1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86InstrInfo.h" 15 #include "X86.h" 16 #include "X86InstrBuilder.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include <limits> 37 38 #define GET_INSTRINFO_CTOR 39 #include "X86GenInstrInfo.inc" 40 41 using namespace llvm; 42 43 static cl::opt<bool> 44 NoFusing("disable-spill-fusing", 45 cl::desc("Disable fusing of spill code into instructions")); 46 static cl::opt<bool> 47 PrintFailedFusing("print-failed-fuse-candidates", 48 cl::desc("Print instructions that the allocator wants to" 49 " fuse, but the X86 backend currently can't"), 50 cl::Hidden); 51 static cl::opt<bool> 52 ReMatPICStubLoad("remat-pic-stub-load", 53 cl::desc("Re-materialize load from stub in PIC mode"), 54 cl::init(false), cl::Hidden); 55 56 enum { 57 // Select which memory operand is being unfolded. 58 // (stored in bits 0 - 7) 59 TB_INDEX_0 = 0, 60 TB_INDEX_1 = 1, 61 TB_INDEX_2 = 2, 62 TB_INDEX_MASK = 0xff, 63 64 // Minimum alignment required for load/store. 65 // Used for RegOp->MemOp conversion. 66 // (stored in bits 8 - 15) 67 TB_ALIGN_SHIFT = 8, 68 TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT, 69 TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT, 70 TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT, 71 TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT, 72 73 // Do not insert the reverse map (MemOp -> RegOp) into the table. 74 // This may be needed because there is a many -> one mapping. 75 TB_NO_REVERSE = 1 << 16, 76 77 // Do not insert the forward map (RegOp -> MemOp) into the table. 78 // This is needed for Native Client, which prohibits branch 79 // instructions from using a memory operand. 80 TB_NO_FORWARD = 1 << 17, 81 82 TB_FOLDED_LOAD = 1 << 18, 83 TB_FOLDED_STORE = 1 << 19 84 }; 85 86 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) 87 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit() 88 ? X86::ADJCALLSTACKDOWN64 89 : X86::ADJCALLSTACKDOWN32), 90 (tm.getSubtarget<X86Subtarget>().is64Bit() 91 ? X86::ADJCALLSTACKUP64 92 : X86::ADJCALLSTACKUP32)), 93 TM(tm), RI(tm, *this) { 94 95 static const unsigned OpTbl2Addr[][3] = { 96 { X86::ADC32ri, X86::ADC32mi, 0 }, 97 { X86::ADC32ri8, X86::ADC32mi8, 0 }, 98 { X86::ADC32rr, X86::ADC32mr, 0 }, 99 { X86::ADC64ri32, X86::ADC64mi32, 0 }, 100 { X86::ADC64ri8, X86::ADC64mi8, 0 }, 101 { X86::ADC64rr, X86::ADC64mr, 0 }, 102 { X86::ADD16ri, X86::ADD16mi, 0 }, 103 { X86::ADD16ri8, X86::ADD16mi8, 0 }, 104 { X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE }, 105 { X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE }, 106 { X86::ADD16rr, X86::ADD16mr, 0 }, 107 { X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE }, 108 { X86::ADD32ri, X86::ADD32mi, 0 }, 109 { X86::ADD32ri8, X86::ADD32mi8, 0 }, 110 { X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE }, 111 { X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE }, 112 { X86::ADD32rr, X86::ADD32mr, 0 }, 113 { X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE }, 114 { X86::ADD64ri32, X86::ADD64mi32, 0 }, 115 { X86::ADD64ri8, X86::ADD64mi8, 0 }, 116 { X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE }, 117 { X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE }, 118 { X86::ADD64rr, X86::ADD64mr, 0 }, 119 { X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE }, 120 { X86::ADD8ri, X86::ADD8mi, 0 }, 121 { X86::ADD8rr, X86::ADD8mr, 0 }, 122 { X86::AND16ri, X86::AND16mi, 0 }, 123 { X86::AND16ri8, X86::AND16mi8, 0 }, 124 { X86::AND16rr, X86::AND16mr, 0 }, 125 { X86::AND32ri, X86::AND32mi, 0 }, 126 { X86::AND32ri8, X86::AND32mi8, 0 }, 127 { X86::AND32rr, X86::AND32mr, 0 }, 128 { X86::AND64ri32, X86::AND64mi32, 0 }, 129 { X86::AND64ri8, X86::AND64mi8, 0 }, 130 { X86::AND64rr, X86::AND64mr, 0 }, 131 { X86::AND8ri, X86::AND8mi, 0 }, 132 { X86::AND8rr, X86::AND8mr, 0 }, 133 { X86::DEC16r, X86::DEC16m, 0 }, 134 { X86::DEC32r, X86::DEC32m, 0 }, 135 { X86::DEC64_16r, X86::DEC64_16m, 0 }, 136 { X86::DEC64_32r, X86::DEC64_32m, 0 }, 137 { X86::DEC64r, X86::DEC64m, 0 }, 138 { X86::DEC8r, X86::DEC8m, 0 }, 139 { X86::INC16r, X86::INC16m, 0 }, 140 { X86::INC32r, X86::INC32m, 0 }, 141 { X86::INC64_16r, X86::INC64_16m, 0 }, 142 { X86::INC64_32r, X86::INC64_32m, 0 }, 143 { X86::INC64r, X86::INC64m, 0 }, 144 { X86::INC8r, X86::INC8m, 0 }, 145 { X86::NEG16r, X86::NEG16m, 0 }, 146 { X86::NEG32r, X86::NEG32m, 0 }, 147 { X86::NEG64r, X86::NEG64m, 0 }, 148 { X86::NEG8r, X86::NEG8m, 0 }, 149 { X86::NOT16r, X86::NOT16m, 0 }, 150 { X86::NOT32r, X86::NOT32m, 0 }, 151 { X86::NOT64r, X86::NOT64m, 0 }, 152 { X86::NOT8r, X86::NOT8m, 0 }, 153 { X86::OR16ri, X86::OR16mi, 0 }, 154 { X86::OR16ri8, X86::OR16mi8, 0 }, 155 { X86::OR16rr, X86::OR16mr, 0 }, 156 { X86::OR32ri, X86::OR32mi, 0 }, 157 { X86::OR32ri8, X86::OR32mi8, 0 }, 158 { X86::OR32rr, X86::OR32mr, 0 }, 159 { X86::OR64ri32, X86::OR64mi32, 0 }, 160 { X86::OR64ri8, X86::OR64mi8, 0 }, 161 { X86::OR64rr, X86::OR64mr, 0 }, 162 { X86::OR8ri, X86::OR8mi, 0 }, 163 { X86::OR8rr, X86::OR8mr, 0 }, 164 { X86::ROL16r1, X86::ROL16m1, 0 }, 165 { X86::ROL16rCL, X86::ROL16mCL, 0 }, 166 { X86::ROL16ri, X86::ROL16mi, 0 }, 167 { X86::ROL32r1, X86::ROL32m1, 0 }, 168 { X86::ROL32rCL, X86::ROL32mCL, 0 }, 169 { X86::ROL32ri, X86::ROL32mi, 0 }, 170 { X86::ROL64r1, X86::ROL64m1, 0 }, 171 { X86::ROL64rCL, X86::ROL64mCL, 0 }, 172 { X86::ROL64ri, X86::ROL64mi, 0 }, 173 { X86::ROL8r1, X86::ROL8m1, 0 }, 174 { X86::ROL8rCL, X86::ROL8mCL, 0 }, 175 { X86::ROL8ri, X86::ROL8mi, 0 }, 176 { X86::ROR16r1, X86::ROR16m1, 0 }, 177 { X86::ROR16rCL, X86::ROR16mCL, 0 }, 178 { X86::ROR16ri, X86::ROR16mi, 0 }, 179 { X86::ROR32r1, X86::ROR32m1, 0 }, 180 { X86::ROR32rCL, X86::ROR32mCL, 0 }, 181 { X86::ROR32ri, X86::ROR32mi, 0 }, 182 { X86::ROR64r1, X86::ROR64m1, 0 }, 183 { X86::ROR64rCL, X86::ROR64mCL, 0 }, 184 { X86::ROR64ri, X86::ROR64mi, 0 }, 185 { X86::ROR8r1, X86::ROR8m1, 0 }, 186 { X86::ROR8rCL, X86::ROR8mCL, 0 }, 187 { X86::ROR8ri, X86::ROR8mi, 0 }, 188 { X86::SAR16r1, X86::SAR16m1, 0 }, 189 { X86::SAR16rCL, X86::SAR16mCL, 0 }, 190 { X86::SAR16ri, X86::SAR16mi, 0 }, 191 { X86::SAR32r1, X86::SAR32m1, 0 }, 192 { X86::SAR32rCL, X86::SAR32mCL, 0 }, 193 { X86::SAR32ri, X86::SAR32mi, 0 }, 194 { X86::SAR64r1, X86::SAR64m1, 0 }, 195 { X86::SAR64rCL, X86::SAR64mCL, 0 }, 196 { X86::SAR64ri, X86::SAR64mi, 0 }, 197 { X86::SAR8r1, X86::SAR8m1, 0 }, 198 { X86::SAR8rCL, X86::SAR8mCL, 0 }, 199 { X86::SAR8ri, X86::SAR8mi, 0 }, 200 { X86::SBB32ri, X86::SBB32mi, 0 }, 201 { X86::SBB32ri8, X86::SBB32mi8, 0 }, 202 { X86::SBB32rr, X86::SBB32mr, 0 }, 203 { X86::SBB64ri32, X86::SBB64mi32, 0 }, 204 { X86::SBB64ri8, X86::SBB64mi8, 0 }, 205 { X86::SBB64rr, X86::SBB64mr, 0 }, 206 { X86::SHL16rCL, X86::SHL16mCL, 0 }, 207 { X86::SHL16ri, X86::SHL16mi, 0 }, 208 { X86::SHL32rCL, X86::SHL32mCL, 0 }, 209 { X86::SHL32ri, X86::SHL32mi, 0 }, 210 { X86::SHL64rCL, X86::SHL64mCL, 0 }, 211 { X86::SHL64ri, X86::SHL64mi, 0 }, 212 { X86::SHL8rCL, X86::SHL8mCL, 0 }, 213 { X86::SHL8ri, X86::SHL8mi, 0 }, 214 { X86::SHLD16rrCL, X86::SHLD16mrCL, 0 }, 215 { X86::SHLD16rri8, X86::SHLD16mri8, 0 }, 216 { X86::SHLD32rrCL, X86::SHLD32mrCL, 0 }, 217 { X86::SHLD32rri8, X86::SHLD32mri8, 0 }, 218 { X86::SHLD64rrCL, X86::SHLD64mrCL, 0 }, 219 { X86::SHLD64rri8, X86::SHLD64mri8, 0 }, 220 { X86::SHR16r1, X86::SHR16m1, 0 }, 221 { X86::SHR16rCL, X86::SHR16mCL, 0 }, 222 { X86::SHR16ri, X86::SHR16mi, 0 }, 223 { X86::SHR32r1, X86::SHR32m1, 0 }, 224 { X86::SHR32rCL, X86::SHR32mCL, 0 }, 225 { X86::SHR32ri, X86::SHR32mi, 0 }, 226 { X86::SHR64r1, X86::SHR64m1, 0 }, 227 { X86::SHR64rCL, X86::SHR64mCL, 0 }, 228 { X86::SHR64ri, X86::SHR64mi, 0 }, 229 { X86::SHR8r1, X86::SHR8m1, 0 }, 230 { X86::SHR8rCL, X86::SHR8mCL, 0 }, 231 { X86::SHR8ri, X86::SHR8mi, 0 }, 232 { X86::SHRD16rrCL, X86::SHRD16mrCL, 0 }, 233 { X86::SHRD16rri8, X86::SHRD16mri8, 0 }, 234 { X86::SHRD32rrCL, X86::SHRD32mrCL, 0 }, 235 { X86::SHRD32rri8, X86::SHRD32mri8, 0 }, 236 { X86::SHRD64rrCL, X86::SHRD64mrCL, 0 }, 237 { X86::SHRD64rri8, X86::SHRD64mri8, 0 }, 238 { X86::SUB16ri, X86::SUB16mi, 0 }, 239 { X86::SUB16ri8, X86::SUB16mi8, 0 }, 240 { X86::SUB16rr, X86::SUB16mr, 0 }, 241 { X86::SUB32ri, X86::SUB32mi, 0 }, 242 { X86::SUB32ri8, X86::SUB32mi8, 0 }, 243 { X86::SUB32rr, X86::SUB32mr, 0 }, 244 { X86::SUB64ri32, X86::SUB64mi32, 0 }, 245 { X86::SUB64ri8, X86::SUB64mi8, 0 }, 246 { X86::SUB64rr, X86::SUB64mr, 0 }, 247 { X86::SUB8ri, X86::SUB8mi, 0 }, 248 { X86::SUB8rr, X86::SUB8mr, 0 }, 249 { X86::XOR16ri, X86::XOR16mi, 0 }, 250 { X86::XOR16ri8, X86::XOR16mi8, 0 }, 251 { X86::XOR16rr, X86::XOR16mr, 0 }, 252 { X86::XOR32ri, X86::XOR32mi, 0 }, 253 { X86::XOR32ri8, X86::XOR32mi8, 0 }, 254 { X86::XOR32rr, X86::XOR32mr, 0 }, 255 { X86::XOR64ri32, X86::XOR64mi32, 0 }, 256 { X86::XOR64ri8, X86::XOR64mi8, 0 }, 257 { X86::XOR64rr, X86::XOR64mr, 0 }, 258 { X86::XOR8ri, X86::XOR8mi, 0 }, 259 { X86::XOR8rr, X86::XOR8mr, 0 } 260 }; 261 262 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 263 unsigned RegOp = OpTbl2Addr[i][0]; 264 unsigned MemOp = OpTbl2Addr[i][1]; 265 unsigned Flags = OpTbl2Addr[i][2]; 266 AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, 267 RegOp, MemOp, 268 // Index 0, folded load and store, no alignment requirement. 269 Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); 270 } 271 272 static const unsigned OpTbl0[][3] = { 273 { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, 274 { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, 275 { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, 276 { X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD }, 277 { X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD }, 278 { X86::WINCALL64r, X86::WINCALL64m, TB_FOLDED_LOAD }, 279 { X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD }, 280 { X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD }, 281 { X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD }, 282 { X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD }, 283 { X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD }, 284 { X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD }, 285 { X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD }, 286 { X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD }, 287 { X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD }, 288 { X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD }, 289 { X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD }, 290 { X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD }, 291 { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, 292 { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, 293 { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, 294 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 295 { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 296 { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 297 { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, 298 { X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD }, 299 { X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD }, 300 { X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD }, 301 { X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD }, 302 { X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD }, 303 { X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD }, 304 { X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD }, 305 { X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD }, 306 { X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD }, 307 { X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE }, 308 { X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE }, 309 { X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE }, 310 { X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE }, 311 { X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE }, 312 { X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE }, 313 { X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE }, 314 { X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE }, 315 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE }, 316 { X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 317 { X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 318 { X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 319 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE }, 320 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE }, 321 { X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE }, 322 { X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE }, 323 { X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE }, 324 { X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE }, 325 { X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD }, 326 { X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD }, 327 { X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD }, 328 { X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD }, 329 { X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE }, 330 { X86::SETAr, X86::SETAm, TB_FOLDED_STORE }, 331 { X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE }, 332 { X86::SETBr, X86::SETBm, TB_FOLDED_STORE }, 333 { X86::SETEr, X86::SETEm, TB_FOLDED_STORE }, 334 { X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE }, 335 { X86::SETGr, X86::SETGm, TB_FOLDED_STORE }, 336 { X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE }, 337 { X86::SETLr, X86::SETLm, TB_FOLDED_STORE }, 338 { X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE }, 339 { X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE }, 340 { X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE }, 341 { X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE }, 342 { X86::SETOr, X86::SETOm, TB_FOLDED_STORE }, 343 { X86::SETPr, X86::SETPm, TB_FOLDED_STORE }, 344 { X86::SETSr, X86::SETSm, TB_FOLDED_STORE }, 345 { X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD }, 346 { X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD }, 347 { X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD }, 348 { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, 349 { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, 350 { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, 351 // AVX 128-bit versions of foldable instructions 352 { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 353 { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 354 { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, 355 { X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 356 { X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 357 { X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 }, 358 { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE }, 359 { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE }, 360 { X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE }, 361 { X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE }, 362 { X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE }, 363 { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, 364 // AVX 256-bit foldable instructions 365 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 366 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 367 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, 368 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, 369 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE } 370 }; 371 372 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 373 unsigned RegOp = OpTbl0[i][0]; 374 unsigned MemOp = OpTbl0[i][1]; 375 unsigned Flags = OpTbl0[i][2]; 376 AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, 377 RegOp, MemOp, TB_INDEX_0 | Flags); 378 } 379 380 static const unsigned OpTbl1[][3] = { 381 { X86::CMP16rr, X86::CMP16rm, 0 }, 382 { X86::CMP32rr, X86::CMP32rm, 0 }, 383 { X86::CMP64rr, X86::CMP64rm, 0 }, 384 { X86::CMP8rr, X86::CMP8rm, 0 }, 385 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, 386 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, 387 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, 388 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, 389 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, 390 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, 391 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, 392 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, 393 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, 394 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, 395 { X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE }, 396 { X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE }, 397 { X86::IMUL16rri, X86::IMUL16rmi, 0 }, 398 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, 399 { X86::IMUL32rri, X86::IMUL32rmi, 0 }, 400 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, 401 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, 402 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, 403 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, 404 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, 405 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, TB_ALIGN_16 }, 406 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, TB_ALIGN_16 }, 407 