Home | History | Annotate | Download | only in blorp
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "blorp_nir_builder.h"
     25 
     26 #include "blorp_priv.h"
     27 
     28 /* header-only include needed for _mesa_unorm_to_float and friends. */
     29 #include "mesa/main/format_utils.h"
     30 
     31 #define FILE_DEBUG_FLAG DEBUG_BLORP
     32 
     33 static const bool split_blorp_blit_debug = false;
     34 
     35 /**
     36  * Enum to specify the order of arguments in a sampler message
     37  */
     38 enum sampler_message_arg
     39 {
     40    SAMPLER_MESSAGE_ARG_U_FLOAT,
     41    SAMPLER_MESSAGE_ARG_V_FLOAT,
     42    SAMPLER_MESSAGE_ARG_U_INT,
     43    SAMPLER_MESSAGE_ARG_V_INT,
     44    SAMPLER_MESSAGE_ARG_R_INT,
     45    SAMPLER_MESSAGE_ARG_SI_INT,
     46    SAMPLER_MESSAGE_ARG_MCS_INT,
     47    SAMPLER_MESSAGE_ARG_ZERO_INT,
     48 };
     49 
     50 struct brw_blorp_blit_vars {
     51    /* Input values from brw_blorp_wm_inputs */
     52    nir_variable *v_discard_rect;
     53    nir_variable *v_rect_grid;
     54    nir_variable *v_coord_transform;
     55    nir_variable *v_src_z;
     56    nir_variable *v_src_offset;
     57    nir_variable *v_dst_offset;
     58    nir_variable *v_src_inv_size;
     59 
     60    /* gl_FragCoord */
     61    nir_variable *frag_coord;
     62 
     63    /* gl_FragColor */
     64    nir_variable *color_out;
     65 };
     66 
     67 static void
     68 brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
     69                          const struct brw_blorp_blit_prog_key *key)
     70 {
     71     /* Blended and scaled blits never use pixel discard. */
     72     assert(!key->use_kill || !(key->blend && key->blit_scaled));
     73 
     74 #define LOAD_INPUT(name, type)\
     75    v->v_##name = BLORP_CREATE_NIR_INPUT(b->shader, name, type);
     76 
     77    LOAD_INPUT(discard_rect, glsl_vec4_type())
     78    LOAD_INPUT(rect_grid, glsl_vec4_type())
     79    LOAD_INPUT(coord_transform, glsl_vec4_type())
     80    LOAD_INPUT(src_z, glsl_uint_type())
     81    LOAD_INPUT(src_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
     82    LOAD_INPUT(dst_offset, glsl_vector_type(GLSL_TYPE_UINT, 2))
     83    LOAD_INPUT(src_inv_size, glsl_vector_type(GLSL_TYPE_FLOAT, 2))
     84 
     85 #undef LOAD_INPUT
     86 
     87    v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
     88                                        glsl_vec4_type(), "gl_FragCoord");
     89    v->frag_coord->data.location = VARYING_SLOT_POS;
     90    v->frag_coord->data.origin_upper_left = true;
     91 
     92    v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
     93                                       glsl_vec4_type(), "gl_FragColor");
     94    v->color_out->data.location = FRAG_RESULT_COLOR;
     95 }
     96 
     97 static nir_ssa_def *
     98 blorp_blit_get_frag_coords(nir_builder *b,
     99                            const struct brw_blorp_blit_prog_key *key,
    100                            struct brw_blorp_blit_vars *v)
    101 {
    102    nir_ssa_def *coord = nir_f2i32(b, nir_load_var(b, v->frag_coord));
    103 
    104    /* Account for destination surface intratile offset
    105     *
    106     * Transformation parameters giving translation from destination to source
    107     * coordinates don't take into account possible intra-tile destination
    108     * offset.  Therefore it has to be first subtracted from the incoming
    109     * coordinates.  Vertices are set up based on coordinates containing the
    110     * intra-tile offset.
    111     */
    112    if (key->need_dst_offset)
    113       coord = nir_isub(b, coord, nir_load_var(b, v->v_dst_offset));
    114 
    115    if (key->persample_msaa_dispatch) {
    116       return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
    117                       nir_load_sample_id(b));
    118    } else {
    119       return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
    120    }
    121 }
    122 
    123 /**
    124  * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
    125  * coordinates.
    126  */
    127 static nir_ssa_def *
    128 blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
    129                            struct brw_blorp_blit_vars *v)
    130 {
    131    nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
    132 
    133    nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
    134                                      nir_channel(b, coord_transform, 3));
    135    nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
    136                                   nir_channel(b, coord_transform, 2));
    137 
    138    return nir_fadd(b, nir_fmul(b, src_pos, mul), offset);
    139 }
    140 
    141 static inline void
    142 blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
    143                                   struct brw_blorp_blit_vars *v)
    144 {
    145    nir_ssa_def *c0, *c1, *c2, *c3;
    146    nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
    147    nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
    148    nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
    149    nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
    150    nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
    151 
    152    c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
    153    c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
    154    c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
    155    c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
    156 
    157    nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
    158 
    159    nir_intrinsic_instr *discard =
    160       nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
    161    discard->src[0] = nir_src_for_ssa(oob);
    162    nir_builder_instr_insert(b, &discard->instr);
    163 }
    164 
    165 static nir_tex_instr *
    166 blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
    167                            nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
    168                            nir_alu_type dst_type)
    169 {
    170    nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
    171 
    172    tex->op = op;
    173 
    174    tex->dest_type = dst_type;
    175    tex->is_array = false;
    176    tex->is_shadow = false;
    177 
    178    /* Blorp only has one texture and it's bound at unit 0 */
    179    tex->texture = NULL;
    180    tex->sampler = NULL;
    181    tex->texture_index = 0;
    182    tex->sampler_index = 0;
    183 
    184    /* To properly handle 3-D and 2-D array textures, we pull the Z component
    185     * from an input.  TODO: This is a bit magic; we should probably make this
    186     * more explicit in the future.
    187     */
    188    assert(pos->num_components >= 2);
    189    pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
    190                      nir_load_var(b, v->v_src_z));
    191 
    192    tex->src[0].src_type = nir_tex_src_coord;
    193    tex->src[0].src = nir_src_for_ssa(pos);
    194    tex->coord_components = 3;
    195 
    196    nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
    197 
    198    return tex;
    199 }
    200 
    201 static nir_ssa_def *
    202 blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
    203               const struct brw_blorp_blit_prog_key *key, nir_ssa_def *pos)
    204 {
    205    if (key->need_src_offset)
    206       pos = nir_fadd(b, pos, nir_i2f32(b, nir_load_var(b, v->v_src_offset)));
    207 
    208    /* If the sampler requires normalized coordinates, we need to compensate. */
    209    if (key->src_coords_normalized)
    210       pos = nir_fmul(b, pos, nir_load_var(b, v->v_src_inv_size));
    211 
    212    nir_tex_instr *tex =
    213       blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2,
    214                                  key->texture_data_type);
    215 
    216    assert(pos->num_components == 2);
    217    tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
    218    tex->src[1].src_type = nir_tex_src_lod;
    219    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    220 
    221    nir_builder_instr_insert(b, &tex->instr);
    222 
    223    return &tex->dest.ssa;
    224 }
    225 
    226 static nir_ssa_def *
    227 blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
    228               nir_ssa_def *pos, nir_alu_type dst_type)
    229 {
    230    nir_tex_instr *tex =
    231       blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
    232 
    233    tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
    234    tex->src[1].src_type = nir_tex_src_lod;
    235    tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    236 
    237    nir_builder_instr_insert(b, &tex->instr);
    238 
    239    return &tex->dest.ssa;
    240 }
    241 
    242 static nir_ssa_def *
    243 blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
    244                  nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
    245 {
    246    nir_tex_instr *tex =
    247       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
    248                                  mcs != NULL ? 3 : 2, dst_type);
    249 
    250    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
    251 
    252    tex->src[1].src_type = nir_tex_src_ms_index;
    253    if (pos->num_components == 2) {
    254       tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
    255    } else {
    256       assert(pos->num_components == 3);
    257       tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
    258    }
    259 
    260    if (mcs) {
    261       tex->src[2].src_type = nir_tex_src_ms_mcs;
    262       tex->src[2].src = nir_src_for_ssa(mcs);
    263    }
    264 
    265    nir_builder_instr_insert(b, &tex->instr);
    266 
    267    return &tex->dest.ssa;
    268 }
    269 
    270 static nir_ssa_def *
    271 blorp_blit_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v,
    272                       nir_ssa_def *pos)
    273 {
    274    nir_tex_instr *tex =
    275       blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
    276                                  pos, 1, nir_type_int);
    277 
    278    tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
    279 
    280    nir_builder_instr_insert(b, &tex->instr);
    281 
    282    return &tex->dest.ssa;
    283 }
    284 
    285 static nir_ssa_def *
    286 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
    287                   uint32_t src_mask, int src_left_shift)
    288 {
    289    nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
    290 
    291    nir_ssa_def *shifted;
    292    if (src_left_shift > 0) {
    293       shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
    294    } else if (src_left_shift < 0) {
    295       shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
    296    } else {
    297       assert(src_left_shift == 0);
    298       shifted = masked;
    299    }
    300 
    301    return nir_ior(b, dst, shifted);
    302 }
    303 
    304 /**
    305  * Emit code to compensate for the difference between Y and W tiling.
    306  *
    307  * This code modifies the X and Y coordinates according to the formula:
    308  *
    309  *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
    310  *
    311  * (See brw_blorp_build_nir_shader).
    312  */
    313 static inline nir_ssa_def *
    314 blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
    315 {
    316    assert(pos->num_components == 2);
    317    nir_ssa_def *x_Y = nir_channel(b, pos, 0);
    318    nir_ssa_def *y_Y = nir_channel(b, pos, 1);
    319 
    320    /* Given X and Y coordinates that describe an address using Y tiling,
    321     * translate to the X and Y coordinates that describe the same address
    322     * using W tiling.
    323     *
    324     * If we break down the low order bits of X and Y, using a
    325     * single letter to represent each low-order bit:
    326     *
    327     *   X = A << 7 | 0bBCDEFGH
    328     *   Y = J << 5 | 0bKLMNP                                       (1)
    329     *
    330     * Then we can apply the Y tiling formula to see the memory offset being
    331     * addressed:
    332     *
    333     *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
    334     *
    335     * If we apply the W detiling formula to this memory location, that the
    336     * corresponding X' and Y' coordinates are:
    337     *
    338     *   X' = A << 6 | 0bBCDPFH                                     (3)
    339     *   Y' = J << 6 | 0bKLMNEG
    340     *
    341     * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
    342     * we need to make the following computation:
    343     *
    344     *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
    345     *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
    346     */
    347    nir_ssa_def *x_W = nir_imm_int(b, 0);
    348    x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
    349    x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
    350    x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
    351 
    352    nir_ssa_def *y_W = nir_imm_int(b, 0);
    353    y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
    354    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
    355    y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
    356 
    357    return nir_vec2(b, x_W, y_W);
    358 }
    359 
    360 /**
    361  * Emit code to compensate for the difference between Y and W tiling.
    362  *
    363  * This code modifies the X and Y coordinates according to the formula:
    364  *
    365  *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
    366  *
    367  * (See brw_blorp_build_nir_shader).
    368  */
    369 static inline nir_ssa_def *
    370 blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
    371 {
    372    assert(pos->num_components == 2);
    373    nir_ssa_def *x_W = nir_channel(b, pos, 0);
    374    nir_ssa_def *y_W = nir_channel(b, pos, 1);
    375 
    376    /* Applying the same logic as above, but in reverse, we obtain the
    377     * formulas:
    378     *
    379     * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
    380     * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
    381     */
    382    nir_ssa_def *x_Y = nir_imm_int(b, 0);
    383    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
    384    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
    385    x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
    386    x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
    387 
    388    nir_ssa_def *y_Y = nir_imm_int(b, 0);
    389    y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
    390    y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
    391 
    392    return nir_vec2(b, x_Y, y_Y);
    393 }
    394 
    395 /**
    396  * Emit code to compensate for the difference between MSAA and non-MSAA
    397  * surfaces.
    398  *
    399  * This code modifies the X and Y coordinates according to the formula:
    400  *
    401  *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
    402  *
    403  * (See brw_blorp_blit_program).
