Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAG class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/SelectionDAG.h"
     15 #include "SDNodeOrdering.h"
     16 #include "SDNodeDbgValue.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Analysis/DebugInfo.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/GlobalAlias.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Assembly/Writer.h"
     26 #include "llvm/CallingConv.h"
     27 #include "llvm/CodeGen/MachineBasicBlock.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineModuleInfo.h"
     31 #include "llvm/CodeGen/PseudoSourceValue.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Target/TargetLowering.h"
     35 #include "llvm/Target/TargetSelectionDAGInfo.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetIntrinsicInfo.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/ManagedStatic.h"
     44 #include "llvm/Support/MathExtras.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Support/Mutex.h"
     47 #include "llvm/ADT/SetVector.h"
     48 #include "llvm/ADT/SmallPtrSet.h"
     49 #include "llvm/ADT/SmallSet.h"
     50 #include "llvm/ADT/SmallVector.h"
     51 #include "llvm/ADT/StringExtras.h"
     52 #include <algorithm>
     53 #include <cmath>
     54 using namespace llvm;
     55 
     56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
     57 /// specified members.
     58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
     59   SDVTList Res = {VTs, NumVTs};
     60   return Res;
     61 }
     62 
     63 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
     64   switch (VT.getSimpleVT().SimpleTy) {
     65   default: llvm_unreachable("Unknown FP format");
     66   case MVT::f32:     return &APFloat::IEEEsingle;
     67   case MVT::f64:     return &APFloat::IEEEdouble;
     68   case MVT::f80:     return &APFloat::x87DoubleExtended;
     69   case MVT::f128:    return &APFloat::IEEEquad;
     70   case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
     71   }
     72 }
     73 
     74 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
     75 
     76 //===----------------------------------------------------------------------===//
     77 //                              ConstantFPSDNode Class
     78 //===----------------------------------------------------------------------===//
     79 
     80 /// isExactlyValue - We don't rely on operator== working on double values, as
     81 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
     82 /// As such, this method can be used to do an exact bit-for-bit comparison of
     83 /// two floating point values.
     84 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
     85   return getValueAPF().bitwiseIsEqual(V);
     86 }
     87 
     88 bool ConstantFPSDNode::isValueValidForType(EVT VT,
     89                                            const APFloat& Val) {
     90   assert(VT.isFloatingPoint() && "Can only convert between FP types");
     91 
     92   // PPC long double cannot be converted to any other type.
     93   if (VT == MVT::ppcf128 ||
     94       &Val.getSemantics() == &APFloat::PPCDoubleDouble)
     95     return false;
     96 
     97   // convert modifies in place, so make a copy.
     98   APFloat Val2 = APFloat(Val);
     99   bool losesInfo;
    100   (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
    101                       &losesInfo);
    102   return !losesInfo;
    103 }
    104 
    105 //===----------------------------------------------------------------------===//
    106 //                              ISD Namespace
    107 //===----------------------------------------------------------------------===//
    108 
    109 /// isBuildVectorAllOnes - Return true if the specified node is a
    110 /// BUILD_VECTOR where all of the elements are ~0 or undef.
    111 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
    112   // Look through a bit convert.
    113   if (N->getOpcode() == ISD::BITCAST)
    114     N = N->getOperand(0).getNode();
    115 
    116   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
    117 
    118   unsigned i = 0, e = N->getNumOperands();
    119 
    120   // Skip over all of the undef values.
    121   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
    122     ++i;
    123 
    124   // Do not accept an all-undef vector.
    125   if (i == e) return false;
    126 
    127   // Do not accept build_vectors that aren't all constants or which have non-~0
    128   // elements.
    129   SDValue NotZero = N->getOperand(i);
    130   if (isa<ConstantSDNode>(NotZero)) {
    131     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
    132       return false;
    133   } else if (isa<ConstantFPSDNode>(NotZero)) {
    134     if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
    135                 bitcastToAPInt().isAllOnesValue())
    136       return false;
    137   } else
    138     return false;
    139 
    140   // Okay, we have at least one ~0 value, check to see if the rest match or are
    141   // undefs.
    142   for (++i; i != e; ++i)
    143     if (N->getOperand(i) != NotZero &&
    144         N->getOperand(i).getOpcode() != ISD::UNDEF)
    145       return false;
    146   return true;
    147 }
    148 
    149 
    150 /// isBuildVectorAllZeros - Return true if the specified node is a
    151 /// BUILD_VECTOR where all of the elements are 0 or undef.
    152 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
    153   // Look through a bit convert.
    154   if (N->getOpcode() == ISD::BITCAST)
    155     N = N->getOperand(0).getNode();
    156 
    157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
    158 
    159   unsigned i = 0, e = N->getNumOperands();
    160 
    161   // Skip over all of the undef values.
    162   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
    163     ++i;
    164 
    165   // Do not accept an all-undef vector.
    166   if (i == e) return false;
    167 
    168   // Do not accept build_vectors that aren't all constants or which have non-0
    169   // elements.
    170   SDValue Zero = N->getOperand(i);
    171   if (isa<ConstantSDNode>(Zero)) {
    172     if (!cast<ConstantSDNode>(Zero)->isNullValue())
    173       return false;
    174   } else if (isa<ConstantFPSDNode>(Zero)) {
    175     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
    176       return false;
    177   } else
    178     return false;
    179 
    180   // Okay, we have at least one 0 value, check to see if the rest match or are
    181   // undefs.
    182   for (++i; i != e; ++i)
    183     if (N->getOperand(i) != Zero &&
    184         N->getOperand(i).getOpcode() != ISD::UNDEF)
    185       return false;
    186   return true;
    187 }
    188 
    189 /// isScalarToVector - Return true if the specified node is a
    190 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
    191 /// element is not an undef.
    192 bool ISD::isScalarToVector(const SDNode *N) {
    193   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
    194     return true;
    195 
    196   if (N->getOpcode() != ISD::BUILD_VECTOR)
    197     return false;
    198   if (N->getOperand(0).getOpcode() == ISD::UNDEF)
    199     return false;
    200   unsigned NumElems = N->getNumOperands();
    201   if (NumElems == 1)
    202     return false;
    203   for (unsigned i = 1; i < NumElems; ++i) {
    204     SDValue V = N->getOperand(i);
    205     if (V.getOpcode() != ISD::UNDEF)
    206       return false;
    207   }
    208   return true;
    209 }
    210 
    211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
    212 /// when given the operation for (X op Y).
    213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
    214   // To perform this operation, we just need to swap the L and G bits of the
    215   // operation.
    216   unsigned OldL = (Operation >> 2) & 1;
    217   unsigned OldG = (Operation >> 1) & 1;
    218   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
    219                        (OldL << 1) |       // New G bit
    220                        (OldG << 2));       // New L bit.
    221 }
    222 
    223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
    224 /// 'op' is a valid SetCC operation.
    225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
    226   unsigned Operation = Op;
    227   if (isInteger)
    228     Operation ^= 7;   // Flip L, G, E bits, but not U.
    229   else
    230     Operation ^= 15;  // Flip all of the condition bits.
    231 
    232   if (Operation > ISD::SETTRUE2)
    233     Operation &= ~8;  // Don't let N and U bits get set.
    234 
    235   return ISD::CondCode(Operation);
    236 }
    237 
    238 
    239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
    240 /// signed operation and 2 if the result is an unsigned comparison.  Return zero
    241 /// if the operation does not depend on the sign of the input (setne and seteq).
    242 static int isSignedOp(ISD::CondCode Opcode) {
    243   switch (Opcode) {
    244   default: llvm_unreachable("Illegal integer setcc operation!");
    245   case ISD::SETEQ:
    246   case ISD::SETNE: return 0;
    247   case ISD::SETLT:
    248   case ISD::SETLE:
    249   case ISD::SETGT:
    250   case ISD::SETGE: return 1;
    251   case ISD::SETULT:
    252   case ISD::SETULE:
    253   case ISD::SETUGT:
    254   case ISD::SETUGE: return 2;
    255   }
    256 }
    257 
    258 /// getSetCCOrOperation - Return the result of a logical OR between different
    259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
    260 /// returns SETCC_INVALID if it is not possible to represent the resultant
    261 /// comparison.
    262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
    263                                        bool isInteger) {
    264   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    265     // Cannot fold a signed integer setcc with an unsigned integer setcc.
    266     return ISD::SETCC_INVALID;
    267 
    268   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
    269 
    270   // If the N and U bits get set then the resultant comparison DOES suddenly
    271   // care about orderedness, and is true when ordered.
    272   if (Op > ISD::SETTRUE2)
    273     Op &= ~16;     // Clear the U bit if the N bit is set.
    274 
    275   // Canonicalize illegal integer setcc's.
    276   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
    277     Op = ISD::SETNE;
    278 
    279   return ISD::CondCode(Op);
    280 }
    281 
    282 /// getSetCCAndOperation - Return the result of a logical AND between different
    283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
    284 /// function returns zero if it is not possible to represent the resultant
    285 /// comparison.
    286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
    287                                         bool isInteger) {
    288   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
    289     // Cannot fold a signed setcc with an unsigned setcc.
    290     return ISD::SETCC_INVALID;
    291 
    292   // Combine all of the condition bits.
    293   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
    294 
    295   // Canonicalize illegal integer setcc's.
    296   if (isInteger) {
    297     switch (Result) {
    298     default: break;
    299     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
    300     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
    301     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
    302     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
    303     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
    304     }
    305   }
    306 
    307   return Result;
    308 }
    309 
    310 //===----------------------------------------------------------------------===//
    311 //                           SDNode Profile Support
    312 //===----------------------------------------------------------------------===//
    313 
    314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
    315 ///
    316 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
    317   ID.AddInteger(OpC);
    318 }
    319 
    320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
    321 /// solely with their pointer.
    322 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
    323   ID.AddPointer(VTList.VTs);
    324 }
    325 
    326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
    327 ///
    328 static void AddNodeIDOperands(FoldingSetNodeID &ID,
    329                               const SDValue *Ops, unsigned NumOps) {
    330   for (; NumOps; --NumOps, ++Ops) {
    331     ID.AddPointer(Ops->getNode());
    332     ID.AddInteger(Ops->getResNo());
    333   }
    334 }
    335 
    336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
    337 ///
    338 static void AddNodeIDOperands(FoldingSetNodeID &ID,
    339                               const SDUse *Ops, unsigned NumOps) {
    340   for (; NumOps; --NumOps, ++Ops) {
    341     ID.AddPointer(Ops->getNode());
    342     ID.AddInteger(Ops->getResNo());
    343   }
    344 }
    345 
    346 static void AddNodeIDNode(FoldingSetNodeID &ID,
    347                           unsigned short OpC, SDVTList VTList,
    348                           const SDValue *OpList, unsigned N) {
    349   AddNodeIDOpcode(ID, OpC);
    350   AddNodeIDValueTypes(ID, VTList);
    351   AddNodeIDOperands(ID, OpList, N);
    352 }
    353 
    354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
    355 /// the NodeID data.
    356 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
    357   switch (N->getOpcode()) {
    358   case ISD::TargetExternalSymbol:
    359   case ISD::ExternalSymbol:
    360     llvm_unreachable("Should only be used on nodes with operands");
    361   default: break;  // Normal nodes don't need extra info.
    362   case ISD::TargetConstant:
    363   case ISD::Constant:
    364     ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
    365     break;
    366   case ISD::TargetConstantFP:
    367   case ISD::ConstantFP: {
    368     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
    369     break;
    370   }
    371   case ISD::TargetGlobalAddress:
    372   case ISD::GlobalAddress:
    373   case ISD::TargetGlobalTLSAddress:
    374   case ISD::GlobalTLSAddress: {
    375     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
    376     ID.AddPointer(GA->getGlobal());
    377     ID.AddInteger(GA->getOffset());
    378     ID.AddInteger(GA->getTargetFlags());
    379     break;
    380   }
    381   case ISD::BasicBlock:
    382     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
    383     break;
    384   case ISD::Register:
    385     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
    386     break;
    387 
    388   case ISD::SRCVALUE:
    389     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
    390     break;
    391   case ISD::FrameIndex:
    392   case ISD::TargetFrameIndex:
    393     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
    394     break;
    395   case ISD::JumpTable:
    396   case ISD::TargetJumpTable:
    397     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
    398     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
    399     break;
    400   case ISD::ConstantPool:
    401   case ISD::TargetConstantPool: {
    402     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
    403     ID.AddInteger(CP->getAlignment());
    404     ID.AddInteger(CP->getOffset());
    405     if (CP->isMachineConstantPoolEntry())
    406       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
    407     else
    408       ID.AddPointer(CP->getConstVal());
    409     ID.AddInteger(CP->getTargetFlags());
    410     break;
    411   }
    412   case ISD::LOAD: {
    413     const LoadSDNode *LD = cast<LoadSDNode>(N);
    414     ID.AddInteger(LD->getMemoryVT().getRawBits());
    415     ID.AddInteger(LD->getRawSubclassData());
    416     break;
    417   }
    418   case ISD::STORE: {
    419     const StoreSDNode *ST = cast<StoreSDNode>(N);
    420     ID.AddInteger(ST->getMemoryVT().getRawBits());
    421     ID.AddInteger(ST->getRawSubclassData());
    422     break;
    423   }
    424   case ISD::ATOMIC_CMP_SWAP:
    425   case ISD::ATOMIC_SWAP:
    426   case ISD::ATOMIC_LOAD_ADD:
    427   case ISD::ATOMIC_LOAD_SUB:
    428   case ISD::ATOMIC_LOAD_AND:
    429   case ISD::ATOMIC_LOAD_OR:
    430   case ISD::ATOMIC_LOAD_XOR:
    431   case ISD::ATOMIC_LOAD_NAND:
    432   case ISD::ATOMIC_LOAD_MIN:
    433   case ISD::ATOMIC_LOAD_MAX:
    434   case ISD::ATOMIC_LOAD_UMIN:
    435   case ISD::ATOMIC_LOAD_UMAX: {
    436     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
    437     ID.AddInteger(AT->getMemoryVT().getRawBits());
    438     ID.AddInteger(AT->getRawSubclassData());
    439     break;
    440   }
    441   case ISD::VECTOR_SHUFFLE: {
    442     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
    443     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
    444          i != e; ++i)
    445       ID.AddInteger(SVN->getMaskElt(i));
    446     break;
    447   }
    448   case ISD::TargetBlockAddress:
    449   case ISD::BlockAddress: {
    450     ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
    451     ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
    452     break;
    453   }
    454   } // end switch (N->getOpcode())
    455 }
    456 
    457 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
    458 /// data.
    459 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
    460   AddNodeIDOpcode(ID, N->getOpcode());
    461   // Add the return value info.
    462   AddNodeIDValueTypes(ID, N->getVTList());
    463   // Add the operand info.
    464   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
    465 
    466   // Handle SDNode leafs with special info.
    467   AddNodeIDCustom(ID, N);
    468 }
    469 
    470 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
    471 /// the CSE map that carries volatility, temporalness, indexing mode, and
    472 /// extension/truncation information.
    473 ///
    474 static inline unsigned
    475 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
    476                      bool isNonTemporal) {
    477   assert((ConvType & 3) == ConvType &&
    478          "ConvType may not require more than 2 bits!");
    479   assert((AM & 7) == AM &&
    480          "AM may not require more than 3 bits!");
    481   return ConvType |
    482          (AM << 2) |
    483          (isVolatile << 5) |
    484          (isNonTemporal << 6);
    485 }
    486 
    487 //===----------------------------------------------------------------------===//
    488 //                              SelectionDAG Class
    489 //===----------------------------------------------------------------------===//
    490 
    491 /// doNotCSE - Return true if CSE should not be performed for this node.
    492 static bool doNotCSE(SDNode *N) {
    493   if (N->getValueType(0) == MVT::Glue)
    494     return true; // Never CSE anything that produces a flag.
    495 
    496   switch (N->getOpcode()) {
    497   default: break;
    498   case ISD::HANDLENODE:
    499   case ISD::EH_LABEL:
    500     return true;   // Never CSE these nodes.
    501   }
    502 
    503   // Check that remaining values produced are not flags.
    504   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
    505     if (N->getValueType(i) == MVT::Glue)
    506       return true; // Never CSE anything that produces a flag.
    507 
    508   return false;
    509 }
    510 
    511 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
    512 /// SelectionDAG.
    513 void SelectionDAG::RemoveDeadNodes() {
    514   // Create a dummy node (which is not added to allnodes), that adds a reference
    515   // to the root node, preventing it from being deleted.
    516   HandleSDNode Dummy(getRoot());
    517 
    518   SmallVector<SDNode*, 128> DeadNodes;
    519 
    520   // Add all obviously-dead nodes to the DeadNodes worklist.
    521   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
    522     if (I->use_empty())
    523       DeadNodes.push_back(I);
    524 
    525   RemoveDeadNodes(DeadNodes);
    526 
    527   // If the root changed (e.g. it was a dead load, update the root).
    528   setRoot(Dummy.getValue());
    529 }
    530 
    531 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
    532 /// given list, and any nodes that become unreachable as a result.
    533 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
    534                                    DAGUpdateListener *UpdateListener) {
    535 
    536   // Process the worklist, deleting the nodes and adding their uses to the
    537   // worklist.
    538   while (!DeadNodes.empty()) {
    539     SDNode *N = DeadNodes.pop_back_val();
    540 
    541     if (UpdateListener)
    542       UpdateListener->NodeDeleted(N, 0);
    543 
    544     // Take the node out of the appropriate CSE map.
    545     RemoveNodeFromCSEMaps(N);
    546 
    547     // Next, brutally remove the operand list.  This is safe to do, as there are
    548     // no cycles in the graph.
    549     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
    550       SDUse &Use = *I++;
    551       SDNode *Operand = Use.getNode();
    552       Use.set(SDValue());
    553 
    554       // Now that we removed this operand, see if there are no uses of it left.
    555       if (Operand->use_empty())
    556         DeadNodes.push_back(Operand);
    557     }
    558 
    559     DeallocateNode(N);
    560   }
    561 }
    562 
    563 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
    564   SmallVector<SDNode*, 16> DeadNodes(1, N);
    565   RemoveDeadNodes(DeadNodes, UpdateListener);
    566 }
    567 
    568 void SelectionDAG::DeleteNode(SDNode *N) {
    569   // First take this out of the appropriate CSE map.
    570   RemoveNodeFromCSEMaps(N);
    571 
    572   // Finally, remove uses due to operands of this node, remove from the
    573   // AllNodes list, and delete the node.
    574   DeleteNodeNotInCSEMaps(N);
    575 }
    576 
    577 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
    578   assert(N != AllNodes.begin() && "Cannot delete the entry node!");
    579   assert(N->use_empty() && "Cannot delete a node that is not dead!");
    580 
    581   // Drop all of the operands and decrement used node's use counts.
    582   N->DropOperands();
    583 
    584   DeallocateNode(N);
    585 }
    586 
    587 void SelectionDAG::DeallocateNode(SDNode *N) {
    588   if (N->OperandsNeedDelete)
    589     delete[] N->OperandList;
    590 
    591   // Set the opcode to DELETED_NODE to help catch bugs when node
    592   // memory is reallocated.
    593   N->NodeType = ISD::DELETED_NODE;
    594 
    595   NodeAllocator.Deallocate(AllNodes.remove(N));
    596 
    597   // Remove the ordering of this node.
    598   Ordering->remove(N);
    599 
    600   // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
    601   ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
    602   for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
    603     DbgVals[i]->setIsInvalidated();
    604 }
    605 
    606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
    607 /// correspond to it.  This is useful when we're about to delete or repurpose
    608 /// the node.  We don't want future request for structurally identical nodes
    609 /// to return N anymore.
    610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
    611   bool Erased = false;
    612   switch (N->getOpcode()) {
    613   case ISD::HANDLENODE: return false;  // noop.
    614   case ISD::CONDCODE:
    615     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
    616            "Cond code doesn't exist!");
    617     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
    618     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
    619     break;
    620   case ISD::ExternalSymbol:
    621     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
    622     break;
    623   case ISD::TargetExternalSymbol: {
    624     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
    625     Erased = TargetExternalSymbols.erase(
    626                std::pair<std::string,unsigned char>(ESN->getSymbol(),
    627                                                     ESN->getTargetFlags()));
    628     break;
    629   }
    630   case ISD::VALUETYPE: {
    631     EVT VT = cast<VTSDNode>(N)->getVT();
    632     if (VT.isExtended()) {
    633       Erased = ExtendedValueTypeNodes.erase(VT);
    634     } else {
    635       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
    636       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
    637     }
    638     break;
    639   }
    640   default:
    641     // Remove it from the CSE Map.
    642     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
    643     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
    644     Erased = CSEMap.RemoveNode(N);
    645     break;
    646   }
    647 #ifndef NDEBUG
    648   // Verify that the node was actually in one of the CSE maps, unless it has a
    649   // flag result (which cannot be CSE'd) or is one of the special cases that are
    650   // not subject to CSE.
    651   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
    652       !N->isMachineOpcode() && !doNotCSE(N)) {
    653     N->dump(this);
    654     dbgs() << "\n";
    655     llvm_unreachable("Node is not in map!");
    656   }
    657 #endif
    658   return Erased;
    659 }
    660 
    661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
    662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
    663 /// node already exists, in which case transfer all its users to the existing
    664 /// node. This transfer can potentially trigger recursive merging.
    665 ///
    666 void
    667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
    668                                        DAGUpdateListener *UpdateListener) {
    669   // For node types that aren't CSE'd, just act as if no identical node
    670   // already exists.
    671   if (!doNotCSE(N)) {
    672     SDNode *Existing = CSEMap.GetOrInsertNode(N);
    673     if (Existing != N) {
    674       // If there was already an existing matching node, use ReplaceAllUsesWith
    675       // to replace the dead one with the existing one.  This can cause
    676       // recursive merging of other unrelated nodes down the line.
    677       ReplaceAllUsesWith(N, Existing, UpdateListener);
    678 
    679       // N is now dead.  Inform the listener if it exists and delete it.
    680       if (UpdateListener)
    681         UpdateListener->NodeDeleted(N, Existing);
    682       DeleteNodeNotInCSEMaps(N);
    683       return;
    684     }
    685   }
    686 
    687   // If the node doesn't already exist, we updated it.  Inform a listener if
    688   // it exists.
    689   if (UpdateListener)
    690     UpdateListener->NodeUpdated(N);
    691 }
    692 
    693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
    694 /// were replaced with those specified.  If this node is never memoized,
    695 /// return null, otherwise return a pointer to the slot it would take.  If a
    696 /// node already exists with these operands, the slot will be non-null.
    697 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
    698                                            void *&InsertPos) {
    699   if (doNotCSE(N))
    700     return 0;
    701 
    702   SDValue Ops[] = { Op };
    703   FoldingSetNodeID ID;
    704   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
    705   AddNodeIDCustom(ID, N);
    706   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
    707   return Node;
    708 }
    709 
    710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
    711 /// were replaced with those specified.  If this node is never memoized,
    712 /// return null, otherwise return a pointer to the slot it would take.  If a
    713 /// node already exists with these operands, the slot will be non-null.
    714 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
    715                                            SDValue Op1, SDValue Op2,
    716                                            void *&InsertPos) {
    717   if (doNotCSE(N))
    718     return 0;
    719 
    720   SDValue Ops[] = { Op1, Op2 };
    721   FoldingSetNodeID ID;
    722   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
    723   AddNodeIDCustom(ID, N);
    724   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
    725   return Node;
    726 }
    727 
    728 
    729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
    730 /// were replaced with those specified.  If this node is never memoized,
    731 /// return null, otherwise return a pointer to the slot it would take.  If a
    732 /// node already exists with these operands, the slot will be non-null.
    733 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
    734                                            const SDValue *Ops,unsigned NumOps,
    735                                            void *&InsertPos) {
    736   if (doNotCSE(N))
    737     return 0;
    738 
    739   FoldingSetNodeID ID;
    740   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
    741   AddNodeIDCustom(ID, N);
    742   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
    743   return Node;
    744 }
    745 
    746 #ifndef NDEBUG
    747 /// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
    748 static void VerifyNodeCommon(SDNode *N) {
    749   switch (N->getOpcode()) {
    750   default:
    751     break;
    752   case ISD::BUILD_PAIR: {
    753     EVT VT = N->getValueType(0);
    754     assert(N->getNumValues() == 1 && "Too many results!");
    755     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
    756            "Wrong return type!");
    757     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
    758     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
    759            "Mismatched operand types!");
    760     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
    761            "Wrong operand type!");
    762     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
    763            "Wrong return type size");
    764     break;
    765   }
    766   case ISD::BUILD_VECTOR: {
    767     assert(N->getNumValues() == 1 && "Too many results!");
    768     assert(N->getValueType(0).isVector() && "Wrong return type!");
    769     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
    770            "Wrong number of operands!");
    771     EVT EltVT = N->getValueType(0).getVectorElementType();
    772     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
    773       assert((I->getValueType() == EltVT ||
    774              (EltVT.isInteger() && I->getValueType().isInteger() &&
    775               EltVT.bitsLE(I->getValueType()))) &&
    776             "Wrong operand type!");
    777     break;
    778   }
    779   }
    780 }
    781 
    782 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
    783 static void VerifySDNode(SDNode *N) {
    784   // The SDNode allocators cannot be used to allocate nodes with fields that are
    785   // not present in an SDNode!
    786   assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
    787   assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
    788   assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
    789   assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
    790   assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
    791   assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
    792   assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
    793   assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
    794   assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
    795   assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
    796   assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
    797   assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
    798   assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
    799   assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
    800   assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
    801   assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
    802   assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
    803   assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
    804   assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
    805 
    806   VerifyNodeCommon(N);
    807 }
    808 
    809 /// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
    810 /// invalid.
    811 static void VerifyMachineNode(SDNode *N) {
    812   // The MachineNode allocators cannot be used to allocate nodes with fields
    813   // that are not present in a MachineNode!
    814   // Currently there are no such nodes.
    815 
    816   VerifyNodeCommon(N);
    817 }
    818 #endif // NDEBUG
    819 
    820 /// getEVTAlignment - Compute the default alignment value for the
    821 /// given type.
    822 ///
    823 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
    824   Type *Ty = VT == MVT::iPTR ?
    825                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
    826                    VT.getTypeForEVT(*getContext());
    827 
    828   return TLI.getTargetData()->getABITypeAlignment(Ty);
    829 }
    830 
    831 // EntryNode could meaningfully have debug info if we can find it...
    832 SelectionDAG::SelectionDAG(const TargetMachine &tm)
    833   : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
    834     EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
    835     Root(getEntryNode()), Ordering(0) {
    836   AllNodes.push_back(&EntryNode);
    837   Ordering = new SDNodeOrdering();
    838   DbgInfo = new SDDbgInfo();
    839 }
    840 
    841 void SelectionDAG::init(MachineFunction &mf) {
    842   MF = &mf;
    843   Context = &mf.getFunction()->getContext();
    844 }
    845 
    846 SelectionDAG::~SelectionDAG() {
    847   allnodes_clear();
    848   delete Ordering;
    849   delete DbgInfo;
    850 }
    851 
    852 void SelectionDAG::allnodes_clear() {
    853   assert(&*AllNodes.begin() == &EntryNode);
    854   AllNodes.remove(AllNodes.begin());
    855   while (!AllNodes.empty())
    856     DeallocateNode(AllNodes.begin());
    857 }
    858 
    859 void SelectionDAG::clear() {
    860   allnodes_clear();
    861   OperandAllocator.Reset();
    862   CSEMap.clear();
    863 
    864   ExtendedValueTypeNodes.clear();
    865   ExternalSymbols.clear();
    866   TargetExternalSymbols.clear();
    867   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
    868             static_cast<CondCodeSDNode*>(0));
    869   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
    870             static_cast<SDNode*>(0));
    871 
    872   EntryNode.UseList = 0;
    873   AllNodes.push_back(&EntryNode);
    874   Root = getEntryNode();
    875   Ordering->clear();
    876   DbgInfo->clear();
    877 }
    878 
    879 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
    880   return VT.bitsGT(Op.getValueType()) ?
    881     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
    882     getNode(ISD::TRUNCATE, DL, VT, Op);
    883 }
    884 
    885 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
    886   return VT.bitsGT(Op.getValueType()) ?