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, TB_ALIGN_16 }, 408 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, TB_ALIGN_16 }, 409 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, TB_ALIGN_16 }, 410 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, 411 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 }, 412 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 }, 413 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, 414 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, 415 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, 416 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, 417 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, 418 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, 419 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 }, 420 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 }, 421 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, 422 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, 423 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, 424 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, 425 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, 426 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, 427 { X86::MOV16rr, X86::MOV16rm, 0 }, 428 { X86::MOV32rr, X86::MOV32rm, 0 }, 429 { X86::MOV64rr, X86::MOV64rm, 0 }, 430 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, 431 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, 432 { X86::MOV8rr, X86::MOV8rm, 0 }, 433 { X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 }, 434 { X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 }, 435 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, 436 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, 437 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, 438 { X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 }, 439 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 }, 440 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 }, 441 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, 442 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, 443 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, 444 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, 445 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, 446 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, 447 { X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 }, 448 { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, 449 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, 450 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, 451 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 }, 452 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, 453 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, 454 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, 455 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, 456 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, 457 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, 458 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, 459 { X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 }, 460 { X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 }, 461 { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, 462 { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, 463 { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, 464 { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, 465 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, 466 { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, 467 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, 468 { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, 469 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 }, 470 { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, 471 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 }, 472 { X86::SQRTSDr, X86::SQRTSDm, 0 }, 473 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, 474 { X86::SQRTSSr, X86::SQRTSSm, 0 }, 475 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, 476 { X86::TEST16rr, X86::TEST16rm, 0 }, 477 { X86::TEST32rr, X86::TEST32rm, 0 }, 478 { X86::TEST64rr, X86::TEST64rm, 0 }, 479 { X86::TEST8rr, X86::TEST8rm, 0 }, 480 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 481 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, 482 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, 483 // AVX 128-bit versions of foldable instructions 484 { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, 485 { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, 486 { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm, TB_ALIGN_16 }, 487 { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm, TB_ALIGN_16 }, 488 { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm, TB_ALIGN_16 }, 489 { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm, TB_ALIGN_16 }, 490 { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm, TB_ALIGN_16 }, 491 { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm, 0 }, 492 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 }, 493 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 }, 494 { X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE }, 495 { X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE }, 496 { X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 }, 497 { X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 }, 498 { X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 }, 499 { X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 }, 500 { X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 }, 501 { X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 }, 502 { X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 }, 503 { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, 504 { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, 505 { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, 506 { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 }, 507 { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, 508 { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 }, 509 { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, 510 { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, 511 { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 }, 512 { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 }, 513 { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 }, 514 { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 }, 515 { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 }, 516 { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 }, 517 { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 }, 518 { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 }, 519 { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 }, 520 { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 }, 521 { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 }, 522 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, 523 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, 524 // AVX 256-bit foldable instructions 525 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 }, 526 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 }, 527 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_16 }, 528 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, 529 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 } 530 }; 531 532 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 533 unsigned RegOp = OpTbl1[i][0]; 534 unsigned MemOp = OpTbl1[i][1]; 535 unsigned Flags = OpTbl1[i][2]; 536 AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, 537 RegOp, MemOp, 538 // Index 1, folded load 539 Flags | TB_INDEX_1 | TB_FOLDED_LOAD); 540 } 541 542 static const unsigned OpTbl2[][3] = { 543 { X86::ADC32rr, X86::ADC32rm, 0 }, 544 { X86::ADC64rr, X86::ADC64rm, 0 }, 545 { X86::ADD16rr, X86::ADD16rm, 0 }, 546 { X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE }, 547 { X86::ADD32rr, X86::ADD32rm, 0 }, 548 { X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE }, 549 { X86::ADD64rr, X86::ADD64rm, 0 }, 550 { X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE }, 551 { X86::ADD8rr, X86::ADD8rm, 0 }, 552 { X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 }, 553 { X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 }, 554 { X86::ADDSDrr, X86::ADDSDrm, 0 }, 555 { X86::ADDSSrr, X86::ADDSSrm, 0 }, 556 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 }, 557 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 }, 558 { X86::AND16rr, X86::AND16rm, 0 }, 559 { X86::AND32rr, X86::AND32rm, 0 }, 560 { X86::AND64rr, X86::AND64rm, 0 }, 561 { X86::AND8rr, X86::AND8rm, 0 }, 562 { X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 }, 563 { X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 }, 564 { X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 }, 565 { X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 }, 566 { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, 567 { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, 568 { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, 569 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, 570 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, 571 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, 572 { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, 573 { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, 574 { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, 575 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, 576 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, 577 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, 578 { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, 579 { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, 580 { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, 581 { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, 582 { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, 583 { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, 584 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, 585 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, 586 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, 587 { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, 588 { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, 589 { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, 590 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, 591 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, 592 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, 593 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, 594 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, 595 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, 596 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, 597 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, 598 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, 599 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, 600 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, 601 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, 602 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, 603 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, 604 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, 605 { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, 606 { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, 607 { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, 608 { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, 609 { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, 610 { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, 611 { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, 612 { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, 613 { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, 614 { X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 }, 615 { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, 616 { X86::CMPSDrr, X86::CMPSDrm, 0 }, 617 { X86::CMPSSrr, X86::CMPSSrm, 0 }, 618 { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, 619 { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, 620 { X86::DIVSDrr, X86::DIVSDrm, 0 }, 621 { X86::DIVSSrr, X86::DIVSSrm, 0 }, 622 { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, 623 { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, 624 { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, 625 { X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 }, 626 { X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 }, 627 { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, 628 { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, 629 { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, 630 { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, 631 { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, 632 { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, 633 { X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 }, 634 { X86::IMUL16rr, X86::IMUL16rm, 0 }, 635 { X86::IMUL32rr, X86::IMUL32rm, 0 }, 636 { X86::IMUL64rr, X86::IMUL64rm, 0 }, 637 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, 638 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, 639 { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, 640 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 }, 641 { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, 642 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 }, 643 { X86::MAXSDrr, X86::MAXSDrm, 0 }, 644 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, 645 { X86::MAXSSrr, X86::MAXSSrm, 0 }, 646 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, 647 { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, 648 { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 }, 649 { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, 650 { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 }, 651 { X86::MINSDrr, X86::MINSDrm, 0 }, 652 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, 653 { X86::MINSSrr, X86::MINSSrm, 0 }, 654 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, 655 { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, 656 { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, 657 { X86::MULSDrr, X86::MULSDrm, 0 }, 658 { X86::MULSSrr, X86::MULSSrm, 0 }, 659 { X86::OR16rr, X86::OR16rm, 0 }, 660 { X86::OR32rr, X86::OR32rm, 0 }, 661 { X86::OR64rr, X86::OR64rm, 0 }, 662 { X86::OR8rr, X86::OR8rm, 0 }, 663 { X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 }, 664 { X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 }, 665 { X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 }, 666 { X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 }, 667 { X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 }, 668 { X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 }, 669 { X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 }, 670 { X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 }, 671 { X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 }, 672 { X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 }, 673 { X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 }, 674 { X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 }, 675 { X86::PANDrr, X86::PANDrm, TB_ALIGN_16 }, 676 { X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 }, 677 { X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 }, 678 { X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 }, 679 { X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 }, 680 { X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 }, 681 { X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 }, 682 { X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 }, 683 { X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 }, 684 { X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 }, 685 { X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 }, 686 { X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 }, 687 { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, 688 { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, 689 { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, 690 { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, 691 { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, 692 { X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 }, 693 { X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 }, 694 { X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 }, 695 { X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 }, 696 { X86::PORrr, X86::PORrm, TB_ALIGN_16 }, 697 { X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 }, 698 { X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 }, 699 { X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 }, 700 { X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 }, 701 { X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 }, 702 { X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 }, 703 { X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 }, 704 { X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 }, 705 { X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 }, 706 { X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 }, 707 { X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 }, 708 { X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 }, 709 { X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 }, 710 { X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 }, 711 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 }, 712 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 }, 713 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 }, 714 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 }, 715 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 }, 716 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 }, 717 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 }, 718 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 }, 719 { X86::PXORrr, X86::PXORrm, TB_ALIGN_16 }, 720 { X86::SBB32rr, X86::SBB32rm, 0 }, 721 { X86::SBB64rr, X86::SBB64rm, 0 }, 722 { X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 }, 723 { X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 }, 724 { X86::SUB16rr, X86::SUB16rm, 0 }, 725 { X86::SUB32rr, X86::SUB32rm, 0 }, 726 { X86::SUB64rr, X86::SUB64rm, 0 }, 727 { X86::SUB8rr, X86::SUB8rm, 0 }, 728 { X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 }, 729 { X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 }, 730 { X86::SUBSDrr, X86::SUBSDrm, 0 }, 731 { X86::SUBSSrr, X86::SUBSSrm, 0 }, 732 // FIXME: TEST*rr -> swapped operand of TEST*mr. 733 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 }, 734 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 }, 735 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 }, 736 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 }, 737 { X86::XOR16rr, X86::XOR16rm, 0 }, 738 { X86::XOR32rr, X86::XOR32rm, 0 }, 739 { X86::XOR64rr, X86::XOR64rm, 0 }, 740 { X86::XOR8rr, X86::XOR8rm, 0 }, 741 { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, 742 { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, 743 // AVX 128-bit versions of foldable instructions 744 { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, 745 { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, 746 { X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 }, 747 { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 }, 748 { X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 }, 749 { X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 }, 750 { X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 }, 751 { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 }, 752 { X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 }, 753 { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, 754 { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, 755 { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, 756 { X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 }, 757 { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 }, 758 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 }, 759 { X86::Int_VCVTTSD2SIrr, X86::Int_VCVTTSD2SIrm, 0 }, 760 { X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 }, 761 { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 }, 762 { X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 }, 763 { X86::Int_VCVTTSS2SIrr, X86::Int_VCVTTSS2SIrm, 0 }, 764 { X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 }, 765 { X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 }, 766 { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, TB_ALIGN_16 }, 767 { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 }, 768 { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, 769 { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, 770 { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, 771 { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 }, 772 { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 }, 773 { X86::VADDSDrr, X86::VADDSDrm, 0 }, 774 { X86::VADDSSrr, X86::VADDSSrm, 0 }, 775 { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 }, 776 { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 }, 777 { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 }, 778 { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 }, 779 { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 }, 780 { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 }, 781 { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 }, 782 { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 }, 783 { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, 784 { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, 785 { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 }, 786 { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 }, 787 { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, 788 { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, 789 { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, 790 { X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 }, 791 { X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 }, 792 { X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 }, 793 { X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 }, 794 { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, 795 { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, 796 { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, 797 { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 }, 798 { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 }, 799 { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 }, 800 { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 }, 801 { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, 802 { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, 803 { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 }, 804 { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 }, 805 { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 }, 806 { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 }, 807 { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, 808 { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, 809 { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, 810 { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, 811 { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 }, 812 { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 }, 813 { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 }, 814 { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 }, 815 { X86::VMINSDrr, X86::VMINSDrm, 0 }, 816 { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, 817 { X86::VMINSSrr, X86::VMINSSrm, 0 }, 818 { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, 819 { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 }, 820 { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 }, 821 { X86::VMULSDrr, X86::VMULSDrm, 0 }, 822 { X86::VMULSSrr, X86::VMULSSrm, 0 }, 823 { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 }, 824 { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 }, 825 { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 }, 826 { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 }, 827 { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 }, 828 { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 }, 829 { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 }, 830 { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 }, 831 { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 }, 832 { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 }, 833 { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 }, 834 { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 }, 835 { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 }, 836 { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 }, 837 { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 }, 838 { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 }, 839 { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 }, 840 { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 }, 841 { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 }, 842 { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 }, 843 { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 }, 844 { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 }, 845 { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 }, 846 { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 }, 847 { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 }, 848 { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 }, 849 { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 }, 850 { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 }, 851 { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 }, 852 { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 }, 853 { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 }, 854 { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 }, 855 { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 }, 856 { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 }, 857 { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 }, 858 { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 }, 859 { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 }, 860 { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 }, 861 { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 }, 862 { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 }, 863 { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 }, 864 { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 }, 865 { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 }, 866 { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 }, 867 { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 }, 868 { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 }, 869 { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 }, 870 { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 }, 871 { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 }, 872 { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 }, 873 { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 }, 874 { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 }, 875 { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 }, 876 { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 }, 877 { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 }, 878 { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 }, 879 { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 }, 880 { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 }, 881 { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 }, 882 { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, 883 { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, 884 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 }, 885 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 }, 886 { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 }, 887 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 }, 888 { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 }, 889 { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 } 890 // FIXME: add AVX 256-bit foldable instructions 891 }; 892 893 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 894 unsigned RegOp = OpTbl2[i][0]; 895 unsigned MemOp = OpTbl2[i][1]; 896 unsigned Flags = OpTbl2[i][2]; 897 AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, 898 RegOp, MemOp, 899 // Index 2, folded load 900 Flags | TB_INDEX_2 | TB_FOLDED_LOAD); 901 } 902 } 903 904 void 905 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable, 906 MemOp2RegOpTableType &M2RTable, 907 unsigned RegOp, unsigned MemOp, unsigned Flags) { 908 if ((Flags & TB_NO_FORWARD) == 0) { 909 assert(!R2MTable.count(RegOp) && "Duplicate entry!"); 910 R2MTable[RegOp] = std::make_pair(MemOp, Flags); 911 } 912 if ((Flags & TB_NO_REVERSE) == 0) { 913 assert(!M2RTable.count(MemOp) && 914 "Duplicated entries in unfolding maps?"); 915 M2RTable[MemOp] = std::make_pair(RegOp, Flags); 916 } 917 } 918 919 bool 920 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 921 unsigned &SrcReg, unsigned &DstReg, 922 unsigned &SubIdx) const { 923 switch (MI.getOpcode()) { 924 default: break; 925 case X86::MOVSX16rr8: 926 case X86::MOVZX16rr8: 927 case X86::MOVSX32rr8: 928 case X86::MOVZX32rr8: 929 case X86::MOVSX64rr8: 930 case X86::MOVZX64rr8: 931 if (!TM.getSubtarget<X86Subtarget>().is64Bit()) 932 // It's not always legal to reference the low 8-bit of the larger 933 // register in 32-bit mode. 934 return false; 935 case X86::MOVSX32rr16: 936 case X86::MOVZX32rr16: 937 case X86::MOVSX64rr16: 938 case X86::MOVZX64rr16: 939 case X86::MOVSX64rr32: 940 case X86::MOVZX64rr32: { 941 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 942 // Be conservative. 943 return false; 944 SrcReg = MI.getOperand(1).getReg(); 945 DstReg = MI.getOperand(0).getReg(); 946 switch (MI.getOpcode()) { 947 default: 948 llvm_unreachable(0); 949 break; 950 case X86::MOVSX16rr8: 951 case X86::MOVZX16rr8: 952 case X86::MOVSX32rr8: 953 case X86::MOVZX32rr8: 954 case X86::MOVSX64rr8: 955 case X86::MOVZX64rr8: 956 SubIdx = X86::sub_8bit; 957 break; 958 case X86::MOVSX32rr16: 959 case X86::MOVZX32rr16: 960 case X86::MOVSX64rr16: 961 case X86::MOVZX64rr16: 962 SubIdx = X86::sub_16bit; 963 break; 964 case X86::MOVSX64rr32: 965 case X86::MOVZX64rr32: 966 SubIdx = X86::sub_32bit; 967 break; 968 } 969 return true; 970 } 971 } 972 return false; 973 } 974 975 /// isFrameOperand - Return true and the FrameIndex if the specified 976 /// operand and follow operands form a reference to the stack frame. 977 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, 978 int &FrameIndex) const { 979 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && 980 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && 981 MI->getOperand(Op+1).getImm() == 1 && 982 MI->getOperand(Op+2).getReg() == 0 && 983 MI->getOperand(Op+3).getImm() == 0) { 984 FrameIndex = MI->getOperand(Op).getIndex(); 985 return true; 986 } 987 return false; 988 } 989 990 static bool isFrameLoadOpcode(int Opcode) { 991 switch (Opcode) { 992 default: break; 993 case X86::MOV8rm: 994 case X86::MOV16rm: 995 case X86::MOV32rm: 996 case X86::MOV64rm: 997 case X86::LD_Fp64m: 998 case X86::MOVSSrm: 999 case X86::MOVSDrm: 1000 case X86::MOVAPSrm: 1001 case X86::MOVAPDrm: 1002 case X86::MOVDQArm: 1003 case X86::VMOVSSrm: 1004 case X86::VMOVSDrm: 1005 case X86::VMOVAPSrm: 1006 case X86::VMOVAPDrm: 1007 case X86::VMOVDQArm: 1008 case X86::VMOVAPSYrm: 1009 case X86::VMOVAPDYrm: 1010 case X86::VMOVDQAYrm: 1011 case X86::MMX_MOVD64rm: 1012 case X86::MMX_MOVQ64rm: 1013 return true; 1014 break; 1015 } 1016 return false; 1017 } 1018 1019 static bool isFrameStoreOpcode(int Opcode) { 1020 switch (Opcode) { 1021 default: break; 1022 case X86::MOV8mr: 1023 case X86::MOV16mr: 1024 case X86::MOV32mr: 1025 case X86::MOV64mr: 1026 case X86::ST_FpP64m: 1027 case X86::MOVSSmr: 1028 case X86::MOVSDmr: 1029 case X86::MOVAPSmr: 1030 case X86::MOVAPDmr: 1031 case X86::MOVDQAmr: 1032 case X86::VMOVSSmr: 1033 case X86::VMOVSDmr: 1034 case X86::VMOVAPSmr: 1035 case X86::VMOVAPDmr: 1036 case X86::VMOVDQAmr: 1037 case X86::VMOVAPSYmr: 1038 case X86::VMOVAPDYmr: 1039 case X86::VMOVDQAYmr: 1040 case X86::MMX_MOVD64mr: 1041 case X86::MMX_MOVQ64mr: 1042 case X86::MMX_MOVNTQmr: 1043 return true; 1044 } 1045 return false; 1046 } 1047 1048 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 1049 int &FrameIndex) const { 1050 if (isFrameLoadOpcode(MI->getOpcode())) 1051 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 1052 return MI->getOperand(0).getReg(); 1053 return 0; 1054 } 1055 1056 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 1057 int &FrameIndex) const { 1058 if (isFrameLoadOpcode(MI->getOpcode())) { 1059 unsigned Reg; 1060 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 1061 return Reg; 1062 // Check for post-frame index elimination operations 1063 const MachineMemOperand *Dummy; 1064 return hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1065 } 1066 return 0; 1067 } 1068 1069 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, 1070 int &FrameIndex) const { 1071 if (isFrameStoreOpcode(MI->getOpcode())) 1072 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 && 1073 isFrameOperand(MI, 0, FrameIndex)) 1074 return MI->getOperand(X86::AddrNumOperands).getReg(); 1075 return 0; 1076 } 1077 1078 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 1079 int &FrameIndex) const { 1080 if (isFrameStoreOpcode(MI->getOpcode())) { 1081 unsigned Reg; 1082 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 1083 return Reg; 1084 // Check for post-frame index elimination operations 1085 const MachineMemOperand *Dummy; 1086 return hasStoreToStackSlot(MI, Dummy, FrameIndex); 1087 } 1088 return 0; 1089 } 1090 1091 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by 1092 /// X86::MOVPC32r. 1093 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { 1094 bool isPICBase = false; 1095 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 1096 E = MRI.def_end(); I != E; ++I) { 1097 MachineInstr *DefMI = I.getOperand().getParent(); 1098 if (DefMI->getOpcode() != X86::MOVPC32r) 1099 return false; 1100 assert(!isPICBase && "More than one PIC base?"); 1101 isPICBase = true; 1102 } 1103 return isPICBase; 1104 } 1105 1106 bool 1107 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 1108 AliasAnalysis *AA) const { 1109 switch (MI->getOpcode()) { 1110 default: break; 1111 case X86::MOV8rm: 1112 case X86::MOV16rm: 1113 case X86::MOV32rm: 1114 case X86::MOV64rm: 1115 case X86::LD_Fp64m: 1116 case X86::MOVSSrm: 1117 case X86::MOVSDrm: 1118 case X86::MOVAPSrm: 1119 case X86::MOVUPSrm: 1120 case X86::MOVAPDrm: 1121 case X86::MOVDQArm: 1122 case X86::VMOVSSrm: 1123 case X86::VMOVSDrm: 1124 case X86::VMOVAPSrm: 1125 case X86::VMOVUPSrm: 1126 case X86::VMOVAPDrm: 1127 case X86::VMOVDQArm: 1128 case X86::VMOVAPSYrm: 1129 case X86::VMOVUPSYrm: 1130 case X86::VMOVAPDYrm: 1131 case X86::VMOVDQAYrm: 1132 case X86::MMX_MOVD64rm: 1133 case X86::MMX_MOVQ64rm: 1134 case X86::FsVMOVAPSrm: 1135 case X86::FsVMOVAPDrm: 1136 case X86::FsMOVAPSrm: 1137 case X86::FsMOVAPDrm: { 1138 // Loads from constant pools are trivially rematerializable. 