617     SDValue Idx2 = FMAOp1.getOperand(1);
   7618 
   7619     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
   7620         // Idx1 and Idx2 cannot be the same.
   7621         Idx1 == Idx2)
   7622       return SDValue();
   7623 
   7624     if (Vec1 == Vec2 || Vec3 == Vec4)
   7625       return SDValue();
   7626 
   7627     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
   7628       return SDValue();
   7629 
   7630     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
   7631         (Vec1 == Vec4 && Vec2 == Vec3)) {
   7632       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
   7633                          DAG.getTargetConstant(0, SL, MVT::i1));
   7634     }
   7635   }
   7636   return SDValue();
   7637 }
   7638 
   7639 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
   7640                                               DAGCombinerInfo &DCI) const {
   7641   SelectionDAG &DAG = DCI.DAG;
   7642   SDLoc SL(N);
   7643 
   7644   SDValue LHS = N->getOperand(0);
   7645   SDValue RHS = N->getOperand(1);
   7646   EVT VT = LHS.getValueType();
   7647   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   7648 
   7649   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
   7650   if (!CRHS) {
   7651     CRHS = dyn_cast<ConstantSDNode>(LHS);
   7652     if (CRHS) {
   7653       std::swap(LHS, RHS);
   7654       CC = getSetCCSwappedOperands(CC);
   7655     }
   7656   }
   7657 
   7658   if (CRHS) {
   7659     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
   7660         isBoolSGPR(LHS.getOperand(0))) {
   7661       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
   7662       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
   7663       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
   7664       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
   7665       if ((CRHS->isAllOnesValue() &&
   7666            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
   7667           (CRHS->isNullValue() &&
   7668            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
   7669         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
   7670                            DAG.getConstant(-1, SL, MVT::i1));
   7671       if ((CRHS->isAllOnesValue() &&
   7672            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
   7673           (CRHS->isNullValue() &&
   7674            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
   7675         return LHS.getOperand(0);
   7676     }
   7677 
   7678     uint64_t CRHSVal = CRHS->getZExtValue();
   7679     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   7680         LHS.getOpcode() == ISD::SELECT &&
   7681         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   7682         isa<ConstantSDNode>(LHS.getOperand(2)) &&
   7683         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
   7684         isBoolSGPR(LHS.getOperand(0))) {
   7685       // Given CT != FT:
   7686       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
   7687       // setcc (select cc, CT, CF), CF, ne => cc
   7688       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
   7689       // setcc (select cc, CT, CF), CT, eq => cc
   7690       uint64_t CT = LHS.getConstantOperandVal(1);
   7691       uint64_t CF = LHS.getConstantOperandVal(2);
   7692 
   7693       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
   7694           (CT == CRHSVal && CC == ISD::SETNE))
   7695         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
   7696                            DAG.getConstant(-1, SL, MVT::i1));
   7697       if ((CF == CRHSVal && CC == ISD::SETNE) ||
   7698           (CT == CRHSVal && CC == ISD::SETEQ))
   7699         return LHS.getOperand(0);
   7700     }
   7701   }
   7702 
   7703   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
   7704                                            VT != MVT::f16))
   7705     return SDValue();
   7706 
   7707   // Match isinf pattern
   7708   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
   7709   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
   7710     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
   7711     if (!CRHS)
   7712       return SDValue();
   7713 
   7714     const APFloat &APF = CRHS->getValueAPF();
   7715     if (APF.isInfinity() && !APF.isNegative()) {
   7716       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
   7717       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
   7718                          DAG.getConstant(Mask, SL, MVT::i32));
   7719     }
   7720   }
   7721 
   7722   return SDValue();
   7723 }
   7724 
   7725 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
   7726                                                      DAGCombinerInfo &DCI) const {
   7727   SelectionDAG &DAG = DCI.DAG;
   7728   SDLoc SL(N);
