Home | History | Annotate | Download | only in X86
      1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a DAG pattern matching instruction selector for X86,
     11 // converting from a legalized dag to a X86 dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86MachineFunctionInfo.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Type.h"
     26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     27 #include "llvm/CodeGen/MachineConstantPool.h"
     28 #include "llvm/CodeGen/MachineFunction.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/SelectionDAGISel.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/Statistic.h"
     41 using namespace llvm;
     42 
     43 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                      Pattern Matcher Implementation
     47 //===----------------------------------------------------------------------===//
     48 
     49 namespace {
     50   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
     51   /// SDValue's instead of register numbers for the leaves of the matched
     52   /// tree.
     53   struct X86ISelAddressMode {
     54     enum {
     55       RegBase,
     56       FrameIndexBase
     57     } BaseType;
     58 
     59     // This is really a union, discriminated by BaseType!
     60     SDValue Base_Reg;
     61     int Base_FrameIndex;
     62 
     63     unsigned Scale;
     64     SDValue IndexReg;
     65     int32_t Disp;
     66     SDValue Segment;
     67     const GlobalValue *GV;
     68     const Constant *CP;
     69     const BlockAddress *BlockAddr;
     70     const char *ES;
     71     int JT;
     72     unsigned Align;    // CP alignment.
     73     unsigned char SymbolFlags;  // X86II::MO_*
     74 
     75     X86ISelAddressMode()
     76       : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
     77         Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
     78         SymbolFlags(X86II::MO_NO_FLAG) {
     79     }
     80 
     81     bool hasSymbolicDisplacement() const {
     82       return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
     83     }
     84 
     85     bool hasBaseOrIndexReg() const {
     86       return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
     87     }
     88 
     89     /// isRIPRelative - Return true if this addressing mode is already RIP
     90     /// relative.
     91     bool isRIPRelative() const {
     92       if (BaseType != RegBase) return false;
     93       if (RegisterSDNode *RegNode =
     94             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
     95         return RegNode->getReg() == X86::RIP;
     96       return false;
     97     }
     98 
     99     void setBaseReg(SDValue Reg) {
    100       BaseType = RegBase;
    101       Base_Reg = Reg;
    102     }
    103 
    104     void dump() {
    105       dbgs() << "X86ISelAddressMode " << this << '\n';
    106       dbgs() << "Base_Reg ";
    107       if (Base_Reg.getNode() != 0)
    108         Base_Reg.getNode()->dump();
    109       else
    110         dbgs() << "nul";
    111       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
    112              << " Scale" << Scale << '\n'
    113              << "IndexReg ";
    114       if (IndexReg.getNode() != 0)
    115         IndexReg.getNode()->dump();
    116       else
    117         dbgs() << "nul";
    118       dbgs() << " Disp " << Disp << '\n'
    119              << "GV ";
    120       if (GV)
    121         GV->dump();
    122       else
    123         dbgs() << "nul";
    124       dbgs() << " CP ";
    125       if (CP)
    126         CP->dump();
    127       else
    128         dbgs() << "nul";
    129       dbgs() << '\n'
    130              << "ES ";
    131       if (ES)
    132         dbgs() << ES;
    133       else
    134         dbgs() << "nul";
    135       dbgs() << " JT" << JT << " Align" << Align << '\n';
    136     }
    137   };
    138 }
    139 
    140 namespace {
    141   //===--------------------------------------------------------------------===//
    142   /// ISel - X86 specific code to select X86 machine instructions for
    143   /// SelectionDAG operations.
    144   ///
    145   class X86DAGToDAGISel : public SelectionDAGISel {
    146     /// X86Lowering - This object fully describes how to lower LLVM code to an
    147     /// X86-specific SelectionDAG.
    148     const X86TargetLowering &X86Lowering;
    149 
    150     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    151     /// make the right decision when generating code for different targets.
    152     const X86Subtarget *Subtarget;
    153 
    154     /// OptForSize - If true, selector should try to optimize for code size
    155     /// instead of performance.
    156     bool OptForSize;
    157 
    158   public:
    159     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
    160       : SelectionDAGISel(tm, OptLevel),
    161         X86Lowering(*tm.getTargetLowering()),
    162         Subtarget(&tm.getSubtarget<X86Subtarget>()),
    163         OptForSize(false) {}
    164 
    165     virtual const char *getPassName() const {
    166       return "X86 DAG->DAG Instruction Selection";
    167     }
    168 
    169     virtual void EmitFunctionEntryCode();
    170 
    171     virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
    172 
    173     virtual void PreprocessISelDAG();
    174 
    175     inline bool immSext8(SDNode *N) const {
    176       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    177     }
    178 
    179     // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    180     // sign extended field.
    181     inline bool i64immSExt32(SDNode *N) const {
    182       uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
    183       return (int64_t)v == (int32_t)v;
    184     }
    185 
    186 // Include the pieces autogenerated from the target description.
    187 #include "X86GenDAGISel.inc"
    188 
    189   private:
    190     SDNode *Select(SDNode *N);
    191     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    192     SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
    193     SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
    194 
    195     bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    196     bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    197     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    198     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    199     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    200                                  unsigned Depth);
    201     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    202     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
    203                     SDValue &Scale, SDValue &Index, SDValue &Disp,
    204                     SDValue &Segment);
    205     bool SelectLEAAddr(SDValue N, SDValue &Base,
    206                        SDValue &Scale, SDValue &Index, SDValue &Disp,
    207                        SDValue &Segment);
    208     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
    209                            SDValue &Scale, SDValue &Index, SDValue &Disp,
    210                            SDValue &Segment);
    211     bool SelectScalarSSELoad(SDNode *Root, SDValue N,
    212                              SDValue &Base, SDValue &Scale,
    213                              SDValue &Index, SDValue &Disp,
    214                              SDValue &Segment,
    215                              SDValue &NodeWithChain);
    216 
    217     bool TryFoldLoad(SDNode *P, SDValue N,
    218                      SDValue &Base, SDValue &Scale,
    219                      SDValue &Index, SDValue &Disp,
    220                      SDValue &Segment);
    221 
    222     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    223     /// inline asm expressions.
    224     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    225                                               char ConstraintCode,
    226                                               std::vector<SDValue> &OutOps);
    227 
    228     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
    229 
    230     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
    231                                    SDValue &Scale, SDValue &Index,
    232                                    SDValue &Disp, SDValue &Segment) {
    233       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
    234         CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
    235         AM.Base_Reg;
    236       Scale = getI8Imm(AM.Scale);
    237       Index = AM.IndexReg;
    238       // These are 32-bit even in 64-bit mode since RIP relative offset
    239       // is 32-bit.
    240       if (AM.GV)
    241         Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
    242                                               MVT::i32, AM.Disp,
    243                                               AM.SymbolFlags);
    244       else if (AM.CP)
    245         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
    246                                              AM.Align, AM.Disp, AM.SymbolFlags);
    247       else if (AM.ES)
    248         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
    249       else if (AM.JT != -1)
    250         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
    251       else if (AM.BlockAddr)
    252         Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
    253                                        true, AM.SymbolFlags);
    254       else
    255         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
    256 
    257       if (AM.Segment.getNode())
    258         Segment = AM.Segment;
    259       else
    260         Segment = CurDAG->getRegister(0, MVT::i32);
    261     }
    262 
    263     /// getI8Imm - Return a target constant with the specified value, of type
    264     /// i8.
    265     inline SDValue getI8Imm(unsigned Imm) {
    266       return CurDAG->getTargetConstant(Imm, MVT::i8);
    267     }
    268 
    269     /// getI32Imm - Return a target constant with the specified value, of type
    270     /// i32.
    271     inline SDValue getI32Imm(unsigned Imm) {
    272       return CurDAG->getTargetConstant(Imm, MVT::i32);
    273     }
    274 
    275     /// getGlobalBaseReg - Return an SDNode that returns the value of
    276     /// the global base register. Output instructions required to
    277     /// initialize the global base register, if necessary.
    278     ///
    279     SDNode *getGlobalBaseReg();
    280 
    281     /// getTargetMachine - Return a reference to the TargetMachine, casted
    282     /// to the target-specific type.
    283     const X86TargetMachine &getTargetMachine() {
    284       return static_cast<const X86TargetMachine &>(TM);
    285     }
    286 
    287     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    288     /// to the target-specific type.
    289     const X86InstrInfo *getInstrInfo() {
    290       return getTargetMachine().getInstrInfo();
    291     }
    292   };
    293 }
    294 
    295 
    296 bool
    297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
    298   if (OptLevel == CodeGenOpt::None) return false;
    299 
    300   if (!N.hasOneUse())
    301     return false;
    302 
    303   if (N.getOpcode() != ISD::LOAD)
    304     return true;
    305 
    306   // If N is a load, do additional profitability checks.
    307   if (U == Root) {
    308     switch (U->getOpcode()) {
    309     default: break;
    310     case X86ISD::ADD:
    311     case X86ISD::SUB:
    312     case X86ISD::AND:
    313     case X86ISD::XOR:
    314     case X86ISD::OR:
    315     case ISD::ADD:
    316     case ISD::ADDC:
    317     case ISD::ADDE:
    318     case ISD::AND:
    319     case ISD::OR:
    320     case ISD::XOR: {
    321       SDValue Op1 = U->getOperand(1);
    322 
    323       // If the other operand is a 8-bit immediate we should fold the immediate
    324       // instead. This reduces code size.
    325       // e.g.
    326       // movl 4(%esp), %eax
    327       // addl $4, %eax
    328       // vs.
