1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMAddressingModes.h" 18 #include "ARMBaseInstrInfo.h" 19 #include "ARMCallingConv.h" 20 #include "ARMRegisterInfo.h" 21 #include "ARMTargetMachine.h" 22 #include "ARMSubtarget.h" 23 #include "ARMConstantPoolValue.h" 24 #include "llvm/CallingConv.h" 25 #include "llvm/DerivedTypes.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/IntrinsicInst.h" 29 #include "llvm/Module.h" 30 #include "llvm/Operator.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FastISel.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineConstantPool.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/GetElementPtrTypeIterator.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 using namespace llvm; 51 52 static cl::opt<bool> 53 DisableARMFastISel("disable-arm-fast-isel", 54 cl::desc("Turn off experimental ARM fast-isel support"), 55 cl::init(false), cl::Hidden); 56 57 extern cl::opt<bool> EnableARMLongCalls; 58 59 namespace { 60 61 // All possible address modes, plus some. 62 typedef struct Address { 63 enum { 64 RegBase, 65 FrameIndexBase 66 } BaseType; 67 68 union { 69 unsigned Reg; 70 int FI; 71 } Base; 72 73 int Offset; 74 75 // Innocuous defaults for our address. 76 Address() 77 : BaseType(RegBase), Offset(0) { 78 Base.Reg = 0; 79 } 80 } Address; 81 82 class ARMFastISel : public FastISel { 83 84 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 85 /// make the right decision when generating code for different targets. 86 const ARMSubtarget *Subtarget; 87 const TargetMachine &TM; 88 const TargetInstrInfo &TII; 89 const TargetLowering &TLI; 90 ARMFunctionInfo *AFI; 91 92 // Convenience variables to avoid some queries. 93 bool isThumb; 94 LLVMContext *Context; 95 96 public: 97 explicit ARMFastISel(FunctionLoweringInfo &funcInfo) 98 : FastISel(funcInfo), 99 TM(funcInfo.MF->getTarget()), 100 TII(*TM.getInstrInfo()), 101 TLI(*TM.getTargetLowering()) { 102 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 103 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 104 isThumb = AFI->isThumbFunction(); 105 Context = &funcInfo.Fn->getContext(); 106 } 107 108 // Code from FastISel.cpp. 109 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC); 111 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill); 114 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 unsigned Op1, bool Op1IsKill); 118 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill, 121 unsigned Op1, bool Op1IsKill, 122 unsigned Op2, bool Op2IsKill); 123 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 124 const TargetRegisterClass *RC, 125 unsigned Op0, bool Op0IsKill, 126 uint64_t Imm); 127 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 128 const TargetRegisterClass *RC, 129 unsigned Op0, bool Op0IsKill, 130 const ConstantFP *FPImm); 131 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 132 const TargetRegisterClass *RC, 133 unsigned Op0, bool Op0IsKill, 134 unsigned Op1, bool Op1IsKill, 135 uint64_t Imm); 136 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode, 137 const TargetRegisterClass *RC, 138 uint64_t Imm); 139 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 140 const TargetRegisterClass *RC, 141 uint64_t Imm1, uint64_t Imm2); 142 143 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT, 144 unsigned Op0, bool Op0IsKill, 145 uint32_t Idx); 146 147 // Backend specific FastISel code. 148 virtual bool TargetSelectInstruction(const Instruction *I); 149 virtual unsigned TargetMaterializeConstant(const Constant *C); 150 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 151 152 #include "ARMGenFastISel.inc" 153 154 // Instruction selection routines. 155 private: 156 bool SelectLoad(const Instruction *I); 157 bool SelectStore(const Instruction *I); 158 bool SelectBranch(const Instruction *I); 159 bool SelectCmp(const Instruction *I); 160 bool SelectFPExt(const Instruction *I); 161 bool SelectFPTrunc(const Instruction *I); 162 bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode); 163 bool SelectSIToFP(const Instruction *I); 164 bool SelectFPToSI(const Instruction *I); 165 bool SelectSDiv(const Instruction *I); 166 bool SelectSRem(const Instruction *I); 167 bool SelectCall(const Instruction *I); 168 bool SelectSelect(const Instruction *I); 169 bool SelectRet(const Instruction *I); 170 bool SelectIntCast(const Instruction *I); 171 172 // Utility routines. 173 private: 174 bool isTypeLegal(Type *Ty, MVT &VT); 175 bool isLoadTypeLegal(Type *Ty, MVT &VT); 176 bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr); 177 bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr); 178 bool ARMComputeAddress(const Value *Obj, Address &Addr); 179 void ARMSimplifyAddress(Address &Addr, EVT VT); 180 unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT); 181 unsigned ARMMaterializeInt(const Constant *C, EVT VT); 182 unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT); 183 unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg); 184 unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg); 185 unsigned ARMSelectCallOp(const GlobalValue *GV); 186 187 // Call handling routines. 188 private: 189 bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 190 unsigned &ResultReg); 191 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return); 192 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 193 SmallVectorImpl<unsigned> &ArgRegs, 194 SmallVectorImpl<MVT> &ArgVTs, 195 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 196 SmallVectorImpl<unsigned> &RegArgs, 197 CallingConv::ID CC, 198 unsigned &NumBytes); 199 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 200 const Instruction *I, CallingConv::ID CC, 201 unsigned &NumBytes); 202 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 203 204 // OptionalDef handling routines. 205 private: 206 bool isARMNEONPred(const MachineInstr *MI); 207 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 208 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 209 void AddLoadStoreOperands(EVT VT, Address &Addr, 210 const MachineInstrBuilder &MIB, 211 unsigned Flags); 212 }; 213 214 } // end anonymous namespace 215 216 #include "ARMGenCallingConv.inc" 217 218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 219 // we don't care about implicit defs here, just places we'll need to add a 220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 222 const MCInstrDesc &MCID = MI->getDesc(); 223 if (!MCID.hasOptionalDef()) 224 return false; 225 226 // Look to see if our OptionalDef is defining CPSR or CCR. 227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 228 const MachineOperand &MO = MI->getOperand(i); 229 if (!MO.isReg() || !MO.isDef()) continue; 230 if (MO.getReg() == ARM::CPSR) 231 *CPSR = true; 232 } 233 return true; 234 } 235 236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 237 const MCInstrDesc &MCID = MI->getDesc(); 238 239 // If we're a thumb2 or not NEON function we were handled via isPredicable. 240 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 241 AFI->isThumb2Function()) 242 return false; 243 244 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 245 if (MCID.OpInfo[i].isPredicate()) 246 return true; 247 248 return false; 249 } 250 251 // If the machine is predicable go ahead and add the predicate operands, if 252 // it needs default CC operands add those. 253 // TODO: If we want to support thumb1 then we'll need to deal with optional 254 // CPSR defs that need to be added before the remaining operands. See s_cc_out 255 // for descriptions why. 256 const MachineInstrBuilder & 257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 258 MachineInstr *MI = &*MIB; 259 260 // Do we use a predicate? or... 261 // Are we NEON in ARM mode and have a predicate operand? If so, I know 262 // we're not predicable but add it anyways. 