Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "arm-isel"
     16 #include "ARMISelLowering.h"
     17 #include "ARM.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "ARMPerfectShuffle.h"
     22 #include "ARMSubtarget.h"
     23 #include "ARMTargetMachine.h"
     24 #include "ARMTargetObjectFile.h"
     25 #include "MCTargetDesc/ARMAddressingModes.h"
     26 #include "llvm/CallingConv.h"
     27 #include "llvm/Constants.h"
     28 #include "llvm/Function.h"
     29 #include "llvm/GlobalValue.h"
     30 #include "llvm/Instruction.h"
     31 #include "llvm/Instructions.h"
     32 #include "llvm/Intrinsics.h"
     33 #include "llvm/Type.h"
     34 #include "llvm/CodeGen/CallingConvLower.h"
     35 #include "llvm/CodeGen/IntrinsicLowering.h"
     36 #include "llvm/CodeGen/MachineBasicBlock.h"
     37 #include "llvm/CodeGen/MachineFrameInfo.h"
     38 #include "llvm/CodeGen/MachineFunction.h"
     39 #include "llvm/CodeGen/MachineInstrBuilder.h"
     40 #include "llvm/CodeGen/MachineModuleInfo.h"
     41 #include "llvm/CodeGen/MachineRegisterInfo.h"
     42 #include "llvm/CodeGen/SelectionDAG.h"
     43 #include "llvm/MC/MCSectionMachO.h"
     44 #include "llvm/Target/TargetOptions.h"
     45 #include "llvm/ADT/StringExtras.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 using namespace llvm;
     52 
     53 STATISTIC(NumTailCalls, "Number of tail calls");
     54 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     55 
     56 // This option should go away when tail calls fully work.
     57 static cl::opt<bool>
     58 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
     59   cl::desc("Generate tail calls (TEMPORARY OPTION)."),
     60   cl::init(false));
     61 
     62 cl::opt<bool>
     63 EnableARMLongCalls("arm-long-calls", cl::Hidden,
     64   cl::desc("Generate calls via indirect call instructions"),
     65   cl::init(false));
     66 
     67 static cl::opt<bool>
     68 ARMInterworking("arm-interworking", cl::Hidden,
     69   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     70   cl::init(true));
     71 
     72 namespace {
     73   class ARMCCState : public CCState {
     74   public:
     75     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     76                const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
     77                LLVMContext &C, ParmContext PC)
     78         : CCState(CC, isVarArg, MF, TM, locs, C) {
     79       assert(((PC == Call) || (PC == Prologue)) &&
     80              "ARMCCState users must specify whether their context is call"
     81              "or prologue generation.");
     82       CallOrPrologue = PC;
     83     }
     84   };
     85 }
     86 
     87 // The APCS parameter registers.
     88 static const uint16_t GPRArgRegs[] = {
     89   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     90 };
     91 
     92 void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
     93                                        EVT PromotedBitwiseVT) {
     94   if (VT != PromotedLdStVT) {
     95     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
     96     AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
     97                        PromotedLdStVT.getSimpleVT());
     98 
     99     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
    100     AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
    101                        PromotedLdStVT.getSimpleVT());
    102   }
    103 
    104   EVT ElemTy = VT.getVectorElementType();
    105   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    106     setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
    107   setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
    108   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
    109   if (ElemTy == MVT::i32) {
    110     setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
    111     setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
    112     setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
    113     setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
    114   } else {
    115     setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
    116     setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
    117     setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
    118     setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
    119   }
    120   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
    121   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
    122   setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
    123   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
    124   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
    125   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
    126   setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
    127   if (VT.isInteger()) {
    128     setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
    129     setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
    130     setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
    131   }
    132 
    133   // Promote all bit-wise operations.
    134   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    135     setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
    136     AddPromotedToType (ISD::AND, VT.getSimpleVT(),
    137                        PromotedBitwiseVT.getSimpleVT());
    138     setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
    139     AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
    140                        PromotedBitwiseVT.getSimpleVT());
    141     setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
    142     AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
    143                        PromotedBitwiseVT.getSimpleVT());
    144   }
    145 
    146   // Neon does not support vector divide/remainder operations.
    147   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
    148   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
    149   setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
    150   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
    151   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
    152   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
    153 }
    154 
    155 void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
    156   addRegisterClass(VT, ARM::DPRRegisterClass);
    157   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    158 }
    159 
    160 void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
    161   addRegisterClass(VT, ARM::QPRRegisterClass);
    162   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    163 }
    164 
    165 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
    166   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
    167     return new TargetLoweringObjectFileMachO();
    168 
    169   return new ARMElfTargetObjectFile();
    170 }
    171 
    172 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
    173     : TargetLowering(TM, createTLOF(TM)) {
    174   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    175   RegInfo = TM.getRegisterInfo();
    176   Itins = TM.getInstrItineraryData();
    177 
    178   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    179 
    180   if (Subtarget->isTargetDarwin()) {
    181     // Uses VFP for Thumb libfuncs if available.
    182     if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
    183       // Single-precision floating-point arithmetic.
    184       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
    185       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
    186       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
    187       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
    188 
    189       // Double-precision floating-point arithmetic.
    190       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
    191       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
    192       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
    193       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
    194 
    195       // Single-precision comparisons.
    196       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
    197       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
    198       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
    199       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
    200       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
    201       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
    202       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
    203       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
    204 
    205       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    206       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
    207       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    208       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    209       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    210       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    211       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    212       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    213 
    214       // Double-precision comparisons.
    215       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
    216       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
    217       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
    218       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
    219       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
    220       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
    221       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
    222       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
    223 
    224       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    225       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
    226       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    227       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    228       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    229       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    230       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    231       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    232 
    233       // Floating-point to integer conversions.
    234       // i64 conversions are done via library routines even when generating VFP
    235       // instructions, so use the same ones.
    236       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
    237       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
    238       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
    239       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
    240 
    241       // Conversions between floating types.
    242       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
    243       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
    244 
    245       // Integer to floating-point conversions.
    246       // i64 conversions are done via library routines even when generating VFP
    247       // instructions, so use the same ones.
    248       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    249       // e.g., __floatunsidf vs. __floatunssidfvfp.
    250       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
    251       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
    252       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
    253       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
    254     }
    255   }
    256 
    257   // These libcalls are not available in 32-bit.
    258   setLibcallName(RTLIB::SHL_I128, 0);
    259   setLibcallName(RTLIB::SRL_I128, 0);
    260   setLibcallName(RTLIB::SRA_I128, 0);
    261 
    262   if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
    263     // Double-precision floating-point arithmetic helper functions
    264     // RTABI chapter 4.1.2, Table 2
    265     setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
    266     setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
    267     setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
    268     setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
    269     setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
    270     setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
    271     setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
    272     setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
    273 
    274     // Double-precision floating-point comparison helper functions
    275     // RTABI chapter 4.1.2, Table 3
    276     setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
    277     setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    278     setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
    279     setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
    280     setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
    281     setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    282     setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
    283     setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    284     setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
    285     setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    286     setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
    287     setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    288     setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
    289     setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    290     setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
    291     setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    292     setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
    293     setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
    294     setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
    295     setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
    296     setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
    297     setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
    298     setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
    299     setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
    300 
    301     // Single-precision floating-point arithmetic helper functions
    302     // RTABI chapter 4.1.2, Table 4
    303     setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
    304     setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
    305     setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
    306     setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
    307     setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
    308     setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
    309     setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
    310     setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
    311 
    312     // Single-precision floating-point comparison helper functions
    313     // RTABI chapter 4.1.2, Table 5
    314     setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
    315     setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    316     setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
    317     setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
    318     setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
    319     setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    320     setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
    321     setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    322     setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
    323     setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    324     setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
    325     setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    326     setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
    327     setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    328     setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
    329     setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    330     setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
    331     setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
    332     setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
    333     setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
    334     setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
    335     setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
    336     setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
    337     setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
    338 
    339     // Floating-point to integer conversions.
    340     // RTABI chapter 4.1.2, Table 6
    341     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
    342     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
    343     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
    344     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
    345     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
    346     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
    347     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
    348     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
    349     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
    350     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
    351     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
    352     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
    353     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
    354     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
    355     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
    356     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
    357 
    358     // Conversions between floating types.
    359     // RTABI chapter 4.1.2, Table 7
    360     setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
    361     setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
    362     setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
    363     setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
    364 
    365     // Integer to floating-point conversions.
    366     // RTABI chapter 4.1.2, Table 8
    367     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
    368     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
    369     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
    370     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
    371     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
    372     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
    373     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
    374     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
    375     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    376     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    377     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    378     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    379     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    380     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    381     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    382     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    383 
    384     // Long long helper functions
    385     // RTABI chapter 4.2, Table 9
    386     setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
    387     setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
    388     setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
    389     setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
    390     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
    391     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
    392     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
    393     setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
    394     setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
    395     setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
    396 
    397     // Integer division functions
    398     // RTABI chapter 4.3.1
    399     setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
    400     setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
    401     setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
    402     setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
    403     setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
    404     setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
    405     setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
    406     setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
    407     setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
    408     setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
    409     setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
    410     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
    411     setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
    412     setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
    413     setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
    414     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
    415 
    416     // Memory operations
    417     // RTABI chapter 4.3.4
    418     setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
    419     setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
    420     setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
    421     setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
    422     setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
    423     setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
    424   }
    425 
    426   // Use divmod compiler-rt calls for iOS 5.0 and later.
    427   if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
    428       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
    429     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    430     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    431   }
    432 
    433   if (Subtarget->isThumb1Only())
    434     addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
    435   else
    436     addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
    437   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    438       !Subtarget->isThumb1Only()) {
    439     addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
    440     if (!Subtarget->isFPOnlySP())
    441       addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
    442 
    443     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    444   }
    445 
    446   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    447        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    448     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    449          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    450       setTruncStoreAction((MVT::SimpleValueType)VT,
    451                           (MVT::SimpleValueType)InnerVT, Expand);
    452     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    453     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    454     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    455   }
    456 
    457   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    458 
    459   if (Subtarget->hasNEON()) {
    460     addDRTypeForNEON(MVT::v2f32);
    461     addDRTypeForNEON(MVT::v8i8);
    462     addDRTypeForNEON(MVT::v4i16);
    463     addDRTypeForNEON(MVT::v2i32);
    464     addDRTypeForNEON(MVT::v1i64);
    465 
    466     addQRTypeForNEON(MVT::v4f32);
    467     addQRTypeForNEON(MVT::v2f64);
    468     addQRTypeForNEON(MVT::v16i8);
    469     addQRTypeForNEON(MVT::v8i16);
    470     addQRTypeForNEON(MVT::v4i32);
    471     addQRTypeForNEON(MVT::v2i64);
    472 
    473     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    474     // neither Neon nor VFP support any arithmetic operations on it.
    475     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    476     // supported for v4f32.
    477     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    478     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    479     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    480     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    481     // ARMTargetLowering::addTypeForNEON method for details.
    482     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    483     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    484     // FIXME: Create unittest.
    485     // In another words, find a way when "copysign" appears in DAG with vector
    486     // operands.
    487     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    488     // FIXME: Code duplication: SETCC has custom operation action, see
    489     // ARMTargetLowering::addTypeForNEON method for details.
    490     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    491     // FIXME: Create unittest for FNEG and for FABS.
    492     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    493     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    494     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    495     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    496     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    497     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    498     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    499     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    500     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    501     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    502     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    503     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    504     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    505     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    506     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    507     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    510 
    511     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    512     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    513     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    514     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    515     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    516     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    517     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    518     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    519     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    520     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    521 
    522     // Neon does not support some operations on v1i64 and v2i64 types.
    523     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    524     // Custom handling for some quad-vector types to detect VMULL.
    525     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    526     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    527     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    528     // Custom handling for some vector types to avoid expensive expansions
    529     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    530     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    531     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    532     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    533     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    534     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    535     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    536     // a destination type that is wider than the source, and nor does
    537     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    538     // source.
    539     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    540     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    541     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    542     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    543 
    544     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    545     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    546     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    547     setTargetDAGCombine(ISD::SHL);
    548     setTargetDAGCombine(ISD::SRL);
    549     setTargetDAGCombine(ISD::SRA);
    550     setTargetDAGCombine(ISD::SIGN_EXTEND);
    551     setTargetDAGCombine(ISD::ZERO_EXTEND);
    552     setTargetDAGCombine(ISD::ANY_EXTEND);
    553     setTargetDAGCombine(ISD::SELECT_CC);
    554     setTargetDAGCombine(ISD::BUILD_VECTOR);
    555     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    556     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    557     setTargetDAGCombine(ISD::STORE);
    558     setTargetDAGCombine(ISD::FP_TO_SINT);
    559     setTargetDAGCombine(ISD::FP_TO_UINT);
    560     setTargetDAGCombine(ISD::FDIV);
    561 
    562     // It is legal to extload from v4i8 to v4i16 or v4i32.
    563     MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
    564                   MVT::v4i16, MVT::v2i16,
    565                   MVT::v2i32};
    566     for (unsigned i = 0; i < 6; ++i) {
    567       setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
    568       setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
    569       setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
    570     }
    571   }
    572 
    573   computeRegisterProperties();
    574 
    575   // ARM does not have f32 extending load.
    576   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    577 
    578   // ARM does not have i1 sign extending load.
    579   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    580 
    581   // ARM supports all 4 flavors of integer indexed load / store.
    582   if (!Subtarget->isThumb1Only()) {
    583     for (unsigned im = (unsigned)ISD::PRE_INC;
    584          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    585       setIndexedLoadAction(im,  MVT::i1,  Legal);
    586       setIndexedLoadAction(im,  MVT::i8,  Legal);
    587       setIndexedLoadAction(im,  MVT::i16, Legal);
    588       setIndexedLoadAction(im,  MVT::i32, Legal);
    589       setIndexedStoreAction(im, MVT::i1,  Legal);
    590       setIndexedStoreAction(im, MVT::i8,  Legal);
    591       setIndexedStoreAction(im, MVT::i16, Legal);
    592       setIndexedStoreAction(im, MVT::i32, Legal);
    593     }
    594   }
    595 
    596   // i64 operation support.
    597   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    598   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    599   if (Subtarget->isThumb1Only()) {
    600     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    601     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    602   }
    603   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    604       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
    605     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    606 
    607   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    608   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    609   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    610   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    611   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    612 
    613   if (!Subtarget->isThumb1Only()) {
    614     // FIXME: We should do this for Thumb1 as well.
    615     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    616     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    617     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    618     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    619   }
    620 
    621   // ARM does not have ROTL.
    622   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
    623   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    624   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    625   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    626     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    627 
    628   // These just redirect to CTTZ and CTLZ on ARM.
    629   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
    630   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
    631 
    632   // Only ARMv6 has BSWAP.
    633   if (!Subtarget->hasV6Ops())
    634     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    635 
    636   // These are expanded into libcalls.
    637   if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
    638     // v7M has a hardware divider
    639     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    640     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
    641   }
    642   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    643   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    644   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    645   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    646 
    647   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    648   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    649   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
    650   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    651   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    652 
    653   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    654 
    655   // Use the default implementation.
    656   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    657   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    658   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    659   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    660   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    661   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    662 
    663   if (!Subtarget->isTargetDarwin()) {
    664     // Non-Darwin platforms may return values in these registers via the
    665     // personality function.
    666     setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
    667     setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
    668     setExceptionPointerRegister(ARM::R0);
    669     setExceptionSelectorRegister(ARM::R1);
    670   }
    671 
    672   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    673   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    674   // the default expansion.
    675   // FIXME: This should be checking for v6k, not just v6.
    676   if (Subtarget->hasDataBarrier() ||
    677       (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
    678     // membarrier needs custom lowering; the rest are legal and handled
    679     // normally.
    680     setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
    681     setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    682     // Custom lowering for 64-bit ops
    683     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
    684     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
    685     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
    686     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
    687     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
    688     setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
    689     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
    690     // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
    691     setInsertFencesForAtomic(true);
    692   } else {
    693     // Set them all for expansion, which will force libcalls.
    694     setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
    695     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
    696     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    697     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    698     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    699     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    700     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    701     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    702     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    703     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    704     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    705     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    706     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    707     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    708     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    709     // Unordered/Monotonic case.
    710     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    711     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    712     // Since the libcalls include locking, fold in the fences
    713     setShouldFoldAtomicFences(true);
    714   }
    715 
    716   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    717 
    718   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    719   if (!Subtarget->hasV6Ops()) {
    720     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    721     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    722   }
    723   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    724 
    725   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    726       !Subtarget->isThumb1Only()) {
    727     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    728     // iff target supports vfp2.
    729     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    730     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    731   }
    732 
    733   // We want to custom lower some of our intrinsics.
    734   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    735   if (Subtarget->isTargetDarwin()) {
    736     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    737     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    738     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    739   }
    740 
    741   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    742   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    743   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    744   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    745   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    746   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    747   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    748   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    749   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    750 
    751   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    752   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    753   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    754   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    755   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    756 
    757   // We don't support sin/cos/fmod/copysign/pow
    758   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    759   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    760   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    761   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    762   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    763   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    764   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    765       !Subtarget->isThumb1Only()) {
    766     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    767     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    768   }
    769   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    770   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    771 
    772   if (!Subtarget->hasVFP4()) {
    773     setOperationAction(ISD::FMA, MVT::f64, Expand);
    774     setOperationAction(ISD::FMA, MVT::f32, Expand);
    775   }
    776 
    777   // Various VFP goodness
    778   if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
    779     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
    780     if (Subtarget->hasVFP2()) {
    781       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    782       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    783       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    784       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    785     }
    786     // Special handling for half-precision FP.
    787     if (!Subtarget->hasFP16()) {
    788       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
    789       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
    790     }
    791   }
    792 
    793   // We have target-specific dag combine patterns for the following nodes:
    794   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
    795   setTargetDAGCombine(ISD::ADD);
    796   setTargetDAGCombine(ISD::SUB);
    797   setTargetDAGCombine(ISD::MUL);
    798 
    799   if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) {
    800     setTargetDAGCombine(ISD::AND);
    801     setTargetDAGCombine(ISD::OR);
    802     setTargetDAGCombine(ISD::XOR);
    803   }
    804 
    805   if (Subtarget->hasV6Ops())
    806     setTargetDAGCombine(ISD::SRL);
    807 
    808   setStackPointerRegisterToSaveRestore(ARM::SP);
    809 
    810   if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
    811       !Subtarget->hasVFP2())
    812     setSchedulingPreference(Sched::RegPressure);
    813   else
    814     setSchedulingPreference(Sched::Hybrid);
    815 
    816   //// temporary - rewrite interface to use type
    817   maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
    818   maxStoresPerMemset = 16;
    819   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
    820 
    821   // On ARM arguments smaller than 4 bytes are extended, so all arguments
    822   // are at least 4 bytes aligned.
    823   setMinStackArgumentAlignment(4);
    824 
    825   benefitFromCodePlacementOpt = true;
    826 
    827   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
    828 }
    829 
    830 // FIXME: It might make sense to define the representative register class as the
    831 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
    832 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
    833 // SPR's representative would be DPR_VFP2. This should work well if register
    834 // pressure tracking were modified such that a register use would increment the
    835 // pressure of the register class's representative and all of it's super
    836 // classes' representatives transitively. We have not implemented this because
    837 // of the difficulty prior to coalescing of modeling operand register classes
    838 // due to the common occurrence of cross class copies and subregister insertions
    839 // and extractions.
    840 std::pair<const TargetRegisterClass*, uint8_t>
    841 ARMTargetLowering::findRepresentativeClass(EVT VT) const{
    842   const TargetRegisterClass *RRC = 0;
    843   uint8_t Cost = 1;
    844   switch (VT.getSimpleVT().SimpleTy) {
    845   default:
    846     return TargetLowering::findRepresentativeClass(VT);
    847   // Use DPR as representative register class for all floating point
    848   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
    849   // the cost is 1 for both f32 and f64.
    850   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
    851   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    852     RRC = ARM::DPRRegisterClass;
    853     // When NEON is used for SP, only half of the register file is available
    854     // because operations that define both SP and DP results will be constrained
    855     // to the VFP2 class (D0-D15). We currently model this constraint prior to
    856     // coalescing by double-counting the SP regs. See the FIXME above.
    857     if (Subtarget->useNEONForSinglePrecisionFP())
    858       Cost = 2;
    859     break;
    860   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
    861   case MVT::v4f32: case MVT::v2f64:
    862     RRC = ARM::DPRRegisterClass;
    863     Cost = 2;
    864     break;
    865   case MVT::v4i64:
    866     RRC = ARM::DPRRegisterClass;
    867     Cost = 4;
    868     break;
    869   case MVT::v8i64:
    870     RRC = ARM::DPRRegisterClass;
    871     Cost = 8;
    872     break;
    873   }
    874   return std::make_pair(RRC, Cost);
    875 }
    876 
    877 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
    878   switch (Opcode) {
    879   default: return 0;
    880   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
    881   case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
    882   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
    883   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
    884   case ARMISD::CALL:          return "ARMISD::CALL";
    885   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
    886   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
    887   case ARMISD::tCALL:         return "ARMISD::tCALL";
    888   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
    889   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
    890   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
    891   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
    892   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
    893   case ARMISD::CMP:           return "ARMISD::CMP";
    894   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
    895   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
    896   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
    897   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
    898   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
    899 
    900   case ARMISD::CMOV:          return "ARMISD::CMOV";
    901   case ARMISD::CAND:          return "ARMISD::CAND";
    902   case ARMISD::COR:           return "ARMISD::COR";
    903   case ARMISD::CXOR:          return "ARMISD::CXOR";
    904 
    905   case ARMISD::RBIT:          return "ARMISD::RBIT";
    906 
    907   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
    908   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
    909   case ARMISD::SITOF:         return "ARMISD::SITOF";
    910   case ARMISD::UITOF:         return "ARMISD::UITOF";
    911 
    912   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
    913   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
    914   case ARMISD::RRX:           return "ARMISD::RRX";
    915 
    916   case ARMISD::ADDC:          return "ARMISD::ADDC";
    917   case ARMISD::ADDE:          return "ARMISD::ADDE";
    918   case ARMISD::SUBC:          return "ARMISD::SUBC";
    919   case ARMISD::SUBE:          return "ARMISD::SUBE";
    920 
    921   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
    922   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
    923 
    924   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
    925   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
    926 
    927   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
    928 
    929   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
    930 
    931   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
    932 
    933   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
    934   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
    935 
    936   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
    937 
    938   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
    939   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
    940   case ARMISD::VCGE:          return "ARMISD::VCGE";
    941   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
    942   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
    943   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
    944   case ARMISD::VCGT:          return "ARMISD::VCGT";
    945   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
    946   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
    947   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
    948   case ARMISD::VTST:          return "ARMISD::VTST";
    949 
    950   case ARMISD::VSHL:          return "ARMISD::VSHL";
    951   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
    952   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
    953   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
    954   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
    955   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
    956   case ARMISD::VSHRN:         return "ARMISD::VSHRN";
    957   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
    958   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
    959   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
    960   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
    961   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
    962   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
    963   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
    964   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
    965   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
    966   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
    967   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
    968   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
    969   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
    970   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
    971   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
    972   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
    973   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
    974   case ARMISD::VDUP:          return "ARMISD::VDUP";
    975   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
    976   case ARMISD::VEXT:          return "ARMISD::VEXT";
    977   case ARMISD::VREV64:        return "ARMISD::VREV64";
    978   case ARMISD::VREV32:        return "ARMISD::VREV32";
    979   case ARMISD::VREV16:        return "ARMISD::VREV16";
    980   case ARMISD::VZIP:          return "ARMISD::VZIP";
    981   case ARMISD::VUZP:          return "ARMISD::VUZP";
    982   case ARMISD::VTRN:          return "ARMISD::VTRN";
    983   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
    984   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
    985   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
    986   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
    987   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
    988   case ARMISD::FMAX:          return "ARMISD::FMAX";
    989   case ARMISD::FMIN:          return "ARMISD::FMIN";
    990   case ARMISD::BFI:           return "ARMISD::BFI";
    991   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
    992   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
    993   case ARMISD::VBSL:          return "ARMISD::VBSL";
    994   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
    995   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
    996   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
    997   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
    998   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
    999   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1000   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1001   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1002   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1003   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1004   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1005   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1006   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1007   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1008   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1009   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1010   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1011   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1012   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1013   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1014   }
   1015 }
   1016 
   1017 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
   1018   if (!VT.isVector()) return getPointerTy();
   1019   return VT.changeVectorElementTypeToInteger();
   1020 }
   1021 
   1022 /// getRegClassFor - Return the register class that should be used for the
   1023 /// specified value type.
   1024 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
   1025   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1026   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1027   // load / store 4 to 8 consecutive D registers.
   1028   if (Subtarget->hasNEON()) {
   1029     if (VT == MVT::v4i64)
   1030       return ARM::QQPRRegisterClass;
   1031     else if (VT == MVT::v8i64)
   1032       return ARM::QQQQPRRegisterClass;
   1033   }
   1034   return TargetLowering::getRegClassFor(VT);
   1035 }
   1036 
   1037 // Create a fast isel object.
   1038 FastISel *
   1039 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
   1040   return ARM::createFastISel(funcInfo);
   1041 }
   1042 
   1043 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
   1044 /// be used for loads / stores from the global.
   1045 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
   1046   return (Subtarget->isThumb1Only() ? 127 : 4095);
   1047 }
   1048 
   1049 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1050   unsigned NumVals = N->getNumValues();
   1051   if (!NumVals)
   1052     return Sched::RegPressure;
   1053 
   1054   for (unsigned i = 0; i != NumVals; ++i) {
   1055     EVT VT = N->getValueType(i);
   1056     if (VT == MVT::Glue || VT == MVT::Other)
   1057       continue;
   1058     if (VT.isFloatingPoint() || VT.isVector())
   1059       return Sched::ILP;
   1060   }
   1061 
   1062   if (!N->isMachineOpcode())
   1063     return Sched::RegPressure;
   1064 
   1065   // Load are scheduled for latency even if there instruction itinerary
   1066   // is not available.
   1067   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1068   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1069 
   1070   if (MCID.getNumDefs() == 0)
   1071     return Sched::RegPressure;
   1072   if (!Itins->isEmpty() &&
   1073       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1074     return Sched::ILP;
   1075 
   1076   return Sched::RegPressure;
   1077 }
   1078 
   1079 //===----------------------------------------------------------------------===//
   1080 // Lowering Code
   1081 //===----------------------------------------------------------------------===//
   1082 
   1083 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1084 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1085   switch (CC) {
   1086   default: llvm_unreachable("Unknown condition code!");
   1087   case ISD::SETNE:  return ARMCC::NE;
   1088   case ISD::SETEQ:  return ARMCC::EQ;
   1089   case ISD::SETGT:  return ARMCC::GT;
   1090   case ISD::SETGE:  return ARMCC::GE;
   1091   case ISD::SETLT:  return ARMCC::LT;
   1092   case ISD::SETLE:  return ARMCC::LE;
   1093   case ISD::SETUGT: return ARMCC::HI;
   1094   case ISD::SETUGE: return ARMCC::HS;
   1095   case ISD::SETULT: return ARMCC::LO;
   1096   case ISD::SETULE: return ARMCC::LS;
   1097   }
   1098 }
   1099 
   1100 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1101 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1102                         ARMCC::CondCodes &CondCode2) {
   1103   CondCode2 = ARMCC::AL;
   1104   switch (CC) {
   1105   default: llvm_unreachable("Unknown FP condition!");
   1106   case ISD::SETEQ:
   1107   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1108   case ISD::SETGT:
   1109   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1110   case ISD::SETGE:
   1111   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1112   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1113   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1114   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1115   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1116   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1117   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1118   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1119   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1120   case ISD::SETLT:
   1121   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1122   case ISD::SETLE:
   1123   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1124   case ISD::SETNE:
   1125   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1126   }
   1127 }
   1128 
   1129 //===----------------------------------------------------------------------===//
   1130 //                      Calling Convention Implementation
   1131 //===----------------------------------------------------------------------===//
   1132 
   1133 #include "ARMGenCallingConv.inc"
   1134 
   1135 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
   1136 /// given CallingConvention value.
   1137 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1138                                                  bool Return,
   1139                                                  bool isVarArg) const {
   1140   switch (CC) {
   1141   default:
   1142     llvm_unreachable("Unsupported calling convention");
   1143   case CallingConv::Fast:
   1144     if (Subtarget->hasVFP2() && !isVarArg) {
   1145       if (!Subtarget->isAAPCS_ABI())
   1146         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1147       // For AAPCS ABI targets, just use VFP variant of the calling convention.