    329       // movl $4, %eax
    330       // addl 4(%esp), %eax
    331       // The former is 2 bytes shorter. In case where the increment is 1, then
    332       // the saving can be 4 bytes (by using incl %eax).
    333       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
    334         if (Imm->getAPIntValue().isSignedIntN(8))
    335           return false;
    336 
    337       // If the other operand is a TLS address, we should fold it instead.
    338       // This produces
    339       // movl    %gs:0, %eax
    340       // leal    i@NTPOFF(%eax), %eax
    341       // instead of
    342       // movl    $i@NTPOFF, %eax
    343       // addl    %gs:0, %eax
    344       // if the block also has an access to a second TLS address this will save
    345       // a load.
    346       // FIXME: This is probably also true for non TLS addresses.
    347       if (Op1.getOpcode() == X86ISD::Wrapper) {
    348         SDValue Val = Op1.getOperand(0);
    349         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
    350           return false;
    351       }
    352     }
    353     }
    354   }
    355 
    356   return true;
    357 }
    358 
    359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
    360 /// load's chain operand and move load below the call's chain operand.
    361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
    362                                   SDValue Call, SDValue OrigChain) {
    363   SmallVector<SDValue, 8> Ops;
    364   SDValue Chain = OrigChain.getOperand(0);
    365   if (Chain.getNode() == Load.getNode())
    366     Ops.push_back(Load.getOperand(0));
    367   else {
    368     assert(Chain.getOpcode() == ISD::TokenFactor &&
    369            "Unexpected chain operand");
    370     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
    371       if (Chain.getOperand(i).getNode() == Load.getNode())
    372         Ops.push_back(Load.getOperand(0));
    373       else
    374         Ops.push_back(Chain.getOperand(i));
    375     SDValue NewChain =
    376       CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
    377                       MVT::Other, &Ops[0], Ops.size());
    378     Ops.clear();
    379     Ops.push_back(NewChain);
    380   }
    381   for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    382     Ops.push_back(OrigChain.getOperand(i));
    383   CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
    384   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
    385                              Load.getOperand(1), Load.getOperand(2));
    386   Ops.clear();
    387   Ops.push_back(SDValue(Load.getNode(), 1));
    388   for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
    389     Ops.push_back(Call.getOperand(i));
    390   CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
    391 }
    392 
    393 /// isCalleeLoad - Return true if call address is a load and it can be
    394 /// moved below CALLSEQ_START and the chains leading up to the call.
    395 /// Return the CALLSEQ_START by reference as a second output.
    396 /// In the case of a tail call, there isn't a callseq node between the call
    397 /// chain and the load.
    398 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
    399   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    400     return false;
    401   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
    402   if (!LD ||
    403       LD->isVolatile() ||
    404       LD->getAddressingMode() != ISD::UNINDEXED ||
    405       LD->getExtensionType() != ISD::NON_EXTLOAD)
    406     return false;
    407 
    408   // Now let's find the callseq_start.
    409   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    410     if (!Chain.hasOneUse())
    411       return false;
    412     Chain = Chain.getOperand(0);
    413   }
    414 
    415   if (!Chain.getNumOperands())
    416     return false;
    417   if (Chain.getOperand(0).getNode() == Callee.getNode())
    418     return true;
    419   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
    420       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
    421       Callee.getValue(1).hasOneUse())
    422     return true;
    423   return false;
    424 }
    425 
    426 void X86DAGToDAGISel::PreprocessISelDAG() {
    427   // OptForSize is used in pattern predicates that isel is matching.
    428   OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
    429 
    430   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
    431        E = CurDAG->allnodes_end(); I != E; ) {
    432     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
    433 
    434     if (OptLevel != CodeGenOpt::None &&
    435         (N->getOpcode() == X86ISD::CALL ||
    436          N->getOpcode() == X86ISD::TC_RETURN)) {
    437       /// Also try moving call address load from outside callseq_start to just
    438       /// before the call to allow it to be folded.
    439       ///
    440       ///     [Load chain]
    441       ///         ^
    442       ///         |
    443       ///       [Load]
    444       ///       ^    ^
    445       ///       |    |
    446       ///      /      \--
    447       ///     /          |
    448       ///[CALLSEQ_START] |
    449       ///     ^          |
    450       ///     |          |
    451       /// [LOAD/C2Reg]   |
    452       ///     |          |
    453       ///      \        /
    454       ///       \      /
    455       ///       [CALL]
    456       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
    457       SDValue Chain = N->getOperand(0);
    458       SDValue Load  = N->getOperand(1);
    459       if (!isCalleeLoad(Load, Chain, HasCallSeq))
    460         continue;
    461       MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
    462       ++NumLoadMoved;
    463       continue;
    464     }
    465 
    466     // Lower fpround and fpextend nodes that target the FP stack to be store and
    467     // load to the stack.  This is a gross hack.  We would like to simply mark
    468     // these as being illegal, but when we do that, legalize produces these when
    469     // it expands calls, then expands these in the same legalize pass.  We would
    470     // like dag combine to be able to hack on these between the call expansion
    471     // and the node legalization.  As such this pass basically does "really
    472     // late" legalization of these inline with the X86 isel pass.
    473     // FIXME: This should only happen when not compiled with -O0.
    474     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
    475       continue;
    476 
    477     // If the source and destination are SSE registers, then this is a legal
    478     // conversion that should not be lowered.
    479     EVT SrcVT = N->getOperand(0).getValueType();
    480     EVT DstVT = N->getValueType(0);
    481     bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
    482     bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
    483     if (SrcIsSSE && DstIsSSE)
    484       continue;
    485 
    486     if (!SrcIsSSE && !DstIsSSE) {
    487       // If this is an FPStack extension, it is a noop.
    488       if (N->getOpcode() == ISD::FP_EXTEND)
    489         continue;
    490       // If this is a value-preserving FPStack truncation, it is a noop.
    491       if (N->getConstantOperandVal(1))
    492         continue;
    493     }
    494 
    495     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    496     // FPStack has extload and truncstore.  SSE can fold direct loads into other
    497     // operations.  Based on this, decide what we want to do.
    498     EVT MemVT;
    499     if (N->getOpcode() == ISD::FP_ROUND)
    500       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    501     else
    502       MemVT = SrcIsSSE ? SrcVT : DstVT;
    503 
    504     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    505     DebugLoc dl = N->getDebugLoc();
    506 
    507     // FIXME: optimize the case where the src/dest is a load or store?
    508     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
    509                                           N->getOperand(0),
    510                                           MemTmp, MachinePointerInfo(), MemVT,
    511                                           false, false, 0);
    512     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
    513                                         MachinePointerInfo(),
    514                                         MemVT, false, false, 0);
    515 
    516     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    517     // extload we created.  This will cause general havok on the dag because
    518     // anything below the conversion could be folded into other existing nodes.
    519     // To avoid invalidating 'I', back it up to the convert node.
    520     --I;
    521     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    522 
    523     // Now that we did that, the node is dead.  Increment the iterator to the
    524     // next node to process, then delete N.
    525     ++I;
    526     CurDAG->DeleteNode(N);
    527   }
    528 }
    529 
    530 
    531 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
    532 /// the main function.
    533 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
    534                                              MachineFrameInfo *MFI) {
    535   const TargetInstrInfo *TII = TM.getInstrInfo();
    536   if (Subtarget->isTargetCygMing()) {
    537     unsigned CallOp =
    538       Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
    539     BuildMI(BB, DebugLoc(),
    540             TII->get(CallOp)).addExternalSymbol("__main");
    541   }
    542 }
    543 
    544 void X86DAGToDAGISel::EmitFunctionEntryCode() {
    545   // If this is main, emit special code for main.
    546   if (const Function *Fn = MF->getFunction())
    547     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
    548       EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
    549 }
    550 
    551 static bool isDispSafeForFrameIndex(int64_t Val) {
    552   // On 64-bit platforms, we can run into an issue where a frame index
    553   // includes a displacement that, when added to the explicit displacement,
    554   // will overflow the displacement field. Assuming that the frame index
    555   // displacement fits into a 31-bit integer  (which is only slightly more
    556   // aggressive than the current fundamental assumption that it fits into
    557   // a 32-bit integer), a 31-bit disp should always be safe.
    558   return isInt<31>(Val);
    559 }
    560 
    561 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
    562                                             X86ISelAddressMode &AM) {
    563   int64_t Val = AM.Disp + Offset;
    564   CodeModel::Model M = TM.getCodeModel();
    565   if (Subtarget->is64Bit()) {
    566     if (!X86::isOffsetSuitableForCodeModel(Val, M,
    567                                            AM.hasSymbolicDisplacement()))
    568       return true;
    569     // In addition to the checks required for a register base, check that
    570     // we do not try to use an unsafe Disp with a frame index.
    571     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
    572         !isDispSafeForFrameIndex(Val))
    573       return true;
    574   }
    575   AM.Disp = Val;
    576   return false;
    577 
    578 }
    579 
    580 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
    581   SDValue Address = N->getOperand(1);
    582 
    583   // load gs:0 -> GS segment register.
    584   // load fs:0 -> FS segment register.
    585   //
    586   // This optimization is valid because the GNU TLS model defines that
    587   // gs:0 (or fs:0 on X86-64) contains its own address.