    887     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
    888     getNode(ISD::TRUNCATE, DL, VT, Op);
    889 }
    890 
    891 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
    892   assert(!VT.isVector() &&
    893          "getZeroExtendInReg should use the vector element type instead of "
    894          "the vector type!");
    895   if (Op.getValueType() == VT) return Op;
    896   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
    897   APInt Imm = APInt::getLowBitsSet(BitWidth,
    898                                    VT.getSizeInBits());
    899   return getNode(ISD::AND, DL, Op.getValueType(), Op,
    900                  getConstant(Imm, Op.getValueType()));
    901 }
    902 
    903 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
    904 ///
    905 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
    906   EVT EltVT = VT.getScalarType();
    907   SDValue NegOne =
    908     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
    909   return getNode(ISD::XOR, DL, VT, Val, NegOne);
    910 }
    911 
    912 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
    913   EVT EltVT = VT.getScalarType();
    914   assert((EltVT.getSizeInBits() >= 64 ||
    915          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
    916          "getConstant with a uint64_t value that doesn't fit in the type!");
    917   return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
    918 }
    919 
    920 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
    921   return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
    922 }
    923 
    924 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
    925   assert(VT.isInteger() && "Cannot create FP integer constant!");
    926 
    927   EVT EltVT = VT.getScalarType();
    928   assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
    929          "APInt size does not match type size!");
    930 
    931   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
    932   FoldingSetNodeID ID;
    933   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
    934   ID.AddPointer(&Val);
    935   void *IP = 0;
    936   SDNode *N = NULL;
    937   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    938     if (!VT.isVector())
    939       return SDValue(N, 0);
    940 
    941   if (!N) {
    942     N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
    943     CSEMap.InsertNode(N, IP);
    944     AllNodes.push_back(N);
    945   }
    946 
    947   SDValue Result(N, 0);
    948   if (VT.isVector()) {
    949     SmallVector<SDValue, 8> Ops;
    950     Ops.assign(VT.getVectorNumElements(), Result);
    951     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
    952   }
    953   return Result;
    954 }
    955 
    956 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
    957   return getConstant(Val, TLI.getPointerTy(), isTarget);
    958 }
    959 
    960 
    961 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
    962   return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
    963 }
    964 
    965 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
    966   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
    967 
    968   EVT EltVT = VT.getScalarType();
    969 
    970   // Do the map lookup using the actual bit pattern for the floating point
    971   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
    972   // we don't have issues with SNANs.
    973   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
    974   FoldingSetNodeID ID;
    975   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
    976   ID.AddPointer(&V);
    977   void *IP = 0;
    978   SDNode *N = NULL;
    979   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
    980     if (!VT.isVector())
    981       return SDValue(N, 0);
    982 
    983   if (!N) {
    984     N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
    985     CSEMap.InsertNode(N, IP);
    986     AllNodes.push_back(N);
    987   }
    988 
    989   SDValue Result(N, 0);
    990   if (VT.isVector()) {
    991     SmallVector<SDValue, 8> Ops;
    992     Ops.assign(VT.getVectorNumElements(), Result);
    993     // FIXME DebugLoc info might be appropriate here
    994     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
    995   }
    996   return Result;
    997 }
    998 
    999 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
   1000   EVT EltVT = VT.getScalarType();
   1001   if (EltVT==MVT::f32)
   1002     return getConstantFP(APFloat((float)Val), VT, isTarget);
   1003   else if (EltVT==MVT::f64)
   1004     return getConstantFP(APFloat(Val), VT, isTarget);
   1005   else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
   1006     bool ignored;
   1007     APFloat apf = APFloat(Val);
   1008     apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
   1009                 &ignored);
   1010     return getConstantFP(apf, VT, isTarget);
   1011   } else {
   1012     assert(0 && "Unsupported type in getConstantFP");
   1013     return SDValue();
   1014   }
   1015 }
   1016 
   1017 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
   1018                                        EVT VT, int64_t Offset,
   1019                                        bool isTargetGA,
   1020                                        unsigned char TargetFlags) {
   1021   assert((TargetFlags == 0 || isTargetGA) &&
   1022          "Cannot set target flags on target-independent globals");
   1023 
   1024   // Truncate (with sign-extension) the offset value to the pointer size.
   1025   EVT PTy = TLI.getPointerTy();
   1026   unsigned BitWidth = PTy.getSizeInBits();
   1027   if (BitWidth < 64)
   1028     Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
   1029 
   1030   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
   1031   if (!GVar) {
   1032     // If GV is an alias then use the aliasee for determining thread-localness.
   1033     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   1034       GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
   1035   }
   1036 
   1037   unsigned Opc;
   1038   if (GVar && GVar->isThreadLocal())
   1039     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
   1040   else
   1041     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
   1042 
   1043   FoldingSetNodeID ID;
   1044   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1045   ID.AddPointer(GV);
   1046   ID.AddInteger(Offset);
   1047   ID.AddInteger(TargetFlags);
   1048   void *IP = 0;
   1049   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1050     return SDValue(E, 0);
   1051 
   1052   SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
   1053                                                       Offset, TargetFlags);
   1054   CSEMap.InsertNode(N, IP);
   1055   AllNodes.push_back(N);
   1056   return SDValue(N, 0);
   1057 }
   1058 
   1059 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
   1060   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
   1061   FoldingSetNodeID ID;
   1062   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1063   ID.AddInteger(FI);
   1064   void *IP = 0;
   1065   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1066     return SDValue(E, 0);
   1067 
   1068   SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
   1069   CSEMap.InsertNode(N, IP);
   1070   AllNodes.push_back(N);
   1071   return SDValue(N, 0);
   1072 }
   1073 
   1074 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
   1075                                    unsigned char TargetFlags) {
   1076   assert((TargetFlags == 0 || isTarget) &&
   1077          "Cannot set target flags on target-independent jump tables");
   1078   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
   1079   FoldingSetNodeID ID;
   1080   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1081   ID.AddInteger(JTI);
   1082   ID.AddInteger(TargetFlags);
   1083   void *IP = 0;
   1084   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1085     return SDValue(E, 0);
   1086 
   1087   SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
   1088                                                   TargetFlags);
   1089   CSEMap.InsertNode(N, IP);
   1090   AllNodes.push_back(N);
   1091   return SDValue(N, 0);
   1092 }
   1093 
   1094 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
   1095                                       unsigned Alignment, int Offset,
   1096                                       bool isTarget,
   1097                                       unsigned char TargetFlags) {
   1098   assert((TargetFlags == 0 || isTarget) &&
   1099          "Cannot set target flags on target-independent globals");
   1100   if (Alignment == 0)
   1101     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
   1102   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
   1103   FoldingSetNodeID ID;
   1104   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1105   ID.AddInteger(Alignment);
   1106   ID.AddInteger(Offset);
   1107   ID.AddPointer(C);
   1108   ID.AddInteger(TargetFlags);
   1109   void *IP = 0;
   1110   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1111     return SDValue(E, 0);
   1112 
   1113   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
   1114                                                      Alignment, TargetFlags);
   1115   CSEMap.InsertNode(N, IP);
   1116   AllNodes.push_back(N);
   1117   return SDValue(N, 0);
   1118 }
   1119 
   1120 
   1121 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
   1122                                       unsigned Alignment, int Offset,
   1123                                       bool isTarget,
   1124                                       unsigned char TargetFlags) {
   1125   assert((TargetFlags == 0 || isTarget) &&
   1126          "Cannot set target flags on target-independent globals");
   1127   if (Alignment == 0)
   1128     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
   1129   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
   1130   FoldingSetNodeID ID;
   1131   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1132   ID.AddInteger(Alignment);
   1133   ID.AddInteger(Offset);
   1134   C->AddSelectionDAGCSEId(ID);
   1135   ID.AddInteger(TargetFlags);
   1136   void *IP = 0;
   1137   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1138     return SDValue(E, 0);
   1139 
   1140   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
   1141                                                      Alignment, TargetFlags);
   1142   CSEMap.InsertNode(N, IP);
   1143   AllNodes.push_back(N);
   1144   return SDValue(N, 0);
   1145 }
   1146 
   1147 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
   1148   FoldingSetNodeID ID;
   1149   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
   1150   ID.AddPointer(MBB);
   1151   void *IP = 0;
   1152   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1153     return SDValue(E, 0);
   1154 
   1155   SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
   1156   CSEMap.InsertNode(N, IP);
   1157   AllNodes.push_back(N);
   1158   return SDValue(N, 0);
   1159 }
   1160 
   1161 SDValue SelectionDAG::getValueType(EVT VT) {
   1162   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
   1163       ValueTypeNodes.size())
   1164     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
   1165 
   1166   SDNode *&N = VT.isExtended() ?
   1167     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
   1168 
   1169   if (N) return SDValue(N, 0);
   1170   N = new (NodeAllocator) VTSDNode(VT);
   1171   AllNodes.push_back(N);
   1172   return SDValue(N, 0);
   1173 }
   1174 
   1175 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
   1176   SDNode *&N = ExternalSymbols[Sym];
   1177   if (N) return SDValue(N, 0);
   1178   N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
   1179   AllNodes.push_back(N);
   1180   return SDValue(N, 0);
   1181 }
   1182 
   1183 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
   1184                                               unsigned char TargetFlags) {
   1185   SDNode *&N =
   1186     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
   1187                                                                TargetFlags)];
   1188   if (N) return SDValue(N, 0);
   1189   N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
   1190   AllNodes.push_back(N);
   1191   return SDValue(N, 0);
   1192 }
   1193 
   1194 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
   1195   if ((unsigned)Cond >= CondCodeNodes.size())
   1196     CondCodeNodes.resize(Cond+1);
   1197 
   1198   if (CondCodeNodes[Cond] == 0) {
   1199     CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
   1200     CondCodeNodes[Cond] = N;
   1201     AllNodes.push_back(N);
   1202   }
   1203 
   1204   return SDValue(CondCodeNodes[Cond], 0);
   1205 }
   1206 
   1207 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
   1208 // the shuffle mask M that point at N1 to point at N2, and indices that point
   1209 // N2 to point at N1.
   1210 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
   1211   std::swap(N1, N2);
   1212   int NElts = M.size();
   1213   for (int i = 0; i != NElts; ++i) {
   1214     if (M[i] >= NElts)
   1215       M[i] -= NElts;
   1216     else if (M[i] >= 0)
   1217       M[i] += NElts;
   1218   }
   1219 }
   1220 
   1221 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
   1222                                        SDValue N2, const int *Mask) {
   1223   assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
   1224   assert(VT.isVector() && N1.getValueType().isVector() &&
   1225          "Vector Shuffle VTs must be a vectors");
   1226   assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
   1227          && "Vector Shuffle VTs must have same element type");
   1228 
   1229   // Canonicalize shuffle undef, undef -> undef
   1230   if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
   1231     return getUNDEF(VT);
   1232 
   1233   // Validate that all indices in Mask are within the range of the elements
   1234   // input to the shuffle.
   1235   unsigned NElts = VT.getVectorNumElements();
   1236   SmallVector<int, 8> MaskVec;
   1237   for (unsigned i = 0; i != NElts; ++i) {
   1238     assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
   1239     MaskVec.push_back(Mask[i]);
   1240   }
   1241 
   1242   // Canonicalize shuffle v, v -> v, undef
   1243   if (N1 == N2) {
   1244     N2 = getUNDEF(VT);
   1245     for (unsigned i = 0; i != NElts; ++i)
   1246       if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
   1247   }
   1248 
   1249   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
   1250   if (N1.getOpcode() == ISD::UNDEF)
   1251     commuteShuffle(N1, N2, MaskVec);
   1252 
   1253   // Canonicalize all index into lhs, -> shuffle lhs, undef
   1254   // Canonicalize all index into rhs, -> shuffle rhs, undef
   1255   bool AllLHS = true, AllRHS = true;
   1256   bool N2Undef = N2.getOpcode() == ISD::UNDEF;
   1257   for (unsigned i = 0; i != NElts; ++i) {
   1258     if (MaskVec[i] >= (int)NElts) {
   1259       if (N2Undef)
   1260         MaskVec[i] = -1;
   1261       else
   1262         AllLHS = false;
   1263     } else if (MaskVec[i] >= 0) {
   1264       AllRHS = false;
   1265     }
   1266   }
   1267   if (AllLHS && AllRHS)
   1268     return getUNDEF(VT);
   1269   if (AllLHS && !N2Undef)
   1270     N2 = getUNDEF(VT);
   1271   if (AllRHS) {
   1272     N1 = getUNDEF(VT);
   1273     commuteShuffle(N1, N2, MaskVec);
   1274   }
   1275 
   1276   // If Identity shuffle, or all shuffle in to undef, return that node.
   1277   bool AllUndef = true;
   1278   bool Identity = true;
   1279   for (unsigned i = 0; i != NElts; ++i) {
   1280     if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
   1281     if (MaskVec[i] >= 0) AllUndef = false;
   1282   }
   1283   if (Identity && NElts == N1.getValueType().getVectorNumElements())
   1284     return N1;
   1285   if (AllUndef)
   1286     return getUNDEF(VT);
   1287 
   1288   FoldingSetNodeID ID;
   1289   SDValue Ops[2] = { N1, N2 };
   1290   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
   1291   for (unsigned i = 0; i != NElts; ++i)
   1292     ID.AddInteger(MaskVec[i]);
   1293 
   1294   void* IP = 0;
   1295   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1296     return SDValue(E, 0);
   1297 
   1298   // Allocate the mask array for the node out of the BumpPtrAllocator, since
   1299   // SDNode doesn't have access to it.  This memory will be "leaked" when
   1300   // the node is deallocated, but recovered when the NodeAllocator is released.
   1301   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
   1302   memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
   1303 
   1304   ShuffleVectorSDNode *N =
   1305     new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
   1306   CSEMap.InsertNode(N, IP);
   1307   AllNodes.push_back(N);
   1308   return SDValue(N, 0);
   1309 }
   1310 
   1311 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
   1312                                        SDValue Val, SDValue DTy,
   1313                                        SDValue STy, SDValue Rnd, SDValue Sat,
   1314                                        ISD::CvtCode Code) {
   1315   // If the src and dest types are the same and the conversion is between
   1316   // integer types of the same sign or two floats, no conversion is necessary.
   1317   if (DTy == STy &&
   1318       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
   1319     return Val;
   1320 
   1321   FoldingSetNodeID ID;
   1322   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
   1323   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
   1324   void* IP = 0;
   1325   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1326     return SDValue(E, 0);
   1327 
   1328   CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
   1329                                                            Code);
   1330   CSEMap.InsertNode(N, IP);
   1331   AllNodes.push_back(N);
   1332   return SDValue(N, 0);
   1333 }
   1334 
   1335 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
   1336   FoldingSetNodeID ID;
   1337   AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
   1338   ID.AddInteger(RegNo);
   1339   void *IP = 0;
   1340   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1341     return SDValue(E, 0);
   1342 
   1343   SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
   1344   CSEMap.InsertNode(N, IP);
   1345   AllNodes.push_back(N);
   1346   return SDValue(N, 0);
   1347 }
   1348 
   1349 SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
   1350   FoldingSetNodeID ID;
   1351   SDValue Ops[] = { Root };
   1352   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
   1353   ID.AddPointer(Label);
   1354   void *IP = 0;
   1355   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1356     return SDValue(E, 0);
   1357 
   1358   SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
   1359   CSEMap.InsertNode(N, IP);
   1360   AllNodes.push_back(N);
   1361   return SDValue(N, 0);
   1362 }
   1363 
   1364 
   1365 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
   1366                                       bool isTarget,
   1367                                       unsigned char TargetFlags) {
   1368   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
   1369 
   1370   FoldingSetNodeID ID;
   1371   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
   1372   ID.AddPointer(BA);
   1373   ID.AddInteger(TargetFlags);
   1374   void *IP = 0;
   1375   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1376     return SDValue(E, 0);
   1377 
   1378   SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
   1379   CSEMap.InsertNode(N, IP);
   1380   AllNodes.push_back(N);
   1381   return SDValue(N, 0);
   1382 }
   1383 
   1384 SDValue SelectionDAG::getSrcValue(const Value *V) {
   1385   assert((!V || V->getType()->isPointerTy()) &&
   1386          "SrcValue is not a pointer?");
   1387 
   1388   FoldingSetNodeID ID;
   1389   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
   1390   ID.AddPointer(V);
   1391 
   1392   void *IP = 0;
   1393   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1394     return SDValue(E, 0);
   1395 
   1396   SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
   1397   CSEMap.InsertNode(N, IP);
   1398   AllNodes.push_back(N);
   1399   return SDValue(N, 0);
   1400 }
   1401 
   1402 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
   1403 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
   1404   FoldingSetNodeID ID;
   1405   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
   1406   ID.AddPointer(MD);
   1407 
   1408   void *IP = 0;
   1409   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   1410     return SDValue(E, 0);
   1411 
   1412   SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
   1413   CSEMap.InsertNode(N, IP);
   1414   AllNodes.push_back(N);
   1415   return SDValue(N, 0);
   1416 }
   1417 
   1418 
   1419 /// getShiftAmountOperand - Return the specified value casted to
   1420 /// the target's desired shift amount type.
   1421 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
   1422   EVT OpTy = Op.getValueType();
   1423   MVT ShTy = TLI.getShiftAmountTy(LHSTy);
   1424   if (OpTy == ShTy || OpTy.isVector()) return Op;
   1425 
   1426   ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
   1427   return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
   1428 }
   1429 
   1430 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
   1431 /// specified value type.
   1432 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
   1433   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
   1434   unsigned ByteSize = VT.getStoreSize();
   1435   Type *Ty = VT.getTypeForEVT(*getContext());
   1436   unsigned StackAlign =
   1437   std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
   1438 
   1439   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
   1440   return getFrameIndex(FrameIdx, TLI.getPointerTy());
   1441 }
   1442 
   1443 /// CreateStackTemporary - Create a stack temporary suitable for holding
   1444 /// either of the specified value types.
   1445 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
   1446   unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
   1447                             VT2.getStoreSizeInBits())/8;
   1448   Type *Ty1 = VT1.getTypeForEVT(*getContext());
   1449   Type *Ty2 = VT2.getTypeForEVT(*getContext());
   1450   const TargetData *TD = TLI.getTargetData();
   1451   unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
   1452                             TD->getPrefTypeAlignment(Ty2));
   1453 
   1454   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
   1455   int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
   1456   return getFrameIndex(FrameIdx, TLI.getPointerTy());
   1457 }
   1458 
   1459 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
   1460                                 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
   1461   // These setcc operations always fold.
   1462   switch (Cond) {
   1463   default: break;
   1464   case ISD::SETFALSE:
   1465   case ISD::SETFALSE2: return getConstant(0, VT);
   1466   case ISD::SETTRUE:
   1467   case ISD::SETTRUE2:  return getConstant(1, VT);
   1468 
   1469   case ISD::SETOEQ:
   1470   case ISD::SETOGT:
   1471   case ISD::SETOGE:
   1472   case ISD::SETOLT:
   1473   case ISD::SETOLE:
   1474   case ISD::SETONE:
   1475   case ISD::SETO:
   1476   case ISD::SETUO:
   1477   case ISD::SETUEQ:
   1478   case ISD::SETUNE:
   1479     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
   1480     break;
   1481   }
   1482 
   1483   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
   1484     const APInt &C2 = N2C->getAPIntValue();
   1485     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1486       const APInt &C1 = N1C->getAPIntValue();
   1487 
   1488       switch (Cond) {
   1489       default: llvm_unreachable("Unknown integer setcc!");
   1490       case ISD::SETEQ:  return getConstant(C1 == C2, VT);
   1491       case ISD::SETNE:  return getConstant(C1 != C2, VT);
   1492       case ISD::SETULT: return getConstant(C1.ult(C2), VT);
   1493       case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
   1494       case ISD::SETULE: return getConstant(C1.ule(C2), VT);
   1495       case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
   1496       case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
   1497       case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
   1498       case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
   1499       case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
   1500       }
   1501     }
   1502   }
   1503   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1504     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
   1505       // No compile time operations on this type yet.
   1506       if (N1C->getValueType(0) == MVT::ppcf128)
   1507         return SDValue();
   1508 
   1509       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
   1510       switch (Cond) {
   1511       default: break;
   1512       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
   1513                           return getUNDEF(VT);
   1514                         // fall through
   1515       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
   1516       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
   1517                           return getUNDEF(VT);
   1518                         // fall through
   1519       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
   1520                                            R==APFloat::cmpLessThan, VT);
   1521       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
   1522                           return getUNDEF(VT);
   1523                         // fall through
   1524       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
   1525       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
   1526                           return getUNDEF(VT);
   1527                         // fall through
   1528       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
   1529       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
   1530                           return getUNDEF(VT);
   1531                         // fall through
   1532       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
   1533                                            R==APFloat::cmpEqual, VT);
   1534       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
   1535                           return getUNDEF(VT);
   1536                         // fall through
   1537       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
   1538                                            R==APFloat::cmpEqual, VT);
   1539       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
   1540       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
   1541       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
   1542                                            R==APFloat::cmpEqual, VT);
   1543       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
   1544       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
   1545                                            R==APFloat::cmpLessThan, VT);
   1546       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
   1547                                            R==APFloat::cmpUnordered, VT);
   1548       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
   1549       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
   1550       }
   1551     } else {
   1552       // Ensure that the constant occurs on the RHS.
   1553       return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
   1554     }
   1555   }
   1556 
   1557   // Could not fold it.
   1558   return SDValue();
   1559 }
   1560 
   1561 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
   1562 /// use this predicate to simplify operations downstream.
   1563 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
   1564   // This predicate is not safe for vector operations.
   1565   if (Op.getValueType().isVector())
   1566     return false;
   1567 
   1568   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
   1569   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
   1570 }
   1571 
   1572 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
   1573 /// this predicate to simplify operations downstream.  Mask is known to be zero
   1574 /// for bits that V cannot have.
   1575 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
   1576                                      unsigned Depth) const {
   1577   APInt KnownZero, KnownOne;
   1578   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
   1579   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1580   return (KnownZero & Mask) == Mask;
   1581 }
   1582 
   1583 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
   1584 /// known to be either zero or one and return them in the KnownZero/KnownOne
   1585 /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
   1586 /// processing.
   1587 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
   1588                                      APInt &KnownZero, APInt &KnownOne,
   1589                                      unsigned Depth) const {
   1590   unsigned BitWidth = Mask.getBitWidth();
   1591   assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
   1592          "Mask size mismatches value type size!");
   1593 
   1594   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
   1595   if (Depth == 6 || Mask == 0)
   1596     return;  // Limit search depth.
   1597 
   1598   APInt KnownZero2, KnownOne2;
   1599 
   1600   switch (Op.getOpcode()) {
   1601   case ISD::Constant:
   1602     // We know all of the bits for a constant!
   1603     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
   1604     KnownZero = ~KnownOne & Mask;
   1605     return;
   1606   case ISD::AND:
   1607     // If either the LHS or the RHS are Zero, the result is zero.
   1608     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
   1609     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
   1610                       KnownZero2, KnownOne2, Depth+1);
   1611     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1612     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1613 
   1614     // Output known-1 bits are only known if set in both the LHS & RHS.
   1615     KnownOne &= KnownOne2;
   1616     // Output known-0 are known to be clear if zero in either the LHS | RHS.
   1617     KnownZero |= KnownZero2;
   1618     return;
   1619   case ISD::OR:
   1620     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
   1621     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
   1622                       KnownZero2, KnownOne2, Depth+1);
   1623     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1624     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1625 
   1626     // Output known-0 bits are only known if clear in both the LHS & RHS.
   1627     KnownZero &= KnownZero2;
   1628     // Output known-1 are known to be set if set in either the LHS | RHS.
   1629     KnownOne |= KnownOne2;
   1630     return;
   1631   case ISD::XOR: {
   1632     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
   1633     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
   1634     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1635     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1636 
   1637     // Output known-0 bits are known if clear or set in both the LHS & RHS.
   1638     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
   1639     // Output known-1 are known to be set if set in only one of the LHS, RHS.
   1640     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
   1641     KnownZero = KnownZeroOut;
   1642     return;
   1643   }
   1644   case ISD::MUL: {
   1645     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
   1646     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
   1647     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
   1648     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1649     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1650 
   1651     // If low bits are zero in either operand, output low known-0 bits.
   1652     // Also compute a conserative estimate for high known-0 bits.
   1653     // More trickiness is possible, but this is sufficient for the
   1654     // interesting case of alignment computation.
   1655     KnownOne.clearAllBits();
   1656     unsigned TrailZ = KnownZero.countTrailingOnes() +
   1657                       KnownZero2.countTrailingOnes();
   1658     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
   1659                                KnownZero2.countLeadingOnes(),
   1660                                BitWidth) - BitWidth;
   1661 
   1662     TrailZ = std::min(TrailZ, BitWidth);
   1663     LeadZ = std::min(LeadZ, BitWidth);
   1664     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
   1665                 APInt::getHighBitsSet(BitWidth, LeadZ);
   1666     KnownZero &= Mask;
   1667     return;
   1668   }
   1669   case ISD::UDIV: {
   1670     // For the purposes of computing leading zeros we can conservatively
   1671     // treat a udiv as a logical right shift by the power of 2 known to
   1672     // be less than the denominator.
   1673     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
   1674     ComputeMaskedBits(Op.getOperand(0),
   1675                       AllOnes, KnownZero2, KnownOne2, Depth+1);
   1676     unsigned LeadZ = KnownZero2.countLeadingOnes();
   1677 
   1678     KnownOne2.clearAllBits();
   1679     KnownZero2.clearAllBits();
   1680     ComputeMaskedBits(Op.getOperand(1),
   1681                       AllOnes, KnownZero2, KnownOne2, Depth+1);
   1682     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
   1683     if (RHSUnknownLeadingOnes != BitWidth)
   1684       LeadZ = std::min(BitWidth,
   1685                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
   1686 
   1687     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
   1688     return;
   1689   }
   1690   case ISD::SELECT:
   1691     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
   1692     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
   1693     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1694     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1695 
   1696     // Only known if known in both the LHS and RHS.
   1697     KnownOne &= KnownOne2;
   1698     KnownZero &= KnownZero2;
   1699     return;
   1700   case ISD::SELECT_CC:
   1701     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
   1702     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
   1703     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1704     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1705 
   1706     // Only known if known in both the LHS and RHS.
   1707     KnownOne &= KnownOne2;
   1708     KnownZero &= KnownZero2;
   1709     return;
   1710   case ISD::SADDO:
   1711   case ISD::UADDO:
   1712   case ISD::SSUBO:
   1713   case ISD::USUBO:
   1714   case ISD::SMULO:
   1715   case ISD::UMULO:
   1716     if (Op.getResNo() != 1)
   1717       return;
   1718     // The boolean result conforms to getBooleanContents.  Fall through.
   1719   case ISD::SETCC:
   1720     // If we know the result of a setcc has the top bits zero, use this info.
   1721     if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
   1722         BitWidth > 1)
   1723       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   1724     return;
   1725   case ISD::SHL:
   1726     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
   1727     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1728       unsigned ShAmt = SA->getZExtValue();
   1729 
   1730       // If the shift count is an invalid immediate, don't do anything.
   1731       if (ShAmt >= BitWidth)
   1732         return;
   1733 
   1734       ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
   1735                         KnownZero, KnownOne, Depth+1);
   1736       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1737       KnownZero <<= ShAmt;
   1738       KnownOne  <<= ShAmt;
   1739       // low bits known zero.
   1740       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
   1741     }
   1742     return;
   1743   case ISD::SRL:
   1744     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
   1745     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1746       unsigned ShAmt = SA->getZExtValue();
   1747 
   1748       // If the shift count is an invalid immediate, don't do anything.
   1749       if (ShAmt >= BitWidth)
   1750         return;
   1751 
   1752       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
   1753                         KnownZero, KnownOne, Depth+1);
   1754       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1755       KnownZero = KnownZero.lshr(ShAmt);
   1756       KnownOne  = KnownOne.lshr(ShAmt);
   1757 
   1758       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
   1759       KnownZero |= HighBits;  // High bits known zero.
   1760     }
   1761     return;
   1762   case ISD::SRA:
   1763     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1764       unsigned ShAmt = SA->getZExtValue();
   1765 
   1766       // If the shift count is an invalid immediate, don't do anything.
   1767       if (ShAmt >= BitWidth)
   1768         return;
   1769 
   1770       APInt InDemandedMask = (Mask << ShAmt);
   1771       // If any of the demanded bits are produced by the sign extension, we also
   1772       // demand the input sign bit.
   1773       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
   1774       if (HighBits.getBoolValue())
   1775         InDemandedMask |= APInt::getSignBit(BitWidth);
   1776 
   1777       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
   1778                         Depth+1);
   1779       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1780       KnownZero = KnownZero.lshr(ShAmt);
   1781       KnownOne  = KnownOne.lshr(ShAmt);
   1782 
   1783       // Handle the sign bits.
   1784       APInt SignBit = APInt::getSignBit(BitWidth);
   1785       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
   1786 
   1787       if (KnownZero.intersects(SignBit)) {
   1788         KnownZero |= HighBits;  // New bits are known zero.
   1789       } else if (KnownOne.intersects(SignBit)) {
   1790         KnownOne  |= HighBits;  // New bits are known one.
   1791       }
   1792     }
   1793     return;
   1794   case ISD::SIGN_EXTEND_INREG: {
   1795     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1796     unsigned EBits = EVT.getScalarType().getSizeInBits();
   1797 
   1798     // Sign extension.  Compute the demanded bits in the result that are not
   1799     // present in the input.
   1800     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
   1801 
   1802     APInt InSignBit = APInt::getSignBit(EBits);
   1803     APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
   1804 
   1805     // If the sign extended bits are demanded, we know that the sign
   1806     // bit is demanded.
   1807     InSignBit = InSignBit.zext(BitWidth);
   1808     if (NewBits.getBoolValue())
   1809       InputDemandedBits |= InSignBit;
   1810 
   1811     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
   1812                       KnownZero, KnownOne, Depth+1);
   1813     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1814 
   1815     // If the sign bit of the input is known set or clear, then we know the
   1816     // top bits of the result.