   7729   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
   7730 
   7731   SDValue Src = N->getOperand(0);
   7732   SDValue Srl = N->getOperand(0);
   7733   if (Srl.getOpcode() == ISD::ZERO_EXTEND)
   7734     Srl = Srl.getOperand(0);
   7735 
   7736   // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
   7737   if (Srl.getOpcode() == ISD::SRL) {
   7738     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
   7739     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
   7740     // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
   7741 
   7742     if (const ConstantSDNode *C =
   7743         dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
   7744       Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
   7745                                EVT(MVT::i32));
   7746 
   7747       unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
   7748       if (SrcOffset < 32 && SrcOffset % 8 == 0) {
   7749         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
   7750                            MVT::f32, Srl);
   7751       }
   7752     }
   7753   }
   7754 
   7755   APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
   7756 
   7757   KnownBits Known;
   7758   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   7759                                         !DCI.isBeforeLegalizeOps());
   7760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7761   if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
   7762       TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
   7763     DCI.CommitTargetLoweringOpt(TLO);
   7764   }
   7765 
   7766   return SDValue();
   7767 }
   7768 
   7769 SDValue SITargetLowering::performClampCombine(SDNode *N,
   7770                                               DAGCombinerInfo &DCI) const {
   7771   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
   7772   if (!CSrc)
   7773     return SDValue();
   7774 
   7775   const APFloat &F = CSrc->getValueAPF();
   7776   APFloat Zero = APFloat::getZero(F.getSemantics());
   7777   APFloat::cmpResult Cmp0 = F.compare(Zero);
   7778   if (Cmp0 == APFloat::cmpLessThan ||
   7779       (Cmp0 == APFloat::cmpUnordered && Subtarget->enableDX10Clamp())) {
   7780     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
   7781   }
   7782 
   7783   APFloat One(F.getSemantics(), "1.0");
   7784   APFloat::cmpResult Cmp1 = F.compare(One);
   7785   if (Cmp1 == APFloat::cmpGreaterThan)
   7786     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
   7787 
   7788   return SDValue(CSrc, 0);
   7789 }
   7790 
   7791 
   7792 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
   7793                                             DAGCombinerInfo &DCI) const {
   7794   switch (N->getOpcode()) {
   7795   default:
   7796     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
   7797   case ISD::ADD:
   7798     return performAddCombine(N, DCI);
   7799   case ISD::SUB:
   7800     return performSubCombine(N, DCI);
   7801   case ISD::ADDCARRY:
   7802   case ISD::SUBCARRY:
   7803     return performAddCarrySubCarryCombine(N, DCI);
   7804   case ISD::FADD:
   7805     return performFAddCombine(N, DCI);
   7806   case ISD::FSUB:
   7807     return performFSubCombine(N, DCI);
   7808   case ISD::SETCC:
   7809     return performSetCCCombine(N, DCI);
   7810   case ISD::FMAXNUM:
   7811   case ISD::FMINNUM:
   7812   case ISD::SMAX:
   7813   case ISD::SMIN:
   7814   case ISD::UMAX:
   7815   case ISD::UMIN:
   7816   case AMDGPUISD::FMIN_LEGACY:
   7817   case AMDGPUISD::FMAX_LEGACY: {
   7818     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
   7819         getTargetMachine().getOptLevel() > CodeGenOpt::None)
   7820       return performMinMaxCombine(N, DCI);
   7821     break;
   7822   }
   7823   case ISD::FMA:
   7824     return performFMACombine(N, DCI);
   7825   case ISD::LOAD: {
   7826     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
   7827       return Widended;
   7828     LLVM_FALLTHROUGH;
   7829   }
   7830   case ISD::STORE:
   7831   case ISD::ATOMIC_LOAD:
   7832   case ISD::ATOMIC_STORE:
   7833   case ISD::ATOMIC_CMP_SWAP:
   7834   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
   7835   case ISD::ATOMIC_SWAP:
   7836   case ISD::ATOMIC_LOAD_ADD:
   7837   case ISD::ATOMIC_LOAD_SUB:
   7838   case ISD::ATOMIC_LOAD_AND:
   7839   case ISD::ATOMIC_LOAD_OR:
   7840   case ISD::ATOMIC_LOAD_XOR:
   7841   case ISD::ATOMIC_LOAD_NAND:
   7842   case ISD::ATOMIC_LOAD_MIN:
   7843   case ISD::ATOMIC_LOAD_MAX:
   7844   case ISD::ATOMIC_LOAD_UMIN:
   7845   case ISD::ATOMIC_LOAD_UMAX:
   7846   case AMDGPUISD::ATOMIC_INC:
   7847   case AMDGPUISD::ATOMIC_DEC:
   7848   case AMDGPUISD::ATOMIC_LOAD_FADD:
   7849   case AMDGPUISD::ATOMIC_LOAD_FMIN:
   7850   case AMDGPUISD::ATOMIC_LOAD_FMAX:  // TODO: Target mem intrinsics.