    588   // For more information see http://people.redhat.com/drepper/tls.pdf
    589   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    590     if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
    591         Subtarget->isTargetELF())
    592       switch (N->getPointerInfo().getAddrSpace()) {
    593       case 256:
    594         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    595         return false;
    596       case 257:
    597         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
    598         return false;
    599       }
    600 
    601   return true;
    602 }
    603 
    604 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
    605 /// into an addressing mode.  These wrap things that will resolve down into a
    606 /// symbol reference.  If no match is possible, this returns true, otherwise it
    607 /// returns false.
    608 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
    609   // If the addressing mode already has a symbol as the displacement, we can
    610   // never match another symbol.
    611   if (AM.hasSymbolicDisplacement())
    612     return true;
    613 
    614   SDValue N0 = N.getOperand(0);
    615   CodeModel::Model M = TM.getCodeModel();
    616 
    617   // Handle X86-64 rip-relative addresses.  We check this before checking direct
    618   // folding because RIP is preferable to non-RIP accesses.
    619   if (Subtarget->is64Bit() &&
    620       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
    621       // they cannot be folded into immediate fields.
    622       // FIXME: This can be improved for kernel and other models?
    623       (M == CodeModel::Small || M == CodeModel::Kernel) &&
    624       // Base and index reg must be 0 in order to use %rip as base and lowering
    625       // must allow RIP.
    626       !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
    627     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    628       X86ISelAddressMode Backup = AM;
    629       AM.GV = G->getGlobal();
    630       AM.SymbolFlags = G->getTargetFlags();
    631       if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
    632         AM = Backup;
    633         return true;
    634       }
    635     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    636       X86ISelAddressMode Backup = AM;
    637       AM.CP = CP->getConstVal();
    638       AM.Align = CP->getAlignment();
    639       AM.SymbolFlags = CP->getTargetFlags();
    640       if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
    641         AM = Backup;
    642         return true;
    643       }
    644     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    645       AM.ES = S->getSymbol();
    646       AM.SymbolFlags = S->getTargetFlags();
    647     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    648       AM.JT = J->getIndex();
    649       AM.SymbolFlags = J->getTargetFlags();
    650     } else {
    651       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
    652       AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    653     }
    654 
    655     if (N.getOpcode() == X86ISD::WrapperRIP)
    656       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    657     return false;
    658   }
    659 
    660   // Handle the case when globals fit in our immediate field: This is true for
    661   // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
    662   // mode, this results in a non-RIP-relative computation.
    663   if (!Subtarget->is64Bit() ||
    664       ((M == CodeModel::Small || M == CodeModel::Kernel) &&
    665        TM.getRelocationModel() == Reloc::Static)) {
    666     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    667       AM.GV = G->getGlobal();
    668       AM.Disp += G->getOffset();
    669       AM.SymbolFlags = G->getTargetFlags();
    670     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    671       AM.CP = CP->getConstVal();
    672       AM.Align = CP->getAlignment();
    673       AM.Disp += CP->getOffset();
    674       AM.SymbolFlags = CP->getTargetFlags();
    675     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    676       AM.ES = S->getSymbol();
    677       AM.SymbolFlags = S->getTargetFlags();
    678     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    679       AM.JT = J->getIndex();
    680       AM.SymbolFlags = J->getTargetFlags();
    681     } else {
    682       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
    683       AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    684     }
    685     return false;
    686   }
    687 
    688   return true;
    689 }
    690 
    691 /// MatchAddress - Add the specified node to the specified addressing mode,
    692 /// returning true if it cannot be done.  This just pattern matches for the
    693 /// addressing mode.
    694 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
    695   if (MatchAddressRecursively(N, AM, 0))
    696     return true;
    697 
    698   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
    699   // a smaller encoding and avoids a scaled-index.
    700   if (AM.Scale == 2 &&
    701       AM.BaseType == X86ISelAddressMode::RegBase &&
    702       AM.Base_Reg.getNode() == 0) {
    703     AM.Base_Reg = AM.IndexReg;
    704     AM.Scale = 1;
    705   }
    706 
    707   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
    708   // because it has a smaller encoding.
    709   // TODO: Which other code models can use this?
    710   if (TM.getCodeModel() == CodeModel::Small &&
    711       Subtarget->is64Bit() &&
    712       AM.Scale == 1 &&
    713       AM.BaseType == X86ISelAddressMode::RegBase &&
    714       AM.Base_Reg.getNode() == 0 &&
    715       AM.IndexReg.getNode() == 0 &&
    716       AM.SymbolFlags == X86II::MO_NO_FLAG &&
    717       AM.hasSymbolicDisplacement())
    718     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
    719 
    720   return false;
    721 }
    722 
    723 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    724                                               unsigned Depth) {
    725   DebugLoc dl = N.getDebugLoc();
    726   DEBUG({
    727       dbgs() << "MatchAddress: ";
    728       AM.dump();
    729     });
    730   // Limit recursion.
    731   if (Depth > 5)
    732     return MatchAddressBase(N, AM);
    733 
    734   // If this is already a %rip relative address, we can only merge immediates
    735   // into it.  Instead of handling this in every case, we handle it here.
    736   // RIP relative addressing: %rip + 32-bit displacement!
    737   if (AM.isRIPRelative()) {
    738     // FIXME: JumpTable and ExternalSymbol address currently don't like
    739     // displacements.  It isn't very important, but this should be fixed for
    740     // consistency.
    741     if (!AM.ES && AM.JT != -1) return true;
    742 
    743     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
    744       if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
    745         return false;
    746     return true;
    747   }
    748 
    749   switch (N.getOpcode()) {
    750   default: break;
    751   case ISD::Constant: {
    752     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    753     if (!FoldOffsetIntoAddress(Val, AM))
    754       return false;
    755     break;
    756   }
    757 
    758   case X86ISD::Wrapper:
    759   case X86ISD::WrapperRIP:
    760     if (!MatchWrapper(N, AM))
    761       return false;
    762     break;
    763 
    764   case ISD::LOAD:
    765     if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
    766       return false;
    767     break;
    768 
    769   case ISD::FrameIndex:
    770     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    771         AM.Base_Reg.getNode() == 0 &&
    772         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
    773       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
    774       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
    775       return false;
    776     }
    777     break;
    778 
    779   case ISD::SHL:
    780     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
    781       break;
    782 
    783     if (ConstantSDNode
    784           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
    785       unsigned Val = CN->getZExtValue();
    786       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
    787       // that the base operand remains free for further matching. If
    788       // the base doesn't end up getting used, a post-processing step
    789       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
    790       if (Val == 1 || Val == 2 || Val == 3) {
    791         AM.Scale = 1 << Val;
    792         SDValue ShVal = N.getNode()->getOperand(0);
    793 
    794         // Okay, we know that we have a scale by now.  However, if the scaled
    795         // value is an add of something and a constant, we can fold the
    796         // constant into the disp field here.
    797         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
    798           AM.IndexReg = ShVal.getNode()->getOperand(0);
    799           ConstantSDNode *AddVal =
    800             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
    801           uint64_t Disp = AddVal->getSExtValue() << Val;
    802           if (!FoldOffsetIntoAddress(Disp, AM))
    803             return false;
    804         }
    805 
    806         AM.IndexReg = ShVal;
    807         return false;
    808       }
    809     break;
    810     }
    811 
    812   case ISD::SMUL_LOHI:
    813   case ISD::UMUL_LOHI:
    814     // A mul_lohi where we need the low part can be folded as a plain multiply.
    815     if (N.getResNo() != 0) break;
    816     // FALL THROUGH
    817   case ISD::MUL:
    818   case X86ISD::MUL_IMM:
    819     // X*[3,5,9] -> X+X*[2,4,8]
    820     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    821         AM.Base_Reg.getNode() == 0 &&
    822         AM.IndexReg.getNode() == 0) {
    823       if (ConstantSDNode
    824             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
    825         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
    826             CN->getZExtValue() == 9) {
    827           AM.Scale = unsigned(CN->getZExtValue())-1;
    828 
    829           SDValue MulVal = N.getNode()->getOperand(0);
    830           SDValue Reg;
    831 
    832           // Okay, we know that we have a scale by now.  However, if the scaled
    833           // value is an add of something and a constant, we can fold the
    834           // constant into the disp field here.
    835           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
    836               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
    837             Reg = MulVal.getNode()->getOperand(0);
    838             ConstantSDNode *AddVal =
    839               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
    840             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
    841             if (FoldOffsetIntoAddress(Disp, AM))
    842               Reg = N.getNode()->getOperand(0);
    843           } else {
    844             Reg = N.getNode()->getOperand(0);
    845           }
    846 
    847           AM.IndexReg = AM.Base_Reg = Reg;
    848           return false;
    849         }
    850     }
    851     break;
    852 
    853   case ISD::SUB: {
    854     // Given A-B, if A can be completely folded into the address and
    855     // the index field with the index field unused, use -B as the index.
    856     // This is a win if a has multiple parts that can be folded into
    857     // the address. Also, this saves a mov if the base register has
    858     // other uses, since it avoids a two-address sub instruction, however
    859     // it costs an additional mov if the index register has other uses.
    860 
    861     // Add an artificial use to this node so that we can keep track of
    862     // it if it gets CSE'd with a different node.
    863     HandleSDNode Handle(N);
    864 
    865     // Test if the LHS of the sub can be folded.
    866     X86ISelAddressMode Backup = AM;
    867     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
    868       AM = Backup;
    869       break;
    870     }
    871     // Test if the index field is free for use.
    872     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
    873       AM = Backup;
    874       break;
    875     }
    876 
    877     int Cost = 0;
    878     SDValue RHS = Handle.getValue().getNode()->getOperand(1);
    879     // If the RHS involves a register with multiple uses, this
    880     // transformation incurs an extra mov, due to the neg instruction
    881     // clobbering its operand.