   1817     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
   1818       KnownZero |= NewBits;
   1819       KnownOne  &= ~NewBits;
   1820     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
   1821       KnownOne  |= NewBits;
   1822       KnownZero &= ~NewBits;
   1823     } else {                              // Input sign bit unknown
   1824       KnownZero &= ~NewBits;
   1825       KnownOne  &= ~NewBits;
   1826     }
   1827     return;
   1828   }
   1829   case ISD::CTTZ:
   1830   case ISD::CTLZ:
   1831   case ISD::CTPOP: {
   1832     unsigned LowBits = Log2_32(BitWidth)+1;
   1833     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
   1834     KnownOne.clearAllBits();
   1835     return;
   1836   }
   1837   case ISD::LOAD: {
   1838     if (ISD::isZEXTLoad(Op.getNode())) {
   1839       LoadSDNode *LD = cast<LoadSDNode>(Op);
   1840       EVT VT = LD->getMemoryVT();
   1841       unsigned MemBits = VT.getScalarType().getSizeInBits();
   1842       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
   1843     }
   1844     return;
   1845   }
   1846   case ISD::ZERO_EXTEND: {
   1847     EVT InVT = Op.getOperand(0).getValueType();
   1848     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1849     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
   1850     APInt InMask    = Mask.trunc(InBits);
   1851     KnownZero = KnownZero.trunc(InBits);
   1852     KnownOne = KnownOne.trunc(InBits);
   1853     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
   1854     KnownZero = KnownZero.zext(BitWidth);
   1855     KnownOne = KnownOne.zext(BitWidth);
   1856     KnownZero |= NewBits;
   1857     return;
   1858   }
   1859   case ISD::SIGN_EXTEND: {
   1860     EVT InVT = Op.getOperand(0).getValueType();
   1861     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1862     APInt InSignBit = APInt::getSignBit(InBits);
   1863     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
   1864     APInt InMask = Mask.trunc(InBits);
   1865 
   1866     // If any of the sign extended bits are demanded, we know that the sign
   1867     // bit is demanded. Temporarily set this bit in the mask for our callee.
   1868     if (NewBits.getBoolValue())
   1869       InMask |= InSignBit;
   1870 
   1871     KnownZero = KnownZero.trunc(InBits);
   1872     KnownOne = KnownOne.trunc(InBits);
   1873     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
   1874 
   1875     // Note if the sign bit is known to be zero or one.
   1876     bool SignBitKnownZero = KnownZero.isNegative();
   1877     bool SignBitKnownOne  = KnownOne.isNegative();
   1878     assert(!(SignBitKnownZero && SignBitKnownOne) &&
   1879            "Sign bit can't be known to be both zero and one!");
   1880 
   1881     // If the sign bit wasn't actually demanded by our caller, we don't
   1882     // want it set in the KnownZero and KnownOne result values. Reset the
   1883     // mask and reapply it to the result values.
   1884     InMask = Mask.trunc(InBits);
   1885     KnownZero &= InMask;
   1886     KnownOne  &= InMask;
   1887 
   1888     KnownZero = KnownZero.zext(BitWidth);
   1889     KnownOne = KnownOne.zext(BitWidth);
   1890 
   1891     // If the sign bit is known zero or one, the top bits match.
   1892     if (SignBitKnownZero)
   1893       KnownZero |= NewBits;
   1894     else if (SignBitKnownOne)
   1895       KnownOne  |= NewBits;
   1896     return;
   1897   }
   1898   case ISD::ANY_EXTEND: {
   1899     EVT InVT = Op.getOperand(0).getValueType();
   1900     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1901     APInt InMask = Mask.trunc(InBits);
   1902     KnownZero = KnownZero.trunc(InBits);
   1903     KnownOne = KnownOne.trunc(InBits);
   1904     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
   1905     KnownZero = KnownZero.zext(BitWidth);
   1906     KnownOne = KnownOne.zext(BitWidth);
   1907     return;
   1908   }
   1909   case ISD::TRUNCATE: {
   1910     EVT InVT = Op.getOperand(0).getValueType();
   1911     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1912     APInt InMask = Mask.zext(InBits);
   1913     KnownZero = KnownZero.zext(InBits);
   1914     KnownOne = KnownOne.zext(InBits);
   1915     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
   1916     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1917     KnownZero = KnownZero.trunc(BitWidth);
   1918     KnownOne = KnownOne.trunc(BitWidth);
   1919     break;
   1920   }
   1921   case ISD::AssertZext: {
   1922     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1923     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
   1924     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
   1925                       KnownOne, Depth+1);
   1926     KnownZero |= (~InMask) & Mask;
   1927     return;
   1928   }
   1929   case ISD::FGETSIGN:
   1930     // All bits are zero except the low bit.
   1931     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   1932     return;
   1933 
   1934   case ISD::SUB: {
   1935     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
   1936       // We know that the top bits of C-X are clear if X contains less bits
   1937       // than C (i.e. no wrap-around can happen).  For example, 20-X is
   1938       // positive if we can prove that X is >= 0 and < 16.
   1939       if (CLHS->getAPIntValue().isNonNegative()) {
   1940         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
   1941         // NLZ can't be BitWidth with no sign bit
   1942         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
   1943         ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
   1944                           Depth+1);
   1945 
   1946         // If all of the MaskV bits are known to be zero, then we know the
   1947         // output top bits are zero, because we now know that the output is
   1948         // from [0-C].
   1949         if ((KnownZero2 & MaskV) == MaskV) {
   1950           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
   1951           // Top bits known zero.
   1952           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
   1953         }
   1954       }
   1955     }
   1956   }
   1957   // fall through
   1958   case ISD::ADD:
   1959   case ISD::ADDE: {
   1960     // Output known-0 bits are known if clear or set in both the low clear bits
   1961     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
   1962     // low 3 bits clear.
   1963     APInt Mask2 = APInt::getLowBitsSet(BitWidth,
   1964                                        BitWidth - Mask.countLeadingZeros());
   1965     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
   1966     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1967     unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
   1968 
   1969     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
   1970     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1971     KnownZeroOut = std::min(KnownZeroOut,
   1972                             KnownZero2.countTrailingOnes());
   1973 
   1974     if (Op.getOpcode() == ISD::ADD) {
   1975       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
   1976       return;
   1977     }
   1978 
   1979     // With ADDE, a carry bit may be added in, so we can only use this
   1980     // information if we know (at least) that the low two bits are clear.  We
   1981     // then return to the caller that the low bit is unknown but that other bits
   1982     // are known zero.
   1983     if (KnownZeroOut >= 2) // ADDE
   1984       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
   1985     return;
   1986   }
   1987   case ISD::SREM:
   1988     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1989       const APInt &RA = Rem->getAPIntValue().abs();
   1990       if (RA.isPowerOf2()) {
   1991         APInt LowBits = RA - 1;
   1992         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
   1993         ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
   1994 
   1995         // The low bits of the first operand are unchanged by the srem.
   1996         KnownZero = KnownZero2 & LowBits;
   1997         KnownOne = KnownOne2 & LowBits;
   1998 
   1999         // If the first operand is non-negative or has all low bits zero, then
   2000         // the upper bits are all zero.
   2001         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
   2002           KnownZero |= ~LowBits;
   2003 
   2004         // If the first operand is negative and not all low bits are zero, then
   2005         // the upper bits are all one.
   2006         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
   2007           KnownOne |= ~LowBits;
   2008 
   2009         KnownZero &= Mask;
   2010         KnownOne &= Mask;
   2011 
   2012         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
   2013       }
   2014     }
   2015     return;
   2016   case ISD::UREM: {
   2017     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2018       const APInt &RA = Rem->getAPIntValue();
   2019       if (RA.isPowerOf2()) {
   2020         APInt LowBits = (RA - 1);
   2021         APInt Mask2 = LowBits & Mask;
   2022         KnownZero |= ~LowBits & Mask;
   2023         ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
   2024         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
   2025         break;
   2026       }
   2027     }
   2028 
   2029     // Since the result is less than or equal to either operand, any leading
   2030     // zero bits in either operand must also exist in the result.
   2031     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
   2032     ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
   2033                       Depth+1);
   2034     ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
   2035                       Depth+1);
   2036 
   2037     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
   2038                                 KnownZero2.countLeadingOnes());
   2039     KnownOne.clearAllBits();
   2040     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
   2041     return;
   2042   }
   2043   case ISD::FrameIndex:
   2044   case ISD::TargetFrameIndex:
   2045     if (unsigned Align = InferPtrAlignment(Op)) {
   2046       // The low bits are known zero if the pointer is aligned.
   2047       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
   2048       return;
   2049     }
   2050     break;
   2051 
   2052   default:
   2053     if (Op.getOpcode() < ISD::BUILTIN_OP_END)
   2054       break;
   2055     // Fallthrough
   2056   case ISD::INTRINSIC_WO_CHAIN:
   2057   case ISD::INTRINSIC_W_CHAIN:
   2058   case ISD::INTRINSIC_VOID:
   2059     // Allow the target to implement this method for its nodes.
   2060     TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
   2061                                        Depth);
   2062     return;
   2063   }
   2064 }
   2065 
   2066 /// ComputeNumSignBits - Return the number of times the sign bit of the
   2067 /// register is replicated into the other bits.  We know that at least 1 bit
   2068 /// is always equal to the sign bit (itself), but other cases can give us
   2069 /// information.  For example, immediately after an "SRA X, 2", we know that
   2070 /// the top 3 bits are all equal to each other, so we return 3.
   2071 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
   2072   EVT VT = Op.getValueType();
   2073   assert(VT.isInteger() && "Invalid VT!");
   2074   unsigned VTBits = VT.getScalarType().getSizeInBits();
   2075   unsigned Tmp, Tmp2;
   2076   unsigned FirstAnswer = 1;
   2077 
   2078   if (Depth == 6)
   2079     return 1;  // Limit search depth.
   2080 
   2081   switch (Op.getOpcode()) {
   2082   default: break;
   2083   case ISD::AssertSext:
   2084     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
   2085     return VTBits-Tmp+1;
   2086   case ISD::AssertZext:
   2087     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
   2088     return VTBits-Tmp;
   2089 
   2090   case ISD::Constant: {
   2091     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
   2092     return Val.getNumSignBits();
   2093   }
   2094 
   2095   case ISD::SIGN_EXTEND:
   2096     Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   2097     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
   2098 
   2099   case ISD::SIGN_EXTEND_INREG:
   2100     // Max of the input and what this extends.
   2101     Tmp =
   2102       cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
   2103     Tmp = VTBits-Tmp+1;
   2104 
   2105     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2106     return std::max(Tmp, Tmp2);
   2107 
   2108   case ISD::SRA:
   2109     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2110     // SRA X, C   -> adds C sign bits.
   2111     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2112       Tmp += C->getZExtValue();
   2113       if (Tmp > VTBits) Tmp = VTBits;
   2114     }
   2115     return Tmp;
   2116   case ISD::SHL:
   2117     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2118       // shl destroys sign bits.
   2119       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2120       if (C->getZExtValue() >= VTBits ||      // Bad shift.
   2121           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
   2122       return Tmp - C->getZExtValue();
   2123     }
   2124     break;
   2125   case ISD::AND:
   2126   case ISD::OR:
   2127   case ISD::XOR:    // NOT is handled here.
   2128     // Logical binary ops preserve the number of sign bits at the worst.
   2129     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2130     if (Tmp != 1) {
   2131       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
   2132       FirstAnswer = std::min(Tmp, Tmp2);
   2133       // We computed what we know about the sign bits as our first
   2134       // answer. Now proceed to the generic code that uses
   2135       // ComputeMaskedBits, and pick whichever answer is better.
   2136     }
   2137     break;
   2138 
   2139   case ISD::SELECT:
   2140     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
   2141     if (Tmp == 1) return 1;  // Early out.
   2142     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
   2143     return std::min(Tmp, Tmp2);
   2144 
   2145   case ISD::SADDO:
   2146   case ISD::UADDO:
   2147   case ISD::SSUBO:
   2148   case ISD::USUBO:
   2149   case ISD::SMULO:
   2150   case ISD::UMULO:
   2151     if (Op.getResNo() != 1)
   2152       break;
   2153     // The boolean result conforms to getBooleanContents.  Fall through.
   2154   case ISD::SETCC:
   2155     // If setcc returns 0/-1, all bits are sign bits.
   2156     if (TLI.getBooleanContents() ==
   2157         TargetLowering::ZeroOrNegativeOneBooleanContent)
   2158       return VTBits;
   2159     break;
   2160   case ISD::ROTL:
   2161   case ISD::ROTR:
   2162     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2163       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
   2164 
   2165       // Handle rotate right by N like a rotate left by 32-N.
   2166       if (Op.getOpcode() == ISD::ROTR)
   2167         RotAmt = (VTBits-RotAmt) & (VTBits-1);
   2168 
   2169       // If we aren't rotating out all of the known-in sign bits, return the
   2170       // number that are left.  This handles rotl(sext(x), 1) for example.
   2171       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2172       if (Tmp > RotAmt+1) return Tmp-RotAmt;
   2173     }
   2174     break;
   2175   case ISD::ADD:
   2176     // Add can have at most one carry bit.  Thus we know that the output
   2177     // is, at worst, one more bit than the inputs.
   2178     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2179     if (Tmp == 1) return 1;  // Early out.
   2180 
   2181     // Special case decrementing a value (ADD X, -1):
   2182     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
   2183       if (CRHS->isAllOnesValue()) {
   2184         APInt KnownZero, KnownOne;
   2185         APInt Mask = APInt::getAllOnesValue(VTBits);
   2186         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
   2187 
   2188         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   2189         // sign bits set.
   2190         if ((KnownZero | APInt(VTBits, 1)) == Mask)
   2191           return VTBits;
   2192 
   2193         // If we are subtracting one from a positive number, there is no carry
   2194         // out of the result.
   2195         if (KnownZero.isNegative())
   2196           return Tmp;
   2197       }
   2198 
   2199     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
   2200     if (Tmp2 == 1) return 1;
   2201       return std::min(Tmp, Tmp2)-1;
   2202     break;
   2203 
   2204   case ISD::SUB:
   2205     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
   2206     if (Tmp2 == 1) return 1;
   2207 
   2208     // Handle NEG.
   2209     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
   2210       if (CLHS->isNullValue()) {
   2211         APInt KnownZero, KnownOne;
   2212         APInt Mask = APInt::getAllOnesValue(VTBits);
   2213         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
   2214         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   2215         // sign bits set.
   2216         if ((KnownZero | APInt(VTBits, 1)) == Mask)
   2217           return VTBits;
   2218 
   2219         // If the input is known to be positive (the sign bit is known clear),
   2220         // the output of the NEG has the same number of sign bits as the input.
   2221         if (KnownZero.isNegative())
   2222           return Tmp2;
   2223 
   2224         // Otherwise, we treat this like a SUB.
   2225       }
   2226 
   2227     // Sub can have at most one carry bit.  Thus we know that the output
   2228     // is, at worst, one more bit than the inputs.
   2229     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
   2230     if (Tmp == 1) return 1;  // Early out.
   2231       return std::min(Tmp, Tmp2)-1;
   2232     break;
   2233   case ISD::TRUNCATE:
   2234     // FIXME: it's tricky to do anything useful for this, but it is an important
   2235     // case for targets like X86.
   2236     break;
   2237   }
   2238 
   2239   // Handle LOADX separately here. EXTLOAD case will fallthrough.
   2240   if (Op.getOpcode() == ISD::LOAD) {
   2241     LoadSDNode *LD = cast<LoadSDNode>(Op);
   2242     unsigned ExtType = LD->getExtensionType();
   2243     switch (ExtType) {
   2244     default: break;
   2245     case ISD::SEXTLOAD:    // '17' bits known
   2246       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
   2247       return VTBits-Tmp+1;
   2248     case ISD::ZEXTLOAD:    // '16' bits known
   2249       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
   2250       return VTBits-Tmp;
   2251     }
   2252   }
   2253 
   2254   // Allow the target to implement this method for its nodes.
   2255   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   2256       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   2257       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   2258       Op.getOpcode() == ISD::INTRINSIC_VOID) {
   2259     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
   2260     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
   2261   }
   2262 
   2263   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   2264   // use this information.
   2265   APInt KnownZero, KnownOne;
   2266   APInt Mask = APInt::getAllOnesValue(VTBits);
   2267   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
   2268 
   2269   if (KnownZero.isNegative()) {        // sign bit is 0
   2270     Mask = KnownZero;
   2271   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   2272     Mask = KnownOne;
   2273   } else {
   2274     // Nothing known.
   2275     return FirstAnswer;
   2276   }
   2277 
   2278   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   2279   // the number of identical bits in the top of the input value.
   2280   Mask = ~Mask;
   2281   Mask <<= Mask.getBitWidth()-VTBits;
   2282   // Return # leading zeros.  We use 'min' here in case Val was zero before
   2283   // shifting.  We don't want to return '64' as for an i32 "0".
   2284   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
   2285 }
   2286 
   2287 /// isBaseWithConstantOffset - Return true if the specified operand is an
   2288 /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
   2289 /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
   2290 /// semantics as an ADD.  This handles the equivalence:
   2291 ///     X|Cst == X+Cst iff X&Cst = 0.
   2292 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
   2293   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
   2294       !isa<ConstantSDNode>(Op.getOperand(1)))
   2295     return false;
   2296 
   2297   if (Op.getOpcode() == ISD::OR &&
   2298       !MaskedValueIsZero(Op.getOperand(0),
   2299                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
   2300     return false;
   2301 
   2302   return true;
   2303 }
   2304 
   2305 
   2306 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
   2307   // If we're told that NaNs won't happen, assume they won't.
   2308   if (NoNaNsFPMath)
   2309     return true;
   2310 
   2311   // If the value is a constant, we can obviously see if it is a NaN or not.
   2312   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
   2313     return !C->getValueAPF().isNaN();
   2314 
   2315   // TODO: Recognize more cases here.
   2316 
   2317   return false;
   2318 }
   2319 
   2320 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
   2321   // If the value is a constant, we can obviously see if it is a zero or not.
   2322   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
   2323     return !C->isZero();
   2324 
   2325   // TODO: Recognize more cases here.
   2326   switch (Op.getOpcode()) {
   2327   default: break;
   2328   case ISD::OR:
   2329     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
   2330       return !C->isNullValue();
   2331     break;
   2332   }
   2333 
   2334   return false;
   2335 }
   2336 
   2337 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
   2338   // Check the obvious case.
   2339   if (A == B) return true;
   2340 
   2341   // For for negative and positive zero.
   2342   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
   2343     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
   2344       if (CA->isZero() && CB->isZero()) return true;
   2345 
   2346   // Otherwise they may not be equal.
   2347   return false;
   2348 }
   2349 
   2350 /// getNode - Gets or creates the specified node.
   2351 ///
   2352 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
   2353   FoldingSetNodeID ID;
   2354   AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
   2355   void *IP = 0;
   2356   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   2357     return SDValue(E, 0);
   2358 
   2359   SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
   2360   CSEMap.InsertNode(N, IP);
   2361 
   2362   AllNodes.push_back(N);
   2363 #ifndef NDEBUG
   2364   VerifySDNode(N);
   2365 #endif
   2366   return SDValue(N, 0);
   2367 }
   2368 
   2369 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
   2370                               EVT VT, SDValue Operand) {
   2371   // Constant fold unary operations with an integer constant operand.
   2372   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
   2373     const APInt &Val = C->getAPIntValue();
   2374     switch (Opcode) {
   2375     default: break;
   2376     case ISD::SIGN_EXTEND:
   2377       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
   2378     case ISD::ANY_EXTEND:
   2379     case ISD::ZERO_EXTEND:
   2380     case ISD::TRUNCATE:
   2381       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
   2382     case ISD::UINT_TO_FP:
   2383     case ISD::SINT_TO_FP: {
   2384       // No compile time operations on ppcf128.
   2385       if (VT == MVT::ppcf128) break;
   2386       APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
   2387       (void)apf.convertFromAPInt(Val,
   2388                                  Opcode==ISD::SINT_TO_FP,
   2389                                  APFloat::rmNearestTiesToEven);
   2390       return getConstantFP(apf, VT);
   2391     }
   2392     case ISD::BITCAST:
   2393       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
   2394         return getConstantFP(Val.bitsToFloat(), VT);
   2395       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
   2396         return getConstantFP(Val.bitsToDouble(), VT);
   2397       break;
   2398     case ISD::BSWAP:
   2399       return getConstant(Val.byteSwap(), VT);
   2400     case ISD::CTPOP:
   2401       return getConstant(Val.countPopulation(), VT);
   2402     case ISD::CTLZ:
   2403       return getConstant(Val.countLeadingZeros(), VT);
   2404     case ISD::CTTZ:
   2405       return getConstant(Val.countTrailingZeros(), VT);
   2406     }
   2407   }
   2408 
   2409   // Constant fold unary operations with a floating point constant operand.
   2410   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
   2411     APFloat V = C->getValueAPF();    // make copy
   2412     if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
   2413       switch (Opcode) {
   2414       case ISD::FNEG:
   2415         V.changeSign();
   2416         return getConstantFP(V, VT);
   2417       case ISD::FABS:
   2418         V.clearSign();
   2419         return getConstantFP(V, VT);
   2420       case ISD::FP_ROUND:
   2421       case ISD::FP_EXTEND: {
   2422         bool ignored;
   2423         // This can return overflow, underflow, or inexact; we don't care.
   2424         // FIXME need to be more flexible about rounding mode.
   2425         (void)V.convert(*EVTToAPFloatSemantics(VT),
   2426                         APFloat::rmNearestTiesToEven, &ignored);
   2427         return getConstantFP(V, VT);
   2428       }
   2429       case ISD::FP_TO_SINT:
   2430       case ISD::FP_TO_UINT: {
   2431         integerPart x[2];
   2432         bool ignored;
   2433         assert(integerPartWidth >= 64);
   2434         // FIXME need to be more flexible about rounding mode.
   2435         APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
   2436                               Opcode==ISD::FP_TO_SINT,
   2437                               APFloat::rmTowardZero, &ignored);
   2438         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
   2439           break;
   2440         APInt api(VT.getSizeInBits(), x);
   2441         return getConstant(api, VT);
   2442       }
   2443       case ISD::BITCAST:
   2444         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
   2445           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
   2446         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
   2447           return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
   2448         break;
   2449       }
   2450     }
   2451   }
   2452 
   2453   unsigned OpOpcode = Operand.getNode()->getOpcode();
   2454   switch (Opcode) {
   2455   case ISD::TokenFactor:
   2456   case ISD::MERGE_VALUES:
   2457   case ISD::CONCAT_VECTORS:
   2458     return Operand;         // Factor, merge or concat of one node?  No need.
   2459   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
   2460   case ISD::FP_EXTEND:
   2461     assert(VT.isFloatingPoint() &&
   2462            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
   2463     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
   2464     assert((!VT.isVector() ||
   2465             VT.getVectorNumElements() ==
   2466             Operand.getValueType().getVectorNumElements()) &&
   2467            "Vector element count mismatch!");
   2468     if (Operand.getOpcode() == ISD::UNDEF)
   2469       return getUNDEF(VT);
   2470     break;
   2471   case ISD::SIGN_EXTEND:
   2472     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
   2473            "Invalid SIGN_EXTEND!");
   2474     if (Operand.getValueType() == VT) return Operand;   // noop extension
   2475     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
   2476            "Invalid sext node, dst < src!");
   2477     assert((!VT.isVector() ||
   2478             VT.getVectorNumElements() ==
   2479             Operand.getValueType().getVectorNumElements()) &&
   2480            "Vector element count mismatch!");
   2481     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
   2482       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
   2483     else if (OpOpcode == ISD::UNDEF)
   2484       // sext(undef) = 0, because the top bits will all be the same.
   2485       return getConstant(0, VT);
   2486     break;
   2487   case ISD::ZERO_EXTEND:
   2488     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
   2489            "Invalid ZERO_EXTEND!");
   2490     if (Operand.getValueType() == VT) return Operand;   // noop extension
   2491     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
   2492            "Invalid zext node, dst < src!");
   2493     assert((!VT.isVector() ||
   2494             VT.getVectorNumElements() ==
   2495             Operand.getValueType().getVectorNumElements()) &&
   2496            "Vector element count mismatch!");
   2497     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
   2498       return getNode(ISD::ZERO_EXTEND, DL, VT,
   2499                      Operand.getNode()->getOperand(0));
   2500     else if (OpOpcode == ISD::UNDEF)
   2501       // zext(undef) = 0, because the top bits will be zero.
   2502       return getConstant(0, VT);
   2503     break;
   2504   case ISD::ANY_EXTEND:
   2505     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
   2506            "Invalid ANY_EXTEND!");
   2507     if (Operand.getValueType() == VT) return Operand;   // noop extension
   2508     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
   2509            "Invalid anyext node, dst < src!");
   2510     assert((!VT.isVector() ||
   2511             VT.getVectorNumElements() ==
   2512             Operand.getValueType().getVectorNumElements()) &&
   2513            "Vector element count mismatch!");
   2514 
   2515     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
   2516         OpOpcode == ISD::ANY_EXTEND)
   2517       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
   2518       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
   2519     else if (OpOpcode == ISD::UNDEF)
   2520       return getUNDEF(VT);
   2521 
   2522     // (ext (trunx x)) -> x
   2523     if (OpOpcode == ISD::TRUNCATE) {
   2524       SDValue OpOp = Operand.getNode()->getOperand(0);
   2525       if (OpOp.getValueType() == VT)
   2526         return OpOp;
   2527     }
   2528     break;
   2529   case ISD::TRUNCATE:
   2530     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
   2531            "Invalid TRUNCATE!");
   2532     if (Operand.getValueType() == VT) return Operand;   // noop truncate
   2533     assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
   2534            "Invalid truncate node, src < dst!");
   2535     assert((!VT.isVector() ||
   2536             VT.getVectorNumElements() ==
   2537             Operand.getValueType().getVectorNumElements()) &&
   2538            "Vector element count mismatch!");
   2539     if (OpOpcode == ISD::TRUNCATE)
   2540       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
   2541     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
   2542              OpOpcode == ISD::ANY_EXTEND) {
   2543       // If the source is smaller than the dest, we still need an extend.
   2544       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
   2545             .bitsLT(VT.getScalarType()))
   2546         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
   2547       else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
   2548         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
   2549       else
   2550         return Operand.getNode()->getOperand(0);
   2551     }
   2552     break;
   2553   case ISD::BITCAST:
   2554     // Basic sanity checking.
   2555     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
   2556            && "Cannot BITCAST between types of different sizes!");
   2557     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
   2558     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
   2559       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
   2560     if (OpOpcode == ISD::UNDEF)
   2561       return getUNDEF(VT);
   2562     break;
   2563   case ISD::SCALAR_TO_VECTOR:
   2564     assert(VT.isVector() && !Operand.getValueType().isVector() &&
   2565            (VT.getVectorElementType() == Operand.getValueType() ||
   2566             (VT.getVectorElementType().isInteger() &&
   2567              Operand.getValueType().isInteger() &&
   2568              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
   2569            "Illegal SCALAR_TO_VECTOR node!");
   2570     if (OpOpcode == ISD::UNDEF)
   2571       return getUNDEF(VT);
   2572     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
   2573     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
   2574         isa<ConstantSDNode>(Operand.getOperand(1)) &&
   2575         Operand.getConstantOperandVal(1) == 0 &&
   2576         Operand.getOperand(0).getValueType() == VT)
   2577       return Operand.getOperand(0);
   2578     break;
   2579   case ISD::FNEG:
   2580     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
   2581     if (UnsafeFPMath && OpOpcode == ISD::FSUB)
   2582       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
   2583                      Operand.getNode()->getOperand(0));
   2584     if (OpOpcode == ISD::FNEG)  // --X -> X
   2585       return Operand.getNode()->getOperand(0);
   2586     break;
   2587   case ISD::FABS:
   2588     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
   2589       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
   2590     break;
   2591   }
   2592 
   2593   SDNode *N;
   2594   SDVTList VTs = getVTList(VT);
   2595   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
   2596     FoldingSetNodeID ID;
   2597     SDValue Ops[1] = { Operand };
   2598     AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
   2599     void *IP = 0;
   2600     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   2601       return SDValue(E, 0);
   2602 
   2603     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
   2604     CSEMap.InsertNode(N, IP);
   2605   } else {
   2606     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
   2607   }
   2608 
   2609   AllNodes.push_back(N);
   2610 #ifndef NDEBUG
   2611   VerifySDNode(N);
   2612 #endif
   2613   return SDValue(N, 0);
   2614 }
   2615 
   2616 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
   2617                                              EVT VT,
   2618                                              ConstantSDNode *Cst1,
   2619                                              ConstantSDNode *Cst2) {
   2620   const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
   2621 
   2622   switch (Opcode) {
   2623   case ISD::ADD:  return getConstant(C1 + C2, VT);
   2624   case ISD::SUB:  return getConstant(C1 - C2, VT);
   2625   case ISD::MUL:  return getConstant(C1 * C2, VT);
   2626   case ISD::UDIV:
   2627     if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
   2628     break;
   2629   case ISD::UREM:
   2630     if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
   2631     break;
   2632   case ISD::SDIV:
   2633     if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
   2634     break;
   2635   case ISD::SREM:
   2636     if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
   2637     break;
   2638   case ISD::AND:  return getConstant(C1 & C2, VT);
   2639   case ISD::OR:   return getConstant(C1 | C2, VT);
   2640   case ISD::XOR:  return getConstant(C1 ^ C2, VT);
   2641   case ISD::SHL:  return getConstant(C1 << C2, VT);
   2642   case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
   2643   case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
   2644   case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
   2645   case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
   2646   default: break;
   2647   }
   2648 
   2649   return SDValue();
   2650 }
   2651 
   2652 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   2653                               SDValue N1, SDValue N2) {
   2654   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
   2655   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
   2656   switch (Opcode) {
   2657   default: break;
   2658   case ISD::TokenFactor:
   2659     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
   2660            N2.getValueType() == MVT::Other && "Invalid token factor!");
   2661     // Fold trivial token factors.
