Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "sched-instrs"
     16 #include "ScheduleDAGInstrs.h"
     17 #include "llvm/Operator.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/CodeGen/MachineFunctionPass.h"
     21 #include "llvm/CodeGen/MachineMemOperand.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/PseudoSourceValue.h"
     24 #include "llvm/MC/MCInstrItineraries.h"
     25 #include "llvm/Target/TargetMachine.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetRegisterInfo.h"
     28 #include "llvm/Target/TargetSubtargetInfo.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 using namespace llvm;
     33 
     34 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     35                                      const MachineLoopInfo &mli,
     36                                      const MachineDominatorTree &mdt)
     37   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
     38     InstrItins(mf.getTarget().getInstrItineraryData()),
     39     Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
     40     LoopRegs(MLI, MDT), FirstDbgValue(0) {
     41   DbgValues.clear();
     42 }
     43 
     44 /// Run - perform scheduling.
     45 ///
     46 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
     47                             MachineBasicBlock::iterator begin,
     48                             MachineBasicBlock::iterator end,
     49                             unsigned endcount) {
     50   BB = bb;
     51   Begin = begin;
     52   InsertPosIndex = endcount;
     53 
     54   ScheduleDAG::Run(bb, end);
     55 }
     56 
     57 /// getUnderlyingObjectFromInt - This is the function that does the work of
     58 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
     59 static const Value *getUnderlyingObjectFromInt(const Value *V) {
     60   do {
     61     if (const Operator *U = dyn_cast<Operator>(V)) {
     62       // If we find a ptrtoint, we can transfer control back to the
     63       // regular getUnderlyingObjectFromInt.
     64       if (U->getOpcode() == Instruction::PtrToInt)
     65         return U->getOperand(0);
     66       // If we find an add of a constant or a multiplied value, it's
     67       // likely that the other operand will lead us to the base
     68       // object. We don't have to worry about the case where the
     69       // object address is somehow being computed by the multiply,
     70       // because our callers only care when the result is an
     71       // identifibale object.
     72       if (U->getOpcode() != Instruction::Add ||
     73           (!isa<ConstantInt>(U->getOperand(1)) &&
     74            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
     75         return V;
     76       V = U->getOperand(0);
     77     } else {
     78       return V;
     79     }
     80     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
     81   } while (1);
     82 }
     83 
     84 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
     85 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
     86 static const Value *getUnderlyingObject(const Value *V) {
     87   // First just call Value::getUnderlyingObject to let it do what it does.
     88   do {
     89     V = GetUnderlyingObject(V);
     90     // If it found an inttoptr, use special code to continue climing.
     91     if (Operator::getOpcode(V) != Instruction::IntToPtr)
     92       break;
     93     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
     94     // If that succeeded in finding a pointer, continue the search.
     95     if (!O->getType()->isPointerTy())
     96       break;
     97     V = O;
     98   } while (1);
     99   return V;
    100 }
    101 
    102 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
    103 /// information and it can be tracked to a normal reference to a known
    104 /// object, return the Value for that object. Otherwise return null.
    105 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
    106                                                 const MachineFrameInfo *MFI,
    107                                                 bool &MayAlias) {
    108   MayAlias = true;
    109   if (!MI->hasOneMemOperand() ||
    110       !(*MI->memoperands_begin())->getValue() ||
    111       (*MI->memoperands_begin())->isVolatile())
    112     return 0;
    113 
    114   const Value *V = (*MI->memoperands_begin())->getValue();
    115   if (!V)
    116     return 0;
    117 
    118   V = getUnderlyingObject(V);
    119   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
    120     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    121     // because the code that uses this function has no way to cope with
    122     // such aliases.