    404  */
    405 static inline nir_ssa_def *
    406 blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
    407                       unsigned num_samples, enum isl_msaa_layout layout)
    408 {
    409    assert(pos->num_components == 2 || pos->num_components == 3);
    410 
    411    switch (layout) {
    412    case ISL_MSAA_LAYOUT_NONE:
    413       assert(pos->num_components == 2);
    414       return pos;
    415    case ISL_MSAA_LAYOUT_ARRAY:
    416       /* No translation needed */
    417       return pos;
    418    case ISL_MSAA_LAYOUT_INTERLEAVED: {
    419       nir_ssa_def *x_in = nir_channel(b, pos, 0);
    420       nir_ssa_def *y_in = nir_channel(b, pos, 1);
    421       nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
    422                                                      nir_channel(b, pos, 2);
    423 
    424       nir_ssa_def *x_out = nir_imm_int(b, 0);
    425       nir_ssa_def *y_out = nir_imm_int(b, 0);
    426       switch (num_samples) {
    427       case 2:
    428       case 4:
    429          /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
    430           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    431           *         Y' = Y
    432           *
    433           * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
    434           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    435           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    436           */
    437          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
    438          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    439          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    440          if (num_samples == 2) {
    441             y_out = y_in;
    442          } else {
    443             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
    444             y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    445             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    446          }
    447          break;
    448 
    449       case 8:
    450          /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
    451           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
    452           *              | (X & 0b1)
    453           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    454           */
    455          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
    456          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
    457          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    458          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    459          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
    460          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    461          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    462          break;
    463 
    464       case 16:
    465          /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
    466           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
    467           *              | (X & 0b1)
    468           *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
    469           *              | (Y & 0b1)
    470           */
    471          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
    472          x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
    473          x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
    474          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    475          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
    476          y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
    477          y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
    478          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    479          break;
    480 
    481       default:
    482          unreachable("Invalid number of samples for IMS layout");
    483       }
    484 
    485       return nir_vec2(b, x_out, y_out);
    486    }
    487 
    488    default:
    489       unreachable("Invalid MSAA layout");
    490    }
    491 }
    492 
    493 /**
    494  * Emit code to compensate for the difference between MSAA and non-MSAA
    495  * surfaces.
    496  *
    497  * This code modifies the X and Y coordinates according to the formula:
    498  *
    499  *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
    500  *
    501  * (See brw_blorp_blit_program).
    502  */
    503 static inline nir_ssa_def *
    504 blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
    505                       unsigned num_samples, enum isl_msaa_layout layout)
    506 {
    507    assert(pos->num_components == 2 || pos->num_components == 3);
    508 
    509    switch (layout) {
    510    case ISL_MSAA_LAYOUT_NONE:
    511       /* No translation necessary, and S should already be zero. */
    512       assert(pos->num_components == 2);
    513       return pos;
    514    case ISL_MSAA_LAYOUT_ARRAY:
    515       /* No translation necessary. */
    516       return pos;
    517    case ISL_MSAA_LAYOUT_INTERLEAVED: {
    518       assert(pos->num_components == 2);
    519 
    520       nir_ssa_def *x_in = nir_channel(b, pos, 0);
    521       nir_ssa_def *y_in = nir_channel(b, pos, 1);
    522 
    523       nir_ssa_def *x_out = nir_imm_int(b, 0);
    524       nir_ssa_def *y_out = nir_imm_int(b, 0);
    525       nir_ssa_def *s_out = nir_imm_int(b, 0);
    526       switch (num_samples) {
    527       case 2:
    528       case 4:
    529          /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
    530           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
    531           *         S = (X & 0b10) >> 1
    532           *
    533           * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
    534           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
    535           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    536           *         S = (Y & 0b10) | (X & 0b10) >> 1
    537           */
    538          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
    539          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    540          if (num_samples == 2) {
    541             y_out = y_in;
    542             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    543          } else {
    544             y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
    545             y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    546             s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    547             s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    548          }
    549          break;
    550 
    551       case 8:
    552          /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
    553           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
    554           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    555           *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
    556           */
    557          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
    558          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    559          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
    560          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    561          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
    562          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    563          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    564          break;
    565 
    566       case 16:
    567          /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
    568           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
    569           *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
    570           *         S = (Y & 0b100) << 1 | (X & 0b100) |
    571           *             (Y & 0b10) | (X & 0b10) >> 1
    572           */
    573          x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
    574          x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
    575          y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
    576          y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
    577          s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
    578          s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
    579          s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
    580          s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
    581          break;
    582 
    583       default:
    584          unreachable("Invalid number of samples for IMS layout");
    585       }
    586 
    587       return nir_vec3(b, x_out, y_out, s_out);
    588    }
    589 
    590    default:
    591       unreachable("Invalid MSAA layout");
    592    }
    593 }
    594 
    595 /**
    596  * Count the number of trailing 1 bits in the given value.  For example:
    597  *
    598  * count_trailing_one_bits(0) == 0
    599  * count_trailing_one_bits(7) == 3
    600  * count_trailing_one_bits(11) == 2
    601  */
    602 static inline int count_trailing_one_bits(unsigned value)
    603 {
    604 #ifdef HAVE___BUILTIN_CTZ
    605    return __builtin_ctz(~value);
    606 #else
    607    return _mesa_bitcount(value & ~(value + 1));
    608 #endif
    609 }
    610 
    611 static nir_ssa_def *
    612 blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
    613                                nir_ssa_def *pos, unsigned tex_samples,
    614                                enum isl_aux_usage tex_aux_usage,
    615                                nir_alu_type dst_type)
    616 {
    617    /* If non-null, this is the outer-most if statement */
    618    nir_if *outer_if = NULL;
    619 
    620    nir_variable *color =
    621       nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
    622 
    623    nir_ssa_def *mcs = NULL;
    624    if (tex_aux_usage == ISL_AUX_USAGE_MCS)
    625       mcs = blorp_blit_txf_ms_mcs(b, v, pos);
    626 
    627    /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
    628     *
    629     *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
    630     *
    631     * This ensures that when all samples have the same value, no numerical
    632     * precision is lost, since each addition operation always adds two equal
    633     * values, and summing two equal floating point values does not lose
    634     * precision.
    635     *
    636     * We perform this computation by treating the texture_data array as a
    637     * stack and performing the following operations:
    638     *
    639     * - push sample 0 onto stack
    640     * - push sample 1 onto stack
    641     * - add top two stack entries
    642     * - push sample 2 onto stack
    643     * - push sample 3 onto stack
    644     * - add top two stack entries
    645     * - add top two stack entries
    646     * - divide top stack entry by 4
    647     *
    648     * Note that after pushing sample i onto the stack, the number of add
    649     * operations we do is equal to the number of trailing 1 bits in i.  This
    650     * works provided the total number of samples is a power of two, which it
    651     * always is for i965.
    652     *
    653     * For integer formats, we replace the add operations with average
    654     * operations and skip the final division.
    655     */
    656    nir_ssa_def *texture_data[5];
    657    unsigned stack_depth = 0;
    658    for (unsigned i = 0; i < tex_samples; ++i) {
    659       assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
    660 
    661       /* Push sample i onto the stack */
    662       assert(stack_depth < ARRAY_SIZE(texture_data));
    663 
    664       nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
    665                                         nir_channel(b, pos, 1),
    666                                         nir_imm_int(b, i));
    667       texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
    668 
    669       if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
    670          /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
    671           * suggests an optimization:
    672           *
    673           *     "A simple optimization with probable large return in
    674           *     performance is to compare the MCS value to zero (indicating
    675           *     all samples are on sample slice 0), and sample only from
    676           *     sample slice 0 using ld2dss if MCS is zero."
    677           *
    678           * Note that in the case where the MCS value is zero, sampling from
    679           * sample slice 0 using ld2dss and sampling from sample 0 using
    680           * ld2dms are equivalent (since all samples are on sample slice 0).
    681           * Since we have already sampled from sample 0, all we need to do is
    682           * skip the remaining fetches and averaging if MCS is zero.
    683           *
    684           * It's also trivial to detect when the MCS has the magic clear color
    685           * value.  In this case, the txf we did on sample 0 will return the
    686           * clear color and we can skip the remaining fetches just like we do
    687           * when MCS == 0.
    688           */
    689          nir_ssa_def *mcs_zero =
    690             nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
    691          if (tex_samples == 16) {
    692             mcs_zero = nir_iand(b, mcs_zero,
    693                nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
    694          }
    695          nir_ssa_def *mcs_clear =
    696             blorp_nir_mcs_is_clear_color(b, mcs, tex_samples);
    697 
    698          nir_if *if_stmt = nir_if_create(b->shader);
    699          if_stmt->condition = nir_src_for_ssa(nir_ior(b, mcs_zero, mcs_clear));
    700          nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
    701 
    702          b->cursor = nir_after_cf_list(&if_stmt->then_list);
    703          nir_store_var(b, color, texture_data[0], 0xf);
    704 
    705          b->cursor = nir_after_cf_list(&if_stmt->else_list);
    706          outer_if = if_stmt;
    707       }
    708 
    709       for (int j = 0; j < count_trailing_one_bits(i); j++) {
    710          assert(stack_depth >= 2);
    711          --stack_depth;
    712 
    713          assert(dst_type == nir_type_float);
    714          texture_data[stack_depth - 1] =
    715             nir_fadd(b, texture_data[stack_depth - 1],
    716                         texture_data[stack_depth]);
    717       }
    718    }
    719 
    720    /* We should have just 1 sample on the stack now. */
    721    assert(stack_depth == 1);
    722 
    723    texture_data[0] = nir_fmul(b, texture_data[0],
    724                               nir_imm_float(b, 1.0 / tex_samples));
    725 
    726    nir_store_var(b, color, texture_data[0], 0xf);
    727 
    728    if (outer_if)
    729       b->cursor = nir_after_cf_node(&outer_if->cf_node);
    730 
    731    return nir_load_var(b, color);
    732 }
    733 
    734 static inline nir_ssa_def *
    735 nir_imm_vec2(nir_builder *build, float x, float y)
    736 {
    737    nir_const_value v;
    738 
    739    memset(&v, 0, sizeof(v));
    740    v.f32[0] = x;
    741    v.f32[1] = y;
    742 
    743    return nir_build_imm(build, 4, 32, v);
    744 }
    745 
    746 static nir_ssa_def *
    747 blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
    748                                 unsigned tex_samples,
    749                                 const struct brw_blorp_blit_prog_key *key,
    750                                 struct brw_blorp_blit_vars *v)
    751 {
    752    nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
    753    nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
    754    nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
    755 
    756    /* Translate coordinates to lay out the samples in a rectangular  grid
    757     * roughly corresponding to sample locations.
    758     */
    759    pos_xy = nir_fmul(b, pos_xy, scale);
    760    /* Adjust coordinates so that integers represent pixel centers rather
    761     * than pixel edges.
    762     */
    763    pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
    764    /* Clamp the X, Y texture coordinates to properly handle the sampling of
    765     * texels on texture edges.
    766     */
    767    pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
    768                         nir_vec2(b, nir_channel(b, rect_grid, 0),
    769                                     nir_channel(b, rect_grid, 1)));
    770 
    771    /* Store the fractional parts to be used as bilinear interpolation
    772     * coefficients.
    773     */
    774    nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
    775    /* Round the float coordinates down to nearest integer */
    776    pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
    777 
    778    nir_ssa_def *tex_data[4];
    779    for (unsigned i = 0; i < 4; ++i) {
    780       float sample_off_x = (float)(i & 0x1) / key->x_scale;
    781       float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
    782       nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
    783 
    784       nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
    785       nir_ssa_def *sample_coords_int = nir_f2i32(b, sample_coords);
    786 
    787       /* The MCS value we fetch has to match up with the pixel that we're
    788        * sampling from. Since we sample from different pixels in each
    789        * iteration of this "for" loop, the call to mcs_fetch() should be
    790        * here inside the loop after computing the pixel coordinates.
    791        */
    792       nir_ssa_def *mcs = NULL;
    793       if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
    794          mcs = blorp_blit_txf_ms_mcs(b, v, sample_coords_int);
    795 
    796       /* Compute sample index and map the sample index to a sample number.
    797        * Sample index layout shows the numbering of slots in a rectangular
    798        * grid of samples with in a pixel. Sample number layout shows the
    799        * rectangular grid of samples roughly corresponding to the real sample
    800        * locations with in a pixel.
    801        * In case of 4x MSAA, layout of sample indices matches the layout of
    802        * sample numbers:
    803        *           ---------
    804        *           | 0 | 1 |
    805        *           ---------
    806        *           | 2 | 3 |
    807        *           ---------
    808        *
    809        * In case of 8x MSAA the two layouts don't match.
    810        * sample index layout :  ---------    sample number layout :  ---------
    811        *                        | 0 | 1 |                            | 3 | 7 |
    812        *                        ---------                            ---------
    813        *                        | 2 | 3 |                            | 5 | 0 |
    814        *                        ---------                            ---------
    815        *                        | 4 | 5 |                            | 1 | 2 |
    816        *                        ---------                            ---------
    817        *                        | 6 | 7 |                            | 4 | 6 |
    818        *                        ---------                            ---------
    819        *
    820        * Fortunately, this can be done fairly easily as:
    821        * S' = (0x17306425 >> (S * 4)) & 0xf
    822        *
    823        * In the case of 16x MSAA the two layouts don't match.