   1148       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1149     }
   1150     // Fallthrough
   1151   case CallingConv::C: {
   1152     // Use target triple & subtarget features to do actual dispatch.
   1153     if (!Subtarget->isAAPCS_ABI())
   1154       return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1155     else if (Subtarget->hasVFP2() &&
   1156              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1157              !isVarArg)
   1158       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1159     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1160   }
   1161   case CallingConv::ARM_AAPCS_VFP:
   1162     if (!isVarArg)
   1163       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1164     // Fallthrough
   1165   case CallingConv::ARM_AAPCS:
   1166     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1167   case CallingConv::ARM_APCS:
   1168     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1169   }
   1170 }
   1171 
   1172 /// LowerCallResult - Lower the result values of a call into the
   1173 /// appropriate copies out of appropriate physical registers.
   1174 SDValue
   1175 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1176                                    CallingConv::ID CallConv, bool isVarArg,
   1177                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1178                                    DebugLoc dl, SelectionDAG &DAG,
   1179                                    SmallVectorImpl<SDValue> &InVals) const {
   1180 
   1181   // Assign locations to each value returned by this call.
   1182   SmallVector<CCValAssign, 16> RVLocs;
   1183   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1184                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1185   CCInfo.AnalyzeCallResult(Ins,
   1186                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1187                                              isVarArg));
   1188 
   1189   // Copy all of the result registers out of their specified physreg.
   1190   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1191     CCValAssign VA = RVLocs[i];
   1192 
   1193     SDValue Val;
   1194     if (VA.needsCustom()) {
   1195       // Handle f64 or half of a v2f64.
   1196       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1197                                       InFlag);
   1198       Chain = Lo.getValue(1);
   1199       InFlag = Lo.getValue(2);
   1200       VA = RVLocs[++i]; // skip ahead to next loc
   1201       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1202                                       InFlag);
   1203       Chain = Hi.getValue(1);
   1204       InFlag = Hi.getValue(2);
   1205       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1206 
   1207       if (VA.getLocVT() == MVT::v2f64) {
   1208         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1209         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1210                           DAG.getConstant(0, MVT::i32));
   1211 
   1212         VA = RVLocs[++i]; // skip ahead to next loc
   1213         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1214         Chain = Lo.getValue(1);
   1215         InFlag = Lo.getValue(2);
   1216         VA = RVLocs[++i]; // skip ahead to next loc
   1217         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1218         Chain = Hi.getValue(1);
   1219         InFlag = Hi.getValue(2);
   1220         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1221         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1222                           DAG.getConstant(1, MVT::i32));
   1223       }
   1224     } else {
   1225       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1226                                InFlag);
   1227       Chain = Val.getValue(1);
   1228       InFlag = Val.getValue(2);
   1229     }
   1230 
   1231     switch (VA.getLocInfo()) {
   1232     default: llvm_unreachable("Unknown loc info!");
   1233     case CCValAssign::Full: break;
   1234     case CCValAssign::BCvt:
   1235       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1236       break;
   1237     }
   1238 
   1239     InVals.push_back(Val);
   1240   }
   1241 
   1242   return Chain;
   1243 }
   1244 
   1245 /// LowerMemOpCallTo - Store the argument to the stack.
   1246 SDValue
   1247 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1248                                     SDValue StackPtr, SDValue Arg,
   1249                                     DebugLoc dl, SelectionDAG &DAG,
   1250                                     const CCValAssign &VA,
   1251                                     ISD::ArgFlagsTy Flags) const {
   1252   unsigned LocMemOffset = VA.getLocMemOffset();
   1253   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1254   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1255   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1256                       MachinePointerInfo::getStack(LocMemOffset),
   1257                       false, false, 0);
   1258 }
   1259 
   1260 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
   1261                                          SDValue Chain, SDValue &Arg,
   1262                                          RegsToPassVector &RegsToPass,
   1263                                          CCValAssign &VA, CCValAssign &NextVA,
   1264                                          SDValue &StackPtr,
   1265                                          SmallVector<SDValue, 8> &MemOpChains,
   1266                                          ISD::ArgFlagsTy Flags) const {
   1267 
   1268   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1269                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1270   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
   1271 
   1272   if (NextVA.isRegLoc())
   1273     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
   1274   else {
   1275     assert(NextVA.isMemLoc());
   1276     if (StackPtr.getNode() == 0)
   1277       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1278 
   1279     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
   1280                                            dl, DAG, NextVA,
   1281                                            Flags));
   1282   }
   1283 }
   1284 
   1285 /// LowerCall - Lowering a call into a callseq_start <-
   1286 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1287 /// nodes.
   1288 SDValue
   1289 ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   1290                              CallingConv::ID CallConv, bool isVarArg,
   1291                              bool doesNotRet, bool &isTailCall,
   1292                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   1293                              const SmallVectorImpl<SDValue> &OutVals,
   1294                              const SmallVectorImpl<ISD::InputArg> &Ins,
   1295                              DebugLoc dl, SelectionDAG &DAG,
   1296                              SmallVectorImpl<SDValue> &InVals) const {
   1297   MachineFunction &MF = DAG.getMachineFunction();
   1298   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1299   bool IsSibCall = false;
   1300   // Disable tail calls if they're not supported.
   1301   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
   1302     isTailCall = false;
   1303   if (isTailCall) {
   1304     // Check if it's really possible to do a tail call.
   1305     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1306                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   1307                                                    Outs, OutVals, Ins, DAG);
   1308     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1309     // detected sibcalls.
   1310     if (isTailCall) {
   1311       ++NumTailCalls;
   1312       IsSibCall = true;
   1313     }
   1314   }
   1315 
   1316   // Analyze operands of the call, assigning locations to each operand.
   1317   SmallVector<CCValAssign, 16> ArgLocs;
   1318   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1319                  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1320   CCInfo.AnalyzeCallOperands(Outs,
   1321                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1322                                                isVarArg));
   1323 
   1324   // Get a count of how many bytes are to be pushed on the stack.
   1325   unsigned NumBytes = CCInfo.getNextStackOffset();
   1326 
   1327   // For tail calls, memory operands are available in our caller's stack.
   1328   if (IsSibCall)
   1329     NumBytes = 0;
   1330 
   1331   // Adjust the stack pointer for the new arguments...
   1332   // These operations are automatically eliminated by the prolog/epilog pass
   1333   if (!IsSibCall)
   1334     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   1335 
   1336   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1337 
   1338   RegsToPassVector RegsToPass;
   1339   SmallVector<SDValue, 8> MemOpChains;
   1340 
   1341   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1342   // of tail call optimization, arguments are handled later.
   1343   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1344        i != e;
   1345        ++i, ++realArgIdx) {
   1346     CCValAssign &VA = ArgLocs[i];
   1347     SDValue Arg = OutVals[realArgIdx];
   1348     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1349     bool isByVal = Flags.isByVal();
   1350 
   1351     // Promote the value if needed.
   1352     switch (VA.getLocInfo()) {
   1353     default: llvm_unreachable("Unknown loc info!");
   1354     case CCValAssign::Full: break;
   1355     case CCValAssign::SExt:
   1356       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1357       break;
   1358     case CCValAssign::ZExt:
   1359       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1360       break;
   1361     case CCValAssign::AExt:
   1362       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1363       break;
   1364     case CCValAssign::BCvt:
   1365       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1366       break;
   1367     }
   1368 
   1369     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1370     if (VA.needsCustom()) {
   1371       if (VA.getLocVT() == MVT::v2f64) {
   1372         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1373                                   DAG.getConstant(0, MVT::i32));
   1374         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1375                                   DAG.getConstant(1, MVT::i32));
   1376 
   1377         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1378                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1379 
   1380         VA = ArgLocs[++i]; // skip ahead to next loc
   1381         if (VA.isRegLoc()) {
   1382           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1383                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1384         } else {
   1385           assert(VA.isMemLoc());
   1386 
   1387           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1388                                                  dl, DAG, VA, Flags));
   1389         }
   1390       } else {
   1391         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1392                          StackPtr, MemOpChains, Flags);
   1393       }
   1394     } else if (VA.isRegLoc()) {
   1395       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1396     } else if (isByVal) {
   1397       assert(VA.isMemLoc());
   1398       unsigned offset = 0;
   1399 
   1400       // True if this byval aggregate will be split between registers
   1401       // and memory.
   1402       if (CCInfo.isFirstByValRegValid()) {
   1403         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1404         unsigned int i, j;
   1405         for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
   1406           SDValue Const = DAG.getConstant(4*i, MVT::i32);
   1407           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1408           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1409                                      MachinePointerInfo(),
   1410                                      false, false, false, 0);
   1411           MemOpChains.push_back(Load.getValue(1));
   1412           RegsToPass.push_back(std::make_pair(j, Load));
   1413         }
   1414         offset = ARM::R4 - CCInfo.getFirstByValReg();
   1415         CCInfo.clearFirstByValReg();
   1416       }
   1417 
   1418       unsigned LocMemOffset = VA.getLocMemOffset();
   1419       SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1420       SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
   1421                                 StkPtrOff);
   1422       SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
   1423       SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
   1424       SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
   1425                                          MVT::i32);
   1426       MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
   1427                                           Flags.getByValAlign(),
   1428                                           /*isVolatile=*/false,
   1429                                           /*AlwaysInline=*/false,
   1430                                           MachinePointerInfo(0),
   1431                                           MachinePointerInfo(0)));
   1432 
   1433     } else if (!IsSibCall) {
   1434       assert(VA.isMemLoc());
   1435 
   1436       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1437                                              dl, DAG, VA, Flags));
   1438     }
   1439   }
   1440 
   1441   if (!MemOpChains.empty())
   1442     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1443                         &MemOpChains[0], MemOpChains.size());
   1444 
   1445   // Build a sequence of copy-to-reg nodes chained together with token chain
   1446   // and flag operands which copy the outgoing args into the appropriate regs.
   1447   SDValue InFlag;
   1448   // Tail call byval lowering might overwrite argument registers so in case of
   1449   // tail call optimization the copies to registers are lowered later.
   1450   if (!isTailCall)
   1451     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1452       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1453                                RegsToPass[i].second, InFlag);
   1454       InFlag = Chain.getValue(1);
   1455     }
   1456 
   1457   // For tail calls lower the arguments to the 'real' stack slot.
   1458   if (isTailCall) {
   1459     // Force all the incoming stack arguments to be loaded from the stack
   1460     // before any new outgoing arguments are stored to the stack, because the
   1461     // outgoing stack slots may alias the incoming argument stack slots, and
   1462     // the alias isn't otherwise explicit. This is slightly more conservative
   1463     // than necessary, because it means that each store effectively depends
   1464     // on every argument instead of just those arguments it would clobber.
   1465 
   1466     // Do not flag preceding copytoreg stuff together with the following stuff.
   1467     InFlag = SDValue();
   1468     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1469       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1470                                RegsToPass[i].second, InFlag);
   1471       InFlag = Chain.getValue(1);
   1472     }
   1473     InFlag =SDValue();
   1474   }
   1475 
   1476   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1477   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1478   // node so that legalize doesn't hack it.
   1479   bool isDirect = false;
   1480   bool isARMFunc = false;
   1481   bool isLocalARMFunc = false;
   1482   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1483 
   1484   if (EnableARMLongCalls) {
   1485     assert (getTargetMachine().getRelocationModel() == Reloc::Static
   1486             && "long-calls with non-static relocation model!");
   1487     // Handle a global address or an external symbol. If it's not one of
   1488     // those, the target's already in a register, so we don't need to do
   1489     // anything extra.
   1490     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1491       const GlobalValue *GV = G->getGlobal();
   1492       // Create a constant pool entry for the callee address
   1493       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1494       ARMConstantPoolValue *CPV =
   1495         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1496 
   1497       // Get the address of the callee into a register
   1498       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1499       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1500       Callee = DAG.getLoad(getPointerTy(), dl,
   1501                            DAG.getEntryNode(), CPAddr,
   1502                            MachinePointerInfo::getConstantPool(),
   1503                            false, false, false, 0);
   1504     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1505       const char *Sym = S->getSymbol();
   1506 
   1507       // Create a constant pool entry for the callee address
   1508       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1509       ARMConstantPoolValue *CPV =
   1510         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1511                                       ARMPCLabelIndex, 0);
   1512       // Get the address of the callee into a register
   1513       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1514       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1515       Callee = DAG.getLoad(getPointerTy(), dl,
   1516                            DAG.getEntryNode(), CPAddr,
   1517                            MachinePointerInfo::getConstantPool(),
   1518                            false, false, false, 0);
   1519     }
   1520   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1521     const GlobalValue *GV = G->getGlobal();
   1522     isDirect = true;
   1523     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
   1524     bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
   1525                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1526     isARMFunc = !Subtarget->isThumb() || isStub;
   1527     // ARM call to a local ARM function is predicable.
   1528     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
   1529     // tBX takes a register source operand.
   1530     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1531       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1532       ARMConstantPoolValue *CPV =
   1533         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
   1534       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1535       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1536       Callee = DAG.getLoad(getPointerTy(), dl,
   1537                            DAG.getEntryNode(), CPAddr,
   1538                            MachinePointerInfo::getConstantPool(),
   1539                            false, false, false, 0);
   1540       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1541       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1542                            getPointerTy(), Callee, PICLabel);
   1543     } else {
   1544       // On ELF targets for PIC code, direct calls should go through the PLT
   1545       unsigned OpFlags = 0;
   1546       if (Subtarget->isTargetELF() &&
   1547                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1548         OpFlags = ARMII::MO_PLT;
   1549       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   1550     }
   1551   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1552     isDirect = true;
   1553     bool isStub = Subtarget->isTargetDarwin() &&
   1554                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1555     isARMFunc = !Subtarget->isThumb() || isStub;
   1556     // tBX takes a register source operand.
   1557     const char *Sym = S->getSymbol();
   1558     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1559       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1560       ARMConstantPoolValue *CPV =
   1561         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1562                                       ARMPCLabelIndex, 4);
   1563       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1564       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1565       Callee = DAG.getLoad(getPointerTy(), dl,
   1566                            DAG.getEntryNode(), CPAddr,
   1567                            MachinePointerInfo::getConstantPool(),
   1568                            false, false, false, 0);
   1569       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1570       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1571                            getPointerTy(), Callee, PICLabel);
   1572     } else {
   1573       unsigned OpFlags = 0;
   1574       // On ELF targets for PIC code, direct calls should go through the PLT
   1575       if (Subtarget->isTargetELF() &&
   1576                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1577         OpFlags = ARMII::MO_PLT;
   1578       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
   1579     }
   1580   }
   1581 
   1582   // FIXME: handle tail calls differently.
   1583   unsigned CallOpc;
   1584   if (Subtarget->isThumb()) {
   1585     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1586       CallOpc = ARMISD::CALL_NOLINK;
   1587     else if (doesNotRet && isDirect && !isARMFunc &&
   1588              Subtarget->hasRAS() && !Subtarget->isThumb1Only())
   1589       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1590       CallOpc = ARMISD::CALL_NOLINK;
   1591     else
   1592       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1593   } else {
   1594     if (!isDirect && !Subtarget->hasV5TOps()) {
   1595       CallOpc = ARMISD::CALL_NOLINK;
   1596     } else if (doesNotRet && isDirect && Subtarget->hasRAS())
   1597       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1598       CallOpc = ARMISD::CALL_NOLINK;
   1599     else
   1600       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1601   }
   1602 
   1603   std::vector<SDValue> Ops;
   1604   Ops.push_back(Chain);
   1605   Ops.push_back(Callee);
   1606 
   1607   // Add argument registers to the end of the list so that they are known live
   1608   // into the call.
   1609   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1610     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1611                                   RegsToPass[i].second.getValueType()));
   1612 
   1613   // Add a register mask operand representing the call-preserved registers.
   1614   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   1615   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   1616   assert(Mask && "Missing call preserved mask for calling convention");
   1617   Ops.push_back(DAG.getRegisterMask(Mask));
   1618 
   1619   if (InFlag.getNode())
   1620     Ops.push_back(InFlag);
   1621 
   1622   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1623   if (isTailCall)
   1624     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
   1625 
   1626   // Returns a chain and a flag for retval copy to use.
   1627   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   1628   InFlag = Chain.getValue(1);
   1629 
   1630   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1631                              DAG.getIntPtrConstant(0, true), InFlag);
   1632   if (!Ins.empty())
   1633     InFlag = Chain.getValue(1);
   1634 
   1635   // Handle result values, copying them out of physregs into vregs that we
   1636   // return.
   1637   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
   1638                          dl, DAG, InVals);
   1639 }
   1640 
   1641 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1642 /// on the stack.  Remember the next parameter register to allocate,
   1643 /// and then confiscate the rest of the parameter registers to insure
   1644 /// this.
   1645 void
   1646 ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
   1647   unsigned reg = State->AllocateReg(GPRArgRegs, 4);
   1648   assert((State->getCallOrPrologue() == Prologue ||
   1649           State->getCallOrPrologue() == Call) &&
   1650          "unhandled ParmContext");
   1651   if ((!State->isFirstByValRegValid()) &&
   1652       (ARM::R0 <= reg) && (reg <= ARM::R3)) {
   1653     State->setFirstByValReg(reg);
   1654     // At a call site, a byval parameter that is split between
   1655     // registers and memory needs its size truncated here.  In a
   1656     // function prologue, such byval parameters are reassembled in
   1657     // memory, and are not truncated.
   1658     if (State->getCallOrPrologue() == Call) {
   1659       unsigned excess = 4 * (ARM::R4 - reg);
   1660       assert(size >= excess && "expected larger existing stack allocation");
   1661       size -= excess;
   1662     }
   1663   }
   1664   // Confiscate any remaining parameter registers to preclude their
   1665   // assignment to subsequent parameters.
   1666   while (State->AllocateReg(GPRArgRegs, 4))
   1667     ;
   1668 }
   1669 
   1670 /// MatchingStackOffset - Return true if the given stack call argument is
   1671 /// already available in the same position (relatively) of the caller's
   1672 /// incoming argument stack.
   1673 static
   1674 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   1675                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   1676                          const TargetInstrInfo *TII) {
   1677   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   1678   int FI = INT_MAX;
   1679   if (Arg.getOpcode() == ISD::CopyFromReg) {
   1680     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   1681     if (!TargetRegisterInfo::isVirtualRegister(VR))
   1682       return false;
   1683     MachineInstr *Def = MRI->getVRegDef(VR);
   1684     if (!Def)
   1685       return false;
   1686     if (!Flags.isByVal()) {
   1687       if (!TII->isLoadFromStackSlot(Def, FI))
   1688         return false;
   1689     } else {
   1690       return false;
   1691     }
   1692   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   1693     if (Flags.isByVal())
   1694       // ByVal argument is passed in as a pointer but it's now being
   1695       // dereferenced. e.g.
   1696       // define @foo(%struct.X* %A) {
   1697       //   tail call @bar(%struct.X* byval %A)
   1698       // }
   1699       return false;
   1700     SDValue Ptr = Ld->getBasePtr();
   1701     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   1702     if (!FINode)
   1703       return false;
   1704     FI = FINode->getIndex();
   1705   } else
   1706     return false;
   1707 
   1708   assert(FI != INT_MAX);
   1709   if (!MFI->isFixedObjectIndex(FI))
   1710     return false;
   1711   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   1712 }
   1713 
   1714 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1715 /// for tail call optimization. Targets which want to do tail call
   1716 /// optimization should implement this function.
   1717 bool
   1718 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   1719                                                      CallingConv::ID CalleeCC,
   1720                                                      bool isVarArg,
   1721                                                      bool isCalleeStructRet,
   1722                                                      bool isCallerStructRet,
   1723                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1724                                     const SmallVectorImpl<SDValue> &OutVals,
   1725                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1726                                                      SelectionDAG& DAG) const {
   1727   const Function *CallerF = DAG.getMachineFunction().getFunction();
   1728   CallingConv::ID CallerCC = CallerF->getCallingConv();
   1729   bool CCMatch = CallerCC == CalleeCC;
   1730 
   1731   // Look for obvious safe cases to perform tail call optimization that do not
   1732   // require ABI changes. This is what gcc calls sibcall.
   1733 
   1734   // Do not sibcall optimize vararg calls unless the call site is not passing
   1735   // any arguments.
   1736   if (isVarArg && !Outs.empty())
   1737     return false;
   1738 
   1739   // Also avoid sibcall optimization if either caller or callee uses struct
   1740   // return semantics.
   1741   if (isCalleeStructRet || isCallerStructRet)
   1742     return false;
   1743 
   1744   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
   1745   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
   1746   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
   1747   // support in the assembler and linker to be used. This would need to be
   1748   // fixed to fully support tail calls in Thumb1.
   1749   //
   1750   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
   1751   // LR.  This means if we need to reload LR, it takes an extra instructions,
   1752   // which outweighs the value of the tail call; but here we don't know yet
   1753   // whether LR is going to be used.  Probably the right approach is to
   1754   // generate the tail call here and turn it back into CALL/RET in
   1755   // emitEpilogue if LR is used.
   1756 
   1757   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
   1758   // but we need to make sure there are enough registers; the only valid
   1759   // registers are the 4 used for parameters.  We don't currently do this
   1760   // case.
   1761   if (Subtarget->isThumb1Only())
   1762     return false;
   1763 
   1764   // If the calling conventions do not match, then we'd better make sure the
   1765   // results are returned in the same way as what the caller expects.
   1766   if (!CCMatch) {
   1767     SmallVector<CCValAssign, 16> RVLocs1;
   1768     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   1769                        getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
   1770     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   1771 
   1772     SmallVector<CCValAssign, 16> RVLocs2;
   1773     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   1774                        getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
   1775     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   1776 
   1777     if (RVLocs1.size() != RVLocs2.size())
   1778       return false;
   1779     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   1780       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   1781         return false;
   1782       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   1783         return false;
   1784       if (RVLocs1[i].isRegLoc()) {
   1785         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   1786           return false;
   1787       } else {
   1788         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   1789           return false;
   1790       }
   1791     }
   1792   }
   1793 
   1794   // If the callee takes no arguments then go on to check the results of the
   1795   // call.
   1796   if (!Outs.empty()) {
   1797     // Check if stack adjustment is needed. For now, do not do this if any
   1798     // argument is passed on the stack.
   1799     SmallVector<CCValAssign, 16> ArgLocs;
   1800     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   1801                       getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1802     CCInfo.AnalyzeCallOperands(Outs,
   1803                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   1804     if (CCInfo.getNextStackOffset()) {
   1805       MachineFunction &MF = DAG.getMachineFunction();
   1806 
   1807       // Check if the arguments are already laid out in the right way as
   1808       // the caller's fixed stack objects.
   1809       MachineFrameInfo *MFI = MF.getFrameInfo();
   1810       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   1811       const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1812       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1813            i != e;
   1814            ++i, ++realArgIdx) {
   1815         CCValAssign &VA = ArgLocs[i];
   1816         EVT RegVT = VA.getLocVT();
   1817         SDValue Arg = OutVals[realArgIdx];
   1818         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1819         if (VA.getLocInfo() == CCValAssign::Indirect)
   1820           return false;
   1821         if (VA.needsCustom()) {
   1822           // f64 and vector types are split into multiple registers or
   1823           // register/stack-slot combinations.  The types will not match
   1824           // the registers; give up on memory f64 refs until we figure
   1825           // out what to do about this.
   1826           if (!VA.isRegLoc())
   1827             return false;
   1828           if (!ArgLocs[++i].isRegLoc())
   1829             return false;
   1830           if (RegVT == MVT::v2f64) {
   1831             if (!ArgLocs[++i].isRegLoc())
   1832               return false;
   1833             if (!ArgLocs[++i].isRegLoc())
   1834               return false;
   1835           }
   1836         } else if (!VA.isRegLoc()) {
   1837           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   1838                                    MFI, MRI, TII))
   1839             return false;
   1840         }
   1841       }
   1842     }
   1843   }
   1844 
   1845   return true;
   1846 }
   1847 
   1848 SDValue
   1849 ARMTargetLowering::LowerReturn(SDValue Chain,
   1850                                CallingConv::ID CallConv, bool isVarArg,
   1851                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1852                                const SmallVectorImpl<SDValue> &OutVals,
   1853                                DebugLoc dl, SelectionDAG &DAG) const {
   1854 
   1855   // CCValAssign - represent the assignment of the return value to a location.
   1856   SmallVector<CCValAssign, 16> RVLocs;
   1857 
   1858   // CCState - Info about the registers and stack slots.
   1859   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1860                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1861 
   1862   // Analyze outgoing return values.
   1863   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   1864                                                isVarArg));
   1865 
   1866   // If this is the first return lowered for this function, add
   1867   // the regs to the liveout set for the function.
   1868   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   1869     for (unsigned i = 0; i != RVLocs.size(); ++i)
   1870       if (RVLocs[i].isRegLoc())
   1871         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   1872   }
   1873 
   1874   SDValue Flag;
   1875 
   1876   // Copy the result values into the output registers.
   1877   for (unsigned i = 0, realRVLocIdx = 0;
   1878        i != RVLocs.size();
   1879        ++i, ++realRVLocIdx) {
   1880     CCValAssign &VA = RVLocs[i];
   1881     assert(VA.isRegLoc() && "Can only return in registers!");
   1882 
   1883     SDValue Arg = OutVals[realRVLocIdx];
   1884 
   1885     switch (VA.getLocInfo()) {
   1886     default: llvm_unreachable("Unknown loc info!");
   1887     case CCValAssign::Full: break;
   1888     case CCValAssign::BCvt:
   1889       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1890       break;
   1891     }
   1892 
   1893     if (VA.needsCustom()) {
   1894       if (VA.getLocVT() == MVT::v2f64) {
   1895         // Extract the first half and return it in two registers.
   1896         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1897                                    DAG.getConstant(0, MVT::i32));
   1898         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   1899                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   1900 
   1901         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
   1902         Flag = Chain.getValue(1);
   1903         VA = RVLocs[++i]; // skip ahead to next loc
   1904         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   1905                                  HalfGPRs.getValue(1), Flag);
   1906         Flag = Chain.getValue(1);
   1907         VA = RVLocs[++i]; // skip ahead to next loc
   1908 
   1909         // Extract the 2nd half and fall through to handle it as an f64 value.
   1910         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1911                           DAG.getConstant(1, MVT::i32));
   1912       }
   1913       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   1914       // available.
   1915       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1916                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
   1917       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
   1918       Flag = Chain.getValue(1);
   1919       VA = RVLocs[++i]; // skip ahead to next loc
   1920       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
   1921                                Flag);
   1922     } else
   1923       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   1924 
   1925     // Guarantee that all emitted copies are
   1926     // stuck together, avoiding something bad.
   1927     Flag = Chain.getValue(1);
   1928   }
   1929 
   1930   SDValue result;
   1931   if (Flag.getNode())
   1932     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
   1933   else // Return Void
   1934     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
   1935 
   1936   return result;
   1937 }
   1938 
   1939 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   1940   if (N->getNumValues() != 1)
   1941     return false;
   1942   if (!N->hasNUsesOfValue(1, 0))
   1943     return false;
   1944 
   1945   SDValue TCChain = Chain;
   1946   SDNode *Copy = *N->use_begin();
   1947   if (Copy->getOpcode() == ISD::CopyToReg) {
   1948     // If the copy has a glue operand, we conservatively assume it isn't safe to
   1949     // perform a tail call.
   1950     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   1951       return false;
   1952     TCChain = Copy->getOperand(0);
   1953   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   1954     SDNode *VMov = Copy;
   1955     // f64 returned in a pair of GPRs.
   1956     SmallPtrSet<SDNode*, 2> Copies;
   1957     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   1958          UI != UE; ++UI) {
   1959       if (UI->getOpcode() != ISD::CopyToReg)
   1960         return false;
   1961       Copies.insert(*UI);
   1962     }
   1963     if (Copies.size() > 2)
   1964       return false;
   1965 
   1966     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   1967          UI != UE; ++UI) {
   1968       SDValue UseChain = UI->getOperand(0);
   1969       if (Copies.count(UseChain.getNode()))
   1970         // Second CopyToReg
   1971         Copy = *UI;
   1972       else
   1973         // First CopyToReg
   1974         TCChain = UseChain;
   1975     }
   1976   } else if (Copy->getOpcode() == ISD::BITCAST) {
   1977     // f32 returned in a single GPR.