   7851     if (DCI.isBeforeLegalize())
   7852       break;
   7853     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
   7854   case ISD::AND:
   7855     return performAndCombine(N, DCI);
   7856   case ISD::OR:
   7857     return performOrCombine(N, DCI);
   7858   case ISD::XOR:
   7859     return performXorCombine(N, DCI);
   7860   case ISD::ZERO_EXTEND:
   7861     return performZeroExtendCombine(N, DCI);
   7862   case AMDGPUISD::FP_CLASS:
   7863     return performClassCombine(N, DCI);
   7864   case ISD::FCANONICALIZE:
   7865     return performFCanonicalizeCombine(N, DCI);
   7866   case AMDGPUISD::RCP:
   7867     return performRcpCombine(N, DCI);
   7868   case AMDGPUISD::FRACT:
   7869   case AMDGPUISD::RSQ:
   7870   case AMDGPUISD::RCP_LEGACY:
   7871   case AMDGPUISD::RSQ_LEGACY:
   7872   case AMDGPUISD::RCP_IFLAG:
   7873   case AMDGPUISD::RSQ_CLAMP:
   7874   case AMDGPUISD::LDEXP: {
   7875     SDValue Src = N->getOperand(0);
   7876     if (Src.isUndef())
   7877       return Src;
   7878     break;
   7879   }
   7880   case ISD::SINT_TO_FP:
   7881   case ISD::UINT_TO_FP:
   7882     return performUCharToFloatCombine(N, DCI);
   7883   case AMDGPUISD::CVT_F32_UBYTE0:
   7884   case AMDGPUISD::CVT_F32_UBYTE1:
   7885   case AMDGPUISD::CVT_F32_UBYTE2:
   7886   case AMDGPUISD::CVT_F32_UBYTE3:
   7887     return performCvtF32UByteNCombine(N, DCI);
   7888   case AMDGPUISD::FMED3:
   7889     return performFMed3Combine(N, DCI);
   7890   case AMDGPUISD::CVT_PKRTZ_F16_F32:
   7891     return performCvtPkRTZCombine(N, DCI);
   7892   case AMDGPUISD::CLAMP:
   7893     return performClampCombine(N, DCI);
   7894   case ISD::SCALAR_TO_VECTOR: {
   7895     SelectionDAG &DAG = DCI.DAG;
   7896     EVT VT = N->getValueType(0);
   7897 
   7898     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
   7899     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
   7900       SDLoc SL(N);
   7901       SDValue Src = N->getOperand(0);
   7902       EVT EltVT = Src.getValueType();
   7903       if (EltVT == MVT::f16)
   7904         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
   7905 
   7906       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
   7907       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
   7908     }
   7909 
   7910     break;
   7911   }
   7912   case ISD::EXTRACT_VECTOR_ELT:
   7913     return performExtractVectorEltCombine(N, DCI);
   7914   case ISD::BUILD_VECTOR:
   7915     return performBuildVectorCombine(N, DCI);
   7916   }
   7917   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
   7918 }
   7919 
   7920 /// Helper function for adjustWritemask
   7921 static unsigned SubIdx2Lane(unsigned Idx) {
   7922   switch (Idx) {
   7923   default: return 0;
   7924   case AMDGPU::sub0: return 0;
   7925   case AMDGPU::sub1: return 1;
   7926   case AMDGPU::sub2: return 2;
   7927   case AMDGPU::sub3: return 3;
   7928   }
   7929 }
   7930 
   7931 /// Adjust the writemask of MIMG instructions
   7932 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
   7933                                           SelectionDAG &DAG) const {
   7934   unsigned Opcode = Node->getMachineOpcode();
   7935 
   7936   // Subtract 1 because the vdata output is not a MachineSDNode operand.
