1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a DAG pattern matching instruction selector for X86, 11 // converting from a legalized dag to a X86 dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "x86-isel" 16 #include "X86.h" 17 #include "X86InstrBuilder.h" 18 #include "X86MachineFunctionInfo.h" 19 #include "X86RegisterInfo.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetMachine.h" 22 #include "llvm/Instructions.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Support/CFG.h" 25 #include "llvm/Type.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SelectionDAGISel.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/Statistic.h" 41 using namespace llvm; 42 43 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 44 45 //===----------------------------------------------------------------------===// 46 // Pattern Matcher Implementation 47 //===----------------------------------------------------------------------===// 48 49 namespace { 50 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 51 /// SDValue's instead of register numbers for the leaves of the matched 52 /// tree. 53 struct X86ISelAddressMode { 54 enum { 55 RegBase, 56 FrameIndexBase 57 } BaseType; 58 59 // This is really a union, discriminated by BaseType! 60 SDValue Base_Reg; 61 int Base_FrameIndex; 62 63 unsigned Scale; 64 SDValue IndexReg; 65 int32_t Disp; 66 SDValue Segment; 67 const GlobalValue *GV; 68 const Constant *CP; 69 const BlockAddress *BlockAddr; 70 const char *ES; 71 int JT; 72 unsigned Align; // CP alignment. 73 unsigned char SymbolFlags; // X86II::MO_* 74 75 X86ISelAddressMode() 76 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 77 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 78 SymbolFlags(X86II::MO_NO_FLAG) { 79 } 80 81 bool hasSymbolicDisplacement() const { 82 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 83 } 84 85 bool hasBaseOrIndexReg() const { 86 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; 87 } 88 89 /// isRIPRelative - Return true if this addressing mode is already RIP 90 /// relative. 91 bool isRIPRelative() const { 92 if (BaseType != RegBase) return false; 93 if (RegisterSDNode *RegNode = 94 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 95 return RegNode->getReg() == X86::RIP; 96 return false; 97 } 98 99 void setBaseReg(SDValue Reg) { 100 BaseType = RegBase; 101 Base_Reg = Reg; 102 } 103 104 void dump() { 105 dbgs() << "X86ISelAddressMode " << this << '\n'; 106 dbgs() << "Base_Reg "; 107 if (Base_Reg.getNode() != 0) 108 Base_Reg.getNode()->dump(); 109 else 110 dbgs() << "nul"; 111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 112 << " Scale" << Scale << '\n' 113 << "IndexReg "; 114 if (IndexReg.getNode() != 0) 115 IndexReg.getNode()->dump(); 116 else 117 dbgs() << "nul"; 118 dbgs() << " Disp " << Disp << '\n' 119 << "GV "; 120 if (GV) 121 GV->dump(); 122 else 123 dbgs() << "nul"; 124 dbgs() << " CP "; 125 if (CP) 126 CP->dump(); 127 else 128 dbgs() << "nul"; 129 dbgs() << '\n' 130 << "ES "; 131 if (ES) 132 dbgs() << ES; 133 else 134 dbgs() << "nul"; 135 dbgs() << " JT" << JT << " Align" << Align << '\n'; 136 } 137 }; 138 } 139 140 namespace { 141 //===--------------------------------------------------------------------===// 142 /// ISel - X86 specific code to select X86 machine instructions for 143 /// SelectionDAG operations. 144 /// 145 class X86DAGToDAGISel : public SelectionDAGISel { 146 /// X86Lowering - This object fully describes how to lower LLVM code to an 147 /// X86-specific SelectionDAG. 148 const X86TargetLowering &X86Lowering; 149 150 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 151 /// make the right decision when generating code for different targets. 152 const X86Subtarget *Subtarget; 153 154 /// OptForSize - If true, selector should try to optimize for code size 155 /// instead of performance. 156 bool OptForSize; 157 158 public: 159 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 160 : SelectionDAGISel(tm, OptLevel), 161 X86Lowering(*tm.getTargetLowering()), 162 Subtarget(&tm.getSubtarget<X86Subtarget>()), 163 OptForSize(false) {} 164 165 virtual const char *getPassName() const { 166 return "X86 DAG->DAG Instruction Selection"; 167 } 168 169 virtual void EmitFunctionEntryCode(); 170 171 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; 172 173 virtual void PreprocessISelDAG(); 174 175 inline bool immSext8(SDNode *N) const { 176 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 177 } 178 179 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 180 // sign extended field. 181 inline bool i64immSExt32(SDNode *N) const { 182 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 183 return (int64_t)v == (int32_t)v; 184 } 185 186 // Include the pieces autogenerated from the target description. 187 #include "X86GenDAGISel.inc" 188 189 private: 190 SDNode *Select(SDNode *N); 191 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 192 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); 193 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT); 194 195 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 196 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 197 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 198 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 199 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 200 unsigned Depth); 201 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 202 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 203 SDValue &Scale, SDValue &Index, SDValue &Disp, 204 SDValue &Segment); 205 bool SelectLEAAddr(SDValue N, SDValue &Base, 206 SDValue &Scale, SDValue &Index, SDValue &Disp, 207 SDValue &Segment); 208 bool SelectTLSADDRAddr(SDValue N, SDValue &Base, 209 SDValue &Scale, SDValue &Index, SDValue &Disp, 210 SDValue &Segment); 211 bool SelectScalarSSELoad(SDNode *Root, SDValue N, 212 SDValue &Base, SDValue &Scale, 213 SDValue &Index, SDValue &Disp, 214 SDValue &Segment, 215 SDValue &NodeWithChain); 216 217 bool TryFoldLoad(SDNode *P, SDValue N, 218 SDValue &Base, SDValue &Scale, 219 SDValue &Index, SDValue &Disp, 220 SDValue &Segment); 221 222 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 223 /// inline asm expressions. 224 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 225 char ConstraintCode, 226 std::vector<SDValue> &OutOps); 227 228 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 229 230 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 231 SDValue &Scale, SDValue &Index, 232 SDValue &Disp, SDValue &Segment) { 233 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 234 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) : 235 AM.Base_Reg; 236 Scale = getI8Imm(AM.Scale); 237 Index = AM.IndexReg; 238 // These are 32-bit even in 64-bit mode since RIP relative offset 239 // is 32-bit. 240 if (AM.GV) 241 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), 242 MVT::i32, AM.Disp, 243 AM.SymbolFlags); 244 else if (AM.CP) 245 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 246 AM.Align, AM.Disp, AM.SymbolFlags); 247 else if (AM.ES) 248 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 249 else if (AM.JT != -1) 250 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 251 else if (AM.BlockAddr) 252 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32, 253 true, AM.SymbolFlags); 254 else 255 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 256 257 if (AM.Segment.getNode()) 258 Segment = AM.Segment; 259 else 260 Segment = CurDAG->getRegister(0, MVT::i32); 261 } 262 263 /// getI8Imm - Return a target constant with the specified value, of type 264 /// i8. 265 inline SDValue getI8Imm(unsigned Imm) { 266 return CurDAG->getTargetConstant(Imm, MVT::i8); 267 } 268 269 /// getI32Imm - Return a target constant with the specified value, of type 270 /// i32. 271 inline SDValue getI32Imm(unsigned Imm) { 272 return CurDAG->getTargetConstant(Imm, MVT::i32); 273 } 274 275 /// getGlobalBaseReg - Return an SDNode that returns the value of 276 /// the global base register. Output instructions required to 277 /// initialize the global base register, if necessary. 278 /// 279 SDNode *getGlobalBaseReg(); 280 281 /// getTargetMachine - Return a reference to the TargetMachine, casted 282 /// to the target-specific type. 283 const X86TargetMachine &getTargetMachine() { 284 return static_cast<const X86TargetMachine &>(TM); 285 } 286 287 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 288 /// to the target-specific type. 289 const X86InstrInfo *getInstrInfo() { 290 return getTargetMachine().getInstrInfo(); 291 } 292 }; 293 } 294 295 296 bool 297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 298 if (OptLevel == CodeGenOpt::None) return false; 299 300 if (!N.hasOneUse()) 301 return false; 302 303 if (N.getOpcode() != ISD::LOAD) 304 return true; 305 306 // If N is a load, do additional profitability checks. 307 if (U == Root) { 308 switch (U->getOpcode()) { 309 default: break; 310 case X86ISD::ADD: 311 case X86ISD::SUB: 312 case X86ISD::AND: 313 case X86ISD::XOR: 314 case X86ISD::OR: 315 case ISD::ADD: 316 case ISD::ADDC: 317 case ISD::ADDE: 318 case ISD::AND: 319 case ISD::OR: 320 case ISD::XOR: { 321 SDValue Op1 = U->getOperand(1); 322 323 // If the other operand is a 8-bit immediate we should fold the immediate 324 // instead. This reduces code size. 325 // e.g. 326 // movl 4(%esp), %eax 327 // addl $4, %eax 328 // vs. 329 // movl $4, %eax 330 // addl 4(%esp), %eax 331 // The former is 2 bytes shorter. In case where the increment is 1, then 332 // the saving can be 4 bytes (by using incl %eax). 