   1978     if (!Copy->hasOneUse())
   1979       return false;
   1980     Copy = *Copy->use_begin();
   1981     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   1982       return false;
   1983     Chain = Copy->getOperand(0);
   1984   } else {
   1985     return false;
   1986   }
   1987 
   1988   bool HasRet = false;
   1989   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1990        UI != UE; ++UI) {
   1991     if (UI->getOpcode() != ARMISD::RET_FLAG)
   1992       return false;
   1993     HasRet = true;
   1994   }
   1995 
   1996   if (!HasRet)
   1997     return false;
   1998 
   1999   Chain = TCChain;
   2000   return true;
   2001 }
   2002 
   2003 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2004   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
   2005     return false;
   2006 
   2007   if (!CI->isTailCall())
   2008     return false;
   2009 
   2010   return !Subtarget->isThumb1Only();
   2011 }
   2012 
   2013 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2014 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2015 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2016 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2017 // be used to form addressing mode. These wrapped nodes will be selected
   2018 // into MOVi.
   2019 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2020   EVT PtrVT = Op.getValueType();
   2021   // FIXME there is no actual debug info here
   2022   DebugLoc dl = Op.getDebugLoc();
   2023   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2024   SDValue Res;
   2025   if (CP->isMachineConstantPoolEntry())
   2026     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2027                                     CP->getAlignment());
   2028   else
   2029     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2030                                     CP->getAlignment());
   2031   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2032 }
   2033 
   2034 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2035   return MachineJumpTableInfo::EK_Inline;
   2036 }
   2037 
   2038 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2039                                              SelectionDAG &DAG) const {
   2040   MachineFunction &MF = DAG.getMachineFunction();
   2041   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2042   unsigned ARMPCLabelIndex = 0;
   2043   DebugLoc DL = Op.getDebugLoc();
   2044   EVT PtrVT = getPointerTy();
   2045   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2046   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2047   SDValue CPAddr;
   2048   if (RelocM == Reloc::Static) {
   2049     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2050   } else {
   2051     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2052     ARMPCLabelIndex = AFI->createPICLabelUId();
   2053     ARMConstantPoolValue *CPV =
   2054       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2055                                       ARMCP::CPBlockAddress, PCAdj);
   2056     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2057   }
   2058   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2059   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2060                                MachinePointerInfo::getConstantPool(),
   2061                                false, false, false, 0);
   2062   if (RelocM == Reloc::Static)
   2063     return Result;
   2064   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2065   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2066 }
   2067 
   2068 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2069 SDValue
   2070 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2071                                                  SelectionDAG &DAG) const {
   2072   DebugLoc dl = GA->getDebugLoc();
   2073   EVT PtrVT = getPointerTy();
   2074   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2075   MachineFunction &MF = DAG.getMachineFunction();
   2076   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2077   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2078   ARMConstantPoolValue *CPV =
   2079     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2080                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2081   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2082   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2083   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2084                          MachinePointerInfo::getConstantPool(),
   2085                          false, false, false, 0);
   2086   SDValue Chain = Argument.getValue(1);
   2087 
   2088   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2089   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2090 
   2091   // call __tls_get_addr.
   2092   ArgListTy Args;
   2093   ArgListEntry Entry;
   2094   Entry.Node = Argument;
   2095   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2096   Args.push_back(Entry);
   2097   // FIXME: is there useful debug info available here?
   2098   std::pair<SDValue, SDValue> CallResult =
   2099     LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
   2100                 false, false, false, false,
   2101                 0, CallingConv::C, /*isTailCall=*/false,
   2102                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
   2103                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
   2104   return CallResult.first;
   2105 }
   2106 
   2107 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2108 // "local exec" model.
   2109 SDValue
   2110 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2111                                         SelectionDAG &DAG) const {
   2112   const GlobalValue *GV = GA->getGlobal();
   2113   DebugLoc dl = GA->getDebugLoc();
   2114   SDValue Offset;
   2115   SDValue Chain = DAG.getEntryNode();
   2116   EVT PtrVT = getPointerTy();
   2117   // Get the Thread Pointer
   2118   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2119 
   2120   if (GV->isDeclaration()) {
   2121     MachineFunction &MF = DAG.getMachineFunction();
   2122     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2123     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2124     // Initial exec model.
   2125     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2126     ARMConstantPoolValue *CPV =
   2127       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2128                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2129                                       true);
   2130     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2131     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2132     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2133                          MachinePointerInfo::getConstantPool(),
   2134                          false, false, false, 0);
   2135     Chain = Offset.getValue(1);
   2136 
   2137     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2138     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2139 
   2140     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2141                          MachinePointerInfo::getConstantPool(),
   2142                          false, false, false, 0);
   2143   } else {
   2144     // local exec model
   2145     ARMConstantPoolValue *CPV =
   2146       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2147     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2148     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2149     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2150                          MachinePointerInfo::getConstantPool(),
   2151                          false, false, false, 0);
   2152   }
   2153 
   2154   // The address of the thread local variable is the add of the thread
   2155   // pointer with the offset of the variable.
   2156   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2157 }
   2158 
   2159 SDValue
   2160 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2161   // TODO: implement the "local dynamic" model
   2162   assert(Subtarget->isTargetELF() &&
   2163          "TLS not implemented for non-ELF targets");
   2164   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2165   // If the relocation model is PIC, use the "General Dynamic" TLS Model,
   2166   // otherwise use the "Local Exec" TLS Model
   2167   if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
   2168     return LowerToTLSGeneralDynamicModel(GA, DAG);
   2169   else
   2170     return LowerToTLSExecModels(GA, DAG);
   2171 }
   2172 
   2173 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2174                                                  SelectionDAG &DAG) const {
   2175   EVT PtrVT = getPointerTy();
   2176   DebugLoc dl = Op.getDebugLoc();
   2177   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2178   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2179   if (RelocM == Reloc::PIC_) {
   2180     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2181     ARMConstantPoolValue *CPV =
   2182       ARMConstantPoolConstant::Create(GV,
   2183                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2184     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2185     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2186     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   2187                                  CPAddr,
   2188                                  MachinePointerInfo::getConstantPool(),
   2189                                  false, false, false, 0);
   2190     SDValue Chain = Result.getValue(1);
   2191     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2192     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
   2193     if (!UseGOTOFF)
   2194       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2195                            MachinePointerInfo::getGOT(),
   2196                            false, false, false, 0);
   2197     return Result;
   2198   }
   2199 
   2200   // If we have T2 ops, we can materialize the address directly via movt/movw
   2201   // pair. This is always cheaper.
   2202   if (Subtarget->useMovt()) {
   2203     ++NumMovwMovt;
   2204     // FIXME: Once remat is capable of dealing with instructions with register
   2205     // operands, expand this into two nodes.
   2206     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2207                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2208   } else {
   2209     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2210     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2211     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2212                        MachinePointerInfo::getConstantPool(),
   2213                        false, false, false, 0);
   2214   }
   2215 }
   2216 
   2217 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2218                                                     SelectionDAG &DAG) const {
   2219   EVT PtrVT = getPointerTy();
   2220   DebugLoc dl = Op.getDebugLoc();
   2221   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2222   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2223   MachineFunction &MF = DAG.getMachineFunction();
   2224   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2225 
   2226   // FIXME: Enable this for static codegen when tool issues are fixed.  Also
   2227   // update ARMFastISel::ARMMaterializeGV.
   2228   if (Subtarget->useMovt() && RelocM != Reloc::Static) {
   2229     ++NumMovwMovt;
   2230     // FIXME: Once remat is capable of dealing with instructions with register
   2231     // operands, expand this into two nodes.
   2232     if (RelocM == Reloc::Static)
   2233       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2234                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2235 
   2236     unsigned Wrapper = (RelocM == Reloc::PIC_)
   2237       ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
   2238     SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
   2239                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2240     if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2241       Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2242                            MachinePointerInfo::getGOT(),
   2243                            false, false, false, 0);
   2244     return Result;
   2245   }
   2246 
   2247   unsigned ARMPCLabelIndex = 0;
   2248   SDValue CPAddr;
   2249   if (RelocM == Reloc::Static) {
   2250     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2251   } else {
   2252     ARMPCLabelIndex = AFI->createPICLabelUId();
   2253     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
   2254     ARMConstantPoolValue *CPV =
   2255       ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
   2256                                       PCAdj);
   2257     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2258   }
   2259   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2260 
   2261   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2262                                MachinePointerInfo::getConstantPool(),
   2263                                false, false, false, 0);
   2264   SDValue Chain = Result.getValue(1);
   2265 
   2266   if (RelocM == Reloc::PIC_) {
   2267     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2268     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2269   }
   2270 
   2271   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2272     Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
   2273                          false, false, false, 0);
   2274 
   2275   return Result;
   2276 }
   2277 
   2278 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
   2279                                                     SelectionDAG &DAG) const {
   2280   assert(Subtarget->isTargetELF() &&
   2281          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
   2282   MachineFunction &MF = DAG.getMachineFunction();
   2283   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2284   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2285   EVT PtrVT = getPointerTy();
   2286   DebugLoc dl = Op.getDebugLoc();
   2287   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2288   ARMConstantPoolValue *CPV =
   2289     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
   2290                                   ARMPCLabelIndex, PCAdj);
   2291   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2292   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2293   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2294                                MachinePointerInfo::getConstantPool(),
   2295                                false, false, false, 0);
   2296   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2297   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2298 }
   2299 
   2300 SDValue
   2301 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2302   DebugLoc dl = Op.getDebugLoc();
   2303   SDValue Val = DAG.getConstant(0, MVT::i32);
   2304   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2305                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2306                      Op.getOperand(1), Val);
   2307 }
   2308 
   2309 SDValue
   2310 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2311   DebugLoc dl = Op.getDebugLoc();
   2312   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2313                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
   2314 }
   2315 
   2316 SDValue
   2317 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2318                                           const ARMSubtarget *Subtarget) const {
   2319   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2320   DebugLoc dl = Op.getDebugLoc();
   2321   switch (IntNo) {
   2322   default: return SDValue();    // Don't custom lower most intrinsics.
   2323   case Intrinsic::arm_thread_pointer: {
   2324     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2325     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2326   }
   2327   case Intrinsic::eh_sjlj_lsda: {
   2328     MachineFunction &MF = DAG.getMachineFunction();
   2329     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2330     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2331     EVT PtrVT = getPointerTy();
   2332     DebugLoc dl = Op.getDebugLoc();
   2333     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2334     SDValue CPAddr;
   2335     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2336       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2337     ARMConstantPoolValue *CPV =
   2338       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2339                                       ARMCP::CPLSDA, PCAdj);
   2340     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2341     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2342     SDValue Result =
   2343       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2344                   MachinePointerInfo::getConstantPool(),
   2345                   false, false, false, 0);
   2346 
   2347     if (RelocM == Reloc::PIC_) {
   2348       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2349       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2350     }
   2351     return Result;
   2352   }
   2353   case Intrinsic::arm_neon_vmulls:
   2354   case Intrinsic::arm_neon_vmullu: {
   2355     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2356       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2357     return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
   2358                        Op.getOperand(1), Op.getOperand(2));
   2359   }
   2360   }
   2361 }
   2362 
   2363 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
   2364                                const ARMSubtarget *Subtarget) {
   2365   DebugLoc dl = Op.getDebugLoc();
   2366   if (!Subtarget->hasDataBarrier()) {
   2367     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2368     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2369     // here.
   2370     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2371            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2372     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2373                        DAG.getConstant(0, MVT::i32));
   2374   }
   2375 
   2376   SDValue Op5 = Op.getOperand(5);
   2377   bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
   2378   unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   2379   unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   2380   bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
   2381 
   2382   ARM_MB::MemBOpt DMBOpt;
   2383   if (isDeviceBarrier)
   2384     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
   2385   else
   2386     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
   2387   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2388                      DAG.getConstant(DMBOpt, MVT::i32));
   2389 }
   2390 
   2391 
   2392 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2393                                  const ARMSubtarget *Subtarget) {
   2394   // FIXME: handle "fence singlethread" more efficiently.
   2395   DebugLoc dl = Op.getDebugLoc();
   2396   if (!Subtarget->hasDataBarrier()) {
   2397     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2398     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2399     // here.
   2400     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2401            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2402     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2403                        DAG.getConstant(0, MVT::i32));
   2404   }
   2405 
   2406   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2407                      DAG.getConstant(ARM_MB::ISH, MVT::i32));
   2408 }
   2409 
   2410 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2411                              const ARMSubtarget *Subtarget) {
   2412   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2413   if (!(Subtarget->isThumb2() ||
   2414         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2415     // Just preserve the chain.
   2416     return Op.getOperand(0);
   2417 
   2418   DebugLoc dl = Op.getDebugLoc();
   2419   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2420   if (!isRead &&
   2421       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2422     // ARMv7 with MP extension has PLDW.
   2423     return Op.getOperand(0);
   2424 
   2425   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2426   if (Subtarget->isThumb()) {
   2427     // Invert the bits.
   2428     isRead = ~isRead & 1;
   2429     isData = ~isData & 1;
   2430   }
   2431 
   2432   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2433                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
   2434                      DAG.getConstant(isData, MVT::i32));
   2435 }
   2436 
   2437 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2438   MachineFunction &MF = DAG.getMachineFunction();
   2439   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2440 
   2441   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2442   // memory location argument.
   2443   DebugLoc dl = Op.getDebugLoc();
   2444   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2445   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2446   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2447   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2448                       MachinePointerInfo(SV), false, false, 0);
   2449 }
   2450 
   2451 SDValue
   2452 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2453                                         SDValue &Root, SelectionDAG &DAG,
   2454                                         DebugLoc dl) const {
   2455   MachineFunction &MF = DAG.getMachineFunction();
   2456   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2457 
   2458   const TargetRegisterClass *RC;
   2459   if (AFI->isThumb1OnlyFunction())
   2460     RC = ARM::tGPRRegisterClass;
   2461   else
   2462     RC = ARM::GPRRegisterClass;
   2463 
   2464   // Transform the arguments stored in physical registers into virtual ones.
   2465   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2466   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2467 
   2468   SDValue ArgValue2;
   2469   if (NextVA.isMemLoc()) {
   2470     MachineFrameInfo *MFI = MF.getFrameInfo();
   2471     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2472 
   2473     // Create load node to retrieve arguments from the stack.
   2474     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2475     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
   2476                             MachinePointerInfo::getFixedStack(FI),
   2477                             false, false, false, 0);
   2478   } else {
   2479     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2480     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2481   }
   2482 
   2483   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2484 }
   2485 
   2486 void
   2487 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
   2488                                   unsigned &VARegSize, unsigned &VARegSaveSize)
   2489   const {
   2490   unsigned NumGPRs;
   2491   if (CCInfo.isFirstByValRegValid())
   2492     NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
   2493   else {
   2494     unsigned int firstUnalloced;
   2495     firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
   2496                                                 sizeof(GPRArgRegs) /
   2497                                                 sizeof(GPRArgRegs[0]));
   2498     NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
   2499   }
   2500 
   2501   unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
   2502   VARegSize = NumGPRs * 4;
   2503   VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
   2504 }
   2505 
   2506 // The remaining GPRs hold either the beginning of variable-argument
   2507 // data, or the beginning of an aggregate passed by value (usuall
   2508 // byval).  Either way, we allocate stack slots adjacent to the data
   2509 // provided by our caller, and store the unallocated registers there.
   2510 // If this is a variadic function, the va_list pointer will begin with
   2511 // these values; otherwise, this reassembles a (byval) structure that
   2512 // was split between registers and memory.
   2513 void
   2514 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   2515                                         DebugLoc dl, SDValue &Chain,
   2516                                         unsigned ArgOffset) const {
   2517   MachineFunction &MF = DAG.getMachineFunction();
   2518   MachineFrameInfo *MFI = MF.getFrameInfo();
   2519   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2520   unsigned firstRegToSaveIndex;
   2521   if (CCInfo.isFirstByValRegValid())
   2522     firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
   2523   else {
   2524     firstRegToSaveIndex = CCInfo.getFirstUnallocated
   2525       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
   2526   }
   2527 
   2528   unsigned VARegSize, VARegSaveSize;
   2529   computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2530   if (VARegSaveSize) {
   2531     // If this function is vararg, store any remaining integer argument regs
   2532     // to their spots on the stack so that they may be loaded by deferencing
   2533     // the result of va_next.
   2534     AFI->setVarArgsRegSaveSize(VARegSaveSize);
   2535     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
   2536                                                      ArgOffset + VARegSaveSize
   2537                                                      - VARegSize,
   2538                                                      false));
   2539     SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
   2540                                     getPointerTy());
   2541 
   2542     SmallVector<SDValue, 4> MemOps;
   2543     for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
   2544       const TargetRegisterClass *RC;
   2545       if (AFI->isThumb1OnlyFunction())
   2546         RC = ARM::tGPRRegisterClass;
   2547       else
   2548         RC = ARM::GPRRegisterClass;
   2549 
   2550       unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
   2551       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2552       SDValue Store =
   2553         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2554                  MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
   2555                      false, false, 0);
   2556       MemOps.push_back(Store);
   2557       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
   2558                         DAG.getConstant(4, getPointerTy()));
   2559     }
   2560     if (!MemOps.empty())
   2561       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2562                           &MemOps[0], MemOps.size());
   2563   } else
   2564     // This will point to the next argument passed via stack.
   2565     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
   2566 }
   2567 
   2568 SDValue
   2569 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   2570                                         CallingConv::ID CallConv, bool isVarArg,
   2571                                         const SmallVectorImpl<ISD::InputArg>
   2572                                           &Ins,
   2573                                         DebugLoc dl, SelectionDAG &DAG,
   2574                                         SmallVectorImpl<SDValue> &InVals)
   2575                                           const {
   2576   MachineFunction &MF = DAG.getMachineFunction();
   2577   MachineFrameInfo *MFI = MF.getFrameInfo();
   2578 
   2579   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2580 
   2581   // Assign locations to all of the incoming arguments.
   2582   SmallVector<CCValAssign, 16> ArgLocs;
   2583   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2584                     getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
   2585   CCInfo.AnalyzeFormalArguments(Ins,
   2586                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   2587                                                   isVarArg));
   2588 
   2589   SmallVector<SDValue, 16> ArgValues;
   2590   int lastInsIndex = -1;
   2591 
   2592   SDValue ArgValue;
   2593   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2594     CCValAssign &VA = ArgLocs[i];
   2595 
   2596     // Arguments stored in registers.
   2597     if (VA.isRegLoc()) {
   2598       EVT RegVT = VA.getLocVT();
   2599 
   2600       if (VA.needsCustom()) {
   2601         // f64 and vector types are split up into multiple registers or
   2602         // combinations of registers and stack slots.
   2603         if (VA.getLocVT() == MVT::v2f64) {
   2604           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   2605                                                    Chain, DAG, dl);
   2606           VA = ArgLocs[++i]; // skip ahead to next loc
   2607           SDValue ArgValue2;
   2608           if (VA.isMemLoc()) {
   2609             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   2610             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2611             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   2612                                     MachinePointerInfo::getFixedStack(FI),
   2613                                     false, false, false, 0);
   2614           } else {
   2615             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   2616                                              Chain, DAG, dl);
   2617           }
   2618           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   2619           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2620                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
   2621           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2622                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
   2623         } else
   2624           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   2625 
   2626       } else {
   2627         const TargetRegisterClass *RC;
   2628 
   2629         if (RegVT == MVT::f32)
   2630           RC = ARM::SPRRegisterClass;
   2631         else if (RegVT == MVT::f64)
   2632           RC = ARM::DPRRegisterClass;
   2633         else if (RegVT == MVT::v2f64)
   2634           RC = ARM::QPRRegisterClass;
   2635         else if (RegVT == MVT::i32)
   2636           RC = (AFI->isThumb1OnlyFunction() ?
   2637                 ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
   2638         else
   2639           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   2640 
   2641         // Transform the arguments in physical registers into virtual ones.
   2642         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2643         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   2644       }
   2645 
   2646       // If this is an 8 or 16-bit value, it is really passed promoted
   2647       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   2648       // truncate to the right size.
   2649       switch (VA.getLocInfo()) {
   2650       default: llvm_unreachable("Unknown loc info!");
   2651       case CCValAssign::Full: break;
   2652       case CCValAssign::BCvt:
   2653         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   2654         break;
   2655       case CCValAssign::SExt:
   2656         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   2657                                DAG.getValueType(VA.getValVT()));
   2658         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2659         break;
   2660       case CCValAssign::ZExt:
   2661         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   2662                                DAG.getValueType(VA.getValVT()));
   2663         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2664         break;
   2665       }
   2666 
   2667       InVals.push_back(ArgValue);
   2668 
   2669     } else { // VA.isRegLoc()
   2670 
   2671       // sanity check
   2672       assert(VA.isMemLoc());
   2673       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   2674 
   2675       int index = ArgLocs[i].getValNo();
   2676 
   2677       // Some Ins[] entries become multiple ArgLoc[] entries.
   2678       // Process them only once.
   2679       if (index != lastInsIndex)
   2680         {
   2681           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   2682           // FIXME: For now, all byval parameter objects are marked mutable.
   2683           // This can be changed with more analysis.
   2684           // In case of tail call optimization mark all arguments mutable.
   2685           // Since they could be overwritten by lowering of arguments in case of
   2686           // a tail call.
   2687           if (Flags.isByVal()) {
   2688             unsigned VARegSize, VARegSaveSize;
   2689             computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2690             VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
   2691             unsigned Bytes = Flags.getByValSize() - VARegSize;
   2692             if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   2693             int FI = MFI->CreateFixedObject(Bytes,
   2694                                             VA.getLocMemOffset(), false);
   2695             InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
   2696           } else {
   2697             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   2698                                             VA.getLocMemOffset(), true);
   2699 
   2700             // Create load nodes to retrieve arguments from the stack.
   2701             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2702             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2703                                          MachinePointerInfo::getFixedStack(FI),
   2704                                          false, false, false, 0));
   2705           }
   2706           lastInsIndex = index;
   2707         }
   2708     }
   2709   }
   2710 
   2711   // varargs
   2712   if (isVarArg)
   2713     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
   2714 
   2715   return Chain;
   2716 }
   2717 
   2718 /// isFloatingPointZero - Return true if this is +0.0.
   2719 static bool isFloatingPointZero(SDValue Op) {
   2720   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   2721     return CFP->getValueAPF().isPosZero();
   2722   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   2723     // Maybe this has already been legalized into the constant pool?
   2724     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   2725       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   2726       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   2727         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   2728           return CFP->getValueAPF().isPosZero();
   2729     }
   2730   }
   2731   return false;
   2732 }
   2733 
   2734 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   2735 /// the given operands.
   2736 SDValue
   2737 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2738                              SDValue &ARMcc, SelectionDAG &DAG,
   2739                              DebugLoc dl) const {
   2740   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   2741     unsigned C = RHSC->getZExtValue();
   2742     if (!isLegalICmpImmediate(C)) {
   2743       // Constant does not fit, try adjusting it by one?
   2744       switch (CC) {
   2745       default: break;
   2746       case ISD::SETLT:
   2747       case ISD::SETGE:
   2748         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   2749           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   2750           RHS = DAG.getConstant(C-1, MVT::i32);
   2751         }
   2752         break;
   2753       case ISD::SETULT:
   2754       case ISD::SETUGE:
   2755         if (C != 0 && isLegalICmpImmediate(C-1)) {
   2756           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   2757           RHS = DAG.getConstant(C-1, MVT::i32);
   2758         }
   2759         break;
   2760       case ISD::SETLE:
   2761       case ISD::SETGT:
   2762         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   2763           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   2764           RHS = DAG.getConstant(C+1, MVT::i32);
   2765         }
   2766         break;
   2767       case ISD::SETULE:
   2768       case ISD::SETUGT:
   2769         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   2770           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   2771           RHS = DAG.getConstant(C+1, MVT::i32);
   2772         }
   2773         break;
   2774       }
   2775     }
   2776   }
   2777 
   2778   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   2779   ARMISD::NodeType CompareType;
   2780   switch (CondCode) {
   2781   default:
   2782     CompareType = ARMISD::CMP;
   2783     break;
   2784   case ARMCC::EQ:
   2785   case ARMCC::NE:
   2786     // Uses only Z Flag
   2787     CompareType = ARMISD::CMPZ;
   2788     break;
   2789   }
   2790   ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2791   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   2792 }
   2793 
   2794 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   2795 SDValue
   2796 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   2797                              DebugLoc dl) const {
   2798   SDValue Cmp;
   2799   if (!isFloatingPointZero(RHS))
   2800     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   2801   else
   2802     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   2803   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   2804 }
   2805 
   2806 /// duplicateCmp - Glue values can have only one use, so this function
   2807 /// duplicates a comparison node.
   2808 SDValue
   2809 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   2810   unsigned Opc = Cmp.getOpcode();
   2811   DebugLoc DL = Cmp.getDebugLoc();
   2812   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   2813     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2814 
   2815   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   2816   Cmp = Cmp.getOperand(0);
   2817   Opc = Cmp.getOpcode();
   2818   if (Opc == ARMISD::CMPFP)
   2819     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2820   else {
   2821     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   2822     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   2823   }
   2824   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   2825 }
   2826 
   2827 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   2828   SDValue Cond = Op.getOperand(0);
   2829   SDValue SelectTrue = Op.getOperand(1);
   2830   SDValue SelectFalse = Op.getOperand(2);
   2831   DebugLoc dl = Op.getDebugLoc();
   2832 
   2833   // Convert:
   2834   //
   2835   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   2836   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   2837   //
   2838   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   2839     const ConstantSDNode *CMOVTrue =
   2840       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   2841     const ConstantSDNode *CMOVFalse =
   2842       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   2843 
   2844     if (CMOVTrue && CMOVFalse) {
   2845       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   2846       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   2847 
   2848       SDValue True;
   2849       SDValue False;
   2850       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   2851         True = SelectTrue;
   2852         False = SelectFalse;
   2853       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   2854         True = SelectFalse;
   2855         False = SelectTrue;
   2856       }
   2857 
   2858       if (True.getNode() && False.getNode()) {
   2859         EVT VT = Op.getValueType();
   2860         SDValue ARMcc = Cond.getOperand(2);
   2861         SDValue CCR = Cond.getOperand(3);
   2862         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   2863         assert(True.getValueType() == VT);
   2864         return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
   2865       }
   2866     }
   2867   }
   2868 
   2869   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   2870   // undefined bits before doing a full-word comparison with zero.
   2871   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   2872                      DAG.getConstant(1, Cond.getValueType()));
   2873 
   2874   return DAG.getSelectCC(dl, Cond,
   2875                          DAG.getConstant(0, Cond.getValueType()),
   2876                          SelectTrue, SelectFalse, ISD::SETNE);
   2877 }
   2878 
   2879 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   2880   EVT VT = Op.getValueType();
   2881   SDValue LHS = Op.getOperand(0);
   2882   SDValue RHS = Op.getOperand(1);
   2883   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2884   SDValue TrueVal = Op.getOperand(2);
   2885   SDValue FalseVal = Op.getOperand(3);
   2886   DebugLoc dl = Op.getDebugLoc();
   2887 
   2888   if (LHS.getValueType() == MVT::i32) {
   2889     SDValue ARMcc;
   2890     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2891     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   2892     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
   2893   }
   2894 
   2895   ARMCC::CondCodes CondCode, CondCode2;
   2896   FPCCToARMCC(CC, CondCode, CondCode2);
   2897 
   2898   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2899   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   2900   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2901   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   2902                                ARMcc, CCR, Cmp);
   2903   if (CondCode2 != ARMCC::AL) {
   2904     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
   2905     // FIXME: Needs another CMP because flag can have but one use.
   2906     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   2907     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
   2908                          Result, TrueVal, ARMcc2, CCR, Cmp2);
   2909   }
   2910   return Result;
   2911 }
   2912 
   2913 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   2914 /// to morph to an integer compare sequence.
   2915 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   2916                            const ARMSubtarget *Subtarget) {
   2917   SDNode *N = Op.getNode();
   2918   if (!N->hasOneUse())
   2919     // Otherwise it requires moving the value from fp to integer registers.
   2920     return false;
   2921   if (!N->getNumValues())
   2922     return false;
   2923   EVT VT = Op.getValueType();
   2924   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   2925     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   2926     // vmrs are very slow, e.g. cortex-a8.