   7937   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
   7938   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
   7939     return Node; // not implemented for D16
   7940 
   7941   SDNode *Users[4] = { nullptr };
   7942   unsigned Lane = 0;
   7943   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
   7944   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
   7945   unsigned NewDmask = 0;
   7946   bool HasChain = Node->getNumValues() > 1;
   7947 
   7948   if (OldDmask == 0) {
   7949     // These are folded out, but on the chance it happens don't assert.
   7950     return Node;
   7951   }
   7952 
   7953   // Try to figure out the used register components
   7954   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
   7955        I != E; ++I) {
   7956 
   7957     // Don't look at users of the chain.
   7958     if (I.getUse().getResNo() != 0)
   7959       continue;
   7960 
   7961     // Abort if we can't understand the usage
   7962     if (!I->isMachineOpcode() ||
   7963         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
   7964       return Node;
   7965 
   7966     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
   7967     // Note that subregs are packed, i.e. Lane==0 is the first bit set
   7968     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
   7969     // set, etc.
   7970     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
   7971 
   7972     // Set which texture component corresponds to the lane.
   7973     unsigned Comp;
   7974     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
   7975       Comp = countTrailingZeros(Dmask);
   7976       Dmask &= ~(1 << Comp);
   7977     }
   7978 
   7979     // Abort if we have more than one user per component
   7980     if (Users[Lane])
   7981       return Node;
   7982 
   7983     Users[Lane] = *I;
   7984     NewDmask |= 1 << Comp;
   7985   }
   7986 
   7987   // Abort if there's no change
   7988   if (NewDmask == OldDmask)
   7989     return Node;
   7990 
   7991   unsigned BitsSet = countPopulation(NewDmask);
   7992 
   7993   int NewOpcode = AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), BitsSet);
   7994   assert(NewOpcode != -1 &&
   7995          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
   7996          "failed to find equivalent MIMG op");
   7997 
   7998   // Adjust the writemask in the node
   7999   SmallVector<SDValue, 12> Ops;
   8000   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
   8001   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
   8002   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
   8003 
   8004   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
   8005 
   8006   MVT ResultVT = BitsSet == 1 ?
   8007     SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
   8008   SDVTList NewVTList = HasChain ?
   8009     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
   8010 
   8011 
   8012   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
   8013                                               NewVTList, Ops);
   8014 
   8015   if (HasChain) {
   8016     // Update chain.
   8017     NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end());
   8018     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
   8019   }
   8020 
   8021   if (BitsSet == 1) {
   8022     assert(Node->hasNUsesOfValue(1, 0));
   8023     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
   8024                                       SDLoc(Node), Users[Lane]->getValueType(0),
   8025                                       SDValue(NewNode, 0));
   8026     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
   8027     return nullptr;
   8028   }
   8029 
   8030   // Update the users of the node with the new indices
   8031   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
   8032     SDNode *User = Users[i];
   8033     if (!User)
   8034       continue;
   8035 
   8036     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
   8037     DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
   8038 
   8039     switch (Idx) {
   8040     default: break;
   8041     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
   8042     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
   8043     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
   8044     }
   8045   }
   8046 
   8047   DAG.RemoveDeadNode(Node);
   8048   return nullptr;
   8049 }
   8050 
   8051 static bool isFrameIndexOp(SDValue Op) {
   8052   if (Op.getOpcode() == ISD::AssertZext)
   8053     Op = Op.getOperand(0);
   8054 
   8055   return isa<FrameIndexSDNode>(Op);
   8056 }
   8057 
   8058 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
   8059 /// with frame index operands.
   8060 /// LLVM assumes that inputs are to these instructions are registers.