    882     if (!RHS.getNode()->hasOneUse() ||
    883         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
    884         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
    885         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
    886         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
    887          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
    888       ++Cost;
    889     // If the base is a register with multiple uses, this
    890     // transformation may save a mov.
    891     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
    892          AM.Base_Reg.getNode() &&
    893          !AM.Base_Reg.getNode()->hasOneUse()) ||
    894         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    895       --Cost;
    896     // If the folded LHS was interesting, this transformation saves
    897     // address arithmetic.
    898     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
    899         ((AM.Disp != 0) && (Backup.Disp == 0)) +
    900         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
    901       --Cost;
    902     // If it doesn't look like it may be an overall win, don't do it.
    903     if (Cost >= 0) {
    904       AM = Backup;
    905       break;
    906     }
    907 
    908     // Ok, the transformation is legal and appears profitable. Go for it.
    909     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
    910     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
    911     AM.IndexReg = Neg;
    912     AM.Scale = 1;
    913 
    914     // Insert the new nodes into the topological ordering.
    915     if (Zero.getNode()->getNodeId() == -1 ||
    916         Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
    917       CurDAG->RepositionNode(N.getNode(), Zero.getNode());
    918       Zero.getNode()->setNodeId(N.getNode()->getNodeId());
    919     }
    920     if (Neg.getNode()->getNodeId() == -1 ||
    921         Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
    922       CurDAG->RepositionNode(N.getNode(), Neg.getNode());
    923       Neg.getNode()->setNodeId(N.getNode()->getNodeId());
    924     }
    925     return false;
    926   }
    927 
    928   case ISD::ADD: {
    929     // Add an artificial use to this node so that we can keep track of
    930     // it if it gets CSE'd with a different node.
    931     HandleSDNode Handle(N);
    932 
    933     X86ISelAddressMode Backup = AM;
    934     if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
    935         !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
    936       return false;
    937     AM = Backup;
    938 
    939     // Try again after commuting the operands.
    940     if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
    941         !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
    942       return false;
    943     AM = Backup;
    944 
    945     // If we couldn't fold both operands into the address at the same time,
    946     // see if we can just put each operand into a register and fold at least
    947     // the add.
    948     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    949         !AM.Base_Reg.getNode() &&
    950         !AM.IndexReg.getNode()) {
    951       N = Handle.getValue();
    952       AM.Base_Reg = N.getOperand(0);
    953       AM.IndexReg = N.getOperand(1);
    954       AM.Scale = 1;
    955       return false;
    956     }
    957     N = Handle.getValue();
    958     break;
    959   }
    960 
    961   case ISD::OR:
    962     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    963     if (CurDAG->isBaseWithConstantOffset(N)) {
    964       X86ISelAddressMode Backup = AM;
    965       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
    966 
    967       // Start with the LHS as an addr mode.
    968       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
    969           !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
    970         return false;
    971       AM = Backup;
    972     }
    973     break;
    974 
    975   case ISD::AND: {
    976     // Perform some heroic transforms on an and of a constant-count shift
    977     // with a constant to enable use of the scaled offset field.
    978 
    979     SDValue Shift = N.getOperand(0);
    980     if (Shift.getNumOperands() != 2) break;
    981 
    982     // Scale must not be used already.
    983     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
    984 
    985     SDValue X = Shift.getOperand(0);
    986     ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
    987     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
    988     if (!C1 || !C2) break;
    989 
    990     // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
    991     // allows us to convert the shift and and into an h-register extract and
    992     // a scaled index.
    993     if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
    994       unsigned ScaleLog = 8 - C1->getZExtValue();
    995       if (ScaleLog > 0 && ScaleLog < 4 &&
    996           C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
    997         SDValue Eight = CurDAG->getConstant(8, MVT::i8);
    998         SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
    999         SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
   1000                                       X, Eight);
   1001         SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
   1002                                       Srl, Mask);
   1003         SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
   1004         SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
   1005                                       And, ShlCount);
   1006 
   1007         // Insert the new nodes into the topological ordering.
   1008         if (Eight.getNode()->getNodeId() == -1 ||
   1009             Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1010           CurDAG->RepositionNode(X.getNode(), Eight.getNode());
   1011           Eight.getNode()->setNodeId(X.getNode()->getNodeId());
   1012         }
   1013         if (Mask.getNode()->getNodeId() == -1 ||
   1014             Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1015           CurDAG->RepositionNode(X.getNode(), Mask.getNode());
   1016           Mask.getNode()->setNodeId(X.getNode()->getNodeId());
   1017         }
   1018         if (Srl.getNode()->getNodeId() == -1 ||
   1019             Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
   1020           CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
   1021           Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
   1022         }
   1023         if (And.getNode()->getNodeId() == -1 ||
   1024             And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1025           CurDAG->RepositionNode(N.getNode(), And.getNode());
   1026           And.getNode()->setNodeId(N.getNode()->getNodeId());
   1027         }
   1028         if (ShlCount.getNode()->getNodeId() == -1 ||
   1029             ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1030           CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
   1031           ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
   1032         }
   1033         if (Shl.getNode()->getNodeId() == -1 ||
   1034             Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1035           CurDAG->RepositionNode(N.getNode(), Shl.getNode());
   1036           Shl.getNode()->setNodeId(N.getNode()->getNodeId());
   1037         }
   1038         CurDAG->ReplaceAllUsesWith(N, Shl);
   1039         AM.IndexReg = And;
   1040         AM.Scale = (1 << ScaleLog);
   1041         return false;
   1042       }
   1043     }
   1044 
   1045     // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
   1046     // allows us to fold the shift into this addressing mode.
   1047     if (Shift.getOpcode() != ISD::SHL) break;
   1048 
   1049     // Not likely to be profitable if either the AND or SHIFT node has more
   1050     // than one use (unless all uses are for address computation). Besides,
   1051     // isel mechanism requires their node ids to be reused.
   1052     if (!N.hasOneUse() || !Shift.hasOneUse())
   1053       break;
   1054 
   1055     // Verify that the shift amount is something we can fold.
   1056     unsigned ShiftCst = C1->getZExtValue();
   1057     if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
   1058       break;
   1059 
   1060     // Get the new AND mask, this folds to a constant.
   1061     SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
   1062                                          SDValue(C2, 0), SDValue(C1, 0));
   1063     SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
   1064                                      NewANDMask);
   1065     SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
   1066                                        NewAND, SDValue(C1, 0));
   1067 
   1068     // Insert the new nodes into the topological ordering.
   1069     if (C1->getNodeId() > X.getNode()->getNodeId()) {
   1070       CurDAG->RepositionNode(X.getNode(), C1);
   1071       C1->setNodeId(X.getNode()->getNodeId());
   1072     }
   1073     if (NewANDMask.getNode()->getNodeId() == -1 ||
   1074         NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1075       CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
   1076       NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
   1077     }
   1078     if (NewAND.getNode()->getNodeId() == -1 ||
   1079         NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
   1080       CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
   1081       NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
   1082     }
   1083     if (NewSHIFT.getNode()->getNodeId() == -1 ||
   1084         NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1085       CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
   1086       NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
   1087     }
   1088 
   1089     CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
   1090 
   1091     AM.Scale = 1 << ShiftCst;
   1092     AM.IndexReg = NewAND;
   1093     return false;
   1094   }
   1095   }
   1096 
   1097   return MatchAddressBase(N, AM);
   1098 }
   1099 
   1100 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
   1101 /// specified addressing mode without any further recursion.
   1102 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   1103   // Is the base register already occupied?
   1104   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
   1105     // If so, check to see if the scale index register is set.
   1106     if (AM.IndexReg.getNode() == 0) {
   1107       AM.IndexReg = N;
   1108       AM.Scale = 1;
   1109       return false;
   1110     }
   1111 
   1112     // Otherwise, we cannot select it.
   1113     return true;
   1114   }
   1115 
   1116   // Default, generate it as a register.
   1117   AM.BaseType = X86ISelAddressMode::RegBase;
   1118   AM.Base_Reg = N;
   1119   return false;
   1120 }
   1121 
   1122 /// SelectAddr - returns true if it is able pattern match an addressing mode.
   1123 /// It returns the operands which make up the maximal addressing mode it can
   1124 /// match by reference.
   1125 ///
   1126 /// Parent is the parent node of the addr operand that is being matched.  It
   1127 /// is always a load, store, atomic node, or null.  It is only null when
   1128 /// checking memory operands for inline asm nodes.
   1129 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
   1130                                  SDValue &Scale, SDValue &Index,
   1131                                  SDValue &Disp, SDValue &Segment) {
   1132   X86ISelAddressMode AM;
   1133 
   1134   if (Parent &&
   1135       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
   1136       // that are not a MemSDNode, and thus don't have proper addrspace info.
   1137       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
   1138       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
   1139       Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
   1140     unsigned AddrSpace =
   1141       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
   1142     // AddrSpace 256 -> GS, 257 -> FS.
   1143     if (AddrSpace == 256)
   1144       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
   1145     if (AddrSpace == 257)
   1146       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
   1147   }
   1148 
   1149   if (MatchAddress(N, AM))
   1150     return false;
   1151 
   1152   EVT VT = N.getValueType();
   1153   if (AM.BaseType == X86ISelAddressMode::RegBase) {
   1154     if (!AM.Base_Reg.getNode())
   1155       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1156   }
   1157 
   1158   if (!AM.IndexReg.getNode())
   1159     AM.IndexReg = CurDAG->getRegister(0, VT);
   1160 
   1161   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1162   return true;
   1163 }
   1164 
   1165 /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
   1166 /// match a load whose top elements are either undef or zeros.  The load flavor
   1167 /// is derived from the type of N, which is either v4f32 or v2f64.