   2927     return false;
   2928 
   2929   if (isFloatingPointZero(Op)) {
   2930     SeenZero = true;
   2931     return true;
   2932   }
   2933   return ISD::isNormalLoad(N);
   2934 }
   2935 
   2936 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   2937   if (isFloatingPointZero(Op))
   2938     return DAG.getConstant(0, MVT::i32);
   2939 
   2940   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   2941     return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2942                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   2943                        Ld->isVolatile(), Ld->isNonTemporal(),
   2944                        Ld->isInvariant(), Ld->getAlignment());
   2945 
   2946   llvm_unreachable("Unknown VFP cmp argument!");
   2947 }
   2948 
   2949 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   2950                            SDValue &RetVal1, SDValue &RetVal2) {
   2951   if (isFloatingPointZero(Op)) {
   2952     RetVal1 = DAG.getConstant(0, MVT::i32);
   2953     RetVal2 = DAG.getConstant(0, MVT::i32);
   2954     return;
   2955   }
   2956 
   2957   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   2958     SDValue Ptr = Ld->getBasePtr();
   2959     RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2960                           Ld->getChain(), Ptr,
   2961                           Ld->getPointerInfo(),
   2962                           Ld->isVolatile(), Ld->isNonTemporal(),
   2963                           Ld->isInvariant(), Ld->getAlignment());
   2964 
   2965     EVT PtrType = Ptr.getValueType();
   2966     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   2967     SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
   2968                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
   2969     RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2970                           Ld->getChain(), NewPtr,
   2971                           Ld->getPointerInfo().getWithOffset(4),
   2972                           Ld->isVolatile(), Ld->isNonTemporal(),
   2973                           Ld->isInvariant(), NewAlign);
   2974     return;
   2975   }
   2976 
   2977   llvm_unreachable("Unknown VFP cmp argument!");
   2978 }
   2979 
   2980 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   2981 /// f32 and even f64 comparisons to integer ones.
   2982 SDValue
   2983 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   2984   SDValue Chain = Op.getOperand(0);
   2985   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2986   SDValue LHS = Op.getOperand(2);
   2987   SDValue RHS = Op.getOperand(3);
   2988   SDValue Dest = Op.getOperand(4);
   2989   DebugLoc dl = Op.getDebugLoc();
   2990 
   2991   bool LHSSeenZero = false;
   2992   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   2993   bool RHSSeenZero = false;
   2994   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   2995   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   2996     // If unsafe fp math optimization is enabled and there are no other uses of
   2997     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   2998     // to an integer comparison.
   2999     if (CC == ISD::SETOEQ)
   3000       CC = ISD::SETEQ;
   3001     else if (CC == ISD::SETUNE)
   3002       CC = ISD::SETNE;
   3003 
   3004     SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
   3005     SDValue ARMcc;
   3006     if (LHS.getValueType() == MVT::f32) {
   3007       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3008                         bitcastf32Toi32(LHS, DAG), Mask);
   3009       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3010                         bitcastf32Toi32(RHS, DAG), Mask);
   3011       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3012       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3013       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3014                          Chain, Dest, ARMcc, CCR, Cmp);
   3015     }
   3016 
   3017     SDValue LHS1, LHS2;
   3018     SDValue RHS1, RHS2;
   3019     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   3020     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   3021     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   3022     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   3023     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3024     ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3025     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3026     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   3027     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
   3028   }
   3029 
   3030   return SDValue();
   3031 }
   3032 
   3033 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   3034   SDValue Chain = Op.getOperand(0);
   3035   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3036   SDValue LHS = Op.getOperand(2);
   3037   SDValue RHS = Op.getOperand(3);
   3038   SDValue Dest = Op.getOperand(4);
   3039   DebugLoc dl = Op.getDebugLoc();
   3040 
   3041   if (LHS.getValueType() == MVT::i32) {
   3042     SDValue ARMcc;
   3043     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3044     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3045     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3046                        Chain, Dest, ARMcc, CCR, Cmp);
   3047   }
   3048 
   3049   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   3050 
   3051   if (getTargetMachine().Options.UnsafeFPMath &&
   3052       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   3053        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   3054     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   3055     if (Result.getNode())
   3056       return Result;
   3057   }
   3058 
   3059   ARMCC::CondCodes CondCode, CondCode2;
   3060   FPCCToARMCC(CC, CondCode, CondCode2);
   3061 
   3062   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3063   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3064   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3065   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3066   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   3067   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   3068   if (CondCode2 != ARMCC::AL) {
   3069     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
   3070     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   3071     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   3072   }
   3073   return Res;
   3074 }
   3075 
   3076 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   3077   SDValue Chain = Op.getOperand(0);
   3078   SDValue Table = Op.getOperand(1);
   3079   SDValue Index = Op.getOperand(2);
   3080   DebugLoc dl = Op.getDebugLoc();
   3081 
   3082   EVT PTy = getPointerTy();
   3083   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   3084   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   3085   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
   3086   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   3087   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
   3088   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
   3089   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3090   if (Subtarget->isThumb2()) {
   3091     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   3092     // which does another jump to the destination. This also makes it easier
   3093     // to translate it to TBB / TBH later.
   3094     // FIXME: This might not work if the function is extremely large.
   3095     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3096                        Addr, Op.getOperand(2), JTI, UId);
   3097   }
   3098   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3099     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3100                        MachinePointerInfo::getJumpTable(),
   3101                        false, false, false, 0);
   3102     Chain = Addr.getValue(1);
   3103     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3104     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3105   } else {
   3106     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
   3107                        MachinePointerInfo::getJumpTable(),
   3108                        false, false, false, 0);
   3109     Chain = Addr.getValue(1);
   3110     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3111   }
   3112 }
   3113 
   3114 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3115   EVT VT = Op.getValueType();
   3116   DebugLoc dl = Op.getDebugLoc();
   3117 
   3118   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   3119     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   3120       return Op;
   3121     return DAG.UnrollVectorOp(Op.getNode());
   3122   }
   3123 
   3124   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   3125          "Invalid type for custom lowering!");
   3126   if (VT != MVT::v4i16)
   3127     return DAG.UnrollVectorOp(Op.getNode());
   3128 
   3129   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   3130   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   3131 }
   3132 
   3133 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3134   EVT VT = Op.getValueType();
   3135   if (VT.isVector())
   3136     return LowerVectorFP_TO_INT(Op, DAG);
   3137 
   3138   DebugLoc dl = Op.getDebugLoc();
   3139   unsigned Opc;
   3140 
   3141   switch (Op.getOpcode()) {
   3142   default: llvm_unreachable("Invalid opcode!");
   3143   case ISD::FP_TO_SINT:
   3144     Opc = ARMISD::FTOSI;
   3145     break;
   3146   case ISD::FP_TO_UINT:
   3147     Opc = ARMISD::FTOUI;
   3148     break;
   3149   }
   3150   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
   3151   return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3152 }
   3153 
   3154 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3155   EVT VT = Op.getValueType();
   3156   DebugLoc dl = Op.getDebugLoc();
   3157 
   3158   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   3159     if (VT.getVectorElementType() == MVT::f32)
   3160       return Op;
   3161     return DAG.UnrollVectorOp(Op.getNode());
   3162   }
   3163 
   3164   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3165          "Invalid type for custom lowering!");
   3166   if (VT != MVT::v4f32)
   3167     return DAG.UnrollVectorOp(Op.getNode());
   3168 
   3169   unsigned CastOpc;
   3170   unsigned Opc;
   3171   switch (Op.getOpcode()) {
   3172   default: llvm_unreachable("Invalid opcode!");
   3173   case ISD::SINT_TO_FP:
   3174     CastOpc = ISD::SIGN_EXTEND;
   3175     Opc = ISD::SINT_TO_FP;
   3176     break;
   3177   case ISD::UINT_TO_FP:
   3178     CastOpc = ISD::ZERO_EXTEND;
   3179     Opc = ISD::UINT_TO_FP;
   3180     break;
   3181   }
   3182 
   3183   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3184   return DAG.getNode(Opc, dl, VT, Op);
   3185 }
   3186 
   3187 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3188   EVT VT = Op.getValueType();
   3189   if (VT.isVector())
   3190     return LowerVectorINT_TO_FP(Op, DAG);
   3191 
   3192   DebugLoc dl = Op.getDebugLoc();
   3193   unsigned Opc;
   3194 
   3195   switch (Op.getOpcode()) {
   3196   default: llvm_unreachable("Invalid opcode!");
   3197   case ISD::SINT_TO_FP:
   3198     Opc = ARMISD::SITOF;
   3199     break;
   3200   case ISD::UINT_TO_FP:
   3201     Opc = ARMISD::UITOF;
   3202     break;
   3203   }
   3204 
   3205   Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
   3206   return DAG.getNode(Opc, dl, VT, Op);
   3207 }
   3208 
   3209 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3210   // Implement fcopysign with a fabs and a conditional fneg.
   3211   SDValue Tmp0 = Op.getOperand(0);
   3212   SDValue Tmp1 = Op.getOperand(1);
   3213   DebugLoc dl = Op.getDebugLoc();
   3214   EVT VT = Op.getValueType();
   3215   EVT SrcVT = Tmp1.getValueType();
   3216   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3217     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3218   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3219 
   3220   if (UseNEON) {
   3221     // Use VBSL to copy the sign bit.
   3222     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3223     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3224                                DAG.getTargetConstant(EncodedVal, MVT::i32));
   3225     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3226     if (VT == MVT::f64)
   3227       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3228                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3229                          DAG.getConstant(32, MVT::i32));
   3230     else /*if (VT == MVT::f32)*/
   3231       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   3232     if (SrcVT == MVT::f32) {
   3233       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   3234       if (VT == MVT::f64)
   3235         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3236                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   3237                            DAG.getConstant(32, MVT::i32));
   3238     } else if (VT == MVT::f32)
   3239       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   3240                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   3241                          DAG.getConstant(32, MVT::i32));
   3242     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   3243     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   3244 
   3245     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   3246                                             MVT::i32);
   3247     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   3248     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   3249                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   3250 
   3251     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   3252                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   3253                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   3254     if (VT == MVT::f32) {
   3255       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   3256       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   3257                         DAG.getConstant(0, MVT::i32));
   3258     } else {
   3259       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   3260     }
   3261 
   3262     return Res;
   3263   }
   3264 
   3265   // Bitcast operand 1 to i32.
   3266   if (SrcVT == MVT::f64)
   3267     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3268                        &Tmp1, 1).getValue(1);
   3269   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   3270 
   3271   // Or in the signbit with integer operations.
   3272   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
   3273   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
   3274   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   3275   if (VT == MVT::f32) {
   3276     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   3277                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   3278     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3279                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   3280   }
   3281 
   3282   // f64: Or the high part with signbit and then combine two parts.
   3283   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3284                      &Tmp0, 1);
   3285   SDValue Lo = Tmp0.getValue(0);
   3286   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   3287   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   3288   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   3289 }
   3290 
   3291 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   3292   MachineFunction &MF = DAG.getMachineFunction();
   3293   MachineFrameInfo *MFI = MF.getFrameInfo();
   3294   MFI->setReturnAddressIsTaken(true);
   3295 
   3296   EVT VT = Op.getValueType();
   3297   DebugLoc dl = Op.getDebugLoc();
   3298   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3299   if (Depth) {
   3300     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   3301     SDValue Offset = DAG.getConstant(4, MVT::i32);
   3302     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   3303                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   3304                        MachinePointerInfo(), false, false, false, 0);
   3305   }
   3306 
   3307   // Return LR, which contains the return address. Mark it an implicit live-in.
   3308   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   3309   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   3310 }
   3311 
   3312 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   3313   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   3314   MFI->setFrameAddressIsTaken(true);
   3315 
   3316   EVT VT = Op.getValueType();
   3317   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   3318   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3319   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
   3320     ? ARM::R7 : ARM::R11;
   3321   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   3322   while (Depth--)
   3323     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   3324                             MachinePointerInfo(),
   3325                             false, false, false, 0);
   3326   return FrameAddr;
   3327 }
   3328 
   3329 /// ExpandBITCAST - If the target supports VFP, this function is called to
   3330 /// expand a bit convert where either the source or destination type is i64 to
   3331 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   3332 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   3333 /// vectors), since the legalizer won't know what to do with that.
   3334 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   3335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3336   DebugLoc dl = N->getDebugLoc();
   3337   SDValue Op = N->getOperand(0);
   3338 
   3339   // This function is only supposed to be called for i64 types, either as the
   3340   // source or destination of the bit convert.
   3341   EVT SrcVT = Op.getValueType();
   3342   EVT DstVT = N->getValueType(0);
   3343   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   3344          "ExpandBITCAST called for non-i64 type");
   3345 
   3346   // Turn i64->f64 into VMOVDRR.
   3347   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   3348     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3349                              DAG.getConstant(0, MVT::i32));
   3350     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3351                              DAG.getConstant(1, MVT::i32));
   3352     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   3353                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   3354   }
   3355 
   3356   // Turn f64->i64 into VMOVRRD.
   3357   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   3358     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   3359                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
   3360     // Merge the pieces into a single i64 value.
   3361     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   3362   }
   3363 
   3364   return SDValue();
   3365 }
   3366 
   3367 /// getZeroVector - Returns a vector of specified type with all zero elements.
   3368 /// Zero vectors are used to represent vector negation and in those cases
   3369 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   3370 /// not support i64 elements, so sometimes the zero vectors will need to be
   3371 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   3372 /// zero vector.
   3373 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3374   assert(VT.isVector() && "Expected a vector type");
   3375   // The canonical modified immediate encoding of a zero vector is....0!
   3376   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
   3377   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   3378   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   3379   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3380 }
   3381 
   3382 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   3383 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3384 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   3385                                                 SelectionDAG &DAG) const {
   3386   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3387   EVT VT = Op.getValueType();
   3388   unsigned VTBits = VT.getSizeInBits();
   3389   DebugLoc dl = Op.getDebugLoc();
   3390   SDValue ShOpLo = Op.getOperand(0);
   3391   SDValue ShOpHi = Op.getOperand(1);
   3392   SDValue ShAmt  = Op.getOperand(2);
   3393   SDValue ARMcc;
   3394   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   3395 
   3396   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   3397 
   3398   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3399                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3400   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   3401   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3402                                    DAG.getConstant(VTBits, MVT::i32));
   3403   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   3404   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3405   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   3406 
   3407   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3408   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3409                           ARMcc, DAG, dl);
   3410   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   3411   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   3412                            CCR, Cmp);
   3413 
   3414   SDValue Ops[2] = { Lo, Hi };
   3415   return DAG.getMergeValues(Ops, 2, dl);
   3416 }
   3417 
   3418 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   3419 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3420 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   3421                                                SelectionDAG &DAG) const {
   3422   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3423   EVT VT = Op.getValueType();
   3424   unsigned VTBits = VT.getSizeInBits();
   3425   DebugLoc dl = Op.getDebugLoc();
   3426   SDValue ShOpLo = Op.getOperand(0);
   3427   SDValue ShOpHi = Op.getOperand(1);
   3428   SDValue ShAmt  = Op.getOperand(2);
   3429   SDValue ARMcc;
   3430 
   3431   assert(Op.getOpcode() == ISD::SHL_PARTS);
   3432   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3433                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3434   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   3435   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3436                                    DAG.getConstant(VTBits, MVT::i32));
   3437   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   3438   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   3439 
   3440   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3441   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3442   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3443                           ARMcc, DAG, dl);
   3444   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   3445   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   3446                            CCR, Cmp);
   3447 
   3448   SDValue Ops[2] = { Lo, Hi };
   3449   return DAG.getMergeValues(Ops, 2, dl);
   3450 }
   3451 
   3452 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   3453                                             SelectionDAG &DAG) const {
   3454   // The rounding mode is in bits 23:22 of the FPSCR.
   3455   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   3456   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   3457   // so that the shift + and get folded into a bitfield extract.
   3458   DebugLoc dl = Op.getDebugLoc();
   3459   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   3460                               DAG.getConstant(Intrinsic::arm_get_fpscr,
   3461                                               MVT::i32));
   3462   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   3463                                   DAG.getConstant(1U << 22, MVT::i32));
   3464   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   3465                               DAG.getConstant(22, MVT::i32));
   3466   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   3467                      DAG.getConstant(3, MVT::i32));
   3468 }
   3469 
   3470 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   3471                          const ARMSubtarget *ST) {
   3472   EVT VT = N->getValueType(0);
   3473   DebugLoc dl = N->getDebugLoc();
   3474 
   3475   if (!ST->hasV6T2Ops())
   3476     return SDValue();
   3477 
   3478   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
   3479   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   3480 }
   3481 
   3482 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   3483                           const ARMSubtarget *ST) {
   3484   EVT VT = N->getValueType(0);
   3485   DebugLoc dl = N->getDebugLoc();
   3486 
   3487   if (!VT.isVector())
   3488     return SDValue();
   3489 
   3490   // Lower vector shifts on NEON to use VSHL.
   3491   assert(ST->hasNEON() && "unexpected vector shift");
   3492 
   3493   // Left shifts translate directly to the vshiftu intrinsic.
   3494   if (N->getOpcode() == ISD::SHL)
   3495     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3496                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
   3497                        N->getOperand(0), N->getOperand(1));
   3498 
   3499   assert((N->getOpcode() == ISD::SRA ||
   3500           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   3501 
   3502   // NEON uses the same intrinsics for both left and right shifts.  For
   3503   // right shifts, the shift amounts are negative, so negate the vector of
   3504   // shift amounts.
   3505   EVT ShiftVT = N->getOperand(1).getValueType();
   3506   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   3507                                      getZeroVector(ShiftVT, DAG, dl),
   3508                                      N->getOperand(1));
   3509   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   3510                              Intrinsic::arm_neon_vshifts :
   3511                              Intrinsic::arm_neon_vshiftu);
   3512   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3513                      DAG.getConstant(vshiftInt, MVT::i32),
   3514                      N->getOperand(0), NegatedCount);
   3515 }
   3516 
   3517 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   3518                                 const ARMSubtarget *ST) {
   3519   EVT VT = N->getValueType(0);
   3520   DebugLoc dl = N->getDebugLoc();
   3521 
   3522   // We can get here for a node like i32 = ISD::SHL i32, i64
   3523   if (VT != MVT::i64)
   3524     return SDValue();
   3525 
   3526   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   3527          "Unknown shift to lower!");
   3528 
   3529   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   3530   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
   3531       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
   3532     return SDValue();
   3533 
   3534   // If we are in thumb mode, we don't have RRX.
   3535   if (ST->isThumb1Only()) return SDValue();
   3536 
   3537   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   3538   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3539                            DAG.getConstant(0, MVT::i32));
   3540   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3541                            DAG.getConstant(1, MVT::i32));
   3542 
   3543   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   3544   // captures the result into a carry flag.
   3545   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   3546   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
   3547 
   3548   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   3549   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   3550 
   3551   // Merge the pieces into a single i64 value.
   3552  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   3553 }
   3554 
   3555 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   3556   SDValue TmpOp0, TmpOp1;
   3557   bool Invert = false;
   3558   bool Swap = false;
   3559   unsigned Opc = 0;
   3560 
   3561   SDValue Op0 = Op.getOperand(0);
   3562   SDValue Op1 = Op.getOperand(1);
   3563   SDValue CC = Op.getOperand(2);
   3564   EVT VT = Op.getValueType();
   3565   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   3566   DebugLoc dl = Op.getDebugLoc();
   3567 
   3568   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
   3569     switch (SetCCOpcode) {
   3570     default: llvm_unreachable("Illegal FP comparison");
   3571     case ISD::SETUNE:
   3572     case ISD::SETNE:  Invert = true; // Fallthrough
   3573     case ISD::SETOEQ:
   3574     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3575     case ISD::SETOLT:
   3576     case ISD::SETLT: Swap = true; // Fallthrough
   3577     case ISD::SETOGT:
   3578     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3579     case ISD::SETOLE:
   3580     case ISD::SETLE:  Swap = true; // Fallthrough
   3581     case ISD::SETOGE:
   3582     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   3583     case ISD::SETUGE: Swap = true; // Fallthrough
   3584     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   3585     case ISD::SETUGT: Swap = true; // Fallthrough
   3586     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   3587     case ISD::SETUEQ: Invert = true; // Fallthrough
   3588     case ISD::SETONE:
   3589       // Expand this to (OLT | OGT).
   3590       TmpOp0 = Op0;
   3591       TmpOp1 = Op1;
   3592       Opc = ISD::OR;
   3593       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3594       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
   3595       break;
   3596     case ISD::SETUO: Invert = true; // Fallthrough
   3597     case ISD::SETO:
   3598       // Expand this to (OLT | OGE).
   3599       TmpOp0 = Op0;
   3600       TmpOp1 = Op1;
   3601       Opc = ISD::OR;
   3602       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3603       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
   3604       break;
   3605     }
   3606   } else {
   3607     // Integer comparisons.
   3608     switch (SetCCOpcode) {
   3609     default: llvm_unreachable("Illegal integer comparison");
   3610     case ISD::SETNE:  Invert = true;
   3611     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3612     case ISD::SETLT:  Swap = true;
   3613     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3614     case ISD::SETLE:  Swap = true;
   3615     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   3616     case ISD::SETULT: Swap = true;
   3617     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   3618     case ISD::SETULE: Swap = true;
   3619     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   3620     }
   3621 
   3622     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   3623     if (Opc == ARMISD::VCEQ) {
   3624 
   3625       SDValue AndOp;
   3626       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3627         AndOp = Op0;
   3628       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   3629         AndOp = Op1;
   3630 
   3631       // Ignore bitconvert.
   3632       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   3633         AndOp = AndOp.getOperand(0);
   3634 
   3635       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   3636         Opc = ARMISD::VTST;
   3637         Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
   3638         Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
   3639         Invert = !Invert;
   3640       }
   3641     }
   3642   }
   3643 
   3644   if (Swap)
   3645     std::swap(Op0, Op1);
   3646 
   3647   // If one of the operands is a constant vector zero, attempt to fold the
   3648   // comparison to a specialized compare-against-zero form.
   3649   SDValue SingleOp;
   3650   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3651     SingleOp = Op0;
   3652   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   3653     if (Opc == ARMISD::VCGE)
   3654       Opc = ARMISD::VCLEZ;
   3655     else if (Opc == ARMISD::VCGT)
   3656       Opc = ARMISD::VCLTZ;
   3657     SingleOp = Op1;
   3658   }
   3659 
   3660   SDValue Result;
   3661   if (SingleOp.getNode()) {
   3662     switch (Opc) {
   3663     case ARMISD::VCEQ:
   3664       Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
   3665     case ARMISD::VCGE:
   3666       Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
   3667     case ARMISD::VCLEZ:
   3668       Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
   3669     case ARMISD::VCGT:
   3670       Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
   3671     case ARMISD::VCLTZ:
   3672       Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
   3673     default:
   3674       Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3675     }
   3676   } else {
   3677      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3678   }
   3679 
   3680   if (Invert)
   3681     Result = DAG.getNOT(dl, Result, VT);
   3682 
   3683   return Result;
   3684 }
   3685 
   3686 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   3687 /// valid vector constant for a NEON instruction with a "modified immediate"
   3688 /// operand (e.g., VMOV).  If so, return the encoded value.
   3689 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   3690                                  unsigned SplatBitSize, SelectionDAG &DAG,
   3691                                  EVT &VT, bool is128Bits, NEONModImmType type) {
   3692   unsigned OpCmode, Imm;
   3693 
   3694   // SplatBitSize is set to the smallest size that splats the vector, so a
   3695   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   3696   // immediate instructions others than VMOV do not support the 8-bit encoding
   3697   // of a zero vector, and the default encoding of zero is supposed to be the
   3698   // 32-bit version.
   3699   if (SplatBits == 0)
   3700     SplatBitSize = 32;
   3701 
   3702   switch (SplatBitSize) {
   3703   case 8:
   3704     if (type != VMOVModImm)
   3705       return SDValue();
   3706     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   3707     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   3708     OpCmode = 0xe;
   3709     Imm = SplatBits;
   3710     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   3711     break;
   3712 
   3713   case 16:
   3714     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   3715     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   3716     if ((SplatBits & ~0xff) == 0) {
   3717       // Value = 0x00nn: Op=x, Cmode=100x.
   3718       OpCmode = 0x8;
   3719       Imm = SplatBits;
   3720       break;
   3721     }
   3722     if ((SplatBits & ~0xff00) == 0) {
   3723       // Value = 0xnn00: Op=x, Cmode=101x.
   3724       OpCmode = 0xa;
   3725       Imm = SplatBits >> 8;
   3726       break;
   3727     }
   3728     return SDValue();
   3729 
   3730   case 32:
   3731     // NEON's 32-bit VMOV supports splat values where:
   3732     // * only one byte is nonzero, or
   3733     // * the least significant byte is 0xff and the second byte is nonzero, or
   3734     // * the least significant 2 bytes are 0xff and the third is nonzero.
   3735     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   3736     if ((SplatBits & ~0xff) == 0) {
   3737       // Value = 0x000000nn: Op=x, Cmode=000x.
   3738       OpCmode = 0;
   3739       Imm = SplatBits;
   3740       break;
   3741     }
   3742     if ((SplatBits & ~0xff00) == 0) {
   3743       // Value = 0x0000nn00: Op=x, Cmode=001x.
   3744       OpCmode = 0x2;
   3745       Imm = SplatBits >> 8;
   3746       break;
   3747     }
   3748     if ((SplatBits & ~0xff0000) == 0) {
   3749       // Value = 0x00nn0000: Op=x, Cmode=010x.
   3750       OpCmode = 0x4;
   3751       Imm = SplatBits >> 16;
   3752       break;
   3753     }
   3754     if ((SplatBits & ~0xff000000) == 0) {
   3755       // Value = 0xnn000000: Op=x, Cmode=011x.
   3756       OpCmode = 0x6;
   3757       Imm = SplatBits >> 24;
   3758       break;
   3759     }
   3760 
   3761     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   3762     if (type == OtherModImm) return SDValue();
   3763 
   3764     if ((SplatBits & ~0xffff) == 0 &&
   3765         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   3766       // Value = 0x0000nnff: Op=x, Cmode=1100.
   3767       OpCmode = 0xc;
   3768       Imm = SplatBits >> 8;
   3769       SplatBits |= 0xff;
   3770       break;
   3771     }
   3772 
   3773     if ((SplatBits & ~0xffffff) == 0 &&
   3774         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   3775       // Value = 0x00nnffff: Op=x, Cmode=1101.
   3776       OpCmode = 0xd;
   3777       Imm = SplatBits >> 16;
   3778       SplatBits |= 0xffff;
   3779       break;
   3780     }
   3781 
   3782     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   3783     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   3784     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   3785     // and fall through here to test for a valid 64-bit splat.  But, then the
   3786     // caller would also need to check and handle the change in size.
   3787     return SDValue();
   3788 
   3789   case 64: {
   3790     if (type != VMOVModImm)
   3791       return SDValue();
   3792     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   3793     uint64_t BitMask = 0xff;
   3794     uint64_t Val = 0;
   3795     unsigned ImmMask = 1;
   3796     Imm = 0;
   3797     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   3798       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   3799         Val |= BitMask;
   3800         Imm |= ImmMask;
   3801       } else if ((SplatBits & BitMask) != 0) {
   3802         return SDValue();
   3803       }
   3804       BitMask <<= 8;
   3805       ImmMask <<= 1;
   3806     }
   3807     // Op=1, Cmode=1110.
   3808     OpCmode = 0x1e;
   3809     SplatBits = Val;
   3810     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   3811     break;
   3812   }
   3813 
   3814   default:
   3815     llvm_unreachable("unexpected size for isNEONModifiedImm");
   3816   }
   3817 
   3818   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   3819   return DAG.getTargetConstant(EncodedVal, MVT::i32);
   3820 }
   3821 
   3822 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   3823                                            const ARMSubtarget *ST) const {
   3824   if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
   3825     return SDValue();
   3826 
   3827   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   3828   assert(Op.getValueType() == MVT::f32 &&
   3829          "ConstantFP custom lowering should only occur for f32.");
   3830 
   3831   // Try splatting with a VMOV.f32...