   2662     if (N1.getOpcode() == ISD::EntryToken) return N2;
   2663     if (N2.getOpcode() == ISD::EntryToken) return N1;
   2664     if (N1 == N2) return N1;
   2665     break;
   2666   case ISD::CONCAT_VECTORS:
   2667     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
   2668     // one big BUILD_VECTOR.
   2669     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
   2670         N2.getOpcode() == ISD::BUILD_VECTOR) {
   2671       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
   2672                                     N1.getNode()->op_end());
   2673       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
   2674       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
   2675     }
   2676     break;
   2677   case ISD::AND:
   2678     assert(VT.isInteger() && "This operator does not apply to FP types!");
   2679     assert(N1.getValueType() == N2.getValueType() &&
   2680            N1.getValueType() == VT && "Binary operator types must match!");
   2681     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
   2682     // worth handling here.
   2683     if (N2C && N2C->isNullValue())
   2684       return N2;
   2685     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
   2686       return N1;
   2687     break;
   2688   case ISD::OR:
   2689   case ISD::XOR:
   2690   case ISD::ADD:
   2691   case ISD::SUB:
   2692     assert(VT.isInteger() && "This operator does not apply to FP types!");
   2693     assert(N1.getValueType() == N2.getValueType() &&
   2694            N1.getValueType() == VT && "Binary operator types must match!");
   2695     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
   2696     // it's worth handling here.
   2697     if (N2C && N2C->isNullValue())
   2698       return N1;
   2699     break;
   2700   case ISD::UDIV:
   2701   case ISD::UREM:
   2702   case ISD::MULHU:
   2703   case ISD::MULHS:
   2704   case ISD::MUL:
   2705   case ISD::SDIV:
   2706   case ISD::SREM:
   2707     assert(VT.isInteger() && "This operator does not apply to FP types!");
   2708     assert(N1.getValueType() == N2.getValueType() &&
   2709            N1.getValueType() == VT && "Binary operator types must match!");
   2710     break;
   2711   case ISD::FADD:
   2712   case ISD::FSUB:
   2713   case ISD::FMUL:
   2714   case ISD::FDIV:
   2715   case ISD::FREM:
   2716     if (UnsafeFPMath) {
   2717       if (Opcode == ISD::FADD) {
   2718         // 0+x --> x
   2719         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
   2720           if (CFP->getValueAPF().isZero())
   2721             return N2;
   2722         // x+0 --> x
   2723         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
   2724           if (CFP->getValueAPF().isZero())
   2725             return N1;
   2726       } else if (Opcode == ISD::FSUB) {
   2727         // x-0 --> x
   2728         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
   2729           if (CFP->getValueAPF().isZero())
   2730             return N1;
   2731       }
   2732     }
   2733     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
   2734     assert(N1.getValueType() == N2.getValueType() &&
   2735            N1.getValueType() == VT && "Binary operator types must match!");
   2736     break;
   2737   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
   2738     assert(N1.getValueType() == VT &&
   2739            N1.getValueType().isFloatingPoint() &&
   2740            N2.getValueType().isFloatingPoint() &&
   2741            "Invalid FCOPYSIGN!");
   2742     break;
   2743   case ISD::SHL:
   2744   case ISD::SRA:
   2745   case ISD::SRL:
   2746   case ISD::ROTL:
   2747   case ISD::ROTR:
   2748     assert(VT == N1.getValueType() &&
   2749            "Shift operators return type must be the same as their first arg");
   2750     assert(VT.isInteger() && N2.getValueType().isInteger() &&
   2751            "Shifts only work on integers");
   2752     // Verify that the shift amount VT is bit enough to hold valid shift
   2753     // amounts.  This catches things like trying to shift an i1024 value by an
   2754     // i8, which is easy to fall into in generic code that uses
   2755     // TLI.getShiftAmount().
   2756     assert(N2.getValueType().getSizeInBits() >=
   2757                    Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
   2758            "Invalid use of small shift amount with oversized value!");
   2759 
   2760     // Always fold shifts of i1 values so the code generator doesn't need to
   2761     // handle them.  Since we know the size of the shift has to be less than the
   2762     // size of the value, the shift/rotate count is guaranteed to be zero.
   2763     if (VT == MVT::i1)
   2764       return N1;
   2765     if (N2C && N2C->isNullValue())
   2766       return N1;
   2767     break;
   2768   case ISD::FP_ROUND_INREG: {
   2769     EVT EVT = cast<VTSDNode>(N2)->getVT();
   2770     assert(VT == N1.getValueType() && "Not an inreg round!");
   2771     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
   2772            "Cannot FP_ROUND_INREG integer types");
   2773     assert(EVT.isVector() == VT.isVector() &&
   2774            "FP_ROUND_INREG type should be vector iff the operand "
   2775            "type is vector!");
   2776     assert((!EVT.isVector() ||
   2777             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
   2778            "Vector element counts must match in FP_ROUND_INREG");
   2779     assert(EVT.bitsLE(VT) && "Not rounding down!");
   2780     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
   2781     break;
   2782   }
   2783   case ISD::FP_ROUND:
   2784     assert(VT.isFloatingPoint() &&
   2785            N1.getValueType().isFloatingPoint() &&
   2786            VT.bitsLE(N1.getValueType()) &&
   2787            isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
   2788     if (N1.getValueType() == VT) return N1;  // noop conversion.
   2789     break;
   2790   case ISD::AssertSext:
   2791   case ISD::AssertZext: {
   2792     EVT EVT = cast<VTSDNode>(N2)->getVT();
   2793     assert(VT == N1.getValueType() && "Not an inreg extend!");
   2794     assert(VT.isInteger() && EVT.isInteger() &&
   2795            "Cannot *_EXTEND_INREG FP types");
   2796     assert(!EVT.isVector() &&
   2797            "AssertSExt/AssertZExt type should be the vector element type "
   2798            "rather than the vector type!");
   2799     assert(EVT.bitsLE(VT) && "Not extending!");
   2800     if (VT == EVT) return N1; // noop assertion.
   2801     break;
   2802   }
   2803   case ISD::SIGN_EXTEND_INREG: {
   2804     EVT EVT = cast<VTSDNode>(N2)->getVT();
   2805     assert(VT == N1.getValueType() && "Not an inreg extend!");
   2806     assert(VT.isInteger() && EVT.isInteger() &&
   2807            "Cannot *_EXTEND_INREG FP types");
   2808     assert(EVT.isVector() == VT.isVector() &&
   2809            "SIGN_EXTEND_INREG type should be vector iff the operand "
   2810            "type is vector!");
   2811     assert((!EVT.isVector() ||
   2812             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
   2813            "Vector element counts must match in SIGN_EXTEND_INREG");
   2814     assert(EVT.bitsLE(VT) && "Not extending!");
   2815     if (EVT == VT) return N1;  // Not actually extending
   2816 
   2817     if (N1C) {
   2818       APInt Val = N1C->getAPIntValue();
   2819       unsigned FromBits = EVT.getScalarType().getSizeInBits();
   2820       Val <<= Val.getBitWidth()-FromBits;
   2821       Val = Val.ashr(Val.getBitWidth()-FromBits);
   2822       return getConstant(Val, VT);
   2823     }
   2824     break;
   2825   }
   2826   case ISD::EXTRACT_VECTOR_ELT:
   2827     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
   2828     if (N1.getOpcode() == ISD::UNDEF)
   2829       return getUNDEF(VT);
   2830 
   2831     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
   2832     // expanding copies of large vectors from registers.
   2833     if (N2C &&
   2834         N1.getOpcode() == ISD::CONCAT_VECTORS &&
   2835         N1.getNumOperands() > 0) {
   2836       unsigned Factor =
   2837         N1.getOperand(0).getValueType().getVectorNumElements();
   2838       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
   2839                      N1.getOperand(N2C->getZExtValue() / Factor),
   2840                      getConstant(N2C->getZExtValue() % Factor,
   2841                                  N2.getValueType()));
   2842     }
   2843 
   2844     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
   2845     // expanding large vector constants.
   2846     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
   2847       SDValue Elt = N1.getOperand(N2C->getZExtValue());
   2848       EVT VEltTy = N1.getValueType().getVectorElementType();
   2849       if (Elt.getValueType() != VEltTy) {
   2850         // If the vector element type is not legal, the BUILD_VECTOR operands
   2851         // are promoted and implicitly truncated.  Make that explicit here.
   2852         Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
   2853       }
   2854       if (VT != VEltTy) {
   2855         // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
   2856         // result is implicitly extended.
   2857         Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
   2858       }
   2859       return Elt;
   2860     }
   2861 
   2862     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
   2863     // operations are lowered to scalars.
   2864     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   2865       // If the indices are the same, return the inserted element else
   2866       // if the indices are known different, extract the element from
   2867       // the original vector.
   2868       SDValue N1Op2 = N1.getOperand(2);
   2869       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
   2870 
   2871       if (N1Op2C && N2C) {
   2872         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
   2873           if (VT == N1.getOperand(1).getValueType())
   2874             return N1.getOperand(1);
   2875           else
   2876             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
   2877         }
   2878 
   2879         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
   2880       }
   2881     }
   2882     break;
   2883   case ISD::EXTRACT_ELEMENT:
   2884     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
   2885     assert(!N1.getValueType().isVector() && !VT.isVector() &&
   2886            (N1.getValueType().isInteger() == VT.isInteger()) &&
   2887            "Wrong types for EXTRACT_ELEMENT!");
   2888 
   2889     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
   2890     // 64-bit integers into 32-bit parts.  Instead of building the extract of
   2891     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
   2892     if (N1.getOpcode() == ISD::BUILD_PAIR)
   2893       return N1.getOperand(N2C->getZExtValue());
   2894 
   2895     // EXTRACT_ELEMENT of a constant int is also very common.
   2896     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   2897       unsigned ElementSize = VT.getSizeInBits();
   2898       unsigned Shift = ElementSize * N2C->getZExtValue();
   2899       APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
   2900       return getConstant(ShiftedVal.trunc(ElementSize), VT);
   2901     }
   2902     break;
   2903   case ISD::EXTRACT_SUBVECTOR: {
   2904     SDValue Index = N2;
   2905     if (VT.isSimple() && N1.getValueType().isSimple()) {
   2906       assert(VT.isVector() && N1.getValueType().isVector() &&
   2907              "Extract subvector VTs must be a vectors!");
   2908       assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
   2909              "Extract subvector VTs must have the same element type!");
   2910       assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
   2911              "Extract subvector must be from larger vector to smaller vector!");
   2912 
   2913       if (isa<ConstantSDNode>(Index.getNode())) {
   2914         assert((VT.getVectorNumElements() +
   2915                 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
   2916                 <= N1.getValueType().getVectorNumElements())
   2917                && "Extract subvector overflow!");
   2918       }
   2919 
   2920       // Trivial extraction.
   2921       if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
   2922         return N1;
   2923     }
   2924     break;
   2925   }
   2926   }
   2927 
   2928   if (N1C) {
   2929     if (N2C) {
   2930       SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
   2931       if (SV.getNode()) return SV;
   2932     } else {      // Cannonicalize constant to RHS if commutative
   2933       if (isCommutativeBinOp(Opcode)) {
   2934         std::swap(N1C, N2C);
   2935         std::swap(N1, N2);
   2936       }
   2937     }
   2938   }
   2939 
   2940   // Constant fold FP operations.
   2941   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
   2942   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
   2943   if (N1CFP) {
   2944     if (!N2CFP && isCommutativeBinOp(Opcode)) {
   2945       // Cannonicalize constant to RHS if commutative
   2946       std::swap(N1CFP, N2CFP);
   2947       std::swap(N1, N2);
   2948     } else if (N2CFP && VT != MVT::ppcf128) {
   2949       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
   2950       APFloat::opStatus s;
   2951       switch (Opcode) {
   2952       case ISD::FADD:
   2953         s = V1.add(V2, APFloat::rmNearestTiesToEven);
   2954         if (s != APFloat::opInvalidOp)
   2955           return getConstantFP(V1, VT);
   2956         break;
   2957       case ISD::FSUB:
   2958         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
   2959         if (s!=APFloat::opInvalidOp)
   2960           return getConstantFP(V1, VT);
   2961         break;
   2962       case ISD::FMUL:
   2963         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
   2964         if (s!=APFloat::opInvalidOp)
   2965           return getConstantFP(V1, VT);
   2966         break;
   2967       case ISD::FDIV:
   2968         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
   2969         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
   2970           return getConstantFP(V1, VT);
   2971         break;
   2972       case ISD::FREM :
   2973         s = V1.mod(V2, APFloat::rmNearestTiesToEven);
   2974         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
   2975           return getConstantFP(V1, VT);
   2976         break;
   2977       case ISD::FCOPYSIGN:
   2978         V1.copySign(V2);
   2979         return getConstantFP(V1, VT);
   2980       default: break;
   2981       }
   2982     }
   2983   }
   2984 
   2985   // Canonicalize an UNDEF to the RHS, even over a constant.
   2986   if (N1.getOpcode() == ISD::UNDEF) {
   2987     if (isCommutativeBinOp(Opcode)) {
   2988       std::swap(N1, N2);
   2989     } else {
   2990       switch (Opcode) {
   2991       case ISD::FP_ROUND_INREG:
   2992       case ISD::SIGN_EXTEND_INREG:
   2993       case ISD::SUB:
   2994       case ISD::FSUB:
   2995       case ISD::FDIV:
   2996       case ISD::FREM:
   2997       case ISD::SRA:
   2998         return N1;     // fold op(undef, arg2) -> undef
   2999       case ISD::UDIV:
   3000       case ISD::SDIV:
   3001       case ISD::UREM:
   3002       case ISD::SREM:
   3003       case ISD::SRL:
   3004       case ISD::SHL:
   3005         if (!VT.isVector())
   3006           return getConstant(0, VT);    // fold op(undef, arg2) -> 0
   3007         // For vectors, we can't easily build an all zero vector, just return
   3008         // the LHS.
   3009         return N2;
   3010       }
   3011     }
   3012   }
   3013 
   3014   // Fold a bunch of operators when the RHS is undef.
   3015   if (N2.getOpcode() == ISD::UNDEF) {
   3016     switch (Opcode) {
   3017     case ISD::XOR:
   3018       if (N1.getOpcode() == ISD::UNDEF)
   3019         // Handle undef ^ undef -> 0 special case. This is a common
   3020         // idiom (misuse).
   3021         return getConstant(0, VT);
   3022       // fallthrough
   3023     case ISD::ADD:
   3024     case ISD::ADDC:
   3025     case ISD::ADDE:
   3026     case ISD::SUB:
   3027     case ISD::UDIV:
   3028     case ISD::SDIV:
   3029     case ISD::UREM:
   3030     case ISD::SREM:
   3031       return N2;       // fold op(arg1, undef) -> undef
   3032     case ISD::FADD:
   3033     case ISD::FSUB:
   3034     case ISD::FMUL:
   3035     case ISD::FDIV:
   3036     case ISD::FREM:
   3037       if (UnsafeFPMath)
   3038         return N2;
   3039       break;
   3040     case ISD::MUL:
   3041     case ISD::AND:
   3042     case ISD::SRL:
   3043     case ISD::SHL:
   3044       if (!VT.isVector())
   3045         return getConstant(0, VT);  // fold op(arg1, undef) -> 0
   3046       // For vectors, we can't easily build an all zero vector, just return
   3047       // the LHS.
   3048       return N1;
   3049     case ISD::OR:
   3050       if (!VT.isVector())
   3051         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
   3052       // For vectors, we can't easily build an all one vector, just return
   3053       // the LHS.
   3054       return N1;
   3055     case ISD::SRA:
   3056       return N1;
   3057     }
   3058   }
   3059 
   3060   // Memoize this node if possible.
   3061   SDNode *N;
   3062   SDVTList VTs = getVTList(VT);
   3063   if (VT != MVT::Glue) {
   3064     SDValue Ops[] = { N1, N2 };
   3065     FoldingSetNodeID ID;
   3066     AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
   3067     void *IP = 0;
   3068     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   3069       return SDValue(E, 0);
   3070 
   3071     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
   3072     CSEMap.InsertNode(N, IP);
   3073   } else {
   3074     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
   3075   }
   3076 
   3077   AllNodes.push_back(N);
   3078 #ifndef NDEBUG
   3079   VerifySDNode(N);
   3080 #endif
   3081   return SDValue(N, 0);
   3082 }
   3083 
   3084 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   3085                               SDValue N1, SDValue N2, SDValue N3) {
   3086   // Perform various simplifications.
   3087   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
   3088   switch (Opcode) {
   3089   case ISD::CONCAT_VECTORS:
   3090     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
   3091     // one big BUILD_VECTOR.
   3092     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
   3093         N2.getOpcode() == ISD::BUILD_VECTOR &&
   3094         N3.getOpcode() == ISD::BUILD_VECTOR) {
   3095       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
   3096                                     N1.getNode()->op_end());
   3097       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
   3098       Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
   3099       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
   3100     }
   3101     break;
   3102   case ISD::SETCC: {
   3103     // Use FoldSetCC to simplify SETCC's.
   3104     SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
   3105     if (Simp.getNode()) return Simp;
   3106     break;
   3107   }
   3108   case ISD::SELECT:
   3109     if (N1C) {
   3110      if (N1C->getZExtValue())
   3111         return N2;             // select true, X, Y -> X
   3112       else
   3113         return N3;             // select false, X, Y -> Y
   3114     }
   3115 
   3116     if (N2 == N3) return N2;   // select C, X, X -> X
   3117     break;
   3118   case ISD::VECTOR_SHUFFLE:
   3119     llvm_unreachable("should use getVectorShuffle constructor!");
   3120     break;
   3121   case ISD::INSERT_SUBVECTOR: {
   3122     SDValue Index = N3;
   3123     if (VT.isSimple() && N1.getValueType().isSimple()
   3124         && N2.getValueType().isSimple()) {
   3125       assert(VT.isVector() && N1.getValueType().isVector() &&
   3126              N2.getValueType().isVector() &&
   3127              "Insert subvector VTs must be a vectors");
   3128       assert(VT == N1.getValueType() &&
   3129              "Dest and insert subvector source types must match!");
   3130       assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
   3131              "Insert subvector must be from smaller vector to larger vector!");
   3132       if (isa<ConstantSDNode>(Index.getNode())) {
   3133         assert((N2.getValueType().getVectorNumElements() +
   3134                 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
   3135                 <= VT.getVectorNumElements())
   3136                && "Insert subvector overflow!");
   3137       }
   3138 
   3139       // Trivial insertion.
   3140       if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
   3141         return N2;
   3142     }
   3143     break;
   3144   }
   3145   case ISD::BITCAST:
   3146     // Fold bit_convert nodes from a type to themselves.
   3147     if (N1.getValueType() == VT)
   3148       return N1;
   3149     break;
   3150   }
   3151 
   3152   // Memoize node if it doesn't produce a flag.
   3153   SDNode *N;
   3154   SDVTList VTs = getVTList(VT);
   3155   if (VT != MVT::Glue) {
   3156     SDValue Ops[] = { N1, N2, N3 };
   3157     FoldingSetNodeID ID;
   3158     AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
   3159     void *IP = 0;
   3160     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   3161       return SDValue(E, 0);
   3162 
   3163     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
   3164     CSEMap.InsertNode(N, IP);
   3165   } else {
   3166     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
   3167   }
   3168 
   3169   AllNodes.push_back(N);
   3170 #ifndef NDEBUG
   3171   VerifySDNode(N);
   3172 #endif
   3173   return SDValue(N, 0);
   3174 }
   3175 
   3176 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   3177                               SDValue N1, SDValue N2, SDValue N3,
   3178                               SDValue N4) {
   3179   SDValue Ops[] = { N1, N2, N3, N4 };
   3180   return getNode(Opcode, DL, VT, Ops, 4);
   3181 }
   3182 
   3183 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   3184                               SDValue N1, SDValue N2, SDValue N3,
   3185                               SDValue N4, SDValue N5) {
   3186   SDValue Ops[] = { N1, N2, N3, N4, N5 };
   3187   return getNode(Opcode, DL, VT, Ops, 5);
   3188 }
   3189 
   3190 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
   3191 /// the incoming stack arguments to be loaded from the stack.
   3192 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
   3193   SmallVector<SDValue, 8> ArgChains;
   3194 
   3195   // Include the original chain at the beginning of the list. When this is
   3196   // used by target LowerCall hooks, this helps legalize find the
   3197   // CALLSEQ_BEGIN node.
   3198   ArgChains.push_back(Chain);
   3199 
   3200   // Add a chain value for each stack argument.
   3201   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
   3202        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
   3203     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
   3204       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
   3205         if (FI->getIndex() < 0)
   3206           ArgChains.push_back(SDValue(L, 1));
   3207 
   3208   // Build a tokenfactor for all the chains.
   3209   return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
   3210                  &ArgChains[0], ArgChains.size());
   3211 }
   3212 
   3213 /// SplatByte - Distribute ByteVal over NumBits bits.
   3214 static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
   3215   APInt Val = APInt(NumBits, ByteVal);
   3216   unsigned Shift = 8;
   3217   for (unsigned i = NumBits; i > 8; i >>= 1) {
   3218     Val = (Val << Shift) | Val;
   3219     Shift <<= 1;
   3220   }
   3221   return Val;
   3222 }
   3223 
   3224 /// getMemsetValue - Vectorized representation of the memset value
   3225 /// operand.
   3226 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
   3227                               DebugLoc dl) {
   3228   assert(Value.getOpcode() != ISD::UNDEF);
   3229 
   3230   unsigned NumBits = VT.getScalarType().getSizeInBits();
   3231   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
   3232     APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
   3233     if (VT.isInteger())
   3234       return DAG.getConstant(Val, VT);
   3235     return DAG.getConstantFP(APFloat(Val), VT);
   3236   }
   3237 
   3238   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
   3239   if (NumBits > 8) {
   3240     // Use a multiplication with 0x010101... to extend the input to the
   3241     // required length.
   3242     APInt Magic = SplatByte(NumBits, 0x01);
   3243     Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
   3244   }
   3245 
   3246   return Value;
   3247 }
   3248 
   3249 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
   3250 /// used when a memcpy is turned into a memset when the source is a constant
   3251 /// string ptr.
   3252 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
   3253                                   const TargetLowering &TLI,
   3254                                   std::string &Str, unsigned Offset) {
   3255   // Handle vector with all elements zero.
   3256   if (Str.empty()) {
   3257     if (VT.isInteger())
   3258       return DAG.getConstant(0, VT);
   3259     else if (VT == MVT::f32 || VT == MVT::f64)
   3260       return DAG.getConstantFP(0.0, VT);
   3261     else if (VT.isVector()) {
   3262       unsigned NumElts = VT.getVectorNumElements();
   3263       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
   3264       return DAG.getNode(ISD::BITCAST, dl, VT,
   3265                          DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
   3266                                                              EltVT, NumElts)));
   3267     } else
   3268       llvm_unreachable("Expected type!");
   3269   }
   3270 
   3271   assert(!VT.isVector() && "Can't handle vector type here!");
   3272   unsigned NumBits = VT.getSizeInBits();
   3273   unsigned MSB = NumBits / 8;
   3274   uint64_t Val = 0;
   3275   if (TLI.isLittleEndian())
   3276     Offset = Offset + MSB - 1;
   3277   for (unsigned i = 0; i != MSB; ++i) {
   3278     Val = (Val << 8) | (unsigned char)Str[Offset];
   3279     Offset += TLI.isLittleEndian() ? -1 : 1;
   3280   }
   3281   return DAG.getConstant(Val, VT);
   3282 }
   3283 
   3284 /// getMemBasePlusOffset - Returns base and offset node for the
   3285 ///
   3286 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
   3287                                       SelectionDAG &DAG) {
   3288   EVT VT = Base.getValueType();
   3289   return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
   3290                      VT, Base, DAG.getConstant(Offset, VT));
   3291 }
   3292 
   3293 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
   3294 ///
   3295 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
   3296   unsigned SrcDelta = 0;
   3297   GlobalAddressSDNode *G = NULL;
   3298   if (Src.getOpcode() == ISD::GlobalAddress)
   3299     G = cast<GlobalAddressSDNode>(Src);
   3300   else if (Src.getOpcode() == ISD::ADD &&
   3301            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
   3302            Src.getOperand(1).getOpcode() == ISD::Constant) {
   3303     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
   3304     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
   3305   }
   3306   if (!G)
   3307     return false;
   3308 
   3309   const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
   3310   if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
   3311     return true;
   3312 
   3313   return false;
   3314 }
   3315 
   3316 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
   3317 /// to replace the memset / memcpy. Return true if the number of memory ops
   3318 /// is below the threshold. It returns the types of the sequence of
   3319 /// memory ops to perform memset / memcpy by reference.
   3320 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
   3321                                      unsigned Limit, uint64_t Size,
   3322                                      unsigned DstAlign, unsigned SrcAlign,
   3323                                      bool NonScalarIntSafe,
   3324                                      bool MemcpyStrSrc,
   3325                                      SelectionDAG &DAG,
   3326                                      const TargetLowering &TLI) {
   3327   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
   3328          "Expecting memcpy / memset source to meet alignment requirement!");
   3329   // If 'SrcAlign' is zero, that means the memory operation does not need to
   3330   // load the value, i.e. memset or memcpy from constant string. Otherwise,
   3331   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
   3332   // is the specified alignment of the memory operation. If it is zero, that
   3333   // means it's possible to change the alignment of the destination.
   3334   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
   3335   // not need to be loaded.
   3336   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
   3337                                    NonScalarIntSafe, MemcpyStrSrc,
   3338                                    DAG.getMachineFunction());
   3339 
   3340   if (VT == MVT::Other) {
   3341     if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
   3342         TLI.allowsUnalignedMemoryAccesses(VT)) {
   3343       VT = TLI.getPointerTy();
   3344     } else {
   3345       switch (DstAlign & 7) {
   3346       case 0:  VT = MVT::i64; break;
   3347       case 4:  VT = MVT::i32; break;
   3348       case 2:  VT = MVT::i16; break;
   3349       default: VT = MVT::i8;  break;
   3350       }
   3351     }
   3352 
   3353     MVT LVT = MVT::i64;
   3354     while (!TLI.isTypeLegal(LVT))
   3355       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
   3356     assert(LVT.isInteger());
   3357 
   3358     if (VT.bitsGT(LVT))
   3359       VT = LVT;
   3360   }
   3361 
   3362   unsigned NumMemOps = 0;
   3363   while (Size != 0) {
   3364     unsigned VTSize = VT.getSizeInBits() / 8;
   3365     while (VTSize > Size) {
   3366       // For now, only use non-vector load / store's for the left-over pieces.
   3367       if (VT.isVector() || VT.isFloatingPoint()) {
   3368         VT = MVT::i64;
   3369         while (!TLI.isTypeLegal(VT))
   3370           VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
   3371         VTSize = VT.getSizeInBits() / 8;
   3372       } else {
   3373         // This can result in a type that is not legal on the target, e.g.
   3374         // 1 or 2 bytes on PPC.
   3375         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
   3376         VTSize >>= 1;
   3377       }
   3378     }
   3379 
   3380     if (++NumMemOps > Limit)
   3381       return false;
   3382     MemOps.push_back(VT);
   3383     Size -= VTSize;
   3384   }
   3385 
   3386   return true;
   3387 }
   3388 
   3389 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
   3390                                        SDValue Chain, SDValue Dst,
   3391                                        SDValue Src, uint64_t Size,
   3392                                        unsigned Align, bool isVol,
   3393                                        bool AlwaysInline,
   3394                                        MachinePointerInfo DstPtrInfo,
   3395                                        MachinePointerInfo SrcPtrInfo) {
   3396   // Turn a memcpy of undef to nop.
   3397   if (Src.getOpcode() == ISD::UNDEF)
   3398     return Chain;
   3399 
   3400   // Expand memcpy to a series of load and store ops if the size operand falls
   3401   // below a certain threshold.
   3402   // TODO: In the AlwaysInline case, if the size is big then generate a loop
   3403   // rather than maybe a humongous number of loads and stores.
   3404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3405   std::vector<EVT> MemOps;
   3406   bool DstAlignCanChange = false;
   3407   MachineFunction &MF = DAG.getMachineFunction();
   3408   MachineFrameInfo *MFI = MF.getFrameInfo();
   3409   bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   3410   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
   3411   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
   3412     DstAlignCanChange = true;
   3413   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
   3414   if (Align > SrcAlign)
   3415     SrcAlign = Align;
   3416   std::string Str;
   3417   bool CopyFromStr = isMemSrcFromString(Src, Str);
   3418   bool isZeroStr = CopyFromStr && Str.empty();
   3419   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
   3420 
   3421   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
   3422                                 (DstAlignCanChange ? 0 : Align),
   3423                                 (isZeroStr ? 0 : SrcAlign),
   3424                                 true, CopyFromStr, DAG, TLI))
   3425     return SDValue();
   3426 
   3427   if (DstAlignCanChange) {
   3428     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
   3429     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
   3430     if (NewAlign > Align) {
   3431       // Give the stack frame object a larger alignment if needed.
