Home | History | Annotate | Download | only in ARM
      1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ARM-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // ARMGenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "ARM.h"
     17 #include "ARMAddressingModes.h"
     18 #include "ARMBaseInstrInfo.h"
     19 #include "ARMCallingConv.h"
     20 #include "ARMRegisterInfo.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMSubtarget.h"
     23 #include "ARMConstantPoolValue.h"
     24 #include "llvm/CallingConv.h"
     25 #include "llvm/DerivedTypes.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Instructions.h"
     28 #include "llvm/IntrinsicInst.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/Operator.h"
     31 #include "llvm/CodeGen/Analysis.h"
     32 #include "llvm/CodeGen/FastISel.h"
     33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineModuleInfo.h"
     36 #include "llvm/CodeGen/MachineConstantPool.h"
     37 #include "llvm/CodeGen/MachineFrameInfo.h"
     38 #include "llvm/CodeGen/MachineMemOperand.h"
     39 #include "llvm/CodeGen/MachineRegisterInfo.h"
     40 #include "llvm/CodeGen/PseudoSourceValue.h"
     41 #include "llvm/Support/CallSite.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/ErrorHandling.h"
     44 #include "llvm/Support/GetElementPtrTypeIterator.h"
     45 #include "llvm/Target/TargetData.h"
     46 #include "llvm/Target/TargetInstrInfo.h"
     47 #include "llvm/Target/TargetLowering.h"
     48 #include "llvm/Target/TargetMachine.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 using namespace llvm;
     51 
     52 static cl::opt<bool>
     53 DisableARMFastISel("disable-arm-fast-isel",
     54                     cl::desc("Turn off experimental ARM fast-isel support"),
     55                     cl::init(false), cl::Hidden);
     56 
     57 extern cl::opt<bool> EnableARMLongCalls;
     58 
     59 namespace {
     60 
     61   // All possible address modes, plus some.
     62   typedef struct Address {
     63     enum {
     64       RegBase,
     65       FrameIndexBase
     66     } BaseType;
     67 
     68     union {
     69       unsigned Reg;
     70       int FI;
     71     } Base;
     72 
     73     int Offset;
     74 
     75     // Innocuous defaults for our address.
     76     Address()
     77      : BaseType(RegBase), Offset(0) {
     78        Base.Reg = 0;
     79      }
     80   } Address;
     81 
     82 class ARMFastISel : public FastISel {
     83 
     84   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     85   /// make the right decision when generating code for different targets.
     86   const ARMSubtarget *Subtarget;
     87   const TargetMachine &TM;
     88   const TargetInstrInfo &TII;
     89   const TargetLowering &TLI;
     90   ARMFunctionInfo *AFI;
     91 
     92   // Convenience variables to avoid some queries.
     93   bool isThumb;
     94   LLVMContext *Context;
     95 
     96   public:
     97     explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
     98     : FastISel(funcInfo),
     99       TM(funcInfo.MF->getTarget()),
    100       TII(*TM.getInstrInfo()),
    101       TLI(*TM.getTargetLowering()) {
    102       Subtarget = &TM.getSubtarget<ARMSubtarget>();
    103       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
    104       isThumb = AFI->isThumbFunction();
    105       Context = &funcInfo.Fn->getContext();
    106     }
    107 
    108     // Code from FastISel.cpp.
    109     virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
    110                                    const TargetRegisterClass *RC);
    111     virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
    112                                     const TargetRegisterClass *RC,
    113                                     unsigned Op0, bool Op0IsKill);
    114     virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
    115                                      const TargetRegisterClass *RC,
    116                                      unsigned Op0, bool Op0IsKill,
    117                                      unsigned Op1, bool Op1IsKill);
    118     virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
    119                                       const TargetRegisterClass *RC,
    120                                       unsigned Op0, bool Op0IsKill,
    121                                       unsigned Op1, bool Op1IsKill,
    122                                       unsigned Op2, bool Op2IsKill);
    123     virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
    124                                      const TargetRegisterClass *RC,
    125                                      unsigned Op0, bool Op0IsKill,
    126                                      uint64_t Imm);
    127     virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
    128                                      const TargetRegisterClass *RC,
    129                                      unsigned Op0, bool Op0IsKill,
    130                                      const ConstantFP *FPImm);
    131     virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
    132                                       const TargetRegisterClass *RC,
    133                                       unsigned Op0, bool Op0IsKill,
    134                                       unsigned Op1, bool Op1IsKill,
    135                                       uint64_t Imm);
    136     virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
    137                                     const TargetRegisterClass *RC,
    138                                     uint64_t Imm);
    139     virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
    140                                      const TargetRegisterClass *RC,
    141                                      uint64_t Imm1, uint64_t Imm2);
    142 
    143     virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
    144                                                 unsigned Op0, bool Op0IsKill,
    145                                                 uint32_t Idx);
    146 
    147     // Backend specific FastISel code.
    148     virtual bool TargetSelectInstruction(const Instruction *I);
    149     virtual unsigned TargetMaterializeConstant(const Constant *C);
    150     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
    151 
    152   #include "ARMGenFastISel.inc"
    153 
    154     // Instruction selection routines.
    155   private:
    156     bool SelectLoad(const Instruction *I);
    157     bool SelectStore(const Instruction *I);
    158     bool SelectBranch(const Instruction *I);
    159     bool SelectCmp(const Instruction *I);
    160     bool SelectFPExt(const Instruction *I);
    161     bool SelectFPTrunc(const Instruction *I);
    162     bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
    163     bool SelectSIToFP(const Instruction *I);
    164     bool SelectFPToSI(const Instruction *I);
    165     bool SelectSDiv(const Instruction *I);
    166     bool SelectSRem(const Instruction *I);
    167     bool SelectCall(const Instruction *I);
    168     bool SelectSelect(const Instruction *I);
    169     bool SelectRet(const Instruction *I);
    170     bool SelectIntCast(const Instruction *I);
    171 
    172     // Utility routines.
    173   private:
    174     bool isTypeLegal(Type *Ty, MVT &VT);
    175     bool isLoadTypeLegal(Type *Ty, MVT &VT);
    176     bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
    177     bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
    178     bool ARMComputeAddress(const Value *Obj, Address &Addr);
    179     void ARMSimplifyAddress(Address &Addr, EVT VT);
    180     unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
    181     unsigned ARMMaterializeInt(const Constant *C, EVT VT);
    182     unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
    183     unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
    184     unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
    185     unsigned ARMSelectCallOp(const GlobalValue *GV);
    186 
    187     // Call handling routines.
    188   private:
    189     bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
    190                         unsigned &ResultReg);
    191     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
    192     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
    193                          SmallVectorImpl<unsigned> &ArgRegs,
    194                          SmallVectorImpl<MVT> &ArgVTs,
    195                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    196                          SmallVectorImpl<unsigned> &RegArgs,
    197                          CallingConv::ID CC,
    198                          unsigned &NumBytes);
    199     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
    200                     const Instruction *I, CallingConv::ID CC,
    201                     unsigned &NumBytes);
    202     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
    203 
    204     // OptionalDef handling routines.
    205   private:
    206     bool isARMNEONPred(const MachineInstr *MI);
    207     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    208     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
    209     void AddLoadStoreOperands(EVT VT, Address &Addr,
    210                               const MachineInstrBuilder &MIB,
    211                               unsigned Flags);
    212 };
    213 
    214 } // end anonymous namespace
    215 
    216 #include "ARMGenCallingConv.inc"
    217 
    218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
    219 // we don't care about implicit defs here, just places we'll need to add a
    220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
    221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
    222   const MCInstrDesc &MCID = MI->getDesc();
    223   if (!MCID.hasOptionalDef())
    224     return false;
    225 
    226   // Look to see if our OptionalDef is defining CPSR or CCR.
    227   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    228     const MachineOperand &MO = MI->getOperand(i);
    229     if (!MO.isReg() || !MO.isDef()) continue;
    230     if (MO.getReg() == ARM::CPSR)
    231       *CPSR = true;
    232   }
    233   return true;
    234 }
    235 
    236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
    237   const MCInstrDesc &MCID = MI->getDesc();
    238 
    239   // If we're a thumb2 or not NEON function we were handled via isPredicable.
    240   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
    241        AFI->isThumb2Function())
    242     return false;
    243 
    244   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
    245     if (MCID.OpInfo[i].isPredicate())
    246       return true;
    247 
    248   return false;
    249 }
    250 
    251 // If the machine is predicable go ahead and add the predicate operands, if
    252 // it needs default CC operands add those.
    253 // TODO: If we want to support thumb1 then we'll need to deal with optional
    254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
    255 // for descriptions why.
    256 const MachineInstrBuilder &
    257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
    258   MachineInstr *MI = &*MIB;
    259 
    260   // Do we use a predicate? or...
    261   // Are we NEON in ARM mode and have a predicate operand? If so, I know
    262   // we're not predicable but add it anyways.