263 if (TII.isPredicable(MI) || isARMNEONPred(MI)) 264 AddDefaultPred(MIB); 265 266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 267 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 268 bool CPSR = false; 269 if (DefinesOptionalPredicate(MI, &CPSR)) { 270 if (CPSR) 271 AddDefaultT1CC(MIB); 272 else 273 AddDefaultCC(MIB); 274 } 275 return MIB; 276 } 277 278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 279 const TargetRegisterClass* RC) { 280 unsigned ResultReg = createResultReg(RC); 281 const MCInstrDesc &II = TII.get(MachineInstOpcode); 282 283 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 284 return ResultReg; 285 } 286 287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 288 const TargetRegisterClass *RC, 289 unsigned Op0, bool Op0IsKill) { 290 unsigned ResultReg = createResultReg(RC); 291 const MCInstrDesc &II = TII.get(MachineInstOpcode); 292 293 if (II.getNumDefs() >= 1) 294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 295 .addReg(Op0, Op0IsKill * RegState::Kill)); 296 else { 297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 298 .addReg(Op0, Op0IsKill * RegState::Kill)); 299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 300 TII.get(TargetOpcode::COPY), ResultReg) 301 .addReg(II.ImplicitDefs[0])); 302 } 303 return ResultReg; 304 } 305 306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 307 const TargetRegisterClass *RC, 308 unsigned Op0, bool Op0IsKill, 309 unsigned Op1, bool Op1IsKill) { 310 unsigned ResultReg = createResultReg(RC); 311 const MCInstrDesc &II = TII.get(MachineInstOpcode); 312 313 if (II.getNumDefs() >= 1) 314 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 315 .addReg(Op0, Op0IsKill * RegState::Kill) 316 .addReg(Op1, Op1IsKill * RegState::Kill)); 317 else { 318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 319 .addReg(Op0, Op0IsKill * RegState::Kill) 320 .addReg(Op1, Op1IsKill * RegState::Kill)); 321 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 322 TII.get(TargetOpcode::COPY), ResultReg) 323 .addReg(II.ImplicitDefs[0])); 324 } 325 return ResultReg; 326 } 327 328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 329 const TargetRegisterClass *RC, 330 unsigned Op0, bool Op0IsKill, 331 unsigned Op1, bool Op1IsKill, 332 unsigned Op2, bool Op2IsKill) { 333 unsigned ResultReg = createResultReg(RC); 334 const MCInstrDesc &II = TII.get(MachineInstOpcode); 335 336 if (II.getNumDefs() >= 1) 337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 338 .addReg(Op0, Op0IsKill * RegState::Kill) 339 .addReg(Op1, Op1IsKill * RegState::Kill) 340 .addReg(Op2, Op2IsKill * RegState::Kill)); 341 else { 342 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 343 .addReg(Op0, Op0IsKill * RegState::Kill) 344 .addReg(Op1, Op1IsKill * RegState::Kill) 345 .addReg(Op2, Op2IsKill * RegState::Kill)); 346 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 347 TII.get(TargetOpcode::COPY), ResultReg) 348 .addReg(II.ImplicitDefs[0])); 349 } 350 return ResultReg; 351 } 352 353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 354 const TargetRegisterClass *RC, 355 unsigned Op0, bool Op0IsKill, 356 uint64_t Imm) { 357 unsigned ResultReg = createResultReg(RC); 358 const MCInstrDesc &II = TII.get(MachineInstOpcode); 359 360 if (II.getNumDefs() >= 1) 361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 362 .addReg(Op0, Op0IsKill * RegState::Kill) 363 .addImm(Imm)); 364 else { 365 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 366 .addReg(Op0, Op0IsKill * RegState::Kill) 367 .addImm(Imm)); 368 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 369 TII.get(TargetOpcode::COPY), ResultReg) 370 .addReg(II.ImplicitDefs[0])); 371 } 372 return ResultReg; 373 } 374 375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 376 const TargetRegisterClass *RC, 377 unsigned Op0, bool Op0IsKill, 378 const ConstantFP *FPImm) { 379 unsigned ResultReg = createResultReg(RC); 380 const MCInstrDesc &II = TII.get(MachineInstOpcode); 381 382 if (II.getNumDefs() >= 1) 383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 384 .addReg(Op0, Op0IsKill * RegState::Kill) 385 .addFPImm(FPImm)); 386 else { 387 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 388 .addReg(Op0, Op0IsKill * RegState::Kill) 389 .addFPImm(FPImm)); 390 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 391 TII.get(TargetOpcode::COPY), ResultReg) 392 .addReg(II.ImplicitDefs[0])); 393 } 394 return ResultReg; 395 } 396 397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 398 const TargetRegisterClass *RC, 399 unsigned Op0, bool Op0IsKill, 400 unsigned Op1, bool Op1IsKill, 401 uint64_t Imm) { 402 unsigned ResultReg = createResultReg(RC); 403 const MCInstrDesc &II = TII.get(MachineInstOpcode); 404 405 if (II.getNumDefs() >= 1) 406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 407 .addReg(Op0, Op0IsKill * RegState::Kill) 408 .addReg(Op1, Op1IsKill * RegState::Kill) 409 .addImm(Imm)); 410 else { 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 412 .addReg(Op0, Op0IsKill * RegState::Kill) 413 .addReg(Op1, Op1IsKill * RegState::Kill) 414 .addImm(Imm)); 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 416 TII.get(TargetOpcode::COPY), ResultReg) 417 .addReg(II.ImplicitDefs[0])); 418 } 419 return ResultReg; 420 } 421 422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 423 const TargetRegisterClass *RC, 424 uint64_t Imm) { 425 unsigned ResultReg = createResultReg(RC); 426 const MCInstrDesc &II = TII.get(MachineInstOpcode); 427 428 if (II.getNumDefs() >= 1) 429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 430 .addImm(Imm)); 431 else { 432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 433 .addImm(Imm)); 434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 435 TII.get(TargetOpcode::COPY), ResultReg) 436 .addReg(II.ImplicitDefs[0])); 437 } 438 return ResultReg; 439 } 440 441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 442 const TargetRegisterClass *RC, 443 uint64_t Imm1, uint64_t Imm2) { 444 unsigned ResultReg = createResultReg(RC); 445 const MCInstrDesc &II = TII.get(MachineInstOpcode); 446 447 if (II.getNumDefs() >= 1) 448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 449 .addImm(Imm1).addImm(Imm2)); 450 else { 451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 452 .addImm(Imm1).addImm(Imm2)); 453 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 454 TII.get(TargetOpcode::COPY), 455 ResultReg) 456 .addReg(II.ImplicitDefs[0])); 457 } 458 return ResultReg; 459 } 460 461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 462 unsigned Op0, bool Op0IsKill, 463 uint32_t Idx) { 464 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 465 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 466 "Cannot yet extract from physregs"); 467 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 468 DL, TII.get(TargetOpcode::COPY), ResultReg) 469 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 470 return ResultReg; 471 } 472 473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 474 // checks from the various callers. 475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) { 476 if (VT == MVT::f64) return 0; 477 478 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 480 TII.get(ARM::VMOVRS), MoveReg) 481 .addReg(SrcReg)); 482 return MoveReg; 483 } 484 485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) { 486 if (VT == MVT::i64) return 0; 487 488 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 489 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 490 TII.get(ARM::VMOVSR), MoveReg) 491 .addReg(SrcReg)); 492 return MoveReg; 493 } 494 495 // For double width floating point we need to materialize two constants 496 // (the high and the low) into integer registers then use a move to get 497 // the combined constant into an FP reg. 498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) { 499 const APFloat Val = CFP->getValueAPF(); 500 bool is64bit = VT == MVT::f64; 501 502 // This checks to see if we can use VFP3 instructions to materialize 503 // a constant, otherwise we have to go through the constant pool. 504 if (TLI.isFPImmLegal(Val, VT)) { 505 unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS; 506 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 507 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 508 DestReg) 509 .addFPImm(CFP)); 510 return DestReg; 511 } 512 513 // Require VFP2 for loading fp constants. 514 if (!Subtarget->hasVFP2()) return false; 515 516 // MachineConstantPool wants an explicit alignment. 517 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 518 if (Align == 0) { 519 // TODO: Figure out if this is correct. 520 Align = TD.getTypeAllocSize(CFP->getType()); 521 } 522 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 523 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 524 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 525 526 // The extra reg is for addrmode5. 