   8061 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
   8062                                                         SelectionDAG &DAG) const {
   8063   if (Node->getOpcode() == ISD::CopyToReg) {
   8064     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
   8065     SDValue SrcVal = Node->getOperand(2);
   8066 
   8067     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
   8068     // to try understanding copies to physical registers.
   8069     if (SrcVal.getValueType() == MVT::i1 &&
   8070         TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
   8071       SDLoc SL(Node);
   8072       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   8073       SDValue VReg = DAG.getRegister(
   8074         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
   8075 
   8076       SDNode *Glued = Node->getGluedNode();
   8077       SDValue ToVReg
   8078         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
   8079                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
   8080       SDValue ToResultReg
   8081         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
   8082                            VReg, ToVReg.getValue(1));
   8083       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
   8084       DAG.RemoveDeadNode(Node);
   8085       return ToResultReg.getNode();
   8086     }
   8087   }
   8088 
   8089   SmallVector<SDValue, 8> Ops;
   8090   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
   8091     if (!isFrameIndexOp(Node->getOperand(i))) {
   8092       Ops.push_back(Node->getOperand(i));
   8093       continue;
   8094     }
   8095 
   8096     SDLoc DL(Node);
   8097     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
   8098                                      Node->getOperand(i).getValueType(),
   8099                                      Node->getOperand(i)), 0));
   8100   }
   8101 
   8102   return DAG.UpdateNodeOperands(Node, Ops);
   8103 }
   8104 
   8105 /// Fold the instructions after selecting them.
   8106 /// Returns null if users were already updated.
   8107 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
   8108                                           SelectionDAG &DAG) const {
   8109   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   8110   unsigned Opcode = Node->getMachineOpcode();
   8111 
   8112   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
   8113       !TII->isGather4(Opcode)) {
   8114     return adjustWritemask(Node, DAG);
   8115   }
   8116 
   8117   if (Opcode == AMDGPU::INSERT_SUBREG ||
   8118       Opcode == AMDGPU::REG_SEQUENCE) {
   8119     legalizeTargetIndependentNode(Node, DAG);
   8120     return Node;
   8121   }
   8122 
   8123   switch (Opcode) {
   8124   case AMDGPU::V_DIV_SCALE_F32:
   8125   case AMDGPU::V_DIV_SCALE_F64: {
   8126     // Satisfy the operand register constraint when one of the inputs is
   8127     // undefined. Ordinarily each undef value will have its own implicit_def of
   8128     // a vreg, so force these to use a single register.
   8129     SDValue Src0 = Node->getOperand(0);
   8130     SDValue Src1 = Node->getOperand(1);
   8131     SDValue Src2 = Node->getOperand(2);
   8132 
   8133     if ((Src0.isMachineOpcode() &&
   8134          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
   8135         (Src0 == Src1 || Src0 == Src2))
   8136       break;
   8137 
   8138     MVT VT = Src0.getValueType().getSimpleVT();
   8139     const TargetRegisterClass *RC = getRegClassFor(VT);
   8140 
   8141     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   8142     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
   8143 
   8144     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
   8145                                       UndefReg, Src0, SDValue());
   8146 
   8147     // src0 must be the same register as src1 or src2, even if the value is
   8148     // undefined, so make sure we don't violate this constraint.
   8149     if (Src0.isMachineOpcode() &&
   8150         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
   8151       if (Src1.isMachineOpcode() &&
   8152           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
   8153         Src0 = Src1;
   8154       else if (Src2.isMachineOpcode() &&
   8155                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
   8156         Src0 = Src2;
   8157       else {
   8158         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
   8159         Src0 = UndefReg;
   8160         Src1 = UndefReg;
   8161       }
   8162     } else
   8163       break;
   8164 
   8165     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
   8166     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
   8167       Ops.push_back(Node->getOperand(I));
   8168 
   8169     Ops.push_back(ImpDef.getValue(1));
   8170     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
   8171   }
   8172   default:
   8173     break;
   8174   }
   8175 
   8176   return Node;
   8177 }
   8178 
   8179 /// Assign the register class depending on the number of
   8180 /// bits set in the writemask
   8181 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
   8182                                                      SDNode *Node) const {
   8183   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   8184 
   8185   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
   8186 
   8187   if (TII->isVOP3(MI.getOpcode())) {
   8188     // Make sure constant bus requirements are respected.