    123     if (PSV->isAliased(MFI))
    124       return 0;
    125 
    126     MayAlias = PSV->mayAlias(MFI);
    127     return V;
    128   }
    129 
    130   if (isIdentifiedObject(V))
    131     return V;
    132 
    133   return 0;
    134 }
    135 
    136 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
    137   LoopRegs.Deps.clear();
    138   if (MachineLoop *ML = MLI.getLoopFor(BB))
    139     if (BB == ML->getLoopLatch()) {
    140       MachineBasicBlock *Header = ML->getHeader();
    141       for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
    142            E = Header->livein_end(); I != E; ++I)
    143         LoopLiveInRegs.insert(*I);
    144       LoopRegs.VisitLoop(ML);
    145     }
    146 }
    147 
    148 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
    149 /// list of instructions being scheduled to scheduling barrier by adding
    150 /// the exit SU to the register defs and use list. This is because we want to
    151 /// make sure instructions which define registers that are either used by
    152 /// the terminator or are live-out are properly scheduled. This is
    153 /// especially important when the definition latency of the return value(s)
    154 /// are too high to be hidden by the branch or when the liveout registers
    155 /// used by instructions in the fallthrough block.
    156 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
    157   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
    158   ExitSU.setInstr(ExitMI);
    159   bool AllDepKnown = ExitMI &&
    160     (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
    161   if (ExitMI && AllDepKnown) {
    162     // If it's a call or a barrier, add dependencies on the defs and uses of
    163     // instruction.
    164     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    165       const MachineOperand &MO = ExitMI->getOperand(i);
    166       if (!MO.isReg() || MO.isDef()) continue;
    167       unsigned Reg = MO.getReg();
    168       if (Reg == 0) continue;
    169 
    170       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
    171       Uses[Reg].push_back(&ExitSU);
    172     }
    173   } else {
    174     // For others, e.g. fallthrough, conditional branch, assume the exit
    175     // uses all the registers that are livein to the successor blocks.
    176     SmallSet<unsigned, 8> Seen;
    177     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    178            SE = BB->succ_end(); SI != SE; ++SI)
    179       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    180              E = (*SI)->livein_end(); I != E; ++I) {
    181         unsigned Reg = *I;
    182         if (Seen.insert(Reg))
    183           Uses[Reg].push_back(&ExitSU);
    184       }
    185   }
    186 }
    187 
    188 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
    189   // We'll be allocating one SUnit for each instruction, plus one for
    190   // the region exit node.
    191   SUnits.reserve(BB->size());
    192 
    193   // We build scheduling units by walking a block's instruction list from bottom
    194   // to top.
    195 
    196   // Remember where a generic side-effecting instruction is as we procede.
    197   SUnit *BarrierChain = 0, *AliasChain = 0;
    198 
    199   // Memory references to specific known memory locations are tracked
    200   // so that they can be given more precise dependencies. We track
    201   // separately the known memory locations that may alias and those
    202   // that are known not to alias
    203   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
    204   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
    205 
    206   // Check to see if the scheduler cares about latencies.
    207   bool UnitLatencies = ForceUnitLatencies();
    208 
    209   // Ask the target if address-backscheduling is desirable, and if so how much.
    210   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
    211   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
    212 
    213   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    214   // without emitting the info from the previous call.
    215   DbgValues.clear();
    216   FirstDbgValue = NULL;
    217 
    218   // Model data dependencies between instructions being scheduled and the
    219   // ExitSU.
    220   AddSchedBarrierDeps();
    221 
    222   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
    223     assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
    224   }
    225 
    226   // Walk the list of instructions, from bottom moving up.
    227   MachineInstr *PrevMI = NULL;
    228   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
    229        MII != MIE; --MII) {
    230     MachineInstr *MI = prior(MII);
    231     if (MI && PrevMI) {
    232       DbgValues.push_back(std::make_pair(PrevMI, MI));
    233       PrevMI = NULL;
    234     }
    235 
    236     if (MI->isDebugValue()) {
    237       PrevMI = MI;
    238       continue;
    239     }
    240 
    241     const MCInstrDesc &MCID = MI->getDesc();
    242     assert(!MCID.isTerminator() && !MI->isLabel() &&
    243            "Cannot schedule terminators or labels!");
    244     // Create the SUnit for this MI.
