Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     18 #include "llvm/CodeGen/SelectionDAGISel.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/DebugInfo.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/Function.h"
     24 #include "llvm/InlineAsm.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Intrinsics.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/LLVMContext.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/CodeGen/FastISel.h"
     31 #include "llvm/CodeGen/GCStrategy.h"
     32 #include "llvm/CodeGen/GCMetadata.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineFunction.h"
     35 #include "llvm/CodeGen/MachineInstrBuilder.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     39 #include "llvm/CodeGen/SchedulerRegistry.h"
     40 #include "llvm/CodeGen/SelectionDAG.h"
     41 #include "llvm/Target/TargetRegisterInfo.h"
     42 #include "llvm/Target/TargetIntrinsicInfo.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetLowering.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include "llvm/Target/TargetOptions.h"
     47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     48 #include "llvm/Support/Compiler.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/Timer.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/ADT/PostOrderIterator.h"
     54 #include "llvm/ADT/Statistic.h"
     55 #include <algorithm>
     56 using namespace llvm;
     57 
     58 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     59 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     60 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     61 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     62 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     63 
     64 static cl::opt<bool>
     65 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
     66           cl::desc("Enable verbose messages in the \"fast\" "
     67                    "instruction selector"));
     68 static cl::opt<bool>
     69 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
     70           cl::desc("Enable abort calls when \"fast\" instruction fails"));
     71 
     72 static cl::opt<bool>
     73 UseMBPI("use-mbpi",
     74         cl::desc("use Machine Branch Probability Info"),
     75         cl::init(true), cl::Hidden);
     76 
     77 #ifndef NDEBUG
     78 static cl::opt<bool>
     79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
     80           cl::desc("Pop up a window to show dags before the first "
     81                    "dag combine pass"));
     82 static cl::opt<bool>
     83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
     84           cl::desc("Pop up a window to show dags before legalize types"));
     85 static cl::opt<bool>
     86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
     87           cl::desc("Pop up a window to show dags before legalize"));
     88 static cl::opt<bool>
     89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
     90           cl::desc("Pop up a window to show dags before the second "
     91                    "dag combine pass"));
     92 static cl::opt<bool>
     93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
     94           cl::desc("Pop up a window to show dags before the post legalize types"
     95                    " dag combine pass"));
     96 static cl::opt<bool>
     97 ViewISelDAGs("view-isel-dags", cl::Hidden,
     98           cl::desc("Pop up a window to show isel dags as they are selected"));
     99 static cl::opt<bool>
    100 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    101           cl::desc("Pop up a window to show sched dags as they are processed"));
    102 static cl::opt<bool>
    103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    104       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    105 #else
    106 static const bool ViewDAGCombine1 = false,
    107                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    108                   ViewDAGCombine2 = false,
    109                   ViewDAGCombineLT = false,
    110                   ViewISelDAGs = false, ViewSchedDAGs = false,
    111                   ViewSUnitDAGs = false;
    112 #endif
    113 
    114 //===---------------------------------------------------------------------===//
    115 ///
    116 /// RegisterScheduler class - Track the registration of instruction schedulers.
    117 ///
    118 //===---------------------------------------------------------------------===//
    119 MachinePassRegistry RegisterScheduler::Registry;
    120 
    121 //===---------------------------------------------------------------------===//
    122 ///
    123 /// ISHeuristic command line option for instruction schedulers.
    124 ///
    125 //===---------------------------------------------------------------------===//
    126 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    127                RegisterPassParser<RegisterScheduler> >
    128 ISHeuristic("pre-RA-sched",
    129             cl::init(&createDefaultScheduler),
    130             cl::desc("Instruction schedulers available (before register"
    131                      " allocation):"));
    132 
    133 static RegisterScheduler
    134 defaultListDAGScheduler("default", "Best scheduler for the target",
    135                         createDefaultScheduler);
    136 
    137 namespace llvm {
    138   //===--------------------------------------------------------------------===//
    139   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    140   /// for the target.
    141   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    142                                              CodeGenOpt::Level OptLevel) {
    143     const TargetLowering &TLI = IS->getTargetLowering();
    144 
    145     if (OptLevel == CodeGenOpt::None)
    146       return createSourceListDAGScheduler(IS, OptLevel);
    147     if (TLI.getSchedulingPreference() == Sched::Latency)
    148       return createTDListDAGScheduler(IS, OptLevel);
    149     if (TLI.getSchedulingPreference() == Sched::RegPressure)
    150       return createBURRListDAGScheduler(IS, OptLevel);
    151     if (TLI.getSchedulingPreference() == Sched::Hybrid)
    152       return createHybridListDAGScheduler(IS, OptLevel);
    153     assert(TLI.getSchedulingPreference() == Sched::ILP &&
    154            "Unknown sched type!");
    155     return createILPListDAGScheduler(IS, OptLevel);
    156   }
    157 }
    158 
    159 // EmitInstrWithCustomInserter - This method should be implemented by targets
    160 // that mark instructions with the 'usesCustomInserter' flag.  These
    161 // instructions are special in various ways, which require special support to
    162 // insert.  The specified MachineInstr is created but not inserted into any
    163 // basic blocks, and this method is called to expand it into a sequence of
    164 // instructions, potentially also creating new basic blocks and control flow.
    165 // When new basic blocks are inserted and the edges from MBB to its successors
    166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    167 // DenseMap.
    168 MachineBasicBlock *
    169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    170                                             MachineBasicBlock *MBB) const {
    171 #ifndef NDEBUG
    172   dbgs() << "If a target marks an instruction with "
    173           "'usesCustomInserter', it must implement "
    174           "TargetLowering::EmitInstrWithCustomInserter!";
    175 #endif
    176   llvm_unreachable(0);
    177   return 0;
    178 }
    179 
    180 //===----------------------------------------------------------------------===//
    181 // SelectionDAGISel code
    182 //===----------------------------------------------------------------------===//
    183 
    184 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
    185                                    CodeGenOpt::Level OL) :
    186   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
    187   FuncInfo(new FunctionLoweringInfo(TLI)),
    188   CurDAG(new SelectionDAG(tm)),
    189   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    190   GFI(),
    191   OptLevel(OL),
    192   DAGSize(0) {
    193     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    194     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
    195     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
    196   }
    197 
    198 SelectionDAGISel::~SelectionDAGISel() {
    199   delete SDB;
    200   delete CurDAG;
    201   delete FuncInfo;
    202 }
    203 
    204 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    205   AU.addRequired<AliasAnalysis>();
    206   AU.addPreserved<AliasAnalysis>();
    207   AU.addRequired<GCModuleInfo>();
    208   AU.addPreserved<GCModuleInfo>();
    209   if (UseMBPI && OptLevel != CodeGenOpt::None)
    210     AU.addRequired<BranchProbabilityInfo>();
    211   MachineFunctionPass::getAnalysisUsage(AU);
    212 }
    213 
    214 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    215 /// may trap on it.  In this case we have to split the edge so that the path
    216 /// through the predecessor block that doesn't go to the phi block doesn't
    217 /// execute the possibly trapping instruction.
    218 ///
    219 /// This is required for correctness, so it must be done at -O0.
    220 ///
    221 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
    222   // Loop for blocks with phi nodes.
    223   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    224     PHINode *PN = dyn_cast<PHINode>(BB->begin());
    225     if (PN == 0) continue;
    226 
    227   ReprocessBlock:
    228     // For each block with a PHI node, check to see if any of the input values
    229     // are potentially trapping constant expressions.  Constant expressions are
    230     // the only potentially trapping value that can occur as the argument to a
    231     // PHI.
    232     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    233       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    234         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    235         if (CE == 0 || !CE->canTrap()) continue;
    236 
    237         // The only case we have to worry about is when the edge is critical.
    238         // Since this block has a PHI Node, we assume it has multiple input
    239         // edges: check to see if the pred has multiple successors.
    240         BasicBlock *Pred = PN->getIncomingBlock(i);
    241         if (Pred->getTerminator()->getNumSuccessors() == 1)
    242           continue;
    243 
    244         // Okay, we have to split this edge.
    245         SplitCriticalEdge(Pred->getTerminator(),
    246                           GetSuccessorNumber(Pred, BB), SDISel, true);
    247         goto ReprocessBlock;
    248       }
    249   }
    250 }
    251 
    252 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    253   // Do some sanity-checking on the command-line options.
    254   assert((!EnableFastISelVerbose || EnableFastISel) &&
    255          "-fast-isel-verbose requires -fast-isel");
    256   assert((!EnableFastISelAbort || EnableFastISel) &&
    257          "-fast-isel-abort requires -fast-isel");
    258 
    259   const Function &Fn = *mf.getFunction();
    260   const TargetInstrInfo &TII = *TM.getInstrInfo();
    261   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
    262 
    263   MF = &mf;
    264   RegInfo = &MF->getRegInfo();
    265   AA = &getAnalysis<AliasAnalysis>();
    266   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
    267 
    268   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    269 
    270   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
    271 
    272   CurDAG->init(*MF);
    273   FuncInfo->set(Fn, *MF);
    274 
    275   if (UseMBPI && OptLevel != CodeGenOpt::None)
    276     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
    277   else
    278     FuncInfo->BPI = 0;
    279 
    280   SDB->init(GFI, *AA);
    281 
    282   SelectAllBasicBlocks(Fn);
    283 
    284   // If the first basic block in the function has live ins that need to be
    285   // copied into vregs, emit the copies into the top of the block before
    286   // emitting the code for the block.
    287   MachineBasicBlock *EntryMBB = MF->begin();
    288   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
    289 
    290   DenseMap<unsigned, unsigned> LiveInMap;
    291   if (!FuncInfo->ArgDbgValues.empty())
    292     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    293            E = RegInfo->livein_end(); LI != E; ++LI)
    294       if (LI->second)
    295         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    296 
    297   // Insert DBG_VALUE instructions for function arguments to the entry block.
    298   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    299     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    300     unsigned Reg = MI->getOperand(0).getReg();
    301     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    302       EntryMBB->insert(EntryMBB->begin(), MI);
    303     else {
    304       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    305       MachineBasicBlock::iterator InsertPos = Def;
    306       // FIXME: VR def may not be in entry block.
    307       Def->getParent()->insert(llvm::next(InsertPos), MI);
    308     }
    309 
    310     // If Reg is live-in then update debug info to track its copy in a vreg.
    311     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    312     if (LDI != LiveInMap.end()) {
    313       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    314       MachineBasicBlock::iterator InsertPos = Def;
    315       const MDNode *Variable =
    316         MI->getOperand(MI->getNumOperands()-1).getMetadata();
    317       unsigned Offset = MI->getOperand(1).getImm();
    318       // Def is never a terminator here, so it is ok to increment InsertPos.
    319       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
    320               TII.get(TargetOpcode::DBG_VALUE))
    321         .addReg(LDI->second, RegState::Debug)
    322         .addImm(Offset).addMetadata(Variable);
    323 
    324       // If this vreg is directly copied into an exported register then
    325       // that COPY instructions also need DBG_VALUE, if it is the only
    326       // user of LDI->second.
    327       MachineInstr *CopyUseMI = NULL;
    328       for (MachineRegisterInfo::use_iterator
    329              UI = RegInfo->use_begin(LDI->second);
    330            MachineInstr *UseMI = UI.skipInstruction();) {
    331         if (UseMI->isDebugValue()) continue;
    332         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    333           CopyUseMI = UseMI; continue;
    334         }
    335         // Otherwise this is another use or second copy use.
    336         CopyUseMI = NULL; break;
    337       }
    338       if (CopyUseMI) {
    339         MachineInstr *NewMI =
    340           BuildMI(*MF, CopyUseMI->getDebugLoc(),
    341                   TII.get(TargetOpcode::DBG_VALUE))
    342           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
    343           .addImm(Offset).addMetadata(Variable);
    344         EntryMBB->insertAfter(CopyUseMI, NewMI);
    345       }
    346     }
    347   }
    348 
    349   // Determine if there are any calls in this machine function.