   8189     TII->legalizeOperandsVOP3(MRI, MI);
   8190     return;
   8191   }
   8192 
   8193   // Replace unused atomics with the no return version.
   8194   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
   8195   if (NoRetAtomicOp != -1) {
   8196     if (!Node->hasAnyUseOfValue(0)) {
   8197       MI.setDesc(TII->get(NoRetAtomicOp));
   8198       MI.RemoveOperand(0);
   8199       return;
   8200     }
   8201 
   8202     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
   8203     // instruction, because the return type of these instructions is a vec2 of
   8204     // the memory type, so it can be tied to the input operand.
   8205     // This means these instructions always have a use, so we need to add a
   8206     // special case to check if the atomic has only one extract_subreg use,
   8207     // which itself has no uses.
   8208     if ((Node->hasNUsesOfValue(1, 0) &&
   8209          Node->use_begin()->isMachineOpcode() &&
   8210          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
   8211          !Node->use_begin()->hasAnyUseOfValue(0))) {
   8212       unsigned Def = MI.getOperand(0).getReg();
   8213 
   8214       // Change this into a noret atomic.
   8215       MI.setDesc(TII->get(NoRetAtomicOp));
   8216       MI.RemoveOperand(0);
   8217 
   8218       // If we only remove the def operand from the atomic instruction, the
   8219       // extract_subreg will be left with a use of a vreg without a def.
   8220       // So we need to insert an implicit_def to avoid machine verifier
   8221       // errors.
   8222       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
   8223               TII->get(AMDGPU::IMPLICIT_DEF), Def);
   8224     }
   8225     return;
   8226   }
   8227 }
   8228 
   8229 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
   8230                               uint64_t Val) {
   8231   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
   8232   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
   8233 }
   8234 
   8235 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
   8236                                                 const SDLoc &DL,
   8237                                                 SDValue Ptr) const {
   8238   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
   8239 
   8240   // Build the half of the subregister with the constants before building the
   8241   // full 128-bit register. If we are building multiple resource descriptors,
   8242   // this will allow CSEing of the 2-component register.
   8243   const SDValue Ops0[] = {
   8244     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
   8245     buildSMovImm32(DAG, DL, 0),
   8246     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
   8247     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
   8248     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
   8249   };
   8250 
   8251   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
   8252                                                 MVT::v2i32, Ops0), 0);
   8253 
   8254   // Combine the constants and the pointer.
   8255   const SDValue Ops1[] = {
   8256     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
   8257     Ptr,
   8258     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
   8259     SubRegHi,
   8260     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
   8261   };
   8262 
   8263   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
   8264 }
   8265 
   8266 /// Return a resource descriptor with the 'Add TID' bit enabled
   8267 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
   8268 ///        of the resource descriptor) to create an offset, which is added to
   8269 ///        the resource pointer.