    824        * Sample index layout:                Sample number layout:
    825        * ---------------------               ---------------------
    826        * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
    827        * ---------------------               ---------------------
    828        * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
    829        * ---------------------               ---------------------
    830        * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
    831        * ---------------------               ---------------------
    832        * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
    833        * ---------------------               ---------------------
    834        *
    835        * This is equivalent to
    836        * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
    837        */
    838       nir_ssa_def *frac = nir_ffract(b, sample_coords);
    839       nir_ssa_def *sample =
    840          nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
    841                                             key->x_scale * key->y_scale));
    842       sample = nir_f2i32(b, sample);
    843 
    844       if (tex_samples == 8) {
    845          sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
    846                                        nir_ishl(b, sample, nir_imm_int(b, 2))),
    847                            nir_imm_int(b, 0xf));
    848       } else if (tex_samples == 16) {
    849          nir_ssa_def *sample_low =
    850             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
    851                                  nir_ishl(b, sample, nir_imm_int(b, 2))),
    852                      nir_imm_int(b, 0xf));
    853          nir_ssa_def *sample_high =
    854             nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
    855                                  nir_ishl(b, nir_iadd(b, sample,
    856                                                       nir_imm_int(b, -8)),
    857                                           nir_imm_int(b, 2))),
    858                      nir_imm_int(b, 0xf));
    859 
    860          sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
    861                             sample_low, sample_high);
    862       }
    863       nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
    864                                         nir_channel(b, sample_coords_int, 1),
    865                                         sample);
    866       tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
    867    }
    868 
    869    nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
    870    nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
    871    return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
    872                       nir_flrp(b, tex_data[2], tex_data[3], frac_x),
    873                       frac_y);
    874 }
    875 
    876 /** Perform a color bit-cast operation
    877  *
    878  * For copy operations involving CCS, we may need to use different formats for
    879  * the source and destination surfaces.  The two formats must both be UINT
    880  * formats and must have the same size but may have different bit layouts.
    881  * For instance, we may be copying from R8G8B8A8_UINT to R32_UINT or R32_UINT
    882  * to R16G16_UINT.  This function generates code to shuffle bits around to get
    883  * us from one to the other.
    884  */
    885 static nir_ssa_def *
    886 bit_cast_color(struct nir_builder *b, nir_ssa_def *color,
    887                const struct brw_blorp_blit_prog_key *key)
    888 {
    889    assert(key->texture_data_type == nir_type_uint);
    890 
    891    if (key->dst_bpc > key->src_bpc) {
    892       nir_ssa_def *u = nir_ssa_undef(b, 1, 32);
    893       nir_ssa_def *dst_chan[2] = { u, u };
    894       unsigned shift = 0;
    895       unsigned dst_idx = 0;
    896       for (unsigned i = 0; i < 4; i++) {
    897          nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, color, i),
    898                                             nir_imm_int(b, shift));
    899          if (shift == 0) {
    900             dst_chan[dst_idx] = shifted;
    901          } else {
    902             dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
    903          }
    904 
    905          shift += key->src_bpc;
    906          if (shift >= key->dst_bpc) {
    907             dst_idx++;
    908             shift = 0;
    909          }
    910       }
    911 
    912       return nir_vec4(b, dst_chan[0], dst_chan[1], u, u);
    913    } else {
    914       assert(key->dst_bpc < key->src_bpc);
    915 
    916       nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - key->dst_bpc));
    917 
    918       nir_ssa_def *dst_chan[4];
    919       unsigned src_idx = 0;
    920       unsigned shift = 0;
    921       for (unsigned i = 0; i < 4; i++) {
    922          dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, color, src_idx),
    923                                                nir_imm_int(b, shift)),
    924                                    mask);
    925          shift += key->dst_bpc;
    926          if (shift >= key->src_bpc) {
    927             src_idx++;
    928             shift = 0;
    929          }
    930       }
    931 
    932       return nir_vec4(b, dst_chan[0], dst_chan[1], dst_chan[2], dst_chan[3]);
    933    }
    934 }
    935 
    936 /**
    937  * Generator for WM programs used in BLORP blits.
    938  *
    939  * The bulk of the work done by the WM program is to wrap and unwrap the
    940  * coordinate transformations used by the hardware to store surfaces in
    941  * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
    942  * sample index for a multisampled surface) to a memory offset by the
    943  * following formulas:
    944  *
    945  *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
    946  *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
    947  *
    948  * For a single-sampled surface, or for a multisampled surface using
    949  * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
    950  * function:
    951  *
    952  *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    953  *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    954  *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    955  *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    956  *
    957  * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    958  * embeds the sample number into bit 1 of the X and Y coordinates:
    959  *
    960  *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
    961  *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    962  *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
    963  *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
    964  *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
    965  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    966  *           S = (Y & 0b10) | (X & 0b10) >> 1
    967  *
    968  * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    969  * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
    970  * the Y coordinate:
    971  *
    972  *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
    973  *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
    974  *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    975  *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
    976  *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
    977  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    978  *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
    979  *
    980  * For X tiling, tile() combines together the low-order bits of the X and Y
    981  * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
    982  * bytes wide and 8 rows high:
    983  *
    984  *   tile(x_tiled, X, Y, S) = A
    985  *     where A = tile_num << 12 | offset
    986  *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
    987  *           offset = (Y' & 0b111) << 9
    988  *                    | (X & 0b111111111)
    989  *           X' = X * cpp
    990  *           Y' = Y + S * qpitch
    991  *   detile(x_tiled, A) = (X, Y, S)
    992  *     where X = X' / cpp
    993  *           Y = Y' % qpitch
    994  *           S = Y' / qpitch
    995  *           Y' = (tile_num / tile_pitch) << 3
    996  *                | (A & 0b111000000000) >> 9
    997  *           X' = (tile_num % tile_pitch) << 9
    998  *                | (A & 0b111111111)
    999  *
   1000  * (In all tiling formulas, cpp is the number of bytes occupied by a single
   1001  * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
   1002  * to fill the width of the surface, and qpitch is the spacing (in rows)
   1003  * between array slices).
   1004  *
   1005  * For Y tiling, tile() combines together the low-order bits of the X and Y
   1006  * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
   1007  * bytes wide and 32 rows high:
   1008  *
   1009  *   tile(y_tiled, X, Y, S) = A
   1010  *     where A = tile_num << 12 | offset
   1011  *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
   1012  *           offset = (X' & 0b1110000) << 5
   1013  *                    | (Y' & 0b11111) << 4
   1014  *                    | (X' & 0b1111)
   1015  *           X' = X * cpp
   1016  *           Y' = Y + S * qpitch
   1017  *   detile(y_tiled, A) = (X, Y, S)
   1018  *     where X = X' / cpp
   1019  *           Y = Y' % qpitch
   1020  *           S = Y' / qpitch
   1021  *           Y' = (tile_num / tile_pitch) << 5
   1022  *                | (A & 0b111110000) >> 4
   1023  *           X' = (tile_num % tile_pitch) << 7
   1024  *                | (A & 0b111000000000) >> 5
   1025  *                | (A & 0b1111)
   1026  *
   1027  * For W tiling, tile() combines together the low-order bits of the X and Y
   1028  * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
   1029  * bytes wide and 64 rows high (note that W tiling is only used for stencil
   1030  * buffers, which always have cpp = 1 and S=0):
   1031  *
   1032  *   tile(w_tiled, X, Y, S) = A
   1033  *     where A = tile_num << 12 | offset
   1034  *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
   1035  *           offset = (X' & 0b111000) << 6
   1036  *                    | (Y' & 0b111100) << 3
   1037  *                    | (X' & 0b100) << 2
   1038  *                    | (Y' & 0b10) << 2
   1039  *                    | (X' & 0b10) << 1
   1040  *                    | (Y' & 0b1) << 1
   1041  *                    | (X' & 0b1)
   1042  *           X' = X * cpp = X
   1043  *           Y' = Y + S * qpitch
   1044  *   detile(w_tiled, A) = (X, Y, S)
   1045  *     where X = X' / cpp = X'
   1046  *           Y = Y' % qpitch = Y'
   1047  *           S = Y / qpitch = 0
   1048  *           Y' = (tile_num / tile_pitch) << 6
   1049  *                | (A & 0b111100000) >> 3
   1050  *                | (A & 0b1000) >> 2
   1051  *                | (A & 0b10) >> 1
   1052  *           X' = (tile_num % tile_pitch) << 6
   1053  *                | (A & 0b111000000000) >> 6
   1054  *                | (A & 0b10000) >> 2
   1055  *                | (A & 0b100) >> 1
   1056  *                | (A & 0b1)
   1057  *
   1058  * Finally, for a non-tiled surface, tile() simply combines together the X and
   1059  * Y coordinates in the natural way:
   1060  *
   1061  *   tile(untiled, X, Y, S) = A
   1062  *     where A = Y * pitch + X'
   1063  *           X' = X * cpp
   1064  *           Y' = Y + S * qpitch
   1065  *   detile(untiled, A) = (X, Y, S)
   1066  *     where X = X' / cpp
   1067  *           Y = Y' % qpitch
   1068  *           S = Y' / qpitch
   1069  *           X' = A % pitch
   1070  *           Y' = A / pitch
   1071  *
   1072  * (In these formulas, pitch is the number of bytes occupied by a single row
   1073  * of samples).
   1074  */
   1075 static nir_shader *
   1076 brw_blorp_build_nir_shader(struct blorp_context *blorp, void *mem_ctx,
   1077                            const struct brw_blorp_blit_prog_key *key)
   1078 {
   1079    const struct gen_device_info *devinfo = blorp->isl_dev->info;
   1080    nir_ssa_def *src_pos, *dst_pos, *color;
   1081 
   1082    /* Sanity checks */
   1083    if (key->dst_tiled_w && key->rt_samples > 1) {
   1084       /* If the destination image is W tiled and multisampled, then the thread
   1085        * must be dispatched once per sample, not once per pixel.  This is
   1086        * necessary because after conversion between W and Y tiling, there's no
   1087        * guarantee that all samples corresponding to a single pixel will still
   1088        * be together.
   1089        */
   1090       assert(key->persample_msaa_dispatch);
   1091    }
   1092 
   1093    if (key->blend) {
   1094       /* We are blending, which means we won't have an opportunity to
   1095        * translate the tiling and sample count for the texture surface.  So
   1096        * the surface state for the texture must be configured with the correct
   1097        * tiling and sample count.
   1098        */
   1099       assert(!key->src_tiled_w);
   1100       assert(key->tex_samples == key->src_samples);
   1101       assert(key->tex_layout == key->src_layout);
   1102       assert(key->tex_samples > 0);
   1103    }
   1104 
   1105    if (key->persample_msaa_dispatch) {
   1106       /* It only makes sense to do persample dispatch if the render target is
   1107        * configured as multisampled.
   1108        */
   1109       assert(key->rt_samples > 0);
   1110    }
   1111 
   1112    /* Make sure layout is consistent with sample count */
   1113    assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
   1114           (key->tex_samples <= 1));
   1115    assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
   1116           (key->rt_samples <= 1));
   1117    assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
   1118           (key->src_samples <= 1));
   1119    assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
   1120           (key->dst_samples <= 1));
   1121 
   1122    nir_builder b;
   1123    nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
   1124 
   1125    struct brw_blorp_blit_vars v;
   1126    brw_blorp_blit_vars_init(&b, &v, key);
   1127 
   1128    dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
   1129 
   1130    /* Render target and texture hardware don't support W tiling until Gen8. */
   1131    const bool rt_tiled_w = false;
   1132    const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
   1133 
   1134    /* The address that data will be written to is determined by the
   1135     * coordinates supplied to the WM thread and the tiling and sample count of
   1136     * the render target, according to the formula:
   1137     *
   1138     * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
   1139     *
   1140     * If the actual tiling and sample count of the destination surface are not
   1141     * the same as the configuration of the render target, then these
   1142     * coordinates are wrong and we have to adjust them to compensate for the
   1143     * difference.
   1144     */
   1145    if (rt_tiled_w != key->dst_tiled_w ||
   1146        key->rt_samples != key->dst_samples ||
   1147        key->rt_layout != key->dst_layout) {
   1148       dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
   1149                                       key->rt_layout);
   1150       /* Now (X, Y, S) = detile(rt_tiling, offset) */
   1151       if (rt_tiled_w != key->dst_tiled_w)
   1152          dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
   1153       /* Now (X, Y, S) = detile(rt_tiling, offset) */
   1154       dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
   1155                                       key->dst_layout);
   1156    }
   1157 
   1158    /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
   1159     *
   1160     * That is: X, Y and S now contain the true coordinates and sample index of
   1161     * the data that the WM thread should output.
   1162     *
   1163     * If we need to kill pixels that are outside the destination rectangle,
   1164     * now is the time to do it.
   1165     */
   1166    if (key->use_kill) {
   1167       assert(!(key->blend && key->blit_scaled));
   1168       blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
   1169    }
   1170 
   1171    src_pos = blorp_blit_apply_transform(&b, nir_i2f32(&b, dst_pos), &v);
   1172    if (dst_pos->num_components == 3) {
   1173       /* The sample coordinate is an integer that we want left alone but
   1174        * blorp_blit_apply_transform() blindly applies the transform to all
   1175        * three coordinates.  Grab the original sample index.