    350   MachineFrameInfo *MFI = MF->getFrameInfo();
    351   if (!MFI->hasCalls()) {
    352     for (MachineFunction::const_iterator
    353            I = MF->begin(), E = MF->end(); I != E; ++I) {
    354       const MachineBasicBlock *MBB = I;
    355       for (MachineBasicBlock::const_iterator
    356              II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
    357         const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
    358 
    359         if ((MCID.isCall() && !MCID.isReturn()) ||
    360             II->isStackAligningInlineAsm()) {
    361           MFI->setHasCalls(true);
    362           goto done;
    363         }
    364       }
    365     }
    366   done:;
    367   }
    368 
    369   // Determine if there is a call to setjmp in the machine function.
    370   MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
    371 
    372   // Replace forward-declared registers with the registers containing
    373   // the desired value.
    374   MachineRegisterInfo &MRI = MF->getRegInfo();
    375   for (DenseMap<unsigned, unsigned>::iterator
    376        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    377        I != E; ++I) {
    378     unsigned From = I->first;
    379     unsigned To = I->second;
    380     // If To is also scheduled to be replaced, find what its ultimate
    381     // replacement is.
    382     for (;;) {
    383       DenseMap<unsigned, unsigned>::iterator J =
    384         FuncInfo->RegFixups.find(To);
    385       if (J == E) break;
    386       To = J->second;
    387     }
    388     // Replace it.
    389     MRI.replaceRegWith(From, To);
    390   }
    391 
    392   // Release function-specific state. SDB and CurDAG are already cleared
    393   // at this point.
    394   FuncInfo->clear();
    395 
    396   return true;
    397 }
    398 
    399 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    400                                         BasicBlock::const_iterator End,
    401                                         bool &HadTailCall) {
    402   // Lower all of the non-terminator instructions. If a call is emitted
    403   // as a tail call, cease emitting nodes for this block. Terminators
    404   // are handled below.
    405   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    406     SDB->visit(*I);
    407 
    408   // Make sure the root of the DAG is up-to-date.
    409   CurDAG->setRoot(SDB->getControlRoot());
    410   HadTailCall = SDB->HasTailCall;
    411   SDB->clear();
    412 
    413   // Final step, emit the lowered DAG as machine code.
    414   CodeGenAndEmitDAG();
    415 }
    416 
    417 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    418   SmallPtrSet<SDNode*, 128> VisitedNodes;
    419   SmallVector<SDNode*, 128> Worklist;
    420 
    421   Worklist.push_back(CurDAG->getRoot().getNode());
    422 
    423   APInt Mask;
    424   APInt KnownZero;
    425   APInt KnownOne;
    426 
    427   do {
    428     SDNode *N = Worklist.pop_back_val();
    429 
    430     // If we've already seen this node, ignore it.
    431     if (!VisitedNodes.insert(N))
    432       continue;
    433 
    434     // Otherwise, add all chain operands to the worklist.
    435     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    436       if (N->getOperand(i).getValueType() == MVT::Other)
    437         Worklist.push_back(N->getOperand(i).getNode());
    438 
    439     // If this is a CopyToReg with a vreg dest, process it.
    440     if (N->getOpcode() != ISD::CopyToReg)
    441       continue;
    442 
    443     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    444     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    445       continue;
    446 
    447     // Ignore non-scalar or non-integer values.
    448     SDValue Src = N->getOperand(2);
    449     EVT SrcVT = Src.getValueType();
    450     if (!SrcVT.isInteger() || SrcVT.isVector())
    451       continue;
    452 
    453     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    454     Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
    455     CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
    456     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    457   } while (!Worklist.empty());
    458 }
    459 
    460 void SelectionDAGISel::CodeGenAndEmitDAG() {
    461   std::string GroupName;
    462   if (TimePassesIsEnabled)
    463     GroupName = "Instruction Selection and Scheduling";
    464   std::string BlockName;
    465   int BlockNumber = -1;
    466 #ifdef NDEBUG
    467   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    468       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    469       ViewSUnitDAGs)
    470 #endif
    471   {
    472     BlockNumber = FuncInfo->MBB->getNumber();
    473     BlockName = MF->getFunction()->getNameStr() + ":" +
    474                 FuncInfo->MBB->getBasicBlock()->getNameStr();
    475   }
    476   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    477         << " '" << BlockName << "'\n"; CurDAG->dump());
    478 
    479   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    480 
    481   // Run the DAG combiner in pre-legalize mode.
    482   {
    483     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    484     CurDAG->Combine(Unrestricted, *AA, OptLevel);
    485   }
    486 
    487   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    488         << " '" << BlockName << "'\n"; CurDAG->dump());
    489 
    490   // Second step, hack on the DAG until it only uses operations and types that
    491   // the target supports.
    492   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
    493                                                BlockName);
    494 
    495   bool Changed;
    496   {
    497     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    498     Changed = CurDAG->LegalizeTypes();
    499   }
    500 
    501   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    502         << " '" << BlockName << "'\n"; CurDAG->dump());
    503 
    504   if (Changed) {
    505     if (ViewDAGCombineLT)
    506       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    507 
    508     // Run the DAG combiner in post-type-legalize mode.
    509     {
    510       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    511                          TimePassesIsEnabled);
    512       CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
    513     }
    514 
    515     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    516           << " '" << BlockName << "'\n"; CurDAG->dump());
    517   }
    518 
    519   {
    520     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    521     Changed = CurDAG->LegalizeVectors();
    522   }
    523 
    524   if (Changed) {
    525     {
    526       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    527       CurDAG->LegalizeTypes();
    528     }
    529 
    530     if (ViewDAGCombineLT)
    531       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    532 
    533     // Run the DAG combiner in post-type-legalize mode.
    534     {
    535       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    536                          TimePassesIsEnabled);
    537       CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
    538     }
    539 
    540     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    541           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    542   }
    543 
    544   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
    545 
    546   {
    547     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    548     CurDAG->Legalize();
    549   }
    550 
    551   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    552         << " '" << BlockName << "'\n"; CurDAG->dump());
    553 
    554   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    555 
    556   // Run the DAG combiner in post-legalize mode.
    557   {
    558     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    559     CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
    560   }
    561 
    562   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    563         << " '" << BlockName << "'\n"; CurDAG->dump());
    564 
    565   if (OptLevel != CodeGenOpt::None)
    566     ComputeLiveOutVRegInfo();
    567 
    568   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
    569 
    570   // Third, instruction select all of the operations to machine code, adding the
    571   // code to the MachineBasicBlock.
    572   {
    573     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    574     DoInstructionSelection();
    575   }
    576 
    577   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    578         << " '" << BlockName << "'\n"; CurDAG->dump());
    579 
    580   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
    581 
    582   // Schedule machine code.
    583   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    584   {
    585     NamedRegionTimer T("Instruction Scheduling", GroupName,
    586                        TimePassesIsEnabled);
    587     Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
    588   }
    589 
    590   if (ViewSUnitDAGs) Scheduler->viewGraph();
    591 
    592   // Emit machine code to BB.  This can change 'BB' to the last block being
    593   // inserted into.
    594   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    595   {
    596     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    597 
    598     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
    599     FuncInfo->InsertPt = Scheduler->InsertPos;
    600   }
    601 
    602   // If the block was split, make sure we update any references that are used to
    603   // update PHI nodes later on.
    604   if (FirstMBB != LastMBB)
    605     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    606 
    607   // Free the scheduler state.
    608   {
    609     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    610                        TimePassesIsEnabled);
    611     delete Scheduler;
    612   }
    613 
    614   // Free the SelectionDAG state, now that we're finished with it.
    615   CurDAG->clear();
    616 }
    617 
    618 void SelectionDAGISel::DoInstructionSelection() {
    619   DEBUG(errs() << "===== Instruction selection begins: BB#"
    620         << FuncInfo->MBB->getNumber()
    621         << " '" << FuncInfo->MBB->getName() << "'\n");
    622 
    623   PreprocessISelDAG();
    624 
    625   // Select target instructions for the DAG.
    626   {
    627     // Number all nodes with a topological order and set DAGSize.
    628     DAGSize = CurDAG->AssignTopologicalOrder();
    629 
    630     // Create a dummy node (which is not added to allnodes), that adds
    631     // a reference to the root node, preventing it from being deleted,
    632     // and tracking any changes of the root.
    633     HandleSDNode Dummy(CurDAG->getRoot());
    634     ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
    635     ++ISelPosition;
    636 
    637     // The AllNodes list is now topological-sorted. Visit the
    638     // nodes by starting at the end of the list (the root of the
    639     // graph) and preceding back toward the beginning (the entry
    640     // node).
    641     while (ISelPosition != CurDAG->allnodes_begin()) {
    642       SDNode *Node = --ISelPosition;
    643       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    644       // but there are currently some corner cases that it misses. Also, this
    645       // makes it theoretically possible to disable the DAGCombiner.
    646       if (Node->use_empty())
    647         continue;
    648 
    649       SDNode *ResNode = Select(Node);
    650 
    651       // FIXME: This is pretty gross.  'Select' should be changed to not return
    652       // anything at all and this code should be nuked with a tactical strike.
    653 
    654       // If node should not be replaced, continue with the next one.
    655       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    656         continue;
    657       // Replace node.
    658       if (ResNode)
    659         ReplaceUses(Node, ResNode);
    660 
    661       // If after the replacement this node is not used any more,
    662       // remove this dead node.
    663       if (Node->use_empty()) { // Don't delete EntryToken, etc.
    664         ISelUpdater ISU(ISelPosition);
    665         CurDAG->RemoveDeadNode(Node, &ISU);
    666       }
    667     }
    668 
    669     CurDAG->setRoot(Dummy.getValue());
    670   }
    671 
    672   DEBUG(errs() << "===== Instruction selection ends:\n");
    673 
    674   PostprocessISelDAG();
    675 }
    676 
    677 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    678 /// do other setup for EH landing-pad blocks.
    679 void SelectionDAGISel::PrepareEHLandingPad() {
    680   // Add a label to mark the beginning of the landing pad.  Deletion of the
    681   // landing pad can thus be detected via the MachineModuleInfo.
    682   MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
    683 
    684   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
    685   BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    686     .addSym(Label);
    687 
    688   // Mark exception register as live in.
    689   unsigned Reg = TLI.getExceptionAddressRegister();
    690   if (Reg) FuncInfo->MBB->addLiveIn(Reg);
    691 
    692   // Mark exception selector register as live in.
    693   Reg = TLI.getExceptionSelectorRegister();
    694   if (Reg) FuncInfo->MBB->addLiveIn(Reg);
    695 
    696   // FIXME: Hack around an exception handling flaw (PR1508): the personality
    697   // function and list of typeids logically belong to the invoke (or, if you
    698   // like, the basic block containing the invoke), and need to be associated
    699   // with it in the dwarf exception handling tables.  Currently however the
    700   // information is provided by an intrinsic (eh.selector) that can be moved
    701   // to unexpected places by the optimizers: if the unwind edge is critical,
    702   // then breaking it can result in the intrinsics being in the successor of
    703   // the landing pad, not the landing pad itself.  This results
    704   // in exceptions not being caught because no typeids are associated with
    705   // the invoke.  This may not be the only way things can go wrong, but it
    706   // is the only way we try to work around for the moment.
    707   const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
    708   const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
    709 
    710   if (Br && Br->isUnconditional()) { // Critical edge?
    711     BasicBlock::const_iterator I, E;
    712     for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
    713       if (isa<EHSelectorInst>(I))
    714         break;
    715 
    716     if (I == E)
    717       // No catch info found - try to extract some from the successor.