   8270 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
   8271                                            SDValue Ptr, uint32_t RsrcDword1,
   8272                                            uint64_t RsrcDword2And3) const {
   8273   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
   8274   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
   8275   if (RsrcDword1) {
   8276     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
   8277                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
   8278                     0);
   8279   }
   8280 
   8281   SDValue DataLo = buildSMovImm32(DAG, DL,
   8282                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
   8283   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
   8284 
   8285   const SDValue Ops[] = {
   8286     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
   8287     PtrLo,
   8288     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
   8289     PtrHi,
   8290     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
   8291     DataLo,
   8292     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
   8293     DataHi,
   8294     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
   8295   };
   8296 
   8297   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
   8298 }
   8299 
   8300 //===----------------------------------------------------------------------===//
   8301 //                         SI Inline Assembly Support
   8302 //===----------------------------------------------------------------------===//
   8303 
   8304 std::pair<unsigned, const TargetRegisterClass *>
   8305 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   8306                                                StringRef Constraint,
   8307                                                MVT VT) const {
   8308   const TargetRegisterClass *RC = nullptr;
   8309   if (Constraint.size() == 1) {
   8310     switch (Constraint[0]) {
   8311     default:
   8312       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   8313     case 's':
   8314     case 'r':
   8315       switch (VT.getSizeInBits()) {
   8316       default:
   8317         return std::make_pair(0U, nullptr);
   8318       case 32:
   8319       case 16:
   8320         RC = &AMDGPU::SReg_32_XM0RegClass;
   8321         break;
   8322       case 64:
   8323         RC = &AMDGPU::SGPR_64RegClass;
   8324         break;
   8325       case 128:
   8326         RC = &AMDGPU::SReg_128RegClass;
   8327         break;
   8328       case 256:
   8329         RC = &AMDGPU::SReg_256RegClass;
   8330         break;
   8331       case 512:
   8332         RC = &AMDGPU::SReg_512RegClass;
   8333         break;
   8334       }
   8335       break;
   8336     case 'v':
   8337       switch (VT.getSizeInBits()) {
   8338       default:
   8339         return std::make_pair(0U, nullptr);
   8340       case 32:
   8341       case 16:
   8342         RC = &AMDGPU::VGPR_32RegClass;
   8343         break;
   8344       case 64:
   8345         RC = &AMDGPU::VReg_64RegClass;
   8346         break;
   8347       case 96:
   8348         RC = &AMDGPU::VReg_96RegClass;
   8349         break;
   8350       case 128:
   8351         RC = &AMDGPU::VReg_128RegClass;
   8352         break;
   8353       case 256:
   8354         RC = &AMDGPU::VReg_256RegClass;
   8355         break;
   8356       case 512:
   8357         RC = &AMDGPU::VReg_512RegClass;
   8358         break;
   8359       }
   8360       break;
   8361     }
   8362     // We actually support i128, i16 and f16 as inline parameters
   8363     // even if they are not reported as legal
   8364     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
   8365                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
   8366       return std::make_pair(0U, RC);
   8367   }
   8368 
   8369   if (Constraint.size() > 1) {
   8370     if (Constraint[1] == 'v') {
   8371       RC = &AMDGPU::VGPR_32RegClass;
   8372     } else if (Constraint[1] == 's') {
   8373       RC = &AMDGPU::SGPR_32RegClass;
   8374     }
   8375 
   8376     if (RC) {
   8377       uint32_t Idx;
   8378       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
   8379       if (!Failed && Idx < RC->getNumRegs())
   8380         return std::make_pair(RC->getRegister(Idx), RC);
   8381     }
   8382   }
   8383   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   8384 }
   8385 
   8386 SITargetLowering::ConstraintType
   8387 SITargetLowering::getConstraintType(StringRef Constraint) const {
   8388   if (Constraint.size() == 1) {
   8389     switch (Constraint[0]) {
   8390     default: break;
   8391     case 's':
   8392     case 'v':
   8393       return C_RegisterClass;
   8394     }
   8395   }
   8396   return TargetLowering::getConstraintType(Constraint);
   8397 }
   8398 
   8399 // Figure out which registers should be reserved for stack access. Only after
   8400 // the function is legalized do we know all of the non-spill stack objects or if
   8401 // calls are present.
   8402 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
   8403   MachineRegisterInfo &MRI = MF.getRegInfo();
   8404   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
   8405   const MachineFrameInfo &MFI = MF.getFrameInfo();
   8406   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
   8407 
   8408   if (Info->isEntryFunction()) {
   8409     // Callable functions have fixed registers used for stack access.
   8410     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
   8411   }
   8412 
   8413   // We have to assume the SP is needed in case there are calls in the function
   8414   // during lowering. Calls are only detected after the function is
   8415   // lowered. We're about to reserve registers, so don't bother using it if we
   8416   // aren't really going to use it.