   3832   APFloat FPVal = CFP->getValueAPF();
   3833   int ImmVal = ARM_AM::getFP32Imm(FPVal);
   3834   if (ImmVal != -1) {
   3835     DebugLoc DL = Op.getDebugLoc();
   3836     SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
   3837     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   3838                                       NewVal);
   3839     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   3840                        DAG.getConstant(0, MVT::i32));
   3841   }
   3842 
   3843   // If that fails, try a VMOV.i32
   3844   EVT VMovVT;
   3845   unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
   3846   SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
   3847                                      VMOVModImm);
   3848   if (NewVal != SDValue()) {
   3849     DebugLoc DL = Op.getDebugLoc();
   3850     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   3851                                       NewVal);
   3852     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   3853                                        VecConstant);
   3854     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   3855                        DAG.getConstant(0, MVT::i32));
   3856   }
   3857 
   3858   // Finally, try a VMVN.i32
   3859   NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
   3860                              VMVNModImm);
   3861   if (NewVal != SDValue()) {
   3862     DebugLoc DL = Op.getDebugLoc();
   3863     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   3864     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   3865                                        VecConstant);
   3866     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   3867                        DAG.getConstant(0, MVT::i32));
   3868   }
   3869 
   3870   return SDValue();
   3871 }
   3872 
   3873 
   3874 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   3875                        bool &ReverseVEXT, unsigned &Imm) {
   3876   unsigned NumElts = VT.getVectorNumElements();
   3877   ReverseVEXT = false;
   3878 
   3879   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   3880   if (M[0] < 0)
   3881     return false;
   3882 
   3883   Imm = M[0];
   3884 
   3885   // If this is a VEXT shuffle, the immediate value is the index of the first
   3886   // element.  The other shuffle indices must be the successive elements after
   3887   // the first one.
   3888   unsigned ExpectedElt = Imm;
   3889   for (unsigned i = 1; i < NumElts; ++i) {
   3890     // Increment the expected index.  If it wraps around, it may still be
   3891     // a VEXT but the source vectors must be swapped.
   3892     ExpectedElt += 1;
   3893     if (ExpectedElt == NumElts * 2) {
   3894       ExpectedElt = 0;
   3895       ReverseVEXT = true;
   3896     }
   3897 
   3898     if (M[i] < 0) continue; // ignore UNDEF indices
   3899     if (ExpectedElt != static_cast<unsigned>(M[i]))
   3900       return false;
   3901   }
   3902 
   3903   // Adjust the index value if the source operands will be swapped.
   3904   if (ReverseVEXT)
   3905     Imm -= NumElts;
   3906 
   3907   return true;
   3908 }
   3909 
   3910 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   3911 /// instruction with the specified blocksize.  (The order of the elements
   3912 /// within each block of the vector is reversed.)
   3913 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   3914   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   3915          "Only possible block sizes for VREV are: 16, 32, 64");
   3916 
   3917   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3918   if (EltSz == 64)
   3919     return false;
   3920 
   3921   unsigned NumElts = VT.getVectorNumElements();
   3922   unsigned BlockElts = M[0] + 1;
   3923   // If the first shuffle index is UNDEF, be optimistic.
   3924   if (M[0] < 0)
   3925     BlockElts = BlockSize / EltSz;
   3926 
   3927   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   3928     return false;
   3929 
   3930   for (unsigned i = 0; i < NumElts; ++i) {
   3931     if (M[i] < 0) continue; // ignore UNDEF indices
   3932     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   3933       return false;
   3934   }
   3935 
   3936   return true;
   3937 }
   3938 
   3939 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   3940   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   3941   // range, then 0 is placed into the resulting vector. So pretty much any mask
   3942   // of 8 elements can work here.
   3943   return VT == MVT::v8i8 && M.size() == 8;
   3944 }
   3945 
   3946 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   3947   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3948   if (EltSz == 64)
   3949     return false;
   3950 
   3951   unsigned NumElts = VT.getVectorNumElements();
   3952   WhichResult = (M[0] == 0 ? 0 : 1);
   3953   for (unsigned i = 0; i < NumElts; i += 2) {
   3954     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3955         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
   3956       return false;
   3957   }
   3958   return true;
   3959 }
   3960 
   3961 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   3962 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   3963 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   3964 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   3965   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3966   if (EltSz == 64)
   3967     return false;
   3968 
   3969   unsigned NumElts = VT.getVectorNumElements();
   3970   WhichResult = (M[0] == 0 ? 0 : 1);
   3971   for (unsigned i = 0; i < NumElts; i += 2) {
   3972     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3973         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
   3974       return false;
   3975   }
   3976   return true;
   3977 }
   3978 
   3979 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   3980   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3981   if (EltSz == 64)
   3982     return false;
   3983 
   3984   unsigned NumElts = VT.getVectorNumElements();
   3985   WhichResult = (M[0] == 0 ? 0 : 1);
   3986   for (unsigned i = 0; i != NumElts; ++i) {
   3987     if (M[i] < 0) continue; // ignore UNDEF indices
   3988     if ((unsigned) M[i] != 2 * i + WhichResult)
   3989       return false;
   3990   }
   3991 
   3992   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   3993   if (VT.is64BitVector() && EltSz == 32)
   3994     return false;
   3995 
   3996   return true;
   3997 }
   3998 
   3999 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   4000 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4001 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   4002 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4003   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4004   if (EltSz == 64)
   4005     return false;
   4006 
   4007   unsigned Half = VT.getVectorNumElements() / 2;
   4008   WhichResult = (M[0] == 0 ? 0 : 1);
   4009   for (unsigned j = 0; j != 2; ++j) {
   4010     unsigned Idx = WhichResult;
   4011     for (unsigned i = 0; i != Half; ++i) {
   4012       int MIdx = M[i + j * Half];
   4013       if (MIdx >= 0 && (unsigned) MIdx != Idx)
   4014         return false;
   4015       Idx += 2;
   4016     }
   4017   }
   4018 
   4019   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4020   if (VT.is64BitVector() && EltSz == 32)
   4021     return false;
   4022 
   4023   return true;
   4024 }
   4025 
   4026 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4027   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4028   if (EltSz == 64)
   4029     return false;
   4030 
   4031   unsigned NumElts = VT.getVectorNumElements();
   4032   WhichResult = (M[0] == 0 ? 0 : 1);
   4033   unsigned Idx = WhichResult * NumElts / 2;
   4034   for (unsigned i = 0; i != NumElts; i += 2) {
   4035     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4036         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
   4037       return false;
   4038     Idx += 1;
   4039   }
   4040 
   4041   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4042   if (VT.is64BitVector() && EltSz == 32)
   4043     return false;
   4044 
   4045   return true;
   4046 }
   4047 
   4048 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   4049 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4050 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   4051 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4052   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4053   if (EltSz == 64)
   4054     return false;
   4055 
   4056   unsigned NumElts = VT.getVectorNumElements();
   4057   WhichResult = (M[0] == 0 ? 0 : 1);
   4058   unsigned Idx = WhichResult * NumElts / 2;
   4059   for (unsigned i = 0; i != NumElts; i += 2) {
   4060     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4061         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
   4062       return false;
   4063     Idx += 1;
   4064   }
   4065 
   4066   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4067   if (VT.is64BitVector() && EltSz == 32)
   4068     return false;
   4069 
   4070   return true;
   4071 }
   4072 
   4073 // If N is an integer constant that can be moved into a register in one
   4074 // instruction, return an SDValue of such a constant (will become a MOV
   4075 // instruction).  Otherwise return null.
   4076 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   4077                                      const ARMSubtarget *ST, DebugLoc dl) {
   4078   uint64_t Val;
   4079   if (!isa<ConstantSDNode>(N))
   4080     return SDValue();
   4081   Val = cast<ConstantSDNode>(N)->getZExtValue();
   4082 
   4083   if (ST->isThumb1Only()) {
   4084     if (Val <= 255 || ~Val <= 255)
   4085       return DAG.getConstant(Val, MVT::i32);
   4086   } else {
   4087     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   4088       return DAG.getConstant(Val, MVT::i32);
   4089   }
   4090   return SDValue();
   4091 }
   4092 
   4093 // If this is a case we can't handle, return null and let the default
   4094 // expansion code take care of it.
   4095 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   4096                                              const ARMSubtarget *ST) const {
   4097   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4098   DebugLoc dl = Op.getDebugLoc();
   4099   EVT VT = Op.getValueType();
   4100 
   4101   APInt SplatBits, SplatUndef;
   4102   unsigned SplatBitSize;
   4103   bool HasAnyUndefs;
   4104   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   4105     if (SplatBitSize <= 64) {
   4106       // Check if an immediate VMOV works.
   4107       EVT VmovVT;
   4108       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   4109                                       SplatUndef.getZExtValue(), SplatBitSize,
   4110                                       DAG, VmovVT, VT.is128BitVector(),
   4111                                       VMOVModImm);
   4112       if (Val.getNode()) {
   4113         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   4114         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4115       }
   4116 
   4117       // Try an immediate VMVN.
   4118       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   4119       Val = isNEONModifiedImm(NegatedImm,
   4120                                       SplatUndef.getZExtValue(), SplatBitSize,
   4121                                       DAG, VmovVT, VT.is128BitVector(),
   4122                                       VMVNModImm);
   4123       if (Val.getNode()) {
   4124         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   4125         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4126       }
   4127 
   4128       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   4129       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   4130         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   4131         if (ImmVal != -1) {
   4132           SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
   4133           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   4134         }
   4135       }
   4136     }
   4137   }
   4138 
   4139   // Scan through the operands to see if only one value is used.
   4140   unsigned NumElts = VT.getVectorNumElements();
   4141   bool isOnlyLowElement = true;
   4142   bool usesOnlyOneValue = true;
   4143   bool isConstant = true;
   4144   SDValue Value;
   4145   for (unsigned i = 0; i < NumElts; ++i) {
   4146     SDValue V = Op.getOperand(i);
   4147     if (V.getOpcode() == ISD::UNDEF)
   4148       continue;
   4149     if (i > 0)
   4150       isOnlyLowElement = false;
   4151     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   4152       isConstant = false;
   4153 
   4154     if (!Value.getNode())
   4155       Value = V;
   4156     else if (V != Value)
   4157       usesOnlyOneValue = false;
   4158   }
   4159 
   4160   if (!Value.getNode())
   4161     return DAG.getUNDEF(VT);
   4162 
   4163   if (isOnlyLowElement)
   4164     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   4165 
   4166   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4167 
   4168   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   4169   // i32 and try again.
   4170   if (usesOnlyOneValue && EltSize <= 32) {
   4171     if (!isConstant)
   4172       return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   4173     if (VT.getVectorElementType().isFloatingPoint()) {
   4174       SmallVector<SDValue, 8> Ops;
   4175       for (unsigned i = 0; i < NumElts; ++i)
   4176         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   4177                                   Op.getOperand(i)));
   4178       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   4179       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
   4180       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   4181       if (Val.getNode())
   4182         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4183     }
   4184     SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   4185     if (Val.getNode())
   4186       return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   4187   }
   4188 
   4189   // If all elements are constants and the case above didn't get hit, fall back
   4190   // to the default expansion, which will generate a load from the constant
   4191   // pool.
   4192   if (isConstant)
   4193     return SDValue();
   4194 
   4195   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   4196   if (NumElts >= 4) {
   4197     SDValue shuffle = ReconstructShuffle(Op, DAG);
   4198     if (shuffle != SDValue())
   4199       return shuffle;
   4200   }
   4201 
   4202   // Vectors with 32- or 64-bit elements can be built by directly assigning
   4203   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   4204   // will be legalized.
   4205   if (EltSize >= 32) {
   4206     // Do the expansion with floating-point types, since that is what the VFP
   4207     // registers are defined to use, and since i64 is not legal.
   4208     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4209     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4210     SmallVector<SDValue, 8> Ops;
   4211     for (unsigned i = 0; i < NumElts; ++i)
   4212       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   4213     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4214     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4215   }
   4216 
   4217   return SDValue();
   4218 }
   4219 
   4220 // Gather data to see if the operation can be modelled as a
   4221 // shuffle in combination with VEXTs.
   4222 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   4223                                               SelectionDAG &DAG) const {
   4224   DebugLoc dl = Op.getDebugLoc();
   4225   EVT VT = Op.getValueType();
   4226   unsigned NumElts = VT.getVectorNumElements();
   4227 
   4228   SmallVector<SDValue, 2> SourceVecs;
   4229   SmallVector<unsigned, 2> MinElts;
   4230   SmallVector<unsigned, 2> MaxElts;
   4231 
   4232   for (unsigned i = 0; i < NumElts; ++i) {
   4233     SDValue V = Op.getOperand(i);
   4234     if (V.getOpcode() == ISD::UNDEF)
   4235       continue;
   4236     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   4237       // A shuffle can only come from building a vector from various
   4238       // elements of other vectors.
   4239       return SDValue();
   4240     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
   4241                VT.getVectorElementType()) {
   4242       // This code doesn't know how to handle shuffles where the vector
   4243       // element types do not match (this happens because type legalization
   4244       // promotes the return type of EXTRACT_VECTOR_ELT).
   4245       // FIXME: It might be appropriate to extend this code to handle
   4246       // mismatched types.
   4247       return SDValue();
   4248     }
   4249 
   4250     // Record this extraction against the appropriate vector if possible...
   4251     SDValue SourceVec = V.getOperand(0);
   4252     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   4253     bool FoundSource = false;
   4254     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
   4255       if (SourceVecs[j] == SourceVec) {
   4256         if (MinElts[j] > EltNo)
   4257           MinElts[j] = EltNo;
   4258         if (MaxElts[j] < EltNo)
   4259           MaxElts[j] = EltNo;
   4260         FoundSource = true;
   4261         break;
   4262       }
   4263     }
   4264 
   4265     // Or record a new source if not...
   4266     if (!FoundSource) {
   4267       SourceVecs.push_back(SourceVec);
   4268       MinElts.push_back(EltNo);
   4269       MaxElts.push_back(EltNo);
   4270     }
   4271   }
   4272 
   4273   // Currently only do something sane when at most two source vectors
   4274   // involved.
   4275   if (SourceVecs.size() > 2)
   4276     return SDValue();
   4277 
   4278   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
   4279   int VEXTOffsets[2] = {0, 0};
   4280 
   4281   // This loop extracts the usage patterns of the source vectors
   4282   // and prepares appropriate SDValues for a shuffle if possible.
   4283   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
   4284     if (SourceVecs[i].getValueType() == VT) {
   4285       // No VEXT necessary
   4286       ShuffleSrcs[i] = SourceVecs[i];
   4287       VEXTOffsets[i] = 0;
   4288       continue;
   4289     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
   4290       // It probably isn't worth padding out a smaller vector just to
   4291       // break it down again in a shuffle.
   4292       return SDValue();
   4293     }
   4294 
   4295     // Since only 64-bit and 128-bit vectors are legal on ARM and
   4296     // we've eliminated the other cases...
   4297     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
   4298            "unexpected vector sizes in ReconstructShuffle");
   4299 
   4300     if (MaxElts[i] - MinElts[i] >= NumElts) {
   4301       // Span too large for a VEXT to cope
   4302       return SDValue();
   4303     }
   4304 
   4305     if (MinElts[i] >= NumElts) {
   4306       // The extraction can just take the second half
   4307       VEXTOffsets[i] = NumElts;
   4308       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4309                                    SourceVecs[i],
   4310                                    DAG.getIntPtrConstant(NumElts));
   4311     } else if (MaxElts[i] < NumElts) {
   4312       // The extraction can just take the first half
   4313       VEXTOffsets[i] = 0;
   4314       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4315                                    SourceVecs[i],
   4316                                    DAG.getIntPtrConstant(0));
   4317     } else {
   4318       // An actual VEXT is needed
   4319       VEXTOffsets[i] = MinElts[i];
   4320       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4321                                      SourceVecs[i],
   4322                                      DAG.getIntPtrConstant(0));
   4323       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4324                                      SourceVecs[i],
   4325                                      DAG.getIntPtrConstant(NumElts));
   4326       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
   4327                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
   4328     }
   4329   }
   4330 
   4331   SmallVector<int, 8> Mask;
   4332 
   4333   for (unsigned i = 0; i < NumElts; ++i) {
   4334     SDValue Entry = Op.getOperand(i);
   4335     if (Entry.getOpcode() == ISD::UNDEF) {
   4336       Mask.push_back(-1);
   4337       continue;
   4338     }
   4339 
   4340     SDValue ExtractVec = Entry.getOperand(0);
   4341     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
   4342                                           .getOperand(1))->getSExtValue();
   4343     if (ExtractVec == SourceVecs[0]) {
   4344       Mask.push_back(ExtractElt - VEXTOffsets[0]);
   4345     } else {
   4346       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
   4347     }
   4348   }
   4349 
   4350   // Final check before we try to produce nonsense...
   4351   if (isShuffleMaskLegal(Mask, VT))
   4352     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
   4353                                 &Mask[0]);
   4354 
   4355   return SDValue();
   4356 }
   4357 
   4358 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   4359 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   4360 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   4361 /// are assumed to be legal.
   4362 bool
   4363 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   4364                                       EVT VT) const {
   4365   if (VT.getVectorNumElements() == 4 &&
   4366       (VT.is128BitVector() || VT.is64BitVector())) {
   4367     unsigned PFIndexes[4];
   4368     for (unsigned i = 0; i != 4; ++i) {
   4369       if (M[i] < 0)
   4370         PFIndexes[i] = 8;
   4371       else
   4372         PFIndexes[i] = M[i];
   4373     }
   4374 
   4375     // Compute the index in the perfect shuffle table.
   4376     unsigned PFTableIndex =
   4377       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4378     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4379     unsigned Cost = (PFEntry >> 30);
   4380 
   4381     if (Cost <= 4)
   4382       return true;
   4383   }
   4384 
   4385   bool ReverseVEXT;
   4386   unsigned Imm, WhichResult;
   4387 
   4388   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4389   return (EltSize >= 32 ||
   4390           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   4391           isVREVMask(M, VT, 64) ||
   4392           isVREVMask(M, VT, 32) ||
   4393           isVREVMask(M, VT, 16) ||
   4394           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   4395           isVTBLMask(M, VT) ||
   4396           isVTRNMask(M, VT, WhichResult) ||
   4397           isVUZPMask(M, VT, WhichResult) ||
   4398           isVZIPMask(M, VT, WhichResult) ||
   4399           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
   4400           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
   4401           isVZIP_v_undef_Mask(M, VT, WhichResult));
   4402 }
   4403 
   4404 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   4405 /// the specified operations to build the shuffle.
   4406 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   4407                                       SDValue RHS, SelectionDAG &DAG,
   4408                                       DebugLoc dl) {
   4409   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   4410   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   4411   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   4412 
   4413   enum {
   4414     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   4415     OP_VREV,
   4416     OP_VDUP0,
   4417     OP_VDUP1,
   4418     OP_VDUP2,
   4419     OP_VDUP3,
   4420     OP_VEXT1,
   4421     OP_VEXT2,
   4422     OP_VEXT3,
   4423     OP_VUZPL, // VUZP, left result
   4424     OP_VUZPR, // VUZP, right result
   4425     OP_VZIPL, // VZIP, left result
   4426     OP_VZIPR, // VZIP, right result
   4427     OP_VTRNL, // VTRN, left result
   4428     OP_VTRNR  // VTRN, right result
   4429   };
   4430 
   4431   if (OpNum == OP_COPY) {
   4432     if (LHSID == (1*9+2)*9+3) return LHS;
   4433     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   4434     return RHS;
   4435   }
   4436 
   4437   SDValue OpLHS, OpRHS;
   4438   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   4439   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   4440   EVT VT = OpLHS.getValueType();
   4441 
   4442   switch (OpNum) {
   4443   default: llvm_unreachable("Unknown shuffle opcode!");
   4444   case OP_VREV:
   4445     // VREV divides the vector in half and swaps within the half.
   4446     if (VT.getVectorElementType() == MVT::i32 ||
   4447         VT.getVectorElementType() == MVT::f32)
   4448       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   4449     // vrev <4 x i16> -> VREV32
   4450     if (VT.getVectorElementType() == MVT::i16)
   4451       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   4452     // vrev <4 x i8> -> VREV16
   4453     assert(VT.getVectorElementType() == MVT::i8);
   4454     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   4455   case OP_VDUP0:
   4456   case OP_VDUP1:
   4457   case OP_VDUP2:
   4458   case OP_VDUP3:
   4459     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   4460                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
   4461   case OP_VEXT1:
   4462   case OP_VEXT2:
   4463   case OP_VEXT3:
   4464     return DAG.getNode(ARMISD::VEXT, dl, VT,
   4465                        OpLHS, OpRHS,
   4466                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
   4467   case OP_VUZPL:
   4468   case OP_VUZPR:
   4469     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4470                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   4471   case OP_VZIPL:
   4472   case OP_VZIPR:
   4473     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4474                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   4475   case OP_VTRNL:
   4476   case OP_VTRNR:
   4477     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4478                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   4479   }
   4480 }
   4481 
   4482 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   4483                                        ArrayRef<int> ShuffleMask,
   4484                                        SelectionDAG &DAG) {
   4485   // Check to see if we can use the VTBL instruction.
   4486   SDValue V1 = Op.getOperand(0);
   4487   SDValue V2 = Op.getOperand(1);
   4488   DebugLoc DL = Op.getDebugLoc();
   4489 
   4490   SmallVector<SDValue, 8> VTBLMask;
   4491   for (ArrayRef<int>::iterator
   4492          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   4493     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
   4494 
   4495   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   4496     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   4497                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4498                                    &VTBLMask[0], 8));
   4499 
   4500   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   4501                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4502                                  &VTBLMask[0], 8));
   4503 }
   4504 
   4505 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   4506   SDValue V1 = Op.getOperand(0);
   4507   SDValue V2 = Op.getOperand(1);
   4508   DebugLoc dl = Op.getDebugLoc();
   4509   EVT VT = Op.getValueType();
   4510   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   4511 
   4512   // Convert shuffles that are directly supported on NEON to target-specific
   4513   // DAG nodes, instead of keeping them as shuffles and matching them again
   4514   // during code selection.  This is more efficient and avoids the possibility
   4515   // of inconsistencies between legalization and selection.
   4516   // FIXME: floating-point vectors should be canonicalized to integer vectors
   4517   // of the same time so that they get CSEd properly.
   4518   ArrayRef<int> ShuffleMask = SVN->getMask();
   4519 
   4520   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4521   if (EltSize <= 32) {
   4522     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   4523       int Lane = SVN->getSplatIndex();
   4524       // If this is undef splat, generate it via "just" vdup, if possible.
   4525       if (Lane == -1) Lane = 0;
   4526 
   4527       // Test if V1 is a SCALAR_TO_VECTOR.
   4528       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   4529         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   4530       }
   4531       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   4532       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   4533       // reaches it).
   4534       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   4535           !isa<ConstantSDNode>(V1.getOperand(0))) {
   4536         bool IsScalarToVector = true;
   4537         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   4538           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
   4539             IsScalarToVector = false;
   4540             break;
   4541           }
   4542         if (IsScalarToVector)
   4543           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   4544       }
   4545       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   4546                          DAG.getConstant(Lane, MVT::i32));
   4547     }
   4548 
   4549     bool ReverseVEXT;
   4550     unsigned Imm;
   4551     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   4552       if (ReverseVEXT)
   4553         std::swap(V1, V2);
   4554       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   4555                          DAG.getConstant(Imm, MVT::i32));
   4556     }
   4557 
   4558     if (isVREVMask(ShuffleMask, VT, 64))
   4559       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   4560     if (isVREVMask(ShuffleMask, VT, 32))
   4561       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   4562     if (isVREVMask(ShuffleMask, VT, 16))
   4563       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   4564 
   4565     // Check for Neon shuffles that modify both input vectors in place.
   4566     // If both results are used, i.e., if there are two shuffles with the same
   4567     // source operands and with masks corresponding to both results of one of
   4568     // these operations, DAG memoization will ensure that a single node is
   4569     // used for both shuffles.
   4570     unsigned WhichResult;
   4571     if (isVTRNMask(ShuffleMask, VT, WhichResult))
   4572       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4573                          V1, V2).getValue(WhichResult);
   4574     if (isVUZPMask(ShuffleMask, VT, WhichResult))
   4575       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4576                          V1, V2).getValue(WhichResult);
   4577     if (isVZIPMask(ShuffleMask, VT, WhichResult))
   4578       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4579                          V1, V2).getValue(WhichResult);
   4580 
   4581     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4582       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4583                          V1, V1).getValue(WhichResult);
   4584     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4585       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4586                          V1, V1).getValue(WhichResult);
   4587     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4588       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4589                          V1, V1).getValue(WhichResult);
   4590   }
   4591 
   4592   // If the shuffle is not directly supported and it has 4 elements, use
   4593   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   4594   unsigned NumElts = VT.getVectorNumElements();
   4595   if (NumElts == 4) {
   4596     unsigned PFIndexes[4];
   4597     for (unsigned i = 0; i != 4; ++i) {
   4598       if (ShuffleMask[i] < 0)
   4599         PFIndexes[i] = 8;
   4600       else
   4601         PFIndexes[i] = ShuffleMask[i];
   4602     }
   4603 
   4604     // Compute the index in the perfect shuffle table.
   4605     unsigned PFTableIndex =
   4606       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4607     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4608     unsigned Cost = (PFEntry >> 30);
   4609 
   4610     if (Cost <= 4)
   4611       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   4612   }
   4613 
   4614   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   4615   if (EltSize >= 32) {
   4616     // Do the expansion with floating-point types, since that is what the VFP
   4617     // registers are defined to use, and since i64 is not legal.
   4618     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4619     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4620     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   4621     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   4622     SmallVector<SDValue, 8> Ops;
   4623     for (unsigned i = 0; i < NumElts; ++i) {
   4624       if (ShuffleMask[i] < 0)
   4625         Ops.push_back(DAG.getUNDEF(EltVT));
   4626       else
   4627         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   4628                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   4629                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   4630                                                   MVT::i32)));
   4631     }
   4632     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4633     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4634   }
   4635 
   4636   if (VT == MVT::v8i8) {
   4637     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   4638     if (NewOp.getNode())
   4639       return NewOp;
   4640   }
   4641 
   4642   return SDValue();
   4643 }
   4644 
   4645 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   4646   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   4647   SDValue Lane = Op.getOperand(2);
   4648   if (!isa<ConstantSDNode>(Lane))
   4649     return SDValue();
   4650 
   4651   return Op;
   4652 }
   4653 
   4654 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   4655   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   4656   SDValue Lane = Op.getOperand(1);
   4657   if (!isa<ConstantSDNode>(Lane))
   4658     return SDValue();
   4659 
   4660   SDValue Vec = Op.getOperand(0);
   4661   if (Op.getValueType() == MVT::i32 &&
   4662       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   4663     DebugLoc dl = Op.getDebugLoc();
   4664     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   4665   }
   4666 
   4667   return Op;
   4668 }
   4669 
   4670 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   4671   // The only time a CONCAT_VECTORS operation can have legal types is when
   4672   // two 64-bit vectors are concatenated to a 128-bit vector.
   4673   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   4674          "unexpected CONCAT_VECTORS");
   4675   DebugLoc dl = Op.getDebugLoc();
   4676   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   4677   SDValue Op0 = Op.getOperand(0);
   4678   SDValue Op1 = Op.getOperand(1);
   4679   if (Op0.getOpcode() != ISD::UNDEF)
   4680     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4681                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   4682                       DAG.getIntPtrConstant(0));
   4683   if (Op1.getOpcode() != ISD::UNDEF)
   4684     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4685                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   4686                       DAG.getIntPtrConstant(1));
   4687   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   4688 }
   4689 
   4690 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   4691 /// element has been zero/sign-extended, depending on the isSigned parameter,
   4692 /// from an integer type half its size.
   4693 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   4694                                    bool isSigned) {
   4695   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   4696   EVT VT = N->getValueType(0);
   4697   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   4698     SDNode *BVN = N->getOperand(0).getNode();
   4699     if (BVN->getValueType(0) != MVT::v4i32 ||
   4700         BVN->getOpcode() != ISD::BUILD_VECTOR)
   4701       return false;
   4702     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4703     unsigned HiElt = 1 - LoElt;
   4704     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   4705     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   4706     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   4707     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   4708     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   4709       return false;
   4710     if (isSigned) {
   4711       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   4712           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   4713         return true;
   4714     } else {
   4715       if (Hi0->isNullValue() && Hi1->isNullValue())
   4716         return true;
   4717     }
   4718     return false;
   4719   }
   4720 
   4721   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4722     return false;
   4723 
   4724   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   4725     SDNode *Elt = N->getOperand(i).getNode();
   4726     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   4727       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4728       unsigned HalfSize = EltSize / 2;
   4729       if (isSigned) {
   4730         if (!isIntN(HalfSize, C->getSExtValue()))
   4731           return false;
   4732       } else {
   4733         if (!isUIntN(HalfSize, C->getZExtValue()))
   4734           return false;
   4735       }
   4736       continue;
   4737     }
   4738     return false;
   4739   }
   4740 
   4741   return true;
   4742 }
   4743 
   4744 /// isSignExtended - Check if a node is a vector value that is sign-extended
   4745 /// or a constant BUILD_VECTOR with sign-extended elements.