    718       CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
    719   }
    720 }
    721 
    722 
    723 
    724 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
    725 /// load into the specified FoldInst.  Note that we could have a sequence where
    726 /// multiple LLVM IR instructions are folded into the same machineinstr.  For
    727 /// example we could have:
    728 ///   A: x = load i32 *P
    729 ///   B: y = icmp A, 42
    730 ///   C: br y, ...
    731 ///
    732 /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
    733 /// any other folded instructions) because it is between A and C.
    734 ///
    735 /// If we succeed in folding the load into the operation, return true.
    736 ///
    737 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
    738                                              const Instruction *FoldInst,
    739                                              FastISel *FastIS) {
    740   // We know that the load has a single use, but don't know what it is.  If it
    741   // isn't one of the folded instructions, then we can't succeed here.  Handle
    742   // this by scanning the single-use users of the load until we get to FoldInst.
    743   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
    744 
    745   const Instruction *TheUser = LI->use_back();
    746   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
    747          // Stay in the right block.
    748          TheUser->getParent() == FoldInst->getParent() &&
    749          --MaxUsers) {  // Don't scan too far.
    750     // If there are multiple or no uses of this instruction, then bail out.
    751     if (!TheUser->hasOneUse())
    752       return false;
    753 
    754     TheUser = TheUser->use_back();
    755   }
    756 
    757   // Don't try to fold volatile loads.  Target has to deal with alignment
    758   // constraints.
    759   if (LI->isVolatile()) return false;
    760 
    761   // Figure out which vreg this is going into.  If there is no assigned vreg yet
    762   // then there actually was no reference to it.  Perhaps the load is referenced
    763   // by a dead instruction.
    764   unsigned LoadReg = FastIS->getRegForValue(LI);
    765   if (LoadReg == 0)
    766     return false;
    767 
    768   // Check to see what the uses of this vreg are.  If it has no uses, or more
    769   // than one use (at the machine instr level) then we can't fold it.
    770   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
    771   if (RI == RegInfo->reg_end())
    772     return false;
    773 
    774   // See if there is exactly one use of the vreg.  If there are multiple uses,
    775   // then the instruction got lowered to multiple machine instructions or the
    776   // use of the loaded value ended up being multiple operands of the result, in
    777   // either case, we can't fold this.
    778   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
    779   if (PostRI != RegInfo->reg_end())
    780     return false;
    781 
    782   assert(RI.getOperand().isUse() &&
    783          "The only use of the vreg must be a use, we haven't emitted the def!");
    784 
    785   MachineInstr *User = &*RI;
    786 
    787   // Set the insertion point properly.  Folding the load can cause generation of
    788   // other random instructions (like sign extends) for addressing modes, make
    789   // sure they get inserted in a logical place before the new instruction.
    790   FuncInfo->InsertPt = User;
    791   FuncInfo->MBB = User->getParent();
    792 
    793   // Ask the target to try folding the load.
    794   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
    795 }
    796 
    797 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
    798 /// side-effect free and is either dead or folded into a generated instruction.
    799 /// Return false if it needs to be emitted.
    800 static bool isFoldedOrDeadInstruction(const Instruction *I,
    801                                       FunctionLoweringInfo *FuncInfo) {
    802   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
    803          !isa<TerminatorInst>(I) && // Terminators aren't folded.
    804          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
    805          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
    806 }
    807 
    808 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
    809   // Initialize the Fast-ISel state, if needed.
    810   FastISel *FastIS = 0;
    811   if (EnableFastISel)
    812     FastIS = TLI.createFastISel(*FuncInfo);
    813 
    814   // Iterate over all basic blocks in the function.
    815   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
    816   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
    817        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
    818     const BasicBlock *LLVMBB = *I;
    819 
    820     if (OptLevel != CodeGenOpt::None) {
    821       bool AllPredsVisited = true;
    822       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
    823            PI != PE; ++PI) {
    824         if (!FuncInfo->VisitedBBs.count(*PI)) {
    825           AllPredsVisited = false;
    826           break;
    827         }
    828       }
    829 
    830       if (AllPredsVisited) {
    831         for (BasicBlock::const_iterator I = LLVMBB->begin();
    832              isa<PHINode>(I); ++I)
    833           FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
    834       } else {
    835         for (BasicBlock::const_iterator I = LLVMBB->begin();
    836              isa<PHINode>(I); ++I)
    837           FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
    838       }
    839 
    840       FuncInfo->VisitedBBs.insert(LLVMBB);
    841     }
    842 
    843     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
    844     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    845 
    846     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
    847     BasicBlock::const_iterator const End = LLVMBB->end();
    848     BasicBlock::const_iterator BI = End;
    849 
    850     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    851 
    852     // Setup an EH landing-pad block.
    853     if (FuncInfo->MBB->isLandingPad())
    854       PrepareEHLandingPad();
    855 
    856     // Lower any arguments needed in this block if this is the entry block.
    857     if (LLVMBB == &Fn.getEntryBlock())
    858       LowerArguments(LLVMBB);
    859 
    860     // Before doing SelectionDAG ISel, see if FastISel has been requested.
    861     if (FastIS) {
    862       FastIS->startNewBlock();
    863 
    864       // Emit code for any incoming arguments. This must happen before
    865       // beginning FastISel on the entry block.
    866       if (LLVMBB == &Fn.getEntryBlock()) {
    867         CurDAG->setRoot(SDB->getControlRoot());
    868         SDB->clear();
    869         CodeGenAndEmitDAG();
    870 
    871         // If we inserted any instructions at the beginning, make a note of
    872         // where they are, so we can be sure to emit subsequent instructions
    873         // after them.
    874         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
    875           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
    876         else
    877           FastIS->setLastLocalValue(0);
    878       }
    879 
    880       // Do FastISel on as many instructions as possible.
    881       for (; BI != Begin; --BI) {
    882         const Instruction *Inst = llvm::prior(BI);
    883 
    884         // If we no longer require this instruction, skip it.
    885         if (isFoldedOrDeadInstruction(Inst, FuncInfo))
    886           continue;
    887 
    888         // Bottom-up: reset the insert pos at the top, after any local-value
    889         // instructions.
    890         FastIS->recomputeInsertPt();
    891 
    892         // Try to select the instruction with FastISel.
    893         if (FastIS->SelectInstruction(Inst)) {
    894           ++NumFastIselSuccess;
    895           // If fast isel succeeded, skip over all the folded instructions, and
    896           // then see if there is a load right before the selected instructions.
    897           // Try to fold the load if so.
    898           const Instruction *BeforeInst = Inst;
    899           while (BeforeInst != Begin) {
    900             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
    901             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
    902               break;
    903           }
    904           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
    905               BeforeInst->hasOneUse() &&
    906               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
    907             // If we succeeded, don't re-select the load.
    908             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
    909           continue;
    910         }
    911 
    912         // Then handle certain instructions as single-LLVM-Instruction blocks.
    913         if (isa<CallInst>(Inst)) {
    914           ++NumFastIselFailures;
    915           if (EnableFastISelVerbose || EnableFastISelAbort) {
    916             dbgs() << "FastISel missed call: ";
    917             Inst->dump();
    918           }
    919 
    920           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
    921             unsigned &R = FuncInfo->ValueMap[Inst];
    922             if (!R)
    923               R = FuncInfo->CreateRegs(Inst->getType());
    924           }
    925 
    926           bool HadTailCall = false;
    927           SelectBasicBlock(Inst, BI, HadTailCall);
    928 
    929           // If the call was emitted as a tail call, we're done with the block.
    930           if (HadTailCall) {
    931             --BI;
    932             break;
    933           }
    934 
    935           continue;
    936         }
    937 
    938         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
    939           // Don't abort, and use a different message for terminator misses.
    940           ++NumFastIselFailures;
    941           if (EnableFastISelVerbose || EnableFastISelAbort) {
    942             dbgs() << "FastISel missed terminator: ";
    943             Inst->dump();
    944           }
    945         } else {
    946           ++NumFastIselFailures;
    947           if (EnableFastISelVerbose || EnableFastISelAbort) {
    948             dbgs() << "FastISel miss: ";
    949             Inst->dump();
    950           }
    951           if (EnableFastISelAbort)
    952             // The "fast" selector couldn't handle something and bailed.
    953             // For the purpose of debugging, just abort.
    954             llvm_unreachable("FastISel didn't select the entire block");
    955         }
    956         break;
    957       }
    958 
    959       FastIS->recomputeInsertPt();
    960     }
    961 
    962     if (Begin != BI)
    963       ++NumDAGBlocks;
    964     else
    965       ++NumFastIselBlocks;
    966 
    967     if (Begin != BI) {
    968       // Run SelectionDAG instruction selection on the remainder of the block
    969       // not handled by FastISel. If FastISel is not run, this is the entire
    970       // block.
    971       bool HadTailCall;
    972       SelectBasicBlock(Begin, BI, HadTailCall);
    973     }
    974 
    975     FinishBasicBlock();
    976     FuncInfo->PHINodesToUpdate.clear();
    977   }
    978 
    979   delete FastIS;
    980   SDB->clearDanglingDebugInfo();
    981 }
    982 
    983 void
    984 SelectionDAGISel::FinishBasicBlock() {
    985 
    986   DEBUG(dbgs() << "Total amount of phi nodes to update: "
    987                << FuncInfo->PHINodesToUpdate.size() << "\n";
    988         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
    989           dbgs() << "Node " << i << " : ("
    990                  << FuncInfo->PHINodesToUpdate[i].first
    991                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
    992 
    993   // Next, now that we know what the last MBB the LLVM BB expanded is, update
    994   // PHI nodes in successors.
    995   if (SDB->SwitchCases.empty() &&
    996       SDB->JTCases.empty() &&
    997       SDB->BitTestCases.empty()) {
    998     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
    999       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1000       assert(PHI->isPHI() &&
   1001              "This is not a machine PHI node that we are updating!");
   1002       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1003         continue;
   1004       PHI->addOperand(
   1005         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1006       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1007     }
   1008     return;
   1009   }
   1010 
   1011   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1012     // Lower header first, if it wasn't already lowered
   1013     if (!SDB->BitTestCases[i].Emitted) {
   1014       // Set the current basic block to the mbb we wish to insert the code into
   1015       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1016       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1017       // Emit the code
   1018       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1019       CurDAG->setRoot(SDB->getRoot());
   1020       SDB->clear();
   1021       CodeGenAndEmitDAG();
   1022     }
   1023 
   1024     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1025       // Set the current basic block to the mbb we wish to insert the code into
   1026       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1027       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1028       // Emit the code
   1029       if (j+1 != ej)
   1030         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1031                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
   1032                               SDB->BitTestCases[i].Reg,
   1033                               SDB->BitTestCases[i].Cases[j],
   1034                               FuncInfo->MBB);
   1035       else
   1036         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1037                               SDB->BitTestCases[i].Default,
   1038                               SDB->BitTestCases[i].Reg,
   1039                               SDB->BitTestCases[i].Cases[j],
   1040                               FuncInfo->MBB);
   1041 
   1042 
   1043       CurDAG->setRoot(SDB->getRoot());
   1044       SDB->clear();
   1045       CodeGenAndEmitDAG();
   1046     }
   1047 
   1048     // Update PHI Nodes
   1049     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1050          pi != pe; ++pi) {
   1051       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1052       MachineBasicBlock *PHIBB = PHI->getParent();
   1053       assert(PHI->isPHI() &&
   1054              "This is not a machine PHI node that we are updating!");
   1055       // This is "default" BB. We have two jumps to it. From "header" BB and
   1056       // from last "case" BB.
   1057       if (PHIBB == SDB->BitTestCases[i].Default) {
   1058         PHI->addOperand(MachineOperand::
   1059                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1060                                   false));
   1061         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
   1062         PHI->addOperand(MachineOperand::
   1063                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1064                                   false));
   1065         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
   1066                                                   back().ThisBB));
   1067       }
   1068       // One of "cases" BB.