   1168 ///
   1169 /// We also return:
   1170 ///   PatternChainNode: this is the matched node that has a chain input and
   1171 ///   output.
   1172 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
   1173                                           SDValue N, SDValue &Base,
   1174                                           SDValue &Scale, SDValue &Index,
   1175                                           SDValue &Disp, SDValue &Segment,
   1176                                           SDValue &PatternNodeWithChain) {
   1177   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   1178     PatternNodeWithChain = N.getOperand(0);
   1179     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
   1180         PatternNodeWithChain.hasOneUse() &&
   1181         IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1182         IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1183       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
   1184       if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1185         return false;
   1186       return true;
   1187     }
   1188   }
   1189 
   1190   // Also handle the case where we explicitly require zeros in the top
   1191   // elements.  This is a vector shuffle from the zero vector.
   1192   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
   1193       // Check to see if the top elements are all zeros (or bitcast of zeros).
   1194       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
   1195       N.getOperand(0).getNode()->hasOneUse() &&
   1196       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
   1197       N.getOperand(0).getOperand(0).hasOneUse() &&
   1198       IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1199       IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1200     // Okay, this is a zero extending load.  Fold it.
   1201     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
   1202     if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1203       return false;
   1204     PatternNodeWithChain = SDValue(LD, 0);
   1205     return true;
   1206   }
   1207   return false;
   1208 }
   1209 
   1210 
   1211 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
   1212 /// mode it matches can be cost effectively emitted as an LEA instruction.
   1213 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   1214                                     SDValue &Base, SDValue &Scale,
   1215                                     SDValue &Index, SDValue &Disp,
   1216                                     SDValue &Segment) {
   1217   X86ISelAddressMode AM;
   1218 
   1219   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
   1220   // segments.
   1221   SDValue Copy = AM.Segment;
   1222   SDValue T = CurDAG->getRegister(0, MVT::i32);
   1223   AM.Segment = T;
   1224   if (MatchAddress(N, AM))
   1225     return false;
   1226   assert (T == AM.Segment);
   1227   AM.Segment = Copy;
   1228 
   1229   EVT VT = N.getValueType();
   1230   unsigned Complexity = 0;
   1231   if (AM.BaseType == X86ISelAddressMode::RegBase)
   1232     if (AM.Base_Reg.getNode())
   1233       Complexity = 1;
   1234     else
   1235       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1236   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1237     Complexity = 4;
   1238 
   1239   if (AM.IndexReg.getNode())
   1240     Complexity++;
   1241   else
   1242     AM.IndexReg = CurDAG->getRegister(0, VT);
   1243 
   1244   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
   1245   // a simple shift.
   1246   if (AM.Scale > 1)
   1247     Complexity++;
   1248 
   1249   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
   1250   // to a LEA. This is determined with some expermentation but is by no means
   1251   // optimal (especially for code size consideration). LEA is nice because of
   1252   // its three-address nature. Tweak the cost function again when we can run
   1253   // convertToThreeAddress() at register allocation time.
   1254   if (AM.hasSymbolicDisplacement()) {
   1255     // For X86-64, we should always use lea to materialize RIP relative
   1256     // addresses.
   1257     if (Subtarget->is64Bit())
   1258       Complexity = 4;
   1259     else
   1260       Complexity += 2;
   1261   }
   1262 
   1263   if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
   1264     Complexity++;
   1265 
   1266   // If it isn't worth using an LEA, reject it.
   1267   if (Complexity <= 2)
   1268     return false;
   1269 
   1270   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1271   return true;
   1272 }
   1273 
   1274 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
   1275 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
   1276                                         SDValue &Scale, SDValue &Index,
   1277                                         SDValue &Disp, SDValue &Segment) {
   1278   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
   1279   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
   1280 
   1281   X86ISelAddressMode AM;
   1282   AM.GV = GA->getGlobal();
   1283   AM.Disp += GA->getOffset();
   1284   AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
   1285   AM.SymbolFlags = GA->getTargetFlags();
   1286 
   1287   if (N.getValueType() == MVT::i32) {
   1288     AM.Scale = 1;
   1289     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
   1290   } else {
   1291     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
   1292   }
   1293 
   1294   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1295   return true;
   1296 }
   1297 
   1298 
   1299 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
   1300                                   SDValue &Base, SDValue &Scale,
   1301                                   SDValue &Index, SDValue &Disp,
   1302                                   SDValue &Segment) {
   1303   if (!ISD::isNON_EXTLoad(N.getNode()) ||
   1304       !IsProfitableToFold(N, P, P) ||
   1305       !IsLegalToFold(N, P, P, OptLevel))
   1306     return false;
   1307 
   1308   return SelectAddr(N.getNode(),
   1309                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
   1310 }
   1311 
   1312 /// getGlobalBaseReg - Return an SDNode that returns the value of
   1313 /// the global base register. Output instructions required to
   1314 /// initialize the global base register, if necessary.
   1315 ///
   1316 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
   1317   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
   1318   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
   1319 }
   1320 
   1321 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   1322   SDValue Chain = Node->getOperand(0);
   1323   SDValue In1 = Node->getOperand(1);
   1324   SDValue In2L = Node->getOperand(2);
   1325   SDValue In2H = Node->getOperand(3);
   1326   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1327   if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1328     return NULL;
   1329   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1330   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1331   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
   1332   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   1333                                            MVT::i32, MVT::i32, MVT::Other, Ops,
   1334                                            array_lengthof(Ops));
   1335   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   1336   return ResNode;
   1337 }
   1338 
   1339 // FIXME: Figure out some way to unify this with the 'or' and other code
   1340 // below.
   1341 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
   1342   if (Node->hasAnyUseOfValue(0))
   1343     return 0;
   1344 
   1345   // Optimize common patterns for __sync_add_and_fetch and
   1346   // __sync_sub_and_fetch where the result is not used. This allows us
   1347   // to use "lock" version of add, sub, inc, dec instructions.
   1348   // FIXME: Do not use special instructions but instead add the "lock"
   1349   // prefix to the target node somehow. The extra information will then be
   1350   // transferred to machine instruction and it denotes the prefix.
   1351   SDValue Chain = Node->getOperand(0);
   1352   SDValue Ptr = Node->getOperand(1);
   1353   SDValue Val = Node->getOperand(2);
   1354   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1355   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1356     return 0;
   1357 
   1358   bool isInc = false, isDec = false, isSub = false, isCN = false;
   1359   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
   1360   if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
   1361     isCN = true;
   1362     int64_t CNVal = CN->getSExtValue();
   1363     if (CNVal == 1)
   1364       isInc = true;
   1365     else if (CNVal == -1)
   1366       isDec = true;
   1367     else if (CNVal >= 0)
   1368       Val = CurDAG->getTargetConstant(CNVal, NVT);
   1369     else {
   1370       isSub = true;
   1371       Val = CurDAG->getTargetConstant(-CNVal, NVT);
   1372     }
   1373   } else if (Val.hasOneUse() &&
   1374              Val.getOpcode() == ISD::SUB &&
   1375              X86::isZeroNode(Val.getOperand(0))) {
   1376     isSub = true;
   1377     Val = Val.getOperand(1);
   1378   }
   1379 
   1380   DebugLoc dl = Node->getDebugLoc();
   1381   unsigned Opc = 0;
   1382   switch (NVT.getSimpleVT().SimpleTy) {
   1383   default: return 0;
   1384   case MVT::i8:
   1385     if (isInc)
   1386       Opc = X86::LOCK_INC8m;
   1387     else if (isDec)
   1388       Opc = X86::LOCK_DEC8m;
   1389     else if (isSub) {
   1390       if (isCN)
   1391         Opc = X86::LOCK_SUB8mi;
   1392       else
   1393         Opc = X86::LOCK_SUB8mr;
   1394     } else {
   1395       if (isCN)
   1396         Opc = X86::LOCK_ADD8mi;
   1397       else
   1398         Opc = X86::LOCK_ADD8mr;
   1399     }
   1400     break;
   1401   case MVT::i16:
   1402     if (isInc)
   1403       Opc = X86::LOCK_INC16m;
   1404     else if (isDec)
   1405       Opc = X86::LOCK_DEC16m;
   1406     else if (isSub) {
   1407       if (isCN) {
   1408         if (immSext8(Val.getNode()))
   1409           Opc = X86::LOCK_SUB16mi8;
   1410         else
   1411           Opc = X86::LOCK_SUB16mi;
   1412       } else
   1413         Opc = X86::LOCK_SUB16mr;
   1414     } else {
   1415       if (isCN) {
   1416         if (immSext8(Val.getNode()))
   1417           Opc = X86::LOCK_ADD16mi8;
   1418         else
   1419           Opc = X86::LOCK_ADD16mi;
   1420       } else
   1421         Opc = X86::LOCK_ADD16mr;