333 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 334 if (Imm->getAPIntValue().isSignedIntN(8)) 335 return false; 336 337 // If the other operand is a TLS address, we should fold it instead. 338 // This produces 339 // movl %gs:0, %eax 340 // leal i@NTPOFF(%eax), %eax 341 // instead of 342 // movl $i@NTPOFF, %eax 343 // addl %gs:0, %eax 344 // if the block also has an access to a second TLS address this will save 345 // a load. 346 // FIXME: This is probably also true for non TLS addresses. 347 if (Op1.getOpcode() == X86ISD::Wrapper) { 348 SDValue Val = Op1.getOperand(0); 349 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 350 return false; 351 } 352 } 353 } 354 } 355 356 return true; 357 } 358 359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with 360 /// load's chain operand and move load below the call's chain operand. 361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 362 SDValue Call, SDValue OrigChain) { 363 SmallVector<SDValue, 8> Ops; 364 SDValue Chain = OrigChain.getOperand(0); 365 if (Chain.getNode() == Load.getNode()) 366 Ops.push_back(Load.getOperand(0)); 367 else { 368 assert(Chain.getOpcode() == ISD::TokenFactor && 369 "Unexpected chain operand"); 370 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 371 if (Chain.getOperand(i).getNode() == Load.getNode()) 372 Ops.push_back(Load.getOperand(0)); 373 else 374 Ops.push_back(Chain.getOperand(i)); 375 SDValue NewChain = 376 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), 377 MVT::Other, &Ops[0], Ops.size()); 378 Ops.clear(); 379 Ops.push_back(NewChain); 380 } 381 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) 382 Ops.push_back(OrigChain.getOperand(i)); 383 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); 384 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 385 Load.getOperand(1), Load.getOperand(2)); 386 Ops.clear(); 387 Ops.push_back(SDValue(Load.getNode(), 1)); 388 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 389 Ops.push_back(Call.getOperand(i)); 390 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size()); 391 } 392 393 /// isCalleeLoad - Return true if call address is a load and it can be 394 /// moved below CALLSEQ_START and the chains leading up to the call. 395 /// Return the CALLSEQ_START by reference as a second output. 396 /// In the case of a tail call, there isn't a callseq node between the call 397 /// chain and the load. 398 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 399 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 400 return false; 401 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 402 if (!LD || 403 LD->isVolatile() || 404 LD->getAddressingMode() != ISD::UNINDEXED || 405 LD->getExtensionType() != ISD::NON_EXTLOAD) 406 return false; 407 408 // Now let's find the callseq_start. 409 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 410 if (!Chain.hasOneUse()) 411 return false; 412 Chain = Chain.getOperand(0); 413 } 414 415 if (!Chain.getNumOperands()) 416 return false; 417 if (Chain.getOperand(0).getNode() == Callee.getNode()) 418 return true; 419 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 420 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 421 Callee.getValue(1).hasOneUse()) 422 return true; 423 return false; 424 } 425 426 void X86DAGToDAGISel::PreprocessISelDAG() { 427 // OptForSize is used in pattern predicates that isel is matching. 428 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize); 429 430 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 431 E = CurDAG->allnodes_end(); I != E; ) { 432 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 433 434 if (OptLevel != CodeGenOpt::None && 435 (N->getOpcode() == X86ISD::CALL || 436 N->getOpcode() == X86ISD::TC_RETURN)) { 437 /// Also try moving call address load from outside callseq_start to just 438 /// before the call to allow it to be folded. 439 /// 440 /// [Load chain] 441 /// ^ 442 /// | 443 /// [Load] 444 /// ^ ^ 445 /// | | 446 /// / \-- 447 /// / | 448 ///[CALLSEQ_START] | 449 /// ^ | 450 /// | | 451 /// [LOAD/C2Reg] | 452 /// | | 453 /// \ / 454 /// \ / 455 /// [CALL] 456 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 457 SDValue Chain = N->getOperand(0); 458 SDValue Load = N->getOperand(1); 459 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 460 continue; 461 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 462 ++NumLoadMoved; 463 continue; 464 } 465 466 // Lower fpround and fpextend nodes that target the FP stack to be store and 467 // load to the stack. This is a gross hack. We would like to simply mark 468 // these as being illegal, but when we do that, legalize produces these when 469 // it expands calls, then expands these in the same legalize pass. We would 470 // like dag combine to be able to hack on these between the call expansion 471 // and the node legalization. As such this pass basically does "really 472 // late" legalization of these inline with the X86 isel pass. 473 // FIXME: This should only happen when not compiled with -O0. 474 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 475 continue; 476 477 // If the source and destination are SSE registers, then this is a legal 478 // conversion that should not be lowered. 479 EVT SrcVT = N->getOperand(0).getValueType(); 480 EVT DstVT = N->getValueType(0); 481 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 482 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 483 if (SrcIsSSE && DstIsSSE) 484 continue; 485 486 if (!SrcIsSSE && !DstIsSSE) { 487 // If this is an FPStack extension, it is a noop. 488 if (N->getOpcode() == ISD::FP_EXTEND) 489 continue; 490 // If this is a value-preserving FPStack truncation, it is a noop. 491 if (N->getConstantOperandVal(1)) 492 continue; 493 } 494 495 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 496 // FPStack has extload and truncstore. SSE can fold direct loads into other 497 // operations. Based on this, decide what we want to do. 498 EVT MemVT; 499 if (N->getOpcode() == ISD::FP_ROUND) 500 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 501 else 502 MemVT = SrcIsSSE ? SrcVT : DstVT; 503 504 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 505 DebugLoc dl = N->getDebugLoc(); 506 507 // FIXME: optimize the case where the src/dest is a load or store? 508 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 509 N->getOperand(0), 510 MemTmp, MachinePointerInfo(), MemVT, 511 false, false, 0); 512 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 513 MachinePointerInfo(), 514 MemVT, false, false, 0); 515 516 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 517 // extload we created. This will cause general havok on the dag because 518 // anything below the conversion could be folded into other existing nodes. 519 // To avoid invalidating 'I', back it up to the convert node. 520 --I; 521 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 522 523 // Now that we did that, the node is dead. Increment the iterator to the 524 // next node to process, then delete N. 525 ++I; 526 CurDAG->DeleteNode(N); 527 } 528 } 529 530 531 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 532 /// the main function. 533 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 534 MachineFrameInfo *MFI) { 535 const TargetInstrInfo *TII = TM.getInstrInfo(); 536 if (Subtarget->isTargetCygMing()) { 537 unsigned CallOp = 538 Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32; 539 BuildMI(BB, DebugLoc(), 540 TII->get(CallOp)).addExternalSymbol("__main"); 541 } 542 } 543 544 void X86DAGToDAGISel::EmitFunctionEntryCode() { 545 // If this is main, emit special code for main. 546 if (const Function *Fn = MF->getFunction()) 547 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 548 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); 549 } 550 551 static bool isDispSafeForFrameIndex(int64_t Val) { 552 // On 64-bit platforms, we can run into an issue where a frame index 553 // includes a displacement that, when added to the explicit displacement, 554 // will overflow the displacement field. Assuming that the frame index 555 // displacement fits into a 31-bit integer (which is only slightly more 556 // aggressive than the current fundamental assumption that it fits into 557 // a 32-bit integer), a 31-bit disp should always be safe. 558 return isInt<31>(Val); 559 } 560 561 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, 562 X86ISelAddressMode &AM) { 563 int64_t Val = AM.Disp + Offset; 564 CodeModel::Model M = TM.getCodeModel(); 565 if (Subtarget->is64Bit()) { 566 if (!X86::isOffsetSuitableForCodeModel(Val, M, 567 AM.hasSymbolicDisplacement())) 568 return true; 569 // In addition to the checks required for a register base, check that 570 // we do not try to use an unsafe Disp with a frame index. 571 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 572 !isDispSafeForFrameIndex(Val)) 573 return true; 574 } 575 AM.Disp = Val; 576 return false; 577 578 } 579 580 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 581 SDValue Address = N->getOperand(1); 582 583 // load gs:0 -> GS segment register. 584 // load fs:0 -> FS segment register. 585 // 586 // This optimization is valid because the GNU TLS model defines that 587 // gs:0 (or fs:0 on X86-64) contains its own address. 