    263   if (TII.isPredicable(MI) || isARMNEONPred(MI))
    264     AddDefaultPred(MIB);
    265 
    266   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
    267   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
    268   bool CPSR = false;
    269   if (DefinesOptionalPredicate(MI, &CPSR)) {
    270     if (CPSR)
    271       AddDefaultT1CC(MIB);
    272     else
    273       AddDefaultCC(MIB);
    274   }
    275   return MIB;
    276 }
    277 
    278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
    279                                     const TargetRegisterClass* RC) {
    280   unsigned ResultReg = createResultReg(RC);
    281   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    282 
    283   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
    284   return ResultReg;
    285 }
    286 
    287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
    288                                      const TargetRegisterClass *RC,
    289                                      unsigned Op0, bool Op0IsKill) {
    290   unsigned ResultReg = createResultReg(RC);
    291   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    292 
    293   if (II.getNumDefs() >= 1)
    294     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    295                    .addReg(Op0, Op0IsKill * RegState::Kill));
    296   else {
    297     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    298                    .addReg(Op0, Op0IsKill * RegState::Kill));
    299     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    300                    TII.get(TargetOpcode::COPY), ResultReg)
    301                    .addReg(II.ImplicitDefs[0]));
    302   }
    303   return ResultReg;
    304 }
    305 
    306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
    307                                       const TargetRegisterClass *RC,
    308                                       unsigned Op0, bool Op0IsKill,
    309                                       unsigned Op1, bool Op1IsKill) {
    310   unsigned ResultReg = createResultReg(RC);
    311   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    312 
    313   if (II.getNumDefs() >= 1)
    314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    315                    .addReg(Op0, Op0IsKill * RegState::Kill)
    316                    .addReg(Op1, Op1IsKill * RegState::Kill));
    317   else {
    318     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    319                    .addReg(Op0, Op0IsKill * RegState::Kill)
    320                    .addReg(Op1, Op1IsKill * RegState::Kill));
    321     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    322                            TII.get(TargetOpcode::COPY), ResultReg)
    323                    .addReg(II.ImplicitDefs[0]));
    324   }
    325   return ResultReg;
    326 }
    327 
    328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
    329                                        const TargetRegisterClass *RC,
    330                                        unsigned Op0, bool Op0IsKill,
    331                                        unsigned Op1, bool Op1IsKill,
    332                                        unsigned Op2, bool Op2IsKill) {
    333   unsigned ResultReg = createResultReg(RC);
    334   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    335 
    336   if (II.getNumDefs() >= 1)
    337     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    338                    .addReg(Op0, Op0IsKill * RegState::Kill)
    339                    .addReg(Op1, Op1IsKill * RegState::Kill)
    340                    .addReg(Op2, Op2IsKill * RegState::Kill));
    341   else {
    342     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    343                    .addReg(Op0, Op0IsKill * RegState::Kill)
    344                    .addReg(Op1, Op1IsKill * RegState::Kill)
    345                    .addReg(Op2, Op2IsKill * RegState::Kill));
    346     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    347                            TII.get(TargetOpcode::COPY), ResultReg)
    348                    .addReg(II.ImplicitDefs[0]));
    349   }
    350   return ResultReg;
    351 }
    352 
    353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
    354                                       const TargetRegisterClass *RC,
    355                                       unsigned Op0, bool Op0IsKill,
    356                                       uint64_t Imm) {
    357   unsigned ResultReg = createResultReg(RC);
    358   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    359 
    360   if (II.getNumDefs() >= 1)
    361     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    362                    .addReg(Op0, Op0IsKill * RegState::Kill)
    363                    .addImm(Imm));
    364   else {
    365     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    366                    .addReg(Op0, Op0IsKill * RegState::Kill)
    367                    .addImm(Imm));
    368     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    369                            TII.get(TargetOpcode::COPY), ResultReg)
    370                    .addReg(II.ImplicitDefs[0]));
    371   }
    372   return ResultReg;
    373 }
    374 
    375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
    376                                       const TargetRegisterClass *RC,
    377                                       unsigned Op0, bool Op0IsKill,
    378                                       const ConstantFP *FPImm) {
    379   unsigned ResultReg = createResultReg(RC);
    380   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    381 
    382   if (II.getNumDefs() >= 1)
    383     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    384                    .addReg(Op0, Op0IsKill * RegState::Kill)
    385                    .addFPImm(FPImm));
    386   else {
    387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    388                    .addReg(Op0, Op0IsKill * RegState::Kill)
    389                    .addFPImm(FPImm));
    390     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    391                            TII.get(TargetOpcode::COPY), ResultReg)
    392                    .addReg(II.ImplicitDefs[0]));
    393   }
    394   return ResultReg;
    395 }
    396 
    397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
    398                                        const TargetRegisterClass *RC,
    399                                        unsigned Op0, bool Op0IsKill,
    400                                        unsigned Op1, bool Op1IsKill,
    401                                        uint64_t Imm) {
    402   unsigned ResultReg = createResultReg(RC);
    403   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    404 
    405   if (II.getNumDefs() >= 1)
    406     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    407                    .addReg(Op0, Op0IsKill * RegState::Kill)
    408                    .addReg(Op1, Op1IsKill * RegState::Kill)
    409                    .addImm(Imm));
    410   else {
    411     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    412                    .addReg(Op0, Op0IsKill * RegState::Kill)
    413                    .addReg(Op1, Op1IsKill * RegState::Kill)
    414                    .addImm(Imm));
    415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    416                            TII.get(TargetOpcode::COPY), ResultReg)
    417                    .addReg(II.ImplicitDefs[0]));
    418   }
    419   return ResultReg;
    420 }
    421 
    422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
    423                                      const TargetRegisterClass *RC,
    424                                      uint64_t Imm) {
    425   unsigned ResultReg = createResultReg(RC);
    426   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    427 
    428   if (II.getNumDefs() >= 1)
    429     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    430                    .addImm(Imm));
    431   else {
    432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    433                    .addImm(Imm));
    434     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    435                            TII.get(TargetOpcode::COPY), ResultReg)
    436                    .addReg(II.ImplicitDefs[0]));
    437   }
    438   return ResultReg;
    439 }
    440 
    441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
    442                                       const TargetRegisterClass *RC,
    443                                       uint64_t Imm1, uint64_t Imm2) {
    444   unsigned ResultReg = createResultReg(RC);
    445   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    446 
    447   if (II.getNumDefs() >= 1)
    448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    449                     .addImm(Imm1).addImm(Imm2));
    450   else {
    451     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    452                     .addImm(Imm1).addImm(Imm2));
    453     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    454                             TII.get(TargetOpcode::COPY),
    455                             ResultReg)
    456                     .addReg(II.ImplicitDefs[0]));
    457   }
    458   return ResultReg;
    459 }
    460 
    461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
    462                                                  unsigned Op0, bool Op0IsKill,
    463                                                  uint32_t Idx) {
    464   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
    465   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
    466          "Cannot yet extract from physregs");
    467   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    468                          DL, TII.get(TargetOpcode::COPY), ResultReg)
    469                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
    470   return ResultReg;
    471 }
    472 
    473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
    474 // checks from the various callers.
    475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
    476   if (VT == MVT::f64) return 0;
    477 
    478   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    479   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    480                           TII.get(ARM::VMOVRS), MoveReg)
    481                   .addReg(SrcReg));
    482   return MoveReg;
    483 }
    484 
    485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
    486   if (VT == MVT::i64) return 0;
    487 
    488   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    489   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    490                           TII.get(ARM::VMOVSR), MoveReg)
    491                   .addReg(SrcReg));
    492   return MoveReg;
    493 }
    494 
    495 // For double width floating point we need to materialize two constants
    496 // (the high and the low) into integer registers then use a move to get
    497 // the combined constant into an FP reg.
    498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
    499   const APFloat Val = CFP->getValueAPF();
    500   bool is64bit = VT == MVT::f64;
    501 
    502   // This checks to see if we can use VFP3 instructions to materialize
    503   // a constant, otherwise we have to go through the constant pool.
    504   if (TLI.isFPImmLegal(Val, VT)) {
    505     unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
    506     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    507     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    508                             DestReg)
    509                     .addFPImm(CFP));
    510     return DestReg;
    511   }
    512 
    513   // Require VFP2 for loading fp constants.
    514   if (!Subtarget->hasVFP2()) return false;
    515 
    516   // MachineConstantPool wants an explicit alignment.
    517   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
    518   if (Align == 0) {
    519     // TODO: Figure out if this is correct.
    520     Align = TD.getTypeAllocSize(CFP->getType());
    521   }
    522   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
    523   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    524   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
    525 
    526   // The extra reg is for addrmode5.
    527   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    528                           DestReg)
    529                   .addConstantPoolIndex(Idx)
    530                   .addReg(0));
    531   return DestReg;
    532 }
    533 
    534 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
    535 
    536   // For now 32-bit only.
    537   if (VT != MVT::i32) return false;
    538 
    539   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    540 
    541   // If we can do this in a single instruction without a constant pool entry
    542   // do so now.