   1176        */
   1177       src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
   1178                              nir_channel(&b, src_pos, 1),
   1179                              nir_channel(&b, dst_pos, 2));
   1180    }
   1181 
   1182    /* If the source image is not multisampled, then we want to fetch sample
   1183     * number 0, because that's the only sample there is.
   1184     */
   1185    if (key->src_samples == 1)
   1186       src_pos = nir_channels(&b, src_pos, 0x3);
   1187 
   1188    /* X, Y, and S are now the coordinates of the pixel in the source image
   1189     * that we want to texture from.  Exception: if we are blending, then S is
   1190     * irrelevant, because we are going to fetch all samples.
   1191     */
   1192    if (key->blend && !key->blit_scaled) {
   1193       /* Resolves (effecively) use texelFetch, so we need integers and we
   1194        * don't care about the sample index if we got one.
   1195        */
   1196       src_pos = nir_f2i32(&b, nir_channels(&b, src_pos, 0x3));
   1197 
   1198       if (devinfo->gen == 6) {
   1199          /* Because gen6 only supports 4x interleved MSAA, we can do all the
   1200           * blending we need with a single linear-interpolated texture lookup
   1201           * at the center of the sample. The texture coordinates to be odd
   1202           * integers so that they correspond to the center of a 2x2 block
   1203           * representing the four samples that maxe up a pixel.  So we need
   1204           * to multiply our X and Y coordinates each by 2 and then add 1.
   1205           */
   1206          assert(key->src_coords_normalized);
   1207          src_pos = nir_fadd(&b,
   1208                             nir_i2f32(&b, src_pos),
   1209                             nir_imm_float(&b, 0.5f));
   1210          color = blorp_nir_tex(&b, &v, key, src_pos);
   1211       } else {
   1212          /* Gen7+ hardware doesn't automaticaly blend. */
   1213          color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
   1214                                                 key->tex_aux_usage,
   1215                                                 key->texture_data_type);
   1216       }
   1217    } else if (key->blend && key->blit_scaled) {
   1218       assert(!key->use_kill);
   1219       color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
   1220    } else {
   1221       if (key->bilinear_filter) {
   1222          color = blorp_nir_tex(&b, &v, key, src_pos);
   1223       } else {
   1224          /* We're going to use texelFetch, so we need integers */
   1225          if (src_pos->num_components == 2) {
   1226             src_pos = nir_f2i32(&b, src_pos);
   1227          } else {
   1228             assert(src_pos->num_components == 3);
   1229             src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i32(&b, src_pos), 0),
   1230                                    nir_channel(&b, nir_f2i32(&b, src_pos), 1),
   1231                                    nir_channel(&b, src_pos, 2));
   1232          }
   1233 
   1234          /* We aren't blending, which means we just want to fetch a single
   1235           * sample from the source surface.  The address that we want to fetch
   1236           * from is related to the X, Y and S values according to the formula:
   1237           *
   1238           * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
   1239           *
   1240           * If the actual tiling and sample count of the source surface are
   1241           * not the same as the configuration of the texture, then we need to
   1242           * adjust the coordinates to compensate for the difference.
   1243           */
   1244          if (tex_tiled_w != key->src_tiled_w ||
   1245              key->tex_samples != key->src_samples ||
   1246              key->tex_layout != key->src_layout) {
   1247             src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
   1248                                             key->src_layout);
   1249             /* Now (X, Y, S) = detile(src_tiling, offset) */
   1250             if (tex_tiled_w != key->src_tiled_w)
   1251                src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
   1252             /* Now (X, Y, S) = detile(tex_tiling, offset) */
   1253             src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
   1254                                             key->tex_layout);
   1255          }
   1256 
   1257          if (key->need_src_offset)
   1258             src_pos = nir_iadd(&b, src_pos, nir_load_var(&b, v.v_src_offset));
   1259 
   1260          /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
   1261           *
   1262           * In other words: X, Y, and S now contain values which, when passed to
   1263           * the texturing unit, will cause data to be read from the correct
   1264           * memory location.  So we can fetch the texel now.
   1265           */
   1266          if (key->src_samples == 1) {
   1267             color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
   1268          } else {
   1269             nir_ssa_def *mcs = NULL;
   1270             if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
   1271                mcs = blorp_blit_txf_ms_mcs(&b, &v, src_pos);
   1272 
   1273             color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
   1274          }
   1275       }
   1276    }
   1277 
   1278    if (key->dst_bpc != key->src_bpc)
   1279       color = bit_cast_color(&b, color, key);
   1280 
   1281    if (key->dst_rgb) {
   1282       /* The destination image is bound as a red texture three times as wide
   1283        * as the actual image.  Our shader is effectively running one color
   1284        * component at a time.  We need to pick off the appropriate component
   1285        * from the source color and write that to destination red.
   1286        */
   1287       assert(dst_pos->num_components == 2);
   1288       nir_ssa_def *comp =
   1289          nir_umod(&b, nir_channel(&b, dst_pos, 0), nir_imm_int(&b, 3));
   1290 
   1291       nir_ssa_def *color_component =
   1292          nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
   1293                        nir_channel(&b, color, 0),
   1294                        nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
   1295                                      nir_channel(&b, color, 1),
   1296                                      nir_channel(&b, color, 2)));
   1297 
   1298       nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
   1299       color = nir_vec4(&b, color_component, u, u, u);
   1300    }
   1301 
   1302    nir_store_var(&b, v.color_out, color, 0xf);
   1303 
   1304    return b.shader;
   1305 }
   1306 
   1307 static bool
   1308 brw_blorp_get_blit_kernel(struct blorp_context *blorp,
   1309                           struct blorp_params *params,
   1310                           const struct brw_blorp_blit_prog_key *prog_key)
   1311 {
   1312    if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
   1313                             &params->wm_prog_kernel, &params->wm_prog_data))
   1314       return true;
   1315 
   1316    void *mem_ctx = ralloc_context(NULL);
   1317 
   1318    const unsigned *program;
   1319    struct brw_wm_prog_data prog_data;
   1320 
   1321    nir_shader *nir = brw_blorp_build_nir_shader(blorp, mem_ctx, prog_key);
   1322    nir->info.name = ralloc_strdup(nir, "BLORP-blit");
   1323 
   1324    struct brw_wm_prog_key wm_key;
   1325    brw_blorp_init_wm_prog_key(&wm_key);
   1326    wm_key.tex.compressed_multisample_layout_mask =
   1327       prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
   1328    wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
   1329    wm_key.multisample_fbo = prog_key->rt_samples > 1;
   1330 
   1331    program = blorp_compile_fs(blorp, mem_ctx, nir, &wm_key, false,
   1332                               &prog_data);
   1333 
   1334    bool result =
   1335       blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
   1336                            program, prog_data.base.program_size,
   1337                            &prog_data.base, sizeof(prog_data),
   1338                            &params->wm_prog_kernel, &params->wm_prog_data);
   1339 
   1340    ralloc_free(mem_ctx);
   1341    return result;
   1342 }
   1343 
   1344 static void
   1345 brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
   1346                                 GLfloat src0, GLfloat src1,
   1347                                 GLfloat dst0, GLfloat dst1,
   1348                                 bool mirror)
   1349 {
   1350    double scale = (double)(src1 - src0) / (double)(dst1 - dst0);
   1351    if (!mirror) {
   1352       /* When not mirroring a coordinate (say, X), we need:
   1353        *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
   1354        * Therefore:
   1355        *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
   1356        *
   1357        * blorp program uses "round toward zero" to convert the
   1358        * transformed floating point coordinates to integer coordinates,
   1359        * whereas the behaviour we actually want is "round to nearest",
   1360        * so 0.5 provides the necessary correction.
   1361        */
   1362       xform->multiplier = scale;
   1363       xform->offset = src0 + (-(double)dst0 + 0.5) * scale;
   1364    } else {
   1365       /* When mirroring X we need:
   1366        *   src_x - src_x0 = dst_x1 - dst_x - 0.5
   1367        * Therefore:
   1368        *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
   1369        */
   1370       xform->multiplier = -scale;
   1371       xform->offset = src0 + ((double)dst1 - 0.5) * scale;
   1372    }
   1373 }
   1374 
   1375 static inline void
   1376 surf_get_intratile_offset_px(struct brw_blorp_surface_info *info,
   1377                              uint32_t *tile_x_px, uint32_t *tile_y_px)
   1378 {
   1379    if (info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1380       struct isl_extent2d px_size_sa =
   1381          isl_get_interleaved_msaa_px_size_sa(info->surf.samples);
   1382       assert(info->tile_x_sa % px_size_sa.width == 0);
   1383       assert(info->tile_y_sa % px_size_sa.height == 0);
   1384       *tile_x_px = info->tile_x_sa / px_size_sa.width;
   1385       *tile_y_px = info->tile_y_sa / px_size_sa.height;
   1386    } else {
   1387       *tile_x_px = info->tile_x_sa;
   1388       *tile_y_px = info->tile_y_sa;
   1389    }
   1390 }
   1391 
   1392 void
   1393 blorp_surf_convert_to_single_slice(const struct isl_device *isl_dev,
   1394                                    struct brw_blorp_surface_info *info)
   1395 {
   1396    bool ok UNUSED;
   1397 
   1398    /* Just bail if we have nothing to do. */
   1399    if (info->surf.dim == ISL_SURF_DIM_2D &&
   1400        info->view.base_level == 0 && info->view.base_array_layer == 0 &&
   1401        info->surf.levels == 1 && info->surf.logical_level0_px.array_len == 1)
   1402       return;
   1403 
   1404    /* If this gets triggered then we've gotten here twice which.  This
   1405     * shouldn't happen thanks to the above early return.
   1406     */
   1407    assert(info->tile_x_sa == 0 && info->tile_y_sa == 0);
   1408 
   1409    uint32_t layer = 0, z = 0;
   1410    if (info->surf.dim == ISL_SURF_DIM_3D)
   1411       z = info->view.base_array_layer + info->z_offset;
   1412    else
   1413       layer = info->view.base_array_layer;
   1414 
   1415    uint32_t byte_offset;
   1416    isl_surf_get_image_surf(isl_dev, &info->surf,
   1417                            info->view.base_level, layer, z,
   1418                            &info->surf,
   1419                            &byte_offset, &info->tile_x_sa, &info->tile_y_sa);
   1420    info->addr.offset += byte_offset;
   1421 
   1422    uint32_t tile_x_px, tile_y_px;
   1423    surf_get_intratile_offset_px(info, &tile_x_px, &tile_y_px);
   1424 
   1425    /* Instead of using the X/Y Offset fields in RENDER_SURFACE_STATE, we place
   1426     * the image at the tile boundary and offset our sampling or rendering.
   1427     * For this reason, we need to grow the image by the offset to ensure that
   1428     * the hardware doesn't think we've gone past the edge.
   1429     */
   1430    info->surf.logical_level0_px.w += tile_x_px;
   1431    info->surf.logical_level0_px.h += tile_y_px;
   1432    info->surf.phys_level0_sa.w += info->tile_x_sa;
   1433    info->surf.phys_level0_sa.h += info->tile_y_sa;
   1434 
   1435    /* The view is also different now. */
   1436    info->view.base_level = 0;
   1437    info->view.levels = 1;
   1438    info->view.base_array_layer = 0;
   1439    info->view.array_len = 1;
   1440    info->z_offset = 0;
   1441 }
   1442 
   1443 static void
   1444 surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
   1445                            struct brw_blorp_surface_info *info)
   1446 {
   1447    assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
   1448 
   1449    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
   1450    blorp_surf_convert_to_single_slice(isl_dev, info);
   1451 
   1452    info->surf.logical_level0_px = info->surf.phys_level0_sa;
   1453    info->surf.samples = 1;
   1454    info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
   1455 }
   1456 
   1457 static void
   1458 surf_retile_w_to_y(const struct isl_device *isl_dev,
   1459                    struct brw_blorp_surface_info *info)
   1460 {
   1461    assert(info->surf.tiling == ISL_TILING_W);
   1462 
   1463    /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
   1464    blorp_surf_convert_to_single_slice(isl_dev, info);
   1465 
   1466    /* On gen7+, we don't have interleaved multisampling for color render
   1467     * targets so we have to fake it.
   1468     *
   1469     * TODO: Are we sure we don't also need to fake it on gen6?
   1470     */
   1471    if (isl_dev->info->gen > 6 &&
   1472        info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1473       surf_fake_interleaved_msaa(isl_dev, info);
   1474    }
   1475 
   1476    if (isl_dev->info->gen == 6) {
   1477       /* Gen6 stencil buffers have a very large alignment coming in from the
   1478        * miptree.  It's out-of-bounds for what the surface state can handle.
   1479        * Since we have a single layer and level, it doesn't really matter as
   1480        * long as we don't pass a bogus value into isl_surf_fill_state().
   1481        */
   1482       info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
   1483    }
   1484 
   1485    /* Now that we've converted everything to a simple 2-D surface with only
   1486     * one miplevel, we can go about retiling it.