   4746 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   4747   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   4748     return true;
   4749   if (isExtendedBUILD_VECTOR(N, DAG, true))
   4750     return true;
   4751   return false;
   4752 }
   4753 
   4754 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   4755 /// or a constant BUILD_VECTOR with zero-extended elements.
   4756 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   4757   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   4758     return true;
   4759   if (isExtendedBUILD_VECTOR(N, DAG, false))
   4760     return true;
   4761   return false;
   4762 }
   4763 
   4764 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
   4765 /// load, or BUILD_VECTOR with extended elements, return the unextended value.
   4766 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
   4767   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   4768     return N->getOperand(0);
   4769   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   4770     return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
   4771                        LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   4772                        LD->isNonTemporal(), LD->isInvariant(),
   4773                        LD->getAlignment());
   4774   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   4775   // have been legalized as a BITCAST from v4i32.
   4776   if (N->getOpcode() == ISD::BITCAST) {
   4777     SDNode *BVN = N->getOperand(0).getNode();
   4778     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   4779            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   4780     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4781     return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
   4782                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   4783   }
   4784   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   4785   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   4786   EVT VT = N->getValueType(0);
   4787   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   4788   unsigned NumElts = VT.getVectorNumElements();
   4789   MVT TruncVT = MVT::getIntegerVT(EltSize);
   4790   SmallVector<SDValue, 8> Ops;
   4791   for (unsigned i = 0; i != NumElts; ++i) {
   4792     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   4793     const APInt &CInt = C->getAPIntValue();
   4794     Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
   4795   }
   4796   return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
   4797                      MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
   4798 }
   4799 
   4800 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   4801   unsigned Opcode = N->getOpcode();
   4802   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4803     SDNode *N0 = N->getOperand(0).getNode();
   4804     SDNode *N1 = N->getOperand(1).getNode();
   4805     return N0->hasOneUse() && N1->hasOneUse() &&
   4806       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   4807   }
   4808   return false;
   4809 }
   4810 
   4811 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   4812   unsigned Opcode = N->getOpcode();
   4813   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4814     SDNode *N0 = N->getOperand(0).getNode();
   4815     SDNode *N1 = N->getOperand(1).getNode();
   4816     return N0->hasOneUse() && N1->hasOneUse() &&
   4817       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   4818   }
   4819   return false;
   4820 }
   4821 
   4822 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   4823   // Multiplications are only custom-lowered for 128-bit vectors so that
   4824   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   4825   EVT VT = Op.getValueType();
   4826   assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
   4827   SDNode *N0 = Op.getOperand(0).getNode();
   4828   SDNode *N1 = Op.getOperand(1).getNode();
   4829   unsigned NewOpc = 0;
   4830   bool isMLA = false;
   4831   bool isN0SExt = isSignExtended(N0, DAG);
   4832   bool isN1SExt = isSignExtended(N1, DAG);
   4833   if (isN0SExt && isN1SExt)
   4834     NewOpc = ARMISD::VMULLs;
   4835   else {
   4836     bool isN0ZExt = isZeroExtended(N0, DAG);
   4837     bool isN1ZExt = isZeroExtended(N1, DAG);
   4838     if (isN0ZExt && isN1ZExt)
   4839       NewOpc = ARMISD::VMULLu;
   4840     else if (isN1SExt || isN1ZExt) {
   4841       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   4842       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   4843       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   4844         NewOpc = ARMISD::VMULLs;
   4845         isMLA = true;
   4846       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   4847         NewOpc = ARMISD::VMULLu;
   4848         isMLA = true;
   4849       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   4850         std::swap(N0, N1);
   4851         NewOpc = ARMISD::VMULLu;
   4852         isMLA = true;
   4853       }
   4854     }
   4855 
   4856     if (!NewOpc) {
   4857       if (VT == MVT::v2i64)
   4858         // Fall through to expand this.  It is not legal.
   4859         return SDValue();
   4860       else
   4861         // Other vector multiplications are legal.
   4862         return Op;
   4863     }
   4864   }
   4865 
   4866   // Legalize to a VMULL instruction.
   4867   DebugLoc DL = Op.getDebugLoc();
   4868   SDValue Op0;
   4869   SDValue Op1 = SkipExtension(N1, DAG);
   4870   if (!isMLA) {
   4871     Op0 = SkipExtension(N0, DAG);
   4872     assert(Op0.getValueType().is64BitVector() &&
   4873            Op1.getValueType().is64BitVector() &&
   4874            "unexpected types for extended operands to VMULL");
   4875     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   4876   }
   4877 
   4878   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   4879   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   4880   //   vmull q0, d4, d6
   4881   //   vmlal q0, d5, d6
   4882   // is faster than
   4883   //   vaddl q0, d4, d5
   4884   //   vmovl q1, d6
   4885   //   vmul  q0, q0, q1
   4886   SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
   4887   SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
   4888   EVT Op1VT = Op1.getValueType();
   4889   return DAG.getNode(N0->getOpcode(), DL, VT,
   4890                      DAG.getNode(NewOpc, DL, VT,
   4891                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   4892                      DAG.getNode(NewOpc, DL, VT,
   4893                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   4894 }
   4895 
   4896 static SDValue
   4897 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
   4898   // Convert to float
   4899   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   4900   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   4901   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   4902   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   4903   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   4904   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   4905   // Get reciprocal estimate.
   4906   // float4 recip = vrecpeq_f32(yf);
   4907   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4908                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
   4909   // Because char has a smaller range than uchar, we can actually get away
   4910   // without any newton steps.  This requires that we use a weird bias
   4911   // of 0xb000, however (again, this has been exhaustively tested).
   4912   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   4913   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   4914   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   4915   Y = DAG.getConstant(0xb000, MVT::i32);
   4916   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   4917   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   4918   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   4919   // Convert back to short.
   4920   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   4921   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   4922   return X;
   4923 }
   4924 
   4925 static SDValue
   4926 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
   4927   SDValue N2;
   4928   // Convert to float.
   4929   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   4930   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   4931   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   4932   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   4933   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   4934   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   4935 
   4936   // Use reciprocal estimate and one refinement step.
   4937   // float4 recip = vrecpeq_f32(yf);
   4938   // recip *= vrecpsq_f32(yf, recip);
   4939   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4940                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
   4941   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4942                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   4943                    N1, N2);
   4944   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   4945   // Because short has a smaller range than ushort, we can actually get away
   4946   // with only a single newton step.  This requires that we use a weird bias
   4947   // of 89, however (again, this has been exhaustively tested).
   4948   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   4949   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   4950   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   4951   N1 = DAG.getConstant(0x89, MVT::i32);
   4952   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   4953   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   4954   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   4955   // Convert back to integer and return.
   4956   // return vmovn_s32(vcvt_s32_f32(result));
   4957   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   4958   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   4959   return N0;
   4960 }
   4961 
   4962 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   4963   EVT VT = Op.getValueType();
   4964   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   4965          "unexpected type for custom-lowering ISD::SDIV");
   4966 
   4967   DebugLoc dl = Op.getDebugLoc();
   4968   SDValue N0 = Op.getOperand(0);
   4969   SDValue N1 = Op.getOperand(1);
   4970   SDValue N2, N3;
   4971 
   4972   if (VT == MVT::v8i8) {
   4973     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   4974     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   4975 
   4976     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4977                      DAG.getIntPtrConstant(4));
   4978     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4979                      DAG.getIntPtrConstant(4));
   4980     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4981                      DAG.getIntPtrConstant(0));
   4982     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4983                      DAG.getIntPtrConstant(0));
   4984 
   4985     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   4986     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   4987 
   4988     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   4989     N0 = LowerCONCAT_VECTORS(N0, DAG);
   4990 
   4991     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   4992     return N0;
   4993   }
   4994   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   4995 }
   4996 
   4997 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   4998   EVT VT = Op.getValueType();
   4999   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   5000          "unexpected type for custom-lowering ISD::UDIV");
   5001 
   5002   DebugLoc dl = Op.getDebugLoc();
   5003   SDValue N0 = Op.getOperand(0);
   5004   SDValue N1 = Op.getOperand(1);
   5005   SDValue N2, N3;
   5006 
   5007   if (VT == MVT::v8i8) {
   5008     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   5009     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   5010 
   5011     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5012                      DAG.getIntPtrConstant(4));
   5013     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5014                      DAG.getIntPtrConstant(4));
   5015     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5016                      DAG.getIntPtrConstant(0));
   5017     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5018                      DAG.getIntPtrConstant(0));
   5019 
   5020     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   5021     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   5022 
   5023     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   5024     N0 = LowerCONCAT_VECTORS(N0, DAG);
   5025 
   5026     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   5027                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
   5028                      N0);
   5029     return N0;
   5030   }
   5031 
   5032   // v4i16 sdiv ... Convert to float.
   5033   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   5034   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   5035   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   5036   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   5037   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   5038   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   5039 
   5040   // Use reciprocal estimate and two refinement steps.
   5041   // float4 recip = vrecpeq_f32(yf);
   5042   // recip *= vrecpsq_f32(yf, recip);
   5043   // recip *= vrecpsq_f32(yf, recip);
   5044   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5045                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
   5046   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5047                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5048                    BN1, N2);
   5049   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5050   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5051                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5052                    BN1, N2);
   5053   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5054   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   5055   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   5056   // and that it will never cause us to return an answer too large).
   5057   // float4 result = as_float4(as_int4(xf*recip) + 2);
   5058   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   5059   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   5060   N1 = DAG.getConstant(2, MVT::i32);
   5061   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   5062   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   5063   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   5064   // Convert back to integer and return.
   5065   // return vmovn_u32(vcvt_s32_f32(result));
   5066   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   5067   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   5068   return N0;
   5069 }
   5070 
   5071 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   5072   EVT VT = Op.getNode()->getValueType(0);
   5073   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   5074 
   5075   unsigned Opc;
   5076   bool ExtraOp = false;
   5077   switch (Op.getOpcode()) {
   5078   default: llvm_unreachable("Invalid code");
   5079   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   5080   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   5081   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   5082   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   5083   }
   5084 
   5085   if (!ExtraOp)
   5086     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   5087                        Op.getOperand(1));
   5088   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   5089                      Op.getOperand(1), Op.getOperand(2));
   5090 }
   5091 
   5092 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   5093   // Monotonic load/store is legal for all targets
   5094   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   5095     return Op;
   5096 
   5097   // Aquire/Release load/store is not legal for targets without a
   5098   // dmb or equivalent available.
   5099   return SDValue();
   5100 }
   5101 
   5102 
   5103 static void
   5104 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
   5105                     SelectionDAG &DAG, unsigned NewOp) {
   5106   DebugLoc dl = Node->getDebugLoc();
   5107   assert (Node->getValueType(0) == MVT::i64 &&
   5108           "Only know how to expand i64 atomics");
   5109 
   5110   SmallVector<SDValue, 6> Ops;
   5111   Ops.push_back(Node->getOperand(0)); // Chain
   5112   Ops.push_back(Node->getOperand(1)); // Ptr
   5113   // Low part of Val1
   5114   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5115                             Node->getOperand(2), DAG.getIntPtrConstant(0)));
   5116   // High part of Val1
   5117   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5118                             Node->getOperand(2), DAG.getIntPtrConstant(1)));
   5119   if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
   5120     // High part of Val1
   5121     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5122                               Node->getOperand(3), DAG.getIntPtrConstant(0)));
   5123     // High part of Val2
   5124     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   5125                               Node->getOperand(3), DAG.getIntPtrConstant(1)));
   5126   }
   5127   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   5128   SDValue Result =
   5129     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
   5130                             cast<MemSDNode>(Node)->getMemOperand());
   5131   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
   5132   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   5133   Results.push_back(Result.getValue(2));
   5134 }
   5135 
   5136 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   5137   switch (Op.getOpcode()) {
   5138   default: llvm_unreachable("Don't know how to custom lower this!");
   5139   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   5140   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   5141   case ISD::GlobalAddress:
   5142     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
   5143       LowerGlobalAddressELF(Op, DAG);
   5144   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   5145   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   5146   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   5147   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   5148   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   5149   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   5150   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
   5151   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   5152   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   5153   case ISD::SINT_TO_FP:
   5154   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   5155   case ISD::FP_TO_SINT:
   5156   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   5157   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   5158   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   5159   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   5160   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
   5161   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   5162   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   5163   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   5164                                                                Subtarget);
   5165   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   5166   case ISD::SHL:
   5167   case ISD::SRL:
   5168   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   5169   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   5170   case ISD::SRL_PARTS:
   5171   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   5172   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   5173   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   5174   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   5175   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   5176   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   5177   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   5178   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   5179   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   5180   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   5181   case ISD::MUL:           return LowerMUL(Op, DAG);
   5182   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   5183   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   5184   case ISD::ADDC:
   5185   case ISD::ADDE:
   5186   case ISD::SUBC:
   5187   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   5188   case ISD::ATOMIC_LOAD:
   5189   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   5190   }
   5191 }
   5192 
   5193 /// ReplaceNodeResults - Replace the results of node with an illegal result
   5194 /// type with new values built out of custom code.
   5195 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   5196                                            SmallVectorImpl<SDValue>&Results,
   5197                                            SelectionDAG &DAG) const {
   5198   SDValue Res;
   5199   switch (N->getOpcode()) {
   5200   default:
   5201     llvm_unreachable("Don't know how to custom expand this!");
   5202   case ISD::BITCAST:
   5203     Res = ExpandBITCAST(N, DAG);
   5204     break;
   5205   case ISD::SRL:
   5206   case ISD::SRA:
   5207     Res = Expand64BitShift(N, DAG, Subtarget);
   5208     break;
   5209   case ISD::ATOMIC_LOAD_ADD:
   5210     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
   5211     return;
   5212   case ISD::ATOMIC_LOAD_AND:
   5213     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
   5214     return;
   5215   case ISD::ATOMIC_LOAD_NAND:
   5216     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
   5217     return;
   5218   case ISD::ATOMIC_LOAD_OR:
   5219     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
   5220     return;
   5221   case ISD::ATOMIC_LOAD_SUB:
   5222     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
   5223     return;
   5224   case ISD::ATOMIC_LOAD_XOR:
   5225     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
   5226     return;
   5227   case ISD::ATOMIC_SWAP:
   5228     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
   5229     return;
   5230   case ISD::ATOMIC_CMP_SWAP:
   5231     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
   5232     return;
   5233   }
   5234   if (Res.getNode())
   5235     Results.push_back(Res);
   5236 }
   5237 
   5238 //===----------------------------------------------------------------------===//
   5239 //                           ARM Scheduler Hooks
   5240 //===----------------------------------------------------------------------===//
   5241 
   5242 MachineBasicBlock *
   5243 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
   5244                                      MachineBasicBlock *BB,
   5245                                      unsigned Size) const {
   5246   unsigned dest    = MI->getOperand(0).getReg();
   5247   unsigned ptr     = MI->getOperand(1).getReg();
   5248   unsigned oldval  = MI->getOperand(2).getReg();
   5249   unsigned newval  = MI->getOperand(3).getReg();
   5250   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5251   DebugLoc dl = MI->getDebugLoc();
   5252   bool isThumb2 = Subtarget->isThumb2();
   5253 
   5254   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5255   unsigned scratch =
   5256     MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
   5257                                        : ARM::GPRRegisterClass);
   5258 
   5259   if (isThumb2) {
   5260     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5261     MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
   5262     MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
   5263   }
   5264 
   5265   unsigned ldrOpc, strOpc;
   5266   switch (Size) {
   5267   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5268   case 1:
   5269     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5270     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5271     break;
   5272   case 2:
   5273     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5274     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5275     break;
   5276   case 4:
   5277     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5278     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5279     break;
   5280   }
   5281 
   5282   MachineFunction *MF = BB->getParent();
   5283   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5284   MachineFunction::iterator It = BB;
   5285   ++It; // insert the new blocks after the current block
   5286 
   5287   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5288   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5289   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5290   MF->insert(It, loop1MBB);
   5291   MF->insert(It, loop2MBB);
   5292   MF->insert(It, exitMBB);
   5293 
   5294   // Transfer the remainder of BB and its successor edges to exitMBB.
   5295   exitMBB->splice(exitMBB->begin(), BB,
   5296                   llvm::next(MachineBasicBlock::iterator(MI)),
   5297                   BB->end());
   5298   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5299 
   5300   //  thisMBB:
   5301   //   ...
   5302   //   fallthrough --> loop1MBB
   5303   BB->addSuccessor(loop1MBB);
   5304 
   5305   // loop1MBB:
   5306   //   ldrex dest, [ptr]
   5307   //   cmp dest, oldval
   5308   //   bne exitMBB
   5309   BB = loop1MBB;
   5310   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5311   if (ldrOpc == ARM::t2LDREX)
   5312     MIB.addImm(0);
   5313   AddDefaultPred(MIB);
   5314   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5315                  .addReg(dest).addReg(oldval));
   5316   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5317     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5318   BB->addSuccessor(loop2MBB);
   5319   BB->addSuccessor(exitMBB);
   5320 
   5321   // loop2MBB:
   5322   //   strex scratch, newval, [ptr]
   5323   //   cmp scratch, #0
   5324   //   bne loop1MBB
   5325   BB = loop2MBB;
   5326   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
   5327   if (strOpc == ARM::t2STREX)
   5328     MIB.addImm(0);
   5329   AddDefaultPred(MIB);
   5330   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5331                  .addReg(scratch).addImm(0));
   5332   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5333     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5334   BB->addSuccessor(loop1MBB);
   5335   BB->addSuccessor(exitMBB);
   5336 
   5337   //  exitMBB:
   5338   //   ...
   5339   BB = exitMBB;
   5340 
   5341   MI->eraseFromParent();   // The instruction is gone now.
   5342 
   5343   return BB;
   5344 }
   5345 
   5346 MachineBasicBlock *
   5347 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   5348                                     unsigned Size, unsigned BinOpcode) const {
   5349   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5350   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5351 
   5352   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5353   MachineFunction *MF = BB->getParent();
   5354   MachineFunction::iterator It = BB;
   5355   ++It;
   5356 
   5357   unsigned dest = MI->getOperand(0).getReg();
   5358   unsigned ptr = MI->getOperand(1).getReg();
   5359   unsigned incr = MI->getOperand(2).getReg();
   5360   DebugLoc dl = MI->getDebugLoc();
   5361   bool isThumb2 = Subtarget->isThumb2();
   5362 
   5363   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5364   if (isThumb2) {
   5365     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5366     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5367   }
   5368 
   5369   unsigned ldrOpc, strOpc;
   5370   switch (Size) {
   5371   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5372   case 1:
   5373     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5374     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5375     break;
   5376   case 2:
   5377     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5378     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5379     break;
   5380   case 4:
   5381     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5382     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5383     break;
   5384   }
   5385 
   5386   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5387   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5388   MF->insert(It, loopMBB);
   5389   MF->insert(It, exitMBB);
   5390 
   5391   // Transfer the remainder of BB and its successor edges to exitMBB.
   5392   exitMBB->splice(exitMBB->begin(), BB,
   5393                   llvm::next(MachineBasicBlock::iterator(MI)),
   5394                   BB->end());
   5395   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5396 
   5397   const TargetRegisterClass *TRC =
   5398     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5399   unsigned scratch = MRI.createVirtualRegister(TRC);
   5400   unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
   5401 
   5402   //  thisMBB:
   5403   //   ...
   5404   //   fallthrough --> loopMBB
   5405   BB->addSuccessor(loopMBB);
   5406 
   5407   //  loopMBB:
   5408   //   ldrex dest, ptr
   5409   //   <binop> scratch2, dest, incr
   5410   //   strex scratch, scratch2, ptr
   5411   //   cmp scratch, #0
   5412   //   bne- loopMBB
   5413   //   fallthrough --> exitMBB
   5414   BB = loopMBB;
   5415   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5416   if (ldrOpc == ARM::t2LDREX)
   5417     MIB.addImm(0);
   5418   AddDefaultPred(MIB);
   5419   if (BinOpcode) {
   5420     // operand order needs to go the other way for NAND
   5421     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
   5422       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5423                      addReg(incr).addReg(dest)).addReg(0);
   5424     else
   5425       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5426                      addReg(dest).addReg(incr)).addReg(0);
   5427   }
   5428 
   5429   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5430   if (strOpc == ARM::t2STREX)
   5431     MIB.addImm(0);
   5432   AddDefaultPred(MIB);
   5433   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5434                  .addReg(scratch).addImm(0));
   5435   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5436     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5437 
   5438   BB->addSuccessor(loopMBB);
   5439   BB->addSuccessor(exitMBB);
   5440 
   5441   //  exitMBB:
   5442   //   ...
   5443   BB = exitMBB;
   5444 
   5445   MI->eraseFromParent();   // The instruction is gone now.
   5446 
   5447   return BB;
   5448 }
   5449 
   5450 MachineBasicBlock *
   5451 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
   5452                                           MachineBasicBlock *BB,
   5453                                           unsigned Size,
   5454                                           bool signExtend,
   5455                                           ARMCC::CondCodes Cond) const {
   5456   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5457 
   5458   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5459   MachineFunction *MF = BB->getParent();
   5460   MachineFunction::iterator It = BB;
   5461   ++It;
   5462 
   5463   unsigned dest = MI->getOperand(0).getReg();
   5464   unsigned ptr = MI->getOperand(1).getReg();
   5465   unsigned incr = MI->getOperand(2).getReg();
   5466   unsigned oldval = dest;
   5467   DebugLoc dl = MI->getDebugLoc();
   5468   bool isThumb2 = Subtarget->isThumb2();
   5469 
   5470   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5471   if (isThumb2) {
   5472     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5473     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5474   }
   5475 
   5476   unsigned ldrOpc, strOpc, extendOpc;
   5477   switch (Size) {
   5478   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5479   case 1:
   5480     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5481     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5482     extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
   5483     break;
   5484   case 2:
   5485     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5486     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5487     extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
   5488     break;
   5489   case 4:
   5490     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5491     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5492     extendOpc = 0;
   5493     break;
   5494   }
   5495 
   5496   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5497   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5498   MF->insert(It, loopMBB);
   5499   MF->insert(It, exitMBB);
   5500 
   5501   // Transfer the remainder of BB and its successor edges to exitMBB.
   5502   exitMBB->splice(exitMBB->begin(), BB,
   5503                   llvm::next(MachineBasicBlock::iterator(MI)),
   5504                   BB->end());
   5505   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5506 
   5507   const TargetRegisterClass *TRC =
   5508     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5509   unsigned scratch = MRI.createVirtualRegister(TRC);
   5510   unsigned scratch2 = MRI.createVirtualRegister(TRC);
   5511 
   5512   //  thisMBB:
   5513   //   ...
   5514   //   fallthrough --> loopMBB
   5515   BB->addSuccessor(loopMBB);
   5516 
   5517   //  loopMBB:
   5518   //   ldrex dest, ptr
   5519   //   (sign extend dest, if required)
   5520   //   cmp dest, incr
   5521   //   cmov.cond scratch2, dest, incr
   5522   //   strex scratch, scratch2, ptr
   5523   //   cmp scratch, #0
   5524   //   bne- loopMBB
   5525   //   fallthrough --> exitMBB
   5526   BB = loopMBB;
   5527   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5528   if (ldrOpc == ARM::t2LDREX)
   5529     MIB.addImm(0);
   5530   AddDefaultPred(MIB);
   5531 
   5532   // Sign extend the value, if necessary.
   5533   if (signExtend && extendOpc) {
   5534     oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
   5535     AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
   5536                      .addReg(dest)
   5537                      .addImm(0));
   5538   }
   5539 
   5540   // Build compare and cmov instructions.
   5541   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5542                  .addReg(oldval).addReg(incr));
   5543   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
   5544          .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
   5545 
   5546   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5547   if (strOpc == ARM::t2STREX)
   5548     MIB.addImm(0);
   5549   AddDefaultPred(MIB);
   5550   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5551                  .addReg(scratch).addImm(0));
   5552   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5553     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5554 
   5555   BB->addSuccessor(loopMBB);
   5556   BB->addSuccessor(exitMBB);
   5557 
   5558   //  exitMBB:
   5559   //   ...
   5560   BB = exitMBB;
   5561 
   5562   MI->eraseFromParent();   // The instruction is gone now.
   5563 
   5564   return BB;
   5565 }
   5566 
   5567 MachineBasicBlock *
   5568 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
   5569                                       unsigned Op1, unsigned Op2,
   5570                                       bool NeedsCarry, bool IsCmpxchg) const {
   5571   // This also handles ATOMIC_SWAP, indicated by Op1==0.
   5572   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5573 
   5574   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5575   MachineFunction *MF = BB->getParent();
   5576   MachineFunction::iterator It = BB;
   5577   ++It;
   5578 
   5579   unsigned destlo = MI->getOperand(0).getReg();
   5580   unsigned desthi = MI->getOperand(1).getReg();
   5581   unsigned ptr = MI->getOperand(2).getReg();
   5582   unsigned vallo = MI->getOperand(3).getReg();
   5583   unsigned valhi = MI->getOperand(4).getReg();
   5584   DebugLoc dl = MI->getDebugLoc();
   5585   bool isThumb2 = Subtarget->isThumb2();
   5586 
   5587   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5588   if (isThumb2) {
   5589     MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
   5590     MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
   5591     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5592   }
   5593 
   5594   unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
   5595   unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
   5596 
   5597   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5598   MachineBasicBlock *contBB = 0, *cont2BB = 0;
   5599   if (IsCmpxchg) {
   5600     contBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5601     cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
   5602   }
   5603   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5604   MF->insert(It, loopMBB);
   5605   if (IsCmpxchg) {
   5606     MF->insert(It, contBB);
   5607     MF->insert(It, cont2BB);
   5608   }
   5609   MF->insert(It, exitMBB);
   5610 
   5611   // Transfer the remainder of BB and its successor edges to exitMBB.
   5612   exitMBB->splice(exitMBB->begin(), BB,
   5613                   llvm::next(MachineBasicBlock::iterator(MI)),
   5614                   BB->end());
   5615   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5616 
   5617   const TargetRegisterClass *TRC =
   5618     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5619   unsigned storesuccess = MRI.createVirtualRegister(TRC);
   5620 
   5621   //  thisMBB:
   5622   //   ...
   5623   //   fallthrough --> loopMBB
   5624   BB->addSuccessor(loopMBB);
   5625 
   5626   //  loopMBB:
   5627   //   ldrexd r2, r3, ptr
   5628   //   <binopa> r0, r2, incr
   5629   //   <binopb> r1, r3, incr
   5630   //   strexd storesuccess, r0, r1, ptr
   5631   //   cmp storesuccess, #0
   5632   //   bne- loopMBB
   5633   //   fallthrough --> exitMBB
   5634   //
   5635   // Note that the registers are explicitly specified because there is not any
   5636   // way to force the register allocator to allocate a register pair.
   5637   //
   5638   // FIXME: The hardcoded registers are not necessary for Thumb2, but we
   5639   // need to properly enforce the restriction that the two output registers
   5640   // for ldrexd must be different.
   5641   BB = loopMBB;
   5642   // Load
   5643   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
   5644                  .addReg(ARM::R2, RegState::Define)
   5645                  .addReg(ARM::R3, RegState::Define).addReg(ptr));
   5646   // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
   5647   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
   5648   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
   5649 
   5650   if (IsCmpxchg) {
   5651     // Add early exit
   5652     for (unsigned i = 0; i < 2; i++) {
   5653       AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
   5654                                                          ARM::CMPrr))
   5655                      .addReg(i == 0 ? destlo : desthi)
   5656                      .addReg(i == 0 ? vallo : valhi));
   5657       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5658         .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5659       BB->addSuccessor(exitMBB);
   5660       BB->addSuccessor(i == 0 ? contBB : cont2BB);
   5661       BB = (i == 0 ? contBB : cont2BB);
   5662     }
   5663 
   5664     // Copy to physregs for strexd
   5665     unsigned setlo = MI->getOperand(5).getReg();
   5666     unsigned sethi = MI->getOperand(6).getReg();
   5667     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
   5668     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
   5669   } else if (Op1) {
   5670     // Perform binary operation
   5671     AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
   5672                    .addReg(destlo).addReg(vallo))
   5673         .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
   5674     AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
   5675                    .addReg(desthi).addReg(valhi)).addReg(0);
   5676   } else {
   5677     // Copy to physregs for strexd
   5678     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
   5679     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
   5680   }
   5681 
   5682   // Store
   5683   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
   5684                  .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
   5685   // Cmp+jump
   5686   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5687                  .addReg(storesuccess).addImm(0));
   5688   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5689     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5690 
   5691   BB->addSuccessor(loopMBB);
   5692   BB->addSuccessor(exitMBB);
   5693 
   5694   //  exitMBB:
   5695   //   ...