   1069       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1070            j != ej; ++j) {
   1071         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1072         if (cBB->isSuccessor(PHIBB)) {
   1073           PHI->addOperand(MachineOperand::
   1074                           CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1075                                     false));
   1076           PHI->addOperand(MachineOperand::CreateMBB(cBB));
   1077         }
   1078       }
   1079     }
   1080   }
   1081   SDB->BitTestCases.clear();
   1082 
   1083   // If the JumpTable record is filled in, then we need to emit a jump table.
   1084   // Updating the PHI nodes is tricky in this case, since we need to determine
   1085   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1086   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1087     // Lower header first, if it wasn't already lowered
   1088     if (!SDB->JTCases[i].first.Emitted) {
   1089       // Set the current basic block to the mbb we wish to insert the code into
   1090       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1091       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1092       // Emit the code
   1093       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1094                                 FuncInfo->MBB);
   1095       CurDAG->setRoot(SDB->getRoot());
   1096       SDB->clear();
   1097       CodeGenAndEmitDAG();
   1098     }
   1099 
   1100     // Set the current basic block to the mbb we wish to insert the code into
   1101     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1102     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1103     // Emit the code
   1104     SDB->visitJumpTable(SDB->JTCases[i].second);
   1105     CurDAG->setRoot(SDB->getRoot());
   1106     SDB->clear();
   1107     CodeGenAndEmitDAG();
   1108 
   1109     // Update PHI Nodes
   1110     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1111          pi != pe; ++pi) {
   1112       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1113       MachineBasicBlock *PHIBB = PHI->getParent();
   1114       assert(PHI->isPHI() &&
   1115              "This is not a machine PHI node that we are updating!");
   1116       // "default" BB. We can go there only from header BB.
   1117       if (PHIBB == SDB->JTCases[i].second.Default) {
   1118         PHI->addOperand
   1119           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1120                                      false));
   1121         PHI->addOperand
   1122           (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
   1123       }
   1124       // JT BB. Just iterate over successors here
   1125       if (FuncInfo->MBB->isSuccessor(PHIBB)) {
   1126         PHI->addOperand
   1127           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1128                                      false));
   1129         PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1130       }
   1131     }
   1132   }
   1133   SDB->JTCases.clear();
   1134 
   1135   // If the switch block involved a branch to one of the actual successors, we
   1136   // need to update PHI nodes in that block.
   1137   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1138     MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1139     assert(PHI->isPHI() &&
   1140            "This is not a machine PHI node that we are updating!");
   1141     if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
   1142       PHI->addOperand(
   1143         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1144       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1145     }
   1146   }
   1147 
   1148   // If we generated any switch lowering information, build and codegen any
   1149   // additional DAGs necessary.
   1150   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1151     // Set the current basic block to the mbb we wish to insert the code into
   1152     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1153     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1154 
   1155     // Determine the unique successors.
   1156     SmallVector<MachineBasicBlock *, 2> Succs;
   1157     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1158     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1159       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1160 
   1161     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1162     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1163     CurDAG->setRoot(SDB->getRoot());
   1164     SDB->clear();
   1165     CodeGenAndEmitDAG();
   1166 
   1167     // Remember the last block, now that any splitting is done, for use in
   1168     // populating PHI nodes in successors.
   1169     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1170 
   1171     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1172     // from the original BB before switch expansion.  Note that PHI nodes can
   1173     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1174     // handle them the right number of times.
   1175     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1176       FuncInfo->MBB = Succs[i];
   1177       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1178       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1179       // constant folded.
   1180       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1181         for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
   1182              Phi != FuncInfo->MBB->end() && Phi->isPHI();
   1183              ++Phi) {
   1184           // This value for this PHI node is recorded in PHINodesToUpdate.
   1185           for (unsigned pn = 0; ; ++pn) {
   1186             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1187                    "Didn't find PHI entry!");
   1188             if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
   1189               Phi->addOperand(MachineOperand::
   1190                               CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
   1191                                         false));
   1192               Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
   1193               break;
   1194             }
   1195           }
   1196         }
   1197       }
   1198     }
   1199   }
   1200   SDB->SwitchCases.clear();
   1201 }
   1202 
   1203 
   1204 /// Create the scheduler. If a specific scheduler was specified
   1205 /// via the SchedulerRegistry, use it, otherwise select the
   1206 /// one preferred by the target.
   1207 ///
   1208 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1209   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
   1210 
   1211   if (!Ctor) {
   1212     Ctor = ISHeuristic;
   1213     RegisterScheduler::setDefault(Ctor);
   1214   }
   1215 
   1216   return Ctor(this, OptLevel);
   1217 }
   1218 
   1219 //===----------------------------------------------------------------------===//
   1220 // Helper functions used by the generated instruction selector.
   1221 //===----------------------------------------------------------------------===//
   1222 // Calls to these methods are generated by tblgen.
   1223 
   1224 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1225 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1226 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1227 /// specified in the .td file (e.g. 255).
   1228 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1229                                     int64_t DesiredMaskS) const {
   1230   const APInt &ActualMask = RHS->getAPIntValue();
   1231   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1232 
   1233   // If the actual mask exactly matches, success!
   1234   if (ActualMask == DesiredMask)
   1235     return true;
   1236 
   1237   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1238   if (ActualMask.intersects(~DesiredMask))
   1239     return false;
   1240 
   1241   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1242   // either already zero or is not demanded.  Check for known zero input bits.
   1243   APInt NeededMask = DesiredMask & ~ActualMask;
   1244   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1245     return true;
   1246 
   1247   // TODO: check to see if missing bits are just not demanded.
   1248 
   1249   // Otherwise, this pattern doesn't match.
   1250   return false;
   1251 }
   1252 
   1253 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1254 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1255 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1256 /// specified in the .td file (e.g. 255).
   1257 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1258                                    int64_t DesiredMaskS) const {
   1259   const APInt &ActualMask = RHS->getAPIntValue();
   1260   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1261 
   1262   // If the actual mask exactly matches, success!
   1263   if (ActualMask == DesiredMask)
   1264     return true;
   1265 
   1266   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1267   if (ActualMask.intersects(~DesiredMask))
   1268     return false;
   1269 
   1270   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1271   // either already zero or is not demanded.  Check for known zero input bits.
   1272   APInt NeededMask = DesiredMask & ~ActualMask;
   1273 
   1274   APInt KnownZero, KnownOne;
   1275   CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
   1276 
   1277   // If all the missing bits in the or are already known to be set, match!
   1278   if ((NeededMask & KnownOne) == NeededMask)
   1279     return true;
   1280 
   1281   // TODO: check to see if missing bits are just not demanded.
   1282 
   1283   // Otherwise, this pattern doesn't match.
   1284   return false;
   1285 }
   1286 
   1287 
   1288 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1289 /// by tblgen.  Others should not call it.
   1290 void SelectionDAGISel::
   1291 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
   1292   std::vector<SDValue> InOps;
   1293   std::swap(InOps, Ops);
   1294 
   1295   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1296   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1297   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1298   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1299 
   1300   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1301   if (InOps[e-1].getValueType() == MVT::Glue)
   1302     --e;  // Don't process a glue operand if it is here.
   1303 
   1304   while (i != e) {
   1305     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1306     if (!InlineAsm::isMemKind(Flags)) {
   1307       // Just skip over this operand, copying the operands verbatim.
   1308       Ops.insert(Ops.end(), InOps.begin()+i,
   1309                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1310       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1311     } else {
   1312       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1313              "Memory operand with multiple values?");
   1314       // Otherwise, this is a memory operand.  Ask the target to select it.
   1315       std::vector<SDValue> SelOps;
   1316       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
   1317         report_fatal_error("Could not match memory address.  Inline asm"
   1318                            " failure!");
   1319 
   1320       // Add this to the output node.
   1321       unsigned NewFlags =
   1322         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1323       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
   1324       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1325       i += 2;
   1326     }
   1327   }
   1328 
   1329   // Add the glue input back if present.
   1330   if (e != InOps.size())
   1331     Ops.push_back(InOps.back());
   1332 }
   1333 
   1334 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1335 /// SDNode.
   1336 ///
   1337 static SDNode *findGlueUse(SDNode *N) {
   1338   unsigned FlagResNo = N->getNumValues()-1;
   1339   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1340     SDUse &Use = I.getUse();
   1341     if (Use.getResNo() == FlagResNo)
   1342       return Use.getUser();
   1343   }
   1344   return NULL;
   1345 }
   1346 
   1347 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1348 /// This function recursively traverses up the operand chain, ignoring
   1349 /// certain nodes.
   1350 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1351                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
   1352                           bool IgnoreChains) {
   1353   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1354   // greater than all of its (recursive) operands.  If we scan to a point where
   1355   // 'use' is smaller than the node we're scanning for, then we know we will
   1356   // never find it.
   1357   //
   1358   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1359   // happen because we scan down to newly selected nodes in the case of glue
   1360   // uses.
   1361   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1362     return false;
   1363 
   1364   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1365   // won't fail if we scan it again.
   1366   if (!Visited.insert(Use))
   1367     return false;
   1368 
   1369   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
   1370     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1371     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
   1372       continue;
   1373 
   1374     SDNode *N = Use->getOperand(i).getNode();
   1375     if (N == Def) {
   1376       if (Use == ImmedUse || Use == Root)
   1377         continue;  // We are not looking for immediate use.
   1378       assert(N != Root);
   1379       return true;
   1380     }
   1381 
   1382     // Traverse up the operand chain.
   1383     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1384       return true;
   1385   }
   1386   return false;
   1387 }
   1388 
   1389 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1390 /// operand node N of U during instruction selection that starts at Root.
   1391 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1392                                           SDNode *Root) const {
   1393   if (OptLevel == CodeGenOpt::None) return false;
   1394   return N.hasOneUse();
   1395 }
   1396 
   1397 /// IsLegalToFold - Returns true if the specific operand node N of
   1398 /// U can be folded during instruction selection that starts at Root.
   1399 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1400                                      CodeGenOpt::Level OptLevel,
   1401                                      bool IgnoreChains) {
   1402   if (OptLevel == CodeGenOpt::None) return false;
   1403 
   1404   // If Root use can somehow reach N through a path that that doesn't contain
   1405   // U then folding N would create a cycle. e.g. In the following
   1406   // diagram, Root can reach N through X. If N is folded into into Root, then
   1407   // X is both a predecessor and a successor of U.
   1408   //
   1409   //          [N*]           //
   1410   //         ^   ^           //
   1411   //        /     \          //
   1412   //      [U*]    [X]?       //
   1413   //        ^     ^          //
   1414   //         \   /           //
   1415   //          \ /            //
   1416   //         [Root*]         //
   1417   //
   1418   // * indicates nodes to be folded together.
   1419   //
   1420   // If Root produces glue, then it gets (even more) interesting. Since it
   1421   // will be "glued" together with its glue use in the scheduler, we need to
   1422   // check if it might reach N.
   1423   //
   1424   //          [N*]           //
   1425   //         ^   ^           //
   1426   //        /     \          //
   1427   //      [U*]    [X]?       //
   1428   //        ^       ^        //
   1429   //         \       \       //
   1430   //          \      |       //
   1431   //         [Root*] |       //
   1432   //          ^      |       //
   1433   //          f      |       //
   1434   //          |      /       //
   1435   //         [Y]    /        //
   1436   //           ^   /         //
   1437   //           f  /          //
   1438   //           | /           //
   1439   //          [GU]           //
   1440   //
   1441   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1442   // (call it Fold), then X is a predecessor of GU and a successor of
   1443   // Fold. But since Fold and GU are glued together, this will create
   1444   // a cycle in the scheduling graph.