   1422     }
   1423     break;
   1424   case MVT::i32:
   1425     if (isInc)
   1426       Opc = X86::LOCK_INC32m;
   1427     else if (isDec)
   1428       Opc = X86::LOCK_DEC32m;
   1429     else if (isSub) {
   1430       if (isCN) {
   1431         if (immSext8(Val.getNode()))
   1432           Opc = X86::LOCK_SUB32mi8;
   1433         else
   1434           Opc = X86::LOCK_SUB32mi;
   1435       } else
   1436         Opc = X86::LOCK_SUB32mr;
   1437     } else {
   1438       if (isCN) {
   1439         if (immSext8(Val.getNode()))
   1440           Opc = X86::LOCK_ADD32mi8;
   1441         else
   1442           Opc = X86::LOCK_ADD32mi;
   1443       } else
   1444         Opc = X86::LOCK_ADD32mr;
   1445     }
   1446     break;
   1447   case MVT::i64:
   1448     if (isInc)
   1449       Opc = X86::LOCK_INC64m;
   1450     else if (isDec)
   1451       Opc = X86::LOCK_DEC64m;
   1452     else if (isSub) {
   1453       Opc = X86::LOCK_SUB64mr;
   1454       if (isCN) {
   1455         if (immSext8(Val.getNode()))
   1456           Opc = X86::LOCK_SUB64mi8;
   1457         else if (i64immSExt32(Val.getNode()))
   1458           Opc = X86::LOCK_SUB64mi32;
   1459       }
   1460     } else {
   1461       Opc = X86::LOCK_ADD64mr;
   1462       if (isCN) {
   1463         if (immSext8(Val.getNode()))
   1464           Opc = X86::LOCK_ADD64mi8;
   1465         else if (i64immSExt32(Val.getNode()))
   1466           Opc = X86::LOCK_ADD64mi32;
   1467       }
   1468     }
   1469     break;
   1470   }
   1471 
   1472   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1473                                                  dl, NVT), 0);
   1474   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1475   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1476   if (isInc || isDec) {
   1477     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
   1478     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
   1479     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1480     SDValue RetVals[] = { Undef, Ret };
   1481     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1482   } else {
   1483     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1484     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
   1485     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1486     SDValue RetVals[] = { Undef, Ret };
   1487     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1488   }
   1489 }
   1490 
   1491 enum AtomicOpc {
   1492   OR,
   1493   AND,
   1494   XOR,
   1495   AtomicOpcEnd
   1496 };
   1497 
   1498 enum AtomicSz {
   1499   ConstantI8,
   1500   I8,
   1501   SextConstantI16,
   1502   ConstantI16,
   1503   I16,
   1504   SextConstantI32,
   1505   ConstantI32,
   1506   I32,
   1507   SextConstantI64,
   1508   ConstantI64,
   1509   I64,
   1510   AtomicSzEnd
   1511 };
   1512 
   1513 static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
   1514   {
   1515     X86::LOCK_OR8mi,
   1516     X86::LOCK_OR8mr,
   1517     X86::LOCK_OR16mi8,
   1518     X86::LOCK_OR16mi,
   1519     X86::LOCK_OR16mr,
   1520     X86::LOCK_OR32mi8,
   1521     X86::LOCK_OR32mi,
   1522     X86::LOCK_OR32mr,
   1523     X86::LOCK_OR64mi8,
   1524     X86::LOCK_OR64mi32,
   1525     X86::LOCK_OR64mr
   1526   },
   1527   {
   1528     X86::LOCK_AND8mi,
   1529     X86::LOCK_AND8mr,
   1530     X86::LOCK_AND16mi8,
   1531     X86::LOCK_AND16mi,
   1532     X86::LOCK_AND16mr,
   1533     X86::LOCK_AND32mi8,
   1534     X86::LOCK_AND32mi,
   1535     X86::LOCK_AND32mr,
   1536     X86::LOCK_AND64mi8,
   1537     X86::LOCK_AND64mi32,
   1538     X86::LOCK_AND64mr
   1539   },
   1540   {
   1541     X86::LOCK_XOR8mi,
   1542     X86::LOCK_XOR8mr,
   1543     X86::LOCK_XOR16mi8,
   1544     X86::LOCK_XOR16mi,
   1545     X86::LOCK_XOR16mr,
   1546     X86::LOCK_XOR32mi8,
   1547     X86::LOCK_XOR32mi,
   1548     X86::LOCK_XOR32mr,
   1549     X86::LOCK_XOR64mi8,
   1550     X86::LOCK_XOR64mi32,
   1551     X86::LOCK_XOR64mr
   1552   }
   1553 };
   1554 
   1555 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
   1556   if (Node->hasAnyUseOfValue(0))
   1557     return 0;
   1558 
   1559   // Optimize common patterns for __sync_or_and_fetch and similar arith
   1560   // operations where the result is not used. This allows us to use the "lock"
   1561   // version of the arithmetic instruction.
   1562   // FIXME: Same as for 'add' and 'sub', try to merge those down here.
   1563   SDValue Chain = Node->getOperand(0);
   1564   SDValue Ptr = Node->getOperand(1);
   1565   SDValue Val = Node->getOperand(2);
   1566   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1567   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1568     return 0;
   1569 
   1570   // Which index into the table.
   1571   enum AtomicOpc Op;
   1572   switch (Node->getOpcode()) {
   1573     case ISD::ATOMIC_LOAD_OR:
   1574       Op = OR;
   1575       break;
   1576     case ISD::ATOMIC_LOAD_AND:
   1577       Op = AND;
   1578       break;
   1579     case ISD::ATOMIC_LOAD_XOR:
   1580       Op = XOR;
   1581       break;
   1582     default:
   1583       return 0;
   1584   }
   1585 
   1586   bool isCN = false;
   1587   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
   1588   if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
   1589     isCN = true;
   1590     Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
   1591   }
   1592 
   1593   unsigned Opc = 0;
   1594   switch (NVT.getSimpleVT().SimpleTy) {
   1595     default: return 0;
   1596     case MVT::i8:
   1597       if (isCN)
   1598         Opc = AtomicOpcTbl[Op][ConstantI8];
   1599       else
   1600         Opc = AtomicOpcTbl[Op][I8];
   1601       break;
   1602     case MVT::i16:
   1603       if (isCN) {
   1604         if (immSext8(Val.getNode()))
   1605           Opc = AtomicOpcTbl[Op][SextConstantI16];
   1606         else
   1607           Opc = AtomicOpcTbl[Op][ConstantI16];
   1608       } else
   1609         Opc = AtomicOpcTbl[Op][I16];
   1610       break;
   1611     case MVT::i32:
   1612       if (isCN) {
   1613         if (immSext8(Val.getNode()))
   1614           Opc = AtomicOpcTbl[Op][SextConstantI32];
   1615         else
   1616           Opc = AtomicOpcTbl[Op][ConstantI32];
   1617       } else
   1618         Opc = AtomicOpcTbl[Op][I32];
   1619       break;
   1620     case MVT::i64:
   1621       Opc = AtomicOpcTbl[Op][I64];
   1622       if (isCN) {
   1623         if (immSext8(Val.getNode()))
   1624           Opc = AtomicOpcTbl[Op][SextConstantI64];
   1625         else if (i64immSExt32(Val.getNode()))
   1626           Opc = AtomicOpcTbl[Op][ConstantI64];
   1627       }
   1628       break;
   1629   }
   1630 
   1631   assert(Opc != 0 && "Invalid arith lock transform!");
   1632 
   1633   DebugLoc dl = Node->getDebugLoc();
   1634   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1635                                                  dl, NVT), 0);
   1636   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1637   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1638   SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1639   SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
   1640   cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1641   SDValue RetVals[] = { Undef, Ret };
   1642   return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1643 }
   1644 
   1645 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
   1646 /// any uses which require the SF or OF bits to be accurate.
   1647 static bool HasNoSignedComparisonUses(SDNode *N) {
   1648   // Examine each user of the node.
   1649   for (SDNode::use_iterator UI = N->use_begin(),
   1650          UE = N->use_end(); UI != UE; ++UI) {
   1651     // Only examine CopyToReg uses.
   1652     if (UI->getOpcode() != ISD::CopyToReg)
   1653       return false;
   1654     // Only examine CopyToReg uses that copy to EFLAGS.
   1655     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
   1656           X86::EFLAGS)
   1657       return false;
   1658     // Examine each user of the CopyToReg use.
   1659     for (SDNode::use_iterator FlagUI = UI->use_begin(),
   1660            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
   1661       // Only examine the Flag result.
   1662       if (FlagUI.getUse().getResNo() != 1) continue;
   1663       // Anything unusual: assume conservatively.
   1664       if (!FlagUI->isMachineOpcode()) return false;
   1665       // Examine the opcode of the user.
   1666       switch (FlagUI->getMachineOpcode()) {
   1667       // These comparisons don't treat the most significant bit specially.
   1668       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
   1669       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
   1670       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
   1671       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
   1672       case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
   1673       case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
   1674       case X86::CMOVA16rr: case X86::CMOVA16rm:
   1675       case X86::CMOVA32rr: case X86::CMOVA32rm:
   1676       case X86::CMOVA64rr: case X86::CMOVA64rm:
   1677       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
   1678       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
   1679       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
   1680       case X86::CMOVB16rr: case X86::CMOVB16rm:
   1681       case X86::CMOVB32rr: case X86::CMOVB32rm:
   1682       case X86::CMOVB64rr: case X86::CMOVB64rm:
   1683       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
   1684       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
   1685       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
   1686       case X86::CMOVE16rr: case X86::CMOVE16rm:
   1687       case X86::CMOVE32rr: case X86::CMOVE32rm:
   1688       case X86::CMOVE64rr: case X86::CMOVE64rm:
   1689       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
   1690       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
   1691       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
   1692       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
   1693       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
   1694       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
   1695       case X86::CMOVP16rr: case X86::CMOVP16rm:
   1696       case X86::CMOVP32rr: case X86::CMOVP32rm:
   1697       case X86::CMOVP64rr: case X86::CMOVP64rm:
   1698         continue;
   1699       // Anything else: assume conservatively.