1139 if (MI->getOperand(1).isReg() && 1140 MI->getOperand(2).isImm() && 1141 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 1142 MI->isInvariantLoad(AA)) { 1143 unsigned BaseReg = MI->getOperand(1).getReg(); 1144 if (BaseReg == 0 || BaseReg == X86::RIP) 1145 return true; 1146 // Allow re-materialization of PIC load. 1147 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) 1148 return false; 1149 const MachineFunction &MF = *MI->getParent()->getParent(); 1150 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1151 bool isPICBase = false; 1152 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), 1153 E = MRI.def_end(); I != E; ++I) { 1154 MachineInstr *DefMI = I.getOperand().getParent(); 1155 if (DefMI->getOpcode() != X86::MOVPC32r) 1156 return false; 1157 assert(!isPICBase && "More than one PIC base?"); 1158 isPICBase = true; 1159 } 1160 return isPICBase; 1161 } 1162 return false; 1163 } 1164 1165 case X86::LEA32r: 1166 case X86::LEA64r: { 1167 if (MI->getOperand(2).isImm() && 1168 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && 1169 !MI->getOperand(4).isReg()) { 1170 // lea fi#, lea GV, etc. are all rematerializable. 1171 if (!MI->getOperand(1).isReg()) 1172 return true; 1173 unsigned BaseReg = MI->getOperand(1).getReg(); 1174 if (BaseReg == 0) 1175 return true; 1176 // Allow re-materialization of lea PICBase + x. 1177 const MachineFunction &MF = *MI->getParent()->getParent(); 1178 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1179 return regIsPICBase(BaseReg, MRI); 1180 } 1181 return false; 1182 } 1183 } 1184 1185 // All other instructions marked M_REMATERIALIZABLE are always trivially 1186 // rematerializable. 1187 return true; 1188 } 1189 1190 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that 1191 /// would clobber the EFLAGS condition register. Note the result may be 1192 /// conservative. If it cannot definitely determine the safety after visiting 1193 /// a few instructions in each direction it assumes it's not safe. 1194 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, 1195 MachineBasicBlock::iterator I) { 1196 MachineBasicBlock::iterator E = MBB.end(); 1197 1198 // For compile time consideration, if we are not able to determine the 1199 // safety after visiting 4 instructions in each direction, we will assume 1200 // it's not safe. 1201 MachineBasicBlock::iterator Iter = I; 1202 for (unsigned i = 0; Iter != E && i < 4; ++i) { 1203 bool SeenDef = false; 1204 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1205 MachineOperand &MO = Iter->getOperand(j); 1206 if (!MO.isReg()) 1207 continue; 1208 if (MO.getReg() == X86::EFLAGS) { 1209 if (MO.isUse()) 1210 return false; 1211 SeenDef = true; 1212 } 1213 } 1214 1215 if (SeenDef) 1216 // This instruction defines EFLAGS, no need to look any further. 1217 return true; 1218 ++Iter; 1219 // Skip over DBG_VALUE. 1220 while (Iter != E && Iter->isDebugValue()) 1221 ++Iter; 1222 } 1223 1224 // It is safe to clobber EFLAGS at the end of a block of no successor has it 1225 // live in. 1226 if (Iter == E) { 1227 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), 1228 SE = MBB.succ_end(); SI != SE; ++SI) 1229 if ((*SI)->isLiveIn(X86::EFLAGS)) 1230 return false; 1231 return true; 1232 } 1233 1234 MachineBasicBlock::iterator B = MBB.begin(); 1235 Iter = I; 1236 for (unsigned i = 0; i < 4; ++i) { 1237 // If we make it to the beginning of the block, it's safe to clobber 1238 // EFLAGS iff EFLAGS is not live-in. 1239 if (Iter == B) 1240 return !MBB.isLiveIn(X86::EFLAGS); 1241 1242 --Iter; 1243 // Skip over DBG_VALUE. 1244 while (Iter != B && Iter->isDebugValue()) 1245 --Iter; 1246 1247 bool SawKill = false; 1248 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { 1249 MachineOperand &MO = Iter->getOperand(j); 1250 if (MO.isReg() && MO.getReg() == X86::EFLAGS) { 1251 if (MO.isDef()) return MO.isDead(); 1252 if (MO.isKill()) SawKill = true; 1253 } 1254 } 1255 1256 if (SawKill) 1257 // This instruction kills EFLAGS and doesn't redefine it, so 1258 // there's no need to look further. 1259 return true; 1260 } 1261 1262 // Conservative answer. 1263 return false; 1264 } 1265 1266 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 1267 MachineBasicBlock::iterator I, 1268 unsigned DestReg, unsigned SubIdx, 1269 const MachineInstr *Orig, 1270 const TargetRegisterInfo &TRI) const { 1271 DebugLoc DL = Orig->getDebugLoc(); 1272 1273 // MOV32r0 etc. are implemented with xor which clobbers condition code. 1274 // Re-materialize them as movri instructions to avoid side effects. 1275 bool Clone = true; 1276 unsigned Opc = Orig->getOpcode(); 1277 switch (Opc) { 1278 default: break; 1279 case X86::MOV8r0: 1280 case X86::MOV16r0: 1281 case X86::MOV32r0: 1282 case X86::MOV64r0: { 1283 if (!isSafeToClobberEFLAGS(MBB, I)) { 1284 switch (Opc) { 1285 default: break; 1286 case X86::MOV8r0: Opc = X86::MOV8ri; break; 1287 case X86::MOV16r0: Opc = X86::MOV16ri; break; 1288 case X86::MOV32r0: Opc = X86::MOV32ri; break; 1289 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; 1290 } 1291 Clone = false; 1292 } 1293 break; 1294 } 1295 } 1296 1297 if (Clone) { 1298 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1299 MBB.insert(I, MI); 1300 } else { 1301 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0); 1302 } 1303 1304 MachineInstr *NewMI = prior(I); 1305 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1306 } 1307 1308 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that 1309 /// is not marked dead. 1310 static bool hasLiveCondCodeDef(MachineInstr *MI) { 1311 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1312 MachineOperand &MO = MI->getOperand(i); 1313 if (MO.isReg() && MO.isDef() && 1314 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 1315 return true; 1316 } 1317 } 1318 return false; 1319 } 1320 1321 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when 1322 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting 1323 /// to a 32-bit superregister and then truncating back down to a 16-bit 1324 /// subregister. 1325 MachineInstr * 1326 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1327 MachineFunction::iterator &MFI, 1328 MachineBasicBlock::iterator &MBBI, 1329 LiveVariables *LV) const { 1330 MachineInstr *MI = MBBI; 1331 unsigned Dest = MI->getOperand(0).getReg(); 1332 unsigned Src = MI->getOperand(1).getReg(); 1333 bool isDead = MI->getOperand(0).isDead(); 1334 bool isKill = MI->getOperand(1).isKill(); 1335 1336 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() 1337 ? X86::LEA64_32r : X86::LEA32r; 1338 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); 1339 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1340 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1341 1342 // Build and insert into an implicit UNDEF value. This is OK because 1343 // well be shifting and then extracting the lower 16-bits. 1344 // This has the potential to cause partial register stall. e.g. 1345 // movw (%rbp,%rcx,2), %dx 1346 // leal -65(%rdx), %esi 1347 // But testing has shown this *does* help performance in 64-bit mode (at 1348 // least on modern x86 machines). 1349 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); 1350 MachineInstr *InsMI = 1351 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1352 .addReg(leaInReg, RegState::Define, X86::sub_16bit) 1353 .addReg(Src, getKillRegState(isKill)); 1354 1355 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), 1356 get(Opc), leaOutReg); 1357 switch (MIOpc) { 1358 default: 1359 llvm_unreachable(0); 1360 break; 1361 case X86::SHL16ri: { 1362 unsigned ShAmt = MI->getOperand(2).getImm(); 1363 MIB.addReg(0).addImm(1 << ShAmt) 1364 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); 1365 break; 1366 } 1367 case X86::INC16r: 1368 case X86::INC64_16r: 1369 addRegOffset(MIB, leaInReg, true, 1); 1370 break; 1371 case X86::DEC16r: 1372 case X86::DEC64_16r: 1373 addRegOffset(MIB, leaInReg, true, -1); 1374 break; 1375 case X86::ADD16ri: 1376 case X86::ADD16ri8: 1377 case X86::ADD16ri_DB: 1378 case X86::ADD16ri8_DB: 1379 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); 1380 break; 1381 case X86::ADD16rr: 1382 case X86::ADD16rr_DB: { 1383 unsigned Src2 = MI->getOperand(2).getReg(); 1384 bool isKill2 = MI->getOperand(2).isKill(); 1385 unsigned leaInReg2 = 0; 1386 MachineInstr *InsMI2 = 0; 1387 if (Src == Src2) { 1388 // ADD16rr %reg1028<kill>, %reg1028 1389 // just a single insert_subreg. 1390 addRegReg(MIB, leaInReg, true, leaInReg, false); 1391 } else { 1392 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1393 // Build and insert into an implicit UNDEF value. This is OK because 1394 // well be shifting and then extracting the lower 16-bits. 1395 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); 1396 InsMI2 = 1397 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1398 .addReg(leaInReg2, RegState::Define, X86::sub_16bit) 1399 .addReg(Src2, getKillRegState(isKill2)); 1400 addRegReg(MIB, leaInReg, true, leaInReg2, true); 1401 } 1402 if (LV && isKill2 && InsMI2) 1403 LV->replaceKillInstruction(Src2, MI, InsMI2); 1404 break; 1405 } 1406 } 1407 1408 MachineInstr *NewMI = MIB; 1409 MachineInstr *ExtMI = 1410 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY)) 1411 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1412 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); 1413 1414 if (LV) { 1415 // Update live variables 1416 LV->getVarInfo(leaInReg).Kills.push_back(NewMI); 1417 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); 1418 if (isKill) 1419 LV->replaceKillInstruction(Src, MI, InsMI); 1420 if (isDead) 1421 LV->replaceKillInstruction(Dest, MI, ExtMI); 1422 } 1423 1424 return ExtMI; 1425 } 1426 1427 /// convertToThreeAddress - This method must be implemented by targets that 1428 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1429 /// may be able to convert a two-address instruction into a true 1430 /// three-address instruction on demand. This allows the X86 target (for 1431 /// example) to convert ADD and SHL instructions into LEA instructions if they 1432 /// would require register copies due to two-addressness. 1433 /// 1434 /// This method returns a null pointer if the transformation cannot be 1435 /// performed, otherwise it returns the new instruction. 1436 /// 1437 MachineInstr * 1438 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 1439 MachineBasicBlock::iterator &MBBI, 1440 LiveVariables *LV) const { 1441 MachineInstr *MI = MBBI; 1442 MachineFunction &MF = *MI->getParent()->getParent(); 1443 // All instructions input are two-addr instructions. Get the known operands. 1444 unsigned Dest = MI->getOperand(0).getReg(); 1445 unsigned Src = MI->getOperand(1).getReg(); 1446 bool isDead = MI->getOperand(0).isDead(); 1447 bool isKill = MI->getOperand(1).isKill(); 1448 1449 MachineInstr *NewMI = NULL; 1450 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When 1451 // we have better subtarget support, enable the 16-bit LEA generation here. 1452 // 16-bit LEA is also slow on Core2. 1453 bool DisableLEA16 = true; 1454 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); 1455 1456 unsigned MIOpc = MI->getOpcode(); 1457 switch (MIOpc) { 1458 case X86::SHUFPSrri: { 1459 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); 1460 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; 1461 1462 unsigned B = MI->getOperand(1).getReg(); 1463 unsigned C = MI->getOperand(2).getReg(); 1464 if (B != C) return 0; 1465 unsigned A = MI->getOperand(0).getReg(); 1466 unsigned M = MI->getOperand(3).getImm(); 1467 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) 1468 .addReg(A, RegState::Define | getDeadRegState(isDead)) 1469 .addReg(B, getKillRegState(isKill)).addImm(M); 1470 break; 1471 } 1472 case X86::SHL64ri: { 1473 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1474 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1475 // the flags produced by a shift yet, so this is safe. 1476 unsigned ShAmt = MI->getOperand(2).getImm(); 1477 if (ShAmt == 0 || ShAmt >= 4) return 0; 1478 1479 // LEA can't handle RSP. 1480 if (TargetRegisterInfo::isVirtualRegister(Src) && 1481 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass)) 1482 return 0; 1483 1484 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1485 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1486 .addReg(0).addImm(1 << ShAmt) 1487 .addReg(Src, getKillRegState(isKill)) 1488 .addImm(0).addReg(0); 1489 break; 1490 } 1491 case X86::SHL32ri: { 1492 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1493 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1494 // the flags produced by a shift yet, so this is safe. 1495 unsigned ShAmt = MI->getOperand(2).getImm(); 1496 if (ShAmt == 0 || ShAmt >= 4) return 0; 1497 1498 // LEA can't handle ESP. 1499 if (TargetRegisterInfo::isVirtualRegister(Src) && 1500 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass)) 1501 return 0; 1502 1503 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1504 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1505 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1506 .addReg(0).addImm(1 << ShAmt) 1507 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0); 1508 break; 1509 } 1510 case X86::SHL16ri: { 1511 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); 1512 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses 1513 // the flags produced by a shift yet, so this is safe. 1514 unsigned ShAmt = MI->getOperand(2).getImm(); 1515 if (ShAmt == 0 || ShAmt >= 4) return 0; 1516 1517 if (DisableLEA16) 1518 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1519 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1520 .addReg(Dest, RegState::Define | getDeadRegState(isDead)) 1521 .addReg(0).addImm(1 << ShAmt) 1522 .addReg(Src, getKillRegState(isKill)) 1523 .addImm(0).addReg(0); 1524 break; 1525 } 1526 default: { 1527 // The following opcodes also sets the condition code register(s). Only 1528 // convert them to equivalent lea if the condition code register def's 1529 // are dead! 1530 if (hasLiveCondCodeDef(MI)) 1531 return 0; 1532 1533 switch (MIOpc) { 1534 default: return 0; 1535 case X86::INC64r: 1536 case X86::INC32r: 1537 case X86::INC64_32r: { 1538 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1539 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r 1540 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1541 1542 // LEA can't handle RSP. 1543 if (TargetRegisterInfo::isVirtualRegister(Src) && 1544 !MF.getRegInfo().constrainRegClass(Src, 1545 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass : 1546 X86::GR32_NOSPRegisterClass)) 1547 return 0; 1548 1549 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1550 .addReg(Dest, RegState::Define | 1551 getDeadRegState(isDead)), 1552 Src, isKill, 1); 1553 break; 1554 } 1555 case X86::INC16r: 1556 case X86::INC64_16r: 1557 if (DisableLEA16) 1558 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1559 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); 1560 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1561 .addReg(Dest, RegState::Define | 1562 getDeadRegState(isDead)), 1563 Src, isKill, 1); 1564 break; 1565 case X86::DEC64r: 1566 case X86::DEC32r: 1567 case X86::DEC64_32r: { 1568 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1569 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1570 : (is64Bit ? X86::LEA64_32r : X86::LEA32r); 1571 // LEA can't handle RSP. 1572 if (TargetRegisterInfo::isVirtualRegister(Src) && 1573 !MF.getRegInfo().constrainRegClass(Src, 1574 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass : 1575 X86::GR32_NOSPRegisterClass)) 1576 return 0; 1577 1578 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1579 .addReg(Dest, RegState::Define | 1580 getDeadRegState(isDead)), 1581 Src, isKill, -1); 1582 break; 1583 } 1584 case X86::DEC16r: 1585 case X86::DEC64_16r: 1586 if (DisableLEA16) 1587 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1588 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); 1589 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1590 .addReg(Dest, RegState::Define | 1591 getDeadRegState(isDead)), 1592 Src, isKill, -1); 1593 break; 1594 case X86::ADD64rr: 1595 