    245     SUnit *SU = NewSUnit(MI);
    246     SU->isCall = MCID.isCall();
    247     SU->isCommutable = MCID.isCommutable();
    248 
    249     // Assign the Latency field of SU using target-provided information.
    250     if (UnitLatencies)
    251       SU->Latency = 1;
    252     else
    253       ComputeLatency(SU);
    254 
    255     // Add register-based dependencies (data, anti, and output).
    256     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
    257       const MachineOperand &MO = MI->getOperand(j);
    258       if (!MO.isReg()) continue;
    259       unsigned Reg = MO.getReg();
    260       if (Reg == 0) continue;
    261 
    262       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
    263 
    264       std::vector<SUnit *> &UseList = Uses[Reg];
    265       // Defs are push in the order they are visited and never reordered.
    266       std::vector<SUnit *> &DefList = Defs[Reg];
    267       // Optionally add output and anti dependencies. For anti
    268       // dependencies we use a latency of 0 because for a multi-issue
    269       // target we want to allow the defining instruction to issue
    270       // in the same cycle as the using instruction.
    271       // TODO: Using a latency of 1 here for output dependencies assumes
    272       //       there's no cost for reusing registers.
    273       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    274       unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
    275       for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
    276         SUnit *DefSU = DefList[i];
    277         if (DefSU == &ExitSU)
    278           continue;
    279         if (DefSU != SU &&
    280             (Kind != SDep::Output || !MO.isDead() ||
    281              !DefSU->getInstr()->registerDefIsDead(Reg)))
    282           DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
    283       }
    284       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    285         std::vector<SUnit *> &MemDefList = Defs[*Alias];
    286         for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
    287           SUnit *DefSU = MemDefList[i];
    288           if (DefSU == &ExitSU)
    289             continue;
    290           if (DefSU != SU &&
    291               (Kind != SDep::Output || !MO.isDead() ||
    292                !DefSU->getInstr()->registerDefIsDead(*Alias)))
    293             DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
    294         }
    295       }
    296 
    297       if (MO.isDef()) {
    298         // Add any data dependencies.
    299         unsigned DataLatency = SU->Latency;
    300         for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
    301           SUnit *UseSU = UseList[i];
    302           if (UseSU == SU)
    303             continue;
    304           unsigned LDataLatency = DataLatency;
    305           // Optionally add in a special extra latency for nodes that
    306           // feed addresses.
    307           // TODO: Do this for register aliases too.
    308           // TODO: Perhaps we should get rid of
    309           // SpecialAddressLatency and just move this into
    310           // adjustSchedDependency for the targets that care about it.
    311           if (SpecialAddressLatency != 0 && !UnitLatencies &&
    312               UseSU != &ExitSU) {
    313             MachineInstr *UseMI = UseSU->getInstr();
    314             const MCInstrDesc &UseMCID = UseMI->getDesc();
    315             int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
    316             assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
    317             if (RegUseIndex >= 0 &&
    318                 (UseMCID.mayLoad() || UseMCID.mayStore()) &&
    319                 (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
    320                 UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
    321               LDataLatency += SpecialAddressLatency;
    322           }
    323           // Adjust the dependence latency using operand def/use
    324           // information (if any), and then allow the target to
    325           // perform its own adjustments.
    326           const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
    327           if (!UnitLatencies) {
    328             ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
    329             ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
    330           }
    331           UseSU->addPred(dep);
    332         }
    333         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    334           std::vector<SUnit *> &UseList = Uses[*Alias];
    335           for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
    336             SUnit *UseSU = UseList[i];
    337             if (UseSU == SU)
    338               continue;
    339             const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
    340             if (!UnitLatencies) {
    341               ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
    342               ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
    343             }
    344             UseSU->addPred(dep);
    345           }
    346         }
    347 
    348         // If a def is going to wrap back around to the top of the loop,
    349         // backschedule it.