588 // For more information see http://people.redhat.com/drepper/tls.pdf 589 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 590 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && 591 Subtarget->isTargetELF()) 592 switch (N->getPointerInfo().getAddrSpace()) { 593 case 256: 594 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 595 return false; 596 case 257: 597 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 598 return false; 599 } 600 601 return true; 602 } 603 604 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 605 /// into an addressing mode. These wrap things that will resolve down into a 606 /// symbol reference. If no match is possible, this returns true, otherwise it 607 /// returns false. 608 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 609 // If the addressing mode already has a symbol as the displacement, we can 610 // never match another symbol. 611 if (AM.hasSymbolicDisplacement()) 612 return true; 613 614 SDValue N0 = N.getOperand(0); 615 CodeModel::Model M = TM.getCodeModel(); 616 617 // Handle X86-64 rip-relative addresses. We check this before checking direct 618 // folding because RIP is preferable to non-RIP accesses. 619 if (Subtarget->is64Bit() && 620 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 621 // they cannot be folded into immediate fields. 622 // FIXME: This can be improved for kernel and other models? 623 (M == CodeModel::Small || M == CodeModel::Kernel) && 624 // Base and index reg must be 0 in order to use %rip as base and lowering 625 // must allow RIP. 626 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) { 627 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 628 X86ISelAddressMode Backup = AM; 629 AM.GV = G->getGlobal(); 630 AM.SymbolFlags = G->getTargetFlags(); 631 if (FoldOffsetIntoAddress(G->getOffset(), AM)) { 632 AM = Backup; 633 return true; 634 } 635 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 636 X86ISelAddressMode Backup = AM; 637 AM.CP = CP->getConstVal(); 638 AM.Align = CP->getAlignment(); 639 AM.SymbolFlags = CP->getTargetFlags(); 640 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { 641 AM = Backup; 642 return true; 643 } 644 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 645 AM.ES = S->getSymbol(); 646 AM.SymbolFlags = S->getTargetFlags(); 647 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 648 AM.JT = J->getIndex(); 649 AM.SymbolFlags = J->getTargetFlags(); 650 } else { 651 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 652 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 653 } 654 655 if (N.getOpcode() == X86ISD::WrapperRIP) 656 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 657 return false; 658 } 659 660 // Handle the case when globals fit in our immediate field: This is true for 661 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit 662 // mode, this results in a non-RIP-relative computation. 663 if (!Subtarget->is64Bit() || 664 ((M == CodeModel::Small || M == CodeModel::Kernel) && 665 TM.getRelocationModel() == Reloc::Static)) { 666 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 667 AM.GV = G->getGlobal(); 668 AM.Disp += G->getOffset(); 669 AM.SymbolFlags = G->getTargetFlags(); 670 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 671 AM.CP = CP->getConstVal(); 672 AM.Align = CP->getAlignment(); 673 AM.Disp += CP->getOffset(); 674 AM.SymbolFlags = CP->getTargetFlags(); 675 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 676 AM.ES = S->getSymbol(); 677 AM.SymbolFlags = S->getTargetFlags(); 678 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 679 AM.JT = J->getIndex(); 680 AM.SymbolFlags = J->getTargetFlags(); 681 } else { 682 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 683 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 684 } 685 return false; 686 } 687 688 return true; 689 } 690 691 /// MatchAddress - Add the specified node to the specified addressing mode, 692 /// returning true if it cannot be done. This just pattern matches for the 693 /// addressing mode. 694 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 695 if (MatchAddressRecursively(N, AM, 0)) 696 return true; 697 698 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 699 // a smaller encoding and avoids a scaled-index. 700 if (AM.Scale == 2 && 701 AM.BaseType == X86ISelAddressMode::RegBase && 702 AM.Base_Reg.getNode() == 0) { 703 AM.Base_Reg = AM.IndexReg; 704 AM.Scale = 1; 705 } 706 707 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 708 // because it has a smaller encoding. 709 // TODO: Which other code models can use this? 710 if (TM.getCodeModel() == CodeModel::Small && 711 Subtarget->is64Bit() && 712 AM.Scale == 1 && 713 AM.BaseType == X86ISelAddressMode::RegBase && 714 AM.Base_Reg.getNode() == 0 && 715 AM.IndexReg.getNode() == 0 && 716 AM.SymbolFlags == X86II::MO_NO_FLAG && 717 AM.hasSymbolicDisplacement()) 718 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 719 720 return false; 721 } 722 723 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 724 unsigned Depth) { 725 DebugLoc dl = N.getDebugLoc(); 726 DEBUG({ 727 dbgs() << "MatchAddress: "; 728 AM.dump(); 729 }); 730 // Limit recursion. 731 if (Depth > 5) 732 return MatchAddressBase(N, AM); 733 734 // If this is already a %rip relative address, we can only merge immediates 735 // into it. Instead of handling this in every case, we handle it here. 736 // RIP relative addressing: %rip + 32-bit displacement! 737 if (AM.isRIPRelative()) { 738 // FIXME: JumpTable and ExternalSymbol address currently don't like 739 // displacements. It isn't very important, but this should be fixed for 740 // consistency. 741 if (!AM.ES && AM.JT != -1) return true; 742 743 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 744 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) 745 return false; 746 return true; 747 } 748 749 switch (N.getOpcode()) { 750 default: break; 751 case ISD::Constant: { 752 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 753 if (!FoldOffsetIntoAddress(Val, AM)) 754 return false; 755 break; 756 } 757 758 case X86ISD::Wrapper: 759 case X86ISD::WrapperRIP: 760 if (!MatchWrapper(N, AM)) 761 return false; 762 break; 763 764 case ISD::LOAD: 765 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) 766 return false; 767 break; 768 769 case ISD::FrameIndex: 770 if (AM.BaseType == X86ISelAddressMode::RegBase && 771 AM.Base_Reg.getNode() == 0 && 772 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 773 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 774 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 775 return false; 776 } 777 break; 778 779 case ISD::SHL: 780 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 781 break; 782 783 if (ConstantSDNode 784 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 785 unsigned Val = CN->getZExtValue(); 786 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 787 // that the base operand remains free for further matching. If 788 // the base doesn't end up getting used, a post-processing step 789 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 790 if (Val == 1 || Val == 2 || Val == 3) { 791 AM.Scale = 1 << Val; 792 SDValue ShVal = N.getNode()->getOperand(0); 793 794 // Okay, we know that we have a scale by now. However, if the scaled 795 // value is an add of something and a constant, we can fold the 796 // constant into the disp field here. 797 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 798 AM.IndexReg = ShVal.getNode()->getOperand(0); 799 ConstantSDNode *AddVal = 800 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 801 uint64_t Disp = AddVal->getSExtValue() << Val; 802 if (!FoldOffsetIntoAddress(Disp, AM)) 803 return false; 804 } 805 806 AM.IndexReg = ShVal; 807 return false; 808 } 809 break; 810 } 811 812 case ISD::SMUL_LOHI: 813 case ISD::UMUL_LOHI: 814 // A mul_lohi where we need the low part can be folded as a plain multiply. 815 if (N.getResNo() != 0) break; 816 // FALL THROUGH 817 case ISD::MUL: 818 case X86ISD::MUL_IMM: 819 // X*[3,5,9] -> X+X*[2,4,8] 820 if (AM.BaseType == X86ISelAddressMode::RegBase && 821 AM.Base_Reg.getNode() == 0 && 822 AM.IndexReg.getNode() == 0) { 823 if (ConstantSDNode 824 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 825 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 826 CN->getZExtValue() == 9) { 827 AM.Scale = unsigned(CN->getZExtValue())-1; 828 829 SDValue MulVal = N.getNode()->getOperand(0); 830 SDValue Reg; 831 832 // Okay, we know that we have a scale by now. However, if the scaled 833 // value is an add of something and a constant, we can fold the 834 // constant into the disp field here. 835 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 836 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 837 Reg = MulVal.getNode()->getOperand(0); 838 ConstantSDNode *AddVal = 839 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 840 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 841 if (FoldOffsetIntoAddress(Disp, AM)) 842 Reg = N.getNode()->getOperand(0); 843 } else { 844 Reg = N.getNode()->getOperand(0); 845 } 846 847 AM.IndexReg = AM.Base_Reg = Reg; 848 return false; 849 } 850 } 851 break; 852 853 case ISD::SUB: { 854 // Given A-B, if A can be completely folded into the address and 855 // the index field with the index field unused, use -B as the index. 856 // This is a win if a has multiple parts that can be folded into 857 // the address. Also, this saves a mov if the base register has 858 // other uses, since it avoids a two-address sub instruction, however 859 // it costs an additional mov if the index register has other uses. 860 861 // Add an artificial use to this node so that we can keep track of 862 // it if it gets CSE'd with a different node. 863 HandleSDNode Handle(N); 864 865 // Test if the LHS of the sub can be folded. 