   1700       default: return false;
   1701       }
   1702     }
   1703   }
   1704   return true;
   1705 }
   1706 
   1707 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
   1708   EVT NVT = Node->getValueType(0);
   1709   unsigned Opc, MOpc;
   1710   unsigned Opcode = Node->getOpcode();
   1711   DebugLoc dl = Node->getDebugLoc();
   1712 
   1713   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
   1714 
   1715   if (Node->isMachineOpcode()) {
   1716     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
   1717     return NULL;   // Already selected.
   1718   }
   1719 
   1720   switch (Opcode) {
   1721   default: break;
   1722   case X86ISD::GlobalBaseReg:
   1723     return getGlobalBaseReg();
   1724 
   1725   case X86ISD::ATOMOR64_DAG:
   1726     return SelectAtomic64(Node, X86::ATOMOR6432);
   1727   case X86ISD::ATOMXOR64_DAG:
   1728     return SelectAtomic64(Node, X86::ATOMXOR6432);
   1729   case X86ISD::ATOMADD64_DAG:
   1730     return SelectAtomic64(Node, X86::ATOMADD6432);
   1731   case X86ISD::ATOMSUB64_DAG:
   1732     return SelectAtomic64(Node, X86::ATOMSUB6432);
   1733   case X86ISD::ATOMNAND64_DAG:
   1734     return SelectAtomic64(Node, X86::ATOMNAND6432);
   1735   case X86ISD::ATOMAND64_DAG:
   1736     return SelectAtomic64(Node, X86::ATOMAND6432);
   1737   case X86ISD::ATOMSWAP64_DAG:
   1738     return SelectAtomic64(Node, X86::ATOMSWAP6432);
   1739 
   1740   case ISD::ATOMIC_LOAD_ADD: {
   1741     SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
   1742     if (RetVal)
   1743       return RetVal;
   1744     break;
   1745   }
   1746   case ISD::ATOMIC_LOAD_XOR:
   1747   case ISD::ATOMIC_LOAD_AND:
   1748   case ISD::ATOMIC_LOAD_OR: {
   1749     SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
   1750     if (RetVal)
   1751       return RetVal;
   1752     break;
   1753   }
   1754   case ISD::AND:
   1755   case ISD::OR:
   1756   case ISD::XOR: {
   1757     // For operations of the form (x << C1) op C2, check if we can use a smaller
   1758     // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
   1759     SDValue N0 = Node->getOperand(0);
   1760     SDValue N1 = Node->getOperand(1);
   1761 
   1762     if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
   1763       break;
   1764 
   1765     // i8 is unshrinkable, i16 should be promoted to i32.
   1766     if (NVT != MVT::i32 && NVT != MVT::i64)
   1767       break;
   1768 
   1769     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
   1770     ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
   1771     if (!Cst || !ShlCst)
   1772       break;
   1773 
   1774     int64_t Val = Cst->getSExtValue();
   1775     uint64_t ShlVal = ShlCst->getZExtValue();
   1776 
   1777     // Make sure that we don't change the operation by removing bits.
   1778     // This only matters for OR and XOR, AND is unaffected.
   1779     if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
   1780       break;
   1781 
   1782     unsigned ShlOp, Op = 0;
   1783     EVT CstVT = NVT;
   1784 
   1785     // Check the minimum bitwidth for the new constant.
   1786     // TODO: AND32ri is the same as AND64ri32 with zext imm.
   1787     // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
   1788     // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
   1789     if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
   1790       CstVT = MVT::i8;
   1791     else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
   1792       CstVT = MVT::i32;
   1793 
   1794     // Bail if there is no smaller encoding.
   1795     if (NVT == CstVT)
   1796       break;
   1797 
   1798     switch (NVT.getSimpleVT().SimpleTy) {
   1799     default: llvm_unreachable("Unsupported VT!");
   1800     case MVT::i32:
   1801       assert(CstVT == MVT::i8);
   1802       ShlOp = X86::SHL32ri;
   1803 
   1804       switch (Opcode) {
   1805       case ISD::AND: Op = X86::AND32ri8; break;
   1806       case ISD::OR:  Op =  X86::OR32ri8; break;
   1807       case ISD::XOR: Op = X86::XOR32ri8; break;
   1808       }
   1809       break;
   1810     case MVT::i64:
   1811       assert(CstVT == MVT::i8 || CstVT == MVT::i32);
   1812       ShlOp = X86::SHL64ri;
   1813 
   1814       switch (Opcode) {
   1815       case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
   1816       case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
   1817       case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
   1818       }
   1819       break;
   1820     }
   1821 
   1822     // Emit the smaller op and the shift.
   1823     SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
   1824     SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
   1825     return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
   1826                                 getI8Imm(ShlVal));
   1827     break;
   1828   }
   1829   case X86ISD::UMUL: {
   1830     SDValue N0 = Node->getOperand(0);
   1831     SDValue N1 = Node->getOperand(1);
   1832 
   1833     unsigned LoReg;
   1834     switch (NVT.getSimpleVT().SimpleTy) {
   1835     default: llvm_unreachable("Unsupported VT!");
   1836     case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
   1837     case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
   1838     case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
   1839     case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
   1840     }
   1841 
   1842     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   1843                                           N0, SDValue()).getValue(1);
   1844 
   1845     SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
   1846     SDValue Ops[] = {N1, InFlag};
   1847     SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
   1848 
   1849     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
   1850     ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
   1851     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
   1852     return NULL;
   1853   }
   1854 
   1855   case ISD::SMUL_LOHI:
   1856   case ISD::UMUL_LOHI: {
   1857     SDValue N0 = Node->getOperand(0);
   1858     SDValue N1 = Node->getOperand(1);
   1859 
   1860     bool isSigned = Opcode == ISD::SMUL_LOHI;
   1861     if (!isSigned) {
   1862       switch (NVT.getSimpleVT().SimpleTy) {
   1863       default: llvm_unreachable("Unsupported VT!");
   1864       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
   1865       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
   1866       case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
   1867       case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
   1868       }
   1869     } else {
   1870       switch (NVT.getSimpleVT().SimpleTy) {
   1871       default: llvm_unreachable("Unsupported VT!");
   1872       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
   1873       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
   1874       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
   1875       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
   1876       }
   1877     }
   1878 
   1879     unsigned LoReg, HiReg;
   1880     switch (NVT.getSimpleVT().SimpleTy) {
   1881     default: llvm_unreachable("Unsupported VT!");
   1882     case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
   1883     case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
   1884     case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
   1885     case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
   1886     }
   1887 
   1888     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1889     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   1890     // Multiply is commmutative.
   1891     if (!foldedLoad) {
   1892       foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   1893       if (foldedLoad)
   1894         std::swap(N0, N1);
   1895     }
   1896 
   1897     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   1898                                             N0, SDValue()).getValue(1);
   1899 
   1900     if (foldedLoad) {
   1901       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   1902                         InFlag };
   1903       SDNode *CNode =
   1904         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
   1905                                array_lengthof(Ops));
   1906       InFlag = SDValue(CNode, 1);
   1907 
   1908       // Update the chain.
   1909       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   1910     } else {
   1911       SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
   1912       InFlag = SDValue(CNode, 0);
   1913     }
   1914 
   1915     // Prevent use of AH in a REX instruction by referencing AX instead.
   1916     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   1917         !SDValue(Node, 1).use_empty()) {
   1918       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1919                                               X86::AX, MVT::i16, InFlag);
   1920       InFlag = Result.getValue(2);
   1921       // Get the low part if needed. Don't use getCopyFromReg for aliasing
   1922       // registers.
   1923       if (!SDValue(Node, 0).use_empty())
   1924         ReplaceUses(SDValue(Node, 1),
   1925           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   1926 
   1927       // Shift AX down 8 bits.
   1928       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   1929                                               Result,
   1930                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
   1931       // Then truncate it down to i8.
   1932       ReplaceUses(SDValue(Node, 1),
   1933         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   1934     }
   1935     // Copy the low half of the result, if it is needed.
   1936     if (!SDValue(Node, 0).use_empty()) {
   1937       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1938                                                 LoReg, NVT, InFlag);
   1939       InFlag = Result.getValue(2);
   1940       ReplaceUses(SDValue(Node, 0), Result);
   1941       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   1942     }
   1943     // Copy the high half of the result, if it is needed.