527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 528 DestReg) 529 .addConstantPoolIndex(Idx) 530 .addReg(0)); 531 return DestReg; 532 } 533 534 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) { 535 536 // For now 32-bit only. 537 if (VT != MVT::i32) return false; 538 539 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 540 541 // If we can do this in a single instruction without a constant pool entry 542 // do so now. 543 const ConstantInt *CI = cast<ConstantInt>(C); 544 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) { 545 unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16; 546 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 547 TII.get(Opc), DestReg) 548 .addImm(CI->getSExtValue())); 549 return DestReg; 550 } 551 552 // MachineConstantPool wants an explicit alignment. 553 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 554 if (Align == 0) { 555 // TODO: Figure out if this is correct. 556 Align = TD.getTypeAllocSize(C->getType()); 557 } 558 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 559 560 if (isThumb) 561 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 562 TII.get(ARM::t2LDRpci), DestReg) 563 .addConstantPoolIndex(Idx)); 564 else 565 // The extra immediate is for addrmode2. 566 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 567 TII.get(ARM::LDRcp), DestReg) 568 .addConstantPoolIndex(Idx) 569 .addImm(0)); 570 571 return DestReg; 572 } 573 574 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) { 575 // For now 32-bit only. 576 if (VT != MVT::i32) return 0; 577 578 Reloc::Model RelocM = TM.getRelocationModel(); 579 580 // TODO: Need more magic for ARM PIC. 581 if (!isThumb && (RelocM == Reloc::PIC_)) return 0; 582 583 // MachineConstantPool wants an explicit alignment. 584 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 585 if (Align == 0) { 586 // TODO: Figure out if this is correct. 587 Align = TD.getTypeAllocSize(GV->getType()); 588 } 589 590 // Grab index. 591 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); 592 unsigned Id = AFI->createPICLabelUId(); 593 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id, 594 ARMCP::CPValue, PCAdj); 595 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 596 597 // Load value. 598 MachineInstrBuilder MIB; 599 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 600 if (isThumb) { 601 unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 602 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 603 .addConstantPoolIndex(Idx); 604 if (RelocM == Reloc::PIC_) 605 MIB.addImm(Id); 606 } else { 607 // The extra immediate is for addrmode2. 608 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 609 DestReg) 610 .addConstantPoolIndex(Idx) 611 .addImm(0); 612 } 613 AddOptionalDefs(MIB); 614 615 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) { 616 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 617 if (isThumb) 618 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::t2LDRi12), 619 NewDestReg) 620 .addReg(DestReg) 621 .addImm(0); 622 else 623 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 624 NewDestReg) 625 .addReg(DestReg) 626 .addImm(0); 627 DestReg = NewDestReg; 628 AddOptionalDefs(MIB); 629 } 630 631 return DestReg; 632 } 633 634 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 635 EVT VT = TLI.getValueType(C->getType(), true); 636 637 // Only handle simple types. 638 if (!VT.isSimple()) return 0; 639 640 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 641 return ARMMaterializeFP(CFP, VT); 642 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 643 return ARMMaterializeGV(GV, VT); 644 else if (isa<ConstantInt>(C)) 645 return ARMMaterializeInt(C, VT); 646 647 return 0; 648 } 649 650 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 651 // Don't handle dynamic allocas. 652 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 653 654 MVT VT; 655 if (!isLoadTypeLegal(AI->getType(), VT)) return false; 656 657 DenseMap<const AllocaInst*, int>::iterator SI = 658 FuncInfo.StaticAllocaMap.find(AI); 659 660 // This will get lowered later into the correct offsets and registers 661 // via rewriteXFrameIndex. 662 if (SI != FuncInfo.StaticAllocaMap.end()) { 663 TargetRegisterClass* RC = TLI.getRegClassFor(VT); 664 unsigned ResultReg = createResultReg(RC); 665 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 666 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL, 667 TII.get(Opc), ResultReg) 668 .addFrameIndex(SI->second) 669 .addImm(0)); 670 return ResultReg; 671 } 672 673 return 0; 674 } 675 676 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 677 EVT evt = TLI.getValueType(Ty, true); 678 679 // Only handle simple types. 680 if (evt == MVT::Other || !evt.isSimple()) return false; 681 VT = evt.getSimpleVT(); 682 683 // Handle all legal types, i.e. a register that will directly hold this 684 // value. 685 return TLI.isTypeLegal(VT); 686 } 687 688 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 689 if (isTypeLegal(Ty, VT)) return true; 690 691 // If this is a type than can be sign or zero-extended to a basic operation 692 // go ahead and accept it now. 693 if (VT == MVT::i8 || VT == MVT::i16) 694 return true; 695 696 return false; 697 } 698 699 // Computes the address to get to an object. 700 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 701 // Some boilerplate from the X86 FastISel. 702 const User *U = NULL; 703 unsigned Opcode = Instruction::UserOp1; 704 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 705 // Don't walk into other basic blocks unless the object is an alloca from 706 // another block, otherwise it may not have a virtual register assigned. 707 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 708 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 709 Opcode = I->getOpcode(); 710 U = I; 711 } 712 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 713 Opcode = C->getOpcode(); 714 U = C; 715 } 716 717 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 718 if (Ty->getAddressSpace() > 255) 719 // Fast instruction selection doesn't support the special 720 // address spaces. 721 return false; 722 723 switch (Opcode) { 724 default: 725 break; 726 case Instruction::BitCast: { 727 // Look through bitcasts. 728 return ARMComputeAddress(U->getOperand(0), Addr); 729 } 730 case Instruction::IntToPtr: { 731 // Look past no-op inttoptrs. 732 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 733 return ARMComputeAddress(U->getOperand(0), Addr); 734 break; 735 } 736 case Instruction::PtrToInt: { 737 // Look past no-op ptrtoints. 738 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 739 return ARMComputeAddress(U->getOperand(0), Addr); 740 break; 741 } 742 case Instruction::GetElementPtr: { 743 Address SavedAddr = Addr; 744 int TmpOffset = Addr.Offset; 745 746 // Iterate through the GEP folding the constants into offsets where 747 // we can. 748 gep_type_iterator GTI = gep_type_begin(U); 749 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 750 i != e; ++i, ++GTI) { 751 const Value *Op = *i; 752 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 753 const StructLayout *SL = TD.getStructLayout(STy); 754 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 755 TmpOffset += SL->getElementOffset(Idx); 756 } else { 757 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 758 for (;;) { 759 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 760 // Constant-offset addressing. 761 TmpOffset += CI->getSExtValue() * S; 762 break; 763 } 764 if (isa<AddOperator>(Op) && 765 (!isa<Instruction>(Op) || 766 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] 767 == FuncInfo.MBB) && 768 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { 769 // An add (in the same block) with a constant operand. Fold the 770 // constant. 771 ConstantInt *CI = 772 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 773 TmpOffset += CI->getSExtValue() * S; 774 // Iterate on the other operand. 775 Op = cast<AddOperator>(Op)->getOperand(0); 776 continue; 777 } 778 // Unsupported 779 goto unsupported_gep; 780 } 781 } 782 } 783 784 // Try to grab the base operand now. 785 Addr.Offset = TmpOffset; 786 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 787 788 // We failed, restore everything and try the other options. 789 Addr = SavedAddr; 790 791 unsupported_gep: 792 break; 793 } 794 case Instruction::Alloca: { 795 const AllocaInst *AI = cast<AllocaInst>(Obj); 796 DenseMap<const AllocaInst*, int>::iterator SI = 797 FuncInfo.StaticAllocaMap.find(AI); 798 if (SI != FuncInfo.StaticAllocaMap.end()) { 799 Addr.BaseType = Address::FrameIndexBase; 800 Addr.Base.FI = SI->second; 801 return true; 802 } 803 break; 804 } 805 } 806 807 // Materialize the global variable's address into a reg which can 808 // then be used later to load the variable. 