866 X86ISelAddressMode Backup = AM; 867 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 868 AM = Backup; 869 break; 870 } 871 // Test if the index field is free for use. 872 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 873 AM = Backup; 874 break; 875 } 876 877 int Cost = 0; 878 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 879 // If the RHS involves a register with multiple uses, this 880 // transformation incurs an extra mov, due to the neg instruction 881 // clobbering its operand. 882 if (!RHS.getNode()->hasOneUse() || 883 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 884 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 885 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 886 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 887 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 888 ++Cost; 889 // If the base is a register with multiple uses, this 890 // transformation may save a mov. 891 if ((AM.BaseType == X86ISelAddressMode::RegBase && 892 AM.Base_Reg.getNode() && 893 !AM.Base_Reg.getNode()->hasOneUse()) || 894 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 895 --Cost; 896 // If the folded LHS was interesting, this transformation saves 897 // address arithmetic. 898 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 899 ((AM.Disp != 0) && (Backup.Disp == 0)) + 900 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 901 --Cost; 902 // If it doesn't look like it may be an overall win, don't do it. 903 if (Cost >= 0) { 904 AM = Backup; 905 break; 906 } 907 908 // Ok, the transformation is legal and appears profitable. Go for it. 909 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 910 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 911 AM.IndexReg = Neg; 912 AM.Scale = 1; 913 914 // Insert the new nodes into the topological ordering. 915 if (Zero.getNode()->getNodeId() == -1 || 916 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) { 917 CurDAG->RepositionNode(N.getNode(), Zero.getNode()); 918 Zero.getNode()->setNodeId(N.getNode()->getNodeId()); 919 } 920 if (Neg.getNode()->getNodeId() == -1 || 921 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) { 922 CurDAG->RepositionNode(N.getNode(), Neg.getNode()); 923 Neg.getNode()->setNodeId(N.getNode()->getNodeId()); 924 } 925 return false; 926 } 927 928 case ISD::ADD: { 929 // Add an artificial use to this node so that we can keep track of 930 // it if it gets CSE'd with a different node. 931 HandleSDNode Handle(N); 932 933 X86ISelAddressMode Backup = AM; 934 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 935 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 936 return false; 937 AM = Backup; 938 939 // Try again after commuting the operands. 940 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& 941 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) 942 return false; 943 AM = Backup; 944 945 // If we couldn't fold both operands into the address at the same time, 946 // see if we can just put each operand into a register and fold at least 947 // the add. 948 if (AM.BaseType == X86ISelAddressMode::RegBase && 949 !AM.Base_Reg.getNode() && 950 !AM.IndexReg.getNode()) { 951 N = Handle.getValue(); 952 AM.Base_Reg = N.getOperand(0); 953 AM.IndexReg = N.getOperand(1); 954 AM.Scale = 1; 955 return false; 956 } 957 N = Handle.getValue(); 958 break; 959 } 960 961 case ISD::OR: 962 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 963 if (CurDAG->isBaseWithConstantOffset(N)) { 964 X86ISelAddressMode Backup = AM; 965 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); 966 967 // Start with the LHS as an addr mode. 968 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 969 !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) 970 return false; 971 AM = Backup; 972 } 973 break; 974 975 case ISD::AND: { 976 // Perform some heroic transforms on an and of a constant-count shift 977 // with a constant to enable use of the scaled offset field. 978 979 SDValue Shift = N.getOperand(0); 980 if (Shift.getNumOperands() != 2) break; 981 982 // Scale must not be used already. 983 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 984 985 SDValue X = Shift.getOperand(0); 986 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1)); 987 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 988 if (!C1 || !C2) break; 989 990 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This 991 // allows us to convert the shift and and into an h-register extract and 992 // a scaled index. 993 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) { 994 unsigned ScaleLog = 8 - C1->getZExtValue(); 995 if (ScaleLog > 0 && ScaleLog < 4 && 996 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) { 997 SDValue Eight = CurDAG->getConstant(8, MVT::i8); 998 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType()); 999 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1000 X, Eight); 1001 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(), 1002 Srl, Mask); 1003 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8); 1004 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1005 And, ShlCount); 1006 1007 // Insert the new nodes into the topological ordering. 1008 if (Eight.getNode()->getNodeId() == -1 || 1009 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1010 CurDAG->RepositionNode(X.getNode(), Eight.getNode()); 1011 Eight.getNode()->setNodeId(X.getNode()->getNodeId()); 1012 } 1013 if (Mask.getNode()->getNodeId() == -1 || 1014 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1015 CurDAG->RepositionNode(X.getNode(), Mask.getNode()); 1016 Mask.getNode()->setNodeId(X.getNode()->getNodeId()); 1017 } 1018 if (Srl.getNode()->getNodeId() == -1 || 1019 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1020 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode()); 1021 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1022 } 1023 if (And.getNode()->getNodeId() == -1 || 1024 And.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1025 CurDAG->RepositionNode(N.getNode(), And.getNode()); 1026 And.getNode()->setNodeId(N.getNode()->getNodeId()); 1027 } 1028 if (ShlCount.getNode()->getNodeId() == -1 || 1029 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1030 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode()); 1031 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId()); 1032 } 1033 if (Shl.getNode()->getNodeId() == -1 || 1034 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1035 CurDAG->RepositionNode(N.getNode(), Shl.getNode()); 1036 Shl.getNode()->setNodeId(N.getNode()->getNodeId()); 1037 } 1038 CurDAG->ReplaceAllUsesWith(N, Shl); 1039 AM.IndexReg = And; 1040 AM.Scale = (1 << ScaleLog); 1041 return false; 1042 } 1043 } 1044 1045 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this 1046 // allows us to fold the shift into this addressing mode. 1047 if (Shift.getOpcode() != ISD::SHL) break; 1048 1049 // Not likely to be profitable if either the AND or SHIFT node has more 1050 // than one use (unless all uses are for address computation). Besides, 1051 // isel mechanism requires their node ids to be reused. 1052 if (!N.hasOneUse() || !Shift.hasOneUse()) 1053 break; 1054 1055 // Verify that the shift amount is something we can fold. 1056 unsigned ShiftCst = C1->getZExtValue(); 1057 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3) 1058 break; 1059 1060 // Get the new AND mask, this folds to a constant. 1061 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(), 1062 SDValue(C2, 0), SDValue(C1, 0)); 1063 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X, 1064 NewANDMask); 1065 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(), 1066 NewAND, SDValue(C1, 0)); 1067 1068 // Insert the new nodes into the topological ordering. 1069 if (C1->getNodeId() > X.getNode()->getNodeId()) { 1070 CurDAG->RepositionNode(X.getNode(), C1); 1071 C1->setNodeId(X.getNode()->getNodeId()); 1072 } 1073 if (NewANDMask.getNode()->getNodeId() == -1 || 1074 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) { 1075 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode()); 1076 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId()); 1077 } 1078 if (NewAND.getNode()->getNodeId() == -1 || 1079 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) { 1080 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode()); 1081 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId()); 1082 } 1083 if (NewSHIFT.getNode()->getNodeId() == -1 || 1084 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) { 1085 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode()); 1086 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId()); 1087 } 1088 1089 CurDAG->ReplaceAllUsesWith(N, NewSHIFT); 1090 1091 AM.Scale = 1 << ShiftCst; 1092 AM.IndexReg = NewAND; 1093 return false; 1094 } 1095 } 1096 1097 return MatchAddressBase(N, AM); 1098 } 1099 1100 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1101 /// specified addressing mode without any further recursion. 1102 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1103 // Is the base register already occupied? 1104 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1105 // If so, check to see if the scale index register is set. 1106 if (AM.IndexReg.getNode() == 0) { 1107 AM.IndexReg = N; 1108 AM.Scale = 1; 1109 return false; 1110 } 1111 1112 // Otherwise, we cannot select it. 1113 return true; 1114 } 1115 1116 // Default, generate it as a register. 