   3432       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
   3433         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
   3434       Align = NewAlign;
   3435     }
   3436   }
   3437 
   3438   SmallVector<SDValue, 8> OutChains;
   3439   unsigned NumMemOps = MemOps.size();
   3440   uint64_t SrcOff = 0, DstOff = 0;
   3441   for (unsigned i = 0; i != NumMemOps; ++i) {
   3442     EVT VT = MemOps[i];
   3443     unsigned VTSize = VT.getSizeInBits() / 8;
   3444     SDValue Value, Store;
   3445 
   3446     if (CopyFromStr &&
   3447         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
   3448       // It's unlikely a store of a vector immediate can be done in a single
   3449       // instruction. It would require a load from a constantpool first.
   3450       // We only handle zero vectors here.
   3451       // FIXME: Handle other cases where store of vector immediate is done in
   3452       // a single instruction.
   3453       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
   3454       Store = DAG.getStore(Chain, dl, Value,
   3455                            getMemBasePlusOffset(Dst, DstOff, DAG),
   3456                            DstPtrInfo.getWithOffset(DstOff), isVol,
   3457                            false, Align);
   3458     } else {
   3459       // The type might not be legal for the target.  This should only happen
   3460       // if the type is smaller than a legal type, as on PPC, so the right
   3461       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
   3462       // to Load/Store if NVT==VT.
   3463       // FIXME does the case above also need this?
   3464       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
   3465       assert(NVT.bitsGE(VT));
   3466       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
   3467                              getMemBasePlusOffset(Src, SrcOff, DAG),
   3468                              SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
   3469                              MinAlign(SrcAlign, SrcOff));
   3470       Store = DAG.getTruncStore(Chain, dl, Value,
   3471                                 getMemBasePlusOffset(Dst, DstOff, DAG),
   3472                                 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
   3473                                 false, Align);
   3474     }
   3475     OutChains.push_back(Store);
   3476     SrcOff += VTSize;
   3477     DstOff += VTSize;
   3478   }
   3479 
   3480   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3481                      &OutChains[0], OutChains.size());
   3482 }
   3483 
   3484 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
   3485                                         SDValue Chain, SDValue Dst,
   3486                                         SDValue Src, uint64_t Size,
   3487                                         unsigned Align,  bool isVol,
   3488                                         bool AlwaysInline,
   3489                                         MachinePointerInfo DstPtrInfo,
   3490                                         MachinePointerInfo SrcPtrInfo) {
   3491   // Turn a memmove of undef to nop.
   3492   if (Src.getOpcode() == ISD::UNDEF)
   3493     return Chain;
   3494 
   3495   // Expand memmove to a series of load and store ops if the size operand falls
   3496   // below a certain threshold.
   3497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3498   std::vector<EVT> MemOps;
   3499   bool DstAlignCanChange = false;
   3500   MachineFunction &MF = DAG.getMachineFunction();
   3501   MachineFrameInfo *MFI = MF.getFrameInfo();
   3502   bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   3503   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
   3504   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
   3505     DstAlignCanChange = true;
   3506   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
   3507   if (Align > SrcAlign)
   3508     SrcAlign = Align;
   3509   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
   3510 
   3511   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
   3512                                 (DstAlignCanChange ? 0 : Align),
   3513                                 SrcAlign, true, false, DAG, TLI))
   3514     return SDValue();
   3515 
   3516   if (DstAlignCanChange) {
   3517     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
   3518     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
   3519     if (NewAlign > Align) {
   3520       // Give the stack frame object a larger alignment if needed.
   3521       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
   3522         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
   3523       Align = NewAlign;
   3524     }
   3525   }
   3526 
   3527   uint64_t SrcOff = 0, DstOff = 0;
   3528   SmallVector<SDValue, 8> LoadValues;
   3529   SmallVector<SDValue, 8> LoadChains;
   3530   SmallVector<SDValue, 8> OutChains;
   3531   unsigned NumMemOps = MemOps.size();
   3532   for (unsigned i = 0; i < NumMemOps; i++) {
   3533     EVT VT = MemOps[i];
   3534     unsigned VTSize = VT.getSizeInBits() / 8;
   3535     SDValue Value, Store;
   3536 
   3537     Value = DAG.getLoad(VT, dl, Chain,
   3538                         getMemBasePlusOffset(Src, SrcOff, DAG),
   3539                         SrcPtrInfo.getWithOffset(SrcOff), isVol,
   3540                         false, SrcAlign);
   3541     LoadValues.push_back(Value);
   3542     LoadChains.push_back(Value.getValue(1));
   3543     SrcOff += VTSize;
   3544   }
   3545   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3546                       &LoadChains[0], LoadChains.size());
   3547   OutChains.clear();
   3548   for (unsigned i = 0; i < NumMemOps; i++) {
   3549     EVT VT = MemOps[i];
   3550     unsigned VTSize = VT.getSizeInBits() / 8;
   3551     SDValue Value, Store;
   3552 
   3553     Store = DAG.getStore(Chain, dl, LoadValues[i],
   3554                          getMemBasePlusOffset(Dst, DstOff, DAG),
   3555                          DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
   3556     OutChains.push_back(Store);
   3557     DstOff += VTSize;
   3558   }
   3559 
   3560   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3561                      &OutChains[0], OutChains.size());
   3562 }
   3563 
   3564 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
   3565                                SDValue Chain, SDValue Dst,
   3566                                SDValue Src, uint64_t Size,
   3567                                unsigned Align, bool isVol,
   3568                                MachinePointerInfo DstPtrInfo) {
   3569   // Turn a memset of undef to nop.
   3570   if (Src.getOpcode() == ISD::UNDEF)
   3571     return Chain;
   3572 
   3573   // Expand memset to a series of load/store ops if the size operand
   3574   // falls below a certain threshold.
   3575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3576   std::vector<EVT> MemOps;
   3577   bool DstAlignCanChange = false;
   3578   MachineFunction &MF = DAG.getMachineFunction();
   3579   MachineFrameInfo *MFI = MF.getFrameInfo();
   3580   bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   3581   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
   3582   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
   3583     DstAlignCanChange = true;
   3584   bool NonScalarIntSafe =
   3585     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
   3586   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
   3587                                 Size, (DstAlignCanChange ? 0 : Align), 0,
   3588                                 NonScalarIntSafe, false, DAG, TLI))
   3589     return SDValue();
   3590 
   3591   if (DstAlignCanChange) {
   3592     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
   3593     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
   3594     if (NewAlign > Align) {
   3595       // Give the stack frame object a larger alignment if needed.
   3596       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
   3597         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
   3598       Align = NewAlign;
   3599     }
   3600   }
   3601 
   3602   SmallVector<SDValue, 8> OutChains;
   3603   uint64_t DstOff = 0;
   3604   unsigned NumMemOps = MemOps.size();
   3605 
   3606   // Find the largest store and generate the bit pattern for it.
   3607   EVT LargestVT = MemOps[0];
   3608   for (unsigned i = 1; i < NumMemOps; i++)
   3609     if (MemOps[i].bitsGT(LargestVT))
   3610       LargestVT = MemOps[i];
   3611   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
   3612 
   3613   for (unsigned i = 0; i < NumMemOps; i++) {
   3614     EVT VT = MemOps[i];
   3615 
   3616     // If this store is smaller than the largest store see whether we can get
   3617     // the smaller value for free with a truncate.
   3618     SDValue Value = MemSetValue;
   3619     if (VT.bitsLT(LargestVT)) {
   3620       if (!LargestVT.isVector() && !VT.isVector() &&
   3621           TLI.isTruncateFree(LargestVT, VT))
   3622         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
   3623       else
   3624         Value = getMemsetValue(Src, VT, DAG, dl);
   3625     }
   3626     assert(Value.getValueType() == VT && "Value with wrong type.");
   3627     SDValue Store = DAG.getStore(Chain, dl, Value,
   3628                                  getMemBasePlusOffset(Dst, DstOff, DAG),
   3629                                  DstPtrInfo.getWithOffset(DstOff),
   3630                                  isVol, false, Align);
   3631     OutChains.push_back(Store);
   3632     DstOff += VT.getSizeInBits() / 8;
   3633   }
   3634 
   3635   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3636                      &OutChains[0], OutChains.size());
   3637 }
   3638 
   3639 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
   3640                                 SDValue Src, SDValue Size,
   3641                                 unsigned Align, bool isVol, bool AlwaysInline,
   3642                                 MachinePointerInfo DstPtrInfo,
   3643                                 MachinePointerInfo SrcPtrInfo) {
   3644 
   3645   // Check to see if we should lower the memcpy to loads and stores first.
   3646   // For cases within the target-specified limits, this is the best choice.
   3647   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
   3648   if (ConstantSize) {
   3649     // Memcpy with size zero? Just return the original chain.
   3650     if (ConstantSize->isNullValue())
   3651       return Chain;
   3652 
   3653     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
   3654                                              ConstantSize->getZExtValue(),Align,
   3655                                 isVol, false, DstPtrInfo, SrcPtrInfo);
   3656     if (Result.getNode())
   3657       return Result;
   3658   }
   3659 
   3660   // Then check to see if we should lower the memcpy with target-specific
   3661   // code. If the target chooses to do this, this is the next best.
   3662   SDValue Result =
   3663     TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
   3664                                 isVol, AlwaysInline,
   3665                                 DstPtrInfo, SrcPtrInfo);
   3666   if (Result.getNode())
   3667     return Result;
   3668 
   3669   // If we really need inline code and the target declined to provide it,
   3670   // use a (potentially long) sequence of loads and stores.
   3671   if (AlwaysInline) {
   3672     assert(ConstantSize && "AlwaysInline requires a constant size!");
   3673     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
   3674                                    ConstantSize->getZExtValue(), Align, isVol,
   3675                                    true, DstPtrInfo, SrcPtrInfo);
   3676   }
   3677 
   3678   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
   3679   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
   3680   // respect volatile, so they may do things like read or write memory
   3681   // beyond the given memory regions. But fixing this isn't easy, and most
   3682   // people don't care.
   3683 
   3684   // Emit a library call.
   3685   TargetLowering::ArgListTy Args;
   3686   TargetLowering::ArgListEntry Entry;
   3687   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
   3688   Entry.Node = Dst; Args.push_back(Entry);
   3689   Entry.Node = Src; Args.push_back(Entry);
   3690   Entry.Node = Size; Args.push_back(Entry);
   3691   // FIXME: pass in DebugLoc
   3692   std::pair<SDValue,SDValue> CallResult =
   3693     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
   3694                     false, false, false, false, 0,
   3695                     TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
   3696                     /*isReturnValueUsed=*/false,
   3697                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
   3698                                       TLI.getPointerTy()),
   3699                     Args, *this, dl);
   3700   return CallResult.second;
   3701 }
   3702 
   3703 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
   3704                                  SDValue Src, SDValue Size,
   3705                                  unsigned Align, bool isVol,
   3706                                  MachinePointerInfo DstPtrInfo,
   3707                                  MachinePointerInfo SrcPtrInfo) {
   3708 
   3709   // Check to see if we should lower the memmove to loads and stores first.
   3710   // For cases within the target-specified limits, this is the best choice.
   3711   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
   3712   if (ConstantSize) {
   3713     // Memmove with size zero? Just return the original chain.
   3714     if (ConstantSize->isNullValue())
   3715       return Chain;
   3716 
   3717     SDValue Result =
   3718       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
   3719                                ConstantSize->getZExtValue(), Align, isVol,
   3720                                false, DstPtrInfo, SrcPtrInfo);
   3721     if (Result.getNode())
   3722       return Result;
   3723   }
   3724 
   3725   // Then check to see if we should lower the memmove with target-specific
   3726   // code. If the target chooses to do this, this is the next best.
   3727   SDValue Result =
   3728     TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
   3729                                  DstPtrInfo, SrcPtrInfo);
   3730   if (Result.getNode())
   3731     return Result;
   3732 
   3733   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
   3734   // not be safe.  See memcpy above for more details.
   3735 
   3736   // Emit a library call.
   3737   TargetLowering::ArgListTy Args;
   3738   TargetLowering::ArgListEntry Entry;
   3739   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
   3740   Entry.Node = Dst; Args.push_back(Entry);
   3741   Entry.Node = Src; Args.push_back(Entry);
   3742   Entry.Node = Size; Args.push_back(Entry);
   3743   // FIXME:  pass in DebugLoc
   3744   std::pair<SDValue,SDValue> CallResult =
   3745     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
   3746                     false, false, false, false, 0,
   3747                     TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
   3748                     /*isReturnValueUsed=*/false,
   3749                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
   3750                                       TLI.getPointerTy()),
   3751                     Args, *this, dl);
   3752   return CallResult.second;
   3753 }
   3754 
   3755 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
   3756                                 SDValue Src, SDValue Size,
   3757                                 unsigned Align, bool isVol,
   3758                                 MachinePointerInfo DstPtrInfo) {
   3759 
   3760   // Check to see if we should lower the memset to stores first.
   3761   // For cases within the target-specified limits, this is the best choice.
   3762   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
   3763   if (ConstantSize) {
   3764     // Memset with size zero? Just return the original chain.
   3765     if (ConstantSize->isNullValue())
   3766       return Chain;
   3767 
   3768     SDValue Result =
   3769       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
   3770                       Align, isVol, DstPtrInfo);
   3771 
   3772     if (Result.getNode())
   3773       return Result;
   3774   }
   3775 
   3776   // Then check to see if we should lower the memset with target-specific
   3777   // code. If the target chooses to do this, this is the next best.
   3778   SDValue Result =
   3779     TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
   3780                                 DstPtrInfo);
   3781   if (Result.getNode())
   3782     return Result;
   3783 
   3784   // Emit a library call.
   3785   Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
   3786   TargetLowering::ArgListTy Args;
   3787   TargetLowering::ArgListEntry Entry;
   3788   Entry.Node = Dst; Entry.Ty = IntPtrTy;
   3789   Args.push_back(Entry);
   3790   // Extend or truncate the argument to be an i32 value for the call.
   3791   if (Src.getValueType().bitsGT(MVT::i32))
   3792     Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
   3793   else
   3794     Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
   3795   Entry.Node = Src;
   3796   Entry.Ty = Type::getInt32Ty(*getContext());
   3797   Entry.isSExt = true;
   3798   Args.push_back(Entry);
   3799   Entry.Node = Size;
   3800   Entry.Ty = IntPtrTy;
   3801   Entry.isSExt = false;
   3802   Args.push_back(Entry);
   3803   // FIXME: pass in DebugLoc
   3804   std::pair<SDValue,SDValue> CallResult =
   3805     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
   3806                     false, false, false, false, 0,
   3807                     TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
   3808                     /*isReturnValueUsed=*/false,
   3809                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
   3810                                       TLI.getPointerTy()),
   3811                     Args, *this, dl);
   3812   return CallResult.second;
   3813 }
   3814 
   3815 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
   3816                                 SDValue Chain, SDValue Ptr, SDValue Cmp,
   3817                                 SDValue Swp, MachinePointerInfo PtrInfo,
   3818                                 unsigned Alignment) {
   3819   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   3820     Alignment = getEVTAlignment(MemVT);
   3821 
   3822   MachineFunction &MF = getMachineFunction();
   3823   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   3824 
   3825   // For now, atomics are considered to be volatile always.
   3826   Flags |= MachineMemOperand::MOVolatile;
   3827 
   3828   MachineMemOperand *MMO =
   3829     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
   3830 
   3831   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
   3832 }
   3833 
   3834 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
   3835                                 SDValue Chain,
   3836                                 SDValue Ptr, SDValue Cmp,
   3837                                 SDValue Swp, MachineMemOperand *MMO) {
   3838   assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
   3839   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
   3840 
   3841   EVT VT = Cmp.getValueType();
   3842 
   3843   SDVTList VTs = getVTList(VT, MVT::Other);
   3844   FoldingSetNodeID ID;
   3845   ID.AddInteger(MemVT.getRawBits());
   3846   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
   3847   AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
   3848   void* IP = 0;
   3849   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   3850     cast<AtomicSDNode>(E)->refineAlignment(MMO);
   3851     return SDValue(E, 0);
   3852   }
   3853   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
   3854                                                Ptr, Cmp, Swp, MMO);
   3855   CSEMap.InsertNode(N, IP);
   3856   AllNodes.push_back(N);
   3857   return SDValue(N, 0);
   3858 }
   3859 
   3860 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
   3861                                 SDValue Chain,
   3862                                 SDValue Ptr, SDValue Val,
   3863                                 const Value* PtrVal,
   3864                                 unsigned Alignment) {
   3865   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   3866     Alignment = getEVTAlignment(MemVT);
   3867 
   3868   MachineFunction &MF = getMachineFunction();
   3869   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   3870 
   3871   // For now, atomics are considered to be volatile always.
   3872   Flags |= MachineMemOperand::MOVolatile;
   3873 
   3874   MachineMemOperand *MMO =
   3875     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
   3876                             MemVT.getStoreSize(), Alignment);
   3877 
   3878   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
   3879 }
   3880 
   3881 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
   3882                                 SDValue Chain,
   3883                                 SDValue Ptr, SDValue Val,
   3884                                 MachineMemOperand *MMO) {
   3885   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
   3886           Opcode == ISD::ATOMIC_LOAD_SUB ||
   3887           Opcode == ISD::ATOMIC_LOAD_AND ||
   3888           Opcode == ISD::ATOMIC_LOAD_OR ||
   3889           Opcode == ISD::ATOMIC_LOAD_XOR ||
   3890           Opcode == ISD::ATOMIC_LOAD_NAND ||
   3891           Opcode == ISD::ATOMIC_LOAD_MIN ||
   3892           Opcode == ISD::ATOMIC_LOAD_MAX ||
   3893           Opcode == ISD::ATOMIC_LOAD_UMIN ||
   3894           Opcode == ISD::ATOMIC_LOAD_UMAX ||
   3895           Opcode == ISD::ATOMIC_SWAP) &&
   3896          "Invalid Atomic Op");
   3897 
   3898   EVT VT = Val.getValueType();
   3899 
   3900   SDVTList VTs = getVTList(VT, MVT::Other);
   3901   FoldingSetNodeID ID;
   3902   ID.AddInteger(MemVT.getRawBits());
   3903   SDValue Ops[] = {Chain, Ptr, Val};
   3904   AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
   3905   void* IP = 0;
   3906   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   3907     cast<AtomicSDNode>(E)->refineAlignment(MMO);
   3908     return SDValue(E, 0);
   3909   }
   3910   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
   3911                                                Ptr, Val, MMO);
   3912   CSEMap.InsertNode(N, IP);
   3913   AllNodes.push_back(N);
   3914   return SDValue(N, 0);
   3915 }
   3916 
   3917 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
   3918 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
   3919                                      DebugLoc dl) {
   3920   if (NumOps == 1)
   3921     return Ops[0];
   3922 
   3923   SmallVector<EVT, 4> VTs;
   3924   VTs.reserve(NumOps);
   3925   for (unsigned i = 0; i < NumOps; ++i)
   3926     VTs.push_back(Ops[i].getValueType());
   3927   return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
   3928                  Ops, NumOps);
   3929 }
   3930 
   3931 SDValue
   3932 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
   3933                                   const EVT *VTs, unsigned NumVTs,
   3934                                   const SDValue *Ops, unsigned NumOps,
   3935                                   EVT MemVT, MachinePointerInfo PtrInfo,
   3936                                   unsigned Align, bool Vol,
   3937                                   bool ReadMem, bool WriteMem) {
   3938   return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
   3939                              MemVT, PtrInfo, Align, Vol,
   3940                              ReadMem, WriteMem);
   3941 }
   3942 
   3943 SDValue
   3944 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
   3945                                   const SDValue *Ops, unsigned NumOps,
   3946                                   EVT MemVT, MachinePointerInfo PtrInfo,
   3947                                   unsigned Align, bool Vol,
   3948                                   bool ReadMem, bool WriteMem) {
   3949   if (Align == 0)  // Ensure that codegen never sees alignment 0
   3950     Align = getEVTAlignment(MemVT);
   3951 
   3952   MachineFunction &MF = getMachineFunction();
   3953   unsigned Flags = 0;
   3954   if (WriteMem)
   3955     Flags |= MachineMemOperand::MOStore;
   3956   if (ReadMem)
   3957     Flags |= MachineMemOperand::MOLoad;
   3958   if (Vol)
   3959     Flags |= MachineMemOperand::MOVolatile;
   3960   MachineMemOperand *MMO =
   3961     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
   3962 
   3963   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
   3964 }
   3965 
   3966 SDValue
   3967 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
   3968                                   const SDValue *Ops, unsigned NumOps,
   3969                                   EVT MemVT, MachineMemOperand *MMO) {
   3970   assert((Opcode == ISD::INTRINSIC_VOID ||
   3971           Opcode == ISD::INTRINSIC_W_CHAIN ||
   3972           Opcode == ISD::PREFETCH ||
   3973           (Opcode <= INT_MAX &&
   3974            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
   3975          "Opcode is not a memory-accessing opcode!");
   3976 
   3977   // Memoize the node unless it returns a flag.
   3978   MemIntrinsicSDNode *N;
   3979   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
   3980     FoldingSetNodeID ID;
   3981     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
   3982     void *IP = 0;
   3983     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   3984       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
   3985       return SDValue(E, 0);
   3986     }
   3987 
   3988     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
   3989                                                MemVT, MMO);
   3990     CSEMap.InsertNode(N, IP);
   3991   } else {
   3992     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
   3993                                                MemVT, MMO);
   3994   }
   3995   AllNodes.push_back(N);
   3996   return SDValue(N, 0);
   3997 }
   3998 
   3999 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
   4000 /// MachinePointerInfo record from it.  This is particularly useful because the
   4001 /// code generator has many cases where it doesn't bother passing in a
   4002 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
   4003 static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
   4004   // If this is FI+Offset, we can model it.
   4005   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
   4006     return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
   4007 
   4008   // If this is (FI+Offset1)+Offset2, we can model it.
   4009   if (Ptr.getOpcode() != ISD::ADD ||
   4010       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
   4011       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
   4012     return MachinePointerInfo();
   4013 
   4014   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   4015   return MachinePointerInfo::getFixedStack(FI, Offset+
   4016                        cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
   4017 }
   4018 
   4019 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
   4020 /// MachinePointerInfo record from it.  This is particularly useful because the
   4021 /// code generator has many cases where it doesn't bother passing in a
   4022 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
   4023 static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
   4024   // If the 'Offset' value isn't a constant, we can't handle this.
   4025   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
   4026     return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
   4027   if (OffsetOp.getOpcode() == ISD::UNDEF)
   4028     return InferPointerInfo(Ptr);
   4029   return MachinePointerInfo();
   4030 }
   4031 
   4032 
   4033 SDValue
   4034 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
   4035                       EVT VT, DebugLoc dl, SDValue Chain,
   4036                       SDValue Ptr, SDValue Offset,
   4037                       MachinePointerInfo PtrInfo, EVT MemVT,
   4038                       bool isVolatile, bool isNonTemporal,
   4039                       unsigned Alignment, const MDNode *TBAAInfo) {
   4040   assert(Chain.getValueType() == MVT::Other &&
   4041         "Invalid chain type");
   4042   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   4043     Alignment = getEVTAlignment(VT);
   4044 
   4045   unsigned Flags = MachineMemOperand::MOLoad;
   4046   if (isVolatile)
   4047     Flags |= MachineMemOperand::MOVolatile;
   4048   if (isNonTemporal)
   4049     Flags |= MachineMemOperand::MONonTemporal;
   4050 
   4051   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
   4052   // clients.
   4053   if (PtrInfo.V == 0)
   4054     PtrInfo = InferPointerInfo(Ptr, Offset);
   4055 
   4056   MachineFunction &MF = getMachineFunction();
   4057   MachineMemOperand *MMO =
   4058     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
   4059                             TBAAInfo);
   4060   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
   4061 }
   4062 
   4063 SDValue
   4064 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
   4065                       EVT VT, DebugLoc dl, SDValue Chain,
   4066                       SDValue Ptr, SDValue Offset, EVT MemVT,
   4067                       MachineMemOperand *MMO) {
   4068   if (VT == MemVT) {
   4069     ExtType = ISD::NON_EXTLOAD;
   4070   } else if (ExtType == ISD::NON_EXTLOAD) {
   4071     assert(VT == MemVT && "Non-extending load from different memory type!");
   4072   } else {
   4073     // Extending load.
   4074     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
   4075            "Should only be an extending load, not truncating!");
   4076     assert(VT.isInteger() == MemVT.isInteger() &&
   4077            "Cannot convert from FP to Int or Int -> FP!");
   4078     assert(VT.isVector() == MemVT.isVector() &&
   4079            "Cannot use trunc store to convert to or from a vector!");
   4080     assert((!VT.isVector() ||
   4081             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
   4082            "Cannot use trunc store to change the number of vector elements!");
   4083   }
   4084 
   4085   bool Indexed = AM != ISD::UNINDEXED;
   4086   assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
   4087          "Unindexed load with an offset!");
   4088 
   4089   SDVTList VTs = Indexed ?
   4090     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
   4091   SDValue Ops[] = { Chain, Ptr, Offset };
   4092   FoldingSetNodeID ID;
   4093   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
   4094   ID.AddInteger(MemVT.getRawBits());
   4095   ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
   4096                                      MMO->isNonTemporal()));
   4097   void *IP = 0;
   4098   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   4099     cast<LoadSDNode>(E)->refineAlignment(MMO);
   4100     return SDValue(E, 0);
   4101   }
   4102   SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
   4103                                              MemVT, MMO);
   4104   CSEMap.InsertNode(N, IP);
   4105   AllNodes.push_back(N);
   4106   return SDValue(N, 0);
   4107 }
   4108 
   4109 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
   4110                               SDValue Chain, SDValue Ptr,
   4111                               MachinePointerInfo PtrInfo,
   4112                               bool isVolatile, bool isNonTemporal,
   4113                               unsigned Alignment, const MDNode *TBAAInfo) {
   4114   SDValue Undef = getUNDEF(Ptr.getValueType());
   4115   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
   4116                  PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
   4117 }
   4118 
   4119 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
   4120                                  SDValue Chain, SDValue Ptr,
   4121                                  MachinePointerInfo PtrInfo, EVT MemVT,
   4122                                  bool isVolatile, bool isNonTemporal,
   4123                                  unsigned Alignment, const MDNode *TBAAInfo) {
   4124   SDValue Undef = getUNDEF(Ptr.getValueType());
   4125   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
   4126                  PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
   4127                  TBAAInfo);
   4128 }
   4129 
   4130 
   4131 SDValue
   4132 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
   4133                              SDValue Offset, ISD::MemIndexedMode AM) {
   4134   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
   4135   assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
   4136          "Load is already a indexed load!");
   4137   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
   4138                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
   4139                  LD->getMemoryVT(),
   4140                  LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
   4141 }
   4142 
   4143 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
   4144                                SDValue Ptr, MachinePointerInfo PtrInfo,
   4145                                bool isVolatile, bool isNonTemporal,
   4146                                unsigned Alignment, const MDNode *TBAAInfo) {
   4147   assert(Chain.getValueType() == MVT::Other &&
   4148         "Invalid chain type");
   4149   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   4150     Alignment = getEVTAlignment(Val.getValueType());
   4151 
   4152   unsigned Flags = MachineMemOperand::MOStore;
   4153   if (isVolatile)
   4154     Flags |= MachineMemOperand::MOVolatile;
   4155   if (isNonTemporal)
   4156     Flags |= MachineMemOperand::MONonTemporal;
   4157 
   4158   if (PtrInfo.V == 0)
   4159     PtrInfo = InferPointerInfo(Ptr);
   4160 
   4161   MachineFunction &MF = getMachineFunction();
   4162   MachineMemOperand *MMO =
   4163     MF.getMachineMemOperand(PtrInfo, Flags,
   4164                             Val.getValueType().getStoreSize(), Alignment,
   4165                             TBAAInfo);
   4166 
   4167   return getStore(Chain, dl, Val, Ptr, MMO);
   4168 }
   4169 
   4170 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
   4171                                SDValue Ptr, MachineMemOperand *MMO) {
   4172   assert(Chain.getValueType() == MVT::Other &&
   4173         "Invalid chain type");
   4174   EVT VT = Val.getValueType();
   4175   SDVTList VTs = getVTList(MVT::Other);
   4176   SDValue Undef = getUNDEF(Ptr.getValueType());
   4177   SDValue Ops[] = { Chain, Val, Ptr, Undef };
   4178   FoldingSetNodeID ID;
   4179   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
   4180   ID.AddInteger(VT.getRawBits());
   4181   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
   4182                                      MMO->isNonTemporal()));
   4183   void *IP = 0;
   4184   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   4185     cast<StoreSDNode>(E)->refineAlignment(MMO);
   4186     return SDValue(E, 0);
   4187   }
   4188   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
   4189                                               false, VT, MMO);
   4190   CSEMap.InsertNode(N, IP);
   4191   AllNodes.push_back(N);
   4192   return SDValue(N, 0);
   4193 }
   4194 
   4195 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
   4196                                     SDValue Ptr, MachinePointerInfo PtrInfo,
   4197                                     EVT SVT,bool isVolatile, bool isNonTemporal,
   4198                                     unsigned Alignment,
   4199                                     const MDNode *TBAAInfo) {
   4200   assert(Chain.getValueType() == MVT::Other &&
   4201         "Invalid chain type");
   4202   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   4203     Alignment = getEVTAlignment(SVT);
   4204 
   4205   unsigned Flags = MachineMemOperand::MOStore;
   4206   if (isVolatile)
   4207     Flags |= MachineMemOperand::MOVolatile;
   4208   if (isNonTemporal)
   4209     Flags |= MachineMemOperand::MONonTemporal;
   4210 
   4211   if (PtrInfo.V == 0)
   4212     PtrInfo = InferPointerInfo(Ptr);
   4213 
   4214   MachineFunction &MF = getMachineFunction();
   4215   MachineMemOperand *MMO =
   4216     MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
   4217                             TBAAInfo);
   4218 
   4219   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
   4220 }
   4221 
   4222 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
   4223                                     SDValue Ptr, EVT SVT,
   4224                                     MachineMemOperand *MMO) {
   4225   EVT VT = Val.getValueType();
   4226 
   4227   assert(Chain.getValueType() == MVT::Other &&
   4228         "Invalid chain type");
   4229   if (VT == SVT)
   4230     return getStore(Chain, dl, Val, Ptr, MMO);
   4231 
   4232   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
   4233          "Should only be a truncating store, not extending!");
   4234   assert(VT.isInteger() == SVT.isInteger() &&
   4235          "Can't do FP-INT conversion!");
   4236   assert(VT.isVector() == SVT.isVector() &&
   4237          "Cannot use trunc store to convert to or from a vector!");
   4238   assert((!VT.isVector() ||
   4239           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
   4240          "Cannot use trunc store to change the number of vector elements!");
   4241 
   4242   SDVTList VTs = getVTList(MVT::Other);
   4243   SDValue Undef = getUNDEF(Ptr.getValueType());
   4244   SDValue Ops[] = { Chain, Val, Ptr, Undef };
   4245   FoldingSetNodeID ID;
   4246   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
   4247   ID.AddInteger(SVT.getRawBits());
   4248   ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
   4249                                      MMO->isNonTemporal()));
   4250   void *IP = 0;
   4251   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
   4252     cast<StoreSDNode>(E)->refineAlignment(MMO);
   4253     return SDValue(E, 0);
   4254   }
   4255   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
   4256                                               true, SVT, MMO);
   4257   CSEMap.InsertNode(N, IP);
   4258   AllNodes.push_back(N);
   4259   return SDValue(N, 0);
   4260 }
   4261 
   4262 SDValue
   4263 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
   4264                               SDValue Offset, ISD::MemIndexedMode AM) {
   4265   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
   4266   assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
   4267          "Store is already a indexed store!");
   4268   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
   4269   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
   4270   FoldingSetNodeID ID;
   4271   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
   4272   ID.AddInteger(ST->getMemoryVT().getRawBits());
   4273   ID.AddInteger(ST->getRawSubclassData());
   4274   void *IP = 0;
   4275   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   4276     return SDValue(E, 0);
   4277 
   4278   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
   4279                                               ST->isTruncatingStore(),
   4280                                               ST->getMemoryVT(),
   4281                                               ST->getMemOperand());
   4282   CSEMap.InsertNode(N, IP);
   4283   AllNodes.push_back(N);
   4284   return SDValue(N, 0);
   4285 }
   4286 
   4287 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
   4288                                SDValue Chain, SDValue Ptr,
   4289                                SDValue SV,
   4290                                unsigned Align) {
   4291   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
   4292   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
   4293 }
   4294 
   4295 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   4296                               const SDUse *Ops, unsigned NumOps) {
   4297   switch (NumOps) {
   4298   case 0: return getNode(Opcode, DL, VT);
   4299   case 1: return getNode(Opcode, DL, VT, Ops[0]);
   4300   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
   4301   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
   4302   default: break;
   4303   }
   4304 
   4305   // Copy from an SDUse array into an SDValue array for use with
   4306   // the regular getNode logic.