    543   const ConstantInt *CI = cast<ConstantInt>(C);
    544   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
    545     unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
    546     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    547                             TII.get(Opc), DestReg)
    548                     .addImm(CI->getSExtValue()));
    549     return DestReg;
    550   }
    551 
    552   // MachineConstantPool wants an explicit alignment.
    553   unsigned Align = TD.getPrefTypeAlignment(C->getType());
    554   if (Align == 0) {
    555     // TODO: Figure out if this is correct.
    556     Align = TD.getTypeAllocSize(C->getType());
    557   }
    558   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
    559 
    560   if (isThumb)
    561     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    562                             TII.get(ARM::t2LDRpci), DestReg)
    563                     .addConstantPoolIndex(Idx));
    564   else
    565     // The extra immediate is for addrmode2.
    566     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    567                             TII.get(ARM::LDRcp), DestReg)
    568                     .addConstantPoolIndex(Idx)
    569                     .addImm(0));
    570 
    571   return DestReg;
    572 }
    573 
    574 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
    575   // For now 32-bit only.
    576   if (VT != MVT::i32) return 0;
    577 
    578   Reloc::Model RelocM = TM.getRelocationModel();
    579 
    580   // TODO: Need more magic for ARM PIC.
    581   if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
    582 
    583   // MachineConstantPool wants an explicit alignment.
    584   unsigned Align = TD.getPrefTypeAlignment(GV->getType());
    585   if (Align == 0) {
    586     // TODO: Figure out if this is correct.
    587     Align = TD.getTypeAllocSize(GV->getType());
    588   }
    589 
    590   // Grab index.
    591   unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
    592   unsigned Id = AFI->createPICLabelUId();
    593   ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
    594                                                        ARMCP::CPValue, PCAdj);
    595   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
    596 
    597   // Load value.
    598   MachineInstrBuilder MIB;
    599   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    600   if (isThumb) {
    601     unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
    602     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
    603           .addConstantPoolIndex(Idx);
    604     if (RelocM == Reloc::PIC_)
    605       MIB.addImm(Id);
    606   } else {
    607     // The extra immediate is for addrmode2.
    608     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
    609                   DestReg)
    610           .addConstantPoolIndex(Idx)
    611           .addImm(0);
    612   }
    613   AddOptionalDefs(MIB);
    614 
    615   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
    616     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    617     if (isThumb)
    618       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::t2LDRi12),
    619                     NewDestReg)
    620             .addReg(DestReg)
    621             .addImm(0);
    622     else
    623       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
    624                     NewDestReg)
    625             .addReg(DestReg)
    626             .addImm(0);
    627     DestReg = NewDestReg;
    628     AddOptionalDefs(MIB);
    629   }
    630 
    631   return DestReg;
    632 }
    633 
    634 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
    635   EVT VT = TLI.getValueType(C->getType(), true);
    636 
    637   // Only handle simple types.
    638   if (!VT.isSimple()) return 0;
    639 
    640   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    641     return ARMMaterializeFP(CFP, VT);
    642   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    643     return ARMMaterializeGV(GV, VT);
    644   else if (isa<ConstantInt>(C))
    645     return ARMMaterializeInt(C, VT);
    646 
    647   return 0;
    648 }
    649 
    650 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
    651   // Don't handle dynamic allocas.
    652   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
    653 
    654   MVT VT;
    655   if (!isLoadTypeLegal(AI->getType(), VT)) return false;
    656 
    657   DenseMap<const AllocaInst*, int>::iterator SI =
    658     FuncInfo.StaticAllocaMap.find(AI);
    659 
    660   // This will get lowered later into the correct offsets and registers
    661   // via rewriteXFrameIndex.
    662   if (SI != FuncInfo.StaticAllocaMap.end()) {
    663     TargetRegisterClass* RC = TLI.getRegClassFor(VT);
    664     unsigned ResultReg = createResultReg(RC);
    665     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
    666     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
    667                             TII.get(Opc), ResultReg)
    668                             .addFrameIndex(SI->second)
    669                             .addImm(0));
    670     return ResultReg;
    671   }
    672 
    673   return 0;
    674 }
    675 
    676 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    677   EVT evt = TLI.getValueType(Ty, true);
    678 
    679   // Only handle simple types.
    680   if (evt == MVT::Other || !evt.isSimple()) return false;
    681   VT = evt.getSimpleVT();
    682 
    683   // Handle all legal types, i.e. a register that will directly hold this
    684   // value.
    685   return TLI.isTypeLegal(VT);
    686 }
    687 
    688 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    689   if (isTypeLegal(Ty, VT)) return true;
    690 
    691   // If this is a type than can be sign or zero-extended to a basic operation
    692   // go ahead and accept it now.
    693   if (VT == MVT::i8 || VT == MVT::i16)
    694     return true;
    695 
    696   return false;
    697 }
    698 
    699 // Computes the address to get to an object.
    700 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
    701   // Some boilerplate from the X86 FastISel.
    702   const User *U = NULL;
    703   unsigned Opcode = Instruction::UserOp1;
    704   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    705     // Don't walk into other basic blocks unless the object is an alloca from
    706     // another block, otherwise it may not have a virtual register assigned.
    707     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    708         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    709       Opcode = I->getOpcode();
    710       U = I;
    711     }
    712   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    713     Opcode = C->getOpcode();
    714     U = C;
    715   }
    716 
    717   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    718     if (Ty->getAddressSpace() > 255)
    719       // Fast instruction selection doesn't support the special
    720       // address spaces.
    721       return false;
    722 
    723   switch (Opcode) {
    724     default:
    725     break;
    726     case Instruction::BitCast: {
    727       // Look through bitcasts.
    728       return ARMComputeAddress(U->getOperand(0), Addr);
    729     }
    730     case Instruction::IntToPtr: {
    731       // Look past no-op inttoptrs.
    732       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    733         return ARMComputeAddress(U->getOperand(0), Addr);
    734       break;
    735     }
    736     case Instruction::PtrToInt: {
    737       // Look past no-op ptrtoints.
    738       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    739         return ARMComputeAddress(U->getOperand(0), Addr);
    740       break;
    741     }
    742     case Instruction::GetElementPtr: {
    743       Address SavedAddr = Addr;
    744       int TmpOffset = Addr.Offset;
    745 
    746       // Iterate through the GEP folding the constants into offsets where
    747       // we can.
    748       gep_type_iterator GTI = gep_type_begin(U);
    749       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    750            i != e; ++i, ++GTI) {
    751         const Value *Op = *i;
    752         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    753           const StructLayout *SL = TD.getStructLayout(STy);
    754           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    755           TmpOffset += SL->getElementOffset(Idx);
    756         } else {
    757           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
    758           for (;;) {
    759             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    760               // Constant-offset addressing.
    761               TmpOffset += CI->getSExtValue() * S;
    762               break;
    763             }
    764             if (isa<AddOperator>(Op) &&
    765                 (!isa<Instruction>(Op) ||
    766                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
    767                  == FuncInfo.MBB) &&
    768                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
    769               // An add (in the same block) with a constant operand. Fold the
    770               // constant.
    771               ConstantInt *CI =
    772               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    773               TmpOffset += CI->getSExtValue() * S;
    774               // Iterate on the other operand.
    775               Op = cast<AddOperator>(Op)->getOperand(0);
    776               continue;
    777             }
    778             // Unsupported
    779             goto unsupported_gep;
    780           }
    781         }
    782       }
    783 
    784       // Try to grab the base operand now.
    785       Addr.Offset = TmpOffset;
    786       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
    787 
    788       // We failed, restore everything and try the other options.
    789       Addr = SavedAddr;
    790 
    791       unsupported_gep:
    792       break;
    793     }
    794     case Instruction::Alloca: {
    795       const AllocaInst *AI = cast<AllocaInst>(Obj);
    796       DenseMap<const AllocaInst*, int>::iterator SI =
    797         FuncInfo.StaticAllocaMap.find(AI);
    798       if (SI != FuncInfo.StaticAllocaMap.end()) {
    799         Addr.BaseType = Address::FrameIndexBase;
    800         Addr.Base.FI = SI->second;
    801         return true;
    802       }
    803       break;
    804     }
    805   }
    806 
    807   // Materialize the global variable's address into a reg which can
    808   // then be used later to load the variable.
    809   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
    810     unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
    811     if (Tmp == 0) return false;
    812 
    813     Addr.Base.Reg = Tmp;
    814     return true;
    815   }
    816 
    817   // Try to get this in a register if nothing else has worked.
    818   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
    819   return Addr.Base.Reg != 0;
    820 }
    821 
    822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
    823 
    824   assert(VT.isSimple() && "Non-simple types are invalid here!");
    825 
    826   bool needsLowering = false;
    827   switch (VT.getSimpleVT().SimpleTy) {
    828     default:
    829       assert(false && "Unhandled load/store type!");
    830     case MVT::i1:
    831     case MVT::i8:
    832     case MVT::i16:
    833     case MVT::i32:
    834       // Integer loads/stores handle 12-bit offsets.