809 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) { 810 unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType())); 811 if (Tmp == 0) return false; 812 813 Addr.Base.Reg = Tmp; 814 return true; 815 } 816 817 // Try to get this in a register if nothing else has worked. 818 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 819 return Addr.Base.Reg != 0; 820 } 821 822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) { 823 824 assert(VT.isSimple() && "Non-simple types are invalid here!"); 825 826 bool needsLowering = false; 827 switch (VT.getSimpleVT().SimpleTy) { 828 default: 829 assert(false && "Unhandled load/store type!"); 830 case MVT::i1: 831 case MVT::i8: 832 case MVT::i16: 833 case MVT::i32: 834 // Integer loads/stores handle 12-bit offsets. 835 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 836 break; 837 case MVT::f32: 838 case MVT::f64: 839 // Floating point operands handle 8-bit offsets. 840 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 841 break; 842 } 843 844 // If this is a stack pointer and the offset needs to be simplified then 845 // put the alloca address into a register, set the base type back to 846 // register and continue. This should almost never happen. 847 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 848 TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass : 849 ARM::GPRRegisterClass; 850 unsigned ResultReg = createResultReg(RC); 851 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 852 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL, 853 TII.get(Opc), ResultReg) 854 .addFrameIndex(Addr.Base.FI) 855 .addImm(0)); 856 Addr.Base.Reg = ResultReg; 857 Addr.BaseType = Address::RegBase; 858 } 859 860 // Since the offset is too large for the load/store instruction 861 // get the reg+offset into a register. 862 if (needsLowering) { 863 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 864 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 865 Addr.Offset = 0; 866 } 867 } 868 869 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr, 870 const MachineInstrBuilder &MIB, 871 unsigned Flags) { 872 // addrmode5 output depends on the selection dag addressing dividing the 873 // offset by 4 that it then later multiplies. Do this here as well. 874 if (VT.getSimpleVT().SimpleTy == MVT::f32 || 875 VT.getSimpleVT().SimpleTy == MVT::f64) 876 Addr.Offset /= 4; 877 878 // Frame base works a bit differently. Handle it separately. 879 if (Addr.BaseType == Address::FrameIndexBase) { 880 int FI = Addr.Base.FI; 881 int Offset = Addr.Offset; 882 MachineMemOperand *MMO = 883 FuncInfo.MF->getMachineMemOperand( 884 MachinePointerInfo::getFixedStack(FI, Offset), 885 Flags, 886 MFI.getObjectSize(FI), 887 MFI.getObjectAlignment(FI)); 888 // Now add the rest of the operands. 889 MIB.addFrameIndex(FI); 890 891 // ARM halfword load/stores need an additional operand. 892 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0); 893 894 MIB.addImm(Addr.Offset); 895 MIB.addMemOperand(MMO); 896 } else { 897 // Now add the rest of the operands. 898 MIB.addReg(Addr.Base.Reg); 899 900 // ARM halfword load/stores need an additional operand. 901 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0); 902 903 MIB.addImm(Addr.Offset); 904 } 905 AddOptionalDefs(MIB); 906 } 907 908 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) { 909 910 assert(VT.isSimple() && "Non-simple types are invalid here!"); 911 unsigned Opc; 912 TargetRegisterClass *RC; 913 switch (VT.getSimpleVT().SimpleTy) { 914 // This is mostly going to be Neon/vector support. 915 default: return false; 916 case MVT::i16: 917 Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH; 918 RC = ARM::GPRRegisterClass; 919 break; 920 case MVT::i8: 921 Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12; 922 RC = ARM::GPRRegisterClass; 923 break; 924 case MVT::i32: 925 Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12; 926 RC = ARM::GPRRegisterClass; 927 break; 928 case MVT::f32: 929 Opc = ARM::VLDRS; 930 RC = TLI.getRegClassFor(VT); 931 break; 932 case MVT::f64: 933 Opc = ARM::VLDRD; 934 RC = TLI.getRegClassFor(VT); 935 break; 936 } 937 // Simplify this down to something we can handle. 938 ARMSimplifyAddress(Addr, VT); 939 940 // Create the base instruction, then add the operands. 941 ResultReg = createResultReg(RC); 942 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 943 TII.get(Opc), ResultReg); 944 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad); 945 return true; 946 } 947 948 bool ARMFastISel::SelectLoad(const Instruction *I) { 949 // Verify we have a legal type before going any further. 950 MVT VT; 951 if (!isLoadTypeLegal(I->getType(), VT)) 952 return false; 953 954 // See if we can handle this address. 955 Address Addr; 956 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 957 958 unsigned ResultReg; 959 if (!ARMEmitLoad(VT, ResultReg, Addr)) return false; 960 UpdateValueMap(I, ResultReg); 961 return true; 962 } 963 964 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) { 965 unsigned StrOpc; 966 switch (VT.getSimpleVT().SimpleTy) { 967 // This is mostly going to be Neon/vector support. 968 default: return false; 969 case MVT::i1: { 970 unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass : 971 ARM::GPRRegisterClass); 972 unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri; 973 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 974 TII.get(Opc), Res) 975 .addReg(SrcReg).addImm(1)); 976 SrcReg = Res; 977 } // Fallthrough here. 978 case MVT::i8: 979 StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12; 980 break; 981 case MVT::i16: 982 StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH; 983 break; 984 case MVT::i32: 985 StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12; 986 break; 987 case MVT::f32: 988 if (!Subtarget->hasVFP2()) return false; 989 StrOpc = ARM::VSTRS; 990 break; 991 case MVT::f64: 992 if (!Subtarget->hasVFP2()) return false; 993 StrOpc = ARM::VSTRD; 994 break; 995 } 996 // Simplify this down to something we can handle. 997 ARMSimplifyAddress(Addr, VT); 998 999 // Create the base instruction, then add the operands. 1000 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1001 TII.get(StrOpc)) 1002 .addReg(SrcReg, getKillRegState(true)); 1003 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore); 1004 return true; 1005 } 1006 1007 bool ARMFastISel::SelectStore(const Instruction *I) { 1008 Value *Op0 = I->getOperand(0); 1009 unsigned SrcReg = 0; 1010 1011 // Verify we have a legal type before going any further. 1012 MVT VT; 1013 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1014 return false; 1015 1016 // Get the value to be stored into a register. 1017 SrcReg = getRegForValue(Op0); 1018 if (SrcReg == 0) return false; 1019 1020 // See if we can handle this address. 1021 Address Addr; 1022 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1023 return false; 1024 1025 if (!ARMEmitStore(VT, SrcReg, Addr)) return false; 1026 return true; 1027 } 1028 1029 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1030 switch (Pred) { 1031 // Needs two compares... 1032 case CmpInst::FCMP_ONE: 1033 case CmpInst::FCMP_UEQ: 1034 default: 1035 // AL is our "false" for now. The other two need more compares. 1036 return ARMCC::AL; 1037 case CmpInst::ICMP_EQ: 1038 case CmpInst::FCMP_OEQ: 1039 return ARMCC::EQ; 1040 case CmpInst::ICMP_SGT: 1041 case CmpInst::FCMP_OGT: 1042 return ARMCC::GT; 1043 case CmpInst::ICMP_SGE: 1044 case CmpInst::FCMP_OGE: 1045 return ARMCC::GE; 1046 case CmpInst::ICMP_UGT: 1047 case CmpInst::FCMP_UGT: 1048 return ARMCC::HI; 1049 case CmpInst::FCMP_OLT: 1050 return ARMCC::MI; 1051 case CmpInst::ICMP_ULE: 1052 case CmpInst::FCMP_OLE: 1053 return ARMCC::LS; 1054 case CmpInst::FCMP_ORD: 1055 return ARMCC::VC; 1056 case CmpInst::FCMP_UNO: 1057 return ARMCC::VS; 1058 case CmpInst::FCMP_UGE: 1059 return ARMCC::PL; 1060 case CmpInst::ICMP_SLT: 1061 case CmpInst::FCMP_ULT: 1062 return ARMCC::LT; 1063 case CmpInst::ICMP_SLE: 1064 case CmpInst::FCMP_ULE: 1065 return ARMCC::LE; 1066 case CmpInst::FCMP_UNE: 1067 case CmpInst::ICMP_NE: 1068 return ARMCC::NE; 1069 case CmpInst::ICMP_UGE: 1070 return ARMCC::HS; 1071 case CmpInst::ICMP_ULT: 1072 return ARMCC::LO; 1073 } 1074 } 1075 1076 bool ARMFastISel::SelectBranch(const Instruction *I) { 1077 const BranchInst *BI = cast<BranchInst>(I); 1078 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1079 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1080 1081 // Simple branch support. 