   1445 
   1446   // If the node has glue, walk down the graph to the "lowest" node in the
   1447   // glueged set.
   1448   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1449   while (VT == MVT::Glue) {
   1450     SDNode *GU = findGlueUse(Root);
   1451     if (GU == NULL)
   1452       break;
   1453     Root = GU;
   1454     VT = Root->getValueType(Root->getNumValues()-1);
   1455 
   1456     // If our query node has a glue result with a use, we've walked up it.  If
   1457     // the user (which has already been selected) has a chain or indirectly uses
   1458     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1459     // this, we cannot ignore chains in this predicate.
   1460     IgnoreChains = false;
   1461   }
   1462 
   1463 
   1464   SmallPtrSet<SDNode*, 16> Visited;
   1465   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1466 }
   1467 
   1468 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1469   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1470   SelectInlineAsmMemoryOperands(Ops);
   1471 
   1472   std::vector<EVT> VTs;
   1473   VTs.push_back(MVT::Other);
   1474   VTs.push_back(MVT::Glue);
   1475   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
   1476                                 VTs, &Ops[0], Ops.size());
   1477   New->setNodeId(-1);
   1478   return New.getNode();
   1479 }
   1480 
   1481 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1482   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   1483 }
   1484 
   1485 /// GetVBR - decode a vbr encoding whose top bit is set.
   1486 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
   1487 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   1488   assert(Val >= 128 && "Not a VBR");
   1489   Val &= 127;  // Remove first vbr bit.
   1490 
   1491   unsigned Shift = 7;
   1492   uint64_t NextBits;
   1493   do {
   1494     NextBits = MatcherTable[Idx++];
   1495     Val |= (NextBits&127) << Shift;
   1496     Shift += 7;
   1497   } while (NextBits & 128);
   1498 
   1499   return Val;
   1500 }
   1501 
   1502 
   1503 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   1504 /// interior glue and chain results to use the new glue and chain results.
   1505 void SelectionDAGISel::
   1506 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   1507                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1508                     SDValue InputGlue,
   1509                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   1510                     bool isMorphNodeTo) {
   1511   SmallVector<SDNode*, 4> NowDeadNodes;
   1512 
   1513   ISelUpdater ISU(ISelPosition);
   1514 
   1515   // Now that all the normal results are replaced, we replace the chain and
   1516   // glue results if present.
   1517   if (!ChainNodesMatched.empty()) {
   1518     assert(InputChain.getNode() != 0 &&
   1519            "Matched input chains but didn't produce a chain");
   1520     // Loop over all of the nodes we matched that produced a chain result.
   1521     // Replace all the chain results with the final chain we ended up with.
   1522     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1523       SDNode *ChainNode = ChainNodesMatched[i];
   1524 
   1525       // If this node was already deleted, don't look at it.
   1526       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   1527         continue;
   1528 
   1529       // Don't replace the results of the root node if we're doing a
   1530       // MorphNodeTo.
   1531       if (ChainNode == NodeToMatch && isMorphNodeTo)
   1532         continue;
   1533 
   1534       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   1535       if (ChainVal.getValueType() == MVT::Glue)
   1536         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   1537       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   1538       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
   1539 
   1540       // If the node became dead and we haven't already seen it, delete it.
   1541       if (ChainNode->use_empty() &&
   1542           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   1543         NowDeadNodes.push_back(ChainNode);
   1544     }
   1545   }
   1546 
   1547   // If the result produces glue, update any glue results in the matched
   1548   // pattern with the glue result.
   1549   if (InputGlue.getNode() != 0) {
   1550     // Handle any interior nodes explicitly marked.
   1551     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   1552       SDNode *FRN = GlueResultNodesMatched[i];
   1553 
   1554       // If this node was already deleted, don't look at it.
   1555       if (FRN->getOpcode() == ISD::DELETED_NODE)
   1556         continue;
   1557 
   1558       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   1559              "Doesn't have a glue result");
   1560       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   1561                                         InputGlue, &ISU);
   1562 
   1563       // If the node became dead and we haven't already seen it, delete it.
   1564       if (FRN->use_empty() &&
   1565           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   1566         NowDeadNodes.push_back(FRN);
   1567     }
   1568   }
   1569 
   1570   if (!NowDeadNodes.empty())
   1571     CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
   1572 
   1573   DEBUG(errs() << "ISEL: Match complete!\n");
   1574 }
   1575 
   1576 enum ChainResult {
   1577   CR_Simple,
   1578   CR_InducesCycle,
   1579   CR_LeadsToInteriorNode
   1580 };
   1581 
   1582 /// WalkChainUsers - Walk down the users of the specified chained node that is
   1583 /// part of the pattern we're matching, looking at all of the users we find.
   1584 /// This determines whether something is an interior node, whether we have a
   1585 /// non-pattern node in between two pattern nodes (which prevent folding because
   1586 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   1587 /// between pattern nodes (in which case the TF becomes part of the pattern).
   1588 ///
   1589 /// The walk we do here is guaranteed to be small because we quickly get down to
   1590 /// already selected nodes "below" us.
   1591 static ChainResult
   1592 WalkChainUsers(SDNode *ChainedNode,
   1593                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   1594                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   1595   ChainResult Result = CR_Simple;
   1596 
   1597   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   1598          E = ChainedNode->use_end(); UI != E; ++UI) {
   1599     // Make sure the use is of the chain, not some other value we produce.
   1600     if (UI.getUse().getValueType() != MVT::Other) continue;
   1601 
   1602     SDNode *User = *UI;
   1603 
   1604     // If we see an already-selected machine node, then we've gone beyond the
   1605     // pattern that we're selecting down into the already selected chunk of the
   1606     // DAG.
   1607     if (User->isMachineOpcode() ||
   1608         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   1609       continue;
   1610 
   1611     if (User->getOpcode() == ISD::CopyToReg ||
   1612         User->getOpcode() == ISD::CopyFromReg ||
   1613         User->getOpcode() == ISD::INLINEASM ||
   1614         User->getOpcode() == ISD::EH_LABEL) {
   1615       // If their node ID got reset to -1 then they've already been selected.
   1616       // Treat them like a MachineOpcode.
   1617       if (User->getNodeId() == -1)
   1618         continue;
   1619     }
   1620 
   1621     // If we have a TokenFactor, we handle it specially.
   1622     if (User->getOpcode() != ISD::TokenFactor) {
   1623       // If the node isn't a token factor and isn't part of our pattern, then it
   1624       // must be a random chained node in between two nodes we're selecting.
   1625       // This happens when we have something like:
   1626       //   x = load ptr
   1627       //   call
   1628       //   y = x+4
   1629       //   store y -> ptr
   1630       // Because we structurally match the load/store as a read/modify/write,
   1631       // but the call is chained between them.  We cannot fold in this case
   1632       // because it would induce a cycle in the graph.
   1633       if (!std::count(ChainedNodesInPattern.begin(),
   1634                       ChainedNodesInPattern.end(), User))
   1635         return CR_InducesCycle;
   1636 
   1637       // Otherwise we found a node that is part of our pattern.  For example in:
   1638       //   x = load ptr
   1639       //   y = x+4
   1640       //   store y -> ptr
   1641       // This would happen when we're scanning down from the load and see the
   1642       // store as a user.  Record that there is a use of ChainedNode that is
   1643       // part of the pattern and keep scanning uses.
   1644       Result = CR_LeadsToInteriorNode;
   1645       InteriorChainedNodes.push_back(User);
   1646       continue;
   1647     }
   1648 
   1649     // If we found a TokenFactor, there are two cases to consider: first if the
   1650     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   1651     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   1652     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   1653     //     [Load chain]
   1654     //         ^
   1655     //         |
   1656     //       [Load]
   1657     //       ^    ^
   1658     //       |    \                    DAG's like cheese
   1659     //      /       \                       do you?
   1660     //     /         |
   1661     // [TokenFactor] [Op]
   1662     //     ^          ^
   1663     //     |          |
   1664     //      \        /
   1665     //       \      /
   1666     //       [Store]
   1667     //
   1668     // In this case, the TokenFactor becomes part of our match and we rewrite it
   1669     // as a new TokenFactor.
   1670     //
   1671     // To distinguish these two cases, do a recursive walk down the uses.
   1672     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   1673     case CR_Simple:
   1674       // If the uses of the TokenFactor are just already-selected nodes, ignore
   1675       // it, it is "below" our pattern.
   1676       continue;
   1677     case CR_InducesCycle:
   1678       // If the uses of the TokenFactor lead to nodes that are not part of our
   1679       // pattern that are not selected, folding would turn this into a cycle,
   1680       // bail out now.
   1681       return CR_InducesCycle;
   1682     case CR_LeadsToInteriorNode:
   1683       break;  // Otherwise, keep processing.
   1684     }
   1685 
   1686     // Okay, we know we're in the interesting interior case.  The TokenFactor
   1687     // is now going to be considered part of the pattern so that we rewrite its
   1688     // uses (it may have uses that are not part of the pattern) with the
   1689     // ultimate chain result of the generated code.  We will also add its chain
   1690     // inputs as inputs to the ultimate TokenFactor we create.
   1691     Result = CR_LeadsToInteriorNode;
   1692     ChainedNodesInPattern.push_back(User);
   1693     InteriorChainedNodes.push_back(User);
   1694     continue;
   1695   }
   1696 
   1697   return Result;
   1698 }
   1699 
   1700 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   1701 /// operation for when the pattern matched at least one node with a chains.  The
   1702 /// input vector contains a list of all of the chained nodes that we match.  We
   1703 /// must determine if this is a valid thing to cover (i.e. matching it won't
   1704 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   1705 /// be used as the input node chain for the generated nodes.
   1706 static SDValue
   1707 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1708                        SelectionDAG *CurDAG) {
   1709   // Walk all of the chained nodes we've matched, recursively scanning down the
   1710   // users of the chain result. This adds any TokenFactor nodes that are caught
   1711   // in between chained nodes to the chained and interior nodes list.
   1712   SmallVector<SDNode*, 3> InteriorChainedNodes;
   1713   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1714     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   1715                        InteriorChainedNodes) == CR_InducesCycle)
   1716       return SDValue(); // Would induce a cycle.
   1717   }
   1718 
   1719   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   1720   // that we are interested in.  Form our input TokenFactor node.
   1721   SmallVector<SDValue, 3> InputChains;
   1722   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1723     // Add the input chain of this node to the InputChains list (which will be
   1724     // the operands of the generated TokenFactor) if it's not an interior node.
   1725     SDNode *N = ChainNodesMatched[i];
   1726     if (N->getOpcode() != ISD::TokenFactor) {
   1727       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   1728         continue;
   1729 
   1730       // Otherwise, add the input chain.
   1731       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   1732       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   1733       InputChains.push_back(InChain);
   1734       continue;
   1735     }
   1736 
   1737     // If we have a token factor, we want to add all inputs of the token factor
   1738     // that are not part of the pattern we're matching.
   1739     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
   1740       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   1741                       N->getOperand(op).getNode()))
   1742         InputChains.push_back(N->getOperand(op));
   1743     }
   1744   }
   1745 
   1746   SDValue Res;
   1747   if (InputChains.size() == 1)
   1748     return InputChains[0];
   1749   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
   1750                          MVT::Other, &InputChains[0], InputChains.size());
   1751 }
   1752 
   1753 /// MorphNode - Handle morphing a node in place for the selector.
   1754 SDNode *SelectionDAGISel::
   1755 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   1756           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
   1757   // It is possible we're using MorphNodeTo to replace a node with no
   1758   // normal results with one that has a normal result (or we could be
   1759   // adding a chain) and the input could have glue and chains as well.
   1760   // In this case we need to shift the operands down.
   1761   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   1762   // than the old isel though.