1117 AM.BaseType = X86ISelAddressMode::RegBase; 1118 AM.Base_Reg = N; 1119 return false; 1120 } 1121 1122 /// SelectAddr - returns true if it is able pattern match an addressing mode. 1123 /// It returns the operands which make up the maximal addressing mode it can 1124 /// match by reference. 1125 /// 1126 /// Parent is the parent node of the addr operand that is being matched. It 1127 /// is always a load, store, atomic node, or null. It is only null when 1128 /// checking memory operands for inline asm nodes. 1129 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1130 SDValue &Scale, SDValue &Index, 1131 SDValue &Disp, SDValue &Segment) { 1132 X86ISelAddressMode AM; 1133 1134 if (Parent && 1135 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1136 // that are not a MemSDNode, and thus don't have proper addrspace info. 1137 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1138 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1139 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme 1140 unsigned AddrSpace = 1141 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1142 // AddrSpace 256 -> GS, 257 -> FS. 1143 if (AddrSpace == 256) 1144 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1145 if (AddrSpace == 257) 1146 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1147 } 1148 1149 if (MatchAddress(N, AM)) 1150 return false; 1151 1152 EVT VT = N.getValueType(); 1153 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1154 if (!AM.Base_Reg.getNode()) 1155 AM.Base_Reg = CurDAG->getRegister(0, VT); 1156 } 1157 1158 if (!AM.IndexReg.getNode()) 1159 AM.IndexReg = CurDAG->getRegister(0, VT); 1160 1161 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1162 return true; 1163 } 1164 1165 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1166 /// match a load whose top elements are either undef or zeros. The load flavor 1167 /// is derived from the type of N, which is either v4f32 or v2f64. 1168 /// 1169 /// We also return: 1170 /// PatternChainNode: this is the matched node that has a chain input and 1171 /// output. 1172 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, 1173 SDValue N, SDValue &Base, 1174 SDValue &Scale, SDValue &Index, 1175 SDValue &Disp, SDValue &Segment, 1176 SDValue &PatternNodeWithChain) { 1177 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1178 PatternNodeWithChain = N.getOperand(0); 1179 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1180 PatternNodeWithChain.hasOneUse() && 1181 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1182 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1183 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1184 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1185 return false; 1186 return true; 1187 } 1188 } 1189 1190 // Also handle the case where we explicitly require zeros in the top 1191 // elements. This is a vector shuffle from the zero vector. 1192 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1193 // Check to see if the top elements are all zeros (or bitcast of zeros). 1194 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1195 N.getOperand(0).getNode()->hasOneUse() && 1196 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1197 N.getOperand(0).getOperand(0).hasOneUse() && 1198 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1199 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1200 // Okay, this is a zero extending load. Fold it. 1201 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1202 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1203 return false; 1204 PatternNodeWithChain = SDValue(LD, 0); 1205 return true; 1206 } 1207 return false; 1208 } 1209 1210 1211 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1212 /// mode it matches can be cost effectively emitted as an LEA instruction. 1213 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, 1214 SDValue &Base, SDValue &Scale, 1215 SDValue &Index, SDValue &Disp, 1216 SDValue &Segment) { 1217 X86ISelAddressMode AM; 1218 1219 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1220 // segments. 1221 SDValue Copy = AM.Segment; 1222 SDValue T = CurDAG->getRegister(0, MVT::i32); 1223 AM.Segment = T; 1224 if (MatchAddress(N, AM)) 1225 return false; 1226 assert (T == AM.Segment); 1227 AM.Segment = Copy; 1228 1229 EVT VT = N.getValueType(); 1230 unsigned Complexity = 0; 1231 if (AM.BaseType == X86ISelAddressMode::RegBase) 1232 if (AM.Base_Reg.getNode()) 1233 Complexity = 1; 1234 else 1235 AM.Base_Reg = CurDAG->getRegister(0, VT); 1236 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1237 Complexity = 4; 1238 1239 if (AM.IndexReg.getNode()) 1240 Complexity++; 1241 else 1242 AM.IndexReg = CurDAG->getRegister(0, VT); 1243 1244 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1245 // a simple shift. 1246 if (AM.Scale > 1) 1247 Complexity++; 1248 1249 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1250 // to a LEA. This is determined with some expermentation but is by no means 1251 // optimal (especially for code size consideration). LEA is nice because of 1252 // its three-address nature. Tweak the cost function again when we can run 1253 // convertToThreeAddress() at register allocation time. 1254 if (AM.hasSymbolicDisplacement()) { 1255 // For X86-64, we should always use lea to materialize RIP relative 1256 // addresses. 1257 if (Subtarget->is64Bit()) 1258 Complexity = 4; 1259 else 1260 Complexity += 2; 1261 } 1262 1263 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1264 Complexity++; 1265 1266 // If it isn't worth using an LEA, reject it. 1267 if (Complexity <= 2) 1268 return false; 1269 1270 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1271 return true; 1272 } 1273 1274 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1275 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, 1276 SDValue &Scale, SDValue &Index, 1277 SDValue &Disp, SDValue &Segment) { 1278 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1279 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1280 1281 X86ISelAddressMode AM; 1282 AM.GV = GA->getGlobal(); 1283 AM.Disp += GA->getOffset(); 1284 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1285 AM.SymbolFlags = GA->getTargetFlags(); 1286 1287 if (N.getValueType() == MVT::i32) { 1288 AM.Scale = 1; 1289 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1290 } else { 1291 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1292 } 1293 1294 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1295 return true; 1296 } 1297 1298 1299 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, 1300 SDValue &Base, SDValue &Scale, 1301 SDValue &Index, SDValue &Disp, 1302 SDValue &Segment) { 1303 if (!ISD::isNON_EXTLoad(N.getNode()) || 1304 !IsProfitableToFold(N, P, P) || 1305 !IsLegalToFold(N, P, P, OptLevel)) 1306 return false; 1307 1308 return SelectAddr(N.getNode(), 1309 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1310 } 1311 1312 /// getGlobalBaseReg - Return an SDNode that returns the value of 1313 /// the global base register. Output instructions required to 1314 /// initialize the global base register, if necessary. 1315 /// 1316 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1317 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1318 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1319 } 1320 1321 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1322 SDValue Chain = Node->getOperand(0); 1323 SDValue In1 = Node->getOperand(1); 1324 SDValue In2L = Node->getOperand(2); 1325 SDValue In2H = Node->getOperand(3); 1326 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1327 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1328 return NULL; 1329 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1330 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1331 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1332 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1333 MVT::i32, MVT::i32, MVT::Other, Ops, 1334 array_lengthof(Ops)); 1335 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1336 return ResNode; 1337 } 1338 1339 // FIXME: Figure out some way to unify this with the 'or' and other code 1340 // below. 1341 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { 1342 if (Node->hasAnyUseOfValue(0)) 1343 return 0; 1344 1345 // Optimize common patterns for __sync_add_and_fetch and 1346 // __sync_sub_and_fetch where the result is not used. This allows us 1347 // to use "lock" version of add, sub, inc, dec instructions. 1348 // FIXME: Do not use special instructions but instead add the "lock" 1349 // prefix to the target node somehow. The extra information will then be 1350 // transferred to machine instruction and it denotes the prefix. 