    835       needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
    836       break;
    837     case MVT::f32:
    838     case MVT::f64:
    839       // Floating point operands handle 8-bit offsets.
    840       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
    841       break;
    842   }
    843 
    844   // If this is a stack pointer and the offset needs to be simplified then
    845   // put the alloca address into a register, set the base type back to
    846   // register and continue. This should almost never happen.
    847   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
    848     TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
    849                               ARM::GPRRegisterClass;
    850     unsigned ResultReg = createResultReg(RC);
    851     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
    852     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
    853                             TII.get(Opc), ResultReg)
    854                             .addFrameIndex(Addr.Base.FI)
    855                             .addImm(0));
    856     Addr.Base.Reg = ResultReg;
    857     Addr.BaseType = Address::RegBase;
    858   }
    859 
    860   // Since the offset is too large for the load/store instruction
    861   // get the reg+offset into a register.
    862   if (needsLowering) {
    863     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
    864                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
    865     Addr.Offset = 0;
    866   }
    867 }
    868 
    869 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
    870                                        const MachineInstrBuilder &MIB,
    871                                        unsigned Flags) {
    872   // addrmode5 output depends on the selection dag addressing dividing the
    873   // offset by 4 that it then later multiplies. Do this here as well.
    874   if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
    875       VT.getSimpleVT().SimpleTy == MVT::f64)
    876     Addr.Offset /= 4;
    877 
    878   // Frame base works a bit differently. Handle it separately.
    879   if (Addr.BaseType == Address::FrameIndexBase) {
    880     int FI = Addr.Base.FI;
    881     int Offset = Addr.Offset;
    882     MachineMemOperand *MMO =
    883           FuncInfo.MF->getMachineMemOperand(
    884                                   MachinePointerInfo::getFixedStack(FI, Offset),
    885                                   Flags,
    886                                   MFI.getObjectSize(FI),
    887                                   MFI.getObjectAlignment(FI));
    888     // Now add the rest of the operands.
    889     MIB.addFrameIndex(FI);
    890 
    891     // ARM halfword load/stores need an additional operand.
    892     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
    893 
    894     MIB.addImm(Addr.Offset);
    895     MIB.addMemOperand(MMO);
    896   } else {
    897     // Now add the rest of the operands.
    898     MIB.addReg(Addr.Base.Reg);
    899 
    900     // ARM halfword load/stores need an additional operand.
    901     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
    902 
    903     MIB.addImm(Addr.Offset);
    904   }
    905   AddOptionalDefs(MIB);
    906 }
    907 
    908 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
    909 
    910   assert(VT.isSimple() && "Non-simple types are invalid here!");
    911   unsigned Opc;
    912   TargetRegisterClass *RC;
    913   switch (VT.getSimpleVT().SimpleTy) {
    914     // This is mostly going to be Neon/vector support.
    915     default: return false;
    916     case MVT::i16:
    917       Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
    918       RC = ARM::GPRRegisterClass;
    919       break;
    920     case MVT::i8:
    921       Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
    922       RC = ARM::GPRRegisterClass;
    923       break;
    924     case MVT::i32:
    925       Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
    926       RC = ARM::GPRRegisterClass;
    927       break;
    928     case MVT::f32:
    929       Opc = ARM::VLDRS;
    930       RC = TLI.getRegClassFor(VT);
    931       break;
    932     case MVT::f64:
    933       Opc = ARM::VLDRD;
    934       RC = TLI.getRegClassFor(VT);
    935       break;
    936   }
    937   // Simplify this down to something we can handle.
    938   ARMSimplifyAddress(Addr, VT);
    939 
    940   // Create the base instruction, then add the operands.
    941   ResultReg = createResultReg(RC);
    942   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    943                                     TII.get(Opc), ResultReg);
    944   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
    945   return true;
    946 }
    947 
    948 bool ARMFastISel::SelectLoad(const Instruction *I) {
    949   // Verify we have a legal type before going any further.
    950   MVT VT;
    951   if (!isLoadTypeLegal(I->getType(), VT))
    952     return false;
    953 
    954   // See if we can handle this address.
    955   Address Addr;
    956   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
    957 
    958   unsigned ResultReg;
    959   if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
    960   UpdateValueMap(I, ResultReg);
    961   return true;
    962 }
    963 
    964 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
    965   unsigned StrOpc;
    966   switch (VT.getSimpleVT().SimpleTy) {
    967     // This is mostly going to be Neon/vector support.
    968     default: return false;
    969     case MVT::i1: {
    970       unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
    971                                                ARM::GPRRegisterClass);
    972       unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
    973       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    974                               TII.get(Opc), Res)
    975                       .addReg(SrcReg).addImm(1));
    976       SrcReg = Res;
    977     } // Fallthrough here.
    978     case MVT::i8:
    979       StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
    980       break;
    981     case MVT::i16:
    982       StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
    983       break;
    984     case MVT::i32:
    985       StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
    986       break;
    987     case MVT::f32:
    988       if (!Subtarget->hasVFP2()) return false;
    989       StrOpc = ARM::VSTRS;
    990       break;
    991     case MVT::f64:
    992       if (!Subtarget->hasVFP2()) return false;
    993       StrOpc = ARM::VSTRD;
    994       break;
    995   }
    996   // Simplify this down to something we can handle.
    997   ARMSimplifyAddress(Addr, VT);
    998 
    999   // Create the base instruction, then add the operands.
   1000   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1001                                     TII.get(StrOpc))
   1002                             .addReg(SrcReg, getKillRegState(true));
   1003   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
   1004   return true;
   1005 }
   1006 
   1007 bool ARMFastISel::SelectStore(const Instruction *I) {
   1008   Value *Op0 = I->getOperand(0);
   1009   unsigned SrcReg = 0;
   1010 
   1011   // Verify we have a legal type before going any further.
   1012   MVT VT;
   1013   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
   1014     return false;
   1015 
   1016   // Get the value to be stored into a register.
   1017   SrcReg = getRegForValue(Op0);
   1018   if (SrcReg == 0) return false;
   1019 
   1020   // See if we can handle this address.
   1021   Address Addr;
   1022   if (!ARMComputeAddress(I->getOperand(1), Addr))
   1023     return false;
   1024 
   1025   if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
   1026   return true;
   1027 }
   1028 
   1029 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
   1030   switch (Pred) {
   1031     // Needs two compares...
   1032     case CmpInst::FCMP_ONE:
   1033     case CmpInst::FCMP_UEQ:
   1034     default:
   1035       // AL is our "false" for now. The other two need more compares.
   1036       return ARMCC::AL;
   1037     case CmpInst::ICMP_EQ:
   1038     case CmpInst::FCMP_OEQ:
   1039       return ARMCC::EQ;
   1040     case CmpInst::ICMP_SGT:
   1041     case CmpInst::FCMP_OGT:
   1042       return ARMCC::GT;
   1043     case CmpInst::ICMP_SGE:
   1044     case CmpInst::FCMP_OGE:
   1045       return ARMCC::GE;
   1046     case CmpInst::ICMP_UGT:
   1047     case CmpInst::FCMP_UGT:
   1048       return ARMCC::HI;
   1049     case CmpInst::FCMP_OLT:
   1050       return ARMCC::MI;
   1051     case CmpInst::ICMP_ULE:
   1052     case CmpInst::FCMP_OLE:
   1053       return ARMCC::LS;
   1054     case CmpInst::FCMP_ORD:
   1055       return ARMCC::VC;
   1056     case CmpInst::FCMP_UNO:
   1057       return ARMCC::VS;
   1058     case CmpInst::FCMP_UGE:
   1059       return ARMCC::PL;
   1060     case CmpInst::ICMP_SLT:
   1061     case CmpInst::FCMP_ULT:
   1062       return ARMCC::LT;
   1063     case CmpInst::ICMP_SLE:
   1064     case CmpInst::FCMP_ULE:
   1065       return ARMCC::LE;
   1066     case CmpInst::FCMP_UNE:
   1067     case CmpInst::ICMP_NE:
   1068       return ARMCC::NE;
   1069     case CmpInst::ICMP_UGE:
   1070       return ARMCC::HS;
   1071     case CmpInst::ICMP_ULT:
   1072       return ARMCC::LO;
   1073   }
   1074 }
   1075 
   1076 bool ARMFastISel::SelectBranch(const Instruction *I) {
   1077   const BranchInst *BI = cast<BranchInst>(I);
   1078   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1079   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1080 
   1081   // Simple branch support.
   1082 
   1083   // If we can, avoid recomputing the compare - redoing it could lead to wonky
   1084   // behavior.
   1085   // TODO: Factor this out.
   1086   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1087     MVT SourceVT;
   1088     Type *Ty = CI->getOperand(0)->getType();
   1089     if (CI->hasOneUse() && (CI->getParent() == I->getParent())
   1090         && isTypeLegal(Ty, SourceVT)) {
   1091       bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1092       if (isFloat && !Subtarget->hasVFP2())
   1093         return false;
   1094 
   1095       unsigned CmpOpc;
   1096       switch (SourceVT.SimpleTy) {
   1097         default: return false;
   1098         // TODO: Verify compares.