case X86::ADD64rr_DB: 1596 case X86::ADD32rr: 1597 case X86::ADD32rr_DB: { 1598 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1599 unsigned Opc; 1600 TargetRegisterClass *RC; 1601 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) { 1602 Opc = X86::LEA64r; 1603 RC = X86::GR64_NOSPRegisterClass; 1604 } else { 1605 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1606 RC = X86::GR32_NOSPRegisterClass; 1607 } 1608 1609 1610 unsigned Src2 = MI->getOperand(2).getReg(); 1611 bool isKill2 = MI->getOperand(2).isKill(); 1612 1613 // LEA can't handle RSP. 1614 if (TargetRegisterInfo::isVirtualRegister(Src2) && 1615 !MF.getRegInfo().constrainRegClass(Src2, RC)) 1616 return 0; 1617 1618 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1619 .addReg(Dest, RegState::Define | 1620 getDeadRegState(isDead)), 1621 Src, isKill, Src2, isKill2); 1622 if (LV && isKill2) 1623 LV->replaceKillInstruction(Src2, MI, NewMI); 1624 break; 1625 } 1626 case X86::ADD16rr: 1627 case X86::ADD16rr_DB: { 1628 if (DisableLEA16) 1629 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1630 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1631 unsigned Src2 = MI->getOperand(2).getReg(); 1632 bool isKill2 = MI->getOperand(2).isKill(); 1633 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1634 .addReg(Dest, RegState::Define | 1635 getDeadRegState(isDead)), 1636 Src, isKill, Src2, isKill2); 1637 if (LV && isKill2) 1638 LV->replaceKillInstruction(Src2, MI, NewMI); 1639 break; 1640 } 1641 case X86::ADD64ri32: 1642 case X86::ADD64ri8: 1643 case X86::ADD64ri32_DB: 1644 case X86::ADD64ri8_DB: 1645 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1646 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) 1647 .addReg(Dest, RegState::Define | 1648 getDeadRegState(isDead)), 1649 Src, isKill, MI->getOperand(2).getImm()); 1650 break; 1651 case X86::ADD32ri: 1652 case X86::ADD32ri8: 1653 case X86::ADD32ri_DB: 1654 case X86::ADD32ri8_DB: { 1655 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1656 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; 1657 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) 1658 .addReg(Dest, RegState::Define | 1659 getDeadRegState(isDead)), 1660 Src, isKill, MI->getOperand(2).getImm()); 1661 break; 1662 } 1663 case X86::ADD16ri: 1664 case X86::ADD16ri8: 1665 case X86::ADD16ri_DB: 1666 case X86::ADD16ri8_DB: 1667 if (DisableLEA16) 1668 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; 1669 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); 1670 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) 1671 .addReg(Dest, RegState::Define | 1672 getDeadRegState(isDead)), 1673 Src, isKill, MI->getOperand(2).getImm()); 1674 break; 1675 } 1676 } 1677 } 1678 1679 if (!NewMI) return 0; 1680 1681 if (LV) { // Update live variables 1682 if (isKill) 1683 LV->replaceKillInstruction(Src, MI, NewMI); 1684 if (isDead) 1685 LV->replaceKillInstruction(Dest, MI, NewMI); 1686 } 1687 1688 MFI->insert(MBBI, NewMI); // Insert the new inst 1689 return NewMI; 1690 } 1691 1692 /// commuteInstruction - We have a few instructions that must be hacked on to 1693 /// commute them. 1694 /// 1695 MachineInstr * 1696 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 1697 switch (MI->getOpcode()) { 1698 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 1699 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 1700 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 1701 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 1702 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 1703 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 1704 unsigned Opc; 1705 unsigned Size; 1706 switch (MI->getOpcode()) { 1707 default: llvm_unreachable("Unreachable!"); 1708 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 1709 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 1710 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 1711 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 1712 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 1713 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 1714 } 1715 unsigned Amt = MI->getOperand(3).getImm(); 1716 if (NewMI) { 1717 MachineFunction &MF = *MI->getParent()->getParent(); 1718 MI = MF.CloneMachineInstr(MI); 1719 NewMI = false; 1720 } 1721 MI->setDesc(get(Opc)); 1722 MI->getOperand(3).setImm(Size-Amt); 1723 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 1724 } 1725 case X86::CMOVB16rr: 1726 case X86::CMOVB32rr: 1727 case X86::CMOVB64rr: 1728 case X86::CMOVAE16rr: 1729 case X86::CMOVAE32rr: 1730 case X86::CMOVAE64rr: 1731 case X86::CMOVE16rr: 1732 case X86::CMOVE32rr: 1733 case X86::CMOVE64rr: 1734 case X86::CMOVNE16rr: 1735 case X86::CMOVNE32rr: 1736 case X86::CMOVNE64rr: 1737 case X86::CMOVBE16rr: 1738 case X86::CMOVBE32rr: 1739 case X86::CMOVBE64rr: 1740 case X86::CMOVA16rr: 1741 case X86::CMOVA32rr: 1742 case X86::CMOVA64rr: 1743 case X86::CMOVL16rr: 1744 case X86::CMOVL32rr: 1745 case X86::CMOVL64rr: 1746 case X86::CMOVGE16rr: 1747 case X86::CMOVGE32rr: 1748 case X86::CMOVGE64rr: 1749 case X86::CMOVLE16rr: 1750 case X86::CMOVLE32rr: 1751 case X86::CMOVLE64rr: 1752 case X86::CMOVG16rr: 1753 case X86::CMOVG32rr: 1754 case X86::CMOVG64rr: 1755 case X86::CMOVS16rr: 1756 case X86::CMOVS32rr: 1757 case X86::CMOVS64rr: 1758 case X86::CMOVNS16rr: 1759 case X86::CMOVNS32rr: 1760 case X86::CMOVNS64rr: 1761 case X86::CMOVP16rr: 1762 case X86::CMOVP32rr: 1763 case X86::CMOVP64rr: 1764 case X86::CMOVNP16rr: 1765 case X86::CMOVNP32rr: 1766 case X86::CMOVNP64rr: 1767 case X86::CMOVO16rr: 1768 case X86::CMOVO32rr: 1769 case X86::CMOVO64rr: 1770 case X86::CMOVNO16rr: 1771 case X86::CMOVNO32rr: 1772 case X86::CMOVNO64rr: { 1773 unsigned Opc = 0; 1774 switch (MI->getOpcode()) { 1775 default: break; 1776 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; 1777 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; 1778 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; 1779 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; 1780 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; 1781 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; 1782 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; 1783 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; 1784 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; 1785 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; 1786 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; 1787 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; 1788 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; 1789 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; 1790 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; 1791 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; 1792 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; 1793 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; 1794 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; 1795 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; 1796 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; 1797 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; 1798 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; 1799 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; 1800 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; 1801 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; 1802 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; 1803 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; 1804 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; 1805 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; 1806 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; 1807 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; 1808 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; 1809 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; 1810 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; 1811 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; 1812 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; 1813 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; 1814 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; 1815 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; 1816 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; 1817 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; 1818 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; 1819 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; 1820 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; 1821 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; 1822 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; 1823 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; 1824 } 1825 if (NewMI) { 1826 MachineFunction &MF = *MI->getParent()->getParent(); 1827 MI = MF.CloneMachineInstr(MI); 1828 NewMI = false; 1829 } 1830 MI->setDesc(get(Opc)); 1831 // Fallthrough intended. 1832 } 1833 default: 1834 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 1835 } 1836 } 1837 1838 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { 1839 switch (BrOpc) { 1840 default: return X86::COND_INVALID; 1841 case X86::JE_4: return X86::COND_E; 1842 case X86::JNE_4: return X86::COND_NE; 1843 case X86::JL_4: return X86::COND_L; 1844 case X86::JLE_4: return X86::COND_LE; 1845 case X86::JG_4: return X86::COND_G; 1846 case X86::JGE_4: return X86::COND_GE; 1847 case X86::JB_4: return X86::COND_B; 1848 case X86::JBE_4: return X86::COND_BE; 1849 case X86::JA_4: return X86::COND_A; 1850 case X86::JAE_4: return X86::COND_AE; 1851 case X86::JS_4: return X86::COND_S; 1852 case X86::JNS_4: return X86::COND_NS; 1853 case X86::JP_4: return X86::COND_P; 1854 case X86::JNP_4: return X86::COND_NP; 1855 case X86::JO_4: return X86::COND_O; 1856 case X86::JNO_4: return X86::COND_NO; 1857 } 1858 } 1859 1860 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { 1861 switch (CC) { 1862 default: llvm_unreachable("Illegal condition code!"); 1863 case X86::COND_E: return X86::JE_4; 1864 case X86::COND_NE: return X86::JNE_4; 1865 case X86::COND_L: return X86::JL_4; 1866 case X86::COND_LE: return X86::JLE_4; 1867 case X86::COND_G: return X86::JG_4; 1868 case X86::COND_GE: return X86::JGE_4; 1869 case X86::COND_B: return X86::JB_4; 1870 case X86::COND_BE: return X86::JBE_4; 1871 case X86::COND_A: return X86::JA_4; 1872 case X86::COND_AE: return X86::JAE_4; 1873 case X86::COND_S: return X86::JS_4; 1874 case X86::COND_NS: return X86::JNS_4; 1875 case X86::COND_P: return X86::JP_4; 1876 case X86::COND_NP: return X86::JNP_4; 1877 case X86::COND_O: return X86::JO_4; 1878 case X86::COND_NO: return X86::JNO_4; 1879 } 1880 } 1881 1882 /// GetOppositeBranchCondition - Return the inverse of the specified condition, 1883 /// e.g. turning COND_E to COND_NE. 1884 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 1885 switch (CC) { 1886 default: llvm_unreachable("Illegal condition code!"); 1887 case X86::COND_E: return X86::COND_NE; 1888 case X86::COND_NE: return X86::COND_E; 1889 case X86::COND_L: return X86::COND_GE; 1890 case X86::COND_LE: return X86::COND_G; 1891 case X86::COND_G: return X86::COND_LE; 1892 case X86::COND_GE: return X86::COND_L; 1893 case X86::COND_B: return X86::COND_AE; 1894 case X86::COND_BE: return X86::COND_A; 1895 case X86::COND_A: return X86::COND_BE; 1896 case X86::COND_AE: return X86::COND_B; 1897 case X86::COND_S: return X86::COND_NS; 1898 case X86::COND_NS: return X86::COND_S; 1899 case X86::COND_P: return X86::COND_NP; 1900 case X86::COND_NP: return X86::COND_P; 1901 case X86::COND_O: return X86::COND_NO; 1902 case X86::COND_NO: return X86::COND_O; 1903 } 1904 } 1905 1906 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1907 const MCInstrDesc &MCID = MI->getDesc(); 1908 if (!MCID.isTerminator()) return false; 1909 1910 // Conditional branch is a special case. 1911 if (MCID.isBranch() && !MCID.isBarrier()) 1912 return true; 1913 if (!MCID.isPredicable()) 1914 return true; 1915 return !isPredicated(MI); 1916 } 1917 1918 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1919 MachineBasicBlock *&TBB, 1920 MachineBasicBlock *&FBB, 1921 SmallVectorImpl<MachineOperand> &Cond, 1922 bool AllowModify) const { 1923 // Start from the bottom of the block and work up, examining the 1924 // terminator instructions. 1925 MachineBasicBlock::iterator I = MBB.end(); 1926 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 1927 while (I != MBB.begin()) { 1928 --I; 1929 if (I->isDebugValue()) 1930 continue; 1931 1932 // Working from the bottom, when we see a non-terminator instruction, we're 1933 // done. 1934 if (!isUnpredicatedTerminator(I)) 1935 break; 1936 1937 // A terminator that isn't a branch can't easily be handled by this 1938 // analysis. 1939 if (!I->getDesc().isBranch()) 1940 return true; 1941 1942 // Handle unconditional branches. 1943 if (I->getOpcode() == X86::JMP_4) { 1944 UnCondBrIter = I; 1945 1946 if (!AllowModify) { 1947 TBB = I->getOperand(0).getMBB(); 1948 continue; 1949 } 1950 1951 // If the block has any instructions after a JMP, delete them. 1952 while (llvm::next(I) != MBB.end()) 1953 llvm::next(I)->eraseFromParent(); 1954 1955 Cond.clear(); 1956 FBB = 0; 1957 1958 // Delete the JMP if it's equivalent to a fall-through. 1959 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 1960 TBB = 0; 1961 I->eraseFromParent(); 1962 I = MBB.end(); 1963 UnCondBrIter = MBB.end(); 1964 continue; 1965 } 1966 1967 // TBB is used to indicate the unconditional destination. 1968 TBB = I->getOperand(0).getMBB(); 1969 continue; 1970 } 1971 1972 // Handle conditional branches. 1973 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); 1974 if (BranchCode == X86::COND_INVALID) 1975 return true; // Can't handle indirect branch. 1976 1977 // Working from the bottom, handle the first conditional branch. 1978 if (Cond.empty()) { 1979 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 1980 if (AllowModify && UnCondBrIter != MBB.end() && 1981 MBB.isLayoutSuccessor(TargetBB)) { 1982 // If we can modify the code and it ends in something like: 1983 // 1984 // jCC L1 1985 // jmp L2 1986 // L1: 1987 // ... 1988 // L2: 1989 // 1990 // Then we can change this to: 1991 // 1992 // jnCC L2 1993 // L1: 1994 // ... 1995 // L2: 1996 // 1997 // Which is a bit more efficient. 1998 // We conditionally jump to the fall-through block. 1999 BranchCode = GetOppositeBranchCondition(BranchCode); 2000 unsigned JNCC = GetCondBranchFromCond(BranchCode); 2001 MachineBasicBlock::iterator OldInst = I; 2002 2003 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) 2004 .addMBB(UnCondBrIter->getOperand(0).getMBB()); 2005 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) 2006 .addMBB(TargetBB); 2007 2008 OldInst->eraseFromParent(); 2009 UnCondBrIter->eraseFromParent(); 2010 2011 // Restart the analysis. 2012 UnCondBrIter = MBB.end(); 2013 I = MBB.end(); 2014 continue; 2015 } 2016 2017 FBB = TBB; 2018 TBB = I->getOperand(0).getMBB(); 2019 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 2020 continue; 2021 } 2022 2023 // Handle subsequent conditional branches. Only handle the case where all 2024 // conditional branches branch to the same destination and their condition 2025 // opcodes fit one of the special multi-branch idioms. 2026 assert(Cond.size() == 1); 2027 assert(TBB); 2028 2029 // Only handle the case where all conditional branches branch to the same 2030 // destination. 2031 if (TBB != I->getOperand(0).getMBB()) 2032 return true; 2033 2034 // If the conditions are the same, we can leave them alone. 2035 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 2036 if (OldBranchCode == BranchCode) 2037 continue; 2038 2039 // If they differ, see if they fit one of the known patterns. Theoretically, 2040 // we could handle more patterns here, but we shouldn't expect to see them 2041 // if instruction selection has done a reasonable job. 2042 if ((OldBranchCode == X86::COND_NP && 2043 BranchCode == X86::COND_E) || 2044 (OldBranchCode == X86::COND_E && 2045 BranchCode == X86::COND_NP)) 2046 BranchCode = X86::COND_NP_OR_E; 2047 else if ((OldBranchCode == X86::COND_P && 2048 BranchCode == X86::COND_NE) || 2049 (OldBranchCode == X86::COND_NE && 2050 BranchCode == X86::COND_P)) 2051 BranchCode = X86::COND_NE_OR_P; 2052 else 2053 return true; 2054 2055 // Update the MachineOperand. 2056 Cond[0].setImm(BranchCode); 2057 } 2058 2059 return false; 2060 } 2061 2062 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 2063 MachineBasicBlock::iterator I = MBB.end(); 2064 unsigned Count = 0; 2065 2066 while (I != MBB.begin()) { 2067 --I; 2068 if (I->isDebugValue()) 2069 continue; 2070 if (I->getOpcode() != X86::JMP_4 && 2071 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) 2072 break; 2073 // Remove the branch. 2074 I->eraseFromParent(); 2075 I = MBB.end(); 2076 ++Count; 2077 } 2078 2079 return Count; 2080 } 2081 2082 unsigned 2083 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 2084 MachineBasicBlock *FBB, 2085 const SmallVectorImpl<MachineOperand> &Cond, 2086 DebugLoc DL) const { 2087 // Shouldn't be a fall through. 