1351 SDValue Chain = Node->getOperand(0); 1352 SDValue Ptr = Node->getOperand(1); 1353 SDValue Val = Node->getOperand(2); 1354 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1355 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1356 return 0; 1357 1358 bool isInc = false, isDec = false, isSub = false, isCN = false; 1359 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1360 if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) { 1361 isCN = true; 1362 int64_t CNVal = CN->getSExtValue(); 1363 if (CNVal == 1) 1364 isInc = true; 1365 else if (CNVal == -1) 1366 isDec = true; 1367 else if (CNVal >= 0) 1368 Val = CurDAG->getTargetConstant(CNVal, NVT); 1369 else { 1370 isSub = true; 1371 Val = CurDAG->getTargetConstant(-CNVal, NVT); 1372 } 1373 } else if (Val.hasOneUse() && 1374 Val.getOpcode() == ISD::SUB && 1375 X86::isZeroNode(Val.getOperand(0))) { 1376 isSub = true; 1377 Val = Val.getOperand(1); 1378 } 1379 1380 DebugLoc dl = Node->getDebugLoc(); 1381 unsigned Opc = 0; 1382 switch (NVT.getSimpleVT().SimpleTy) { 1383 default: return 0; 1384 case MVT::i8: 1385 if (isInc) 1386 Opc = X86::LOCK_INC8m; 1387 else if (isDec) 1388 Opc = X86::LOCK_DEC8m; 1389 else if (isSub) { 1390 if (isCN) 1391 Opc = X86::LOCK_SUB8mi; 1392 else 1393 Opc = X86::LOCK_SUB8mr; 1394 } else { 1395 if (isCN) 1396 Opc = X86::LOCK_ADD8mi; 1397 else 1398 Opc = X86::LOCK_ADD8mr; 1399 } 1400 break; 1401 case MVT::i16: 1402 if (isInc) 1403 Opc = X86::LOCK_INC16m; 1404 else if (isDec) 1405 Opc = X86::LOCK_DEC16m; 1406 else if (isSub) { 1407 if (isCN) { 1408 if (immSext8(Val.getNode())) 1409 Opc = X86::LOCK_SUB16mi8; 1410 else 1411 Opc = X86::LOCK_SUB16mi; 1412 } else 1413 Opc = X86::LOCK_SUB16mr; 1414 } else { 1415 if (isCN) { 1416 if (immSext8(Val.getNode())) 1417 Opc = X86::LOCK_ADD16mi8; 1418 else 1419 Opc = X86::LOCK_ADD16mi; 1420 } else 1421 Opc = X86::LOCK_ADD16mr; 1422 } 1423 break; 1424 case MVT::i32: 1425 if (isInc) 1426 Opc = X86::LOCK_INC32m; 1427 else if (isDec) 1428 Opc = X86::LOCK_DEC32m; 1429 else if (isSub) { 1430 if (isCN) { 1431 if (immSext8(Val.getNode())) 1432 Opc = X86::LOCK_SUB32mi8; 1433 else 1434 Opc = X86::LOCK_SUB32mi; 1435 } else 1436 Opc = X86::LOCK_SUB32mr; 1437 } else { 1438 if (isCN) { 1439 if (immSext8(Val.getNode())) 1440 Opc = X86::LOCK_ADD32mi8; 1441 else 1442 Opc = X86::LOCK_ADD32mi; 1443 } else 1444 Opc = X86::LOCK_ADD32mr; 1445 } 1446 break; 1447 case MVT::i64: 1448 if (isInc) 1449 Opc = X86::LOCK_INC64m; 1450 else if (isDec) 1451 Opc = X86::LOCK_DEC64m; 1452 else if (isSub) { 1453 Opc = X86::LOCK_SUB64mr; 1454 if (isCN) { 1455 if (immSext8(Val.getNode())) 1456 Opc = X86::LOCK_SUB64mi8; 1457 else if (i64immSExt32(Val.getNode())) 1458 Opc = X86::LOCK_SUB64mi32; 1459 } 1460 } else { 1461 Opc = X86::LOCK_ADD64mr; 1462 if (isCN) { 1463 if (immSext8(Val.getNode())) 1464 Opc = X86::LOCK_ADD64mi8; 1465 else if (i64immSExt32(Val.getNode())) 1466 Opc = X86::LOCK_ADD64mi32; 1467 } 1468 } 1469 break; 1470 } 1471 1472 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1473 dl, NVT), 0); 1474 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1475 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1476 if (isInc || isDec) { 1477 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1478 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0); 1479 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1480 SDValue RetVals[] = { Undef, Ret }; 1481 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1482 } else { 1483 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1484 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1485 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1486 SDValue RetVals[] = { Undef, Ret }; 1487 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1488 } 1489 } 1490 1491 enum AtomicOpc { 1492 OR, 1493 AND, 1494 XOR, 1495 AtomicOpcEnd 1496 }; 1497 1498 enum AtomicSz { 1499 ConstantI8, 1500 I8, 1501 SextConstantI16, 1502 ConstantI16, 1503 I16, 1504 SextConstantI32, 1505 ConstantI32, 1506 I32, 1507 SextConstantI64, 1508 ConstantI64, 1509 I64, 1510 AtomicSzEnd 1511 }; 1512 1513 static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { 1514 { 1515 X86::LOCK_OR8mi, 1516 X86::LOCK_OR8mr, 1517 X86::LOCK_OR16mi8, 1518 X86::LOCK_OR16mi, 1519 X86::LOCK_OR16mr, 1520 X86::LOCK_OR32mi8, 1521 X86::LOCK_OR32mi, 1522 X86::LOCK_OR32mr, 1523 X86::LOCK_OR64mi8, 1524 X86::LOCK_OR64mi32, 1525 X86::LOCK_OR64mr 1526 }, 1527 { 1528 X86::LOCK_AND8mi, 1529 X86::LOCK_AND8mr, 1530 X86::LOCK_AND16mi8, 1531 X86::LOCK_AND16mi, 1532 X86::LOCK_AND16mr, 1533 X86::LOCK_AND32mi8, 1534 X86::LOCK_AND32mi, 1535 X86::LOCK_AND32mr, 1536 X86::LOCK_AND64mi8, 1537 X86::LOCK_AND64mi32, 1538 X86::LOCK_AND64mr 1539 }, 1540 { 1541 X86::LOCK_XOR8mi, 1542 X86::LOCK_XOR8mr, 1543 X86::LOCK_XOR16mi8, 1544 X86::LOCK_XOR16mi, 1545 X86::LOCK_XOR16mr, 1546 X86::LOCK_XOR32mi8, 1547 X86::LOCK_XOR32mi, 1548 X86::LOCK_XOR32mr, 1549 X86::LOCK_XOR64mi8, 1550 X86::LOCK_XOR64mi32, 1551 X86::LOCK_XOR64mr 1552 } 1553 }; 1554 1555 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) { 1556 if (Node->hasAnyUseOfValue(0)) 1557 return 0; 1558 1559 // Optimize common patterns for __sync_or_and_fetch and similar arith 1560 // operations where the result is not used. This allows us to use the "lock" 1561 // version of the arithmetic instruction. 1562 // FIXME: Same as for 'add' and 'sub', try to merge those down here. 1563 SDValue Chain = Node->getOperand(0); 1564 SDValue Ptr = Node->getOperand(1); 1565 SDValue Val = Node->getOperand(2); 1566 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1567 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1568 return 0; 1569 1570 // Which index into the table. 1571 enum AtomicOpc Op; 1572 switch (Node->getOpcode()) { 1573 case ISD::ATOMIC_LOAD_OR: 1574 Op = OR; 1575 break; 1576 case ISD::ATOMIC_LOAD_AND: 1577 Op = AND; 1578 break; 1579 case ISD::ATOMIC_LOAD_XOR: 1580 Op = XOR; 1581 break; 1582 default: 1583 return 0; 1584 } 1585 1586 bool isCN = false; 1587 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1588 if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) { 1589 isCN = true; 1590 Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT); 1591 } 1592 1593 unsigned Opc = 0; 1594 switch (NVT.getSimpleVT().SimpleTy) { 1595 default: return 0; 1596 case MVT::i8: 1597 if (isCN) 1598 Opc = AtomicOpcTbl[Op][ConstantI8]; 1599 else 1600 Opc = AtomicOpcTbl[Op][I8]; 1601 break; 1602 case MVT::i16: 1603 if (isCN) { 1604 if (immSext8(Val.getNode())) 1605 Opc = AtomicOpcTbl[Op][SextConstantI16]; 1606 else 1607 Opc = AtomicOpcTbl[Op][ConstantI16]; 1608 } else 1609 Opc = AtomicOpcTbl[Op][I16]; 1610 break; 1611 case MVT::i32: 1612 if (isCN) { 1613 if (immSext8(Val.getNode())) 1614 Opc = AtomicOpcTbl[Op][SextConstantI32]; 1615 else 1616 Opc = AtomicOpcTbl[Op][ConstantI32]; 1617 } else 1618 Opc = AtomicOpcTbl[Op][I32]; 1619 break; 1620 case MVT::i64: 1621 Opc = AtomicOpcTbl[Op][I64]; 1622 if (isCN) { 1623 if (immSext8(Val.getNode())) 1624 Opc = AtomicOpcTbl[Op][SextConstantI64]; 1625 else if (i64immSExt32(Val.getNode())) 1626 Opc = AtomicOpcTbl[Op][ConstantI64]; 1627 } 1628 break; 1629 } 1630 1631 assert(Opc != 0 && "Invalid arith lock transform!"); 1632 1633 DebugLoc dl = Node->getDebugLoc(); 1634 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1635 dl, NVT), 0); 1636 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1637 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1638 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1639 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1640 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1641 SDValue RetVals[] = { Undef, Ret }; 1642 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1643 } 1644 1645 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1646 /// any uses which require the SF or OF bits to be accurate. 1647 static bool HasNoSignedComparisonUses(SDNode *N) { 1648 // Examine each user of the node. 1649 for (SDNode::use_iterator UI = N->use_begin(), 1650 UE = N->use_end(); UI != UE; ++UI) { 1651 // Only examine CopyToReg uses. 1652 if (UI->getOpcode() != ISD::CopyToReg) 1653 return false; 1654 // Only examine CopyToReg uses that copy to EFLAGS. 1655 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1656 X86::EFLAGS) 1657 return false; 1658 // Examine each user of the CopyToReg use. 1659 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1660 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1661 // Only examine the Flag result. 1662 if (FlagUI.getUse().getResNo() != 1) continue; 1663 // Anything unusual: assume conservatively. 1664 if (!FlagUI->isMachineOpcode()) return false; 1665 // Examine the opcode of the user. 1666 switch (FlagUI->getMachineOpcode()) { 1667 // These comparisons don't treat the most significant bit specially. 1668 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1669 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1670 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1671 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1672 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: 1673 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: 1674 case X86::CMOVA16rr: case X86::CMOVA16rm: 1675 case X86::CMOVA32rr: case X86::CMOVA32rm: 1676 case X86::CMOVA64rr: case X86::CMOVA64rm: 1677 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1678 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1679 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1680 case X86::CMOVB16rr: case X86::CMOVB16rm: 1681 case X86::CMOVB32rr: case X86::CMOVB32rm: 1682 case X86::CMOVB64rr: case X86::CMOVB64rm: 1683 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1684 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1685 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1686 case X86::CMOVE16rr: case X86::CMOVE16rm: 1687 case X86::CMOVE32rr: case X86::CMOVE32rm: 1688 case X86::CMOVE64rr: case X86::CMOVE64rm: 1689 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1690 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1691 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1692 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1693 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1694 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1695 case X86::CMOVP16rr: case X86::CMOVP16rm: 1696 case X86::CMOVP32rr: case X86::CMOVP32rm: 1697 case X86::CMOVP64rr: case X86::CMOVP64rm: 1698 continue; 1699 // Anything else: assume conservatively. 