   1099         case MVT::f32:
   1100           CmpOpc = ARM::VCMPES;
   1101           break;
   1102         case MVT::f64:
   1103           CmpOpc = ARM::VCMPED;
   1104           break;
   1105         case MVT::i32:
   1106           CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
   1107           break;
   1108       }
   1109 
   1110       // Get the compare predicate.
   1111       // Try to take advantage of fallthrough opportunities.
   1112       CmpInst::Predicate Predicate = CI->getPredicate();
   1113       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1114         std::swap(TBB, FBB);
   1115         Predicate = CmpInst::getInversePredicate(Predicate);
   1116       }
   1117 
   1118       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
   1119 
   1120       // We may not handle every CC for now.
   1121       if (ARMPred == ARMCC::AL) return false;
   1122 
   1123       unsigned Arg1 = getRegForValue(CI->getOperand(0));
   1124       if (Arg1 == 0) return false;
   1125 
   1126       unsigned Arg2 = getRegForValue(CI->getOperand(1));
   1127       if (Arg2 == 0) return false;
   1128 
   1129       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1130                               TII.get(CmpOpc))
   1131                       .addReg(Arg1).addReg(Arg2));
   1132 
   1133       // For floating point we need to move the result to a comparison register
   1134       // that we can then use for branches.
   1135       if (isFloat)
   1136         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1137                                 TII.get(ARM::FMSTAT)));
   1138 
   1139       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
   1140       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1141       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
   1142       FastEmitBranch(FBB, DL);
   1143       FuncInfo.MBB->addSuccessor(TBB);
   1144       return true;
   1145     }
   1146   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1147     MVT SourceVT;
   1148     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1149         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
   1150       unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
   1151       unsigned OpReg = getRegForValue(TI->getOperand(0));
   1152       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1153                               TII.get(TstOpc))
   1154                       .addReg(OpReg).addImm(1));
   1155 
   1156       unsigned CCMode = ARMCC::NE;
   1157       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1158         std::swap(TBB, FBB);
   1159         CCMode = ARMCC::EQ;
   1160       }
   1161 
   1162       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
   1163       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1164       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1165 
   1166       FastEmitBranch(FBB, DL);
   1167       FuncInfo.MBB->addSuccessor(TBB);
   1168       return true;
   1169     }
   1170   }
   1171 
   1172   unsigned CmpReg = getRegForValue(BI->getCondition());
   1173   if (CmpReg == 0) return false;
   1174 
   1175   // We've been divorced from our compare!  Our block was split, and
   1176   // now our compare lives in a predecessor block.  We musn't
   1177   // re-compare here, as the children of the compare aren't guaranteed
   1178   // live across the block boundary (we *could* check for this).
   1179   // Regardless, the compare has been done in the predecessor block,
   1180   // and it left a value for us in a virtual register.  Ergo, we test
   1181   // the one-bit value left in the virtual register.
   1182   unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
   1183   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
   1184                   .addReg(CmpReg).addImm(1));
   1185 
   1186   unsigned CCMode = ARMCC::NE;
   1187   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1188     std::swap(TBB, FBB);
   1189     CCMode = ARMCC::EQ;
   1190   }
   1191 
   1192   unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
   1193   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1194                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1195   FastEmitBranch(FBB, DL);
   1196   FuncInfo.MBB->addSuccessor(TBB);
   1197   return true;
   1198 }
   1199 
   1200 bool ARMFastISel::SelectCmp(const Instruction *I) {
   1201   const CmpInst *CI = cast<CmpInst>(I);
   1202 
   1203   MVT VT;
   1204   Type *Ty = CI->getOperand(0)->getType();
   1205   if (!isTypeLegal(Ty, VT))
   1206     return false;
   1207 
   1208   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1209   if (isFloat && !Subtarget->hasVFP2())
   1210     return false;
   1211 
   1212   unsigned CmpOpc;
   1213   unsigned CondReg;
   1214   switch (VT.SimpleTy) {
   1215     default: return false;
   1216     // TODO: Verify compares.
   1217     case MVT::f32:
   1218       CmpOpc = ARM::VCMPES;
   1219       CondReg = ARM::FPSCR;
   1220       break;
   1221     case MVT::f64:
   1222       CmpOpc = ARM::VCMPED;
   1223       CondReg = ARM::FPSCR;
   1224       break;
   1225     case MVT::i32:
   1226       CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
   1227       CondReg = ARM::CPSR;
   1228       break;
   1229   }
   1230 
   1231   // Get the compare predicate.
   1232   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
   1233 
   1234   // We may not handle every CC for now.
   1235   if (ARMPred == ARMCC::AL) return false;
   1236 
   1237   unsigned Arg1 = getRegForValue(CI->getOperand(0));
   1238   if (Arg1 == 0) return false;
   1239 
   1240   unsigned Arg2 = getRegForValue(CI->getOperand(1));
   1241   if (Arg2 == 0) return false;
   1242 
   1243   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1244                   .addReg(Arg1).addReg(Arg2));
   1245 
   1246   // For floating point we need to move the result to a comparison register
   1247   // that we can then use for branches.
   1248   if (isFloat)
   1249     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1250                             TII.get(ARM::FMSTAT)));
   1251 
   1252   // Now set a register based on the comparison. Explicitly set the predicates
   1253   // here.
   1254   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
   1255   TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
   1256                                     : ARM::GPRRegisterClass;
   1257   unsigned DestReg = createResultReg(RC);
   1258   Constant *Zero
   1259     = ConstantInt::get(Type::getInt32Ty(*Context), 0);
   1260   unsigned ZeroReg = TargetMaterializeConstant(Zero);
   1261   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
   1262           .addReg(ZeroReg).addImm(1)
   1263           .addImm(ARMPred).addReg(CondReg);
   1264 
   1265   UpdateValueMap(I, DestReg);
   1266   return true;
   1267 }
   1268 
   1269 bool ARMFastISel::SelectFPExt(const Instruction *I) {
   1270   // Make sure we have VFP and that we're extending float to double.
   1271   if (!Subtarget->hasVFP2()) return false;
   1272 
   1273   Value *V = I->getOperand(0);
   1274   if (!I->getType()->isDoubleTy() ||
   1275       !V->getType()->isFloatTy()) return false;
   1276 
   1277   unsigned Op = getRegForValue(V);
   1278   if (Op == 0) return false;
   1279 
   1280   unsigned Result = createResultReg(ARM::DPRRegisterClass);
   1281   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1282                           TII.get(ARM::VCVTDS), Result)
   1283                   .addReg(Op));
   1284   UpdateValueMap(I, Result);
   1285   return true;
   1286 }
   1287 
   1288 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
   1289   // Make sure we have VFP and that we're truncating double to float.
   1290   if (!Subtarget->hasVFP2()) return false;
   1291 
   1292   Value *V = I->getOperand(0);
   1293   if (!(I->getType()->isFloatTy() &&
   1294         V->getType()->isDoubleTy())) return false;
   1295 
   1296   unsigned Op = getRegForValue(V);
   1297   if (Op == 0) return false;
   1298 
   1299   unsigned Result = createResultReg(ARM::SPRRegisterClass);
   1300   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1301                           TII.get(ARM::VCVTSD), Result)
   1302                   .addReg(Op));
   1303   UpdateValueMap(I, Result);
   1304   return true;
   1305 }
   1306 
   1307 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
   1308   // Make sure we have VFP.
   1309   if (!Subtarget->hasVFP2()) return false;
   1310 
   1311   MVT DstVT;
   1312   Type *Ty = I->getType();
   1313   if (!isTypeLegal(Ty, DstVT))
   1314     return false;
   1315 
   1316   // FIXME: Handle sign-extension where necessary.
   1317   if (!I->getOperand(0)->getType()->isIntegerTy(32))
   1318     return false;
   1319 
   1320   unsigned Op = getRegForValue(I->getOperand(0));
   1321   if (Op == 0) return false;
   1322 
   1323   // The conversion routine works on fp-reg to fp-reg and the operand above
   1324   // was an integer, move it to the fp registers if possible.
   1325   unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
   1326   if (FP == 0) return false;
   1327 
   1328   unsigned Opc;
   1329   if (Ty->isFloatTy()) Opc = ARM::VSITOS;
   1330   else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
   1331   else return 0;
   1332 
   1333   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
   1334   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1335                           ResultReg)
   1336                   .addReg(FP));
   1337   UpdateValueMap(I, ResultReg);
   1338   return true;
   1339 }
   1340 
   1341 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
   1342   // Make sure we have VFP.
   1343   if (!Subtarget->hasVFP2()) return false;
   1344 
   1345   MVT DstVT;
   1346   Type *RetTy = I->getType();
   1347   if (!isTypeLegal(RetTy, DstVT))
   1348     return false;
   1349 
   1350   unsigned Op = getRegForValue(I->getOperand(0));
   1351   if (Op == 0) return false;
   1352 
   1353   unsigned Opc;
   1354   Type *OpTy = I->getOperand(0)->getType();
   1355   if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
   1356   else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
   1357   else return 0;
   1358 
   1359   // f64->s32 or f32->s32 both need an intermediate f32 reg.