    350         if (!UnitLatencies && DefList.empty()) {
    351           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
    352           if (I != LoopRegs.Deps.end()) {
    353             const MachineOperand *UseMO = I->second.first;
    354             unsigned Count = I->second.second;
    355             const MachineInstr *UseMI = UseMO->getParent();
    356             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
    357             const MCInstrDesc &UseMCID = UseMI->getDesc();
    358             // TODO: If we knew the total depth of the region here, we could
    359             // handle the case where the whole loop is inside the region but
    360             // is large enough that the isScheduleHigh trick isn't needed.
    361             if (UseMOIdx < UseMCID.getNumOperands()) {
    362               // Currently, we only support scheduling regions consisting of
    363               // single basic blocks. Check to see if the instruction is in
    364               // the same region by checking to see if it has the same parent.
    365               if (UseMI->getParent() != MI->getParent()) {
    366                 unsigned Latency = SU->Latency;
    367                 if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
    368                   Latency += SpecialAddressLatency;
    369                 // This is a wild guess as to the portion of the latency which
    370                 // will be overlapped by work done outside the current
    371                 // scheduling region.
    372                 Latency -= std::min(Latency, Count);
    373                 // Add the artificial edge.
    374                 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
    375                                     /*Reg=*/0, /*isNormalMemory=*/false,
    376                                     /*isMustAlias=*/false,
    377                                     /*isArtificial=*/true));
    378               } else if (SpecialAddressLatency > 0 &&
    379                          UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
    380                 // The entire loop body is within the current scheduling region
    381                 // and the latency of this operation is assumed to be greater
    382                 // than the latency of the loop.
    383                 // TODO: Recursively mark data-edge predecessors as
    384                 //       isScheduleHigh too.
    385                 SU->isScheduleHigh = true;
    386               }
    387             }
    388             LoopRegs.Deps.erase(I);
    389           }
    390         }
    391 
    392         UseList.clear();
    393         if (!MO.isDead())
    394           DefList.clear();
    395 
    396         // Calls will not be reordered because of chain dependencies (see
    397         // below). Since call operands are dead, calls may continue to be added
    398         // to the DefList making dependence checking quadratic in the size of
    399         // the block. Instead, we leave only one call at the back of the
    400         // DefList.
    401         if (SU->isCall) {
    402           while (!DefList.empty() && DefList.back()->isCall)
    403             DefList.pop_back();
    404         }
    405         DefList.push_back(SU);
    406       } else {
    407         UseList.push_back(SU);
    408       }
    409     }
    410 
    411     // Add chain dependencies.
    412     // Chain dependencies used to enforce memory order should have
    413     // latency of 0 (except for true dependency of Store followed by
    414     // aliased Load... we estimate that with a single cycle of latency
    415     // assuming the hardware will bypass)
    416     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    417     // after stack slots are lowered to actual addresses.
    418     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    419     // produce more precise dependence information.
    420 #define STORE_LOAD_LATENCY 1
    421     unsigned TrueMemOrderLatency = 0;
    422     if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
    423         (MI->hasVolatileMemoryRef() &&
    424          (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
    425       // Be conservative with these and add dependencies on all memory
    426       // references, even those that are known to not alias.
    427       for (std::map<const Value *, SUnit *>::iterator I =
    428              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
    429         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    430       }
    431       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
    432              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
    433         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    434           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
    435       }
    436       NonAliasMemDefs.clear();
    437       NonAliasMemUses.clear();
    438       // Add SU to the barrier chain.
    439       if (BarrierChain)
    440         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    441       BarrierChain = SU;
    442 
    443       // fall-through
    444     new_alias_chain:
    445       // Chain all possibly aliasing memory references though SU.