1700 default: return false; 1701 } 1702 } 1703 } 1704 return true; 1705 } 1706 1707 SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 1708 EVT NVT = Node->getValueType(0); 1709 unsigned Opc, MOpc; 1710 unsigned Opcode = Node->getOpcode(); 1711 DebugLoc dl = Node->getDebugLoc(); 1712 1713 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 1714 1715 if (Node->isMachineOpcode()) { 1716 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 1717 return NULL; // Already selected. 1718 } 1719 1720 switch (Opcode) { 1721 default: break; 1722 case X86ISD::GlobalBaseReg: 1723 return getGlobalBaseReg(); 1724 1725 case X86ISD::ATOMOR64_DAG: 1726 return SelectAtomic64(Node, X86::ATOMOR6432); 1727 case X86ISD::ATOMXOR64_DAG: 1728 return SelectAtomic64(Node, X86::ATOMXOR6432); 1729 case X86ISD::ATOMADD64_DAG: 1730 return SelectAtomic64(Node, X86::ATOMADD6432); 1731 case X86ISD::ATOMSUB64_DAG: 1732 return SelectAtomic64(Node, X86::ATOMSUB6432); 1733 case X86ISD::ATOMNAND64_DAG: 1734 return SelectAtomic64(Node, X86::ATOMNAND6432); 1735 case X86ISD::ATOMAND64_DAG: 1736 return SelectAtomic64(Node, X86::ATOMAND6432); 1737 case X86ISD::ATOMSWAP64_DAG: 1738 return SelectAtomic64(Node, X86::ATOMSWAP6432); 1739 1740 case ISD::ATOMIC_LOAD_ADD: { 1741 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); 1742 if (RetVal) 1743 return RetVal; 1744 break; 1745 } 1746 case ISD::ATOMIC_LOAD_XOR: 1747 case ISD::ATOMIC_LOAD_AND: 1748 case ISD::ATOMIC_LOAD_OR: { 1749 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); 1750 if (RetVal) 1751 return RetVal; 1752 break; 1753 } 1754 case ISD::AND: 1755 case ISD::OR: 1756 case ISD::XOR: { 1757 // For operations of the form (x << C1) op C2, check if we can use a smaller 1758 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 1759 SDValue N0 = Node->getOperand(0); 1760 SDValue N1 = Node->getOperand(1); 1761 1762 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) 1763 break; 1764 1765 // i8 is unshrinkable, i16 should be promoted to i32. 1766 if (NVT != MVT::i32 && NVT != MVT::i64) 1767 break; 1768 1769 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 1770 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 1771 if (!Cst || !ShlCst) 1772 break; 1773 1774 int64_t Val = Cst->getSExtValue(); 1775 uint64_t ShlVal = ShlCst->getZExtValue(); 1776 1777 // Make sure that we don't change the operation by removing bits. 1778 // This only matters for OR and XOR, AND is unaffected. 1779 if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val) 1780 break; 1781 1782 unsigned ShlOp, Op = 0; 1783 EVT CstVT = NVT; 1784 1785 // Check the minimum bitwidth for the new constant. 1786 // TODO: AND32ri is the same as AND64ri32 with zext imm. 1787 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr 1788 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 1789 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) 1790 CstVT = MVT::i8; 1791 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) 1792 CstVT = MVT::i32; 1793 1794 // Bail if there is no smaller encoding. 1795 if (NVT == CstVT) 1796 break; 1797 1798 switch (NVT.getSimpleVT().SimpleTy) { 1799 default: llvm_unreachable("Unsupported VT!"); 1800 case MVT::i32: 1801 assert(CstVT == MVT::i8); 1802 ShlOp = X86::SHL32ri; 1803 1804 switch (Opcode) { 1805 case ISD::AND: Op = X86::AND32ri8; break; 1806 case ISD::OR: Op = X86::OR32ri8; break; 1807 case ISD::XOR: Op = X86::XOR32ri8; break; 1808 } 1809 break; 1810 case MVT::i64: 1811 assert(CstVT == MVT::i8 || CstVT == MVT::i32); 1812 ShlOp = X86::SHL64ri; 1813 1814 switch (Opcode) { 1815 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; 1816 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; 1817 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; 1818 } 1819 break; 1820 } 1821 1822 // Emit the smaller op and the shift. 1823 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); 1824 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); 1825 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), 1826 getI8Imm(ShlVal)); 1827 break; 1828 } 1829 case X86ISD::UMUL: { 1830 SDValue N0 = Node->getOperand(0); 1831 SDValue N1 = Node->getOperand(1); 1832 1833 unsigned LoReg; 1834 switch (NVT.getSimpleVT().SimpleTy) { 1835 default: llvm_unreachable("Unsupported VT!"); 1836 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; 1837 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; 1838 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; 1839 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; 1840 } 1841 1842 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 1843 N0, SDValue()).getValue(1); 1844 1845 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 1846 SDValue Ops[] = {N1, InFlag}; 1847 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2); 1848 1849 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 1850 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 1851 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 1852 return NULL; 1853 } 1854 1855 case ISD::SMUL_LOHI: 1856 case ISD::UMUL_LOHI: { 1857 SDValue N0 = Node->getOperand(0); 1858 SDValue N1 = Node->getOperand(1); 1859 1860 bool isSigned = Opcode == ISD::SMUL_LOHI; 1861 if (!isSigned) { 1862 switch (NVT.getSimpleVT().SimpleTy) { 1863 default: llvm_unreachable("Unsupported VT!"); 1864 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 1865 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 1866 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; 1867 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; 1868 } 1869 } else { 1870 switch (NVT.getSimpleVT().SimpleTy) { 1871 default: llvm_unreachable("Unsupported VT!"); 1872 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 1873 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 1874 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 1875 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 1876 } 1877 } 1878 1879 unsigned LoReg, HiReg; 1880 switch (NVT.getSimpleVT().SimpleTy) { 1881 default: llvm_unreachable("Unsupported VT!"); 1882 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; 1883 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; 1884 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; 1885 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; 1886 } 1887 1888 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1889 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1890 // Multiply is commmutative. 1891 if (!foldedLoad) { 1892 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 1893 if (foldedLoad) 1894 std::swap(N0, N1); 1895 } 1896 1897 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 1898 N0, SDValue()).getValue(1); 1899 1900 if (foldedLoad) { 1901 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 1902 InFlag }; 1903 SDNode *CNode = 1904 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 1905 array_lengthof(Ops)); 1906 InFlag = SDValue(CNode, 1); 1907 1908 // Update the chain. 1909 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 1910 } else { 1911 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag); 1912 InFlag = SDValue(CNode, 0); 1913 } 1914 1915 // Prevent use of AH in a REX instruction by referencing AX instead. 1916 if (HiReg == X86::AH && Subtarget->is64Bit() && 1917 !SDValue(Node, 1).use_empty()) { 1918 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1919 X86::AX, MVT::i16, InFlag); 1920 InFlag = Result.getValue(2); 1921 // Get the low part if needed. Don't use getCopyFromReg for aliasing 1922 // registers. 1923 if (!SDValue(Node, 0).use_empty()) 1924 ReplaceUses(SDValue(Node, 1), 1925 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1926 1927 // Shift AX down 8 bits. 1928 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 1929 Result, 1930 CurDAG->getTargetConstant(8, MVT::i8)), 0); 1931 // Then truncate it down to i8. 1932 ReplaceUses(SDValue(Node, 1), 1933 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 1934 } 1935 // Copy the low half of the result, if it is needed. 1936 if (!SDValue(Node, 0).use_empty()) { 1937 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1938 LoReg, NVT, InFlag); 1939 InFlag = Result.getValue(2); 1940 ReplaceUses(SDValue(Node, 0), Result); 1941 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1942 } 1943 // Copy the high half of the result, if it is needed. 1944 if (!SDValue(Node, 1).use_empty()) { 1945 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 1946 HiReg, NVT, InFlag); 1947 InFlag = Result.getValue(2); 1948 ReplaceUses(SDValue(Node, 1), Result); 1949 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 1950 } 1951 1952 return NULL; 1953 } 1954 1955 case ISD::SDIVREM: 1956 case ISD::UDIVREM: { 1957 SDValue N0 = Node->getOperand(0); 1958 SDValue N1 = Node->getOperand(1); 1959 1960 bool isSigned = Opcode == ISD::SDIVREM; 1961 if (!isSigned) { 1962 switch (NVT.getSimpleVT().SimpleTy) { 1963 default: llvm_unreachable("Unsupported VT!"); 1964 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 1965 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 1966 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 1967 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 1968 } 1969 } else { 1970 switch (NVT.getSimpleVT().SimpleTy) { 1971 default: llvm_unreachable("Unsupported VT!"); 1972 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 1973 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 1974 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 1975 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 1976 } 1977 } 1978 1979 unsigned LoReg, HiReg, ClrReg; 1980 unsigned ClrOpcode, SExtOpcode; 1981 switch (NVT.getSimpleVT().SimpleTy) { 1982 default: llvm_unreachable("Unsupported VT!"); 1983 case MVT::i8: 1984 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 1985 ClrOpcode = 0; 1986 SExtOpcode = X86::CBW; 1987 break; 1988 case MVT::i16: 1989 LoReg = X86::AX; HiReg = X86::DX; 1990 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX; 1991 SExtOpcode = X86::CWD; 1992 break; 1993 case MVT::i32: 1994 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 1995 ClrOpcode = X86::MOV32r0; 1996 SExtOpcode = X86::CDQ; 1997 break; 1998 case MVT::i64: 1999 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 2000 ClrOpcode = X86::MOV64r0; 2001 SExtOpcode = X86::CQO; 2002 break; 2003 } 2004 2005 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2006 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2007 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 2008 2009 SDValue InFlag; 2010 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 2011 // Special case for div8, just use a move with zero extension to AX to 2012 // clear the upper 8 bits (AH). 