   8417   bool NeedSP = !Info->isEntryFunction() ||
   8418     MFI.hasVarSizedObjects() ||
   8419     MFI.hasCalls();
   8420 
   8421   if (NeedSP) {
   8422     unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
   8423     Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
   8424 
   8425     assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg());
   8426     assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
   8427                                Info->getStackPtrOffsetReg()));
   8428     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
   8429   }
   8430 
   8431   MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
   8432   MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
   8433   MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
   8434                      Info->getScratchWaveOffsetReg());
   8435 
   8436   Info->limitOccupancy(MF);
   8437 
   8438   TargetLoweringBase::finalizeLowering(MF);
   8439 }
   8440 
   8441 void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
   8442                                                      KnownBits &Known,
   8443                                                      const APInt &DemandedElts,
   8444                                                      const SelectionDAG &DAG,
   8445                                                      unsigned Depth) const {
   8446   TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
   8447                                                 DAG, Depth);
   8448 
   8449   if (getSubtarget()->enableHugePrivateBuffer())
   8450     return;
   8451 
   8452   // Technically it may be possible to have a dispatch with a single workitem
   8453   // that uses the full private memory size, but that's not really useful. We
   8454   // can't use vaddr in MUBUF instructions if we don't know the address
   8455   // calculation won't overflow, so assume the sign bit is never set.
   8456   Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
   8457 }
   8458 
   8459 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
   8460   FunctionLoweringInfo * FLI, DivergenceAnalysis * DA) const
   8461 {
   8462   switch (N->getOpcode()) {
   8463     case ISD::Register:
   8464     case ISD::CopyFromReg:
   8465     {
   8466       const RegisterSDNode *R = nullptr;
   8467       if (N->getOpcode() == ISD::Register) {
   8468         R = dyn_cast<RegisterSDNode>(N);
   8469       }
   8470       else {
   8471         R = dyn_cast<RegisterSDNode>(N->getOperand(1));
   8472       }
   8473       if (R)
   8474       {
   8475         const MachineFunction * MF = FLI->MF;
   8476         const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
   8477         const MachineRegisterInfo &MRI = MF->getRegInfo();
   8478         const SIRegisterInfo &TRI = ST.getInstrInfo()->getRegisterInfo();
   8479         unsigned Reg = R->getReg();
   8480         if (TRI.isPhysicalRegister(Reg))
   8481           return TRI.isVGPR(MRI, Reg);
   8482 
   8483         if (MRI.isLiveIn(Reg)) {
   8484           // workitem.id.x workitem.id.y workitem.id.z
   8485           // Any VGPR formal argument is also considered divergent
   8486           if (TRI.isVGPR(MRI, Reg))
   8487               return true;
   8488           // Formal arguments of non-entry functions
   8489           // are conservatively considered divergent
   8490           else if (!AMDGPU::isEntryFunctionCC(FLI->Fn->getCallingConv()))
   8491             return true;
   8492         }
   8493         return !DA || DA->isDivergent(FLI->getValueFromVirtualReg(Reg));
   8494       }
   8495     }
   8496     break;
   8497     case ISD::LOAD: {
   8498       const LoadSDNode *L = dyn_cast<LoadSDNode>(N);
   8499       if (L->getMemOperand()->getAddrSpace() ==
   8500           Subtarget->getAMDGPUAS().PRIVATE_ADDRESS)
   8501         return true;
   8502     } break;
   8503     case ISD::CALLSEQ_END:
   8504     return true;
   8505     break;
   8506     case ISD::INTRINSIC_WO_CHAIN:
   8507     {
   8508 
   8509     }
   8510       return AMDGPU::isIntrinsicSourceOfDivergence(
   8511       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
   8512     case ISD::INTRINSIC_W_CHAIN:
   8513       return AMDGPU::isIntrinsicSourceOfDivergence(
   8514       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
   8515     // In some cases intrinsics that are a source of divergence have been
   8516     // lowered to AMDGPUISD so we also need to check those too.
   8517     case AMDGPUISD::INTERP_MOV:
   8518     case AMDGPUISD::INTERP_P1:
   8519     case AMDGPUISD::INTERP_P2:
   8520       return true;
   8521   }
   8522   return false;
   8523 }
   8524