   5696   BB = exitMBB;
   5697 
   5698   MI->eraseFromParent();   // The instruction is gone now.
   5699 
   5700   return BB;
   5701 }
   5702 
   5703 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   5704 /// registers the function context.
   5705 void ARMTargetLowering::
   5706 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   5707                        MachineBasicBlock *DispatchBB, int FI) const {
   5708   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5709   DebugLoc dl = MI->getDebugLoc();
   5710   MachineFunction *MF = MBB->getParent();
   5711   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5712   MachineConstantPool *MCP = MF->getConstantPool();
   5713   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5714   const Function *F = MF->getFunction();
   5715 
   5716   bool isThumb = Subtarget->isThumb();
   5717   bool isThumb2 = Subtarget->isThumb2();
   5718 
   5719   unsigned PCLabelId = AFI->createPICLabelUId();
   5720   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   5721   ARMConstantPoolValue *CPV =
   5722     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   5723   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   5724 
   5725   const TargetRegisterClass *TRC =
   5726     isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5727 
   5728   // Grab constant pool and fixed stack memory operands.
   5729   MachineMemOperand *CPMMO =
   5730     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
   5731                              MachineMemOperand::MOLoad, 4, 4);
   5732 
   5733   MachineMemOperand *FIMMOSt =
   5734     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5735                              MachineMemOperand::MOStore, 4, 4);
   5736 
   5737   // Load the address of the dispatch MBB into the jump buffer.
   5738   if (isThumb2) {
   5739     // Incoming value: jbuf
   5740     //   ldr.n  r5, LCPI1_1
   5741     //   orr    r5, r5, #1
   5742     //   add    r5, pc
   5743     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   5744     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5745     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   5746                    .addConstantPoolIndex(CPI)
   5747                    .addMemOperand(CPMMO));
   5748     // Set the low bit because of thumb mode.
   5749     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5750     AddDefaultCC(
   5751       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   5752                      .addReg(NewVReg1, RegState::Kill)
   5753                      .addImm(0x01)));
   5754     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5755     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   5756       .addReg(NewVReg2, RegState::Kill)
   5757       .addImm(PCLabelId);
   5758     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   5759                    .addReg(NewVReg3, RegState::Kill)
   5760                    .addFrameIndex(FI)
   5761                    .addImm(36)  // &jbuf[1] :: pc
   5762                    .addMemOperand(FIMMOSt));
   5763   } else if (isThumb) {
   5764     // Incoming value: jbuf
   5765     //   ldr.n  r1, LCPI1_4
   5766     //   add    r1, pc
   5767     //   mov    r2, #1
   5768     //   orrs   r1, r2
   5769     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   5770     //   str    r1, [r2]
   5771     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5772     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   5773                    .addConstantPoolIndex(CPI)
   5774                    .addMemOperand(CPMMO));
   5775     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5776     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   5777       .addReg(NewVReg1, RegState::Kill)
   5778       .addImm(PCLabelId);
   5779     // Set the low bit because of thumb mode.
   5780     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5781     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   5782                    .addReg(ARM::CPSR, RegState::Define)
   5783                    .addImm(1));
   5784     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5785     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   5786                    .addReg(ARM::CPSR, RegState::Define)
   5787                    .addReg(NewVReg2, RegState::Kill)
   5788                    .addReg(NewVReg3, RegState::Kill));
   5789     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   5790     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
   5791                    .addFrameIndex(FI)
   5792                    .addImm(36)); // &jbuf[1] :: pc
   5793     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   5794                    .addReg(NewVReg4, RegState::Kill)
   5795                    .addReg(NewVReg5, RegState::Kill)
   5796                    .addImm(0)
   5797                    .addMemOperand(FIMMOSt));
   5798   } else {
   5799     // Incoming value: jbuf
   5800     //   ldr  r1, LCPI1_1
   5801     //   add  r1, pc, r1
   5802     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   5803     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5804     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   5805                    .addConstantPoolIndex(CPI)
   5806                    .addImm(0)
   5807                    .addMemOperand(CPMMO));
   5808     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5809     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   5810                    .addReg(NewVReg1, RegState::Kill)
   5811                    .addImm(PCLabelId));
   5812     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   5813                    .addReg(NewVReg2, RegState::Kill)
   5814                    .addFrameIndex(FI)
   5815                    .addImm(36)  // &jbuf[1] :: pc
   5816                    .addMemOperand(FIMMOSt));
   5817   }
   5818 }
   5819 
   5820 MachineBasicBlock *ARMTargetLowering::
   5821 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
   5822   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5823   DebugLoc dl = MI->getDebugLoc();
   5824   MachineFunction *MF = MBB->getParent();
   5825   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5826   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5827   MachineFrameInfo *MFI = MF->getFrameInfo();
   5828   int FI = MFI->getFunctionContextIndex();
   5829 
   5830   const TargetRegisterClass *TRC =
   5831     Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5832 
   5833   // Get a mapping of the call site numbers to all of the landing pads they're
   5834   // associated with.
   5835   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   5836   unsigned MaxCSNum = 0;
   5837   MachineModuleInfo &MMI = MF->getMMI();
   5838   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   5839        ++BB) {
   5840     if (!BB->isLandingPad()) continue;
   5841 
   5842     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   5843     // pad.
   5844     for (MachineBasicBlock::iterator
   5845            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   5846       if (!II->isEHLabel()) continue;
   5847 
   5848       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   5849       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   5850 
   5851       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   5852       for (SmallVectorImpl<unsigned>::iterator
   5853              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   5854            CSI != CSE; ++CSI) {
   5855         CallSiteNumToLPad[*CSI].push_back(BB);
   5856         MaxCSNum = std::max(MaxCSNum, *CSI);
   5857       }
   5858       break;
   5859     }
   5860   }
   5861 
   5862   // Get an ordered list of the machine basic blocks for the jump table.
   5863   std::vector<MachineBasicBlock*> LPadList;
   5864   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   5865   LPadList.reserve(CallSiteNumToLPad.size());
   5866   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   5867     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   5868     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   5869            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   5870       LPadList.push_back(*II);
   5871       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   5872     }
   5873   }
   5874 
   5875   assert(!LPadList.empty() &&
   5876          "No landing pad destinations for the dispatch jump table!");
   5877 
   5878   // Create the jump table and associated information.
   5879   MachineJumpTableInfo *JTI =
   5880     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   5881   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   5882   unsigned UId = AFI->createJumpTableUId();
   5883 
   5884   // Create the MBBs for the dispatch code.
   5885 
   5886   // Shove the dispatch's address into the return slot in the function context.
   5887   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   5888   DispatchBB->setIsLandingPad();
   5889 
   5890   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   5891   BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
   5892   DispatchBB->addSuccessor(TrapBB);
   5893 
   5894   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   5895   DispatchBB->addSuccessor(DispContBB);
   5896 
   5897   // Insert and MBBs.
   5898   MF->insert(MF->end(), DispatchBB);
   5899   MF->insert(MF->end(), DispContBB);
   5900   MF->insert(MF->end(), TrapBB);
   5901 
   5902   // Insert code into the entry block that creates and registers the function
   5903   // context.
   5904   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   5905 
   5906   MachineMemOperand *FIMMOLd =
   5907     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5908                              MachineMemOperand::MOLoad |
   5909                              MachineMemOperand::MOVolatile, 4, 4);
   5910 
   5911   if (AFI->isThumb1OnlyFunction())
   5912     BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
   5913   else if (!Subtarget->hasVFP2())
   5914     BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
   5915   else
   5916     BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   5917 
   5918   unsigned NumLPads = LPadList.size();
   5919   if (Subtarget->isThumb2()) {
   5920     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5921     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   5922                    .addFrameIndex(FI)
   5923                    .addImm(4)
   5924                    .addMemOperand(FIMMOLd));
   5925 
   5926     if (NumLPads < 256) {
   5927       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   5928                      .addReg(NewVReg1)
   5929                      .addImm(LPadList.size()));
   5930     } else {
   5931       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5932       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   5933                      .addImm(NumLPads & 0xFFFF));
   5934 
   5935       unsigned VReg2 = VReg1;
   5936       if ((NumLPads & 0xFFFF0000) != 0) {
   5937         VReg2 = MRI->createVirtualRegister(TRC);
   5938         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   5939                        .addReg(VReg1)
   5940                        .addImm(NumLPads >> 16));
   5941       }
   5942 
   5943       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   5944                      .addReg(NewVReg1)
   5945                      .addReg(VReg2));
   5946     }
   5947 
   5948     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   5949       .addMBB(TrapBB)
   5950       .addImm(ARMCC::HI)
   5951       .addReg(ARM::CPSR);
   5952 
   5953     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5954     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   5955                    .addJumpTableIndex(MJTI)
   5956                    .addImm(UId));
   5957 
   5958     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5959     AddDefaultCC(
   5960       AddDefaultPred(
   5961         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   5962         .addReg(NewVReg3, RegState::Kill)
   5963         .addReg(NewVReg1)
   5964         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   5965 
   5966     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   5967       .addReg(NewVReg4, RegState::Kill)
   5968       .addReg(NewVReg1)
   5969       .addJumpTableIndex(MJTI)
   5970       .addImm(UId);
   5971   } else if (Subtarget->isThumb()) {
   5972     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5973     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   5974                    .addFrameIndex(FI)
   5975                    .addImm(1)
   5976                    .addMemOperand(FIMMOLd));
   5977 
   5978     if (NumLPads < 256) {
   5979       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   5980                      .addReg(NewVReg1)
   5981                      .addImm(NumLPads));
   5982     } else {
   5983       MachineConstantPool *ConstantPool = MF->getConstantPool();
   5984       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   5985       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   5986 
   5987       // MachineConstantPool wants an explicit alignment.
   5988       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   5989       if (Align == 0)
   5990         Align = getTargetData()->getTypeAllocSize(C->getType());
   5991       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   5992 
   5993       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5994       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   5995                      .addReg(VReg1, RegState::Define)
   5996                      .addConstantPoolIndex(Idx));
   5997       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   5998                      .addReg(NewVReg1)
   5999                      .addReg(VReg1));
   6000     }
   6001 
   6002     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   6003       .addMBB(TrapBB)
   6004       .addImm(ARMCC::HI)
   6005       .addReg(ARM::CPSR);
   6006 
   6007     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6008     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   6009                    .addReg(ARM::CPSR, RegState::Define)
   6010                    .addReg(NewVReg1)
   6011                    .addImm(2));
   6012 
   6013     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6014     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   6015                    .addJumpTableIndex(MJTI)
   6016                    .addImm(UId));
   6017 
   6018     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6019     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   6020                    .addReg(ARM::CPSR, RegState::Define)
   6021                    .addReg(NewVReg2, RegState::Kill)
   6022                    .addReg(NewVReg3));
   6023 
   6024     MachineMemOperand *JTMMOLd =
   6025       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6026                                MachineMemOperand::MOLoad, 4, 4);
   6027 
   6028     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6029     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   6030                    .addReg(NewVReg4, RegState::Kill)
   6031                    .addImm(0)
   6032                    .addMemOperand(JTMMOLd));
   6033 
   6034     unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
   6035     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   6036                    .addReg(ARM::CPSR, RegState::Define)
   6037                    .addReg(NewVReg5, RegState::Kill)
   6038                    .addReg(NewVReg3));
   6039 
   6040     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   6041       .addReg(NewVReg6, RegState::Kill)
   6042       .addJumpTableIndex(MJTI)
   6043       .addImm(UId);
   6044   } else {
   6045     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6046     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   6047                    .addFrameIndex(FI)
   6048                    .addImm(4)
   6049                    .addMemOperand(FIMMOLd));
   6050 
   6051     if (NumLPads < 256) {
   6052       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   6053                      .addReg(NewVReg1)
   6054                      .addImm(NumLPads));
   6055     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   6056       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6057       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   6058                      .addImm(NumLPads & 0xFFFF));
   6059 
   6060       unsigned VReg2 = VReg1;
   6061       if ((NumLPads & 0xFFFF0000) != 0) {
   6062         VReg2 = MRI->createVirtualRegister(TRC);
   6063         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   6064                        .addReg(VReg1)
   6065                        .addImm(NumLPads >> 16));
   6066       }
   6067 
   6068       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6069                      .addReg(NewVReg1)
   6070                      .addReg(VReg2));
   6071     } else {
   6072       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6073       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6074       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6075 
   6076       // MachineConstantPool wants an explicit alignment.
   6077       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   6078       if (Align == 0)
   6079         Align = getTargetData()->getTypeAllocSize(C->getType());
   6080       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6081 
   6082       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6083       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   6084                      .addReg(VReg1, RegState::Define)
   6085                      .addConstantPoolIndex(Idx)
   6086                      .addImm(0));
   6087       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6088                      .addReg(NewVReg1)
   6089                      .addReg(VReg1, RegState::Kill));
   6090     }
   6091 
   6092     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   6093       .addMBB(TrapBB)
   6094       .addImm(ARMCC::HI)
   6095       .addReg(ARM::CPSR);
   6096 
   6097     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6098     AddDefaultCC(
   6099       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   6100                      .addReg(NewVReg1)
   6101                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6102     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6103     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   6104                    .addJumpTableIndex(MJTI)
   6105                    .addImm(UId));
   6106 
   6107     MachineMemOperand *JTMMOLd =
   6108       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6109                                MachineMemOperand::MOLoad, 4, 4);
   6110     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6111     AddDefaultPred(
   6112       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   6113       .addReg(NewVReg3, RegState::Kill)
   6114       .addReg(NewVReg4)
   6115       .addImm(0)
   6116       .addMemOperand(JTMMOLd));
   6117 
   6118     BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   6119       .addReg(NewVReg5, RegState::Kill)
   6120       .addReg(NewVReg4)
   6121       .addJumpTableIndex(MJTI)
   6122       .addImm(UId);
   6123   }
   6124 
   6125   // Add the jump table entries as successors to the MBB.
   6126   MachineBasicBlock *PrevMBB = 0;
   6127   for (std::vector<MachineBasicBlock*>::iterator
   6128          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   6129     MachineBasicBlock *CurMBB = *I;
   6130     if (PrevMBB != CurMBB)
   6131       DispContBB->addSuccessor(CurMBB);
   6132     PrevMBB = CurMBB;
   6133   }
   6134 
   6135   // N.B. the order the invoke BBs are processed in doesn't matter here.
   6136   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   6137   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   6138   const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
   6139   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   6140   for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
   6141          I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
   6142     MachineBasicBlock *BB = *I;
   6143 
   6144     // Remove the landing pad successor from the invoke block and replace it
   6145     // with the new dispatch block.
   6146     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   6147                                                   BB->succ_end());
   6148     while (!Successors.empty()) {
   6149       MachineBasicBlock *SMBB = Successors.pop_back_val();
   6150       if (SMBB->isLandingPad()) {
   6151         BB->removeSuccessor(SMBB);
   6152         MBBLPads.push_back(SMBB);
   6153       }
   6154     }
   6155 
   6156     BB->addSuccessor(DispatchBB);
   6157 
   6158     // Find the invoke call and mark all of the callee-saved registers as
   6159     // 'implicit defined' so that they're spilled. This prevents code from
   6160     // moving instructions to before the EH block, where they will never be
   6161     // executed.
   6162     for (MachineBasicBlock::reverse_iterator
   6163            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   6164       if (!II->isCall()) continue;
   6165 
   6166       DenseMap<unsigned, bool> DefRegs;
   6167       for (MachineInstr::mop_iterator
   6168              OI = II->operands_begin(), OE = II->operands_end();
   6169            OI != OE; ++OI) {
   6170         if (!OI->isReg()) continue;
   6171         DefRegs[OI->getReg()] = true;
   6172       }
   6173 
   6174       MachineInstrBuilder MIB(&*II);
   6175 
   6176       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   6177         unsigned Reg = SavedRegs[i];
   6178         if (Subtarget->isThumb2() &&
   6179             !ARM::tGPRRegisterClass->contains(Reg) &&
   6180             !ARM::hGPRRegisterClass->contains(Reg))
   6181           continue;
   6182         else if (Subtarget->isThumb1Only() &&
   6183                  !ARM::tGPRRegisterClass->contains(Reg))
   6184           continue;
   6185         else if (!Subtarget->isThumb() &&
   6186                  !ARM::GPRRegisterClass->contains(Reg))
   6187           continue;
   6188         if (!DefRegs[Reg])
   6189           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   6190       }
   6191 
   6192       break;
   6193     }
   6194   }
   6195 
   6196   // Mark all former landing pads as non-landing pads. The dispatch is the only
   6197   // landing pad now.
   6198   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6199          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   6200     (*I)->setIsLandingPad(false);
   6201 
   6202   // The instruction is gone now.
   6203   MI->eraseFromParent();
   6204 
   6205   return MBB;
   6206 }
   6207 
   6208 static
   6209 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   6210   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   6211        E = MBB->succ_end(); I != E; ++I)
   6212     if (*I != Succ)
   6213       return *I;
   6214   llvm_unreachable("Expecting a BB with two successors!");
   6215 }
   6216 
   6217 MachineBasicBlock *
   6218 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   6219                                                MachineBasicBlock *BB) const {
   6220   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6221   DebugLoc dl = MI->getDebugLoc();
   6222   bool isThumb2 = Subtarget->isThumb2();
   6223   switch (MI->getOpcode()) {
   6224   default: {
   6225     MI->dump();
   6226     llvm_unreachable("Unexpected instr type to insert");
   6227   }
   6228   // The Thumb2 pre-indexed stores have the same MI operands, they just
   6229   // define them differently in the .td files from the isel patterns, so
   6230   // they need pseudos.
   6231   case ARM::t2STR_preidx:
   6232     MI->setDesc(TII->get(ARM::t2STR_PRE));
   6233     return BB;
   6234   case ARM::t2STRB_preidx:
   6235     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   6236     return BB;
   6237   case ARM::t2STRH_preidx:
   6238     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   6239     return BB;
   6240 
   6241   case ARM::STRi_preidx:
   6242   case ARM::STRBi_preidx: {
   6243     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   6244       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   6245     // Decode the offset.
   6246     unsigned Offset = MI->getOperand(4).getImm();
   6247     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   6248     Offset = ARM_AM::getAM2Offset(Offset);
   6249     if (isSub)
   6250       Offset = -Offset;
   6251 
   6252     MachineMemOperand *MMO = *MI->memoperands_begin();
   6253     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   6254       .addOperand(MI->getOperand(0))  // Rn_wb
   6255       .addOperand(MI->getOperand(1))  // Rt
   6256       .addOperand(MI->getOperand(2))  // Rn
   6257       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   6258       .addOperand(MI->getOperand(5))  // pred
   6259       .addOperand(MI->getOperand(6))
   6260       .addMemOperand(MMO);
   6261     MI->eraseFromParent();
   6262     return BB;
   6263   }
   6264   case ARM::STRr_preidx:
   6265   case ARM::STRBr_preidx:
   6266   case ARM::STRH_preidx: {
   6267     unsigned NewOpc;
   6268     switch (MI->getOpcode()) {
   6269     default: llvm_unreachable("unexpected opcode!");
   6270     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   6271     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   6272     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   6273     }
   6274     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   6275     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   6276       MIB.addOperand(MI->getOperand(i));
   6277     MI->eraseFromParent();
   6278     return BB;
   6279   }
   6280   case ARM::ATOMIC_LOAD_ADD_I8:
   6281      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6282   case ARM::ATOMIC_LOAD_ADD_I16:
   6283      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6284   case ARM::ATOMIC_LOAD_ADD_I32:
   6285      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6286 
   6287   case ARM::ATOMIC_LOAD_AND_I8:
   6288      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6289   case ARM::ATOMIC_LOAD_AND_I16:
   6290      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6291   case ARM::ATOMIC_LOAD_AND_I32:
   6292      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6293 
   6294   case ARM::ATOMIC_LOAD_OR_I8:
   6295      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6296   case ARM::ATOMIC_LOAD_OR_I16:
   6297      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6298   case ARM::ATOMIC_LOAD_OR_I32:
   6299      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6300 
   6301   case ARM::ATOMIC_LOAD_XOR_I8:
   6302      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6303   case ARM::ATOMIC_LOAD_XOR_I16:
   6304      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6305   case ARM::ATOMIC_LOAD_XOR_I32:
   6306      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6307 
   6308   case ARM::ATOMIC_LOAD_NAND_I8:
   6309      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6310   case ARM::ATOMIC_LOAD_NAND_I16:
   6311      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6312   case ARM::ATOMIC_LOAD_NAND_I32:
   6313      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6314 
   6315   case ARM::ATOMIC_LOAD_SUB_I8:
   6316      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6317   case ARM::ATOMIC_LOAD_SUB_I16:
   6318      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6319   case ARM::ATOMIC_LOAD_SUB_I32:
   6320      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6321 
   6322   case ARM::ATOMIC_LOAD_MIN_I8:
   6323      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
   6324   case ARM::ATOMIC_LOAD_MIN_I16:
   6325      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
   6326   case ARM::ATOMIC_LOAD_MIN_I32:
   6327      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
   6328 
   6329   case ARM::ATOMIC_LOAD_MAX_I8:
   6330      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
   6331   case ARM::ATOMIC_LOAD_MAX_I16:
   6332      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
   6333   case ARM::ATOMIC_LOAD_MAX_I32:
   6334      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
   6335 
   6336   case ARM::ATOMIC_LOAD_UMIN_I8:
   6337      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
   6338   case ARM::ATOMIC_LOAD_UMIN_I16:
   6339      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
   6340   case ARM::ATOMIC_LOAD_UMIN_I32:
   6341      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
   6342 
   6343   case ARM::ATOMIC_LOAD_UMAX_I8:
   6344      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
   6345   case ARM::ATOMIC_LOAD_UMAX_I16:
   6346      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
   6347   case ARM::ATOMIC_LOAD_UMAX_I32:
   6348      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
   6349 
   6350   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
   6351   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
   6352   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
   6353 
   6354   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
   6355   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
   6356   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
   6357 
   6358 
   6359   case ARM::ATOMADD6432:
   6360     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
   6361                               isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
   6362                               /*NeedsCarry*/ true);
   6363   case ARM::ATOMSUB6432:
   6364     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6365                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6366                               /*NeedsCarry*/ true);
   6367   case ARM::ATOMOR6432:
   6368     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
   6369                               isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6370   case ARM::ATOMXOR6432:
   6371     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
   6372                               isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6373   case ARM::ATOMAND6432:
   6374     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
   6375                               isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6376   case ARM::ATOMSWAP6432:
   6377     return EmitAtomicBinary64(MI, BB, 0, 0, false);
   6378   case ARM::ATOMCMPXCHG6432:
   6379     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6380                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6381                               /*NeedsCarry*/ false, /*IsCmpxchg*/true);
   6382 
   6383   case ARM::tMOVCCr_pseudo: {
   6384     // To "insert" a SELECT_CC instruction, we actually have to insert the
   6385     // diamond control-flow pattern.  The incoming instruction knows the
   6386     // destination vreg to set, the condition code register to branch on, the
   6387     // true/false values to select between, and a branch opcode to use.
   6388     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6389     MachineFunction::iterator It = BB;
   6390     ++It;
   6391 
   6392     //  thisMBB:
   6393     //  ...
   6394     //   TrueVal = ...
   6395     //   cmpTY ccX, r1, r2
   6396     //   bCC copy1MBB
   6397     //   fallthrough --> copy0MBB
   6398     MachineBasicBlock *thisMBB  = BB;
   6399     MachineFunction *F = BB->getParent();
   6400     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6401     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   6402     F->insert(It, copy0MBB);
   6403     F->insert(It, sinkMBB);
   6404 
   6405     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6406     sinkMBB->splice(sinkMBB->begin(), BB,
   6407                     llvm::next(MachineBasicBlock::iterator(MI)),
   6408                     BB->end());
   6409     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   6410 
   6411     BB->addSuccessor(copy0MBB);
   6412     BB->addSuccessor(sinkMBB);
   6413 
   6414     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   6415       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   6416 
   6417     //  copy0MBB:
   6418     //   %FalseValue = ...
   6419     //   # fallthrough to sinkMBB
   6420     BB = copy0MBB;
   6421 
   6422     // Update machine-CFG edges
   6423     BB->addSuccessor(sinkMBB);
   6424 
   6425     //  sinkMBB:
   6426     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   6427     //  ...
   6428     BB = sinkMBB;
   6429     BuildMI(*BB, BB->begin(), dl,
   6430             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   6431       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   6432       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   6433 
   6434     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6435     return BB;
   6436   }
   6437 
   6438   case ARM::BCCi64:
   6439   case ARM::BCCZi64: {
   6440     // If there is an unconditional branch to the other successor, remove it.
   6441     BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   6442 
   6443     // Compare both parts that make up the double comparison separately for
   6444     // equality.
   6445     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   6446 
   6447     unsigned LHS1 = MI->getOperand(1).getReg();
   6448     unsigned LHS2 = MI->getOperand(2).getReg();
   6449     if (RHSisZero) {
   6450       AddDefaultPred(BuildMI(BB, dl,
   6451                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6452                      .addReg(LHS1).addImm(0));
   6453       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6454         .addReg(LHS2).addImm(0)
   6455         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6456     } else {
   6457       unsigned RHS1 = MI->getOperand(3).getReg();
   6458       unsigned RHS2 = MI->getOperand(4).getReg();
   6459       AddDefaultPred(BuildMI(BB, dl,
   6460                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6461                      .addReg(LHS1).addReg(RHS1));
   6462       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6463         .addReg(LHS2).addReg(RHS2)
   6464         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6465     }
   6466 
   6467     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   6468     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   6469     if (MI->getOperand(0).getImm() == ARMCC::NE)
   6470       std::swap(destMBB, exitMBB);
   6471 
   6472     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   6473       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6474     if (isThumb2)
   6475       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   6476     else
   6477       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   6478 
   6479     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6480     return BB;
   6481   }
   6482 
   6483   case ARM::Int_eh_sjlj_setjmp:
   6484   case ARM::Int_eh_sjlj_setjmp_nofp:
   6485   case ARM::tInt_eh_sjlj_setjmp:
   6486   case ARM::t2Int_eh_sjlj_setjmp:
   6487   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   6488     EmitSjLjDispatchBlock(MI, BB);
   6489     return BB;
   6490 
   6491   case ARM::ABS:
   6492   case ARM::t2ABS: {
   6493     // To insert an ABS instruction, we have to insert the
   6494     // diamond control-flow pattern.  The incoming instruction knows the
   6495     // source vreg to test against 0, the destination vreg to set,
   6496     // the condition code register to branch on, the
   6497     // true/false values to select between, and a branch opcode to use.
   6498     // It transforms
   6499     //     V1 = ABS V0
   6500     // into
   6501     //     V2 = MOVS V0
   6502     //     BCC                      (branch to SinkBB if V0 >= 0)
   6503     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   6504     //     SinkBB: V1 = PHI(V2, V3)
   6505     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6506     MachineFunction::iterator BBI = BB;
   6507     ++BBI;
   6508     MachineFunction *Fn = BB->getParent();
   6509     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   6510     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   6511     Fn->insert(BBI, RSBBB);
   6512     Fn->insert(BBI, SinkBB);
   6513 
   6514     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   6515     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   6516     bool isThumb2 = Subtarget->isThumb2();
   6517     MachineRegisterInfo &MRI = Fn->getRegInfo();
   6518     // In Thumb mode S must not be specified if source register is the SP or
   6519     // PC and if destination register is the SP, so restrict register class
   6520     unsigned NewMovDstReg = MRI.createVirtualRegister(
   6521       isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
   6522     unsigned NewRsbDstReg = MRI.createVirtualRegister(
   6523       isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
   6524 
   6525     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6526     SinkBB->splice(SinkBB->begin(), BB,
   6527       llvm::next(MachineBasicBlock::iterator(MI)),
   6528       BB->end());
   6529     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   6530 
   6531     BB->addSuccessor(RSBBB);
   6532     BB->addSuccessor(SinkBB);
   6533 
   6534     // fall through to SinkMBB
   6535     RSBBB->addSuccessor(SinkBB);
   6536 
   6537     // insert a movs at the end of BB
   6538     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
   6539       NewMovDstReg)
   6540       .addReg(ABSSrcReg, RegState::Kill)
   6541       .addImm((unsigned)ARMCC::AL).addReg(0)
   6542       .addReg(ARM::CPSR, RegState::Define);
   6543 
   6544     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   6545     BuildMI(BB, dl,
   6546       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   6547       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   6548 
   6549     // insert rsbri in RSBBB
   6550     // Note: BCC and rsbri will be converted into predicated rsbmi
   6551     // by if-conversion pass
   6552     BuildMI(*RSBBB, RSBBB->begin(), dl,
   6553       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   6554       .addReg(NewMovDstReg, RegState::Kill)
   6555       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   6556 
   6557     // insert PHI in SinkBB,
   6558     // reuse ABSDstReg to not change uses of ABS instruction
   6559     BuildMI(*SinkBB, SinkBB->begin(), dl,
   6560       TII->get(ARM::PHI), ABSDstReg)
   6561       .addReg(NewRsbDstReg).addMBB(RSBBB)
   6562       .addReg(NewMovDstReg).addMBB(BB);
   6563 
   6564     // remove ABS instruction
   6565     MI->eraseFromParent();
   6566 
   6567     // return last added BB
   6568     return SinkBB;
   6569   }
   6570   }
   6571 }
   6572 
   6573 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   6574                                                       SDNode *Node) const {
   6575   if (!MI->hasPostISelHook()) {
   6576     assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   6577            "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
   6578     return;
   6579   }
   6580 
   6581   const MCInstrDesc *MCID = &MI->getDesc();
   6582   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   6583   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   6584   // operand is still set to noreg. If needed, set the optional operand's
   6585   // register to CPSR, and remove the redundant implicit def.