   1944     if (!SDValue(Node, 1).use_empty()) {
   1945       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1946                                               HiReg, NVT, InFlag);
   1947       InFlag = Result.getValue(2);
   1948       ReplaceUses(SDValue(Node, 1), Result);
   1949       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   1950     }
   1951 
   1952     return NULL;
   1953   }
   1954 
   1955   case ISD::SDIVREM:
   1956   case ISD::UDIVREM: {
   1957     SDValue N0 = Node->getOperand(0);
   1958     SDValue N1 = Node->getOperand(1);
   1959 
   1960     bool isSigned = Opcode == ISD::SDIVREM;
   1961     if (!isSigned) {
   1962       switch (NVT.getSimpleVT().SimpleTy) {
   1963       default: llvm_unreachable("Unsupported VT!");
   1964       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
   1965       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
   1966       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
   1967       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
   1968       }
   1969     } else {
   1970       switch (NVT.getSimpleVT().SimpleTy) {
   1971       default: llvm_unreachable("Unsupported VT!");
   1972       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
   1973       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
   1974       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
   1975       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
   1976       }
   1977     }
   1978 
   1979     unsigned LoReg, HiReg, ClrReg;
   1980     unsigned ClrOpcode, SExtOpcode;
   1981     switch (NVT.getSimpleVT().SimpleTy) {
   1982     default: llvm_unreachable("Unsupported VT!");
   1983     case MVT::i8:
   1984       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
   1985       ClrOpcode  = 0;
   1986       SExtOpcode = X86::CBW;
   1987       break;
   1988     case MVT::i16:
   1989       LoReg = X86::AX;  HiReg = X86::DX;
   1990       ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
   1991       SExtOpcode = X86::CWD;
   1992       break;
   1993     case MVT::i32:
   1994       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
   1995       ClrOpcode  = X86::MOV32r0;
   1996       SExtOpcode = X86::CDQ;
   1997       break;
   1998     case MVT::i64:
   1999       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
   2000       ClrOpcode  = X86::MOV64r0;
   2001       SExtOpcode = X86::CQO;
   2002       break;
   2003     }
   2004 
   2005     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2006     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2007     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
   2008 
   2009     SDValue InFlag;
   2010     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
   2011       // Special case for div8, just use a move with zero extension to AX to
   2012       // clear the upper 8 bits (AH).
   2013       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
   2014       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
   2015         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
   2016         Move =
   2017           SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
   2018                                          MVT::Other, Ops,
   2019                                          array_lengthof(Ops)), 0);
   2020         Chain = Move.getValue(1);
   2021         ReplaceUses(N0.getValue(1), Chain);
   2022       } else {
   2023         Move =
   2024           SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
   2025         Chain = CurDAG->getEntryNode();
   2026       }
   2027       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
   2028       InFlag = Chain.getValue(1);
   2029     } else {
   2030       InFlag =
   2031         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
   2032                              LoReg, N0, SDValue()).getValue(1);
   2033       if (isSigned && !signBitIsZero) {
   2034         // Sign extend the low part into the high part.
   2035         InFlag =
   2036           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
   2037       } else {
   2038         // Zero out the high part, effectively zero extending the input.
   2039         SDValue ClrNode =
   2040           SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
   2041         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
   2042                                       ClrNode, InFlag).getValue(1);
   2043       }
   2044     }
   2045 
   2046     if (foldedLoad) {
   2047       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2048                         InFlag };
   2049       SDNode *CNode =
   2050         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
   2051                                array_lengthof(Ops));
   2052       InFlag = SDValue(CNode, 1);
   2053       // Update the chain.
   2054       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   2055     } else {
   2056       InFlag =
   2057         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
   2058     }
   2059 
   2060     // Prevent use of AH in a REX instruction by referencing AX instead.
   2061     // Shift it down 8 bits.
   2062     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2063         !SDValue(Node, 1).use_empty()) {
   2064       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2065                                               X86::AX, MVT::i16, InFlag);
   2066       InFlag = Result.getValue(2);
   2067 
   2068       // If we also need AL (the quotient), get it by extracting a subreg from
   2069       // Result. The fast register allocator does not like multiple CopyFromReg
   2070       // nodes using aliasing registers.
   2071       if (!SDValue(Node, 0).use_empty())
   2072         ReplaceUses(SDValue(Node, 0),
   2073           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2074 
   2075       // Shift AX right by 8 bits instead of using AH.
   2076       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2077                                          Result,
   2078                                          CurDAG->getTargetConstant(8, MVT::i8)),
   2079                        0);
   2080       ReplaceUses(SDValue(Node, 1),
   2081         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2082     }
   2083     // Copy the division (low) result, if it is needed.
   2084     if (!SDValue(Node, 0).use_empty()) {
   2085       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2086                                                 LoReg, NVT, InFlag);
   2087       InFlag = Result.getValue(2);
   2088       ReplaceUses(SDValue(Node, 0), Result);
   2089       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2090     }
   2091     // Copy the remainder (high) result, if it is needed.
   2092     if (!SDValue(Node, 1).use_empty()) {
   2093       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2094                                               HiReg, NVT, InFlag);
   2095       InFlag = Result.getValue(2);
   2096       ReplaceUses(SDValue(Node, 1), Result);
   2097       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2098     }
   2099     return NULL;
   2100   }
   2101 
   2102   case X86ISD::CMP: {
   2103     SDValue N0 = Node->getOperand(0);
   2104     SDValue N1 = Node->getOperand(1);
   2105 
   2106     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
   2107     // use a smaller encoding.
   2108     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
   2109         HasNoSignedComparisonUses(Node))
   2110       // Look past the truncate if CMP is the only use of it.
   2111       N0 = N0.getOperand(0);
   2112     if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
   2113         N0.getValueType() != MVT::i8 &&
   2114         X86::isZeroNode(N1)) {
   2115       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
   2116       if (!C) break;
   2117 
   2118       // For example, convert "testl %eax, $8" to "testb %al, $8"
   2119       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
   2120           (!(C->getZExtValue() & 0x80) ||
   2121            HasNoSignedComparisonUses(Node))) {
   2122         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
   2123         SDValue Reg = N0.getNode()->getOperand(0);
   2124 
   2125         // On x86-32, only the ABCD registers have 8-bit subregisters.
   2126         if (!Subtarget->is64Bit()) {
   2127           TargetRegisterClass *TRC = 0;
   2128           switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2129           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2130           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2131           default: llvm_unreachable("Unsupported TEST operand type!");
   2132           }
   2133           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2134           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2135                                                Reg.getValueType(), Reg, RC), 0);
   2136         }
   2137 
   2138         // Extract the l-register.
   2139         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
   2140                                                         MVT::i8, Reg);
   2141 
   2142         // Emit a testb.
   2143         return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
   2144       }
   2145 
   2146       // For example, "testl %eax, $2048" to "testb %ah, $8".
   2147       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
   2148           (!(C->getZExtValue() & 0x8000) ||
   2149            HasNoSignedComparisonUses(Node))) {
   2150         // Shift the immediate right by 8 bits.
   2151         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
   2152                                                        MVT::i8);
   2153         SDValue Reg = N0.getNode()->getOperand(0);
   2154 
   2155         // Put the value in an ABCD register.
   2156         TargetRegisterClass *TRC = 0;
   2157         switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2158         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
   2159         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2160         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2161         default: llvm_unreachable("Unsupported TEST operand type!");
   2162         }
   2163         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2164         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2165                                              Reg.getValueType(), Reg, RC), 0);
   2166 
   2167         // Extract the h-register.
   2168         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
   2169                                                         MVT::i8, Reg);
   2170 
   2171         // Emit a testb. No special NOREX tricks are needed since there's
   2172         // only one GPR operand!
   2173         return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
   2174                                       Subreg, ShiftedImm);
   2175       }
   2176 
   2177       // For example, "testl %eax, $32776" to "testw %ax, $32776".
   2178       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
   2179           N0.getValueType() != MVT::i16 &&
   2180           (!(C->getZExtValue() & 0x8000) ||
   2181            HasNoSignedComparisonUses(Node))) {
   2182         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
   2183         SDValue Reg = N0.getNode()->getOperand(0);
   2184 
   2185         // Extract the 16-bit subregister.
   2186         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
   2187                                                         MVT::i16, Reg);
   2188 
   2189         // Emit a testw.
   2190         return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
   2191       }
   2192 
   2193       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
   2194       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
   2195           N0.getValueType() == MVT::i64 &&
   2196           (!(C->getZExtValue() & 0x80000000) ||
   2197            HasNoSignedComparisonUses(Node))) {
   2198         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
   2199         SDValue Reg = N0.getNode()->getOperand(0);
   2200 
   2201         // Extract the 32-bit subregister.
   2202         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
   2203                                                         MVT::i32, Reg);
   2204 
   2205         // Emit a testl.
   2206         return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
   2207       }
   2208     }
   2209     break;
   2210   }
   2211   }
   2212 
   2213   SDNode *ResNode = SelectCode(Node);
   2214 
   2215   DEBUG(dbgs() << "=> ";
   2216         if (ResNode == NULL || ResNode == Node)
   2217           Node->dump(CurDAG);
   2218         else
   2219           ResNode->dump(CurDAG);
   2220         dbgs() << '\n');
   2221 
   2222   return ResNode;
   2223 }
   2224 
   2225 bool X86DAGToDAGISel::
   2226 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   2227                              std::vector<SDValue> &OutOps) {
   2228   SDValue Op0, Op1, Op2, Op3, Op4;
   2229   switch (ConstraintCode) {
   2230   case 'o':   // offsetable        ??
   2231   case 'v':   // not offsetable    ??
   2232   default: return true;
   2233   case 'm':   // memory
   2234     if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
   2235       return true;
   2236     break;
   2237   }
   2238 
   2239   OutOps.push_back(Op0);
   2240   OutOps.push_back(Op1);
   2241   OutOps.push_back(Op2);
   2242   OutOps.push_back(Op3);
   2243   OutOps.push_back(Op4);
   2244   return false;
   2245 }
   2246 
   2247 /// createX86ISelDag - This pass converts a legalized DAG into a
   2248 /// X86-specific DAG, ready for instruction scheduling.
   2249 ///
   2250 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
   2251                                      llvm::CodeGenOpt::Level OptLevel) {
   2252   return new X86DAGToDAGISel(TM, OptLevel);
   2253 }
   2254