2088 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 2089 assert((Cond.size() == 1 || Cond.size() == 0) && 2090 "X86 branch conditions have one component!"); 2091 2092 if (Cond.empty()) { 2093 // Unconditional branch? 2094 assert(!FBB && "Unconditional branch with multiple successors!"); 2095 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB); 2096 return 1; 2097 } 2098 2099 // Conditional branch. 2100 unsigned Count = 0; 2101 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 2102 switch (CC) { 2103 case X86::COND_NP_OR_E: 2104 // Synthesize NP_OR_E with two branches. 2105 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB); 2106 ++Count; 2107 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB); 2108 ++Count; 2109 break; 2110 case X86::COND_NE_OR_P: 2111 // Synthesize NE_OR_P with two branches. 2112 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB); 2113 ++Count; 2114 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB); 2115 ++Count; 2116 break; 2117 default: { 2118 unsigned Opc = GetCondBranchFromCond(CC); 2119 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); 2120 ++Count; 2121 } 2122 } 2123 if (FBB) { 2124 // Two-way Conditional branch. Insert the second branch. 2125 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB); 2126 ++Count; 2127 } 2128 return Count; 2129 } 2130 2131 /// isHReg - Test if the given register is a physical h register. 2132 static bool isHReg(unsigned Reg) { 2133 return X86::GR8_ABCD_HRegClass.contains(Reg); 2134 } 2135 2136 // Try and copy between VR128/VR64 and GR64 registers. 2137 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 2138 bool HasAVX) { 2139 // SrcReg(VR128) -> DestReg(GR64) 2140 // SrcReg(VR64) -> DestReg(GR64) 2141 // SrcReg(GR64) -> DestReg(VR128) 2142 // SrcReg(GR64) -> DestReg(VR64) 2143 2144 if (X86::GR64RegClass.contains(DestReg)) { 2145 if (X86::VR128RegClass.contains(SrcReg)) { 2146 // Copy from a VR128 register to a GR64 register. 2147 return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; 2148 } else if (X86::VR64RegClass.contains(SrcReg)) { 2149 // Copy from a VR64 register to a GR64 register. 2150 return X86::MOVSDto64rr; 2151 } 2152 } else if (X86::GR64RegClass.contains(SrcReg)) { 2153 // Copy from a GR64 register to a VR128 register. 2154 if (X86::VR128RegClass.contains(DestReg)) 2155 return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; 2156 // Copy from a GR64 register to a VR64 register. 2157 else if (X86::VR64RegClass.contains(DestReg)) 2158 return X86::MOV64toSDrr; 2159 } 2160 2161 // SrcReg(FR32) -> DestReg(GR32) 2162 // SrcReg(GR32) -> DestReg(FR32) 2163 2164 if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg)) 2165 // Copy from a FR32 register to a GR32 register. 2166 return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; 2167 2168 if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) 2169 // Copy from a GR32 register to a FR32 register. 2170 return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; 2171 2172 return 0; 2173 } 2174 2175 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 2176 MachineBasicBlock::iterator MI, DebugLoc DL, 2177 unsigned DestReg, unsigned SrcReg, 2178 bool KillSrc) const { 2179 // First deal with the normal symmetric copies. 2180 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2181 unsigned Opc = 0; 2182 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 2183 Opc = X86::MOV64rr; 2184 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 2185 Opc = X86::MOV32rr; 2186 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 2187 Opc = X86::MOV16rr; 2188 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 2189 // Copying to or from a physical H register on x86-64 requires a NOREX 2190 // move. Otherwise use a normal move. 2191 if ((isHReg(DestReg) || isHReg(SrcReg)) && 2192 TM.getSubtarget<X86Subtarget>().is64Bit()) { 2193 Opc = X86::MOV8rr_NOREX; 2194 // Both operands must be encodable without an REX prefix. 2195 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 2196 "8-bit H register can not be copied outside GR8_NOREX"); 2197 } else 2198 Opc = X86::MOV8rr; 2199 } else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 2200 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 2201 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 2202 Opc = X86::VMOVAPSYrr; 2203 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 2204 Opc = X86::MMX_MOVQ64rr; 2205 else 2206 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX); 2207 2208 if (Opc) { 2209 BuildMI(MBB, MI, DL, get(Opc), DestReg) 2210 .addReg(SrcReg, getKillRegState(KillSrc)); 2211 return; 2212 } 2213 2214 // Moving EFLAGS to / from another register requires a push and a pop. 2215 if (SrcReg == X86::EFLAGS) { 2216 if (X86::GR64RegClass.contains(DestReg)) { 2217 BuildMI(MBB, MI, DL, get(X86::PUSHF64)); 2218 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); 2219 return; 2220 } else if (X86::GR32RegClass.contains(DestReg)) { 2221 BuildMI(MBB, MI, DL, get(X86::PUSHF32)); 2222 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); 2223 return; 2224 } 2225 } 2226 if (DestReg == X86::EFLAGS) { 2227 if (X86::GR64RegClass.contains(SrcReg)) { 2228 BuildMI(MBB, MI, DL, get(X86::PUSH64r)) 2229 .addReg(SrcReg, getKillRegState(KillSrc)); 2230 BuildMI(MBB, MI, DL, get(X86::POPF64)); 2231 return; 2232 } else if (X86::GR32RegClass.contains(SrcReg)) { 2233 BuildMI(MBB, MI, DL, get(X86::PUSH32r)) 2234 .addReg(SrcReg, getKillRegState(KillSrc)); 2235 BuildMI(MBB, MI, DL, get(X86::POPF32)); 2236 return; 2237 } 2238 } 2239 2240 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) 2241 << " to " << RI.getName(DestReg) << '\n'); 2242 llvm_unreachable("Cannot emit physreg copy instruction"); 2243 } 2244 2245 static unsigned getLoadStoreRegOpcode(unsigned Reg, 2246 const TargetRegisterClass *RC, 2247 bool isStackAligned, 2248 const TargetMachine &TM, 2249 bool load) { 2250 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2251 switch (RC->getSize()) { 2252 default: 2253 llvm_unreachable("Unknown spill size"); 2254 case 1: 2255 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 2256 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 2257 // Copying to or from a physical H register on x86-64 requires a NOREX 2258 // move. Otherwise use a normal move. 2259 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 2260 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 2261 return load ? X86::MOV8rm : X86::MOV8mr; 2262 case 2: 2263 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 2264 return load ? X86::MOV16rm : X86::MOV16mr; 2265 case 4: 2266 if (X86::GR32RegClass.hasSubClassEq(RC)) 2267 return load ? X86::MOV32rm : X86::MOV32mr; 2268 if (X86::FR32RegClass.hasSubClassEq(RC)) 2269 return load ? 2270 (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : 2271 (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); 2272 if (X86::RFP32RegClass.hasSubClassEq(RC)) 2273 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 2274 llvm_unreachable("Unknown 4-byte regclass"); 2275 case 8: 2276 if (X86::GR64RegClass.hasSubClassEq(RC)) 2277 return load ? X86::MOV64rm : X86::MOV64mr; 2278 if (X86::FR64RegClass.hasSubClassEq(RC)) 2279 return load ? 2280 (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : 2281 (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); 2282 if (X86::VR64RegClass.hasSubClassEq(RC)) 2283 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 2284 if (X86::RFP64RegClass.hasSubClassEq(RC)) 2285 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 2286 llvm_unreachable("Unknown 8-byte regclass"); 2287 case 10: 2288 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 2289 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 2290 case 16: { 2291 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass"); 2292 // If stack is realigned we can use aligned stores. 2293 if (isStackAligned) 2294 return load ? 2295 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : 2296 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); 2297 else 2298 return load ? 2299 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : 2300 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); 2301 } 2302 case 32: 2303 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 2304 // If stack is realigned we can use aligned stores. 2305 if (isStackAligned) 2306 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr; 2307 else 2308 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr; 2309 } 2310 } 2311 2312 static unsigned getStoreRegOpcode(unsigned SrcReg, 2313 const TargetRegisterClass *RC, 2314 bool isStackAligned, 2315 TargetMachine &TM) { 2316 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false); 2317 } 2318 2319 2320 static unsigned getLoadRegOpcode(unsigned DestReg, 2321 const TargetRegisterClass *RC, 2322 bool isStackAligned, 2323 const TargetMachine &TM) { 2324 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true); 2325 } 2326 2327 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 2328 MachineBasicBlock::iterator MI, 2329 unsigned SrcReg, bool isKill, int FrameIdx, 2330 const TargetRegisterClass *RC, 2331 const TargetRegisterInfo *TRI) const { 2332 const MachineFunction &MF = *MBB.getParent(); 2333 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() && 2334 "Stack slot too small for store"); 2335 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2336 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || 2337 RI.canRealignStack(MF); 2338 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2339 DebugLoc DL = MBB.findDebugLoc(MI); 2340 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) 2341 .addReg(SrcReg, getKillRegState(isKill)); 2342 } 2343 2344 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 2345 bool isKill, 2346 SmallVectorImpl<MachineOperand> &Addr, 2347 const TargetRegisterClass *RC, 2348 MachineInstr::mmo_iterator MMOBegin, 2349 MachineInstr::mmo_iterator MMOEnd, 2350 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2351 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2352 bool isAligned = MMOBegin != MMOEnd && 2353 (*MMOBegin)->getAlignment() >= Alignment; 2354 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); 2355 DebugLoc DL; 2356 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 2357 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2358 MIB.addOperand(Addr[i]); 2359 MIB.addReg(SrcReg, getKillRegState(isKill)); 2360 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2361 NewMIs.push_back(MIB); 2362 } 2363 2364 2365 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 2366 MachineBasicBlock::iterator MI, 2367 unsigned DestReg, int FrameIdx, 2368 const TargetRegisterClass *RC, 2369 const TargetRegisterInfo *TRI) const { 2370 const MachineFunction &MF = *MBB.getParent(); 2371 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2372 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) || 2373 RI.canRealignStack(MF); 2374 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2375 DebugLoc DL = MBB.findDebugLoc(MI); 2376 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); 2377 } 2378 2379 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 2380 SmallVectorImpl<MachineOperand> &Addr, 2381 const TargetRegisterClass *RC, 2382 MachineInstr::mmo_iterator MMOBegin, 2383 MachineInstr::mmo_iterator MMOEnd, 2384 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2385 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 2386 bool isAligned = MMOBegin != MMOEnd && 2387 (*MMOBegin)->getAlignment() >= Alignment; 2388 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); 2389 DebugLoc DL; 2390 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); 2391 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 2392 MIB.addOperand(Addr[i]); 2393 (*MIB).setMemRefs(MMOBegin, MMOEnd); 2394 NewMIs.push_back(MIB); 2395 } 2396 2397 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr 2398 /// instruction with two undef reads of the register being defined. This is 2399 /// used for mapping: 2400 /// %xmm4 = V_SET0 2401 /// to: 2402 /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> 2403 /// 2404 static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) { 2405 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 2406 unsigned Reg = MI->getOperand(0).getReg(); 2407 MI->setDesc(Desc); 2408 2409 // MachineInstr::addOperand() will insert explicit operands before any 2410 // implicit operands. 2411 MachineInstrBuilder(MI).addReg(Reg, RegState::Undef) 2412 .addReg(Reg, RegState::Undef); 2413 // But we don't trust that. 2414 assert(MI->getOperand(1).getReg() == Reg && 2415 MI->getOperand(2).getReg() == Reg && "Misplaced operand"); 2416 return true; 2417 } 2418 2419 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 2420 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); 2421 switch (MI->getOpcode()) { 2422 case X86::V_SET0: 2423 return Expand2AddrUndef(MI, get(HasAVX ? X86::VPXORrr : X86::PXORrr)); 2424 case X86::TEST8ri_NOREX: 2425 MI->setDesc(get(X86::TEST8ri)); 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 MachineInstr* 2432 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, 2433 int FrameIx, uint64_t Offset, 2434 const MDNode *MDPtr, 2435 DebugLoc DL) const { 2436 X86AddressMode AM; 2437 AM.BaseType = X86AddressMode::FrameIndexBase; 2438 AM.Base.FrameIndex = FrameIx; 2439 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); 2440 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); 2441 return &*MIB; 2442 } 2443 2444 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 2445 const SmallVectorImpl<MachineOperand> &MOs, 2446 MachineInstr *MI, 2447 const TargetInstrInfo &TII) { 2448 // Create the base instruction with the memory operand as the first part. 2449 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2450 MI->getDebugLoc(), true); 2451 MachineInstrBuilder MIB(NewMI); 2452 unsigned NumAddrOps = MOs.size(); 2453 for (unsigned i = 0; i != NumAddrOps; ++i) 2454 MIB.addOperand(MOs[i]); 2455 if (NumAddrOps < 4) // FrameIndex only 2456 addOffset(MIB, 0); 2457 2458 // Loop over the rest of the ri operands, converting them over. 2459 unsigned NumOps = MI->getDesc().getNumOperands()-2; 2460 for (unsigned i = 0; i != NumOps; ++i) { 2461 MachineOperand &MO = MI->getOperand(i+2); 2462 MIB.addOperand(MO); 2463 } 2464 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { 2465 MachineOperand &MO = MI->getOperand(i); 2466 MIB.addOperand(MO); 2467 } 2468 return MIB; 2469 } 2470 2471 static MachineInstr *FuseInst(MachineFunction &MF, 2472 unsigned Opcode, unsigned OpNo, 2473 const SmallVectorImpl<MachineOperand> &MOs, 2474 MachineInstr *MI, const TargetInstrInfo &TII) { 2475 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), 2476 MI->getDebugLoc(), true); 2477 MachineInstrBuilder MIB(NewMI); 2478 2479 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2480 MachineOperand &MO = MI->getOperand(i); 2481 if (i == OpNo) { 2482 assert(MO.isReg() && "Expected to fold into reg operand!"); 2483 unsigned NumAddrOps = MOs.size(); 2484 for (unsigned i = 0; i != NumAddrOps; ++i) 2485 MIB.addOperand(MOs[i]); 2486 if (NumAddrOps < 4) // FrameIndex only 2487 addOffset(MIB, 0); 2488 } else { 2489 MIB.addOperand(MO); 2490 } 2491 } 2492 return MIB; 2493 } 2494 2495 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 2496 const SmallVectorImpl<MachineOperand> &MOs, 2497 MachineInstr *MI) { 2498 MachineFunction &MF = *MI->getParent()->getParent(); 2499 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); 2500 2501 unsigned NumAddrOps = MOs.size(); 2502 for (unsigned i = 0; i != NumAddrOps; ++i) 2503 MIB.addOperand(MOs[i]); 2504 if (NumAddrOps < 4) // FrameIndex only 2505 addOffset(MIB, 0); 2506 return MIB.addImm(0); 2507 } 2508 2509 MachineInstr* 2510 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2511 MachineInstr *MI, unsigned i, 2512 const SmallVectorImpl<MachineOperand> &MOs, 2513 unsigned Size, unsigned Align) const { 2514 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 2515 bool isTwoAddrFold = false; 2516 unsigned NumOps = MI->getDesc().getNumOperands(); 2517 bool isTwoAddr = NumOps > 1 && 2518 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 2519 2520 // FIXME: AsmPrinter doesn't know how to handle 2521 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 2522 if (MI->getOpcode() == X86::ADD32ri && 2523 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 2524 return NULL; 2525 2526 MachineInstr *NewMI = NULL; 2527 // Folding a memory location into the two-address part of a two-address 2528 // instruction is different than folding it other places. It requires 2529 // replacing the *two* registers with the memory location. 2530 if (isTwoAddr && NumOps >= 2 && i < 2 && 2531 MI->getOperand(0).isReg() && 2532 MI->getOperand(1).isReg() && 2533 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 2534 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 2535 isTwoAddrFold = true; 2536 } else if (i == 0) { // If operand 0 2537 if (MI->getOpcode() == X86::MOV64r0) 2538 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); 2539 else if (MI->getOpcode() == X86::MOV32r0) 2540 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); 2541 else if (MI->getOpcode() == X86::MOV16r0) 2542 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); 2543 else if (MI->getOpcode() == X86::MOV8r0) 2544 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); 2545 if (NewMI) 2546 return NewMI; 2547 2548 OpcodeTablePtr = &RegOp2MemOpTable0; 2549 } else if (i == 1) { 2550 OpcodeTablePtr = &RegOp2MemOpTable1; 2551 } else if (i == 2) { 2552 OpcodeTablePtr = &RegOp2MemOpTable2; 2553 } 2554 2555 // If table selected... 