   1763   int OldGlueResultNo = -1, OldChainResultNo = -1;
   1764 
   1765   unsigned NTMNumResults = Node->getNumValues();
   1766   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   1767     OldGlueResultNo = NTMNumResults-1;
   1768     if (NTMNumResults != 1 &&
   1769         Node->getValueType(NTMNumResults-2) == MVT::Other)
   1770       OldChainResultNo = NTMNumResults-2;
   1771   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   1772     OldChainResultNo = NTMNumResults-1;
   1773 
   1774   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   1775   // that this deletes operands of the old node that become dead.
   1776   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
   1777 
   1778   // MorphNodeTo can operate in two ways: if an existing node with the
   1779   // specified operands exists, it can just return it.  Otherwise, it
   1780   // updates the node in place to have the requested operands.
   1781   if (Res == Node) {
   1782     // If we updated the node in place, reset the node ID.  To the isel,
   1783     // this should be just like a newly allocated machine node.
   1784     Res->setNodeId(-1);
   1785   }
   1786 
   1787   unsigned ResNumResults = Res->getNumValues();
   1788   // Move the glue if needed.
   1789   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   1790       (unsigned)OldGlueResultNo != ResNumResults-1)
   1791     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   1792                                       SDValue(Res, ResNumResults-1));
   1793 
   1794   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   1795     --ResNumResults;
   1796 
   1797   // Move the chain reference if needed.
   1798   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   1799       (unsigned)OldChainResultNo != ResNumResults-1)
   1800     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   1801                                       SDValue(Res, ResNumResults-1));
   1802 
   1803   // Otherwise, no replacement happened because the node already exists. Replace
   1804   // Uses of the old node with the new one.
   1805   if (Res != Node)
   1806     CurDAG->ReplaceAllUsesWith(Node, Res);
   1807 
   1808   return Res;
   1809 }
   1810 
   1811 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1812 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1813 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1814           SDValue N,
   1815           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1816   // Accept if it is exactly the same as a previously recorded node.
   1817   unsigned RecNo = MatcherTable[MatcherIndex++];
   1818   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   1819   return N == RecordedNodes[RecNo].first;
   1820 }
   1821 
   1822 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1823 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1824 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1825                       SelectionDAGISel &SDISel) {
   1826   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   1827 }
   1828 
   1829 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   1830 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1831 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1832                    SelectionDAGISel &SDISel, SDNode *N) {
   1833   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   1834 }
   1835 
   1836 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1837 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1838             SDNode *N) {
   1839   uint16_t Opc = MatcherTable[MatcherIndex++];
   1840   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   1841   return N->getOpcode() == Opc;
   1842 }
   1843 
   1844 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1845 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1846           SDValue N, const TargetLowering &TLI) {
   1847   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   1848   if (N.getValueType() == VT) return true;
   1849 
   1850   // Handle the case when VT is iPTR.
   1851   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
   1852 }
   1853 
   1854 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1855 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1856                SDValue N, const TargetLowering &TLI,
   1857                unsigned ChildNo) {
   1858   if (ChildNo >= N.getNumOperands())
   1859     return false;  // Match fails if out of range child #.
   1860   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
   1861 }
   1862 
   1863 
   1864 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1865 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1866               SDValue N) {
   1867   return cast<CondCodeSDNode>(N)->get() ==
   1868       (ISD::CondCode)MatcherTable[MatcherIndex++];
   1869 }
   1870 
   1871 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1872 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1873                SDValue N, const TargetLowering &TLI) {
   1874   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   1875   if (cast<VTSDNode>(N)->getVT() == VT)
   1876     return true;
   1877 
   1878   // Handle the case when VT is iPTR.
   1879   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
   1880 }
   1881 
   1882 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1883 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1884              SDValue N) {
   1885   int64_t Val = MatcherTable[MatcherIndex++];
   1886   if (Val & 128)
   1887     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1888 
   1889   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   1890   return C != 0 && C->getSExtValue() == Val;
   1891 }
   1892 
   1893 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1894 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1895             SDValue N, SelectionDAGISel &SDISel) {
   1896   int64_t Val = MatcherTable[MatcherIndex++];
   1897   if (Val & 128)
   1898     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1899 
   1900   if (N->getOpcode() != ISD::AND) return false;
   1901 
   1902   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   1903   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   1904 }
   1905 
   1906 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1907 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1908            SDValue N, SelectionDAGISel &SDISel) {
   1909   int64_t Val = MatcherTable[MatcherIndex++];
   1910   if (Val & 128)
   1911     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   1912 
   1913   if (N->getOpcode() != ISD::OR) return false;
   1914 
   1915   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   1916   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   1917 }
   1918 
   1919 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   1920 /// scope, evaluate the current node.  If the current predicate is known to
   1921 /// fail, set Result=true and return anything.  If the current predicate is
   1922 /// known to pass, set Result=false and return the MatcherIndex to continue
   1923 /// with.  If the current predicate is unknown, set Result=false and return the
   1924 /// MatcherIndex to continue with.
   1925 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   1926                                        unsigned Index, SDValue N,
   1927                                        bool &Result, SelectionDAGISel &SDISel,
   1928                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1929   switch (Table[Index++]) {
   1930   default:
   1931     Result = false;
   1932     return Index-1;  // Could not evaluate this predicate.
   1933   case SelectionDAGISel::OPC_CheckSame:
   1934     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   1935     return Index;
   1936   case SelectionDAGISel::OPC_CheckPatternPredicate:
   1937     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   1938     return Index;
   1939   case SelectionDAGISel::OPC_CheckPredicate:
   1940     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   1941     return Index;
   1942   case SelectionDAGISel::OPC_CheckOpcode:
   1943     Result = !::CheckOpcode(Table, Index, N.getNode());
   1944     return Index;
   1945   case SelectionDAGISel::OPC_CheckType:
   1946     Result = !::CheckType(Table, Index, N, SDISel.TLI);
   1947     return Index;
   1948   case SelectionDAGISel::OPC_CheckChild0Type:
   1949   case SelectionDAGISel::OPC_CheckChild1Type:
   1950   case SelectionDAGISel::OPC_CheckChild2Type:
   1951   case SelectionDAGISel::OPC_CheckChild3Type:
   1952   case SelectionDAGISel::OPC_CheckChild4Type:
   1953   case SelectionDAGISel::OPC_CheckChild5Type:
   1954   case SelectionDAGISel::OPC_CheckChild6Type:
   1955   case SelectionDAGISel::OPC_CheckChild7Type:
   1956     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
   1957                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
   1958     return Index;
   1959   case SelectionDAGISel::OPC_CheckCondCode:
   1960     Result = !::CheckCondCode(Table, Index, N);
   1961     return Index;
   1962   case SelectionDAGISel::OPC_CheckValueType:
   1963     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
   1964     return Index;
   1965   case SelectionDAGISel::OPC_CheckInteger:
   1966     Result = !::CheckInteger(Table, Index, N);
   1967     return Index;
   1968   case SelectionDAGISel::OPC_CheckAndImm:
   1969     Result = !::CheckAndImm(Table, Index, N, SDISel);
   1970     return Index;
   1971   case SelectionDAGISel::OPC_CheckOrImm:
   1972     Result = !::CheckOrImm(Table, Index, N, SDISel);
   1973     return Index;
   1974   }
   1975 }
   1976 
   1977 namespace {
   1978 
   1979 struct MatchScope {
   1980   /// FailIndex - If this match fails, this is the index to continue with.
   1981   unsigned FailIndex;
   1982 
   1983   /// NodeStack - The node stack when the scope was formed.
   1984   SmallVector<SDValue, 4> NodeStack;
   1985 
   1986   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   1987   unsigned NumRecordedNodes;
   1988 
   1989   /// NumMatchedMemRefs - The number of matched memref entries.
   1990   unsigned NumMatchedMemRefs;
   1991 
   1992   /// InputChain/InputGlue - The current chain/glue
   1993   SDValue InputChain, InputGlue;
   1994 
   1995   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   1996   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   1997 };
   1998 
   1999 }
   2000 
   2001 SDNode *SelectionDAGISel::
   2002 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2003                  unsigned TableSize) {
   2004   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2005   switch (NodeToMatch->getOpcode()) {
   2006   default:
   2007     break;
   2008   case ISD::EntryToken:       // These nodes remain the same.
   2009   case ISD::BasicBlock:
   2010   case ISD::Register:
   2011   //case ISD::VALUETYPE:
   2012   //case ISD::CONDCODE:
   2013   case ISD::HANDLENODE:
   2014   case ISD::MDNODE_SDNODE:
   2015   case ISD::TargetConstant:
   2016   case ISD::TargetConstantFP:
   2017   case ISD::TargetConstantPool:
   2018   case ISD::TargetFrameIndex:
   2019   case ISD::TargetExternalSymbol:
   2020   case ISD::TargetBlockAddress:
   2021   case ISD::TargetJumpTable:
   2022   case ISD::TargetGlobalTLSAddress:
   2023   case ISD::TargetGlobalAddress:
   2024   case ISD::TokenFactor:
   2025   case ISD::CopyFromReg:
   2026   case ISD::CopyToReg:
   2027   case ISD::EH_LABEL:
   2028     NodeToMatch->setNodeId(-1); // Mark selected.
   2029     return 0;
   2030   case ISD::AssertSext:
   2031   case ISD::AssertZext:
   2032     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2033                                       NodeToMatch->getOperand(0));
   2034     return 0;
   2035   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2036   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2037   }
   2038 
   2039   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2040 
   2041   // Set up the node stack with NodeToMatch as the only node on the stack.
   2042   SmallVector<SDValue, 8> NodeStack;
   2043   SDValue N = SDValue(NodeToMatch, 0);
   2044   NodeStack.push_back(N);
   2045 
   2046   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2047   // indicates where to continue checking.
   2048   SmallVector<MatchScope, 8> MatchScopes;
   2049 
   2050   // RecordedNodes - This is the set of nodes that have been recorded by the
   2051   // state machine.  The second value is the parent of the node, or null if the
   2052   // root is recorded.
   2053   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2054 
   2055   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2056   // pattern.
   2057   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2058 
   2059   // These are the current input chain and glue for use when generating nodes.
   2060   // Various Emit operations change these.  For example, emitting a copytoreg
   2061   // uses and updates these.
   2062   SDValue InputChain, InputGlue;
   2063 
   2064   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2065   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2066   // which ones they are.  The result is captured into this list so that we can
   2067   // update the chain results when the pattern is complete.
   2068   SmallVector<SDNode*, 3> ChainNodesMatched;
   2069   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2070 
   2071   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
   2072         NodeToMatch->dump(CurDAG);
   2073         errs() << '\n');
   2074 
   2075   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2076   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2077   // accelerate the first lookup (which is guaranteed to be hot) with the
   2078   // OpcodeOffset table.
   2079   unsigned MatcherIndex = 0;
   2080 
   2081   if (!OpcodeOffset.empty()) {
   2082     // Already computed the OpcodeOffset table, just index into it.
   2083     if (N.getOpcode() < OpcodeOffset.size())
   2084       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2085     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2086 
   2087   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2088     // Otherwise, the table isn't computed, but the state machine does start
   2089     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2090     // is the first time we're selecting an instruction.
   2091     unsigned Idx = 1;
   2092     while (1) {
   2093       // Get the size of this case.
   2094       unsigned CaseSize = MatcherTable[Idx++];
   2095       if (CaseSize & 128)
   2096         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2097       if (CaseSize == 0) break;
   2098 
   2099       // Get the opcode, add the index to the table.
   2100       uint16_t Opc = MatcherTable[Idx++];
   2101       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2102       if (Opc >= OpcodeOffset.size())
   2103         OpcodeOffset.resize((Opc+1)*2);
   2104       OpcodeOffset[Opc] = Idx;
   2105       Idx += CaseSize;
   2106     }
   2107 
   2108     // Okay, do the lookup for the first opcode.