    446       if (AliasChain)
    447         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    448       AliasChain = SU;
    449       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    450         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
    451       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
    452            E = AliasMemDefs.end(); I != E; ++I) {
    453         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    454       }
    455       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
    456            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
    457         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    458           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
    459       }
    460       PendingLoads.clear();
    461       AliasMemDefs.clear();
    462       AliasMemUses.clear();
    463     } else if (MCID.mayStore()) {
    464       bool MayAlias = true;
    465       TrueMemOrderLatency = STORE_LOAD_LATENCY;
    466       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
    467         // A store to a specific PseudoSourceValue. Add precise dependencies.
    468         // Record the def in MemDefs, first adding a dep if there is
    469         // an existing def.
    470         std::map<const Value *, SUnit *>::iterator I =
    471           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    472         std::map<const Value *, SUnit *>::iterator IE =
    473           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    474         if (I != IE) {
    475           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
    476                                   /*isNormalMemory=*/true));
    477           I->second = SU;
    478         } else {
    479           if (MayAlias)
    480             AliasMemDefs[V] = SU;
    481           else
    482             NonAliasMemDefs[V] = SU;
    483         }
    484         // Handle the uses in MemUses, if there are any.
    485         std::map<const Value *, std::vector<SUnit *> >::iterator J =
    486           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
    487         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
    488           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
    489         if (J != JE) {
    490           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
    491             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
    492                                        /*Reg=*/0, /*isNormalMemory=*/true));
    493           J->second.clear();
    494         }
    495         if (MayAlias) {
    496           // Add dependencies from all the PendingLoads, i.e. loads
    497           // with no underlying object.
    498           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    499             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
    500           // Add dependence on alias chain, if needed.
    501           if (AliasChain)
    502             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    503         }
    504         // Add dependence on barrier chain, if needed.
    505         if (BarrierChain)
    506           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    507       } else {
    508         // Treat all other stores conservatively.
    509         goto new_alias_chain;
    510       }
    511 
    512       if (!ExitSU.isPred(SU))
    513         // Push store's up a bit to avoid them getting in between cmp
    514         // and branches.
    515         ExitSU.addPred(SDep(SU, SDep::Order, 0,
    516                             /*Reg=*/0, /*isNormalMemory=*/false,
    517                             /*isMustAlias=*/false,
    518                             /*isArtificial=*/true));
    519     } else if (MCID.mayLoad()) {
    520       bool MayAlias = true;
    521       TrueMemOrderLatency = 0;
    522       if (MI->isInvariantLoad(AA)) {
    523         // Invariant load, no chain dependencies needed!
    524       } else {
    525         if (const Value *V =
    526             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
    527           // A load from a specific PseudoSourceValue. Add precise dependencies.
    528           std::map<const Value *, SUnit *>::iterator I =
    529             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    530           std::map<const Value *, SUnit *>::iterator IE =
    531             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    532           if (I != IE)
    533             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
    534                                     /*isNormalMemory=*/true));
    535           if (MayAlias)
    536             AliasMemUses[V].push_back(SU);
    537           else
    538             NonAliasMemUses[V].push_back(SU);
    539         } else {
    540           // A load with no underlying object. Depend on all
    541           // potentially aliasing stores.
    542           for (std::map<const Value *, SUnit *>::iterator I =
    543                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
    544             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    545 
    546           PendingLoads.push_back(SU);
    547           MayAlias = true;
    548         }
    549 
    550         // Add dependencies on alias and barrier chains, if needed.
    551         if (MayAlias && AliasChain)
    552           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    553         if (BarrierChain)
    554           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
    555       }
    556     }
    557   }
    558   if (PrevMI)
    559     FirstDbgValue = PrevMI;
    560 
    561   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
    562     Defs[i].clear();
    563     Uses[i].clear();
    564   }
    565   PendingLoads.clear();
    566 }
    567 
    568 void ScheduleDAGInstrs::FinishBlock() {
    569   // Nothing to do.
    570 }
    571 
    572 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
    573   // Compute the latency for the node.
    574   if (!InstrItins || InstrItins->isEmpty()) {
    575     SU->Latency = 1;
    576 
    577     // Simplistic target-independent heuristic: assume that loads take
    578     // extra time.