2556 if (OpcodeTablePtr) { 2557 // Find the Opcode to fuse 2558 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2559 OpcodeTablePtr->find(MI->getOpcode()); 2560 if (I != OpcodeTablePtr->end()) { 2561 unsigned Opcode = I->second.first; 2562 unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; 2563 if (Align < MinAlign) 2564 return NULL; 2565 bool NarrowToMOV32rm = false; 2566 if (Size) { 2567 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize(); 2568 if (Size < RCSize) { 2569 // Check if it's safe to fold the load. If the size of the object is 2570 // narrower than the load width, then it's not. 2571 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 2572 return NULL; 2573 // If this is a 64-bit load, but the spill slot is 32, then we can do 2574 // a 32-bit load which is implicitly zero-extended. This likely is due 2575 // to liveintervalanalysis remat'ing a load from stack slot. 2576 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) 2577 return NULL; 2578 Opcode = X86::MOV32rm; 2579 NarrowToMOV32rm = true; 2580 } 2581 } 2582 2583 if (isTwoAddrFold) 2584 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); 2585 else 2586 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); 2587 2588 if (NarrowToMOV32rm) { 2589 // If this is the special case where we use a MOV32rm to load a 32-bit 2590 // value and zero-extend the top bits. Change the destination register 2591 // to a 32-bit one. 2592 unsigned DstReg = NewMI->getOperand(0).getReg(); 2593 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 2594 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, 2595 X86::sub_32bit)); 2596 else 2597 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 2598 } 2599 return NewMI; 2600 } 2601 } 2602 2603 // No fusion 2604 if (PrintFailedFusing && !MI->isCopy()) 2605 dbgs() << "We failed to fuse operand " << i << " in " << *MI; 2606 return NULL; 2607 } 2608 2609 /// hasPartialRegUpdate - Return true for all instructions that only update 2610 /// the first 32 or 64-bits of the destination register and leave the rest 2611 /// unmodified. This can be used to avoid folding loads if the instructions 2612 /// only update part of the destination register, and the non-updated part is 2613 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 2614 /// instructions breaks the partial register dependency and it can improve 2615 /// performance. e.g.: 2616 /// 2617 /// movss (%rdi), %xmm0 2618 /// cvtss2sd %xmm0, %xmm0 2619 /// 2620 /// Instead of 2621 /// cvtss2sd (%rdi), %xmm0 2622 /// 2623 /// FIXME: This should be turned into a TSFlags. 2624 /// 2625 static bool hasPartialRegUpdate(unsigned Opcode) { 2626 switch (Opcode) { 2627 case X86::CVTSD2SSrr: 2628 case X86::Int_CVTSD2SSrr: 2629 case X86::CVTSS2SDrr: 2630 case X86::Int_CVTSS2SDrr: 2631 case X86::RCPSSr: 2632 case X86::RCPSSr_Int: 2633 case X86::ROUNDSDr: 2634 case X86::ROUNDSSr: 2635 case X86::RSQRTSSr: 2636 case X86::RSQRTSSr_Int: 2637 case X86::SQRTSSr: 2638 case X86::SQRTSSr_Int: 2639 // AVX encoded versions 2640 case X86::VCVTSD2SSrr: 2641 case X86::Int_VCVTSD2SSrr: 2642 case X86::VCVTSS2SDrr: 2643 case X86::Int_VCVTSS2SDrr: 2644 case X86::VRCPSSr: 2645 case X86::VROUNDSDr: 2646 case X86::VROUNDSSr: 2647 case X86::VRSQRTSSr: 2648 case X86::VSQRTSSr: 2649 return true; 2650 } 2651 2652 return false; 2653 } 2654 2655 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2656 MachineInstr *MI, 2657 const SmallVectorImpl<unsigned> &Ops, 2658 int FrameIndex) const { 2659 // Check switch flag 2660 if (NoFusing) return NULL; 2661 2662 // Unless optimizing for size, don't fold to avoid partial 2663 // register update stalls 2664 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && 2665 hasPartialRegUpdate(MI->getOpcode())) 2666 return 0; 2667 2668 const MachineFrameInfo *MFI = MF.getFrameInfo(); 2669 unsigned Size = MFI->getObjectSize(FrameIndex); 2670 unsigned Alignment = MFI->getObjectAlignment(FrameIndex); 2671 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2672 unsigned NewOpc = 0; 2673 unsigned RCSize = 0; 2674 switch (MI->getOpcode()) { 2675 default: return NULL; 2676 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 2677 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 2678 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 2679 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 2680 } 2681 // Check if it's safe to fold the load. If the size of the object is 2682 // narrower than the load width, then it's not. 2683 if (Size < RCSize) 2684 return NULL; 2685 // Change to CMPXXri r, 0 first. 2686 MI->setDesc(get(NewOpc)); 2687 MI->getOperand(1).ChangeToImmediate(0); 2688 } else if (Ops.size() != 1) 2689 return NULL; 2690 2691 SmallVector<MachineOperand,4> MOs; 2692 MOs.push_back(MachineOperand::CreateFI(FrameIndex)); 2693 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); 2694 } 2695 2696 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 2697 MachineInstr *MI, 2698 const SmallVectorImpl<unsigned> &Ops, 2699 MachineInstr *LoadMI) const { 2700 // Check switch flag 2701 if (NoFusing) return NULL; 2702 2703 // Unless optimizing for size, don't fold to avoid partial 2704 // register update stalls 2705 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) && 2706 hasPartialRegUpdate(MI->getOpcode())) 2707 return 0; 2708 2709 // Determine the alignment of the load. 2710 unsigned Alignment = 0; 2711 if (LoadMI->hasOneMemOperand()) 2712 Alignment = (*LoadMI->memoperands_begin())->getAlignment(); 2713 else 2714 switch (LoadMI->getOpcode()) { 2715 case X86::AVX_SET0PSY: 2716 case X86::AVX_SET0PDY: 2717 Alignment = 32; 2718 break; 2719 case X86::V_SET0: 2720 case X86::V_SETALLONES: 2721 case X86::AVX_SETALLONES: 2722 Alignment = 16; 2723 break; 2724 case X86::FsFLD0SD: 2725 case X86::VFsFLD0SD: 2726 Alignment = 8; 2727 break; 2728 case X86::FsFLD0SS: 2729 case X86::VFsFLD0SS: 2730 Alignment = 4; 2731 break; 2732 default: 2733 return 0; 2734 } 2735 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2736 unsigned NewOpc = 0; 2737 switch (MI->getOpcode()) { 2738 default: return NULL; 2739 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 2740 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 2741 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 2742 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 2743 } 2744 // Change to CMPXXri r, 0 first. 2745 MI->setDesc(get(NewOpc)); 2746 MI->getOperand(1).ChangeToImmediate(0); 2747 } else if (Ops.size() != 1) 2748 return NULL; 2749 2750 // Make sure the subregisters match. 2751 // Otherwise we risk changing the size of the load. 2752 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg()) 2753 return NULL; 2754 2755 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 2756 switch (LoadMI->getOpcode()) { 2757 case X86::V_SET0: 2758 case X86::V_SETALLONES: 2759 case X86::AVX_SET0PSY: 2760 case X86::AVX_SET0PDY: 2761 case X86::AVX_SETALLONES: 2762 case X86::FsFLD0SD: 2763 case X86::FsFLD0SS: 2764 case X86::VFsFLD0SD: 2765 case X86::VFsFLD0SS: { 2766 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 2767 // Create a constant-pool entry and operands to load from it. 2768 2769 // Medium and large mode can't fold loads this way. 2770 if (TM.getCodeModel() != CodeModel::Small && 2771 TM.getCodeModel() != CodeModel::Kernel) 2772 return NULL; 2773 2774 // x86-32 PIC requires a PIC base register for constant pools. 2775 unsigned PICBase = 0; 2776 if (TM.getRelocationModel() == Reloc::PIC_) { 2777 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 2778 PICBase = X86::RIP; 2779 else 2780 // FIXME: PICBase = getGlobalBaseReg(&MF); 2781 // This doesn't work for several reasons. 2782 // 1. GlobalBaseReg may have been spilled. 2783 // 2. It may not be live at MI. 2784 return NULL; 2785 } 2786 2787 // Create a constant-pool entry. 2788 MachineConstantPool &MCP = *MF.getConstantPool(); 2789 Type *Ty; 2790 unsigned Opc = LoadMI->getOpcode(); 2791 if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS) 2792 Ty = Type::getFloatTy(MF.getFunction()->getContext()); 2793 else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD) 2794 Ty = Type::getDoubleTy(MF.getFunction()->getContext()); 2795 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY) 2796 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8); 2797 else 2798 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); 2799 2800 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES); 2801 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 2802 Constant::getNullValue(Ty); 2803 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 2804 2805 // Create operands to load from the constant pool entry. 2806 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 2807 MOs.push_back(MachineOperand::CreateImm(1)); 2808 MOs.push_back(MachineOperand::CreateReg(0, false)); 2809 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 2810 MOs.push_back(MachineOperand::CreateReg(0, false)); 2811 break; 2812 } 2813 default: { 2814 // Folding a normal load. Just copy the load's address operands. 2815 unsigned NumOps = LoadMI->getDesc().getNumOperands(); 2816 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 2817 MOs.push_back(LoadMI->getOperand(i)); 2818 break; 2819 } 2820 } 2821 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); 2822 } 2823 2824 2825 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 2826 const SmallVectorImpl<unsigned> &Ops) const { 2827 // Check switch flag 2828 if (NoFusing) return 0; 2829 2830 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 2831 switch (MI->getOpcode()) { 2832 default: return false; 2833 case X86::TEST8rr: 2834 case X86::TEST16rr: 2835 case X86::TEST32rr: 2836 case X86::TEST64rr: 2837 return true; 2838 case X86::ADD32ri: 2839 // FIXME: AsmPrinter doesn't know how to handle 2840 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 2841 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 2842 return false; 2843 break; 2844 } 2845 } 2846 2847 if (Ops.size() != 1) 2848 return false; 2849 2850 unsigned OpNum = Ops[0]; 2851 unsigned Opc = MI->getOpcode(); 2852 unsigned NumOps = MI->getDesc().getNumOperands(); 2853 bool isTwoAddr = NumOps > 1 && 2854 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 2855 2856 // Folding a memory location into the two-address part of a two-address 2857 // instruction is different than folding it other places. It requires 2858 // replacing the *two* registers with the memory location. 2859 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; 2860 if (isTwoAddr && NumOps >= 2 && OpNum < 2) { 2861 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 2862 } else if (OpNum == 0) { // If operand 0 2863 switch (Opc) { 2864 case X86::MOV8r0: 2865 case X86::MOV16r0: 2866 case X86::MOV32r0: 2867 case X86::MOV64r0: return true; 2868 default: break; 2869 } 2870 OpcodeTablePtr = &RegOp2MemOpTable0; 2871 } else if (OpNum == 1) { 2872 OpcodeTablePtr = &RegOp2MemOpTable1; 2873 } else if (OpNum == 2) { 2874 OpcodeTablePtr = &RegOp2MemOpTable2; 2875 } 2876 2877 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) 2878 return true; 2879 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); 2880 } 2881 2882 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 2883 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 2884 SmallVectorImpl<MachineInstr*> &NewMIs) const { 2885 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 2886 MemOp2RegOpTable.find(MI->getOpcode()); 2887 if (I == MemOp2RegOpTable.end()) 2888 return false; 2889 unsigned Opc = I->second.first; 2890 unsigned Index = I->second.second & TB_INDEX_MASK; 2891 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 2892 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 2893 if (UnfoldLoad && !FoldedLoad) 2894 return false; 2895 UnfoldLoad &= FoldedLoad; 2896 if (UnfoldStore && !FoldedStore) 2897 return false; 2898 UnfoldStore &= FoldedStore; 2899 2900 const MCInstrDesc &MCID = get(Opc); 2901 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 2902 if (!MI->hasOneMemOperand() && 2903 RC == &X86::VR128RegClass && 2904 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 2905 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 2906 // conservatively assume the address is unaligned. That's bad for 2907 // performance. 2908 return false; 2909 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 2910 SmallVector<MachineOperand,2> BeforeOps; 2911 SmallVector<MachineOperand,2> AfterOps; 2912 SmallVector<MachineOperand,4> ImpOps; 2913 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2914 MachineOperand &Op = MI->getOperand(i); 2915 if (i >= Index && i < Index + X86::AddrNumOperands) 2916 AddrOps.push_back(Op); 2917 else if (Op.isReg() && Op.isImplicit()) 2918 ImpOps.push_back(Op); 2919 else if (i < Index) 2920 BeforeOps.push_back(Op); 2921 else if (i > Index) 2922 AfterOps.push_back(Op); 2923 } 2924 2925 // Emit the load instruction. 2926 if (UnfoldLoad) { 2927 std::pair<MachineInstr::mmo_iterator, 2928 MachineInstr::mmo_iterator> MMOs = 2929 MF.extractLoadMemRefs(MI->memoperands_begin(), 2930 MI->memoperands_end()); 2931 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); 2932 if (UnfoldStore) { 2933 // Address operands cannot be marked isKill. 2934 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 2935 MachineOperand &MO = NewMIs[0]->getOperand(i); 2936 if (MO.isReg()) 2937 MO.setIsKill(false); 2938 } 2939 } 2940 } 2941 2942 // Emit the data processing instruction. 2943 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); 2944 MachineInstrBuilder MIB(DataMI); 2945 2946 if (FoldedStore) 2947 MIB.addReg(Reg, RegState::Define); 2948 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 2949 MIB.addOperand(BeforeOps[i]); 2950 if (FoldedLoad) 2951 MIB.addReg(Reg); 2952 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 2953 MIB.addOperand(AfterOps[i]); 2954 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 2955 MachineOperand &MO = ImpOps[i]; 2956 MIB.addReg(MO.getReg(), 2957 getDefRegState(MO.isDef()) | 2958 RegState::Implicit | 2959 getKillRegState(MO.isKill()) | 2960 getDeadRegState(MO.isDead()) | 2961 getUndefRegState(MO.isUndef())); 2962 } 2963 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 2964 unsigned NewOpc = 0; 2965 switch (DataMI->getOpcode()) { 2966 default: break; 2967 case X86::CMP64ri32: 2968 case X86::CMP64ri8: 2969 case X86::CMP32ri: 2970 case X86::CMP32ri8: 2971 case X86::CMP16ri: 2972 case X86::CMP16ri8: 2973 case X86::CMP8ri: { 2974 MachineOperand &MO0 = DataMI->getOperand(0); 2975 MachineOperand &MO1 = DataMI->getOperand(1); 2976 if (MO1.getImm() == 0) { 2977 switch (DataMI->getOpcode()) { 2978 default: break; 2979 case X86::CMP64ri8: 2980 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 2981 case X86::CMP32ri8: 2982 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 2983 case X86::CMP16ri8: 2984 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 2985 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 2986 } 2987 DataMI->setDesc(get(NewOpc)); 2988 MO1.ChangeToRegister(MO0.getReg(), false); 2989 } 2990 } 2991 } 2992 NewMIs.push_back(DataMI); 2993 2994 // Emit the store instruction. 2995 if (UnfoldStore) { 2996 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI); 2997 std::pair<MachineInstr::mmo_iterator, 2998 MachineInstr::mmo_iterator> MMOs = 2999 MF.extractStoreMemRefs(MI->memoperands_begin(), 3000 MI->memoperands_end()); 3001 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); 3002 } 3003 3004 return true; 3005 } 3006 3007 bool 3008 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 3009 SmallVectorImpl<SDNode*> &NewNodes) const { 3010 if (!N->isMachineOpcode()) 3011 return false; 3012 3013 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 3014 MemOp2RegOpTable.find(N->getMachineOpcode()); 3015 if (I == MemOp2RegOpTable.end()) 3016 return false; 3017 unsigned Opc = I->second.first; 3018 unsigned Index = I->second.second & TB_INDEX_MASK; 3019 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 3020 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 3021 const MCInstrDesc &MCID = get(Opc); 3022 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI); 3023 unsigned NumDefs = MCID.NumDefs; 3024 std::vector<SDValue> AddrOps; 3025 std::vector<SDValue> BeforeOps; 3026 std::vector<SDValue> AfterOps; 3027 DebugLoc dl = N->getDebugLoc(); 3028 unsigned NumOps = N->getNumOperands(); 3029 for (unsigned i = 0; i != NumOps-1; ++i) { 3030 SDValue Op = N->getOperand(i); 3031 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 3032 AddrOps.push_back(Op); 3033 else if (i < Index-NumDefs) 3034 BeforeOps.push_back(Op); 3035 else if (i > Index-NumDefs) 3036 AfterOps.push_back(Op); 3037 } 3038 SDValue Chain = N->getOperand(NumOps-1); 3039 AddrOps.push_back(Chain); 3040 3041 // Emit the load instruction. 