1082 1083 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1084 // behavior. 1085 // TODO: Factor this out. 1086 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1087 MVT SourceVT; 1088 Type *Ty = CI->getOperand(0)->getType(); 1089 if (CI->hasOneUse() && (CI->getParent() == I->getParent()) 1090 && isTypeLegal(Ty, SourceVT)) { 1091 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1092 if (isFloat && !Subtarget->hasVFP2()) 1093 return false; 1094 1095 unsigned CmpOpc; 1096 switch (SourceVT.SimpleTy) { 1097 default: return false; 1098 // TODO: Verify compares. 1099 case MVT::f32: 1100 CmpOpc = ARM::VCMPES; 1101 break; 1102 case MVT::f64: 1103 CmpOpc = ARM::VCMPED; 1104 break; 1105 case MVT::i32: 1106 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr; 1107 break; 1108 } 1109 1110 // Get the compare predicate. 1111 // Try to take advantage of fallthrough opportunities. 1112 CmpInst::Predicate Predicate = CI->getPredicate(); 1113 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1114 std::swap(TBB, FBB); 1115 Predicate = CmpInst::getInversePredicate(Predicate); 1116 } 1117 1118 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1119 1120 // We may not handle every CC for now. 1121 if (ARMPred == ARMCC::AL) return false; 1122 1123 unsigned Arg1 = getRegForValue(CI->getOperand(0)); 1124 if (Arg1 == 0) return false; 1125 1126 unsigned Arg2 = getRegForValue(CI->getOperand(1)); 1127 if (Arg2 == 0) return false; 1128 1129 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1130 TII.get(CmpOpc)) 1131 .addReg(Arg1).addReg(Arg2)); 1132 1133 // For floating point we need to move the result to a comparison register 1134 // that we can then use for branches. 1135 if (isFloat) 1136 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1137 TII.get(ARM::FMSTAT))); 1138 1139 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; 1140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1141 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1142 FastEmitBranch(FBB, DL); 1143 FuncInfo.MBB->addSuccessor(TBB); 1144 return true; 1145 } 1146 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1147 MVT SourceVT; 1148 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1149 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1150 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri; 1151 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1152 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1153 TII.get(TstOpc)) 1154 .addReg(OpReg).addImm(1)); 1155 1156 unsigned CCMode = ARMCC::NE; 1157 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1158 std::swap(TBB, FBB); 1159 CCMode = ARMCC::EQ; 1160 } 1161 1162 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; 1163 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1164 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1165 1166 FastEmitBranch(FBB, DL); 1167 FuncInfo.MBB->addSuccessor(TBB); 1168 return true; 1169 } 1170 } 1171 1172 unsigned CmpReg = getRegForValue(BI->getCondition()); 1173 if (CmpReg == 0) return false; 1174 1175 // We've been divorced from our compare! Our block was split, and 1176 // now our compare lives in a predecessor block. We musn't 1177 // re-compare here, as the children of the compare aren't guaranteed 1178 // live across the block boundary (we *could* check for this). 1179 // Regardless, the compare has been done in the predecessor block, 1180 // and it left a value for us in a virtual register. Ergo, we test 1181 // the one-bit value left in the virtual register. 1182 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri; 1183 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1184 .addReg(CmpReg).addImm(1)); 1185 1186 unsigned CCMode = ARMCC::NE; 1187 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1188 std::swap(TBB, FBB); 1189 CCMode = ARMCC::EQ; 1190 } 1191 1192 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; 1193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1194 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1195 FastEmitBranch(FBB, DL); 1196 FuncInfo.MBB->addSuccessor(TBB); 1197 return true; 1198 } 1199 1200 bool ARMFastISel::SelectCmp(const Instruction *I) { 1201 const CmpInst *CI = cast<CmpInst>(I); 1202 1203 MVT VT; 1204 Type *Ty = CI->getOperand(0)->getType(); 1205 if (!isTypeLegal(Ty, VT)) 1206 return false; 1207 1208 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1209 if (isFloat && !Subtarget->hasVFP2()) 1210 return false; 1211 1212 unsigned CmpOpc; 1213 unsigned CondReg; 1214 switch (VT.SimpleTy) { 1215 default: return false; 1216 // TODO: Verify compares. 1217 case MVT::f32: 1218 CmpOpc = ARM::VCMPES; 1219 CondReg = ARM::FPSCR; 1220 break; 1221 case MVT::f64: 1222 CmpOpc = ARM::VCMPED; 1223 CondReg = ARM::FPSCR; 1224 break; 1225 case MVT::i32: 1226 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr; 1227 CondReg = ARM::CPSR; 1228 break; 1229 } 1230 1231 // Get the compare predicate. 1232 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1233 1234 // We may not handle every CC for now. 1235 if (ARMPred == ARMCC::AL) return false; 1236 1237 unsigned Arg1 = getRegForValue(CI->getOperand(0)); 1238 if (Arg1 == 0) return false; 1239 1240 unsigned Arg2 = getRegForValue(CI->getOperand(1)); 1241 if (Arg2 == 0) return false; 1242 1243 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1244 .addReg(Arg1).addReg(Arg2)); 1245 1246 // For floating point we need to move the result to a comparison register 1247 // that we can then use for branches. 1248 if (isFloat) 1249 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1250 TII.get(ARM::FMSTAT))); 1251 1252 // Now set a register based on the comparison. Explicitly set the predicates 1253 // here. 1254 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi; 1255 TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass 1256 : ARM::GPRRegisterClass; 1257 unsigned DestReg = createResultReg(RC); 1258 Constant *Zero 1259 = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1260 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1261 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1262 .addReg(ZeroReg).addImm(1) 1263 .addImm(ARMPred).addReg(CondReg); 1264 1265 UpdateValueMap(I, DestReg); 1266 return true; 1267 } 1268 1269 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1270 // Make sure we have VFP and that we're extending float to double. 1271 if (!Subtarget->hasVFP2()) return false; 1272 1273 Value *V = I->getOperand(0); 1274 if (!I->getType()->isDoubleTy() || 1275 !V->getType()->isFloatTy()) return false; 1276 1277 unsigned Op = getRegForValue(V); 1278 if (Op == 0) return false; 1279 1280 unsigned Result = createResultReg(ARM::DPRRegisterClass); 1281 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1282 TII.get(ARM::VCVTDS), Result) 1283 .addReg(Op)); 1284 UpdateValueMap(I, Result); 1285 return true; 1286 } 1287 1288 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1289 // Make sure we have VFP and that we're truncating double to float. 1290 if (!Subtarget->hasVFP2()) return false; 1291 1292 Value *V = I->getOperand(0); 1293 if (!(I->getType()->isFloatTy() && 1294 V->getType()->isDoubleTy())) return false; 1295 1296 unsigned Op = getRegForValue(V); 1297 if (Op == 0) return false; 1298 1299 unsigned Result = createResultReg(ARM::SPRRegisterClass); 1300 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1301 TII.get(ARM::VCVTSD), Result) 1302 .addReg(Op)); 1303 UpdateValueMap(I, Result); 1304 return true; 1305 } 1306 1307 bool ARMFastISel::SelectSIToFP(const Instruction *I) { 1308 // Make sure we have VFP. 1309 if (!Subtarget->hasVFP2()) return false; 1310 1311 MVT DstVT; 1312 Type *Ty = I->getType(); 1313 if (!isTypeLegal(Ty, DstVT)) 1314 return false; 1315 1316 // FIXME: Handle sign-extension where necessary. 1317 if (!I->getOperand(0)->getType()->isIntegerTy(32)) 1318 return false; 1319 1320 unsigned Op = getRegForValue(I->getOperand(0)); 1321 if (Op == 0) return false; 1322 1323 // The conversion routine works on fp-reg to fp-reg and the operand above 1324 // was an integer, move it to the fp registers if possible. 