   2109     if (N.getOpcode() < OpcodeOffset.size())
   2110       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2111   }
   2112 
   2113   while (1) {
   2114     assert(MatcherIndex < TableSize && "Invalid index");
   2115 #ifndef NDEBUG
   2116     unsigned CurrentOpcodeIndex = MatcherIndex;
   2117 #endif
   2118     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2119     switch (Opcode) {
   2120     case OPC_Scope: {
   2121       // Okay, the semantics of this operation are that we should push a scope
   2122       // then evaluate the first child.  However, pushing a scope only to have
   2123       // the first check fail (which then pops it) is inefficient.  If we can
   2124       // determine immediately that the first check (or first several) will
   2125       // immediately fail, don't even bother pushing a scope for them.
   2126       unsigned FailIndex;
   2127 
   2128       while (1) {
   2129         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2130         if (NumToSkip & 128)
   2131           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2132         // Found the end of the scope with no match.
   2133         if (NumToSkip == 0) {
   2134           FailIndex = 0;
   2135           break;
   2136         }
   2137 
   2138         FailIndex = MatcherIndex+NumToSkip;
   2139 
   2140         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2141         (void)MatcherIndexOfPredicate; // silence warning.
   2142 
   2143         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2144         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2145         // push the scope and evaluate the full predicate chain.
   2146         bool Result;
   2147         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2148                                               Result, *this, RecordedNodes);
   2149         if (!Result)
   2150           break;
   2151 
   2152         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
   2153                      << "index " << MatcherIndexOfPredicate
   2154                      << ", continuing at " << FailIndex << "\n");
   2155         ++NumDAGIselRetries;
   2156 
   2157         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2158         // move to the next case.
   2159         MatcherIndex = FailIndex;
   2160       }
   2161 
   2162       // If the whole scope failed to match, bail.
   2163       if (FailIndex == 0) break;
   2164 
   2165       // Push a MatchScope which indicates where to go if the first child fails
   2166       // to match.
   2167       MatchScope NewEntry;
   2168       NewEntry.FailIndex = FailIndex;
   2169       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2170       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2171       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2172       NewEntry.InputChain = InputChain;
   2173       NewEntry.InputGlue = InputGlue;
   2174       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2175       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2176       MatchScopes.push_back(NewEntry);
   2177       continue;
   2178     }
   2179     case OPC_RecordNode: {
   2180       // Remember this node, it may end up being an operand in the pattern.
   2181       SDNode *Parent = 0;
   2182       if (NodeStack.size() > 1)
   2183         Parent = NodeStack[NodeStack.size()-2].getNode();
   2184       RecordedNodes.push_back(std::make_pair(N, Parent));
   2185       continue;
   2186     }
   2187 
   2188     case OPC_RecordChild0: case OPC_RecordChild1:
   2189     case OPC_RecordChild2: case OPC_RecordChild3:
   2190     case OPC_RecordChild4: case OPC_RecordChild5:
   2191     case OPC_RecordChild6: case OPC_RecordChild7: {
   2192       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2193       if (ChildNo >= N.getNumOperands())
   2194         break;  // Match fails if out of range child #.
   2195 
   2196       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2197                                              N.getNode()));
   2198       continue;
   2199     }
   2200     case OPC_RecordMemRef:
   2201       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2202       continue;
   2203 
   2204     case OPC_CaptureGlueInput:
   2205       // If the current node has an input glue, capture it in InputGlue.
   2206       if (N->getNumOperands() != 0 &&
   2207           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2208         InputGlue = N->getOperand(N->getNumOperands()-1);
   2209       continue;
   2210 
   2211     case OPC_MoveChild: {
   2212       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2213       if (ChildNo >= N.getNumOperands())
   2214         break;  // Match fails if out of range child #.
   2215       N = N.getOperand(ChildNo);
   2216       NodeStack.push_back(N);
   2217       continue;
   2218     }
   2219 
   2220     case OPC_MoveParent:
   2221       // Pop the current node off the NodeStack.
   2222       NodeStack.pop_back();
   2223       assert(!NodeStack.empty() && "Node stack imbalance!");
   2224       N = NodeStack.back();
   2225       continue;
   2226 
   2227     case OPC_CheckSame:
   2228       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2229       continue;
   2230     case OPC_CheckPatternPredicate:
   2231       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2232       continue;
   2233     case OPC_CheckPredicate:
   2234       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2235                                 N.getNode()))
   2236         break;
   2237       continue;
   2238     case OPC_CheckComplexPat: {
   2239       unsigned CPNum = MatcherTable[MatcherIndex++];
   2240       unsigned RecNo = MatcherTable[MatcherIndex++];
   2241       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2242       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2243                                RecordedNodes[RecNo].first, CPNum,
   2244                                RecordedNodes))
   2245         break;
   2246       continue;
   2247     }
   2248     case OPC_CheckOpcode:
   2249       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2250       continue;
   2251 
   2252     case OPC_CheckType:
   2253       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
   2254       continue;
   2255 
   2256     case OPC_SwitchOpcode: {
   2257       unsigned CurNodeOpcode = N.getOpcode();
   2258       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2259       unsigned CaseSize;
   2260       while (1) {
   2261         // Get the size of this case.
   2262         CaseSize = MatcherTable[MatcherIndex++];
   2263         if (CaseSize & 128)
   2264           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2265         if (CaseSize == 0) break;
   2266 
   2267         uint16_t Opc = MatcherTable[MatcherIndex++];
   2268         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2269 
   2270         // If the opcode matches, then we will execute this case.
   2271         if (CurNodeOpcode == Opc)
   2272           break;
   2273 
   2274         // Otherwise, skip over this case.
   2275         MatcherIndex += CaseSize;
   2276       }
   2277 
   2278       // If no cases matched, bail out.
   2279       if (CaseSize == 0) break;
   2280 
   2281       // Otherwise, execute the case we found.
   2282       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
   2283                    << " to " << MatcherIndex << "\n");
   2284       continue;
   2285     }
   2286 
   2287     case OPC_SwitchType: {
   2288       MVT CurNodeVT = N.getValueType().getSimpleVT();
   2289       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2290       unsigned CaseSize;
   2291       while (1) {
   2292         // Get the size of this case.
   2293         CaseSize = MatcherTable[MatcherIndex++];
   2294         if (CaseSize & 128)
   2295           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2296         if (CaseSize == 0) break;
   2297 
   2298         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2299         if (CaseVT == MVT::iPTR)
   2300           CaseVT = TLI.getPointerTy();
   2301 
   2302         // If the VT matches, then we will execute this case.
   2303         if (CurNodeVT == CaseVT)
   2304           break;
   2305 
   2306         // Otherwise, skip over this case.
   2307         MatcherIndex += CaseSize;
   2308       }
   2309 
   2310       // If no cases matched, bail out.
   2311       if (CaseSize == 0) break;
   2312 
   2313       // Otherwise, execute the case we found.
   2314       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2315                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2316       continue;
   2317     }
   2318     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2319     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2320     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2321     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2322       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
   2323                             Opcode-OPC_CheckChild0Type))
   2324         break;
   2325       continue;
   2326     case OPC_CheckCondCode:
   2327       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2328       continue;
   2329     case OPC_CheckValueType:
   2330       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
   2331       continue;
   2332     case OPC_CheckInteger:
   2333       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2334       continue;
   2335     case OPC_CheckAndImm:
   2336       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2337       continue;
   2338     case OPC_CheckOrImm:
   2339       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2340       continue;
   2341 
   2342     case OPC_CheckFoldableChainNode: {
   2343       assert(NodeStack.size() != 1 && "No parent node");
   2344       // Verify that all intermediate nodes between the root and this one have
   2345       // a single use.
   2346       bool HasMultipleUses = false;
   2347       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2348         if (!NodeStack[i].hasOneUse()) {
   2349           HasMultipleUses = true;
   2350           break;
   2351         }
   2352       if (HasMultipleUses) break;
   2353 
   2354       // Check to see that the target thinks this is profitable to fold and that
   2355       // we can fold it without inducing cycles in the graph.
   2356       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2357                               NodeToMatch) ||
   2358           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2359                          NodeToMatch, OptLevel,
   2360                          true/*We validate our own chains*/))
   2361         break;
   2362 
   2363       continue;
   2364     }
   2365     case OPC_EmitInteger: {
   2366       MVT::SimpleValueType VT =
   2367         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2368       int64_t Val = MatcherTable[MatcherIndex++];
   2369       if (Val & 128)
   2370         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2371       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2372                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
   2373       continue;
   2374     }
   2375     case OPC_EmitRegister: {
   2376       MVT::SimpleValueType VT =
   2377         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2378       unsigned RegNo = MatcherTable[MatcherIndex++];
   2379       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2380                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2381       continue;
   2382     }
   2383     case OPC_EmitRegister2: {
   2384       // For targets w/ more than 256 register names, the register enum
   2385       // values are stored in two bytes in the matcher table (just like
   2386       // opcodes).
   2387       MVT::SimpleValueType VT =
   2388         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2389       unsigned RegNo = MatcherTable[MatcherIndex++];
   2390       RegNo |= MatcherTable[MatcherIndex++] << 8;
   2391       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2392                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2393       continue;
   2394     }
   2395 
   2396     case OPC_EmitConvertToTarget:  {
   2397       // Convert from IMM/FPIMM to target version.
   2398       unsigned RecNo = MatcherTable[MatcherIndex++];
   2399       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2400       SDValue Imm = RecordedNodes[RecNo].first;
   2401 
   2402       if (Imm->getOpcode() == ISD::Constant) {
   2403         int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
   2404         Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
   2405       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   2406         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   2407         Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
   2408       }
   2409 
   2410       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   2411       continue;
   2412     }
   2413 
   2414     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   2415     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   2416       // These are space-optimized forms of OPC_EmitMergeInputChains.
   2417       assert(InputChain.getNode() == 0 &&
   2418              "EmitMergeInputChains should be the first chain producing node");
   2419       assert(ChainNodesMatched.empty() &&
   2420              "Should only have one EmitMergeInputChains per match");
   2421 
   2422       // Read all of the chained nodes.
   2423       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   2424       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2425       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2426 
   2427       // FIXME: What if other value results of the node have uses not matched
   2428       // by this pattern?
   2429       if (ChainNodesMatched.back() != NodeToMatch &&
   2430           !RecordedNodes[RecNo].first.hasOneUse()) {
   2431         ChainNodesMatched.clear();
   2432         break;
   2433       }
   2434 
   2435       // Merge the input chains if they are not intra-pattern references.
   2436       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2437 
   2438       if (InputChain.getNode() == 0)
   2439         break;  // Failed to merge.
   2440       continue;
   2441     }
   2442 
   2443     case OPC_EmitMergeInputChains: {
   2444       assert(InputChain.getNode() == 0 &&
   2445              "EmitMergeInputChains should be the first chain producing node");
   2446       // This node gets a list of nodes we matched in the input that have
   2447       // chains.  We want to token factor all of the input chains to these nodes
   2448       // together.  However, if any of the input chains is actually one of the
   2449       // nodes matched in this pattern, then we have an intra-match reference.
   2450       // Ignore these because the newly token factored chain should not refer to
   2451       // the old nodes.
   2452       unsigned NumChains = MatcherTable[MatcherIndex++];
   2453       assert(NumChains != 0 && "Can't TF zero chains");
   2454 
   2455       assert(ChainNodesMatched.empty() &&
   2456              "Should only have one EmitMergeInputChains per match");
   2457 
   2458       // Read all of the chained nodes.
   2459       for (unsigned i = 0; i != NumChains; ++i) {
   2460         unsigned RecNo = MatcherTable[MatcherIndex++];
   2461         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2462         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2463 
   2464         // FIXME: What if other value results of the node have uses not matched
   2465         // by this pattern?