2013 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 2014 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 2015 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 2016 Move = 2017 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, 2018 MVT::Other, Ops, 2019 array_lengthof(Ops)), 0); 2020 Chain = Move.getValue(1); 2021 ReplaceUses(N0.getValue(1), Chain); 2022 } else { 2023 Move = 2024 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); 2025 Chain = CurDAG->getEntryNode(); 2026 } 2027 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); 2028 InFlag = Chain.getValue(1); 2029 } else { 2030 InFlag = 2031 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2032 LoReg, N0, SDValue()).getValue(1); 2033 if (isSigned && !signBitIsZero) { 2034 // Sign extend the low part into the high part. 2035 InFlag = 2036 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 2037 } else { 2038 // Zero out the high part, effectively zero extending the input. 2039 SDValue ClrNode = 2040 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); 2041 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 2042 ClrNode, InFlag).getValue(1); 2043 } 2044 } 2045 2046 if (foldedLoad) { 2047 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2048 InFlag }; 2049 SDNode *CNode = 2050 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 2051 array_lengthof(Ops)); 2052 InFlag = SDValue(CNode, 1); 2053 // Update the chain. 2054 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2055 } else { 2056 InFlag = 2057 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 2058 } 2059 2060 // Prevent use of AH in a REX instruction by referencing AX instead. 2061 // Shift it down 8 bits. 2062 if (HiReg == X86::AH && Subtarget->is64Bit() && 2063 !SDValue(Node, 1).use_empty()) { 2064 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2065 X86::AX, MVT::i16, InFlag); 2066 InFlag = Result.getValue(2); 2067 2068 // If we also need AL (the quotient), get it by extracting a subreg from 2069 // Result. The fast register allocator does not like multiple CopyFromReg 2070 // nodes using aliasing registers. 2071 if (!SDValue(Node, 0).use_empty()) 2072 ReplaceUses(SDValue(Node, 0), 2073 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2074 2075 // Shift AX right by 8 bits instead of using AH. 2076 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2077 Result, 2078 CurDAG->getTargetConstant(8, MVT::i8)), 2079 0); 2080 ReplaceUses(SDValue(Node, 1), 2081 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2082 } 2083 // Copy the division (low) result, if it is needed. 2084 if (!SDValue(Node, 0).use_empty()) { 2085 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2086 LoReg, NVT, InFlag); 2087 InFlag = Result.getValue(2); 2088 ReplaceUses(SDValue(Node, 0), Result); 2089 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2090 } 2091 // Copy the remainder (high) result, if it is needed. 2092 if (!SDValue(Node, 1).use_empty()) { 2093 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2094 HiReg, NVT, InFlag); 2095 InFlag = Result.getValue(2); 2096 ReplaceUses(SDValue(Node, 1), Result); 2097 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2098 } 2099 return NULL; 2100 } 2101 2102 case X86ISD::CMP: { 2103 SDValue N0 = Node->getOperand(0); 2104 SDValue N1 = Node->getOperand(1); 2105 2106 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2107 // use a smaller encoding. 2108 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 2109 HasNoSignedComparisonUses(Node)) 2110 // Look past the truncate if CMP is the only use of it. 2111 N0 = N0.getOperand(0); 2112 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 2113 N0.getValueType() != MVT::i8 && 2114 X86::isZeroNode(N1)) { 2115 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2116 if (!C) break; 2117 2118 // For example, convert "testl %eax, $8" to "testb %al, $8" 2119 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2120 (!(C->getZExtValue() & 0x80) || 2121 HasNoSignedComparisonUses(Node))) { 2122 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 2123 SDValue Reg = N0.getNode()->getOperand(0); 2124 2125 // On x86-32, only the ABCD registers have 8-bit subregisters. 2126 if (!Subtarget->is64Bit()) { 2127 TargetRegisterClass *TRC = 0; 2128 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2129 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2130 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2131 default: llvm_unreachable("Unsupported TEST operand type!"); 2132 } 2133 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2134 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2135 Reg.getValueType(), Reg, RC), 0); 2136 } 2137 2138 // Extract the l-register. 2139 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 2140 MVT::i8, Reg); 2141 2142 // Emit a testb. 2143 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); 2144 } 2145 2146 // For example, "testl %eax, $2048" to "testb %ah, $8". 2147 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2148 (!(C->getZExtValue() & 0x8000) || 2149 HasNoSignedComparisonUses(Node))) { 2150 // Shift the immediate right by 8 bits. 2151 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2152 MVT::i8); 2153 SDValue Reg = N0.getNode()->getOperand(0); 2154 2155 // Put the value in an ABCD register. 2156 TargetRegisterClass *TRC = 0; 2157 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2158 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2159 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2160 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2161 default: llvm_unreachable("Unsupported TEST operand type!"); 2162 } 2163 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2164 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2165 Reg.getValueType(), Reg, RC), 0); 2166 2167 // Extract the h-register. 2168 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 2169 MVT::i8, Reg); 2170 2171 // Emit a testb. No special NOREX tricks are needed since there's 2172 // only one GPR operand! 2173 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, 2174 Subreg, ShiftedImm); 2175 } 2176 2177 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2178 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2179 N0.getValueType() != MVT::i16 && 2180 (!(C->getZExtValue() & 0x8000) || 2181 HasNoSignedComparisonUses(Node))) { 2182 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 2183 SDValue Reg = N0.getNode()->getOperand(0); 2184 2185 // Extract the 16-bit subregister. 2186 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 2187 MVT::i16, Reg); 2188 2189 // Emit a testw. 2190 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); 2191 } 2192 2193 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2194 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2195 N0.getValueType() == MVT::i64 && 2196 (!(C->getZExtValue() & 0x80000000) || 2197 HasNoSignedComparisonUses(Node))) { 2198 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 2199 SDValue Reg = N0.getNode()->getOperand(0); 2200 2201 // Extract the 32-bit subregister. 2202 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 2203 MVT::i32, Reg); 2204 2205 // Emit a testl. 2206 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); 2207 } 2208 } 2209 break; 2210 } 2211 } 2212 2213 SDNode *ResNode = SelectCode(Node); 2214 2215 DEBUG(dbgs() << "=> "; 2216 if (ResNode == NULL || ResNode == Node) 2217 Node->dump(CurDAG); 2218 else 2219 ResNode->dump(CurDAG); 2220 dbgs() << '\n'); 2221 2222 return ResNode; 2223 } 2224 2225 bool X86DAGToDAGISel:: 2226 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2227 std::vector<SDValue> &OutOps) { 2228 SDValue Op0, Op1, Op2, Op3, Op4; 2229 switch (ConstraintCode) { 2230 case 'o': // offsetable ?? 2231 case 'v': // not offsetable ?? 2232 default: return true; 2233 case 'm': // memory 2234 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) 2235 return true; 2236 break; 2237 } 2238 2239 OutOps.push_back(Op0); 2240 OutOps.push_back(Op1); 2241 OutOps.push_back(Op2); 2242 OutOps.push_back(Op3); 2243 OutOps.push_back(Op4); 2244 return false; 2245 } 2246 2247 /// createX86ISelDag - This pass converts a legalized DAG into a 2248 /// X86-specific DAG, ready for instruction scheduling. 2249 /// 2250 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2251 llvm::CodeGenOpt::Level OptLevel) { 2252 return new X86DAGToDAGISel(TM, OptLevel); 2253 } 2254