   1487     */
   1488    const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
   1489    info->surf.tiling = ISL_TILING_Y0;
   1490    info->surf.logical_level0_px.width =
   1491       ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
   1492    info->surf.logical_level0_px.height =
   1493       ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
   1494    info->tile_x_sa *= 2;
   1495    info->tile_y_sa /= 2;
   1496 }
   1497 
   1498 static bool
   1499 can_shrink_surface(const struct brw_blorp_surface_info *surf)
   1500 {
   1501    /* The current code doesn't support offsets into the aux buffers. This
   1502     * should be possible, but we need to make sure the offset is page
   1503     * aligned for both the surface and the aux buffer surface. Generally
   1504     * this mean using the page aligned offset for the aux buffer.
   1505     *
   1506     * Currently the cases where we must split the blit are limited to cases
   1507     * where we don't have a aux buffer.
   1508     */
   1509    if (surf->aux_addr.buffer != NULL)
   1510       return false;
   1511 
   1512    /* We can't support splitting the blit for gen <= 7, because the qpitch
   1513     * size is calculated by the hardware based on the surface height for
   1514     * gen <= 7. In gen >= 8, the qpitch is controlled by the driver.
   1515     */
   1516    if (surf->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)
   1517       return false;
   1518 
   1519    return true;
   1520 }
   1521 
   1522 static bool
   1523 can_shrink_surfaces(const struct blorp_params *params)
   1524 {
   1525    return
   1526       can_shrink_surface(&params->src) &&
   1527       can_shrink_surface(&params->dst);
   1528 }
   1529 
   1530 static unsigned
   1531 get_max_surface_size(const struct gen_device_info *devinfo,
   1532                      const struct blorp_params *params)
   1533 {
   1534    const unsigned max = devinfo->gen >= 7 ? 16384 : 8192;
   1535    if (split_blorp_blit_debug && can_shrink_surfaces(params))
   1536       return max >> 4; /* A smaller restriction when debug is enabled */
   1537    else
   1538       return max;
   1539 }
   1540 
   1541 struct blt_axis {
   1542    double src0, src1, dst0, dst1;
   1543    bool mirror;
   1544 };
   1545 
   1546 struct blt_coords {
   1547    struct blt_axis x, y;
   1548 };
   1549 
   1550 static void
   1551 surf_fake_rgb_with_red(const struct isl_device *isl_dev,
   1552                        struct brw_blorp_surface_info *info,
   1553                        uint32_t *x, uint32_t *width)
   1554 {
   1555    blorp_surf_convert_to_single_slice(isl_dev, info);
   1556 
   1557    info->surf.logical_level0_px.width *= 3;
   1558    info->surf.phys_level0_sa.width *= 3;
   1559    info->tile_x_sa *= 3;
   1560    *x *= 3;
   1561    *width *= 3;
   1562 
   1563    enum isl_format red_format;
   1564    switch (info->view.format) {
   1565    case ISL_FORMAT_R8G8B8_UNORM:
   1566       red_format = ISL_FORMAT_R8_UNORM;
   1567       break;
   1568    case ISL_FORMAT_R8G8B8_UINT:
   1569       red_format = ISL_FORMAT_R8_UINT;
   1570       break;
   1571    case ISL_FORMAT_R16G16B16_UNORM:
   1572       red_format = ISL_FORMAT_R16_UNORM;
   1573       break;
   1574    case ISL_FORMAT_R16G16B16_UINT:
   1575       red_format = ISL_FORMAT_R16_UINT;
   1576       break;
   1577    case ISL_FORMAT_R32G32B32_UINT:
   1578       red_format = ISL_FORMAT_R32_UINT;
   1579       break;
   1580    default:
   1581       unreachable("Invalid RGB copy destination format");
   1582    }
   1583    assert(isl_format_get_layout(red_format)->channels.r.type ==
   1584           isl_format_get_layout(info->view.format)->channels.r.type);
   1585    assert(isl_format_get_layout(red_format)->channels.r.bits ==
   1586           isl_format_get_layout(info->view.format)->channels.r.bits);
   1587 
   1588    info->surf.format = info->view.format = red_format;
   1589 }
   1590 
   1591 static void
   1592 fake_dest_rgb_with_red(const struct isl_device *dev,
   1593                        struct blorp_params *params,
   1594                        struct brw_blorp_blit_prog_key *wm_prog_key,
   1595                        struct blt_coords *coords)
   1596 {
   1597    /* Handle RGB destinations for blorp_copy */
   1598    const struct isl_format_layout *dst_fmtl =
   1599       isl_format_get_layout(params->dst.surf.format);
   1600 
   1601    if (dst_fmtl->bpb % 3 == 0) {
   1602       uint32_t dst_x = coords->x.dst0;
   1603       uint32_t dst_width = coords->x.dst1 - dst_x;
   1604       surf_fake_rgb_with_red(dev, &params->dst,
   1605                              &dst_x, &dst_width);
   1606       coords->x.dst0 = dst_x;
   1607       coords->x.dst1 = dst_x + dst_width;
   1608       wm_prog_key->dst_rgb = true;
   1609       wm_prog_key->need_dst_offset = true;
   1610    }
   1611 }
   1612 
   1613 enum blit_shrink_status {
   1614    BLIT_NO_SHRINK = 0,
   1615    BLIT_WIDTH_SHRINK = 1,
   1616    BLIT_HEIGHT_SHRINK = 2,
   1617 };
   1618 
   1619 /* Try to blit. If the surface parameters exceed the size allowed by hardware,
   1620  * then enum blit_shrink_status will be returned. If BLIT_NO_SHRINK is
   1621  * returned, then the blit was successful.
   1622  */
   1623 static enum blit_shrink_status
   1624 try_blorp_blit(struct blorp_batch *batch,
   1625                struct blorp_params *params,
   1626                struct brw_blorp_blit_prog_key *wm_prog_key,
   1627                struct blt_coords *coords)
   1628 {
   1629    const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
   1630 
   1631    fake_dest_rgb_with_red(batch->blorp->isl_dev, params, wm_prog_key, coords);
   1632 
   1633    if (isl_format_has_sint_channel(params->src.view.format)) {
   1634       wm_prog_key->texture_data_type = nir_type_int;
   1635    } else if (isl_format_has_uint_channel(params->src.view.format)) {
   1636       wm_prog_key->texture_data_type = nir_type_uint;
   1637    } else {
   1638       wm_prog_key->texture_data_type = nir_type_float;
   1639    }
   1640 
   1641    /* src_samples and dst_samples are the true sample counts */
   1642    wm_prog_key->src_samples = params->src.surf.samples;
   1643    wm_prog_key->dst_samples = params->dst.surf.samples;
   1644 
   1645    wm_prog_key->tex_aux_usage = params->src.aux_usage;
   1646 
   1647    /* src_layout and dst_layout indicate the true MSAA layout used by src and
   1648     * dst.
   1649     */
   1650    wm_prog_key->src_layout = params->src.surf.msaa_layout;
   1651    wm_prog_key->dst_layout = params->dst.surf.msaa_layout;
   1652 
   1653    /* Round floating point values to nearest integer to avoid "off by one texel"
   1654     * kind of errors when blitting.
   1655     */
   1656    params->x0 = params->wm_inputs.discard_rect.x0 = round(coords->x.dst0);
   1657    params->y0 = params->wm_inputs.discard_rect.y0 = round(coords->y.dst0);
   1658    params->x1 = params->wm_inputs.discard_rect.x1 = round(coords->x.dst1);
   1659    params->y1 = params->wm_inputs.discard_rect.y1 = round(coords->y.dst1);
   1660 
   1661    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[0],
   1662                                    coords->x.src0, coords->x.src1,
   1663                                    coords->x.dst0, coords->x.dst1,
   1664                                    coords->x.mirror);
   1665    brw_blorp_setup_coord_transform(&params->wm_inputs.coord_transform[1],
   1666                                    coords->y.src0, coords->y.src1,
   1667                                    coords->y.dst0, coords->y.dst1,
   1668                                    coords->y.mirror);
   1669 
   1670 
   1671    if (devinfo->gen == 4) {
   1672       /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
   1673        * Convert them to a single slice on gen4.
   1674        */
   1675       if (params->dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
   1676          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->dst);
   1677          wm_prog_key->need_dst_offset = true;
   1678       }
   1679 
   1680       if (params->src.surf.usage & ISL_SURF_USAGE_CUBE_BIT) {
   1681          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params->src);
   1682          wm_prog_key->need_src_offset = true;
   1683       }
   1684    }
   1685 
   1686    if (devinfo->gen > 6 &&
   1687        params->dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
   1688       assert(params->dst.surf.samples > 1);
   1689 
   1690       /* We must expand the rectangle we send through the rendering pipeline,
   1691        * to account for the fact that we are mapping the destination region as
   1692        * single-sampled when it is in fact multisampled.  We must also align
   1693        * it to a multiple of the multisampling pattern, because the
   1694        * differences between multisampled and single-sampled surface formats
   1695        * will mean that pixels are scrambled within the multisampling pattern.
   1696        * TODO: what if this makes the coordinates too large?
   1697        *
   1698        * Note: this only works if the destination surface uses the IMS layout.
   1699        * If it's UMS, then we have no choice but to set up the rendering
   1700        * pipeline as multisampled.
   1701        */
   1702       struct isl_extent2d px_size_sa =
   1703          isl_get_interleaved_msaa_px_size_sa(params->dst.surf.samples);
   1704       params->x0 = ROUND_DOWN_TO(params->x0, 2) * px_size_sa.width;
   1705       params->y0 = ROUND_DOWN_TO(params->y0, 2) * px_size_sa.height;
   1706       params->x1 = ALIGN(params->x1, 2) * px_size_sa.width;
   1707       params->y1 = ALIGN(params->y1, 2) * px_size_sa.height;
   1708 
   1709       surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params->dst);
   1710 
   1711       wm_prog_key->use_kill = true;
   1712       wm_prog_key->need_dst_offset = true;
   1713    }
   1714 
   1715    if (params->dst.surf.tiling == ISL_TILING_W) {
   1716       /* We must modify the rectangle we send through the rendering pipeline
   1717        * (and the size and x/y offset of the destination surface), to account
   1718        * for the fact that we are mapping it as Y-tiled when it is in fact
   1719        * W-tiled.
   1720        *
   1721        * Both Y tiling and W tiling can be understood as organizations of
   1722        * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
   1723        * is different, but the layout of the 32-byte sub-tiles within the 4k
   1724        * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
   1725        * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
   1726        * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
   1727        *
   1728        * Therefore, to account for the layout differences within the 32-byte
   1729        * sub-tiles, we must expand the rectangle so the X coordinates of its
   1730        * edges are multiples of 8 (the W sub-tile width), and its Y
   1731        * coordinates of its edges are multiples of 4 (the W sub-tile height).
   1732        * Then we need to scale the X and Y coordinates of the rectangle to
   1733        * account for the differences in aspect ratio between the Y and W
   1734        * sub-tiles.  We need to modify the layer width and height similarly.
   1735        *
   1736        * A correction needs to be applied when MSAA is in use: since
   1737        * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
   1738        * we need to align the Y coordinates to multiples of 8, so that when
   1739        * they are divided by two they are still multiples of 4.
   1740        *
   1741        * Note: Since the x/y offset of the surface will be applied using the
   1742        * SURFACE_STATE command packet, it will be invisible to the swizzling
   1743        * code in the shader; therefore it needs to be in a multiple of the
   1744        * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
   1745        * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
   1746        * buffer), and the miplevel alignment used for stencil buffers is 8
   1747        * pixels horizontally and either 4 or 8 pixels vertically (see
   1748        * intel_horizontal_texture_alignment_unit() and
   1749        * intel_vertical_texture_alignment_unit()).
   1750        *
   1751        * Note: Also, since the SURFACE_STATE command packet can only apply
   1752        * offsets that are multiples of 4 pixels horizontally and 2 pixels
   1753        * vertically, it is important that the offsets will be multiples of
   1754        * these sizes after they are converted into Y-tiled coordinates.
   1755        * Fortunately they will be, since we know from above that the offsets
   1756        * are a multiple of the 32-byte sub-tile size, and in Y-tiled
   1757        * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
   1758        *
   1759        * TODO: what if this makes the coordinates (or the texture size) too
   1760        * large?
   1761        */
   1762       const unsigned x_align = 8;
   1763       const unsigned y_align = params->dst.surf.samples != 0 ? 8 : 4;
   1764       params->x0 = ROUND_DOWN_TO(params->x0, x_align) * 2;
   1765       params->y0 = ROUND_DOWN_TO(params->y0, y_align) / 2;
   1766       params->x1 = ALIGN(params->x1, x_align) * 2;
   1767       params->y1 = ALIGN(params->y1, y_align) / 2;
   1768 
   1769       /* Retile the surface to Y-tiled */
   1770       surf_retile_w_to_y(batch->blorp->isl_dev, &params->dst);
   1771 
   1772       wm_prog_key->dst_tiled_w = true;
   1773       wm_prog_key->use_kill = true;
   1774       wm_prog_key->need_dst_offset = true;
   1775 
   1776       if (params->dst.surf.samples > 1) {
   1777          /* If the destination surface is a W-tiled multisampled stencil
   1778           * buffer that we're mapping as Y tiled, then we need to arrange for
   1779           * the WM program to run once per sample rather than once per pixel,
   1780           * because the memory layout of related samples doesn't match between
   1781           * W and Y tiling.