1325 unsigned FP = ARMMoveToFPReg(MVT::f32, Op); 1326 if (FP == 0) return false; 1327 1328 unsigned Opc; 1329 if (Ty->isFloatTy()) Opc = ARM::VSITOS; 1330 else if (Ty->isDoubleTy()) Opc = ARM::VSITOD; 1331 else return 0; 1332 1333 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1334 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1335 ResultReg) 1336 .addReg(FP)); 1337 UpdateValueMap(I, ResultReg); 1338 return true; 1339 } 1340 1341 bool ARMFastISel::SelectFPToSI(const Instruction *I) { 1342 // Make sure we have VFP. 1343 if (!Subtarget->hasVFP2()) return false; 1344 1345 MVT DstVT; 1346 Type *RetTy = I->getType(); 1347 if (!isTypeLegal(RetTy, DstVT)) 1348 return false; 1349 1350 unsigned Op = getRegForValue(I->getOperand(0)); 1351 if (Op == 0) return false; 1352 1353 unsigned Opc; 1354 Type *OpTy = I->getOperand(0)->getType(); 1355 if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS; 1356 else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD; 1357 else return 0; 1358 1359 // f64->s32 or f32->s32 both need an intermediate f32 reg. 1360 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1362 ResultReg) 1363 .addReg(Op)); 1364 1365 // This result needs to be in an integer register, but the conversion only 1366 // takes place in fp-regs. 1367 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1368 if (IntReg == 0) return false; 1369 1370 UpdateValueMap(I, IntReg); 1371 return true; 1372 } 1373 1374 bool ARMFastISel::SelectSelect(const Instruction *I) { 1375 MVT VT; 1376 if (!isTypeLegal(I->getType(), VT)) 1377 return false; 1378 1379 // Things need to be register sized for register moves. 1380 if (VT != MVT::i32) return false; 1381 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 1382 1383 unsigned CondReg = getRegForValue(I->getOperand(0)); 1384 if (CondReg == 0) return false; 1385 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1386 if (Op1Reg == 0) return false; 1387 unsigned Op2Reg = getRegForValue(I->getOperand(2)); 1388 if (Op2Reg == 0) return false; 1389 1390 unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri; 1391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1392 .addReg(CondReg).addImm(1)); 1393 unsigned ResultReg = createResultReg(RC); 1394 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr; 1395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1396 .addReg(Op1Reg).addReg(Op2Reg) 1397 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 1398 UpdateValueMap(I, ResultReg); 1399 return true; 1400 } 1401 1402 bool ARMFastISel::SelectSDiv(const Instruction *I) { 1403 MVT VT; 1404 Type *Ty = I->getType(); 1405 if (!isTypeLegal(Ty, VT)) 1406 return false; 1407 1408 // If we have integer div support we should have selected this automagically. 1409 // In case we have a real miss go ahead and return false and we'll pick 1410 // it up later. 1411 if (Subtarget->hasDivide()) return false; 1412 1413 // Otherwise emit a libcall. 1414 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1415 if (VT == MVT::i8) 1416 LC = RTLIB::SDIV_I8; 1417 else if (VT == MVT::i16) 1418 LC = RTLIB::SDIV_I16; 1419 else if (VT == MVT::i32) 1420 LC = RTLIB::SDIV_I32; 1421 else if (VT == MVT::i64) 1422 LC = RTLIB::SDIV_I64; 1423 else if (VT == MVT::i128) 1424 LC = RTLIB::SDIV_I128; 1425 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1426 1427 return ARMEmitLibcall(I, LC); 1428 } 1429 1430 bool ARMFastISel::SelectSRem(const Instruction *I) { 1431 MVT VT; 1432 Type *Ty = I->getType(); 1433 if (!isTypeLegal(Ty, VT)) 1434 return false; 1435 1436 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1437 if (VT == MVT::i8) 1438 LC = RTLIB::SREM_I8; 1439 else if (VT == MVT::i16) 1440 LC = RTLIB::SREM_I16; 1441 else if (VT == MVT::i32) 1442 LC = RTLIB::SREM_I32; 1443 else if (VT == MVT::i64) 1444 LC = RTLIB::SREM_I64; 1445 else if (VT == MVT::i128) 1446 LC = RTLIB::SREM_I128; 1447 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1448 1449 return ARMEmitLibcall(I, LC); 1450 } 1451 1452 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) { 1453 EVT VT = TLI.getValueType(I->getType(), true); 1454 1455 // We can get here in the case when we want to use NEON for our fp 1456 // operations, but can't figure out how to. Just use the vfp instructions 1457 // if we have them. 1458 // FIXME: It'd be nice to use NEON instructions. 1459 Type *Ty = I->getType(); 1460 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1461 if (isFloat && !Subtarget->hasVFP2()) 1462 return false; 1463 1464 unsigned Op1 = getRegForValue(I->getOperand(0)); 1465 if (Op1 == 0) return false; 1466 1467 unsigned Op2 = getRegForValue(I->getOperand(1)); 1468 if (Op2 == 0) return false; 1469 1470 unsigned Opc; 1471 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1472 switch (ISDOpcode) { 1473 default: return false; 1474 case ISD::FADD: 1475 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1476 break; 1477 case ISD::FSUB: 1478 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1479 break; 1480 case ISD::FMUL: 1481 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1482 break; 1483 } 1484 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 1485 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1486 TII.get(Opc), ResultReg) 1487 .addReg(Op1).addReg(Op2)); 1488 UpdateValueMap(I, ResultReg); 1489 return true; 1490 } 1491 1492 // Call Handling Code 1493 1494 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, 1495 EVT SrcVT, unsigned &ResultReg) { 1496 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, 1497 Src, /*TODO: Kill=*/false); 1498 1499 if (RR != 0) { 1500 ResultReg = RR; 1501 return true; 1502 } else 1503 return false; 1504 } 1505 1506 // This is largely taken directly from CCAssignFnForNode - we don't support 1507 // varargs in FastISel so that part has been removed. 1508 // TODO: We may not support all of this. 1509 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) { 1510 switch (CC) { 1511 default: 1512 llvm_unreachable("Unsupported calling convention"); 1513 case CallingConv::Fast: 1514 // Ignore fastcc. Silence compiler warnings. 1515 (void)RetFastCC_ARM_APCS; 1516 (void)FastCC_ARM_APCS; 1517 // Fallthrough 1518 case CallingConv::C: 1519 // Use target triple & subtarget features to do actual dispatch. 1520 if (Subtarget->isAAPCS_ABI()) { 1521 if (Subtarget->hasVFP2() && 1522 FloatABIType == FloatABI::Hard) 1523 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1524 else 1525 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1526 } else 1527 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1528 case CallingConv::ARM_AAPCS_VFP: 1529 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1530 case CallingConv::ARM_AAPCS: 1531 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1532 case CallingConv::ARM_APCS: 1533 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1534 } 1535 } 1536 1537 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1538 SmallVectorImpl<unsigned> &ArgRegs, 1539 SmallVectorImpl<MVT> &ArgVTs, 1540 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1541 SmallVectorImpl<unsigned> &RegArgs, 1542 CallingConv::ID CC, 1543 unsigned &NumBytes) { 1544 SmallVector<CCValAssign, 16> ArgLocs; 1545 CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context); 1546 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false)); 1547 1548 // Get a count of how many bytes are to be pushed on the stack. 1549 NumBytes = CCInfo.getNextStackOffset(); 1550 1551 // Issue CALLSEQ_START 1552 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1553 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1554 TII.get(AdjStackDown)) 1555 .addImm(NumBytes)); 1556 1557 // Process the args. 1558 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1559 CCValAssign &VA = ArgLocs[i]; 1560 unsigned Arg = ArgRegs[VA.getValNo()]; 1561 MVT ArgVT = ArgVTs[VA.getValNo()]; 1562 1563 // We don't handle NEON/vector parameters yet. 1564 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1565 return false; 1566 1567 // Handle arg promotion, etc. 1568 switch (VA.getLocInfo()) { 1569 case CCValAssign::Full: break; 1570 case CCValAssign::SExt: { 1571 bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), 1572 Arg, ArgVT, Arg); 1573 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 1574 Emitted = true; 1575 ArgVT = VA.getLocVT(); 1576 break; 1577 } 1578 case CCValAssign::ZExt: { 1579 bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), 1580 Arg, ArgVT, Arg); 1581 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 1582 Emitted = true; 1583 ArgVT = VA.getLocVT(); 1584 break; 1585 } 1586 case CCValAssign::AExt: { 1587 bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), 1588 Arg, ArgVT, Arg); 1589 if (!Emitted) 1590 Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), 1591 Arg, ArgVT, Arg); 1592 if (!Emitted) 1593 Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), 1594 Arg, ArgVT, Arg); 1595 1596 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 1597 ArgVT = VA.getLocVT(); 1598 break; 1599 } 1600 case CCValAssign::BCvt: { 1601 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1602 /*TODO: Kill=*/false); 1603 assert(BC != 0 && "Failed to emit a bitcast!"); 1604 Arg = BC; 1605 ArgVT = VA.getLocVT(); 1606 break; 1607 } 1608 default: llvm_unreachable("Unknown arg promotion!"); 1609 } 1610 1611 // Now copy/store arg to correct locations. 