   1360   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1361   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1362                           ResultReg)
   1363                   .addReg(Op));
   1364 
   1365   // This result needs to be in an integer register, but the conversion only
   1366   // takes place in fp-regs.
   1367   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
   1368   if (IntReg == 0) return false;
   1369 
   1370   UpdateValueMap(I, IntReg);
   1371   return true;
   1372 }
   1373 
   1374 bool ARMFastISel::SelectSelect(const Instruction *I) {
   1375   MVT VT;
   1376   if (!isTypeLegal(I->getType(), VT))
   1377     return false;
   1378 
   1379   // Things need to be register sized for register moves.
   1380   if (VT != MVT::i32) return false;
   1381   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
   1382 
   1383   unsigned CondReg = getRegForValue(I->getOperand(0));
   1384   if (CondReg == 0) return false;
   1385   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1386   if (Op1Reg == 0) return false;
   1387   unsigned Op2Reg = getRegForValue(I->getOperand(2));
   1388   if (Op2Reg == 0) return false;
   1389 
   1390   unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
   1391   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1392                   .addReg(CondReg).addImm(1));
   1393   unsigned ResultReg = createResultReg(RC);
   1394   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
   1395   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
   1396     .addReg(Op1Reg).addReg(Op2Reg)
   1397     .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   1398   UpdateValueMap(I, ResultReg);
   1399   return true;
   1400 }
   1401 
   1402 bool ARMFastISel::SelectSDiv(const Instruction *I) {
   1403   MVT VT;
   1404   Type *Ty = I->getType();
   1405   if (!isTypeLegal(Ty, VT))
   1406     return false;
   1407 
   1408   // If we have integer div support we should have selected this automagically.
   1409   // In case we have a real miss go ahead and return false and we'll pick
   1410   // it up later.
   1411   if (Subtarget->hasDivide()) return false;
   1412 
   1413   // Otherwise emit a libcall.
   1414   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1415   if (VT == MVT::i8)
   1416     LC = RTLIB::SDIV_I8;
   1417   else if (VT == MVT::i16)
   1418     LC = RTLIB::SDIV_I16;
   1419   else if (VT == MVT::i32)
   1420     LC = RTLIB::SDIV_I32;
   1421   else if (VT == MVT::i64)
   1422     LC = RTLIB::SDIV_I64;
   1423   else if (VT == MVT::i128)
   1424     LC = RTLIB::SDIV_I128;
   1425   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
   1426 
   1427   return ARMEmitLibcall(I, LC);
   1428 }
   1429 
   1430 bool ARMFastISel::SelectSRem(const Instruction *I) {
   1431   MVT VT;
   1432   Type *Ty = I->getType();
   1433   if (!isTypeLegal(Ty, VT))
   1434     return false;
   1435 
   1436   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1437   if (VT == MVT::i8)
   1438     LC = RTLIB::SREM_I8;
   1439   else if (VT == MVT::i16)
   1440     LC = RTLIB::SREM_I16;
   1441   else if (VT == MVT::i32)
   1442     LC = RTLIB::SREM_I32;
   1443   else if (VT == MVT::i64)
   1444     LC = RTLIB::SREM_I64;
   1445   else if (VT == MVT::i128)
   1446     LC = RTLIB::SREM_I128;
   1447   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
   1448 
   1449   return ARMEmitLibcall(I, LC);
   1450 }
   1451 
   1452 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
   1453   EVT VT  = TLI.getValueType(I->getType(), true);
   1454 
   1455   // We can get here in the case when we want to use NEON for our fp
   1456   // operations, but can't figure out how to. Just use the vfp instructions
   1457   // if we have them.
   1458   // FIXME: It'd be nice to use NEON instructions.
   1459   Type *Ty = I->getType();
   1460   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1461   if (isFloat && !Subtarget->hasVFP2())
   1462     return false;
   1463 
   1464   unsigned Op1 = getRegForValue(I->getOperand(0));
   1465   if (Op1 == 0) return false;
   1466 
   1467   unsigned Op2 = getRegForValue(I->getOperand(1));
   1468   if (Op2 == 0) return false;
   1469 
   1470   unsigned Opc;
   1471   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
   1472   switch (ISDOpcode) {
   1473     default: return false;
   1474     case ISD::FADD:
   1475       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
   1476       break;
   1477     case ISD::FSUB:
   1478       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
   1479       break;
   1480     case ISD::FMUL:
   1481       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
   1482       break;
   1483   }
   1484   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   1485   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1486                           TII.get(Opc), ResultReg)
   1487                   .addReg(Op1).addReg(Op2));
   1488   UpdateValueMap(I, ResultReg);
   1489   return true;
   1490 }
   1491 
   1492 // Call Handling Code
   1493 
   1494 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
   1495                                  EVT SrcVT, unsigned &ResultReg) {
   1496   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
   1497                            Src, /*TODO: Kill=*/false);
   1498 
   1499   if (RR != 0) {
   1500     ResultReg = RR;
   1501     return true;
   1502   } else
   1503     return false;
   1504 }
   1505 
   1506 // This is largely taken directly from CCAssignFnForNode - we don't support
   1507 // varargs in FastISel so that part has been removed.
   1508 // TODO: We may not support all of this.
   1509 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
   1510   switch (CC) {
   1511   default:
   1512     llvm_unreachable("Unsupported calling convention");
   1513   case CallingConv::Fast:
   1514     // Ignore fastcc. Silence compiler warnings.
   1515     (void)RetFastCC_ARM_APCS;
   1516     (void)FastCC_ARM_APCS;
   1517     // Fallthrough
   1518   case CallingConv::C:
   1519     // Use target triple & subtarget features to do actual dispatch.
   1520     if (Subtarget->isAAPCS_ABI()) {
   1521       if (Subtarget->hasVFP2() &&
   1522           FloatABIType == FloatABI::Hard)
   1523         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1524       else
   1525         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1526     } else
   1527         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1528   case CallingConv::ARM_AAPCS_VFP:
   1529     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1530   case CallingConv::ARM_AAPCS:
   1531     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1532   case CallingConv::ARM_APCS:
   1533     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1534   }
   1535 }
   1536 
   1537 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
   1538                                   SmallVectorImpl<unsigned> &ArgRegs,
   1539                                   SmallVectorImpl<MVT> &ArgVTs,
   1540                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
   1541                                   SmallVectorImpl<unsigned> &RegArgs,
   1542                                   CallingConv::ID CC,
   1543                                   unsigned &NumBytes) {
   1544   SmallVector<CCValAssign, 16> ArgLocs;
   1545   CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
   1546   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
   1547 
   1548   // Get a count of how many bytes are to be pushed on the stack.
   1549   NumBytes = CCInfo.getNextStackOffset();
   1550 
   1551   // Issue CALLSEQ_START
   1552   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1553   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1554                           TII.get(AdjStackDown))
   1555                   .addImm(NumBytes));
   1556 
   1557   // Process the args.
   1558   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1559     CCValAssign &VA = ArgLocs[i];
   1560     unsigned Arg = ArgRegs[VA.getValNo()];
   1561     MVT ArgVT = ArgVTs[VA.getValNo()];
   1562 
   1563     // We don't handle NEON/vector parameters yet.
   1564     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
   1565       return false;
   1566 
   1567     // Handle arg promotion, etc.
   1568     switch (VA.getLocInfo()) {
   1569       case CCValAssign::Full: break;
   1570       case CCValAssign::SExt: {
   1571         bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   1572                                          Arg, ArgVT, Arg);
   1573         assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
   1574         Emitted = true;
   1575         ArgVT = VA.getLocVT();
   1576         break;
   1577       }
   1578       case CCValAssign::ZExt: {
   1579         bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   1580                                          Arg, ArgVT, Arg);
   1581         assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
   1582         Emitted = true;
   1583         ArgVT = VA.getLocVT();
   1584         break;
   1585       }
   1586       case CCValAssign::AExt: {
   1587         bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
   1588                                          Arg, ArgVT, Arg);
   1589         if (!Emitted)
   1590           Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   1591                                       Arg, ArgVT, Arg);
   1592         if (!Emitted)
   1593           Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   1594                                       Arg, ArgVT, Arg);
   1595 
   1596         assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
   1597         ArgVT = VA.getLocVT();
   1598         break;
   1599       }
   1600       case CCValAssign::BCvt: {
   1601         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
   1602                                  /*TODO: Kill=*/false);
   1603         assert(BC != 0 && "Failed to emit a bitcast!");
   1604         Arg = BC;
   1605         ArgVT = VA.getLocVT();
   1606         break;
   1607       }
   1608       default: llvm_unreachable("Unknown arg promotion!");
   1609     }
   1610 
   1611     // Now copy/store arg to correct locations.