   1782           */
   1783          wm_prog_key->persample_msaa_dispatch = true;
   1784       }
   1785    }
   1786 
   1787    if (devinfo->gen < 8 && params->src.surf.tiling == ISL_TILING_W) {
   1788       /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
   1789        * Broadwell adds support for sampling from stencil.
   1790        *
   1791        * See the comments above concerning x/y offset alignment for the
   1792        * destination surface.
   1793        *
   1794        * TODO: what if this makes the texture size too large?
   1795        */
   1796       surf_retile_w_to_y(batch->blorp->isl_dev, &params->src);
   1797 
   1798       wm_prog_key->src_tiled_w = true;
   1799       wm_prog_key->need_src_offset = true;
   1800    }
   1801 
   1802    /* tex_samples and rt_samples are the sample counts that are set up in
   1803     * SURFACE_STATE.
   1804     */
   1805    wm_prog_key->tex_samples = params->src.surf.samples;
   1806    wm_prog_key->rt_samples  = params->dst.surf.samples;
   1807 
   1808    /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
   1809     * use to access the source and destination surfaces.
   1810     */
   1811    wm_prog_key->tex_layout = params->src.surf.msaa_layout;
   1812    wm_prog_key->rt_layout = params->dst.surf.msaa_layout;
   1813 
   1814    if (params->src.surf.samples > 0 && params->dst.surf.samples > 1) {
   1815       /* We are blitting from a multisample buffer to a multisample buffer, so
   1816        * we must preserve samples within a pixel.  This means we have to
   1817        * arrange for the WM program to run once per sample rather than once
   1818        * per pixel.
   1819        */
   1820       wm_prog_key->persample_msaa_dispatch = true;
   1821    }
   1822 
   1823    params->num_samples = params->dst.surf.samples;
   1824 
   1825    if ((wm_prog_key->bilinear_filter ||
   1826         (wm_prog_key->blend && !wm_prog_key->blit_scaled)) &&
   1827        batch->blorp->isl_dev->info->gen <= 6) {
   1828       /* Gen4-5 don't support non-normalized texture coordinates */
   1829       wm_prog_key->src_coords_normalized = true;
   1830       params->wm_inputs.src_inv_size[0] =
   1831          1.0f / minify(params->src.surf.logical_level0_px.width,
   1832                        params->src.view.base_level);
   1833       params->wm_inputs.src_inv_size[1] =
   1834          1.0f / minify(params->src.surf.logical_level0_px.height,
   1835                        params->src.view.base_level);
   1836    }
   1837 
   1838    if (params->src.tile_x_sa || params->src.tile_y_sa) {
   1839       assert(wm_prog_key->need_src_offset);
   1840       surf_get_intratile_offset_px(&params->src,
   1841                                    &params->wm_inputs.src_offset.x,
   1842                                    &params->wm_inputs.src_offset.y);
   1843    }
   1844 
   1845    if (params->dst.tile_x_sa || params->dst.tile_y_sa) {
   1846       assert(wm_prog_key->need_dst_offset);
   1847       surf_get_intratile_offset_px(&params->dst,
   1848                                    &params->wm_inputs.dst_offset.x,
   1849                                    &params->wm_inputs.dst_offset.y);
   1850       params->x0 += params->wm_inputs.dst_offset.x;
   1851       params->y0 += params->wm_inputs.dst_offset.y;
   1852       params->x1 += params->wm_inputs.dst_offset.x;
   1853       params->y1 += params->wm_inputs.dst_offset.y;
   1854    }
   1855 
   1856    /* For some texture types, we need to pass the layer through the sampler. */
   1857    params->wm_inputs.src_z = params->src.z_offset;
   1858 
   1859    if (!brw_blorp_get_blit_kernel(batch->blorp, params, wm_prog_key))
   1860       return 0;
   1861 
   1862    if (!blorp_ensure_sf_program(batch->blorp, params))
   1863       return 0;
   1864 
   1865    unsigned result = 0;
   1866    unsigned max_surface_size = get_max_surface_size(devinfo, params);
   1867    if (params->src.surf.logical_level0_px.width > max_surface_size ||
   1868        params->dst.surf.logical_level0_px.width > max_surface_size)
   1869       result |= BLIT_WIDTH_SHRINK;
   1870    if (params->src.surf.logical_level0_px.height > max_surface_size ||
   1871        params->dst.surf.logical_level0_px.height > max_surface_size)
   1872       result |= BLIT_HEIGHT_SHRINK;
   1873 
   1874    if (result == 0) {
   1875       batch->blorp->exec(batch, params);
   1876    }
   1877 
   1878    return result;
   1879 }
   1880 
   1881 /* Adjust split blit source coordinates for the current destination
   1882  * coordinates.
   1883  */
   1884 static void
   1885 adjust_split_source_coords(const struct blt_axis *orig,
   1886                            struct blt_axis *split_coords,
   1887                            double scale)
   1888 {
   1889    /* When scale is greater than 0, then we are growing from the start, so
   1890     * src0 uses delta0, and src1 uses delta1. When scale is less than 0, the
   1891     * source range shrinks from the end. In that case src0 is adjusted by
   1892     * delta1, and src1 is adjusted by delta0.
   1893     */
   1894    double delta0 = scale * (split_coords->dst0 - orig->dst0);
   1895    double delta1 = scale * (split_coords->dst1 - orig->dst1);
   1896    split_coords->src0 = orig->src0 + (scale >= 0.0 ? delta0 : delta1);
   1897    split_coords->src1 = orig->src1 + (scale >= 0.0 ? delta1 : delta0);
   1898 }
   1899 
   1900 static struct isl_extent2d
   1901 get_px_size_sa(const struct isl_surf *surf)
   1902 {
   1903    static const struct isl_extent2d one_to_one = { .w = 1, .h = 1 };
   1904 
   1905    if (surf->msaa_layout != ISL_MSAA_LAYOUT_INTERLEAVED)
   1906       return one_to_one;
   1907    else
   1908       return isl_get_interleaved_msaa_px_size_sa(surf->samples);
   1909 }
   1910 
   1911 static void
   1912 shrink_surface_params(const struct isl_device *dev,
   1913                       struct brw_blorp_surface_info *info,
   1914                       double *x0, double *x1, double *y0, double *y1)
   1915 {
   1916    uint32_t byte_offset, x_offset_sa, y_offset_sa, size;
   1917    struct isl_extent2d px_size_sa;
   1918    int adjust;
   1919 
   1920    blorp_surf_convert_to_single_slice(dev, info);
   1921 
   1922    px_size_sa = get_px_size_sa(&info->surf);
   1923 
   1924    /* Because this gets called after we lower compressed images, the tile
   1925     * offsets may be non-zero and we need to incorporate them in our
   1926     * calculations.
   1927     */
   1928    x_offset_sa = (uint32_t)*x0 * px_size_sa.w + info->tile_x_sa;
   1929    y_offset_sa = (uint32_t)*y0 * px_size_sa.h + info->tile_y_sa;
   1930    isl_tiling_get_intratile_offset_sa(info->surf.tiling,
   1931                                       info->surf.format, info->surf.row_pitch,
   1932                                       x_offset_sa, y_offset_sa,
   1933                                       &byte_offset,
   1934                                       &info->tile_x_sa, &info->tile_y_sa);
   1935 
   1936    info->addr.offset += byte_offset;
   1937 
   1938    adjust = (int)info->tile_x_sa / px_size_sa.w - (int)*x0;
   1939    *x0 += adjust;
   1940    *x1 += adjust;
   1941    info->tile_x_sa = 0;
   1942 
   1943    adjust = (int)info->tile_y_sa / px_size_sa.h - (int)*y0;
   1944    *y0 += adjust;
   1945    *y1 += adjust;
   1946    info->tile_y_sa = 0;
   1947 
   1948    size = MIN2((uint32_t)ceil(*x1), info->surf.logical_level0_px.width);
   1949    info->surf.logical_level0_px.width = size;
   1950    info->surf.phys_level0_sa.width = size * px_size_sa.w;
   1951 
   1952    size = MIN2((uint32_t)ceil(*y1), info->surf.logical_level0_px.height);
   1953    info->surf.logical_level0_px.height = size;
   1954    info->surf.phys_level0_sa.height = size * px_size_sa.h;
   1955 }
   1956 
   1957 static void
   1958 shrink_surfaces(const struct isl_device *dev,
   1959                 struct blorp_params *params,
   1960                 struct brw_blorp_blit_prog_key *wm_prog_key,
   1961                 struct blt_coords *coords)
   1962 {
   1963    /* Shrink source surface */
   1964    shrink_surface_params(dev, &params->src, &coords->x.src0, &coords->x.src1,
   1965                          &coords->y.src0, &coords->y.src1);
   1966    wm_prog_key->need_src_offset = false;
   1967 
   1968    /* Shrink destination surface */
   1969    shrink_surface_params(dev, &params->dst, &coords->x.dst0, &coords->x.dst1,
   1970                          &coords->y.dst0, &coords->y.dst1);
   1971    wm_prog_key->need_dst_offset = false;
   1972 }
   1973 
   1974 static void
   1975 do_blorp_blit(struct blorp_batch *batch,
   1976               const struct blorp_params *orig_params,
   1977               struct brw_blorp_blit_prog_key *wm_prog_key,
   1978               const struct blt_coords *orig)
   1979 {
   1980    struct blorp_params params;
   1981    struct blt_coords blit_coords;
   1982    struct blt_coords split_coords = *orig;
   1983    double w = orig->x.dst1 - orig->x.dst0;
   1984    double h = orig->y.dst1 - orig->y.dst0;
   1985    double x_scale = (orig->x.src1 - orig->x.src0) / w;
   1986    double y_scale = (orig->y.src1 - orig->y.src0) / h;
   1987    if (orig->x.mirror)
   1988       x_scale = -x_scale;
   1989    if (orig->y.mirror)
   1990       y_scale = -y_scale;
   1991 
   1992    bool x_done, y_done;
   1993    bool shrink = split_blorp_blit_debug && can_shrink_surfaces(orig_params);
   1994    do {
   1995       params = *orig_params;
   1996       blit_coords = split_coords;
   1997       if (shrink)
   1998          shrink_surfaces(batch->blorp->isl_dev, &params, wm_prog_key,
   1999                          &blit_coords);
   2000       enum blit_shrink_status result =
   2001          try_blorp_blit(batch, &params, wm_prog_key, &blit_coords);
   2002 
   2003       if (result & BLIT_WIDTH_SHRINK) {
   2004          w /= 2.0;
   2005          assert(w >= 1.0);
   2006          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
   2007          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
   2008       }
   2009       if (result & BLIT_HEIGHT_SHRINK) {
   2010          h /= 2.0;
   2011          assert(h >= 1.0);
   2012          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   2013          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
   2014       }
   2015 
   2016       if (result != 0) {
   2017          assert(can_shrink_surfaces(orig_params));
   2018          shrink = true;
   2019          continue;
   2020       }
   2021 
   2022       y_done = (orig->y.dst1 - split_coords.y.dst1 < 0.5);
   2023       x_done = y_done && (orig->x.dst1 - split_coords.x.dst1 < 0.5);
   2024       if (x_done) {
   2025          break;
   2026       } else if (y_done) {
   2027          split_coords.x.dst0 += w;
   2028          split_coords.x.dst1 = MIN2(split_coords.x.dst0 + w, orig->x.dst1);
   2029          split_coords.y.dst0 = orig->y.dst0;
   2030          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   2031          adjust_split_source_coords(&orig->x, &split_coords.x, x_scale);
   2032       } else {
   2033          split_coords.y.dst0 += h;
   2034          split_coords.y.dst1 = MIN2(split_coords.y.dst0 + h, orig->y.dst1);
   2035          adjust_split_source_coords(&orig->y, &split_coords.y, y_scale);
   2036       }
   2037    } while (true);
   2038 }
   2039 
   2040 void
   2041 blorp_blit(struct blorp_batch *batch,
   2042            const struct blorp_surf *src_surf,
   2043            unsigned src_level, unsigned src_layer,
   2044            enum isl_format src_format, struct isl_swizzle src_swizzle,
   2045            const struct blorp_surf *dst_surf,
   2046            unsigned dst_level, unsigned dst_layer,
   2047            enum isl_format dst_format, struct isl_swizzle dst_swizzle,
   2048            float src_x0, float src_y0,
   2049            float src_x1, float src_y1,
   2050            float dst_x0, float dst_y0,
   2051            float dst_x1, float dst_y1,
   2052            GLenum filter, bool mirror_x, bool mirror_y)
   2053 {
   2054    struct blorp_params params;
   2055    blorp_params_init(&params);
   2056 
   2057    /* We cannot handle combined depth and stencil. */
   2058    if (src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
   2059       assert(src_surf->surf->format == ISL_FORMAT_R8_UINT);
   2060    if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT)
   2061       assert(dst_surf->surf->format == ISL_FORMAT_R8_UINT);
   2062 
   2063    if (dst_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
   2064       assert(src_surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT);
   2065       /* Prior to Broadwell, we can't render to R8_UINT */
   2066       if (batch->blorp->isl_dev->info->gen < 8) {
   2067          src_format = ISL_FORMAT_R8_UNORM;
   2068          dst_format = ISL_FORMAT_R8_UNORM;
   2069       }
   2070    }
   2071 
   2072    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
   2073                                src_layer, src_format, false);
   2074    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
   2075                                dst_layer, dst_format, true);
   2076 
   2077    params.src.view.swizzle = src_swizzle;
   2078    params.dst.view.swizzle = dst_swizzle;
   2079 
   2080    struct brw_blorp_blit_prog_key wm_prog_key = {
   2081       .shader_type = BLORP_SHADER_TYPE_BLIT
   2082    };
   2083 
   2084    /* Scaled blitting or not. */
   2085    wm_prog_key.blit_scaled =
   2086       ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
   2087        (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
   2088 
   2089    /* Scaling factors used for bilinear filtering in multisample scaled
   2090     * blits.