1612 if (VA.isRegLoc() && !VA.needsCustom()) { 1613 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1614 VA.getLocReg()) 1615 .addReg(Arg); 1616 RegArgs.push_back(VA.getLocReg()); 1617 } else if (VA.needsCustom()) { 1618 // TODO: We need custom lowering for vector (v2f64) args. 1619 if (VA.getLocVT() != MVT::f64) return false; 1620 1621 CCValAssign &NextVA = ArgLocs[++i]; 1622 1623 // TODO: Only handle register args for now. 1624 if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false; 1625 1626 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1627 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1628 .addReg(NextVA.getLocReg(), RegState::Define) 1629 .addReg(Arg)); 1630 RegArgs.push_back(VA.getLocReg()); 1631 RegArgs.push_back(NextVA.getLocReg()); 1632 } else { 1633 assert(VA.isMemLoc()); 1634 // Need to store on the stack. 1635 Address Addr; 1636 Addr.BaseType = Address::RegBase; 1637 Addr.Base.Reg = ARM::SP; 1638 Addr.Offset = VA.getLocMemOffset(); 1639 1640 if (!ARMEmitStore(ArgVT, Arg, Addr)) return false; 1641 } 1642 } 1643 return true; 1644 } 1645 1646 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1647 const Instruction *I, CallingConv::ID CC, 1648 unsigned &NumBytes) { 1649 // Issue CALLSEQ_END 1650 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 1651 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1652 TII.get(AdjStackUp)) 1653 .addImm(NumBytes).addImm(0)); 1654 1655 // Now the return value. 1656 if (RetVT != MVT::isVoid) { 1657 SmallVector<CCValAssign, 16> RVLocs; 1658 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 1659 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true)); 1660 1661 // Copy all of the result registers out of their specified physreg. 1662 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 1663 // For this move we copy into two registers and then move into the 1664 // double fp reg we want. 1665 EVT DestVT = RVLocs[0].getValVT(); 1666 TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 1667 unsigned ResultReg = createResultReg(DstRC); 1668 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1669 TII.get(ARM::VMOVDRR), ResultReg) 1670 .addReg(RVLocs[0].getLocReg()) 1671 .addReg(RVLocs[1].getLocReg())); 1672 1673 UsedRegs.push_back(RVLocs[0].getLocReg()); 1674 UsedRegs.push_back(RVLocs[1].getLocReg()); 1675 1676 // Finally update the result. 1677 UpdateValueMap(I, ResultReg); 1678 } else { 1679 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 1680 EVT CopyVT = RVLocs[0].getValVT(); 1681 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 1682 1683 unsigned ResultReg = createResultReg(DstRC); 1684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1685 ResultReg).addReg(RVLocs[0].getLocReg()); 1686 UsedRegs.push_back(RVLocs[0].getLocReg()); 1687 1688 // Finally update the result. 1689 UpdateValueMap(I, ResultReg); 1690 } 1691 } 1692 1693 return true; 1694 } 1695 1696 bool ARMFastISel::SelectRet(const Instruction *I) { 1697 const ReturnInst *Ret = cast<ReturnInst>(I); 1698 const Function &F = *I->getParent()->getParent(); 1699 1700 if (!FuncInfo.CanLowerReturn) 1701 return false; 1702 1703 if (F.isVarArg()) 1704 return false; 1705 1706 CallingConv::ID CC = F.getCallingConv(); 1707 if (Ret->getNumOperands() > 0) { 1708 SmallVector<ISD::OutputArg, 4> Outs; 1709 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 1710 Outs, TLI); 1711 1712 // Analyze operands of the call, assigning locations to each operand. 1713 SmallVector<CCValAssign, 16> ValLocs; 1714 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, I->getContext()); 1715 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */)); 1716 1717 const Value *RV = Ret->getOperand(0); 1718 unsigned Reg = getRegForValue(RV); 1719 if (Reg == 0) 1720 return false; 1721 1722 // Only handle a single return value for now. 1723 if (ValLocs.size() != 1) 1724 return false; 1725 1726 CCValAssign &VA = ValLocs[0]; 1727 1728 // Don't bother handling odd stuff for now. 1729 if (VA.getLocInfo() != CCValAssign::Full) 1730 return false; 1731 // Only handle register returns for now. 1732 if (!VA.isRegLoc()) 1733 return false; 1734 // TODO: For now, don't try to handle cases where getLocInfo() 1735 // says Full but the types don't match. 1736 if (TLI.getValueType(RV->getType()) != VA.getValVT()) 1737 return false; 1738 1739 // Make the copy. 1740 unsigned SrcReg = Reg + VA.getValNo(); 1741 unsigned DstReg = VA.getLocReg(); 1742 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 1743 // Avoid a cross-class copy. This is very unlikely. 1744 if (!SrcRC->contains(DstReg)) 1745 return false; 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1747 DstReg).addReg(SrcReg); 1748 1749 // Mark the register as live out of the function. 1750 MRI.addLiveOut(VA.getLocReg()); 1751 } 1752 1753 unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET; 1754 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1755 TII.get(RetOpc))); 1756 return true; 1757 } 1758 1759 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) { 1760 1761 // Darwin needs the r9 versions of the opcodes. 1762 bool isDarwin = Subtarget->isTargetDarwin(); 1763 if (isThumb) { 1764 return isDarwin ? ARM::tBLr9 : ARM::tBL; 1765 } else { 1766 return isDarwin ? ARM::BLr9 : ARM::BL; 1767 } 1768 } 1769 1770 // A quick function that will emit a call for a named libcall in F with the 1771 // vector of passed arguments for the Instruction in I. We can assume that we 1772 // can emit a call for any libcall we can produce. This is an abridged version 1773 // of the full call infrastructure since we won't need to worry about things 1774 // like computed function pointers or strange arguments at call sites. 1775 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 1776 // with X86. 1777 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 1778 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 1779 1780 // Handle *simple* calls for now. 1781 Type *RetTy = I->getType(); 1782 MVT RetVT; 1783 if (RetTy->isVoidTy()) 1784 RetVT = MVT::isVoid; 1785 else if (!isTypeLegal(RetTy, RetVT)) 1786 return false; 1787 1788 // TODO: For now if we have long calls specified we don't handle the call. 1789 if (EnableARMLongCalls) return false; 1790 1791 // Set up the argument vectors. 1792 SmallVector<Value*, 8> Args; 1793 SmallVector<unsigned, 8> ArgRegs; 1794 SmallVector<MVT, 8> ArgVTs; 1795 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1796 Args.reserve(I->getNumOperands()); 1797 ArgRegs.reserve(I->getNumOperands()); 1798 ArgVTs.reserve(I->getNumOperands()); 1799 ArgFlags.reserve(I->getNumOperands()); 1800 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 1801 Value *Op = I->getOperand(i); 1802 unsigned Arg = getRegForValue(Op); 1803 if (Arg == 0) return false; 1804 1805 Type *ArgTy = Op->getType(); 1806 MVT ArgVT; 1807 if (!isTypeLegal(ArgTy, ArgVT)) return false; 1808 1809 ISD::ArgFlagsTy Flags; 1810 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 1811 Flags.setOrigAlign(OriginalAlignment); 1812 1813 Args.push_back(Op); 1814 ArgRegs.push_back(Arg); 1815 ArgVTs.push_back(ArgVT); 1816 ArgFlags.push_back(Flags); 1817 } 1818 1819 // Handle the arguments now that we've gotten them. 1820 SmallVector<unsigned, 4> RegArgs; 1821 unsigned NumBytes; 1822 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) 1823 return false; 1824 1825 // Issue the call, BLr9 for darwin, BL otherwise. 