   4307   SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
   4308   return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
   4309 }
   4310 
   4311 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
   4312                               const SDValue *Ops, unsigned NumOps) {
   4313   switch (NumOps) {
   4314   case 0: return getNode(Opcode, DL, VT);
   4315   case 1: return getNode(Opcode, DL, VT, Ops[0]);
   4316   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
   4317   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
   4318   default: break;
   4319   }
   4320 
   4321   switch (Opcode) {
   4322   default: break;
   4323   case ISD::SELECT_CC: {
   4324     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
   4325     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
   4326            "LHS and RHS of condition must have same type!");
   4327     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
   4328            "True and False arms of SelectCC must have same type!");
   4329     assert(Ops[2].getValueType() == VT &&
   4330            "select_cc node must be of same type as true and false value!");
   4331     break;
   4332   }
   4333   case ISD::BR_CC: {
   4334     assert(NumOps == 5 && "BR_CC takes 5 operands!");
   4335     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
   4336            "LHS/RHS of comparison should match types!");
   4337     break;
   4338   }
   4339   }
   4340 
   4341   // Memoize nodes.
   4342   SDNode *N;
   4343   SDVTList VTs = getVTList(VT);
   4344 
   4345   if (VT != MVT::Glue) {
   4346     FoldingSetNodeID ID;
   4347     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
   4348     void *IP = 0;
   4349 
   4350     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   4351       return SDValue(E, 0);
   4352 
   4353     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
   4354     CSEMap.InsertNode(N, IP);
   4355   } else {
   4356     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
   4357   }
   4358 
   4359   AllNodes.push_back(N);
   4360 #ifndef NDEBUG
   4361   VerifySDNode(N);
   4362 #endif
   4363   return SDValue(N, 0);
   4364 }
   4365 
   4366 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
   4367                               const std::vector<EVT> &ResultTys,
   4368                               const SDValue *Ops, unsigned NumOps) {
   4369   return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
   4370                  Ops, NumOps);
   4371 }
   4372 
   4373 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
   4374                               const EVT *VTs, unsigned NumVTs,
   4375                               const SDValue *Ops, unsigned NumOps) {
   4376   if (NumVTs == 1)
   4377     return getNode(Opcode, DL, VTs[0], Ops, NumOps);
   4378   return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
   4379 }
   4380 
   4381 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4382                               const SDValue *Ops, unsigned NumOps) {
   4383   if (VTList.NumVTs == 1)
   4384     return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
   4385 
   4386 #if 0
   4387   switch (Opcode) {
   4388   // FIXME: figure out how to safely handle things like
   4389   // int foo(int x) { return 1 << (x & 255); }
   4390   // int bar() { return foo(256); }
   4391   case ISD::SRA_PARTS:
   4392   case ISD::SRL_PARTS:
   4393   case ISD::SHL_PARTS:
   4394     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   4395         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
   4396       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
   4397     else if (N3.getOpcode() == ISD::AND)
   4398       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
   4399         // If the and is only masking out bits that cannot effect the shift,
   4400         // eliminate the and.
   4401         unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
   4402         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
   4403           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
   4404       }
   4405     break;
   4406   }
   4407 #endif
   4408 
   4409   // Memoize the node unless it returns a flag.
   4410   SDNode *N;
   4411   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
   4412     FoldingSetNodeID ID;
   4413     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
   4414     void *IP = 0;
   4415     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   4416       return SDValue(E, 0);
   4417 
   4418     if (NumOps == 1) {
   4419       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
   4420     } else if (NumOps == 2) {
   4421       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
   4422     } else if (NumOps == 3) {
   4423       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
   4424                                             Ops[2]);
   4425     } else {
   4426       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
   4427     }
   4428     CSEMap.InsertNode(N, IP);
   4429   } else {
   4430     if (NumOps == 1) {
   4431       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
   4432     } else if (NumOps == 2) {
   4433       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
   4434     } else if (NumOps == 3) {
   4435       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
   4436                                             Ops[2]);
   4437     } else {
   4438       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
   4439     }
   4440   }
   4441   AllNodes.push_back(N);
   4442 #ifndef NDEBUG
   4443   VerifySDNode(N);
   4444 #endif
   4445   return SDValue(N, 0);
   4446 }
   4447 
   4448 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
   4449   return getNode(Opcode, DL, VTList, 0, 0);
   4450 }
   4451 
   4452 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4453                               SDValue N1) {
   4454   SDValue Ops[] = { N1 };
   4455   return getNode(Opcode, DL, VTList, Ops, 1);
   4456 }
   4457 
   4458 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4459                               SDValue N1, SDValue N2) {
   4460   SDValue Ops[] = { N1, N2 };
   4461   return getNode(Opcode, DL, VTList, Ops, 2);
   4462 }
   4463 
   4464 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4465                               SDValue N1, SDValue N2, SDValue N3) {
   4466   SDValue Ops[] = { N1, N2, N3 };
   4467   return getNode(Opcode, DL, VTList, Ops, 3);
   4468 }
   4469 
   4470 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4471                               SDValue N1, SDValue N2, SDValue N3,
   4472                               SDValue N4) {
   4473   SDValue Ops[] = { N1, N2, N3, N4 };
   4474   return getNode(Opcode, DL, VTList, Ops, 4);
   4475 }
   4476 
   4477 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
   4478                               SDValue N1, SDValue N2, SDValue N3,
   4479                               SDValue N4, SDValue N5) {
   4480   SDValue Ops[] = { N1, N2, N3, N4, N5 };
   4481   return getNode(Opcode, DL, VTList, Ops, 5);
   4482 }
   4483 
   4484 SDVTList SelectionDAG::getVTList(EVT VT) {
   4485   return makeVTList(SDNode::getValueTypeList(VT), 1);
   4486 }
   4487 
   4488 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
   4489   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
   4490        E = VTList.rend(); I != E; ++I)
   4491     if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
   4492       return *I;
   4493 
   4494   EVT *Array = Allocator.Allocate<EVT>(2);
   4495   Array[0] = VT1;
   4496   Array[1] = VT2;
   4497   SDVTList Result = makeVTList(Array, 2);
   4498   VTList.push_back(Result);
   4499   return Result;
   4500 }
   4501 
   4502 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
   4503   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
   4504        E = VTList.rend(); I != E; ++I)
   4505     if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
   4506                           I->VTs[2] == VT3)
   4507       return *I;
   4508 
   4509   EVT *Array = Allocator.Allocate<EVT>(3);
   4510   Array[0] = VT1;
   4511   Array[1] = VT2;
   4512   Array[2] = VT3;
   4513   SDVTList Result = makeVTList(Array, 3);
   4514   VTList.push_back(Result);
   4515   return Result;
   4516 }
   4517 
   4518 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
   4519   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
   4520        E = VTList.rend(); I != E; ++I)
   4521     if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
   4522                           I->VTs[2] == VT3 && I->VTs[3] == VT4)
   4523       return *I;
   4524 
   4525   EVT *Array = Allocator.Allocate<EVT>(4);
   4526   Array[0] = VT1;
   4527   Array[1] = VT2;
   4528   Array[2] = VT3;
   4529   Array[3] = VT4;
   4530   SDVTList Result = makeVTList(Array, 4);
   4531   VTList.push_back(Result);
   4532   return Result;
   4533 }
   4534 
   4535 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
   4536   switch (NumVTs) {
   4537     case 0: llvm_unreachable("Cannot have nodes without results!");
   4538     case 1: return getVTList(VTs[0]);
   4539     case 2: return getVTList(VTs[0], VTs[1]);
   4540     case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
   4541     case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
   4542     default: break;
   4543   }
   4544 
   4545   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
   4546        E = VTList.rend(); I != E; ++I) {
   4547     if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
   4548       continue;
   4549 
   4550     bool NoMatch = false;
   4551     for (unsigned i = 2; i != NumVTs; ++i)
   4552       if (VTs[i] != I->VTs[i]) {
   4553         NoMatch = true;
   4554         break;
   4555       }
   4556     if (!NoMatch)
   4557       return *I;
   4558   }
   4559 
   4560   EVT *Array = Allocator.Allocate<EVT>(NumVTs);
   4561   std::copy(VTs, VTs+NumVTs, Array);
   4562   SDVTList Result = makeVTList(Array, NumVTs);
   4563   VTList.push_back(Result);
   4564   return Result;
   4565 }
   4566 
   4567 
   4568 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
   4569 /// specified operands.  If the resultant node already exists in the DAG,
   4570 /// this does not modify the specified node, instead it returns the node that
   4571 /// already exists.  If the resultant node does not exist in the DAG, the
   4572 /// input node is returned.  As a degenerate case, if you specify the same
   4573 /// input operands as the node already has, the input node is returned.
   4574 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
   4575   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
   4576 
   4577   // Check to see if there is no change.
   4578   if (Op == N->getOperand(0)) return N;
   4579 
   4580   // See if the modified node already exists.
   4581   void *InsertPos = 0;
   4582   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
   4583     return Existing;
   4584 
   4585   // Nope it doesn't.  Remove the node from its current place in the maps.
   4586   if (InsertPos)
   4587     if (!RemoveNodeFromCSEMaps(N))
   4588       InsertPos = 0;
   4589 
   4590   // Now we update the operands.
   4591   N->OperandList[0].set(Op);
   4592 
   4593   // If this gets put into a CSE map, add it.
   4594   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
   4595   return N;
   4596 }
   4597 
   4598 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
   4599   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
   4600 
   4601   // Check to see if there is no change.
   4602   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
   4603     return N;   // No operands changed, just return the input node.
   4604 
   4605   // See if the modified node already exists.
   4606   void *InsertPos = 0;
   4607   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
   4608     return Existing;
   4609 
   4610   // Nope it doesn't.  Remove the node from its current place in the maps.
   4611   if (InsertPos)
   4612     if (!RemoveNodeFromCSEMaps(N))
   4613       InsertPos = 0;
   4614 
   4615   // Now we update the operands.
   4616   if (N->OperandList[0] != Op1)
   4617     N->OperandList[0].set(Op1);
   4618   if (N->OperandList[1] != Op2)
   4619     N->OperandList[1].set(Op2);
   4620 
   4621   // If this gets put into a CSE map, add it.
   4622   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
   4623   return N;
   4624 }
   4625 
   4626 SDNode *SelectionDAG::
   4627 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
   4628   SDValue Ops[] = { Op1, Op2, Op3 };
   4629   return UpdateNodeOperands(N, Ops, 3);
   4630 }
   4631 
   4632 SDNode *SelectionDAG::
   4633 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   4634                    SDValue Op3, SDValue Op4) {
   4635   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
   4636   return UpdateNodeOperands(N, Ops, 4);
   4637 }
   4638 
   4639 SDNode *SelectionDAG::
   4640 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
   4641                    SDValue Op3, SDValue Op4, SDValue Op5) {
   4642   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
   4643   return UpdateNodeOperands(N, Ops, 5);
   4644 }
   4645 
   4646 SDNode *SelectionDAG::
   4647 UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
   4648   assert(N->getNumOperands() == NumOps &&
   4649          "Update with wrong number of operands");
   4650 
   4651   // Check to see if there is no change.
   4652   bool AnyChange = false;
   4653   for (unsigned i = 0; i != NumOps; ++i) {
   4654     if (Ops[i] != N->getOperand(i)) {
   4655       AnyChange = true;
   4656       break;
   4657     }
   4658   }
   4659 
   4660   // No operands changed, just return the input node.
   4661   if (!AnyChange) return N;
   4662 
   4663   // See if the modified node already exists.
   4664   void *InsertPos = 0;
   4665   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
   4666     return Existing;
   4667 
   4668   // Nope it doesn't.  Remove the node from its current place in the maps.
   4669   if (InsertPos)
   4670     if (!RemoveNodeFromCSEMaps(N))
   4671       InsertPos = 0;
   4672 
   4673   // Now we update the operands.
   4674   for (unsigned i = 0; i != NumOps; ++i)
   4675     if (N->OperandList[i] != Ops[i])
   4676       N->OperandList[i].set(Ops[i]);
   4677 
   4678   // If this gets put into a CSE map, add it.
   4679   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
   4680   return N;
   4681 }
   4682 
   4683 /// DropOperands - Release the operands and set this node to have
   4684 /// zero operands.
   4685 void SDNode::DropOperands() {
   4686   // Unlike the code in MorphNodeTo that does this, we don't need to
   4687   // watch for dead nodes here.
   4688   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
   4689     SDUse &Use = *I++;
   4690     Use.set(SDValue());
   4691   }
   4692 }
   4693 
   4694 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
   4695 /// machine opcode.
   4696 ///
   4697 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4698                                    EVT VT) {
   4699   SDVTList VTs = getVTList(VT);
   4700   return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
   4701 }
   4702 
   4703 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4704                                    EVT VT, SDValue Op1) {
   4705   SDVTList VTs = getVTList(VT);
   4706   SDValue Ops[] = { Op1 };
   4707   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
   4708 }
   4709 
   4710 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4711                                    EVT VT, SDValue Op1,
   4712                                    SDValue Op2) {
   4713   SDVTList VTs = getVTList(VT);
   4714   SDValue Ops[] = { Op1, Op2 };
   4715   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
   4716 }
   4717 
   4718 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4719                                    EVT VT, SDValue Op1,
   4720                                    SDValue Op2, SDValue Op3) {
   4721   SDVTList VTs = getVTList(VT);
   4722   SDValue Ops[] = { Op1, Op2, Op3 };
   4723   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
   4724 }
   4725 
   4726 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4727                                    EVT VT, const SDValue *Ops,
   4728                                    unsigned NumOps) {
   4729   SDVTList VTs = getVTList(VT);
   4730   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
   4731 }
   4732 
   4733 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4734                                    EVT VT1, EVT VT2, const SDValue *Ops,
   4735                                    unsigned NumOps) {
   4736   SDVTList VTs = getVTList(VT1, VT2);
   4737   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
   4738 }
   4739 
   4740 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4741                                    EVT VT1, EVT VT2) {
   4742   SDVTList VTs = getVTList(VT1, VT2);
   4743   return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
   4744 }
   4745 
   4746 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4747                                    EVT VT1, EVT VT2, EVT VT3,
   4748                                    const SDValue *Ops, unsigned NumOps) {
   4749   SDVTList VTs = getVTList(VT1, VT2, VT3);
   4750   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
   4751 }
   4752 
   4753 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4754                                    EVT VT1, EVT VT2, EVT VT3, EVT VT4,
   4755                                    const SDValue *Ops, unsigned NumOps) {
   4756   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
   4757   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
   4758 }
   4759 
   4760 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4761                                    EVT VT1, EVT VT2,
   4762                                    SDValue Op1) {
   4763   SDVTList VTs = getVTList(VT1, VT2);
   4764   SDValue Ops[] = { Op1 };
   4765   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
   4766 }
   4767 
   4768 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4769                                    EVT VT1, EVT VT2,
   4770                                    SDValue Op1, SDValue Op2) {
   4771   SDVTList VTs = getVTList(VT1, VT2);
   4772   SDValue Ops[] = { Op1, Op2 };
   4773   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
   4774 }
   4775 
   4776 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4777                                    EVT VT1, EVT VT2,
   4778                                    SDValue Op1, SDValue Op2,
   4779                                    SDValue Op3) {
   4780   SDVTList VTs = getVTList(VT1, VT2);
   4781   SDValue Ops[] = { Op1, Op2, Op3 };
   4782   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
   4783 }
   4784 
   4785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4786                                    EVT VT1, EVT VT2, EVT VT3,
   4787                                    SDValue Op1, SDValue Op2,
   4788                                    SDValue Op3) {
   4789   SDVTList VTs = getVTList(VT1, VT2, VT3);
   4790   SDValue Ops[] = { Op1, Op2, Op3 };
   4791   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
   4792 }
   4793 
   4794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
   4795                                    SDVTList VTs, const SDValue *Ops,
   4796                                    unsigned NumOps) {
   4797   N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
   4798   // Reset the NodeID to -1.
   4799   N->setNodeId(-1);
   4800   return N;
   4801 }
   4802 
   4803 /// MorphNodeTo - This *mutates* the specified node to have the specified
   4804 /// return type, opcode, and operands.
   4805 ///
   4806 /// Note that MorphNodeTo returns the resultant node.  If there is already a
   4807 /// node of the specified opcode and operands, it returns that node instead of
   4808 /// the current one.  Note that the DebugLoc need not be the same.
   4809 ///
   4810 /// Using MorphNodeTo is faster than creating a new node and swapping it in
   4811 /// with ReplaceAllUsesWith both because it often avoids allocating a new
   4812 /// node, and because it doesn't require CSE recalculation for any of
   4813 /// the node's users.
   4814 ///
   4815 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
   4816                                   SDVTList VTs, const SDValue *Ops,
   4817                                   unsigned NumOps) {
   4818   // If an identical node already exists, use it.
   4819   void *IP = 0;
   4820   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
   4821     FoldingSetNodeID ID;
   4822     AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
   4823     if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
   4824       return ON;
   4825   }
   4826 
   4827   if (!RemoveNodeFromCSEMaps(N))
   4828     IP = 0;
   4829 
   4830   // Start the morphing.
   4831   N->NodeType = Opc;
   4832   N->ValueList = VTs.VTs;
   4833   N->NumValues = VTs.NumVTs;
   4834 
   4835   // Clear the operands list, updating used nodes to remove this from their
   4836   // use list.  Keep track of any operands that become dead as a result.
   4837   SmallPtrSet<SDNode*, 16> DeadNodeSet;
   4838   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
   4839     SDUse &Use = *I++;
   4840     SDNode *Used = Use.getNode();
   4841     Use.set(SDValue());
   4842     if (Used->use_empty())
   4843       DeadNodeSet.insert(Used);
   4844   }
   4845 
   4846   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
   4847     // Initialize the memory references information.
   4848     MN->setMemRefs(0, 0);
   4849     // If NumOps is larger than the # of operands we can have in a
   4850     // MachineSDNode, reallocate the operand list.
   4851     if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
   4852       if (MN->OperandsNeedDelete)
   4853         delete[] MN->OperandList;
   4854       if (NumOps > array_lengthof(MN->LocalOperands))
   4855         // We're creating a final node that will live unmorphed for the
   4856         // remainder of the current SelectionDAG iteration, so we can allocate
   4857         // the operands directly out of a pool with no recycling metadata.
   4858         MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
   4859                          Ops, NumOps);
   4860       else
   4861         MN->InitOperands(MN->LocalOperands, Ops, NumOps);
   4862       MN->OperandsNeedDelete = false;
   4863     } else
   4864       MN->InitOperands(MN->OperandList, Ops, NumOps);
   4865   } else {
   4866     // If NumOps is larger than the # of operands we currently have, reallocate
   4867     // the operand list.
   4868     if (NumOps > N->NumOperands) {
   4869       if (N->OperandsNeedDelete)
   4870         delete[] N->OperandList;
   4871       N->InitOperands(new SDUse[NumOps], Ops, NumOps);
   4872       N->OperandsNeedDelete = true;
   4873     } else
   4874       N->InitOperands(N->OperandList, Ops, NumOps);
   4875   }
   4876 
   4877   // Delete any nodes that are still dead after adding the uses for the
   4878   // new operands.
   4879   if (!DeadNodeSet.empty()) {
   4880     SmallVector<SDNode *, 16> DeadNodes;
   4881     for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
   4882          E = DeadNodeSet.end(); I != E; ++I)
   4883       if ((*I)->use_empty())
   4884         DeadNodes.push_back(*I);
   4885     RemoveDeadNodes(DeadNodes);
   4886   }
   4887 
   4888   if (IP)
   4889     CSEMap.InsertNode(N, IP);   // Memoize the new node.
   4890   return N;
   4891 }
   4892 
   4893 
   4894 /// getMachineNode - These are used for target selectors to create a new node
   4895 /// with specified return type(s), MachineInstr opcode, and operands.
   4896 ///
   4897 /// Note that getMachineNode returns the resultant node.  If there is already a
   4898 /// node of the specified opcode and operands, it returns that node instead of
   4899 /// the current one.
   4900 MachineSDNode *
   4901 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
   4902   SDVTList VTs = getVTList(VT);
   4903   return getMachineNode(Opcode, dl, VTs, 0, 0);
   4904 }
   4905 
   4906 MachineSDNode *
   4907 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
   4908   SDVTList VTs = getVTList(VT);
   4909   SDValue Ops[] = { Op1 };
   4910   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4911 }
   4912 
   4913 MachineSDNode *
   4914 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
   4915                              SDValue Op1, SDValue Op2) {
   4916   SDVTList VTs = getVTList(VT);
   4917   SDValue Ops[] = { Op1, Op2 };
   4918   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4919 }
   4920 
   4921 MachineSDNode *
   4922 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
   4923                              SDValue Op1, SDValue Op2, SDValue Op3) {
   4924   SDVTList VTs = getVTList(VT);
   4925   SDValue Ops[] = { Op1, Op2, Op3 };
   4926   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4927 }
   4928 
   4929 MachineSDNode *
   4930 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
   4931                              const SDValue *Ops, unsigned NumOps) {
   4932   SDVTList VTs = getVTList(VT);
   4933   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
   4934 }
   4935 
   4936 MachineSDNode *
   4937 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
   4938   SDVTList VTs = getVTList(VT1, VT2);
   4939   return getMachineNode(Opcode, dl, VTs, 0, 0);
   4940 }
   4941 
   4942 MachineSDNode *
   4943 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4944                              EVT VT1, EVT VT2, SDValue Op1) {
   4945   SDVTList VTs = getVTList(VT1, VT2);
   4946   SDValue Ops[] = { Op1 };
   4947   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4948 }
   4949 
   4950 MachineSDNode *
   4951 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4952                              EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
   4953   SDVTList VTs = getVTList(VT1, VT2);
   4954   SDValue Ops[] = { Op1, Op2 };
   4955   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4956 }
   4957 
   4958 MachineSDNode *
   4959 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4960                              EVT VT1, EVT VT2, SDValue Op1,
   4961                              SDValue Op2, SDValue Op3) {
   4962   SDVTList VTs = getVTList(VT1, VT2);
   4963   SDValue Ops[] = { Op1, Op2, Op3 };
   4964   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4965 }
   4966 
   4967 MachineSDNode *
   4968 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4969                              EVT VT1, EVT VT2,
   4970                              const SDValue *Ops, unsigned NumOps) {
   4971   SDVTList VTs = getVTList(VT1, VT2);
   4972   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
   4973 }
   4974 
   4975 MachineSDNode *
   4976 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4977                              EVT VT1, EVT VT2, EVT VT3,
   4978                              SDValue Op1, SDValue Op2) {
   4979   SDVTList VTs = getVTList(VT1, VT2, VT3);
   4980   SDValue Ops[] = { Op1, Op2 };
   4981   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4982 }
   4983 
   4984 MachineSDNode *
   4985 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4986                              EVT VT1, EVT VT2, EVT VT3,
   4987                              SDValue Op1, SDValue Op2, SDValue Op3) {
   4988   SDVTList VTs = getVTList(VT1, VT2, VT3);
   4989   SDValue Ops[] = { Op1, Op2, Op3 };
   4990   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
   4991 }
   4992 
   4993 MachineSDNode *
   4994 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   4995                              EVT VT1, EVT VT2, EVT VT3,
   4996                              const SDValue *Ops, unsigned NumOps) {
   4997   SDVTList VTs = getVTList(VT1, VT2, VT3);
   4998   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
   4999 }
   5000 
   5001 MachineSDNode *
   5002 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
   5003                              EVT VT2, EVT VT3, EVT VT4,
   5004                              const SDValue *Ops, unsigned NumOps) {
   5005   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
   5006   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
   5007 }
   5008 
   5009 MachineSDNode *
   5010 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
   5011                              const std::vector<EVT> &ResultTys,
   5012                              const SDValue *Ops, unsigned NumOps) {
   5013   SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
   5014   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
   5015 }
   5016 
   5017 MachineSDNode *
   5018 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
   5019                              const SDValue *Ops, unsigned NumOps) {
   5020   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
   5021   MachineSDNode *N;
   5022   void *IP = 0;
   5023 
   5024   if (DoCSE) {
   5025     FoldingSetNodeID ID;
   5026     AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
   5027     IP = 0;
   5028     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   5029       return cast<MachineSDNode>(E);
   5030   }
   5031 
   5032   // Allocate a new MachineSDNode.
   5033   N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
   5034 
   5035   // Initialize the operands list.
   5036   if (NumOps > array_lengthof(N->LocalOperands))
   5037     // We're creating a final node that will live unmorphed for the
   5038     // remainder of the current SelectionDAG iteration, so we can allocate
   5039     // the operands directly out of a pool with no recycling metadata.
   5040     N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
   5041                     Ops, NumOps);
   5042   else
   5043     N->InitOperands(N->LocalOperands, Ops, NumOps);
   5044   N->OperandsNeedDelete = false;
   5045 
   5046   if (DoCSE)
   5047     CSEMap.InsertNode(N, IP);
   5048 
   5049   AllNodes.push_back(N);
   5050 #ifndef NDEBUG
   5051   VerifyMachineNode(N);
   5052 #endif
   5053   return N;
   5054 }
   5055 
   5056 /// getTargetExtractSubreg - A convenience function for creating
   5057 /// TargetOpcode::EXTRACT_SUBREG nodes.
   5058 SDValue
   5059 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
   5060                                      SDValue Operand) {
   5061   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
   5062   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
   5063                                   VT, Operand, SRIdxVal);
   5064   return SDValue(Subreg, 0);
   5065 }
   5066 
   5067 /// getTargetInsertSubreg - A convenience function for creating
   5068 /// TargetOpcode::INSERT_SUBREG nodes.
   5069 SDValue
   5070 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
   5071                                     SDValue Operand, SDValue Subreg) {
   5072   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
   5073   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
   5074                                   VT, Operand, Subreg, SRIdxVal);
   5075   return SDValue(Result, 0);
   5076 }
   5077 
   5078 /// getNodeIfExists - Get the specified node if it's already available, or
   5079 /// else return NULL.