    579     if (SU->getInstr()->getDesc().mayLoad())
    580       SU->Latency += 2;
    581   } else {
    582     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
    583   }
    584 }
    585 
    586 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
    587                                               SDep& dep) const {
    588   if (!InstrItins || InstrItins->isEmpty())
    589     return;
    590 
    591   // For a data dependency with a known register...
    592   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
    593     return;
    594 
    595   const unsigned Reg = dep.getReg();
    596 
    597   // ... find the definition of the register in the defining
    598   // instruction
    599   MachineInstr *DefMI = Def->getInstr();
    600   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
    601   if (DefIdx != -1) {
    602     const MachineOperand &MO = DefMI->getOperand(DefIdx);
    603     if (MO.isReg() && MO.isImplicit() &&
    604         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
    605       // This is an implicit def, getOperandLatency() won't return the correct
    606       // latency. e.g.
    607       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
    608       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
    609       // What we want is to compute latency between def of %D6/%D7 and use of
    610       // %Q3 instead.
    611       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
    612     }
    613     MachineInstr *UseMI = Use->getInstr();
    614     // For all uses of the register, calculate the maxmimum latency
    615     int Latency = -1;
    616     if (UseMI) {
    617       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
    618         const MachineOperand &MO = UseMI->getOperand(i);
    619         if (!MO.isReg() || !MO.isUse())
    620           continue;
    621         unsigned MOReg = MO.getReg();
    622         if (MOReg != Reg)
    623           continue;
    624 
    625         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
    626                                               UseMI, i);
    627         Latency = std::max(Latency, UseCycle);
    628       }
    629     } else {
    630       // UseMI is null, then it must be a scheduling barrier.
    631       if (!InstrItins || InstrItins->isEmpty())
    632         return;
    633       unsigned DefClass = DefMI->getDesc().getSchedClass();
    634       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
    635     }
    636 
    637     // If we found a latency, then replace the existing dependence latency.
    638     if (Latency >= 0)
    639       dep.setLatency(Latency);
    640   }
    641 }
    642 
    643 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
    644   SU->getInstr()->dump();
    645 }
    646 
    647 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
    648   std::string s;
    649   raw_string_ostream oss(s);
    650   if (SU == &EntrySU)
    651     oss << "<entry>";
    652   else if (SU == &ExitSU)
    653     oss << "<exit>";
    654   else
    655     SU->getInstr()->print(oss);
    656   return oss.str();
    657 }
    658 
    659 // EmitSchedule - Emit the machine code in scheduled order.
    660 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
    661   // For MachineInstr-based scheduling, we're rescheduling the instructions in
    662   // the block, so start by removing them from the block.
    663   while (Begin != InsertPos) {
    664     MachineBasicBlock::iterator I = Begin;
    665     ++Begin;
    666     BB->remove(I);
    667   }
    668 
    669   // If first instruction was a DBG_VALUE then put it back.
    670   if (FirstDbgValue)
    671     BB->insert(InsertPos, FirstDbgValue);
    672 
    673   // Then re-insert them according to the given schedule.
    674   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    675     if (SUnit *SU = Sequence[i])
    676       BB->insert(InsertPos, SU->getInstr());
    677     else
    678       // Null SUnit* is a noop.
    679       EmitNoop();
    680   }
    681 
    682   // Update the Begin iterator, as the first instruction in the block
    683   // may have been scheduled later.
    684   if (!Sequence.empty())
    685     Begin = Sequence[0]->getInstr();
    686 
    687   // Reinsert any remaining debug_values.
    688   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    689          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    690     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    691     MachineInstr *DbgValue = P.first;
    692     MachineInstr *OrigPrivMI = P.second;
    693     BB->insertAfter(OrigPrivMI, DbgValue);
    694   }
    695   DbgValues.clear();
    696   FirstDbgValue = NULL;
    697   return BB;
    698 }
    699