   1612     if (VA.isRegLoc() && !VA.needsCustom()) {
   1613       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1614               VA.getLocReg())
   1615       .addReg(Arg);
   1616       RegArgs.push_back(VA.getLocReg());
   1617     } else if (VA.needsCustom()) {
   1618       // TODO: We need custom lowering for vector (v2f64) args.
   1619       if (VA.getLocVT() != MVT::f64) return false;
   1620 
   1621       CCValAssign &NextVA = ArgLocs[++i];
   1622 
   1623       // TODO: Only handle register args for now.
   1624       if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
   1625 
   1626       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1627                               TII.get(ARM::VMOVRRD), VA.getLocReg())
   1628                       .addReg(NextVA.getLocReg(), RegState::Define)
   1629                       .addReg(Arg));
   1630       RegArgs.push_back(VA.getLocReg());
   1631       RegArgs.push_back(NextVA.getLocReg());
   1632     } else {
   1633       assert(VA.isMemLoc());
   1634       // Need to store on the stack.
   1635       Address Addr;
   1636       Addr.BaseType = Address::RegBase;
   1637       Addr.Base.Reg = ARM::SP;
   1638       Addr.Offset = VA.getLocMemOffset();
   1639 
   1640       if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
   1641     }
   1642   }
   1643   return true;
   1644 }
   1645 
   1646 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
   1647                              const Instruction *I, CallingConv::ID CC,
   1648                              unsigned &NumBytes) {
   1649   // Issue CALLSEQ_END
   1650   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   1651   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1652                           TII.get(AdjStackUp))
   1653                   .addImm(NumBytes).addImm(0));
   1654 
   1655   // Now the return value.
   1656   if (RetVT != MVT::isVoid) {
   1657     SmallVector<CCValAssign, 16> RVLocs;
   1658     CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
   1659     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
   1660 
   1661     // Copy all of the result registers out of their specified physreg.
   1662     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
   1663       // For this move we copy into two registers and then move into the
   1664       // double fp reg we want.
   1665       EVT DestVT = RVLocs[0].getValVT();
   1666       TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
   1667       unsigned ResultReg = createResultReg(DstRC);
   1668       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1669                               TII.get(ARM::VMOVDRR), ResultReg)
   1670                       .addReg(RVLocs[0].getLocReg())
   1671                       .addReg(RVLocs[1].getLocReg()));
   1672 
   1673       UsedRegs.push_back(RVLocs[0].getLocReg());
   1674       UsedRegs.push_back(RVLocs[1].getLocReg());
   1675 
   1676       // Finally update the result.
   1677       UpdateValueMap(I, ResultReg);
   1678     } else {
   1679       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
   1680       EVT CopyVT = RVLocs[0].getValVT();
   1681       TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
   1682 
   1683       unsigned ResultReg = createResultReg(DstRC);
   1684       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1685               ResultReg).addReg(RVLocs[0].getLocReg());
   1686       UsedRegs.push_back(RVLocs[0].getLocReg());
   1687 
   1688       // Finally update the result.
   1689       UpdateValueMap(I, ResultReg);
   1690     }
   1691   }
   1692 
   1693   return true;
   1694 }
   1695 
   1696 bool ARMFastISel::SelectRet(const Instruction *I) {
   1697   const ReturnInst *Ret = cast<ReturnInst>(I);
   1698   const Function &F = *I->getParent()->getParent();
   1699 
   1700   if (!FuncInfo.CanLowerReturn)
   1701     return false;
   1702 
   1703   if (F.isVarArg())
   1704     return false;
   1705 
   1706   CallingConv::ID CC = F.getCallingConv();
   1707   if (Ret->getNumOperands() > 0) {
   1708     SmallVector<ISD::OutputArg, 4> Outs;
   1709     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
   1710                   Outs, TLI);
   1711 
   1712     // Analyze operands of the call, assigning locations to each operand.
   1713     SmallVector<CCValAssign, 16> ValLocs;
   1714     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, I->getContext());
   1715     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
   1716 
   1717     const Value *RV = Ret->getOperand(0);
   1718     unsigned Reg = getRegForValue(RV);
   1719     if (Reg == 0)
   1720       return false;
   1721 
   1722     // Only handle a single return value for now.
   1723     if (ValLocs.size() != 1)
   1724       return false;
   1725 
   1726     CCValAssign &VA = ValLocs[0];
   1727 
   1728     // Don't bother handling odd stuff for now.
   1729     if (VA.getLocInfo() != CCValAssign::Full)
   1730       return false;
   1731     // Only handle register returns for now.
   1732     if (!VA.isRegLoc())
   1733       return false;
   1734     // TODO: For now, don't try to handle cases where getLocInfo()
   1735     // says Full but the types don't match.
   1736     if (TLI.getValueType(RV->getType()) != VA.getValVT())
   1737       return false;
   1738 
   1739     // Make the copy.
   1740     unsigned SrcReg = Reg + VA.getValNo();
   1741     unsigned DstReg = VA.getLocReg();
   1742     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
   1743     // Avoid a cross-class copy. This is very unlikely.
   1744     if (!SrcRC->contains(DstReg))
   1745       return false;
   1746     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1747             DstReg).addReg(SrcReg);
   1748 
   1749     // Mark the register as live out of the function.
   1750     MRI.addLiveOut(VA.getLocReg());
   1751   }
   1752 
   1753   unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
   1754   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1755                           TII.get(RetOpc)));
   1756   return true;
   1757 }
   1758 
   1759 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
   1760 
   1761   // Darwin needs the r9 versions of the opcodes.
   1762   bool isDarwin = Subtarget->isTargetDarwin();
   1763   if (isThumb) {
   1764     return isDarwin ? ARM::tBLr9 : ARM::tBL;
   1765   } else  {
   1766     return isDarwin ? ARM::BLr9 : ARM::BL;
   1767   }
   1768 }
   1769 
   1770 // A quick function that will emit a call for a named libcall in F with the
   1771 // vector of passed arguments for the Instruction in I. We can assume that we
   1772 // can emit a call for any libcall we can produce. This is an abridged version
   1773 // of the full call infrastructure since we won't need to worry about things
   1774 // like computed function pointers or strange arguments at call sites.
   1775 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
   1776 // with X86.
   1777 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
   1778   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
   1779 
   1780   // Handle *simple* calls for now.
   1781   Type *RetTy = I->getType();
   1782   MVT RetVT;
   1783   if (RetTy->isVoidTy())
   1784     RetVT = MVT::isVoid;
   1785   else if (!isTypeLegal(RetTy, RetVT))
   1786     return false;
   1787 
   1788   // TODO: For now if we have long calls specified we don't handle the call.
   1789   if (EnableARMLongCalls) return false;
   1790 
   1791   // Set up the argument vectors.
   1792   SmallVector<Value*, 8> Args;
   1793   SmallVector<unsigned, 8> ArgRegs;
   1794   SmallVector<MVT, 8> ArgVTs;
   1795   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   1796   Args.reserve(I->getNumOperands());
   1797   ArgRegs.reserve(I->getNumOperands());
   1798   ArgVTs.reserve(I->getNumOperands());
   1799   ArgFlags.reserve(I->getNumOperands());
   1800   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1801     Value *Op = I->getOperand(i);
   1802     unsigned Arg = getRegForValue(Op);
   1803     if (Arg == 0) return false;
   1804 
   1805     Type *ArgTy = Op->getType();
   1806     MVT ArgVT;
   1807     if (!isTypeLegal(ArgTy, ArgVT)) return false;
   1808 
   1809     ISD::ArgFlagsTy Flags;
   1810     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   1811     Flags.setOrigAlign(OriginalAlignment);
   1812 
   1813     Args.push_back(Op);
   1814     ArgRegs.push_back(Arg);
   1815     ArgVTs.push_back(ArgVT);
   1816     ArgFlags.push_back(Flags);
   1817   }
   1818 
   1819   // Handle the arguments now that we've gotten them.
   1820   SmallVector<unsigned, 4> RegArgs;
   1821   unsigned NumBytes;
   1822   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
   1823     return false;
   1824 
   1825   // Issue the call, BLr9 for darwin, BL otherwise.
   1826   // TODO: Turn this into the table of arm call ops.
   1827   MachineInstrBuilder MIB;
   1828   unsigned CallOpc = ARMSelectCallOp(NULL);
   1829   if(isThumb)
   1830     // Explicitly adding the predicate here.
   1831     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1832                          TII.get(CallOpc)))
   1833                          .addExternalSymbol(TLI.getLibcallName(Call));
   1834   else
   1835     // Explicitly adding the predicate here.
   1836     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1837                          TII.get(CallOpc))
   1838           .addExternalSymbol(TLI.getLibcallName(Call)));
   1839 
   1840   // Add implicit physical register uses to the call.
   1841   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   1842     MIB.addReg(RegArgs[i]);
   1843 
   1844   // Finish off the call including any return values.
   1845   SmallVector<unsigned, 4> UsedRegs;
   1846   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
   1847 
   1848   // Set all unused physreg defs as dead.