   5080 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
   5081                                       const SDValue *Ops, unsigned NumOps) {
   5082   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
   5083     FoldingSetNodeID ID;
   5084     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
   5085     void *IP = 0;
   5086     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
   5087       return E;
   5088   }
   5089   return NULL;
   5090 }
   5091 
   5092 /// getDbgValue - Creates a SDDbgValue node.
   5093 ///
   5094 SDDbgValue *
   5095 SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
   5096                           DebugLoc DL, unsigned O) {
   5097   return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
   5098 }
   5099 
   5100 SDDbgValue *
   5101 SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
   5102                           DebugLoc DL, unsigned O) {
   5103   return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
   5104 }
   5105 
   5106 SDDbgValue *
   5107 SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
   5108                           DebugLoc DL, unsigned O) {
   5109   return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
   5110 }
   5111 
   5112 namespace {
   5113 
   5114 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
   5115 /// pointed to by a use iterator is deleted, increment the use iterator
   5116 /// so that it doesn't dangle.
   5117 ///
   5118 /// This class also manages a "downlink" DAGUpdateListener, to forward
   5119 /// messages to ReplaceAllUsesWith's callers.
   5120 ///
   5121 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
   5122   SelectionDAG::DAGUpdateListener *DownLink;
   5123   SDNode::use_iterator &UI;
   5124   SDNode::use_iterator &UE;
   5125 
   5126   virtual void NodeDeleted(SDNode *N, SDNode *E) {
   5127     // Increment the iterator as needed.
   5128     while (UI != UE && N == *UI)
   5129       ++UI;
   5130 
   5131     // Then forward the message.
   5132     if (DownLink) DownLink->NodeDeleted(N, E);
   5133   }
   5134 
   5135   virtual void NodeUpdated(SDNode *N) {
   5136     // Just forward the message.
   5137     if (DownLink) DownLink->NodeUpdated(N);
   5138   }
   5139 
   5140 public:
   5141   RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
   5142                      SDNode::use_iterator &ui,
   5143                      SDNode::use_iterator &ue)
   5144     : DownLink(dl), UI(ui), UE(ue) {}
   5145 };
   5146 
   5147 }
   5148 
   5149 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
   5150 /// This can cause recursive merging of nodes in the DAG.
   5151 ///
   5152 /// This version assumes From has a single result value.
   5153 ///
   5154 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
   5155                                       DAGUpdateListener *UpdateListener) {
   5156   SDNode *From = FromN.getNode();
   5157   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
   5158          "Cannot replace with this method!");
   5159   assert(From != To.getNode() && "Cannot replace uses of with self");
   5160 
   5161   // Iterate over all the existing uses of From. New uses will be added
   5162   // to the beginning of the use list, which we avoid visiting.
   5163   // This specifically avoids visiting uses of From that arise while the
   5164   // replacement is happening, because any such uses would be the result
   5165   // of CSE: If an existing node looks like From after one of its operands
   5166   // is replaced by To, we don't want to replace of all its users with To
   5167   // too. See PR3018 for more info.
   5168   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
   5169   RAUWUpdateListener Listener(UpdateListener, UI, UE);
   5170   while (UI != UE) {
   5171     SDNode *User = *UI;
   5172 
   5173     // This node is about to morph, remove its old self from the CSE maps.
   5174     RemoveNodeFromCSEMaps(User);
   5175 
   5176     // A user can appear in a use list multiple times, and when this
   5177     // happens the uses are usually next to each other in the list.
   5178     // To help reduce the number of CSE recomputations, process all
   5179     // the uses of this user that we can find this way.
   5180     do {
   5181       SDUse &Use = UI.getUse();
   5182       ++UI;
   5183       Use.set(To);
   5184     } while (UI != UE && *UI == User);
   5185 
   5186     // Now that we have modified User, add it back to the CSE maps.  If it
   5187     // already exists there, recursively merge the results together.
   5188     AddModifiedNodeToCSEMaps(User, &Listener);
   5189   }
   5190 }
   5191 
   5192 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
   5193 /// This can cause recursive merging of nodes in the DAG.
   5194 ///
   5195 /// This version assumes that for each value of From, there is a
   5196 /// corresponding value in To in the same position with the same type.
   5197 ///
   5198 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
   5199                                       DAGUpdateListener *UpdateListener) {
   5200 #ifndef NDEBUG
   5201   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
   5202     assert((!From->hasAnyUseOfValue(i) ||
   5203             From->getValueType(i) == To->getValueType(i)) &&
   5204            "Cannot use this version of ReplaceAllUsesWith!");
   5205 #endif
   5206 
   5207   // Handle the trivial case.
   5208   if (From == To)
   5209     return;
   5210 
   5211   // Iterate over just the existing users of From. See the comments in
   5212   // the ReplaceAllUsesWith above.
   5213   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
   5214   RAUWUpdateListener Listener(UpdateListener, UI, UE);
   5215   while (UI != UE) {
   5216     SDNode *User = *UI;
   5217 
   5218     // This node is about to morph, remove its old self from the CSE maps.
   5219     RemoveNodeFromCSEMaps(User);
   5220 
   5221     // A user can appear in a use list multiple times, and when this
   5222     // happens the uses are usually next to each other in the list.
   5223     // To help reduce the number of CSE recomputations, process all
   5224     // the uses of this user that we can find this way.
   5225     do {
   5226       SDUse &Use = UI.getUse();
   5227       ++UI;
   5228       Use.setNode(To);
   5229     } while (UI != UE && *UI == User);
   5230 
   5231     // Now that we have modified User, add it back to the CSE maps.  If it
   5232     // already exists there, recursively merge the results together.
   5233     AddModifiedNodeToCSEMaps(User, &Listener);
   5234   }
   5235 }
   5236 
   5237 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
   5238 /// This can cause recursive merging of nodes in the DAG.
   5239 ///
   5240 /// This version can replace From with any result values.  To must match the
   5241 /// number and types of values returned by From.
   5242 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
   5243                                       const SDValue *To,
   5244                                       DAGUpdateListener *UpdateListener) {
   5245   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
   5246     return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
   5247 
   5248   // Iterate over just the existing users of From. See the comments in
   5249   // the ReplaceAllUsesWith above.
   5250   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
   5251   RAUWUpdateListener Listener(UpdateListener, UI, UE);
   5252   while (UI != UE) {
   5253     SDNode *User = *UI;
   5254 
   5255     // This node is about to morph, remove its old self from the CSE maps.
   5256     RemoveNodeFromCSEMaps(User);
   5257 
   5258     // A user can appear in a use list multiple times, and when this
   5259     // happens the uses are usually next to each other in the list.
   5260     // To help reduce the number of CSE recomputations, process all
   5261     // the uses of this user that we can find this way.
   5262     do {
   5263       SDUse &Use = UI.getUse();
   5264       const SDValue &ToOp = To[Use.getResNo()];
   5265       ++UI;
   5266       Use.set(ToOp);
   5267     } while (UI != UE && *UI == User);
   5268 
   5269     // Now that we have modified User, add it back to the CSE maps.  If it
   5270     // already exists there, recursively merge the results together.
   5271     AddModifiedNodeToCSEMaps(User, &Listener);
   5272   }
   5273 }
   5274 
   5275 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
   5276 /// uses of other values produced by From.getNode() alone.  The Deleted
   5277 /// vector is handled the same way as for ReplaceAllUsesWith.
   5278 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
   5279                                              DAGUpdateListener *UpdateListener){
   5280   // Handle the really simple, really trivial case efficiently.
   5281   if (From == To) return;
   5282 
   5283   // Handle the simple, trivial, case efficiently.
   5284   if (From.getNode()->getNumValues() == 1) {
   5285     ReplaceAllUsesWith(From, To, UpdateListener);
   5286     return;
   5287   }
   5288 
   5289   // Iterate over just the existing users of From. See the comments in
   5290   // the ReplaceAllUsesWith above.
   5291   SDNode::use_iterator UI = From.getNode()->use_begin(),
   5292                        UE = From.getNode()->use_end();
   5293   RAUWUpdateListener Listener(UpdateListener, UI, UE);
   5294   while (UI != UE) {
   5295     SDNode *User = *UI;
   5296     bool UserRemovedFromCSEMaps = false;
   5297 
   5298     // A user can appear in a use list multiple times, and when this
   5299     // happens the uses are usually next to each other in the list.
   5300     // To help reduce the number of CSE recomputations, process all
   5301     // the uses of this user that we can find this way.
   5302     do {
   5303       SDUse &Use = UI.getUse();
   5304 
   5305       // Skip uses of different values from the same node.
   5306       if (Use.getResNo() != From.getResNo()) {
   5307         ++UI;
   5308         continue;
   5309       }
   5310 
   5311       // If this node hasn't been modified yet, it's still in the CSE maps,
   5312       // so remove its old self from the CSE maps.
   5313       if (!UserRemovedFromCSEMaps) {
   5314         RemoveNodeFromCSEMaps(User);
   5315         UserRemovedFromCSEMaps = true;
   5316       }
   5317 
   5318       ++UI;
   5319       Use.set(To);
   5320     } while (UI != UE && *UI == User);
   5321 
   5322     // We are iterating over all uses of the From node, so if a use
   5323     // doesn't use the specific value, no changes are made.
   5324     if (!UserRemovedFromCSEMaps)
   5325       continue;
   5326 
   5327     // Now that we have modified User, add it back to the CSE maps.  If it
   5328     // already exists there, recursively merge the results together.
   5329     AddModifiedNodeToCSEMaps(User, &Listener);
   5330   }
   5331 }
   5332 
   5333 namespace {
   5334   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
   5335   /// to record information about a use.
   5336   struct UseMemo {
   5337     SDNode *User;
   5338     unsigned Index;
   5339     SDUse *Use;
   5340   };
   5341 
   5342   /// operator< - Sort Memos by User.
   5343   bool operator<(const UseMemo &L, const UseMemo &R) {
   5344     return (intptr_t)L.User < (intptr_t)R.User;
   5345   }
   5346 }
   5347 
   5348 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
   5349 /// uses of other values produced by From.getNode() alone.  The same value
   5350 /// may appear in both the From and To list.  The Deleted vector is
   5351 /// handled the same way as for ReplaceAllUsesWith.
   5352 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
   5353                                               const SDValue *To,
   5354                                               unsigned Num,
   5355                                               DAGUpdateListener *UpdateListener){
   5356   // Handle the simple, trivial case efficiently.
   5357   if (Num == 1)
   5358     return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
   5359 
   5360   // Read up all the uses and make records of them. This helps
   5361   // processing new uses that are introduced during the
   5362   // replacement process.
   5363   SmallVector<UseMemo, 4> Uses;
   5364   for (unsigned i = 0; i != Num; ++i) {
   5365     unsigned FromResNo = From[i].getResNo();
   5366     SDNode *FromNode = From[i].getNode();
   5367     for (SDNode::use_iterator UI = FromNode->use_begin(),
   5368          E = FromNode->use_end(); UI != E; ++UI) {
   5369       SDUse &Use = UI.getUse();
   5370       if (Use.getResNo() == FromResNo) {
   5371         UseMemo Memo = { *UI, i, &Use };
   5372         Uses.push_back(Memo);
   5373       }
   5374     }
   5375   }
   5376 
   5377   // Sort the uses, so that all the uses from a given User are together.
   5378   std::sort(Uses.begin(), Uses.end());
   5379 
   5380   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
   5381        UseIndex != UseIndexEnd; ) {
   5382     // We know that this user uses some value of From.  If it is the right
   5383     // value, update it.
   5384     SDNode *User = Uses[UseIndex].User;
   5385 
   5386     // This node is about to morph, remove its old self from the CSE maps.
   5387     RemoveNodeFromCSEMaps(User);
   5388 
   5389     // The Uses array is sorted, so all the uses for a given User
   5390     // are next to each other in the list.
   5391     // To help reduce the number of CSE recomputations, process all
   5392     // the uses of this user that we can find this way.
   5393     do {
   5394       unsigned i = Uses[UseIndex].Index;
   5395       SDUse &Use = *Uses[UseIndex].Use;
   5396       ++UseIndex;
   5397 
   5398       Use.set(To[i]);
   5399     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
   5400 
   5401     // Now that we have modified User, add it back to the CSE maps.  If it
   5402     // already exists there, recursively merge the results together.
   5403     AddModifiedNodeToCSEMaps(User, UpdateListener);
   5404   }
   5405 }
   5406 
   5407 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
   5408 /// based on their topological order. It returns the maximum id and a vector
   5409 /// of the SDNodes* in assigned order by reference.
   5410 unsigned SelectionDAG::AssignTopologicalOrder() {
   5411 
   5412   unsigned DAGSize = 0;
   5413 
   5414   // SortedPos tracks the progress of the algorithm. Nodes before it are
   5415   // sorted, nodes after it are unsorted. When the algorithm completes
   5416   // it is at the end of the list.
   5417   allnodes_iterator SortedPos = allnodes_begin();
   5418 
   5419   // Visit all the nodes. Move nodes with no operands to the front of
   5420   // the list immediately. Annotate nodes that do have operands with their
   5421   // operand count. Before we do this, the Node Id fields of the nodes
   5422   // may contain arbitrary values. After, the Node Id fields for nodes
   5423   // before SortedPos will contain the topological sort index, and the
   5424   // Node Id fields for nodes At SortedPos and after will contain the
   5425   // count of outstanding operands.
   5426   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
   5427     SDNode *N = I++;
   5428     checkForCycles(N);
   5429     unsigned Degree = N->getNumOperands();
   5430     if (Degree == 0) {
   5431       // A node with no uses, add it to the result array immediately.
   5432       N->setNodeId(DAGSize++);
   5433       allnodes_iterator Q = N;
   5434       if (Q != SortedPos)
   5435         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
   5436       assert(SortedPos != AllNodes.end() && "Overran node list");
   5437       ++SortedPos;
   5438     } else {
   5439       // Temporarily use the Node Id as scratch space for the degree count.
   5440       N->setNodeId(Degree);
   5441     }
   5442   }
   5443 
   5444   // Visit all the nodes. As we iterate, moves nodes into sorted order,
   5445   // such that by the time the end is reached all nodes will be sorted.
   5446   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
   5447     SDNode *N = I;
   5448     checkForCycles(N);
   5449     // N is in sorted position, so all its uses have one less operand
   5450     // that needs to be sorted.
   5451     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   5452          UI != UE; ++UI) {
   5453       SDNode *P = *UI;
   5454       unsigned Degree = P->getNodeId();
   5455       assert(Degree != 0 && "Invalid node degree");
   5456       --Degree;
   5457       if (Degree == 0) {
   5458         // All of P's operands are sorted, so P may sorted now.
   5459         P->setNodeId(DAGSize++);
   5460         if (P != SortedPos)
   5461           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
   5462         assert(SortedPos != AllNodes.end() && "Overran node list");
   5463         ++SortedPos;
   5464       } else {
   5465         // Update P's outstanding operand count.
   5466         P->setNodeId(Degree);
   5467       }
   5468     }
   5469     if (I == SortedPos) {
   5470 #ifndef NDEBUG
   5471       SDNode *S = ++I;
   5472       dbgs() << "Overran sorted position:\n";
   5473       S->dumprFull();
   5474 #endif
   5475       llvm_unreachable(0);
   5476     }
   5477   }
   5478 
   5479   assert(SortedPos == AllNodes.end() &&
   5480          "Topological sort incomplete!");
   5481   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
   5482          "First node in topological sort is not the entry token!");
   5483   assert(AllNodes.front().getNodeId() == 0 &&
   5484          "First node in topological sort has non-zero id!");
   5485   assert(AllNodes.front().getNumOperands() == 0 &&
   5486          "First node in topological sort has operands!");
   5487   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
   5488          "Last node in topologic sort has unexpected id!");
   5489   assert(AllNodes.back().use_empty() &&
   5490          "Last node in topologic sort has users!");
   5491   assert(DAGSize == allnodes_size() && "Node count mismatch!");
   5492   return DAGSize;
   5493 }
   5494 
   5495 /// AssignOrdering - Assign an order to the SDNode.
   5496 void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
   5497   assert(SD && "Trying to assign an order to a null node!");
   5498   Ordering->add(SD, Order);
   5499 }
   5500 
   5501 /// GetOrdering - Get the order for the SDNode.
   5502 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
   5503   assert(SD && "Trying to get the order of a null node!");
   5504   return Ordering->getOrder(SD);
   5505 }
   5506 
   5507 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
   5508 /// value is produced by SD.
   5509 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
   5510   DbgInfo->add(DB, SD, isParameter);
   5511   if (SD)
   5512     SD->setHasDebugValue(true);
   5513 }
   5514 
   5515 /// TransferDbgValues - Transfer SDDbgValues.
   5516 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
   5517   if (From == To || !From.getNode()->getHasDebugValue())
   5518     return;
   5519   SDNode *FromNode = From.getNode();
   5520   SDNode *ToNode = To.getNode();
   5521   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
   5522   SmallVector<SDDbgValue *, 2> ClonedDVs;
   5523   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
   5524        I != E; ++I) {
   5525     SDDbgValue *Dbg = *I;
   5526     if (Dbg->getKind() == SDDbgValue::SDNODE) {
   5527       SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
   5528                                       Dbg->getOffset(), Dbg->getDebugLoc(),
   5529                                       Dbg->getOrder());
   5530       ClonedDVs.push_back(Clone);
   5531     }
   5532   }
   5533   for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
   5534          E = ClonedDVs.end(); I != E; ++I)
   5535     AddDbgValue(*I, ToNode, false);
   5536 }
   5537 
   5538 //===----------------------------------------------------------------------===//
   5539 //                              SDNode Class
   5540 //===----------------------------------------------------------------------===//
   5541 
   5542 HandleSDNode::~HandleSDNode() {
   5543   DropOperands();
   5544 }
   5545 
   5546 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
   5547                                          const GlobalValue *GA,
   5548                                          EVT VT, int64_t o, unsigned char TF)
   5549   : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
   5550   TheGlobal = GA;
   5551 }
   5552 
   5553 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
   5554                      MachineMemOperand *mmo)
   5555  : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
   5556   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
   5557                                       MMO->isNonTemporal());
   5558   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
   5559   assert(isNonTemporal() == MMO->isNonTemporal() &&
   5560          "Non-temporal encoding error!");
   5561   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
   5562 }
   5563 
   5564 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
   5565                      const SDValue *Ops, unsigned NumOps, EVT memvt,
   5566                      MachineMemOperand *mmo)
   5567    : SDNode(Opc, dl, VTs, Ops, NumOps),
   5568      MemoryVT(memvt), MMO(mmo) {
   5569   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
   5570                                       MMO->isNonTemporal());
   5571   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
   5572   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
   5573 }
   5574 
   5575 /// Profile - Gather unique data for the node.
   5576 ///
   5577 void SDNode::Profile(FoldingSetNodeID &ID) const {
   5578   AddNodeIDNode(ID, this);
   5579 }
   5580 
   5581 namespace {
   5582   struct EVTArray {
   5583     std::vector<EVT> VTs;
   5584 
   5585     EVTArray() {
   5586       VTs.reserve(MVT::LAST_VALUETYPE);
   5587       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
   5588         VTs.push_back(MVT((MVT::SimpleValueType)i));
   5589     }
   5590   };
   5591 }
   5592 
   5593 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
   5594 static ManagedStatic<EVTArray> SimpleVTArray;
   5595 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
   5596 
   5597 /// getValueTypeList - Return a pointer to the specified value type.
   5598 ///
   5599 const EVT *SDNode::getValueTypeList(EVT VT) {
   5600   if (VT.isExtended()) {
   5601     sys::SmartScopedLock<true> Lock(*VTMutex);
   5602     return &(*EVTs->insert(VT).first);
   5603   } else {
   5604     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
   5605            "Value type out of range!");
   5606     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
   5607   }
   5608 }
   5609 
   5610 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
   5611 /// indicated value.  This method ignores uses of other values defined by this
   5612 /// operation.
   5613 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
   5614   assert(Value < getNumValues() && "Bad value!");
   5615 
   5616   // TODO: Only iterate over uses of a given value of the node
   5617   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
   5618     if (UI.getUse().getResNo() == Value) {
   5619       if (NUses == 0)
   5620         return false;
   5621       --NUses;
   5622     }
   5623   }
   5624 
   5625   // Found exactly the right number of uses?
   5626   return NUses == 0;
   5627 }
   5628 
   5629 
   5630 /// hasAnyUseOfValue - Return true if there are any use of the indicated
   5631 /// value. This method ignores uses of other values defined by this operation.
   5632 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
   5633   assert(Value < getNumValues() && "Bad value!");
   5634 
   5635   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
   5636     if (UI.getUse().getResNo() == Value)
   5637       return true;
   5638 
   5639   return false;
   5640 }
   5641 
   5642 
   5643 /// isOnlyUserOf - Return true if this node is the only use of N.
   5644 ///
   5645 bool SDNode::isOnlyUserOf(SDNode *N) const {
   5646   bool Seen = false;
   5647   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   5648     SDNode *User = *I;
   5649     if (User == this)
   5650       Seen = true;
   5651     else
   5652       return false;
   5653   }
   5654 
   5655   return Seen;
   5656 }
   5657 
   5658 /// isOperand - Return true if this node is an operand of N.
   5659 ///
   5660 bool SDValue::isOperandOf(SDNode *N) const {
   5661   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   5662     if (*this == N->getOperand(i))
   5663       return true;
   5664   return false;
   5665 }
   5666 
   5667 bool SDNode::isOperandOf(SDNode *N) const {
   5668   for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
   5669     if (this == N->OperandList[i].getNode())
   5670       return true;
   5671   return false;
   5672 }
   5673 
   5674 /// reachesChainWithoutSideEffects - Return true if this operand (which must
   5675 /// be a chain) reaches the specified operand without crossing any
   5676 /// side-effecting instructions on any chain path.  In practice, this looks
   5677 /// through token factors and non-volatile loads.  In order to remain efficient,
   5678 /// this only looks a couple of nodes in, it does not do an exhaustive search.
   5679 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
   5680                                                unsigned Depth) const {
   5681   if (*this == Dest) return true;
   5682 
   5683   // Don't search too deeply, we just want to be able to see through
   5684   // TokenFactor's etc.
   5685   if (Depth == 0) return false;
   5686 
   5687   // If this is a token factor, all inputs to the TF happen in parallel.  If any
   5688   // of the operands of the TF does not reach dest, then we cannot do the xform.
   5689   if (getOpcode() == ISD::TokenFactor) {
   5690     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   5691       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
   5692         return false;
   5693     return true;
   5694   }
   5695 
   5696   // Loads don't have side effects, look through them.
   5697   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
   5698     if (!Ld->isVolatile())
   5699       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
   5700   }
   5701   return false;
   5702 }
   5703 
   5704 /// hasPredecessor - Return true if N is a predecessor of this node.
   5705 /// N is either an operand of this node, or can be reached by recursively
   5706 /// traversing up the operands.
   5707 /// NOTE: This is an expensive method. Use it carefully.
   5708 bool SDNode::hasPredecessor(const SDNode *N) const {
   5709   SmallPtrSet<const SDNode *, 32> Visited;
   5710   SmallVector<const SDNode *, 16> Worklist;
   5711   return hasPredecessorHelper(N, Visited, Worklist);
   5712 }
   5713 
   5714 bool SDNode::hasPredecessorHelper(const SDNode *N,
   5715                                   SmallPtrSet<const SDNode *, 32> &Visited,
   5716                                   SmallVector<const SDNode *, 16> &Worklist) const {
   5717   if (Visited.empty()) {
   5718     Worklist.push_back(this);
   5719   } else {
   5720     // Take a look in the visited set. If we've already encountered this node
   5721     // we needn't search further.
   5722     if (Visited.count(N))
   5723       return true;
   5724   }
   5725 
   5726   // Haven't visited N yet. Continue the search.
   5727   while (!Worklist.empty()) {
   5728     const SDNode *M = Worklist.pop_back_val();
   5729     for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   5730       SDNode *Op = M->getOperand(i).getNode();
   5731       if (Visited.insert(Op))
   5732         Worklist.push_back(Op);
   5733       if (Op == N)
   5734         return true;
   5735     }
   5736   }
   5737 
   5738   return false;
   5739 }
   5740 
   5741 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
   5742   assert(Num < NumOperands && "Invalid child # of SDNode!");
   5743   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
   5744 }
   5745 
   5746 std::string SDNode::getOperationName(const SelectionDAG *G) const {
   5747   switch (getOpcode()) {
   5748   default:
   5749     if (getOpcode() < ISD::BUILTIN_OP_END)
   5750       return "<<Unknown DAG Node>>";
   5751     if (isMachineOpcode()) {
   5752       if (G)
   5753         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
   5754           if (getMachineOpcode() < TII->getNumOpcodes())
   5755             return TII->get(getMachineOpcode()).getName();
   5756       return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
   5757     }
   5758     if (G) {
   5759       const TargetLowering &TLI = G->getTargetLoweringInfo();
   5760       const char *Name = TLI.getTargetNodeName(getOpcode());
   5761       if (Name) return Name;
   5762       return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
   5763     }
   5764     return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
   5765 
   5766 #ifndef NDEBUG
   5767   case ISD::DELETED_NODE:
   5768     return "<<Deleted Node!>>";
   5769 #endif
   5770   case ISD::PREFETCH:      return "Prefetch";
   5771   case ISD::MEMBARRIER:    return "MemBarrier";
   5772   case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
   5773   case ISD::ATOMIC_SWAP:        return "AtomicSwap";
   5774   case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
   5775   case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
   5776   case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
   5777   case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
   5778   case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
   5779   case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
   5780   case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
   5781   case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
   5782   case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
   5783   case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
   5784   case ISD::PCMARKER:      return "PCMarker";
   5785   case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
   5786   case ISD::SRCVALUE:      return "SrcValue";
   5787   case ISD::MDNODE_SDNODE: return "MDNode";
   5788   case ISD::EntryToken:    return "EntryToken";
   5789   case ISD::TokenFactor:   return "TokenFactor";
   5790   case ISD::AssertSext:    return "AssertSext";
   5791   case ISD::AssertZext:    return "AssertZext";
   5792 
   5793   case ISD::BasicBlock:    return "BasicBlock";
   5794   case ISD::VALUETYPE:     return "ValueType";
   5795   case ISD::Register:      return "Register";
   5796 
   5797   case ISD::Constant:      return "Constant";
   5798   case ISD::ConstantFP:    return "ConstantFP";
   5799   case ISD::GlobalAddress: return "GlobalAddress";
   5800   case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
   5801   case ISD::FrameIndex:    return "FrameIndex";
   5802   case ISD::JumpTable:     return "JumpTable";
   5803   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
   5804   case ISD::RETURNADDR: return "RETURNADDR";
   5805   case ISD::FRAMEADDR: return "FRAMEADDR";
   5806   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
   5807   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
   5808   case ISD::LSDAADDR: return "LSDAADDR";
   5809   case ISD::EHSELECTION: return "EHSELECTION";
   5810   case ISD::EH_RETURN: return "EH_RETURN";
   5811   case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
   5812   case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
   5813   case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
   5814   case ISD::ConstantPool:  return "ConstantPool";
   5815   case ISD::ExternalSymbol: return "ExternalSymbol";
   5816   case ISD::BlockAddress:  return "BlockAddress";
   5817   case ISD::INTRINSIC_WO_CHAIN:
   5818   case ISD::INTRINSIC_VOID:
   5819   case ISD::INTRINSIC_W_CHAIN: {
   5820     unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
   5821     unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
   5822     if (IID < Intrinsic::num_intrinsics)
   5823       return Intrinsic::getName((Intrinsic::ID)IID);
   5824     else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
   5825       return TII->getName(IID);
   5826     llvm_unreachable("Invalid intrinsic ID");
   5827   }
   5828 
   5829   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
   5830   case ISD::TargetConstant: return "TargetConstant";
   5831   case ISD::TargetConstantFP:return "TargetConstantFP";
   5832   case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
   5833   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
   5834   case ISD::TargetFrameIndex: return "TargetFrameIndex";
   5835   case ISD::TargetJumpTable:  return "TargetJumpTable";
   5836   case ISD::TargetConstantPool:  return "TargetConstantPool";
   5837   case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
   5838   case ISD::TargetBlockAddress: return "TargetBlockAddress";
   5839 
   5840   case ISD::CopyToReg:     return "CopyToReg";
   5841   case ISD::CopyFromReg:   return "CopyFromReg";
   5842   case ISD::UNDEF:         return "undef";
   5843   case ISD::MERGE_VALUES:  return "merge_values";
   5844   case ISD::INLINEASM:     return "inlineasm";
   5845   case ISD::EH_LABEL:      return "eh_label";
   5846   case ISD::HANDLENODE:    return "handlenode";
   5847 
   5848   // Unary operators
   5849   case ISD::FABS:   return "fabs";
   5850   case ISD::FNEG:   return "fneg";
   5851   case ISD::FSQRT:  return "fsqrt";
   5852   case ISD::FSIN:   return "fsin";
   5853   case ISD::FCOS:   return "fcos";
   5854   case ISD::FTRUNC: return "ftrunc";
   5855   case ISD::FFLOOR: return "ffloor";
   5856   case ISD::FCEIL:  return "fceil";
   5857   case ISD::FRINT:  return "frint";
   5858   case ISD::FNEARBYINT: return "fnearbyint";
   5859   case ISD::FEXP:   return "fexp";
   5860   case ISD::FEXP2:  return "fexp2";
   5861   case ISD::FLOG:   return "flog";
   5862   case ISD::FLOG2:  return "flog2";
   5863   case ISD::FLOG10: return "flog10";
   5864 
   5865   // Binary operators
   5866   case ISD::ADD:    return "add";
   5867   case ISD::SUB:    return "sub";
   5868   case ISD::MUL:    return "mul";
   5869   case ISD::MULHU:  return "mulhu";
   5870   case ISD::MULHS:  return "mulhs";
   5871   case ISD::SDIV:   return "sdiv";
   5872   case ISD::UDIV:   return "udiv";
   5873   case ISD::SREM:   return "srem";
   5874   case ISD::UREM:   return "urem";
   5875   case ISD::SMUL_LOHI:  return "smul_lohi";
   5876   case ISD::UMUL_LOHI:  return "umul_lohi";
   5877   case ISD::SDIVREM:    return "sdivrem";
   5878   case ISD::UDIVREM:    return "udivrem";
   5879   case ISD::AND:    return "and";
   5880   case ISD::OR:     return "or";
   5881   case ISD::XOR:    return "xor";
   5882   case ISD::SHL:    return "shl";
   5883   case ISD::SRA:    return "sra";
   5884   case ISD::SRL:    return "srl";
   5885   case ISD::ROTL:   return "rotl";
   5886   case ISD::ROTR:   return "rotr";
   5887   case ISD::FADD:   return "fadd";
   5888   case ISD::FSUB:   return "fsub";
   5889   case ISD::FMUL:   return "fmul";
   5890   case ISD::FDIV:   return "fdiv";
   5891   case ISD::FMA:    return "fma";
   5892   case ISD::FREM:   return "frem";
   5893   case ISD::FCOPYSIGN: return "fcopysign";
   5894   case ISD::FGETSIGN:  return "fgetsign";
   5895   case ISD::FPOW:   return "fpow";
   5896 
   5897   case ISD::FPOWI:  return "fpowi";
   5898   case ISD::SETCC:       return "setcc";
   5899   case ISD::VSETCC:      return "vsetcc";
   5900   case ISD::SELECT:      return "select";
   5901   case ISD::SELECT_CC:   return "select_cc";
   5902   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
   5903   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
   5904   case ISD::CONCAT_VECTORS:      return "concat_vectors";
   5905   case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
   5906   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
   5907   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
   5908   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
   5909   case ISD::CARRY_FALSE:         return "carry_false";
   5910   case ISD::ADDC:        return "addc";
   5911   case ISD::ADDE:        return "adde";
   5912   case ISD::SADDO:       return "saddo";
   5913   case ISD::UADDO:       return "uaddo";
   5914   case ISD::SSUBO:       return "ssubo";
   5915   case ISD::USUBO:       return "usubo";
   5916   case ISD::SMULO:       return "smulo";
   5917   case ISD::UMULO:       return "umulo";
   5918   case ISD::SUBC:        return "subc";
   5919   case ISD::SUBE:        return "sube";
   5920   case ISD::SHL_PARTS:   return "shl_parts";
   5921   case ISD::SRA_PARTS:   return "sra_parts";
   5922   case ISD::SRL_PARTS:   return "srl_parts";
   5923 
   5924   // Conversion operators.