3042 SDNode *Load = 0; 3043 MachineFunction &MF = DAG.getMachineFunction(); 3044 if (FoldedLoad) { 3045 EVT VT = *RC->vt_begin(); 3046 std::pair<MachineInstr::mmo_iterator, 3047 MachineInstr::mmo_iterator> MMOs = 3048 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 3049 cast<MachineSDNode>(N)->memoperands_end()); 3050 if (!(*MMOs.first) && 3051 RC == &X86::VR128RegClass && 3052 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 3053 // Do not introduce a slow unaligned load. 3054 return false; 3055 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 3056 bool isAligned = (*MMOs.first) && 3057 (*MMOs.first)->getAlignment() >= Alignment; 3058 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, 3059 VT, MVT::Other, &AddrOps[0], AddrOps.size()); 3060 NewNodes.push_back(Load); 3061 3062 // Preserve memory reference information. 3063 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 3064 } 3065 3066 // Emit the data processing instruction. 3067 std::vector<EVT> VTs; 3068 const TargetRegisterClass *DstRC = 0; 3069 if (MCID.getNumDefs() > 0) { 3070 DstRC = getRegClass(MCID, 0, &RI); 3071 VTs.push_back(*DstRC->vt_begin()); 3072 } 3073 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 3074 EVT VT = N->getValueType(i); 3075 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 3076 VTs.push_back(VT); 3077 } 3078 if (Load) 3079 BeforeOps.push_back(SDValue(Load, 0)); 3080 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 3081 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], 3082 BeforeOps.size()); 3083 NewNodes.push_back(NewNode); 3084 3085 // Emit the store instruction. 3086 if (FoldedStore) { 3087 AddrOps.pop_back(); 3088 AddrOps.push_back(SDValue(NewNode, 0)); 3089 AddrOps.push_back(Chain); 3090 std::pair<MachineInstr::mmo_iterator, 3091 MachineInstr::mmo_iterator> MMOs = 3092 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), 3093 cast<MachineSDNode>(N)->memoperands_end()); 3094 if (!(*MMOs.first) && 3095 RC == &X86::VR128RegClass && 3096 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast()) 3097 // Do not introduce a slow unaligned store. 3098 return false; 3099 unsigned Alignment = RC->getSize() == 32 ? 32 : 16; 3100 bool isAligned = (*MMOs.first) && 3101 (*MMOs.first)->getAlignment() >= Alignment; 3102 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, 3103 isAligned, TM), 3104 dl, MVT::Other, 3105 &AddrOps[0], AddrOps.size()); 3106 NewNodes.push_back(Store); 3107 3108 // Preserve memory reference information. 3109 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); 3110 } 3111 3112 return true; 3113 } 3114 3115 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 3116 bool UnfoldLoad, bool UnfoldStore, 3117 unsigned *LoadRegIndex) const { 3118 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I = 3119 MemOp2RegOpTable.find(Opc); 3120 if (I == MemOp2RegOpTable.end()) 3121 return 0; 3122 bool FoldedLoad = I->second.second & TB_FOLDED_LOAD; 3123 bool FoldedStore = I->second.second & TB_FOLDED_STORE; 3124 if (UnfoldLoad && !FoldedLoad) 3125 return 0; 3126 if (UnfoldStore && !FoldedStore) 3127 return 0; 3128 if (LoadRegIndex) 3129 *LoadRegIndex = I->second.second & TB_INDEX_MASK; 3130 return I->second.first; 3131 } 3132 3133 bool 3134 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 3135 int64_t &Offset1, int64_t &Offset2) const { 3136 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 3137 return false; 3138 unsigned Opc1 = Load1->getMachineOpcode(); 3139 unsigned Opc2 = Load2->getMachineOpcode(); 3140 switch (Opc1) { 3141 default: return false; 3142 case X86::MOV8rm: 3143 case X86::MOV16rm: 3144 case X86::MOV32rm: 3145 case X86::MOV64rm: 3146 case X86::LD_Fp32m: 3147 case X86::LD_Fp64m: 3148 case X86::LD_Fp80m: 3149 case X86::MOVSSrm: 3150 case X86::MOVSDrm: 3151 case X86::MMX_MOVD64rm: 3152 case X86::MMX_MOVQ64rm: 3153 case X86::FsMOVAPSrm: 3154 case X86::FsMOVAPDrm: 3155 case X86::MOVAPSrm: 3156 case X86::MOVUPSrm: 3157 case X86::MOVAPDrm: 3158 case X86::MOVDQArm: 3159 case X86::MOVDQUrm: 3160 // AVX load instructions 3161 case X86::VMOVSSrm: 3162 case X86::VMOVSDrm: 3163 case X86::FsVMOVAPSrm: 3164 case X86::FsVMOVAPDrm: 3165 case X86::VMOVAPSrm: 3166 case X86::VMOVUPSrm: 3167 case X86::VMOVAPDrm: 3168 case X86::VMOVDQArm: 3169 case X86::VMOVDQUrm: 3170 case X86::VMOVAPSYrm: 3171 case X86::VMOVUPSYrm: 3172 case X86::VMOVAPDYrm: 3173 case X86::VMOVDQAYrm: 3174 case X86::VMOVDQUYrm: 3175 break; 3176 } 3177 switch (Opc2) { 3178 default: return false; 3179 case X86::MOV8rm: 3180 case X86::MOV16rm: 3181 case X86::MOV32rm: 3182 case X86::MOV64rm: 3183 case X86::LD_Fp32m: 3184 case X86::LD_Fp64m: 3185 case X86::LD_Fp80m: 3186 case X86::MOVSSrm: 3187 case X86::MOVSDrm: 3188 case X86::MMX_MOVD64rm: 3189 case X86::MMX_MOVQ64rm: 3190 case X86::FsMOVAPSrm: 3191 case X86::FsMOVAPDrm: 3192 case X86::MOVAPSrm: 3193 case X86::MOVUPSrm: 3194 case X86::MOVAPDrm: 3195 case X86::MOVDQArm: 3196 case X86::MOVDQUrm: 3197 // AVX load instructions 3198 case X86::VMOVSSrm: 3199 case X86::VMOVSDrm: 3200 case X86::FsVMOVAPSrm: 3201 case X86::FsVMOVAPDrm: 3202 case X86::VMOVAPSrm: 3203 case X86::VMOVUPSrm: 3204 case X86::VMOVAPDrm: 3205 case X86::VMOVDQArm: 3206 case X86::VMOVDQUrm: 3207 case X86::VMOVAPSYrm: 3208 case X86::VMOVUPSYrm: 3209 case X86::VMOVAPDYrm: 3210 case X86::VMOVDQAYrm: 3211 case X86::VMOVDQUYrm: 3212 break; 3213 } 3214 3215 // Check if chain operands and base addresses match. 3216 if (Load1->getOperand(0) != Load2->getOperand(0) || 3217 Load1->getOperand(5) != Load2->getOperand(5)) 3218 return false; 3219 // Segment operands should match as well. 3220 if (Load1->getOperand(4) != Load2->getOperand(4)) 3221 return false; 3222 // Scale should be 1, Index should be Reg0. 3223 if (Load1->getOperand(1) == Load2->getOperand(1) && 3224 Load1->getOperand(2) == Load2->getOperand(2)) { 3225 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) 3226 return false; 3227 3228 // Now let's examine the displacements. 3229 if (isa<ConstantSDNode>(Load1->getOperand(3)) && 3230 isa<ConstantSDNode>(Load2->getOperand(3))) { 3231 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); 3232 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); 3233 return true; 3234 } 3235 } 3236 return false; 3237 } 3238 3239 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 3240 int64_t Offset1, int64_t Offset2, 3241 unsigned NumLoads) const { 3242 assert(Offset2 > Offset1); 3243 if ((Offset2 - Offset1) / 8 > 64) 3244 return false; 3245 3246 unsigned Opc1 = Load1->getMachineOpcode(); 3247 unsigned Opc2 = Load2->getMachineOpcode(); 3248 if (Opc1 != Opc2) 3249 return false; // FIXME: overly conservative? 3250 3251 switch (Opc1) { 3252 default: break; 3253 case X86::LD_Fp32m: 3254 case X86::LD_Fp64m: 3255 case X86::LD_Fp80m: 3256 case X86::MMX_MOVD64rm: 3257 case X86::MMX_MOVQ64rm: 3258 return false; 3259 } 3260 3261 EVT VT = Load1->getValueType(0); 3262 switch (VT.getSimpleVT().SimpleTy) { 3263 default: 3264 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 3265 // have 16 of them to play with. 3266 if (TM.getSubtargetImpl()->is64Bit()) { 3267 if (NumLoads >= 3) 3268 return false; 3269 } else if (NumLoads) { 3270 return false; 3271 } 3272 break; 3273 case MVT::i8: 3274 case MVT::i16: 3275 case MVT::i32: 3276 case MVT::i64: 3277 case MVT::f32: 3278 case MVT::f64: 3279 if (NumLoads) 3280 return false; 3281 break; 3282 } 3283 3284 return true; 3285 } 3286 3287 3288 bool X86InstrInfo:: 3289 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 3290 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 3291 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 3292 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) 3293 return true; 3294 Cond[0].setImm(GetOppositeBranchCondition(CC)); 3295 return false; 3296 } 3297 3298 bool X86InstrInfo:: 3299 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 3300 // FIXME: Return false for x87 stack register classes for now. We can't 3301 // allow any loads of these registers before FpGet_ST0_80. 3302 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || 3303 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); 3304 } 3305 3306 /// getGlobalBaseReg - Return a virtual register initialized with the 3307 /// the global base register value. Output instructions required to 3308 /// initialize the register in the function entry block, if necessary. 3309 /// 3310 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 3311 /// 3312 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 3313 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && 3314 "X86-64 PIC uses RIP relative addressing"); 3315 3316 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 3317 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3318 if (GlobalBaseReg != 0) 3319 return GlobalBaseReg; 3320 3321 // Create the register. The code to initialize it is inserted 3322 // later, by the CGBR pass (below). 3323 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 3324 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3325 X86FI->setGlobalBaseReg(GlobalBaseReg); 3326 return GlobalBaseReg; 3327 } 3328 3329 // These are the replaceable SSE instructions. Some of these have Int variants 3330 // that we don't include here. We don't want to replace instructions selected 3331 // by intrinsics. 3332 static const unsigned ReplaceableInstrs[][3] = { 3333 //PackedSingle PackedDouble PackedInt 3334 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 3335 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 3336 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 3337 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 3338 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 3339 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 3340 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 3341 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 3342 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 3343 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 3344 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 3345 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 3346 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 3347 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 3348 // AVX 128-bit support 3349 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 3350 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 3351 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 3352 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 3353 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 3354 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 3355 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 3356 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 3357 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 3358 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 3359 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 3360 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 3361 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 3362 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 3363 // AVX 256-bit support 3364 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 3365 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 3366 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 3367 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 3368 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 3369 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 3370 }; 3371 3372 // FIXME: Some shuffle and unpack instructions have equivalents in different 3373 // domains, but they require a bit more work than just switching opcodes. 3374 3375 static const unsigned *lookup(unsigned opcode, unsigned domain) { 3376 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) 3377 if (ReplaceableInstrs[i][domain-1] == opcode) 3378 return ReplaceableInstrs[i]; 3379 return 0; 3380 } 3381 3382 std::pair<uint16_t, uint16_t> 3383 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const { 3384 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3385 return std::make_pair(domain, 3386 domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); 3387 } 3388 3389 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 3390 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 3391 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 3392 assert(dom && "Not an SSE instruction"); 3393 const unsigned *table = lookup(MI->getOpcode(), dom); 3394 assert(table && "Cannot change domain"); 3395 MI->setDesc(get(table[Domain-1])); 3396 } 3397 3398 /// getNoopForMachoTarget - Return the noop instruction to use for a noop. 3399 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 3400 NopInst.setOpcode(X86::NOOP); 3401 } 3402 3403 bool X86InstrInfo::isHighLatencyDef(int opc) const { 3404 switch (opc) { 3405 default: return false; 3406 case X86::DIVSDrm: 3407 case X86::DIVSDrm_Int: 3408 case X86::DIVSDrr: 3409 case X86::DIVSDrr_Int: 3410 case X86::DIVSSrm: 3411 case X86::DIVSSrm_Int: 3412 case X86::DIVSSrr: 3413 case X86::DIVSSrr_Int: 3414 case X86::SQRTPDm: 3415 case X86::SQRTPDm_Int: 3416 case X86::SQRTPDr: 3417 case X86::SQRTPDr_Int: 3418 case X86::SQRTPSm: 3419 case X86::SQRTPSm_Int: 3420 case X86::SQRTPSr: 3421 case X86::SQRTPSr_Int: 3422 case X86::SQRTSDm: 3423 case X86::SQRTSDm_Int: 3424 case X86::SQRTSDr: 3425 case X86::SQRTSDr_Int: 3426 case X86::SQRTSSm: 3427 case X86::SQRTSSm_Int: 3428 case X86::SQRTSSr: 3429 case X86::SQRTSSr_Int: 3430 // AVX instructions with high latency 3431 case X86::VDIVSDrm: 3432 case X86::VDIVSDrm_Int: 3433 case X86::VDIVSDrr: 3434 case X86::VDIVSDrr_Int: 3435 case X86::VDIVSSrm: 3436 case X86::VDIVSSrm_Int: 3437 case X86::VDIVSSrr: 3438 case X86::VDIVSSrr_Int: 3439 case X86::VSQRTPDm: 3440 case X86::VSQRTPDm_Int: 3441 case X86::VSQRTPDr: 3442 case X86::VSQRTPDr_Int: 3443 case X86::VSQRTPSm: 3444 case X86::VSQRTPSm_Int: 3445 case X86::VSQRTPSr: 3446 case X86::VSQRTPSr_Int: 3447 case X86::VSQRTSDm: 3448 case X86::VSQRTSDm_Int: 3449 case X86::VSQRTSDr: 3450 case X86::VSQRTSSm: 3451 case X86::VSQRTSSm_Int: 3452 case X86::VSQRTSSr: 3453 return true; 3454 } 3455 } 3456 3457 bool X86InstrInfo:: 3458 hasHighOperandLatency(const InstrItineraryData *ItinData, 3459 const MachineRegisterInfo *MRI, 3460 const MachineInstr *DefMI, unsigned DefIdx, 3461 const MachineInstr *UseMI, unsigned UseIdx) const { 3462 return isHighLatencyDef(DefMI->getOpcode()); 3463 } 3464 3465 namespace { 3466 /// CGBR - Create Global Base Reg pass. This initializes the PIC 3467 /// global base register for x86-32. 3468 struct CGBR : public MachineFunctionPass { 3469 static char ID; 3470 CGBR() : MachineFunctionPass(ID) {} 3471 3472 virtual bool runOnMachineFunction(MachineFunction &MF) { 3473 const X86TargetMachine *TM = 3474 static_cast<const X86TargetMachine *>(&MF.getTarget()); 3475 3476 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() && 3477 "X86-64 PIC uses RIP relative addressing"); 3478 3479 // Only emit a global base reg in PIC mode. 3480 if (TM->getRelocationModel() != Reloc::PIC_) 3481 return false; 3482 3483 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3484 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); 3485 3486 // If we didn't need a GlobalBaseReg, don't insert code. 3487 if (GlobalBaseReg == 0) 3488 return false; 3489 3490 // Insert the set of GlobalBaseReg into the first MBB of the function 3491 MachineBasicBlock &FirstMBB = MF.front(); 3492 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 3493 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 3494 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3495 const X86InstrInfo *TII = TM->getInstrInfo(); 3496 3497 unsigned PC; 3498 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) 3499 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); 3500 else 3501 PC = GlobalBaseReg; 3502 3503 // Operand of MovePCtoStack is completely ignored by asm printer. It's 3504 // only used in JIT code emission as displacement to pc. 3505 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 3506 3507 // If we're using vanilla 'GOT' PIC style, we should use relative addressing 3508 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 3509 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) { 3510 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register 3511 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 3512 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 3513 X86II::MO_GOT_ABSOLUTE_ADDRESS); 3514 } 3515 3516 return true; 3517 } 3518 3519 virtual const char *getPassName() const { 3520 return "X86 PIC Global Base Reg Initialization"; 3521 } 3522 3523 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 3524 AU.setPreservesCFG(); 3525 MachineFunctionPass::getAnalysisUsage(AU); 3526 } 3527 }; 3528 } 3529 3530 char CGBR::ID = 0; 3531 FunctionPass* 3532 llvm::createGlobalBaseRegPass() { return new CGBR(); } 3533