   1849   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   1850 
   1851   return true;
   1852 }
   1853 
   1854 bool ARMFastISel::SelectCall(const Instruction *I) {
   1855   const CallInst *CI = cast<CallInst>(I);
   1856   const Value *Callee = CI->getCalledValue();
   1857 
   1858   // Can't handle inline asm or worry about intrinsics yet.
   1859   if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
   1860 
   1861   // Only handle global variable Callees.
   1862   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
   1863   if (!GV)
   1864     return false;
   1865 
   1866   // Check the calling convention.
   1867   ImmutableCallSite CS(CI);
   1868   CallingConv::ID CC = CS.getCallingConv();
   1869 
   1870   // TODO: Avoid some calling conventions?
   1871 
   1872   // Let SDISel handle vararg functions.
   1873   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   1874   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   1875   if (FTy->isVarArg())
   1876     return false;
   1877 
   1878   // Handle *simple* calls for now.
   1879   Type *RetTy = I->getType();
   1880   MVT RetVT;
   1881   if (RetTy->isVoidTy())
   1882     RetVT = MVT::isVoid;
   1883   else if (!isTypeLegal(RetTy, RetVT))
   1884     return false;
   1885 
   1886   // TODO: For now if we have long calls specified we don't handle the call.
   1887   if (EnableARMLongCalls) return false;
   1888 
   1889   // Set up the argument vectors.
   1890   SmallVector<Value*, 8> Args;
   1891   SmallVector<unsigned, 8> ArgRegs;
   1892   SmallVector<MVT, 8> ArgVTs;
   1893   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   1894   Args.reserve(CS.arg_size());
   1895   ArgRegs.reserve(CS.arg_size());
   1896   ArgVTs.reserve(CS.arg_size());
   1897   ArgFlags.reserve(CS.arg_size());
   1898   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   1899        i != e; ++i) {
   1900     unsigned Arg = getRegForValue(*i);
   1901 
   1902     if (Arg == 0)
   1903       return false;
   1904     ISD::ArgFlagsTy Flags;
   1905     unsigned AttrInd = i - CS.arg_begin() + 1;
   1906     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   1907       Flags.setSExt();
   1908     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   1909       Flags.setZExt();
   1910 
   1911          // FIXME: Only handle *easy* calls for now.
   1912     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
   1913         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
   1914         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
   1915         CS.paramHasAttr(AttrInd, Attribute::ByVal))
   1916       return false;
   1917 
   1918     Type *ArgTy = (*i)->getType();
   1919     MVT ArgVT;
   1920     if (!isTypeLegal(ArgTy, ArgVT))
   1921       return false;
   1922     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   1923     Flags.setOrigAlign(OriginalAlignment);
   1924 
   1925     Args.push_back(*i);
   1926     ArgRegs.push_back(Arg);
   1927     ArgVTs.push_back(ArgVT);
   1928     ArgFlags.push_back(Flags);
   1929   }
   1930 
   1931   // Handle the arguments now that we've gotten them.
   1932   SmallVector<unsigned, 4> RegArgs;
   1933   unsigned NumBytes;
   1934   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
   1935     return false;
   1936 
   1937   // Issue the call, BLr9 for darwin, BL otherwise.
   1938   // TODO: Turn this into the table of arm call ops.
   1939   MachineInstrBuilder MIB;
   1940   unsigned CallOpc = ARMSelectCallOp(GV);
   1941   // Explicitly adding the predicate here.
   1942   if(isThumb)
   1943     // Explicitly adding the predicate here.
   1944     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1945                          TII.get(CallOpc)))
   1946           .addGlobalAddress(GV, 0, 0);
   1947   else
   1948     // Explicitly adding the predicate here.
   1949     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1950                          TII.get(CallOpc))
   1951           .addGlobalAddress(GV, 0, 0));
   1952 
   1953   // Add implicit physical register uses to the call.
   1954   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   1955     MIB.addReg(RegArgs[i]);
   1956 
   1957   // Finish off the call including any return values.
   1958   SmallVector<unsigned, 4> UsedRegs;
   1959   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
   1960 
   1961   // Set all unused physreg defs as dead.
   1962   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   1963 
   1964   return true;
   1965 
   1966 }
   1967 
   1968 bool ARMFastISel::SelectIntCast(const Instruction *I) {
   1969   // On ARM, in general, integer casts don't involve legal types; this code
   1970   // handles promotable integers.  The high bits for a type smaller than
   1971   // the register size are assumed to be undefined.
   1972   Type *DestTy = I->getType();
   1973   Value *Op = I->getOperand(0);
   1974   Type *SrcTy = Op->getType();
   1975 
   1976   EVT SrcVT, DestVT;
   1977   SrcVT = TLI.getValueType(SrcTy, true);
   1978   DestVT = TLI.getValueType(DestTy, true);
   1979 
   1980   if (isa<TruncInst>(I)) {
   1981     if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   1982       return false;
   1983     if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   1984       return false;
   1985 
   1986     unsigned SrcReg = getRegForValue(Op);
   1987     if (!SrcReg) return false;
   1988 
   1989     // Because the high bits are undefined, a truncate doesn't generate
   1990     // any code.
   1991     UpdateValueMap(I, SrcReg);
   1992     return true;
   1993   }
   1994   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
   1995     return false;
   1996 
   1997   unsigned Opc;
   1998   bool isZext = isa<ZExtInst>(I);
   1999   bool isBoolZext = false;
   2000   if (!SrcVT.isSimple())
   2001     return false;
   2002   switch (SrcVT.getSimpleVT().SimpleTy) {
   2003   default: return false;
   2004   case MVT::i16:
   2005     if (isZext)
   2006       Opc = isThumb ? ARM::t2UXTHr : ARM::UXTHr;
   2007     else
   2008       Opc = isThumb ? ARM::t2SXTHr : ARM::SXTHr;
   2009     break;
   2010   case MVT::i8:
   2011     if (isZext)
   2012       Opc = isThumb ? ARM::t2UXTBr : ARM::UXTBr;
   2013     else
   2014       Opc = isThumb ? ARM::t2SXTBr : ARM::SXTBr;
   2015     break;
   2016   case MVT::i1:
   2017     if (isZext) {
   2018       Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
   2019       isBoolZext = true;
   2020       break;
   2021     }
   2022     return false;
   2023   }
   2024 
   2025   // FIXME: We could save an instruction in many cases by special-casing
   2026   // load instructions.
   2027   unsigned SrcReg = getRegForValue(Op);
   2028   if (!SrcReg) return false;
   2029 
   2030   unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   2031   MachineInstrBuilder MIB;
   2032   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
   2033         .addReg(SrcReg);
   2034   if (isBoolZext)
   2035     MIB.addImm(1);
   2036   AddOptionalDefs(MIB);
   2037   UpdateValueMap(I, DestReg);
   2038   return true;
   2039 }
   2040 
   2041 // TODO: SoftFP support.
   2042 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
   2043 
   2044   switch (I->getOpcode()) {
   2045     case Instruction::Load:
   2046       return SelectLoad(I);
   2047     case Instruction::Store:
   2048       return SelectStore(I);
   2049     case Instruction::Br:
   2050       return SelectBranch(I);
   2051     case Instruction::ICmp:
   2052     case Instruction::FCmp:
   2053       return SelectCmp(I);
   2054     case Instruction::FPExt:
   2055       return SelectFPExt(I);
   2056     case Instruction::FPTrunc:
   2057       return SelectFPTrunc(I);
   2058     case Instruction::SIToFP:
   2059       return SelectSIToFP(I);
   2060     case Instruction::FPToSI:
   2061       return SelectFPToSI(I);
   2062     case Instruction::FAdd:
   2063       return SelectBinaryOp(I, ISD::FADD);
   2064     case Instruction::FSub:
   2065       return SelectBinaryOp(I, ISD::FSUB);
   2066     case Instruction::FMul:
   2067       return SelectBinaryOp(I, ISD::FMUL);
   2068     case Instruction::SDiv:
   2069       return SelectSDiv(I);
   2070     case Instruction::SRem:
   2071       return SelectSRem(I);
   2072     case Instruction::Call:
   2073       return SelectCall(I);
   2074     case Instruction::Select:
   2075       return SelectSelect(I);
   2076     case Instruction::Ret:
   2077       return SelectRet(I);
   2078     case Instruction::Trunc:
   2079     case Instruction::ZExt:
   2080     case Instruction::SExt:
   2081       return SelectIntCast(I);
   2082     default: break;
   2083   }
   2084   return false;
   2085 }
   2086 
   2087 namespace llvm {
   2088   llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
   2089     // Completely untested on non-darwin.
   2090     const TargetMachine &TM = funcInfo.MF->getTarget();
   2091 
   2092     // Darwin and thumb1 only for now.
   2093     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
   2094     if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
   2095         !DisableARMFastISel)
   2096       return new ARMFastISel(funcInfo);
   2097     return 0;
   2098   }
   2099 }
   2100