   5925   case ISD::SIGN_EXTEND: return "sign_extend";
   5926   case ISD::ZERO_EXTEND: return "zero_extend";
   5927   case ISD::ANY_EXTEND:  return "any_extend";
   5928   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
   5929   case ISD::TRUNCATE:    return "truncate";
   5930   case ISD::FP_ROUND:    return "fp_round";
   5931   case ISD::FLT_ROUNDS_: return "flt_rounds";
   5932   case ISD::FP_ROUND_INREG: return "fp_round_inreg";
   5933   case ISD::FP_EXTEND:   return "fp_extend";
   5934 
   5935   case ISD::SINT_TO_FP:  return "sint_to_fp";
   5936   case ISD::UINT_TO_FP:  return "uint_to_fp";
   5937   case ISD::FP_TO_SINT:  return "fp_to_sint";
   5938   case ISD::FP_TO_UINT:  return "fp_to_uint";
   5939   case ISD::BITCAST:     return "bitcast";
   5940   case ISD::FP16_TO_FP32: return "fp16_to_fp32";
   5941   case ISD::FP32_TO_FP16: return "fp32_to_fp16";
   5942 
   5943   case ISD::CONVERT_RNDSAT: {
   5944     switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
   5945     default: llvm_unreachable("Unknown cvt code!");
   5946     case ISD::CVT_FF:  return "cvt_ff";
   5947     case ISD::CVT_FS:  return "cvt_fs";
   5948     case ISD::CVT_FU:  return "cvt_fu";
   5949     case ISD::CVT_SF:  return "cvt_sf";
   5950     case ISD::CVT_UF:  return "cvt_uf";
   5951     case ISD::CVT_SS:  return "cvt_ss";
   5952     case ISD::CVT_SU:  return "cvt_su";
   5953     case ISD::CVT_US:  return "cvt_us";
   5954     case ISD::CVT_UU:  return "cvt_uu";
   5955     }
   5956   }
   5957 
   5958     // Control flow instructions
   5959   case ISD::BR:      return "br";
   5960   case ISD::BRIND:   return "brind";
   5961   case ISD::BR_JT:   return "br_jt";
   5962   case ISD::BRCOND:  return "brcond";
   5963   case ISD::BR_CC:   return "br_cc";
   5964   case ISD::CALLSEQ_START:  return "callseq_start";
   5965   case ISD::CALLSEQ_END:    return "callseq_end";
   5966 
   5967     // Other operators
   5968   case ISD::LOAD:               return "load";
   5969   case ISD::STORE:              return "store";
   5970   case ISD::VAARG:              return "vaarg";
   5971   case ISD::VACOPY:             return "vacopy";
   5972   case ISD::VAEND:              return "vaend";
   5973   case ISD::VASTART:            return "vastart";
   5974   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
   5975   case ISD::EXTRACT_ELEMENT:    return "extract_element";
   5976   case ISD::BUILD_PAIR:         return "build_pair";
   5977   case ISD::STACKSAVE:          return "stacksave";
   5978   case ISD::STACKRESTORE:       return "stackrestore";
   5979   case ISD::TRAP:               return "trap";
   5980 
   5981   // Bit manipulation
   5982   case ISD::BSWAP:   return "bswap";
   5983   case ISD::CTPOP:   return "ctpop";
   5984   case ISD::CTTZ:    return "cttz";
   5985   case ISD::CTLZ:    return "ctlz";
   5986 
   5987   // Trampolines
   5988   case ISD::TRAMPOLINE: return "trampoline";
   5989 
   5990   case ISD::CONDCODE:
   5991     switch (cast<CondCodeSDNode>(this)->get()) {
   5992     default: llvm_unreachable("Unknown setcc condition!");
   5993     case ISD::SETOEQ:  return "setoeq";
   5994     case ISD::SETOGT:  return "setogt";
   5995     case ISD::SETOGE:  return "setoge";
   5996     case ISD::SETOLT:  return "setolt";
   5997     case ISD::SETOLE:  return "setole";
   5998     case ISD::SETONE:  return "setone";
   5999 
   6000     case ISD::SETO:    return "seto";
   6001     case ISD::SETUO:   return "setuo";
   6002     case ISD::SETUEQ:  return "setue";
   6003     case ISD::SETUGT:  return "setugt";
   6004     case ISD::SETUGE:  return "setuge";
   6005     case ISD::SETULT:  return "setult";
   6006     case ISD::SETULE:  return "setule";
   6007     case ISD::SETUNE:  return "setune";
   6008 
   6009     case ISD::SETEQ:   return "seteq";
   6010     case ISD::SETGT:   return "setgt";
   6011     case ISD::SETGE:   return "setge";
   6012     case ISD::SETLT:   return "setlt";
   6013     case ISD::SETLE:   return "setle";
   6014     case ISD::SETNE:   return "setne";
   6015     }
   6016   }
   6017 }
   6018 
   6019 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
   6020   switch (AM) {
   6021   default:
   6022     return "";
   6023   case ISD::PRE_INC:
   6024     return "<pre-inc>";
   6025   case ISD::PRE_DEC:
   6026     return "<pre-dec>";
   6027   case ISD::POST_INC:
   6028     return "<post-inc>";
   6029   case ISD::POST_DEC:
   6030     return "<post-dec>";
   6031   }
   6032 }
   6033 
   6034 std::string ISD::ArgFlagsTy::getArgFlagsString() {
   6035   std::string S = "< ";
   6036 
   6037   if (isZExt())
   6038     S += "zext ";
   6039   if (isSExt())
   6040     S += "sext ";
   6041   if (isInReg())
   6042     S += "inreg ";
   6043   if (isSRet())
   6044     S += "sret ";
   6045   if (isByVal())
   6046     S += "byval ";
   6047   if (isNest())
   6048     S += "nest ";
   6049   if (getByValAlign())
   6050     S += "byval-align:" + utostr(getByValAlign()) + " ";
   6051   if (getOrigAlign())
   6052     S += "orig-align:" + utostr(getOrigAlign()) + " ";
   6053   if (getByValSize())
   6054     S += "byval-size:" + utostr(getByValSize()) + " ";
   6055   return S + ">";
   6056 }
   6057 
   6058 void SDNode::dump() const { dump(0); }
   6059 void SDNode::dump(const SelectionDAG *G) const {
   6060   print(dbgs(), G);
   6061   dbgs() << '\n';
   6062 }
   6063 
   6064 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
   6065   OS << (void*)this << ": ";
   6066 
   6067   for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
   6068     if (i) OS << ",";
   6069     if (getValueType(i) == MVT::Other)
   6070       OS << "ch";
   6071     else
   6072       OS << getValueType(i).getEVTString();
   6073   }
   6074   OS << " = " << getOperationName(G);
   6075 }
   6076 
   6077 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
   6078   if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
   6079     if (!MN->memoperands_empty()) {
   6080       OS << "<";
   6081       OS << "Mem:";
   6082       for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
   6083            e = MN->memoperands_end(); i != e; ++i) {
   6084         OS << **i;
   6085         if (llvm::next(i) != e)
   6086           OS << " ";
   6087       }
   6088       OS << ">";
   6089     }
   6090   } else if (const ShuffleVectorSDNode *SVN =
   6091                dyn_cast<ShuffleVectorSDNode>(this)) {
   6092     OS << "<";
   6093     for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
   6094       int Idx = SVN->getMaskElt(i);
   6095       if (i) OS << ",";
   6096       if (Idx < 0)
   6097         OS << "u";
   6098       else
   6099         OS << Idx;
   6100     }
   6101     OS << ">";
   6102   } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
   6103     OS << '<' << CSDN->getAPIntValue() << '>';
   6104   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
   6105     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
   6106       OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
   6107     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
   6108       OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
   6109     else {
   6110       OS << "<APFloat(";
   6111       CSDN->getValueAPF().bitcastToAPInt().dump();
   6112       OS << ")>";
   6113     }
   6114   } else if (const GlobalAddressSDNode *GADN =
   6115              dyn_cast<GlobalAddressSDNode>(this)) {
   6116     int64_t offset = GADN->getOffset();
   6117     OS << '<';
   6118     WriteAsOperand(OS, GADN->getGlobal());
   6119     OS << '>';
   6120     if (offset > 0)
   6121       OS << " + " << offset;
   6122     else
   6123       OS << " " << offset;
   6124     if (unsigned int TF = GADN->getTargetFlags())
   6125       OS << " [TF=" << TF << ']';
   6126   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
   6127     OS << "<" << FIDN->getIndex() << ">";
   6128   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
   6129     OS << "<" << JTDN->getIndex() << ">";
   6130     if (unsigned int TF = JTDN->getTargetFlags())
   6131       OS << " [TF=" << TF << ']';
   6132   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
   6133     int offset = CP->getOffset();
   6134     if (CP->isMachineConstantPoolEntry())
   6135       OS << "<" << *CP->getMachineCPVal() << ">";
   6136     else
   6137       OS << "<" << *CP->getConstVal() << ">";
   6138     if (offset > 0)
   6139       OS << " + " << offset;
   6140     else
   6141       OS << " " << offset;
   6142     if (unsigned int TF = CP->getTargetFlags())
   6143       OS << " [TF=" << TF << ']';
   6144   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
   6145     OS << "<";
   6146     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
   6147     if (LBB)
   6148       OS << LBB->getName() << " ";
   6149     OS << (const void*)BBDN->getBasicBlock() << ">";
   6150   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
   6151     OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
   6152   } else if (const ExternalSymbolSDNode *ES =
   6153              dyn_cast<ExternalSymbolSDNode>(this)) {
   6154     OS << "'" << ES->getSymbol() << "'";
   6155     if (unsigned int TF = ES->getTargetFlags())
   6156       OS << " [TF=" << TF << ']';
   6157   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
   6158     if (M->getValue())
   6159       OS << "<" << M->getValue() << ">";
   6160     else
   6161       OS << "<null>";
   6162   } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
   6163     if (MD->getMD())
   6164       OS << "<" << MD->getMD() << ">";
   6165     else
   6166       OS << "<null>";
   6167   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
   6168     OS << ":" << N->getVT().getEVTString();
   6169   }
   6170   else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
   6171     OS << "<" << *LD->getMemOperand();
   6172 
   6173     bool doExt = true;
   6174     switch (LD->getExtensionType()) {
   6175     default: doExt = false; break;
   6176     case ISD::EXTLOAD: OS << ", anyext"; break;
   6177     case ISD::SEXTLOAD: OS << ", sext"; break;
   6178     case ISD::ZEXTLOAD: OS << ", zext"; break;
   6179     }
   6180     if (doExt)
   6181       OS << " from " << LD->getMemoryVT().getEVTString();
   6182 
   6183     const char *AM = getIndexedModeName(LD->getAddressingMode());
   6184     if (*AM)
   6185       OS << ", " << AM;
   6186 
   6187     OS << ">";
   6188   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
   6189     OS << "<" << *ST->getMemOperand();
   6190 
   6191     if (ST->isTruncatingStore())
   6192       OS << ", trunc to " << ST->getMemoryVT().getEVTString();
   6193 
   6194     const char *AM = getIndexedModeName(ST->getAddressingMode());
   6195     if (*AM)
   6196       OS << ", " << AM;
   6197 
   6198     OS << ">";
   6199   } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
   6200     OS << "<" << *M->getMemOperand() << ">";
   6201   } else if (const BlockAddressSDNode *BA =
   6202                dyn_cast<BlockAddressSDNode>(this)) {
   6203     OS << "<";
   6204     WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
   6205     OS << ", ";
   6206     WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
   6207     OS << ">";
   6208     if (unsigned int TF = BA->getTargetFlags())
   6209       OS << " [TF=" << TF << ']';
   6210   }
   6211 
   6212   if (G)
   6213     if (unsigned Order = G->GetOrdering(this))
   6214       OS << " [ORD=" << Order << ']';
   6215 
   6216   if (getNodeId() != -1)
   6217     OS << " [ID=" << getNodeId() << ']';
   6218 
   6219   DebugLoc dl = getDebugLoc();
   6220   if (G && !dl.isUnknown()) {
   6221     DIScope
   6222       Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
   6223     OS << " dbg:";
   6224     // Omit the directory, since it's usually long and uninteresting.
   6225     if (Scope.Verify())
   6226       OS << Scope.getFilename();
   6227     else
   6228       OS << "<unknown>";
   6229     OS << ':' << dl.getLine();
   6230     if (dl.getCol() != 0)
   6231       OS << ':' << dl.getCol();
   6232   }
   6233 }
   6234 
   6235 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
   6236   print_types(OS, G);
   6237   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   6238     if (i) OS << ", "; else OS << " ";
   6239     OS << (void*)getOperand(i).getNode();
   6240     if (unsigned RN = getOperand(i).getResNo())
   6241       OS << ":" << RN;
   6242   }
   6243   print_details(OS, G);
   6244 }
   6245 
   6246 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
   6247                                   const SelectionDAG *G, unsigned depth,
   6248                                   unsigned indent)
   6249 {
   6250   if (depth == 0)
   6251     return;
   6252 
   6253   OS.indent(indent);
   6254 
   6255   N->print(OS, G);
   6256 
   6257   if (depth < 1)
   6258     return;
   6259 
   6260   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   6261     // Don't follow chain operands.
   6262     if (N->getOperand(i).getValueType() == MVT::Other)
   6263       continue;
   6264     OS << '\n';
   6265     printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
   6266   }
   6267 }
   6268 
   6269 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
   6270                             unsigned depth) const {
   6271   printrWithDepthHelper(OS, this, G, depth, 0);
   6272 }
   6273 
   6274 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
   6275   // Don't print impossibly deep things.
   6276   printrWithDepth(OS, G, 10);
   6277 }
   6278 
   6279 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
   6280   printrWithDepth(dbgs(), G, depth);
   6281 }
   6282 
   6283 void SDNode::dumprFull(const SelectionDAG *G) const {
   6284   // Don't print impossibly deep things.
   6285   dumprWithDepth(G, 10);
   6286 }
   6287 
   6288 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
   6289   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   6290     if (N->getOperand(i).getNode()->hasOneUse())
   6291       DumpNodes(N->getOperand(i).getNode(), indent+2, G);
   6292     else
   6293       dbgs() << "\n" << std::string(indent+2, ' ')
   6294            << (void*)N->getOperand(i).getNode() << ": <multiple use>";
   6295 
   6296 
   6297   dbgs() << "\n";
   6298   dbgs().indent(indent);
   6299   N->dump(G);
   6300 }
   6301 
   6302 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
   6303   assert(N->getNumValues() == 1 &&
   6304          "Can't unroll a vector with multiple results!");
   6305 
   6306   EVT VT = N->getValueType(0);
   6307   unsigned NE = VT.getVectorNumElements();
   6308   EVT EltVT = VT.getVectorElementType();
   6309   DebugLoc dl = N->getDebugLoc();
   6310 
   6311   SmallVector<SDValue, 8> Scalars;
   6312   SmallVector<SDValue, 4> Operands(N->getNumOperands());
   6313 
   6314   // If ResNE is 0, fully unroll the vector op.
   6315   if (ResNE == 0)
   6316     ResNE = NE;
   6317   else if (NE > ResNE)
   6318     NE = ResNE;
   6319 
   6320   unsigned i;
   6321   for (i= 0; i != NE; ++i) {
   6322     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
   6323       SDValue Operand = N->getOperand(j);
   6324       EVT OperandVT = Operand.getValueType();
   6325       if (OperandVT.isVector()) {
   6326         // A vector operand; extract a single element.
   6327         EVT OperandEltVT = OperandVT.getVectorElementType();
   6328         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   6329                               OperandEltVT,
   6330                               Operand,
   6331                               getConstant(i, TLI.getPointerTy()));
   6332       } else {
   6333         // A scalar operand; just use it as is.
   6334         Operands[j] = Operand;
   6335       }
   6336     }
   6337 
   6338     switch (N->getOpcode()) {
   6339     default:
   6340       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
   6341                                 &Operands[0], Operands.size()));
   6342       break;
   6343     case ISD::SHL:
   6344     case ISD::SRA:
   6345     case ISD::SRL:
   6346     case ISD::ROTL:
   6347     case ISD::ROTR:
   6348       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
   6349                                 getShiftAmountOperand(Operands[0].getValueType(),
   6350                                                       Operands[1])));
   6351       break;
   6352     case ISD::SIGN_EXTEND_INREG:
   6353     case ISD::FP_ROUND_INREG: {
   6354       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
   6355       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
   6356                                 Operands[0],
   6357                                 getValueType(ExtVT)));
   6358     }
   6359     }
   6360   }
   6361 
   6362   for (; i < ResNE; ++i)
   6363     Scalars.push_back(getUNDEF(EltVT));
   6364 
   6365   return getNode(ISD::BUILD_VECTOR, dl,
   6366                  EVT::getVectorVT(*getContext(), EltVT, ResNE),
   6367                  &Scalars[0], Scalars.size());
   6368 }
   6369 
   6370 
   6371 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
   6372 /// location that is 'Dist' units away from the location that the 'Base' load
   6373 /// is loading from.
   6374 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
   6375                                      unsigned Bytes, int Dist) const {
   6376   if (LD->getChain() != Base->getChain())
   6377     return false;
   6378   EVT VT = LD->getValueType(0);
   6379   if (VT.getSizeInBits() / 8 != Bytes)
   6380     return false;
   6381 
   6382   SDValue Loc = LD->getOperand(1);
   6383   SDValue BaseLoc = Base->getOperand(1);
   6384   if (Loc.getOpcode() == ISD::FrameIndex) {
   6385     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   6386       return false;
   6387     const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
   6388     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   6389     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   6390     int FS  = MFI->getObjectSize(FI);
   6391     int BFS = MFI->getObjectSize(BFI);
   6392     if (FS != BFS || FS != (int)Bytes) return false;
   6393     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   6394   }
   6395 
   6396   // Handle X+C
   6397   if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
   6398       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
   6399     return true;
   6400 
   6401   const GlobalValue *GV1 = NULL;
   6402   const GlobalValue *GV2 = NULL;
   6403   int64_t Offset1 = 0;
   6404   int64_t Offset2 = 0;
   6405   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   6406   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   6407   if (isGA1 && isGA2 && GV1 == GV2)
   6408     return Offset1 == (Offset2 + Dist*Bytes);
   6409   return false;
   6410 }
   6411 
   6412 
   6413 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
   6414 /// it cannot be inferred.
   6415 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
   6416   // If this is a GlobalAddress + cst, return the alignment.
   6417   const GlobalValue *GV;
   6418   int64_t GVOffset = 0;
   6419   if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
   6420     // If GV has specified alignment, then use it. Otherwise, use the preferred
   6421     // alignment.
   6422     unsigned Align = GV->getAlignment();
   6423     if (!Align) {
   6424       if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
   6425         if (GVar->hasInitializer()) {
   6426           const TargetData *TD = TLI.getTargetData();
   6427           Align = TD->getPreferredAlignment(GVar);
   6428         }
   6429       }
   6430     }
   6431     return MinAlign(Align, GVOffset);
   6432   }
   6433 
   6434   // If this is a direct reference to a stack slot, use information about the
   6435   // stack slot's alignment.
   6436   int FrameIdx = 1 << 31;
   6437   int64_t FrameOffset = 0;
   6438   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
   6439     FrameIdx = FI->getIndex();
   6440   } else if (isBaseWithConstantOffset(Ptr) &&
   6441              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   6442     // Handle FI+Cst
   6443     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   6444     FrameOffset = Ptr.getConstantOperandVal(1);
   6445   }
   6446 
   6447   if (FrameIdx != (1 << 31)) {
   6448     const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
   6449     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
   6450                                     FrameOffset);
   6451     return FIInfoAlign;
   6452   }
   6453 
   6454   return 0;
   6455 }
   6456 
   6457 void SelectionDAG::dump() const {
   6458   dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
   6459 
   6460   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
   6461        I != E; ++I) {
   6462     const SDNode *N = I;
   6463     if (!N->hasOneUse() && N != getRoot().getNode())
   6464       DumpNodes(N, 2, this);
   6465   }
   6466 
   6467   if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
   6468 
   6469   dbgs() << "\n\n";
   6470 }
   6471 
   6472 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
   6473   print_types(OS, G);
   6474   print_details(OS, G);
   6475 }
   6476 
   6477 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
   6478 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
   6479                        const SelectionDAG *G, VisitedSDNodeSet &once) {
   6480   if (!once.insert(N))          // If we've been here before, return now.
   6481     return;
   6482 
   6483   // Dump the current SDNode, but don't end the line yet.
   6484   OS << std::string(indent, ' ');
   6485   N->printr(OS, G);
   6486 
   6487   // Having printed this SDNode, walk the children:
   6488   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   6489     const SDNode *child = N->getOperand(i).getNode();
   6490 
   6491     if (i) OS << ",";
   6492     OS << " ";
   6493 
   6494     if (child->getNumOperands() == 0) {
   6495       // This child has no grandchildren; print it inline right here.
   6496       child->printr(OS, G);
   6497       once.insert(child);
   6498     } else {         // Just the address. FIXME: also print the child's opcode.
   6499       OS << (void*)child;
   6500       if (unsigned RN = N->getOperand(i).getResNo())
   6501         OS << ":" << RN;
   6502     }
   6503   }
   6504 
   6505   OS << "\n";
   6506 
   6507   // Dump children that have grandchildren on their own line(s).
   6508   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   6509     const SDNode *child = N->getOperand(i).getNode();
   6510     DumpNodesr(OS, child, indent+2, G, once);
   6511   }
   6512 }
   6513 
   6514 void SDNode::dumpr() const {
   6515   VisitedSDNodeSet once;
   6516   DumpNodesr(dbgs(), this, 0, 0, once);
   6517 }
   6518 
   6519 void SDNode::dumpr(const SelectionDAG *G) const {
   6520   VisitedSDNodeSet once;
   6521   DumpNodesr(dbgs(), this, 0, G, once);
   6522 }
   6523 
   6524 
   6525 // getAddressSpace - Return the address space this GlobalAddress belongs to.
   6526 unsigned GlobalAddressSDNode::getAddressSpace() const {
   6527   return getGlobal()->getType()->getAddressSpace();
   6528 }
   6529 
   6530 
   6531 Type *ConstantPoolSDNode::getType() const {
   6532   if (isMachineConstantPoolEntry())
   6533     return Val.MachineCPVal->getType();
   6534   return Val.ConstVal->getType();
   6535 }
   6536 
   6537 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
   6538                                         APInt &SplatUndef,
   6539                                         unsigned &SplatBitSize,
   6540                                         bool &HasAnyUndefs,
   6541                                         unsigned MinSplatBits,
   6542                                         bool isBigEndian) {
   6543   EVT VT = getValueType(0);
   6544   assert(VT.isVector() && "Expected a vector type");
   6545   unsigned sz = VT.getSizeInBits();
   6546   if (MinSplatBits > sz)
   6547     return false;
   6548 
   6549   SplatValue = APInt(sz, 0);
   6550   SplatUndef = APInt(sz, 0);
   6551 
   6552   // Get the bits.  Bits with undefined values (when the corresponding element
   6553   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
   6554   // in SplatValue.  If any of the values are not constant, give up and return
   6555   // false.
   6556   unsigned int nOps = getNumOperands();
   6557   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
   6558   unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
   6559 
   6560   for (unsigned j = 0; j < nOps; ++j) {
   6561     unsigned i = isBigEndian ? nOps-1-j : j;
   6562     SDValue OpVal = getOperand(i);
   6563     unsigned BitPos = j * EltBitSize;
   6564 
   6565     if (OpVal.getOpcode() == ISD::UNDEF)
   6566       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
   6567     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
   6568       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
   6569                     zextOrTrunc(sz) << BitPos;
   6570     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
   6571       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
   6572      else
   6573       return false;
   6574   }
   6575 
   6576   // The build_vector is all constants or undefs.  Find the smallest element
   6577   // size that splats the vector.
   6578 
   6579   HasAnyUndefs = (SplatUndef != 0);
   6580   while (sz > 8) {
   6581 
   6582     unsigned HalfSize = sz / 2;
   6583     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
   6584     APInt LowValue = SplatValue.trunc(HalfSize);
   6585     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
   6586     APInt LowUndef = SplatUndef.trunc(HalfSize);
   6587 
   6588     // If the two halves do not match (ignoring undef bits), stop here.
   6589     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
   6590         MinSplatBits > HalfSize)
   6591       break;
   6592 
   6593     SplatValue = HighValue | LowValue;
   6594     SplatUndef = HighUndef & LowUndef;
   6595 
   6596     sz = HalfSize;
   6597   }
   6598 
   6599   SplatBitSize = sz;
   6600   return true;
   6601 }
   6602 
   6603 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
   6604   // Find the first non-undef value in the shuffle mask.
   6605   unsigned i, e;
   6606   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
   6607     /* search */;
   6608 
   6609   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
   6610 
   6611   // Make sure all remaining elements are either undef or the same as the first
   6612   // non-undef value.
   6613   for (int Idx = Mask[i]; i != e; ++i)
   6614     if (Mask[i] >= 0 && Mask[i] != Idx)
   6615       return false;
   6616   return true;
   6617 }
   6618 
   6619 #ifdef XDEBUG
   6620 static void checkForCyclesHelper(const SDNode *N,
   6621                                  SmallPtrSet<const SDNode*, 32> &Visited,
   6622                                  SmallPtrSet<const SDNode*, 32> &Checked) {
   6623   // If this node has already been checked, don't check it again.
   6624   if (Checked.count(N))
   6625     return;
   6626 
   6627   // If a node has already been visited on this depth-first walk, reject it as
   6628   // a cycle.
   6629   if (!Visited.insert(N)) {
   6630     dbgs() << "Offending node:\n";
   6631     N->dumprFull();
   6632     errs() << "Detected cycle in SelectionDAG\n";
   6633     abort();
   6634   }
   6635 
   6636   for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   6637     checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
   6638 
   6639   Checked.insert(N);
   6640   Visited.erase(N);
   6641 }
   6642 #endif
   6643 
   6644 void llvm::checkForCycles(const llvm::SDNode *N) {
   6645 #ifdef XDEBUG
   6646   assert(N && "Checking nonexistant SDNode");
   6647   SmallPtrSet<const SDNode*, 32> visited;
   6648   SmallPtrSet<const SDNode*, 32> checked;
   6649   checkForCyclesHelper(N, visited, checked);
   6650 #endif
   6651 }
   6652 
   6653 void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
   6654   checkForCycles(DAG->getRoot().getNode());
   6655 }
   6656