1826 // TODO: Turn this into the table of arm call ops. 1827 MachineInstrBuilder MIB; 1828 unsigned CallOpc = ARMSelectCallOp(NULL); 1829 if(isThumb) 1830 // Explicitly adding the predicate here. 1831 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1832 TII.get(CallOpc))) 1833 .addExternalSymbol(TLI.getLibcallName(Call)); 1834 else 1835 // Explicitly adding the predicate here. 1836 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1837 TII.get(CallOpc)) 1838 .addExternalSymbol(TLI.getLibcallName(Call))); 1839 1840 // Add implicit physical register uses to the call. 1841 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 1842 MIB.addReg(RegArgs[i]); 1843 1844 // Finish off the call including any return values. 1845 SmallVector<unsigned, 4> UsedRegs; 1846 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; 1847 1848 // Set all unused physreg defs as dead. 1849 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1850 1851 return true; 1852 } 1853 1854 bool ARMFastISel::SelectCall(const Instruction *I) { 1855 const CallInst *CI = cast<CallInst>(I); 1856 const Value *Callee = CI->getCalledValue(); 1857 1858 // Can't handle inline asm or worry about intrinsics yet. 1859 if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false; 1860 1861 // Only handle global variable Callees. 1862 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1863 if (!GV) 1864 return false; 1865 1866 // Check the calling convention. 1867 ImmutableCallSite CS(CI); 1868 CallingConv::ID CC = CS.getCallingConv(); 1869 1870 // TODO: Avoid some calling conventions? 1871 1872 // Let SDISel handle vararg functions. 1873 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1874 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 1875 if (FTy->isVarArg()) 1876 return false; 1877 1878 // Handle *simple* calls for now. 1879 Type *RetTy = I->getType(); 1880 MVT RetVT; 1881 if (RetTy->isVoidTy()) 1882 RetVT = MVT::isVoid; 1883 else if (!isTypeLegal(RetTy, RetVT)) 1884 return false; 1885 1886 // TODO: For now if we have long calls specified we don't handle the call. 1887 if (EnableARMLongCalls) return false; 1888 1889 // Set up the argument vectors. 1890 SmallVector<Value*, 8> Args; 1891 SmallVector<unsigned, 8> ArgRegs; 1892 SmallVector<MVT, 8> ArgVTs; 1893 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1894 Args.reserve(CS.arg_size()); 1895 ArgRegs.reserve(CS.arg_size()); 1896 ArgVTs.reserve(CS.arg_size()); 1897 ArgFlags.reserve(CS.arg_size()); 1898 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1899 i != e; ++i) { 1900 unsigned Arg = getRegForValue(*i); 1901 1902 if (Arg == 0) 1903 return false; 1904 ISD::ArgFlagsTy Flags; 1905 unsigned AttrInd = i - CS.arg_begin() + 1; 1906 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 1907 Flags.setSExt(); 1908 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 1909 Flags.setZExt(); 1910 1911 // FIXME: Only handle *easy* calls for now. 1912 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 1913 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 1914 CS.paramHasAttr(AttrInd, Attribute::Nest) || 1915 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 1916 return false; 1917 1918 Type *ArgTy = (*i)->getType(); 1919 MVT ArgVT; 1920 if (!isTypeLegal(ArgTy, ArgVT)) 1921 return false; 1922 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 1923 Flags.setOrigAlign(OriginalAlignment); 1924 1925 Args.push_back(*i); 1926 ArgRegs.push_back(Arg); 1927 ArgVTs.push_back(ArgVT); 1928 ArgFlags.push_back(Flags); 1929 } 1930 1931 // Handle the arguments now that we've gotten them. 1932 SmallVector<unsigned, 4> RegArgs; 1933 unsigned NumBytes; 1934 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) 1935 return false; 1936 1937 // Issue the call, BLr9 for darwin, BL otherwise. 1938 // TODO: Turn this into the table of arm call ops. 1939 MachineInstrBuilder MIB; 1940 unsigned CallOpc = ARMSelectCallOp(GV); 1941 // Explicitly adding the predicate here. 1942 if(isThumb) 1943 // Explicitly adding the predicate here. 1944 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1945 TII.get(CallOpc))) 1946 .addGlobalAddress(GV, 0, 0); 1947 else 1948 // Explicitly adding the predicate here. 1949 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1950 TII.get(CallOpc)) 1951 .addGlobalAddress(GV, 0, 0)); 1952 1953 // Add implicit physical register uses to the call. 1954 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 1955 MIB.addReg(RegArgs[i]); 1956 1957 // Finish off the call including any return values. 1958 SmallVector<unsigned, 4> UsedRegs; 1959 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; 1960 1961 // Set all unused physreg defs as dead. 1962 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 1963 1964 return true; 1965 1966 } 1967 1968 bool ARMFastISel::SelectIntCast(const Instruction *I) { 1969 // On ARM, in general, integer casts don't involve legal types; this code 1970 // handles promotable integers. The high bits for a type smaller than 1971 // the register size are assumed to be undefined. 1972 Type *DestTy = I->getType(); 1973 Value *Op = I->getOperand(0); 1974 Type *SrcTy = Op->getType(); 1975 1976 EVT SrcVT, DestVT; 1977 SrcVT = TLI.getValueType(SrcTy, true); 1978 DestVT = TLI.getValueType(DestTy, true); 1979 1980 if (isa<TruncInst>(I)) { 1981 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1982 return false; 1983 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1984 return false; 1985 1986 unsigned SrcReg = getRegForValue(Op); 1987 if (!SrcReg) return false; 1988 1989 // Because the high bits are undefined, a truncate doesn't generate 1990 // any code. 1991 UpdateValueMap(I, SrcReg); 1992 return true; 1993 } 1994 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1995 return false; 1996 1997 unsigned Opc; 1998 bool isZext = isa<ZExtInst>(I); 1999 bool isBoolZext = false; 2000 if (!SrcVT.isSimple()) 2001 return false; 2002 switch (SrcVT.getSimpleVT().SimpleTy) { 2003 default: return false; 2004 case MVT::i16: 2005 if (isZext) 2006 Opc = isThumb ? ARM::t2UXTHr : ARM::UXTHr; 2007 else 2008 Opc = isThumb ? ARM::t2SXTHr : ARM::SXTHr; 2009 break; 2010 case MVT::i8: 2011 if (isZext) 2012 Opc = isThumb ? ARM::t2UXTBr : ARM::UXTBr; 2013 else 2014 Opc = isThumb ? ARM::t2SXTBr : ARM::SXTBr; 2015 break; 2016 case MVT::i1: 2017 if (isZext) { 2018 Opc = isThumb ? ARM::t2ANDri : ARM::ANDri; 2019 isBoolZext = true; 2020 break; 2021 } 2022 return false; 2023 } 2024 2025 // FIXME: We could save an instruction in many cases by special-casing 2026 // load instructions. 2027 unsigned SrcReg = getRegForValue(Op); 2028 if (!SrcReg) return false; 2029 2030 unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 2031 MachineInstrBuilder MIB; 2032 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 2033 .addReg(SrcReg); 2034 if (isBoolZext) 2035 MIB.addImm(1); 2036 AddOptionalDefs(MIB); 2037 UpdateValueMap(I, DestReg); 2038 return true; 2039 } 2040 2041 // TODO: SoftFP support. 2042 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2043 2044 switch (I->getOpcode()) { 2045 case Instruction::Load: 2046 return SelectLoad(I); 2047 case Instruction::Store: 2048 return SelectStore(I); 2049 case Instruction::Br: 2050 return SelectBranch(I); 2051 case Instruction::ICmp: 2052 case Instruction::FCmp: 2053 return SelectCmp(I); 2054 case Instruction::FPExt: 2055 return SelectFPExt(I); 2056 case Instruction::FPTrunc: 2057 return SelectFPTrunc(I); 2058 case Instruction::SIToFP: 2059 return SelectSIToFP(I); 2060 case Instruction::FPToSI: 2061 return SelectFPToSI(I); 2062 case Instruction::FAdd: 2063 return SelectBinaryOp(I, ISD::FADD); 2064 case Instruction::FSub: 2065 return SelectBinaryOp(I, ISD::FSUB); 2066 case Instruction::FMul: 2067 return SelectBinaryOp(I, ISD::FMUL); 2068 case Instruction::SDiv: 2069 return SelectSDiv(I); 2070 case Instruction::SRem: 2071 return SelectSRem(I); 2072 case Instruction::Call: 2073 return SelectCall(I); 2074 case Instruction::Select: 2075 return SelectSelect(I); 2076 case Instruction::Ret: 2077 return SelectRet(I); 2078 case Instruction::Trunc: 2079 case Instruction::ZExt: 2080 case Instruction::SExt: 2081 return SelectIntCast(I); 2082 default: break; 2083 } 2084 return false; 2085 } 2086 2087 namespace llvm { 2088 llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) { 2089 // Completely untested on non-darwin. 2090 const TargetMachine &TM = funcInfo.MF->getTarget(); 2091 2092 // Darwin and thumb1 only for now. 2093 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 2094 if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() && 2095 !DisableARMFastISel) 2096 return new ARMFastISel(funcInfo); 2097 return 0; 2098 } 2099 } 2100