   2091     */
   2092    if (params.src.surf.samples == 16)
   2093       wm_prog_key.x_scale = 4.0f;
   2094    else
   2095       wm_prog_key.x_scale = 2.0f;
   2096    wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
   2097 
   2098    if (filter == GL_LINEAR &&
   2099        params.src.surf.samples <= 1 && params.dst.surf.samples <= 1) {
   2100       wm_prog_key.bilinear_filter = true;
   2101    }
   2102 
   2103    if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
   2104        (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
   2105        !isl_format_has_int_channel(params.src.surf.format) &&
   2106        params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
   2107       /* We are downsampling a non-integer color buffer, so blend.
   2108        *
   2109        * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
   2110        *
   2111        *    "If the source formats are integer types or stencil values, a
   2112        *    single sample's value is selected for each pixel."
   2113        *
   2114        * This implies we should not blend in that case.
   2115        */
   2116       wm_prog_key.blend = true;
   2117    }
   2118 
   2119    params.wm_inputs.rect_grid.x1 =
   2120       minify(params.src.surf.logical_level0_px.width, src_level) *
   2121       wm_prog_key.x_scale - 1.0f;
   2122    params.wm_inputs.rect_grid.y1 =
   2123       minify(params.src.surf.logical_level0_px.height, src_level) *
   2124       wm_prog_key.y_scale - 1.0f;
   2125 
   2126    struct blt_coords coords = {
   2127       .x = {
   2128          .src0 = src_x0,
   2129          .src1 = src_x1,
   2130          .dst0 = dst_x0,
   2131          .dst1 = dst_x1,
   2132          .mirror = mirror_x
   2133       },
   2134       .y = {
   2135          .src0 = src_y0,
   2136          .src1 = src_y1,
   2137          .dst0 = dst_y0,
   2138          .dst1 = dst_y1,
   2139          .mirror = mirror_y
   2140       }
   2141    };
   2142 
   2143    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
   2144 }
   2145 
   2146 static enum isl_format
   2147 get_copy_format_for_bpb(const struct isl_device *isl_dev, unsigned bpb)
   2148 {
   2149    /* The choice of UNORM and UINT formats is very intentional here.  Most
   2150     * of the time, we want to use a UINT format to avoid any rounding error
   2151     * in the blit.  For stencil blits, R8_UINT is required by the hardware.
   2152     * (It's the only format allowed in conjunction with W-tiling.)  Also we
   2153     * intentionally use the 4-channel formats whenever we can.  This is so
   2154     * that, when we do a RGB <-> RGBX copy, the two formats will line up
   2155     * even though one of them is 3/4 the size of the other.  The choice of
   2156     * UNORM vs. UINT is also very intentional because we don't have 8 or
   2157     * 16-bit RGB UINT formats until Sky Lake so we have to use UNORM there.
   2158     * Fortunately, the only time we should ever use two different formats in
   2159     * the table below is for RGB -> RGBA blits and so we will never have any
   2160     * UNORM/UINT mismatch.
   2161     */
   2162    if (ISL_DEV_GEN(isl_dev) >= 9) {
   2163       switch (bpb) {
   2164       case 8:  return ISL_FORMAT_R8_UINT;
   2165       case 16: return ISL_FORMAT_R8G8_UINT;
   2166       case 24: return ISL_FORMAT_R8G8B8_UINT;
   2167       case 32: return ISL_FORMAT_R8G8B8A8_UINT;
   2168       case 48: return ISL_FORMAT_R16G16B16_UINT;
   2169       case 64: return ISL_FORMAT_R16G16B16A16_UINT;
   2170       case 96: return ISL_FORMAT_R32G32B32_UINT;
   2171       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
   2172       default:
   2173          unreachable("Unknown format bpb");
   2174       }
   2175    } else {
   2176       switch (bpb) {
   2177       case 8:  return ISL_FORMAT_R8_UINT;
   2178       case 16: return ISL_FORMAT_R8G8_UINT;
   2179       case 24: return ISL_FORMAT_R8G8B8_UNORM;
   2180       case 32: return ISL_FORMAT_R8G8B8A8_UNORM;
   2181       case 48: return ISL_FORMAT_R16G16B16_UNORM;
   2182       case 64: return ISL_FORMAT_R16G16B16A16_UNORM;
   2183       case 96: return ISL_FORMAT_R32G32B32_UINT;
   2184       case 128:return ISL_FORMAT_R32G32B32A32_UINT;
   2185       default:
   2186          unreachable("Unknown format bpb");
   2187       }
   2188    }
   2189 }
   2190 
   2191 /** Returns a UINT format that is CCS-compatible with the given format
   2192  *
   2193  * The PRM's say absolutely nothing about how render compression works.  The
   2194  * only thing they provide is a list of formats on which it is and is not
   2195  * supported.  Empirical testing indicates that the compression is only based
   2196  * on the bit-layout of the format and the channel encoding doesn't matter.
   2197  * So, while texture views don't work in general, you can create a view as
   2198  * long as the bit-layout of the formats are the same.
   2199  *
   2200  * Fortunately, for every render compression capable format, the UINT format
   2201  * with the same bit layout also supports render compression.  This means that
   2202  * we only need to handle UINT formats for copy operations.  In order to do
   2203  * copies between formats with different bit layouts, we attach both with a
   2204  * UINT format and use bit_cast_color() to generate code to do the bit-cast
   2205  * operation between the two bit layouts.
   2206  */
   2207 static enum isl_format
   2208 get_ccs_compatible_uint_format(const struct isl_format_layout *fmtl)
   2209 {
   2210    switch (fmtl->format) {
   2211    case ISL_FORMAT_R32G32B32A32_FLOAT:
   2212    case ISL_FORMAT_R32G32B32A32_SINT:
   2213    case ISL_FORMAT_R32G32B32A32_UINT:
   2214    case ISL_FORMAT_R32G32B32A32_UNORM:
   2215    case ISL_FORMAT_R32G32B32A32_SNORM:
   2216    case ISL_FORMAT_R32G32B32X32_FLOAT:
   2217       return ISL_FORMAT_R32G32B32A32_UINT;
   2218 
   2219    case ISL_FORMAT_R16G16B16A16_UNORM:
   2220    case ISL_FORMAT_R16G16B16A16_SNORM:
   2221    case ISL_FORMAT_R16G16B16A16_SINT:
   2222    case ISL_FORMAT_R16G16B16A16_UINT:
   2223    case ISL_FORMAT_R16G16B16A16_FLOAT:
   2224    case ISL_FORMAT_R16G16B16X16_UNORM:
   2225    case ISL_FORMAT_R16G16B16X16_FLOAT:
   2226       return ISL_FORMAT_R16G16B16A16_UINT;
   2227 
   2228    case ISL_FORMAT_R32G32_FLOAT:
   2229    case ISL_FORMAT_R32G32_SINT:
   2230    case ISL_FORMAT_R32G32_UINT:
   2231    case ISL_FORMAT_R32G32_UNORM:
   2232    case ISL_FORMAT_R32G32_SNORM:
   2233       return ISL_FORMAT_R32G32_UINT;
   2234 
   2235    case ISL_FORMAT_B8G8R8A8_UNORM:
   2236    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
   2237    case ISL_FORMAT_R8G8B8A8_UNORM:
   2238    case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
   2239    case ISL_FORMAT_R8G8B8A8_SNORM:
   2240    case ISL_FORMAT_R8G8B8A8_SINT:
   2241    case ISL_FORMAT_R8G8B8A8_UINT:
   2242    case ISL_FORMAT_B8G8R8X8_UNORM:
   2243    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
   2244    case ISL_FORMAT_R8G8B8X8_UNORM:
   2245    case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
   2246       return ISL_FORMAT_R8G8B8A8_UINT;
   2247 
   2248    case ISL_FORMAT_R16G16_UNORM:
   2249    case ISL_FORMAT_R16G16_SNORM:
   2250    case ISL_FORMAT_R16G16_SINT:
   2251    case ISL_FORMAT_R16G16_UINT:
   2252    case ISL_FORMAT_R16G16_FLOAT:
   2253       return ISL_FORMAT_R16G16_UINT;
   2254 
   2255    case ISL_FORMAT_R32_SINT:
   2256    case ISL_FORMAT_R32_UINT:
   2257    case ISL_FORMAT_R32_FLOAT:
   2258    case ISL_FORMAT_R32_UNORM:
   2259    case ISL_FORMAT_R32_SNORM:
   2260       return ISL_FORMAT_R32_UINT;
   2261 
   2262    default:
   2263       unreachable("Not a compressible format");
   2264    }
   2265 }
   2266 
   2267 /* Takes an isl_color_value and returns a color value that is the original
   2268  * color value only bit-casted to a UINT format.  This value, together with
   2269  * the format from get_ccs_compatible_uint_format, will yield the same bit
   2270  * value as the original color and format.
   2271  */
   2272 static union isl_color_value
   2273 bitcast_color_value_to_uint(union isl_color_value color,
   2274                             const struct isl_format_layout *fmtl)
   2275 {
   2276    /* All CCS formats have the same number of bits in each channel */
   2277    const struct isl_channel_layout *chan = &fmtl->channels.r;
   2278 
   2279    union isl_color_value bits;
   2280    switch (chan->type) {
   2281    case ISL_UINT:
   2282    case ISL_SINT:
   2283       /* Hardware will ignore the high bits so there's no need to cast */
   2284       bits = color;
   2285       break;
   2286 
   2287    case ISL_UNORM:
   2288       for (unsigned i = 0; i < 4; i++)
   2289          bits.u32[i] = _mesa_float_to_unorm(color.f32[i], chan->bits);
   2290       break;
   2291 
   2292    case ISL_SNORM:
   2293       for (unsigned i = 0; i < 4; i++)
   2294          bits.i32[i] = _mesa_float_to_snorm(color.f32[i], chan->bits);
   2295       break;
   2296 
   2297    case ISL_SFLOAT:
   2298       switch (chan->bits) {
   2299       case 16:
   2300          for (unsigned i = 0; i < 4; i++)
   2301             bits.u32[i] = _mesa_float_to_half(color.f32[i]);
   2302          break;
   2303 
   2304       case 32:
   2305          bits = color;
   2306          break;
   2307 
   2308       default:
   2309          unreachable("Invalid float format size");
   2310       }
   2311       break;
   2312 
   2313    default:
   2314       unreachable("Invalid channel type");
   2315    }
   2316 
   2317    switch (fmtl->format) {
   2318    case ISL_FORMAT_B8G8R8A8_UNORM:
   2319    case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
   2320    case ISL_FORMAT_B8G8R8X8_UNORM:
   2321    case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: {
   2322       /* If it's a BGRA format, we need to swap blue and red */
   2323       uint32_t tmp = bits.u32[0];
   2324       bits.u32[0] = bits.u32[2];
   2325       bits.u32[2] = tmp;
   2326       break;
   2327    }
   2328 
   2329    default:
   2330       break; /* Nothing to do */
   2331    }
   2332 
   2333    return bits;
   2334 }
   2335 
   2336 void
   2337 blorp_surf_convert_to_uncompressed(const struct isl_device *isl_dev,
   2338                                    struct brw_blorp_surface_info *info,
   2339                                    uint32_t *x, uint32_t *y,
   2340                                    uint32_t *width, uint32_t *height)
   2341 {
   2342    const struct isl_format_layout *fmtl =
   2343       isl_format_get_layout(info->surf.format);
   2344 
   2345    assert(fmtl->bw > 1 || fmtl->bh > 1);
   2346 
   2347    /* This is a compressed surface.  We need to convert it to a single
   2348     * slice (because compressed layouts don't perfectly match uncompressed
   2349     * ones with the same bpb) and divide x, y, width, and height by the
   2350     * block size.