   2466         if (ChainNodesMatched.back() != NodeToMatch &&
   2467             !RecordedNodes[RecNo].first.hasOneUse()) {
   2468           ChainNodesMatched.clear();
   2469           break;
   2470         }
   2471       }
   2472 
   2473       // If the inner loop broke out, the match fails.
   2474       if (ChainNodesMatched.empty())
   2475         break;
   2476 
   2477       // Merge the input chains if they are not intra-pattern references.
   2478       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2479 
   2480       if (InputChain.getNode() == 0)
   2481         break;  // Failed to merge.
   2482 
   2483       continue;
   2484     }
   2485 
   2486     case OPC_EmitCopyToReg: {
   2487       unsigned RecNo = MatcherTable[MatcherIndex++];
   2488       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2489       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   2490 
   2491       if (InputChain.getNode() == 0)
   2492         InputChain = CurDAG->getEntryNode();
   2493 
   2494       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
   2495                                         DestPhysReg, RecordedNodes[RecNo].first,
   2496                                         InputGlue);
   2497 
   2498       InputGlue = InputChain.getValue(1);
   2499       continue;
   2500     }
   2501 
   2502     case OPC_EmitNodeXForm: {
   2503       unsigned XFormNo = MatcherTable[MatcherIndex++];
   2504       unsigned RecNo = MatcherTable[MatcherIndex++];
   2505       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2506       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   2507       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
   2508       continue;
   2509     }
   2510 
   2511     case OPC_EmitNode:
   2512     case OPC_MorphNodeTo: {
   2513       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   2514       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2515       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   2516       // Get the result VT list.
   2517       unsigned NumVTs = MatcherTable[MatcherIndex++];
   2518       SmallVector<EVT, 4> VTs;
   2519       for (unsigned i = 0; i != NumVTs; ++i) {
   2520         MVT::SimpleValueType VT =
   2521           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2522         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
   2523         VTs.push_back(VT);
   2524       }
   2525 
   2526       if (EmitNodeInfo & OPFL_Chain)
   2527         VTs.push_back(MVT::Other);
   2528       if (EmitNodeInfo & OPFL_GlueOutput)
   2529         VTs.push_back(MVT::Glue);
   2530 
   2531       // This is hot code, so optimize the two most common cases of 1 and 2
   2532       // results.
   2533       SDVTList VTList;
   2534       if (VTs.size() == 1)
   2535         VTList = CurDAG->getVTList(VTs[0]);
   2536       else if (VTs.size() == 2)
   2537         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   2538       else
   2539         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
   2540 
   2541       // Get the operand list.
   2542       unsigned NumOps = MatcherTable[MatcherIndex++];
   2543       SmallVector<SDValue, 8> Ops;
   2544       for (unsigned i = 0; i != NumOps; ++i) {
   2545         unsigned RecNo = MatcherTable[MatcherIndex++];
   2546         if (RecNo & 128)
   2547           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2548 
   2549         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   2550         Ops.push_back(RecordedNodes[RecNo].first);
   2551       }
   2552 
   2553       // If there are variadic operands to add, handle them now.
   2554       if (EmitNodeInfo & OPFL_VariadicInfo) {
   2555         // Determine the start index to copy from.
   2556         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   2557         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   2558         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   2559                "Invalid variadic node");
   2560         // Copy all of the variadic operands, not including a potential glue
   2561         // input.
   2562         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   2563              i != e; ++i) {
   2564           SDValue V = NodeToMatch->getOperand(i);
   2565           if (V.getValueType() == MVT::Glue) break;
   2566           Ops.push_back(V);
   2567         }
   2568       }
   2569 
   2570       // If this has chain/glue inputs, add them.
   2571       if (EmitNodeInfo & OPFL_Chain)
   2572         Ops.push_back(InputChain);
   2573       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
   2574         Ops.push_back(InputGlue);
   2575 
   2576       // Create the node.
   2577       SDNode *Res = 0;
   2578       if (Opcode != OPC_MorphNodeTo) {
   2579         // If this is a normal EmitNode command, just create the new node and
   2580         // add the results to the RecordedNodes list.
   2581         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
   2582                                      VTList, Ops.data(), Ops.size());
   2583 
   2584         // Add all the non-glue/non-chain results to the RecordedNodes list.
   2585         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2586           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   2587           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   2588                                                              (SDNode*) 0));
   2589         }
   2590 
   2591       } else {
   2592         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
   2593                         EmitNodeInfo);
   2594       }
   2595 
   2596       // If the node had chain/glue results, update our notion of the current
   2597       // chain and glue.
   2598       if (EmitNodeInfo & OPFL_GlueOutput) {
   2599         InputGlue = SDValue(Res, VTs.size()-1);
   2600         if (EmitNodeInfo & OPFL_Chain)
   2601           InputChain = SDValue(Res, VTs.size()-2);
   2602       } else if (EmitNodeInfo & OPFL_Chain)
   2603         InputChain = SDValue(Res, VTs.size()-1);
   2604 
   2605       // If the OPFL_MemRefs glue is set on this node, slap all of the
   2606       // accumulated memrefs onto it.
   2607       //
   2608       // FIXME: This is vastly incorrect for patterns with multiple outputs
   2609       // instructions that access memory and for ComplexPatterns that match
   2610       // loads.
   2611       if (EmitNodeInfo & OPFL_MemRefs) {
   2612         // Only attach load or store memory operands if the generated
   2613         // instruction may load or store.
   2614         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
   2615         bool mayLoad = MCID.mayLoad();
   2616         bool mayStore = MCID.mayStore();
   2617 
   2618         unsigned NumMemRefs = 0;
   2619         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2620              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2621           if ((*I)->isLoad()) {
   2622             if (mayLoad)
   2623               ++NumMemRefs;
   2624           } else if ((*I)->isStore()) {
   2625             if (mayStore)
   2626               ++NumMemRefs;
   2627           } else {
   2628             ++NumMemRefs;
   2629           }
   2630         }
   2631 
   2632         MachineSDNode::mmo_iterator MemRefs =
   2633           MF->allocateMemRefsArray(NumMemRefs);
   2634 
   2635         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   2636         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2637              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2638           if ((*I)->isLoad()) {
   2639             if (mayLoad)
   2640               *MemRefsPos++ = *I;
   2641           } else if ((*I)->isStore()) {
   2642             if (mayStore)
   2643               *MemRefsPos++ = *I;
   2644           } else {
   2645             *MemRefsPos++ = *I;
   2646           }
   2647         }
   2648 
   2649         cast<MachineSDNode>(Res)
   2650           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   2651       }
   2652 
   2653       DEBUG(errs() << "  "
   2654                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   2655                    << " node: "; Res->dump(CurDAG); errs() << "\n");
   2656 
   2657       // If this was a MorphNodeTo then we're completely done!
   2658       if (Opcode == OPC_MorphNodeTo) {
   2659         // Update chain and glue uses.
   2660         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2661                             InputGlue, GlueResultNodesMatched, true);
   2662         return Res;
   2663       }
   2664 
   2665       continue;
   2666     }
   2667 
   2668     case OPC_MarkGlueResults: {
   2669       unsigned NumNodes = MatcherTable[MatcherIndex++];
   2670 
   2671       // Read and remember all the glue-result nodes.
   2672       for (unsigned i = 0; i != NumNodes; ++i) {
   2673         unsigned RecNo = MatcherTable[MatcherIndex++];
   2674         if (RecNo & 128)
   2675           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2676 
   2677         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2678         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2679       }
   2680       continue;
   2681     }
   2682 
   2683     case OPC_CompleteMatch: {
   2684       // The match has been completed, and any new nodes (if any) have been
   2685       // created.  Patch up references to the matched dag to use the newly
   2686       // created nodes.
   2687       unsigned NumResults = MatcherTable[MatcherIndex++];
   2688 
   2689       for (unsigned i = 0; i != NumResults; ++i) {
   2690         unsigned ResSlot = MatcherTable[MatcherIndex++];
   2691         if (ResSlot & 128)
   2692           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   2693 
   2694         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
   2695         SDValue Res = RecordedNodes[ResSlot].first;
   2696 
   2697         assert(i < NodeToMatch->getNumValues() &&
   2698                NodeToMatch->getValueType(i) != MVT::Other &&
   2699                NodeToMatch->getValueType(i) != MVT::Glue &&
   2700                "Invalid number of results to complete!");
   2701         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   2702                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   2703                 Res.getValueType() == MVT::iPTR ||
   2704                 NodeToMatch->getValueType(i).getSizeInBits() ==
   2705                     Res.getValueType().getSizeInBits()) &&
   2706                "invalid replacement");
   2707         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   2708       }
   2709 
   2710       // If the root node defines glue, add it to the glue nodes to update list.
   2711       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   2712         GlueResultNodesMatched.push_back(NodeToMatch);
   2713 
   2714       // Update chain and glue uses.
   2715       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2716                           InputGlue, GlueResultNodesMatched, false);
   2717 
   2718       assert(NodeToMatch->use_empty() &&
   2719              "Didn't replace all uses of the node?");
   2720 
   2721       // FIXME: We just return here, which interacts correctly with SelectRoot
   2722       // above.  We should fix this to not return an SDNode* anymore.
   2723       return 0;
   2724     }
   2725     }
   2726 
   2727     // If the code reached this point, then the match failed.  See if there is
   2728     // another child to try in the current 'Scope', otherwise pop it until we
   2729     // find a case to check.
   2730     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   2731     ++NumDAGIselRetries;
   2732     while (1) {
   2733       if (MatchScopes.empty()) {
   2734         CannotYetSelect(NodeToMatch);
   2735         return 0;
   2736       }
   2737 
   2738       // Restore the interpreter state back to the point where the scope was
   2739       // formed.
   2740       MatchScope &LastScope = MatchScopes.back();
   2741       RecordedNodes.resize(LastScope.NumRecordedNodes);
   2742       NodeStack.clear();
   2743       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   2744       N = NodeStack.back();
   2745 
   2746       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   2747         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   2748       MatcherIndex = LastScope.FailIndex;
   2749 
   2750       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
   2751 
   2752       InputChain = LastScope.InputChain;
   2753       InputGlue = LastScope.InputGlue;
   2754       if (!LastScope.HasChainNodesMatched)
   2755         ChainNodesMatched.clear();
   2756       if (!LastScope.HasGlueResultNodesMatched)
   2757         GlueResultNodesMatched.clear();
   2758 
   2759       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   2760       // we have reached the end of this scope, otherwise we have another child
   2761       // in the current scope to try.
   2762       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2763       if (NumToSkip & 128)
   2764         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2765 
   2766       // If we have another child in this scope to match, update FailIndex and
   2767       // try it.
   2768       if (NumToSkip != 0) {
   2769         LastScope.FailIndex = MatcherIndex+NumToSkip;
   2770         break;
   2771       }
   2772 
   2773       // End of this scope, pop it and try the next child in the containing
   2774       // scope.
   2775       MatchScopes.pop_back();
   2776     }
   2777   }
   2778 }
   2779 
   2780 
   2781 
   2782 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   2783   std::string msg;
   2784   raw_string_ostream Msg(msg);
   2785   Msg << "Cannot select: ";
   2786 
   2787   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   2788       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   2789       N->getOpcode() != ISD::INTRINSIC_VOID) {
   2790     N->printrFull(Msg, CurDAG);
   2791   } else {
   2792     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   2793     unsigned iid =
   2794       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   2795     if (iid < Intrinsic::num_intrinsics)
   2796       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   2797     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   2798       Msg << "target intrinsic %" << TII->getName(iid);
   2799     else
   2800       Msg << "unknown intrinsic #" << iid;
   2801   }
   2802   report_fatal_error(Msg.str());
   2803 }
   2804 
   2805 char SelectionDAGISel::ID = 0;
   2806