   2351     */
   2352    blorp_surf_convert_to_single_slice(isl_dev, info);
   2353 
   2354    if (width && height) {
   2355 #ifndef NDEBUG
   2356       uint32_t right_edge_px = info->tile_x_sa + *x + *width;
   2357       uint32_t bottom_edge_px = info->tile_y_sa + *y + *height;
   2358       assert(*width % fmtl->bw == 0 ||
   2359              right_edge_px == info->surf.logical_level0_px.width);
   2360       assert(*height % fmtl->bh == 0 ||
   2361              bottom_edge_px == info->surf.logical_level0_px.height);
   2362 #endif
   2363       *width = DIV_ROUND_UP(*width, fmtl->bw);
   2364       *height = DIV_ROUND_UP(*height, fmtl->bh);
   2365    }
   2366 
   2367    if (x && y) {
   2368       assert(*x % fmtl->bw == 0);
   2369       assert(*y % fmtl->bh == 0);
   2370       *x /= fmtl->bw;
   2371       *y /= fmtl->bh;
   2372    }
   2373 
   2374    info->surf.logical_level0_px.width =
   2375       DIV_ROUND_UP(info->surf.logical_level0_px.width, fmtl->bw);
   2376    info->surf.logical_level0_px.height =
   2377       DIV_ROUND_UP(info->surf.logical_level0_px.height, fmtl->bh);
   2378 
   2379    assert(info->surf.phys_level0_sa.width % fmtl->bw == 0);
   2380    assert(info->surf.phys_level0_sa.height % fmtl->bh == 0);
   2381    info->surf.phys_level0_sa.width /= fmtl->bw;
   2382    info->surf.phys_level0_sa.height /= fmtl->bh;
   2383 
   2384    assert(info->tile_x_sa % fmtl->bw == 0);
   2385    assert(info->tile_y_sa % fmtl->bh == 0);
   2386    info->tile_x_sa /= fmtl->bw;
   2387    info->tile_y_sa /= fmtl->bh;
   2388 
   2389    /* It's now an uncompressed surface so we need an uncompressed format */
   2390    info->surf.format = get_copy_format_for_bpb(isl_dev, fmtl->bpb);
   2391 }
   2392 
   2393 void
   2394 blorp_copy(struct blorp_batch *batch,
   2395            const struct blorp_surf *src_surf,
   2396            unsigned src_level, unsigned src_layer,
   2397            const struct blorp_surf *dst_surf,
   2398            unsigned dst_level, unsigned dst_layer,
   2399            uint32_t src_x, uint32_t src_y,
   2400            uint32_t dst_x, uint32_t dst_y,
   2401            uint32_t src_width, uint32_t src_height)
   2402 {
   2403    const struct isl_device *isl_dev = batch->blorp->isl_dev;
   2404    struct blorp_params params;
   2405 
   2406    if (src_width == 0 || src_height == 0)
   2407       return;
   2408 
   2409    blorp_params_init(&params);
   2410    brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
   2411                                src_layer, ISL_FORMAT_UNSUPPORTED, false);
   2412    brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
   2413                                dst_layer, ISL_FORMAT_UNSUPPORTED, true);
   2414 
   2415    struct brw_blorp_blit_prog_key wm_prog_key = {
   2416       .shader_type = BLORP_SHADER_TYPE_BLIT
   2417    };
   2418 
   2419    const struct isl_format_layout *src_fmtl =
   2420       isl_format_get_layout(params.src.surf.format);
   2421    const struct isl_format_layout *dst_fmtl =
   2422       isl_format_get_layout(params.dst.surf.format);
   2423 
   2424    assert(params.src.aux_usage == ISL_AUX_USAGE_NONE ||
   2425           params.src.aux_usage == ISL_AUX_USAGE_MCS ||
   2426           params.src.aux_usage == ISL_AUX_USAGE_CCS_E);
   2427    assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE ||
   2428           params.dst.aux_usage == ISL_AUX_USAGE_MCS ||
   2429           params.dst.aux_usage == ISL_AUX_USAGE_CCS_E);
   2430 
   2431    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2432       params.dst.view.format = get_ccs_compatible_uint_format(dst_fmtl);
   2433       if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2434          params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
   2435       } else if (src_fmtl->bpb == dst_fmtl->bpb) {
   2436          params.src.view.format = params.dst.view.format;
   2437       } else {
   2438          params.src.view.format =
   2439             get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
   2440       }
   2441    } else if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2442       params.src.view.format = get_ccs_compatible_uint_format(src_fmtl);
   2443       if (src_fmtl->bpb == dst_fmtl->bpb) {
   2444          params.dst.view.format = params.src.view.format;
   2445       } else {
   2446          params.dst.view.format =
   2447             get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
   2448       }
   2449    } else {
   2450       params.dst.view.format = get_copy_format_for_bpb(isl_dev, dst_fmtl->bpb);
   2451       params.src.view.format = get_copy_format_for_bpb(isl_dev, src_fmtl->bpb);
   2452    }
   2453 
   2454    if (params.src.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2455       /* It's safe to do a blorp_copy between things which are sRGB with CCS_E
   2456        * enabled even though CCS_E doesn't technically do sRGB on SKL because
   2457        * we stomp everything to UINT anyway.  The one thing we have to be
   2458        * careful of is clear colors.  Because fast clear colors for sRGB on
   2459        * gen9 are encoded as the float values between format conversion and
   2460        * sRGB curve application, a given clear color float will convert to the
   2461        * same bits regardless of whether the format is UNORM or sRGB.
   2462        * Therefore, we can handle sRGB without any special cases.
   2463        */
   2464       UNUSED enum isl_format linear_src_format =
   2465          isl_format_srgb_to_linear(src_surf->surf->format);
   2466       assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
   2467                                               linear_src_format,
   2468                                               params.src.view.format));
   2469       params.src.clear_color =
   2470          bitcast_color_value_to_uint(params.src.clear_color, src_fmtl);
   2471    }
   2472 
   2473    if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E) {
   2474       /* See above where we handle linear_src_format */
   2475       UNUSED enum isl_format linear_dst_format =
   2476          isl_format_srgb_to_linear(dst_surf->surf->format);
   2477       assert(isl_formats_are_ccs_e_compatible(batch->blorp->isl_dev->info,
   2478                                               linear_dst_format,
   2479                                               params.dst.view.format));
   2480       params.dst.clear_color =
   2481          bitcast_color_value_to_uint(params.dst.clear_color, dst_fmtl);
   2482    }
   2483 
   2484    wm_prog_key.src_bpc =
   2485       isl_format_get_layout(params.src.view.format)->channels.r.bits;
   2486    wm_prog_key.dst_bpc =
   2487       isl_format_get_layout(params.dst.view.format)->channels.r.bits;
   2488 
   2489    if (src_fmtl->bw > 1 || src_fmtl->bh > 1) {
   2490       blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.src,
   2491                                          &src_x, &src_y,
   2492                                          &src_width, &src_height);
   2493       wm_prog_key.need_src_offset = true;
   2494    }
   2495 
   2496    if (dst_fmtl->bw > 1 || dst_fmtl->bh > 1) {
   2497       blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
   2498                                          &dst_x, &dst_y, NULL, NULL);
   2499       wm_prog_key.need_dst_offset = true;
   2500    }
   2501 
   2502    /* Once both surfaces are stompped to uncompressed as needed, the
   2503     * destination size is the same as the source size.
   2504     */
   2505    uint32_t dst_width = src_width;
   2506    uint32_t dst_height = src_height;
   2507 
   2508    struct blt_coords coords = {
   2509       .x = {
   2510          .src0 = src_x,
   2511          .src1 = src_x + src_width,
   2512          .dst0 = dst_x,
   2513          .dst1 = dst_x + dst_width,
   2514          .mirror = false
   2515       },
   2516       .y = {
   2517          .src0 = src_y,
   2518          .src1 = src_y + src_height,
   2519          .dst0 = dst_y,
   2520          .dst1 = dst_y + dst_height,
   2521          .mirror = false
   2522       }
   2523    };
   2524 
   2525    do_blorp_blit(batch, &params, &wm_prog_key, &coords);
   2526 }
   2527 
   2528 static enum isl_format
   2529 isl_format_for_size(unsigned size_B)
   2530 {
   2531    switch (size_B) {
   2532    case 1:  return ISL_FORMAT_R8_UINT;
   2533    case 2:  return ISL_FORMAT_R8G8_UINT;
   2534    case 4:  return ISL_FORMAT_R8G8B8A8_UINT;
   2535    case 8:  return ISL_FORMAT_R16G16B16A16_UINT;
   2536    case 16: return ISL_FORMAT_R32G32B32A32_UINT;
   2537    default:
   2538       unreachable("Not a power-of-two format size");
   2539    }
   2540 }
   2541 
   2542 /**
   2543  * Returns the greatest common divisor of a and b that is a power of two.
   2544  */
   2545 static uint64_t
   2546 gcd_pow2_u64(uint64_t a, uint64_t b)
   2547 {
   2548    assert(a > 0 || b > 0);
   2549 
   2550    unsigned a_log2 = ffsll(a) - 1;
   2551    unsigned b_log2 = ffsll(b) - 1;
   2552 
   2553    /* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
   2554     * case, the MIN2() will take the other one.  If both are 0 then we will
   2555     * hit the assert above.
   2556     */
   2557    return 1 << MIN2(a_log2, b_log2);
   2558 }
   2559 
   2560 static void
   2561 do_buffer_copy(struct blorp_batch *batch,
   2562                struct blorp_address *src,
   2563                struct blorp_address *dst,
   2564                int width, int height, int block_size)
   2565 {
   2566    /* The actual format we pick doesn't matter as blorp will throw it away.
   2567     * The only thing that actually matters is the size.
   2568     */
   2569    enum isl_format format = isl_format_for_size(block_size);
   2570 
   2571    UNUSED bool ok;
   2572    struct isl_surf surf;
   2573    ok = isl_surf_init(batch->blorp->isl_dev, &surf,
   2574                       .dim = ISL_SURF_DIM_2D,
   2575                       .format = format,
   2576                       .width = width,
   2577                       .height = height,
   2578                       .depth = 1,
   2579                       .levels = 1,
   2580                       .array_len = 1,
   2581                       .samples = 1,
   2582                       .row_pitch = width * block_size,
   2583                       .usage = ISL_SURF_USAGE_TEXTURE_BIT |
   2584                                ISL_SURF_USAGE_RENDER_TARGET_BIT,
   2585                       .tiling_flags = ISL_TILING_LINEAR_BIT);
   2586    assert(ok);
   2587 
   2588    struct blorp_surf src_blorp_surf = {
   2589       .surf = &surf,
   2590       .addr = *src,
   2591    };
   2592 
   2593    struct blorp_surf dst_blorp_surf = {
   2594       .surf = &surf,
   2595       .addr = *dst,
   2596    };
   2597 
   2598    blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
   2599               0, 0, 0, 0, width, height);
   2600 }
   2601 
   2602 void
   2603 blorp_buffer_copy(struct blorp_batch *batch,
   2604                   struct blorp_address src,
   2605                   struct blorp_address dst,
   2606                   uint64_t size)
   2607 {
   2608    const struct gen_device_info *devinfo = batch->blorp->isl_dev->info;
   2609    uint64_t copy_size = size;
   2610 
   2611    /* This is maximum possible width/height our HW can handle */
   2612    uint64_t max_surface_dim = 1 << (devinfo->gen >= 7 ? 14 : 13);
   2613 
   2614    /* First, we compute the biggest format that can be used with the
   2615     * given offsets and size.
   2616     */
   2617    int bs = 16;
   2618    bs = gcd_pow2_u64(bs, src.offset);
   2619    bs = gcd_pow2_u64(bs, dst.offset);
   2620    bs = gcd_pow2_u64(bs, size);
   2621 
   2622    /* First, we make a bunch of max-sized copies */
   2623    uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
   2624    while (copy_size >= max_copy_size) {
   2625       do_buffer_copy(batch, &src, &dst, max_surface_dim, max_surface_dim, bs);
   2626       copy_size -= max_copy_size;
   2627       src.offset += max_copy_size;
   2628       dst.offset += max_copy_size;
   2629    }
   2630 
   2631    /* Now make a max-width copy */
   2632    uint64_t height = copy_size / (max_surface_dim * bs);
   2633    assert(height < max_surface_dim);
   2634    if (height != 0) {
   2635       uint64_t rect_copy_size = height * max_surface_dim * bs;
   2636       do_buffer_copy(batch, &src, &dst, max_surface_dim, height, bs);
   2637       copy_size -= rect_copy_size;
   2638       src.offset += rect_copy_size;
   2639       dst.offset += rect_copy_size;
   2640    }
   2641 
   2642    /* Finally, make a small copy to finish it off */
   2643    if (copy_size != 0) {
   2644       do_buffer_copy(batch, &src, &dst, copy_size / bs, 1, bs);
   2645    }
   2646 }
   2647