   6586   //
   6587   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   6588 
   6589   // Rename pseudo opcodes.
   6590   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   6591   if (NewOpc) {
   6592     const ARMBaseInstrInfo *TII =
   6593       static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
   6594     MCID = &TII->get(NewOpc);
   6595 
   6596     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   6597            "converted opcode should be the same except for cc_out");
   6598 
   6599     MI->setDesc(*MCID);
   6600 
   6601     // Add the optional cc_out operand
   6602     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   6603   }
   6604   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   6605 
   6606   // Any ARM instruction that sets the 's' bit should specify an optional
   6607   // "cc_out" operand in the last operand position.
   6608   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   6609     assert(!NewOpc && "Optional cc_out operand required");
   6610     return;
   6611   }
   6612   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   6613   // since we already have an optional CPSR def.
   6614   bool definesCPSR = false;
   6615   bool deadCPSR = false;
   6616   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   6617        i != e; ++i) {
   6618     const MachineOperand &MO = MI->getOperand(i);
   6619     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   6620       definesCPSR = true;
   6621       if (MO.isDead())
   6622         deadCPSR = true;
   6623       MI->RemoveOperand(i);
   6624       break;
   6625     }
   6626   }
   6627   if (!definesCPSR) {
   6628     assert(!NewOpc && "Optional cc_out operand required");
   6629     return;
   6630   }
   6631   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   6632   if (deadCPSR) {
   6633     assert(!MI->getOperand(ccOutIdx).getReg() &&
   6634            "expect uninitialized optional cc_out operand");
   6635     return;
   6636   }
   6637 
   6638   // If this instruction was defined with an optional CPSR def and its dag node
   6639   // had a live implicit CPSR def, then activate the optional CPSR def.
   6640   MachineOperand &MO = MI->getOperand(ccOutIdx);
   6641   MO.setReg(ARM::CPSR);
   6642   MO.setIsDef(true);
   6643 }
   6644 
   6645 //===----------------------------------------------------------------------===//
   6646 //                           ARM Optimization Hooks
   6647 //===----------------------------------------------------------------------===//
   6648 
   6649 static
   6650 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   6651                             TargetLowering::DAGCombinerInfo &DCI) {
   6652   SelectionDAG &DAG = DCI.DAG;
   6653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6654   EVT VT = N->getValueType(0);
   6655   unsigned Opc = N->getOpcode();
   6656   bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
   6657   SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
   6658   SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
   6659   ISD::CondCode CC = ISD::SETCC_INVALID;
   6660 
   6661   if (isSlctCC) {
   6662     CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
   6663   } else {
   6664     SDValue CCOp = Slct.getOperand(0);
   6665     if (CCOp.getOpcode() == ISD::SETCC)
   6666       CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
   6667   }
   6668 
   6669   bool DoXform = false;
   6670   bool InvCC = false;
   6671   assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
   6672           "Bad input!");
   6673 
   6674   if (LHS.getOpcode() == ISD::Constant &&
   6675       cast<ConstantSDNode>(LHS)->isNullValue()) {
   6676     DoXform = true;
   6677   } else if (CC != ISD::SETCC_INVALID &&
   6678              RHS.getOpcode() == ISD::Constant &&
   6679              cast<ConstantSDNode>(RHS)->isNullValue()) {
   6680     std::swap(LHS, RHS);
   6681     SDValue Op0 = Slct.getOperand(0);
   6682     EVT OpVT = isSlctCC ? Op0.getValueType() :
   6683                           Op0.getOperand(0).getValueType();
   6684     bool isInt = OpVT.isInteger();
   6685     CC = ISD::getSetCCInverse(CC, isInt);
   6686 
   6687     if (!TLI.isCondCodeLegal(CC, OpVT))
   6688       return SDValue();         // Inverse operator isn't legal.
   6689 
   6690     DoXform = true;
   6691     InvCC = true;
   6692   }
   6693 
   6694   if (DoXform) {
   6695     SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
   6696     if (isSlctCC)
   6697       return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
   6698                              Slct.getOperand(0), Slct.getOperand(1), CC);
   6699     SDValue CCOp = Slct.getOperand(0);
   6700     if (InvCC)
   6701       CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
   6702                           CCOp.getOperand(0), CCOp.getOperand(1), CC);
   6703     return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
   6704                        CCOp, OtherOp, Result);
   6705   }
   6706   return SDValue();
   6707 }
   6708 
   6709 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   6710 // (only after legalization).
   6711 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   6712                                  TargetLowering::DAGCombinerInfo &DCI,
   6713                                  const ARMSubtarget *Subtarget) {
   6714 
   6715   // Only perform optimization if after legalize, and if NEON is available. We
   6716   // also expected both operands to be BUILD_VECTORs.
   6717   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   6718       || N0.getOpcode() != ISD::BUILD_VECTOR
   6719       || N1.getOpcode() != ISD::BUILD_VECTOR)
   6720     return SDValue();
   6721 
   6722   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   6723   EVT VT = N->getValueType(0);
   6724   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   6725     return SDValue();
   6726 
   6727   // Check that the vector operands are of the right form.
   6728   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   6729   // operands, where N is the size of the formed vector.
   6730   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   6731   // index such that we have a pair wise add pattern.
   6732 
   6733   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   6734   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   6735     return SDValue();
   6736   SDValue Vec = N0->getOperand(0)->getOperand(0);
   6737   SDNode *V = Vec.getNode();
   6738   unsigned nextIndex = 0;
   6739 
   6740   // For each operands to the ADD which are BUILD_VECTORs,
   6741   // check to see if each of their operands are an EXTRACT_VECTOR with
   6742   // the same vector and appropriate index.
   6743   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   6744     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   6745         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   6746 
   6747       SDValue ExtVec0 = N0->getOperand(i);
   6748       SDValue ExtVec1 = N1->getOperand(i);
   6749 
   6750       // First operand is the vector, verify its the same.
   6751       if (V != ExtVec0->getOperand(0).getNode() ||
   6752           V != ExtVec1->getOperand(0).getNode())
   6753         return SDValue();
   6754 
   6755       // Second is the constant, verify its correct.
   6756       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   6757       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   6758 
   6759       // For the constant, we want to see all the even or all the odd.
   6760       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   6761           || C1->getZExtValue() != nextIndex+1)
   6762         return SDValue();
   6763 
   6764       // Increment index.
   6765       nextIndex+=2;
   6766     } else
   6767       return SDValue();
   6768   }
   6769 
   6770   // Create VPADDL node.
   6771   SelectionDAG &DAG = DCI.DAG;
   6772   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6773 
   6774   // Build operand list.
   6775   SmallVector<SDValue, 8> Ops;
   6776   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
   6777                                 TLI.getPointerTy()));
   6778 
   6779   // Input is the vector.
   6780   Ops.push_back(Vec);
   6781 
   6782   // Get widened type and narrowed type.
   6783   MVT widenType;
   6784   unsigned numElem = VT.getVectorNumElements();
   6785   switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
   6786     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   6787     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   6788     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   6789     default:
   6790       llvm_unreachable("Invalid vector element type for padd optimization.");
   6791   }
   6792 
   6793   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   6794                             widenType, &Ops[0], Ops.size());
   6795   return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
   6796 }
   6797 
   6798 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   6799 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   6800 /// called with the default operands, and if that fails, with commuted
   6801 /// operands.
   6802 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   6803                                           TargetLowering::DAGCombinerInfo &DCI,
   6804                                           const ARMSubtarget *Subtarget){
   6805 
   6806   // Attempt to create vpaddl for this add.
   6807   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   6808   if (Result.getNode())
   6809     return Result;
   6810 
   6811   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   6812   if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
   6813     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   6814     if (Result.getNode()) return Result;
   6815   }
   6816   return SDValue();
   6817 }
   6818 
   6819 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   6820 ///
   6821 static SDValue PerformADDCombine(SDNode *N,
   6822                                  TargetLowering::DAGCombinerInfo &DCI,
   6823                                  const ARMSubtarget *Subtarget) {
   6824   SDValue N0 = N->getOperand(0);
   6825   SDValue N1 = N->getOperand(1);
   6826 
   6827   // First try with the default operand order.
   6828   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   6829   if (Result.getNode())
   6830     return Result;
   6831 
   6832   // If that didn't work, try again with the operands commuted.
   6833   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   6834 }
   6835 
   6836 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   6837 ///
   6838 static SDValue PerformSUBCombine(SDNode *N,
   6839                                  TargetLowering::DAGCombinerInfo &DCI) {
   6840   SDValue N0 = N->getOperand(0);
   6841   SDValue N1 = N->getOperand(1);
   6842 
   6843   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   6844   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
   6845     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   6846     if (Result.getNode()) return Result;
   6847   }
   6848 
   6849   return SDValue();
   6850 }
   6851 
   6852 /// PerformVMULCombine
   6853 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   6854 /// special multiplier accumulator forwarding.
   6855 ///   vmul d3, d0, d2
   6856 ///   vmla d3, d1, d2
   6857 /// is faster than
   6858 ///   vadd d3, d0, d1
   6859 ///   vmul d3, d3, d2
   6860 static SDValue PerformVMULCombine(SDNode *N,
   6861                                   TargetLowering::DAGCombinerInfo &DCI,
   6862                                   const ARMSubtarget *Subtarget) {
   6863   if (!Subtarget->hasVMLxForwarding())
   6864     return SDValue();
   6865 
   6866   SelectionDAG &DAG = DCI.DAG;
   6867   SDValue N0 = N->getOperand(0);
   6868   SDValue N1 = N->getOperand(1);
   6869   unsigned Opcode = N0.getOpcode();
   6870   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   6871       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   6872     Opcode = N1.getOpcode();
   6873     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   6874         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   6875       return SDValue();
   6876     std::swap(N0, N1);
   6877   }
   6878 
   6879   EVT VT = N->getValueType(0);
   6880   DebugLoc DL = N->getDebugLoc();
   6881   SDValue N00 = N0->getOperand(0);
   6882   SDValue N01 = N0->getOperand(1);
   6883   return DAG.getNode(Opcode, DL, VT,
   6884                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   6885                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   6886 }
   6887 
   6888 static SDValue PerformMULCombine(SDNode *N,
   6889                                  TargetLowering::DAGCombinerInfo &DCI,
   6890                                  const ARMSubtarget *Subtarget) {
   6891   SelectionDAG &DAG = DCI.DAG;
   6892 
   6893   if (Subtarget->isThumb1Only())
   6894     return SDValue();
   6895 
   6896   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   6897     return SDValue();
   6898 
   6899   EVT VT = N->getValueType(0);
   6900   if (VT.is64BitVector() || VT.is128BitVector())
   6901     return PerformVMULCombine(N, DCI, Subtarget);
   6902   if (VT != MVT::i32)
   6903     return SDValue();
   6904 
   6905   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   6906   if (!C)
   6907     return SDValue();
   6908 
   6909   int64_t MulAmt = C->getSExtValue();
   6910   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
   6911 
   6912   ShiftAmt = ShiftAmt & (32 - 1);
   6913   SDValue V = N->getOperand(0);
   6914   DebugLoc DL = N->getDebugLoc();
   6915 
   6916   SDValue Res;
   6917   MulAmt >>= ShiftAmt;
   6918 
   6919   if (MulAmt >= 0) {
   6920     if (isPowerOf2_32(MulAmt - 1)) {
   6921       // (mul x, 2^N + 1) => (add (shl x, N), x)
   6922       Res = DAG.getNode(ISD::ADD, DL, VT,
   6923                         V,
   6924                         DAG.getNode(ISD::SHL, DL, VT,
   6925                                     V,
   6926                                     DAG.getConstant(Log2_32(MulAmt - 1),
   6927                                                     MVT::i32)));
   6928     } else if (isPowerOf2_32(MulAmt + 1)) {
   6929       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   6930       Res = DAG.getNode(ISD::SUB, DL, VT,
   6931                         DAG.getNode(ISD::SHL, DL, VT,
   6932                                     V,
   6933                                     DAG.getConstant(Log2_32(MulAmt + 1),
   6934                                                     MVT::i32)),
   6935                         V);
   6936     } else
   6937       return SDValue();
   6938   } else {
   6939     uint64_t MulAmtAbs = -MulAmt;
   6940     if (isPowerOf2_32(MulAmtAbs + 1)) {
   6941       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   6942       Res = DAG.getNode(ISD::SUB, DL, VT,
   6943                         V,
   6944                         DAG.getNode(ISD::SHL, DL, VT,
   6945                                     V,
   6946                                     DAG.getConstant(Log2_32(MulAmtAbs + 1),
   6947                                                     MVT::i32)));
   6948     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   6949       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   6950       Res = DAG.getNode(ISD::ADD, DL, VT,
   6951                         V,
   6952                         DAG.getNode(ISD::SHL, DL, VT,
   6953                                     V,
   6954                                     DAG.getConstant(Log2_32(MulAmtAbs-1),
   6955                                                     MVT::i32)));
   6956       Res = DAG.getNode(ISD::SUB, DL, VT,
   6957                         DAG.getConstant(0, MVT::i32),Res);
   6958 
   6959     } else
   6960       return SDValue();
   6961   }
   6962 
   6963   if (ShiftAmt != 0)
   6964     Res = DAG.getNode(ISD::SHL, DL, VT,
   6965                       Res, DAG.getConstant(ShiftAmt, MVT::i32));
   6966 
   6967   // Do not add new nodes to DAG combiner worklist.
   6968   DCI.CombineTo(N, Res, false);
   6969   return SDValue();
   6970 }
   6971 
   6972 static bool isCMOVWithZeroOrAllOnesLHS(SDValue N, bool AllOnes) {
   6973   if (N.getOpcode() != ARMISD::CMOV || !N.getNode()->hasOneUse())
   6974     return false;
   6975 
   6976   SDValue FalseVal = N.getOperand(0);
   6977   ConstantSDNode *C = dyn_cast<ConstantSDNode>(FalseVal);
   6978   if (!C)
   6979     return false;
   6980   if (AllOnes)
   6981     return C->isAllOnesValue();
   6982   return C->isNullValue();
   6983 }
   6984 
   6985 /// formConditionalOp - Combine an operation with a conditional move operand
   6986 /// to form a conditional op. e.g. (or x, (cmov 0, y, cond)) => (or.cond x, y)
   6987 /// (and x, (cmov -1, y, cond)) => (and.cond, x, y)
   6988 static SDValue formConditionalOp(SDNode *N, SelectionDAG &DAG,
   6989                                  bool Commutable) {
   6990   SDValue N0 = N->getOperand(0);
   6991   SDValue N1 = N->getOperand(1);
   6992 
   6993   bool isAND = N->getOpcode() == ISD::AND;
   6994   bool isCand = isCMOVWithZeroOrAllOnesLHS(N1, isAND);
   6995   if (!isCand && Commutable) {
   6996     isCand = isCMOVWithZeroOrAllOnesLHS(N0, isAND);
   6997     if (isCand)
   6998       std::swap(N0, N1);
   6999   }
   7000   if (!isCand)
   7001     return SDValue();
   7002 
   7003   unsigned Opc = 0;
   7004   switch (N->getOpcode()) {
   7005   default: llvm_unreachable("Unexpected node");
   7006   case ISD::AND: Opc = ARMISD::CAND; break;
   7007   case ISD::OR:  Opc = ARMISD::COR; break;
   7008   case ISD::XOR: Opc = ARMISD::CXOR; break;
   7009   }
   7010   return DAG.getNode(Opc, N->getDebugLoc(), N->getValueType(0), N0,
   7011                      N1.getOperand(1), N1.getOperand(2), N1.getOperand(3),
   7012                      N1.getOperand(4));
   7013 }
   7014 
   7015 static SDValue PerformANDCombine(SDNode *N,
   7016                                  TargetLowering::DAGCombinerInfo &DCI,
   7017                                  const ARMSubtarget *Subtarget) {
   7018 
   7019   // Attempt to use immediate-form VBIC
   7020   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   7021   DebugLoc dl = N->getDebugLoc();
   7022   EVT VT = N->getValueType(0);
   7023   SelectionDAG &DAG = DCI.DAG;
   7024 
   7025   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7026     return SDValue();
   7027 
   7028   APInt SplatBits, SplatUndef;
   7029   unsigned SplatBitSize;
   7030   bool HasAnyUndefs;
   7031   if (BVN &&
   7032       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   7033     if (SplatBitSize <= 64) {
   7034       EVT VbicVT;
   7035       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   7036                                       SplatUndef.getZExtValue(), SplatBitSize,
   7037                                       DAG, VbicVT, VT.is128BitVector(),
   7038                                       OtherModImm);
   7039       if (Val.getNode()) {
   7040         SDValue Input =
   7041           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   7042         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   7043         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   7044       }
   7045     }
   7046   }
   7047 
   7048   if (!Subtarget->isThumb1Only()) {
   7049     // (and x, (cmov -1, y, cond)) => (and.cond x, y)
   7050     SDValue CAND = formConditionalOp(N, DAG, true);
   7051     if (CAND.getNode())
   7052       return CAND;
   7053   }
   7054 
   7055   return SDValue();
   7056 }
   7057 
   7058 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   7059 static SDValue PerformORCombine(SDNode *N,
   7060                                 TargetLowering::DAGCombinerInfo &DCI,
   7061                                 const ARMSubtarget *Subtarget) {
   7062   // Attempt to use immediate-form VORR
   7063   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   7064   DebugLoc dl = N->getDebugLoc();
   7065   EVT VT = N->getValueType(0);
   7066   SelectionDAG &DAG = DCI.DAG;
   7067 
   7068   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7069     return SDValue();
   7070 
   7071   APInt SplatBits, SplatUndef;
   7072   unsigned SplatBitSize;
   7073   bool HasAnyUndefs;
   7074   if (BVN && Subtarget->hasNEON() &&
   7075       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   7076     if (SplatBitSize <= 64) {
   7077       EVT VorrVT;
   7078       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   7079                                       SplatUndef.getZExtValue(), SplatBitSize,
   7080                                       DAG, VorrVT, VT.is128BitVector(),
   7081                                       OtherModImm);
   7082       if (Val.getNode()) {
   7083         SDValue Input =
   7084           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   7085         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   7086         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   7087       }
   7088     }
   7089   }
   7090 
   7091   if (!Subtarget->isThumb1Only()) {
   7092     // (or x, (cmov 0, y, cond)) => (or.cond x, y)
   7093     SDValue COR = formConditionalOp(N, DAG, true);
   7094     if (COR.getNode())
   7095       return COR;
   7096   }
   7097 
   7098   SDValue N0 = N->getOperand(0);
   7099   if (N0.getOpcode() != ISD::AND)
   7100     return SDValue();
   7101   SDValue N1 = N->getOperand(1);
   7102 
   7103   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   7104   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   7105       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   7106     APInt SplatUndef;
   7107     unsigned SplatBitSize;
   7108     bool HasAnyUndefs;
   7109 
   7110     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   7111     APInt SplatBits0;
   7112     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   7113                                   HasAnyUndefs) && !HasAnyUndefs) {
   7114       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   7115       APInt SplatBits1;
   7116       if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   7117                                     HasAnyUndefs) && !HasAnyUndefs &&
   7118           SplatBits0 == ~SplatBits1) {
   7119         // Canonicalize the vector type to make instruction selection simpler.
   7120         EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   7121         SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   7122                                      N0->getOperand(1), N0->getOperand(0),
   7123                                      N1->getOperand(0));
   7124         return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   7125       }
   7126     }
   7127   }
   7128 
   7129   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   7130   // reasonable.
   7131 
   7132   // BFI is only available on V6T2+
   7133   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   7134     return SDValue();
   7135 
   7136   DebugLoc DL = N->getDebugLoc();
   7137   // 1) or (and A, mask), val => ARMbfi A, val, mask
   7138   //      iff (val & mask) == val
   7139   //
   7140   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   7141   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   7142   //          && mask == ~mask2
   7143   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   7144   //          && ~mask == mask2
   7145   //  (i.e., copy a bitfield value into another bitfield of the same width)
   7146 
   7147   if (VT != MVT::i32)
   7148     return SDValue();
   7149 
   7150   SDValue N00 = N0.getOperand(0);
   7151 
   7152   // The value and the mask need to be constants so we can verify this is
   7153   // actually a bitfield set. If the mask is 0xffff, we can do better
   7154   // via a movt instruction, so don't use BFI in that case.
   7155   SDValue MaskOp = N0.getOperand(1);
   7156   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   7157   if (!MaskC)
   7158     return SDValue();
   7159   unsigned Mask = MaskC->getZExtValue();
   7160   if (Mask == 0xffff)
   7161     return SDValue();
   7162   SDValue Res;
   7163   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   7164   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   7165   if (N1C) {
   7166     unsigned Val = N1C->getZExtValue();
   7167     if ((Val & ~Mask) != Val)
   7168       return SDValue();
   7169 
   7170     if (ARM::isBitFieldInvertedMask(Mask)) {
   7171       Val >>= CountTrailingZeros_32(~Mask);
   7172 
   7173       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   7174                         DAG.getConstant(Val, MVT::i32),
   7175                         DAG.getConstant(Mask, MVT::i32));
   7176 
   7177       // Do not add new nodes to DAG combiner worklist.
   7178       DCI.CombineTo(N, Res, false);
   7179       return SDValue();
   7180     }
   7181   } else if (N1.getOpcode() == ISD::AND) {
   7182     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   7183     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   7184     if (!N11C)
   7185       return SDValue();
   7186     unsigned Mask2 = N11C->getZExtValue();
   7187 
   7188     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   7189     // as is to match.
   7190     if (ARM::isBitFieldInvertedMask(Mask) &&
   7191         (Mask == ~Mask2)) {
   7192       // The pack halfword instruction works better for masks that fit it,
   7193       // so use that when it's available.
   7194       if (Subtarget->hasT2ExtractPack() &&
   7195           (Mask == 0xffff || Mask == 0xffff0000))
   7196         return SDValue();
   7197       // 2a
   7198       unsigned amt = CountTrailingZeros_32(Mask2);
   7199       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   7200                         DAG.getConstant(amt, MVT::i32));
   7201       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   7202                         DAG.getConstant(Mask, MVT::i32));
   7203       // Do not add new nodes to DAG combiner worklist.
   7204       DCI.CombineTo(N, Res, false);
   7205       return SDValue();
   7206     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   7207                (~Mask == Mask2)) {
   7208       // The pack halfword instruction works better for masks that fit it,
   7209       // so use that when it's available.
   7210       if (Subtarget->hasT2ExtractPack() &&
   7211           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   7212         return SDValue();
   7213       // 2b
   7214       unsigned lsb = CountTrailingZeros_32(Mask);
   7215       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   7216                         DAG.getConstant(lsb, MVT::i32));
   7217       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   7218                         DAG.getConstant(Mask2, MVT::i32));
   7219       // Do not add new nodes to DAG combiner worklist.
   7220       DCI.CombineTo(N, Res, false);
   7221       return SDValue();
   7222     }
   7223   }
   7224 
   7225   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   7226       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   7227       ARM::isBitFieldInvertedMask(~Mask)) {
   7228     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   7229     // where lsb(mask) == #shamt and masked bits of B are known zero.
   7230     SDValue ShAmt = N00.getOperand(1);
   7231     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   7232     unsigned LSB = CountTrailingZeros_32(Mask);
   7233     if (ShAmtC != LSB)
   7234       return SDValue();
   7235 
   7236     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   7237                       DAG.getConstant(~Mask, MVT::i32));
   7238 
   7239     // Do not add new nodes to DAG combiner worklist.
   7240     DCI.CombineTo(N, Res, false);
   7241   }
   7242 
   7243   return SDValue();
   7244 }
   7245 
   7246 static SDValue PerformXORCombine(SDNode *N,
   7247                                  TargetLowering::DAGCombinerInfo &DCI,
   7248                                  const ARMSubtarget *Subtarget) {
   7249   EVT VT = N->getValueType(0);
   7250   SelectionDAG &DAG = DCI.DAG;
   7251 
   7252   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   7253     return SDValue();
   7254 
   7255   if (!Subtarget->isThumb1Only()) {
   7256     // (xor x, (cmov 0, y, cond)) => (xor.cond x, y)
   7257     SDValue CXOR = formConditionalOp(N, DAG, true);
   7258     if (CXOR.getNode())
   7259       return CXOR;
   7260   }
   7261 
   7262   return SDValue();
   7263 }
   7264 
   7265 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   7266 /// the bits being cleared by the AND are not demanded by the BFI.
   7267 static SDValue PerformBFICombine(SDNode *N,
   7268                                  TargetLowering::DAGCombinerInfo &DCI) {
   7269   SDValue N1 = N->getOperand(1);
   7270   if (N1.getOpcode() == ISD::AND) {
   7271     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   7272     if (!N11C)
   7273       return SDValue();
   7274     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   7275     unsigned LSB = CountTrailingZeros_32(~InvMask);
   7276     unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
   7277     unsigned Mask = (1 << Width)-1;
   7278     unsigned Mask2 = N11C->getZExtValue();
   7279     if ((Mask & (~Mask2)) == 0)
   7280       return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
   7281                              N->getOperand(0), N1.getOperand(0),
   7282                              N->getOperand(2));
   7283   }
   7284   return SDValue();
   7285 }
   7286 
   7287 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   7288 /// ARMISD::VMOVRRD.
   7289 static SDValue PerformVMOVRRDCombine(SDNode *N,
   7290                                      TargetLowering::DAGCombinerInfo &DCI) {
   7291   // vmovrrd(vmovdrr x, y) -> x,y
   7292   SDValue InDouble = N->getOperand(0);
   7293   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
   7294     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   7295 
   7296   // vmovrrd(load f64) -> (load i32), (load i32)
   7297   SDNode *InNode = InDouble.getNode();
   7298   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   7299       InNode->getValueType(0) == MVT::f64 &&
   7300       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   7301       !cast<LoadSDNode>(InNode)->isVolatile()) {
   7302     // TODO: Should this be done for non-FrameIndex operands?
   7303     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   7304 
   7305     SelectionDAG &DAG = DCI.DAG;
   7306     DebugLoc DL = LD->getDebugLoc();
   7307     SDValue BasePtr = LD->getBasePtr();
   7308     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   7309                                  LD->getPointerInfo(), LD->isVolatile(),
   7310                                  LD->isNonTemporal(), LD->isInvariant(),
   7311                                  LD->getAlignment());
   7312 
   7313     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   7314                                     DAG.getConstant(4, MVT::i32));
   7315     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   7316                                  LD->getPointerInfo(), LD->isVolatile(),
   7317                                  LD->isNonTemporal(), LD->isInvariant(),
   7318                                  std::min(4U, LD->getAlignment() / 2));
   7319 
   7320     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   7321     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   7322     DCI.RemoveFromWorklist(LD);
   7323     DAG.DeleteNode(LD);
   7324     return Result;
   7325   }
   7326 
   7327   return SDValue();
   7328 }
   7329 
   7330 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   7331 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   7332 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   7333   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   7334   SDValue Op0 = N->getOperand(0);
   7335   SDValue Op1 = N->getOperand(1);
   7336   if (Op0.getOpcode() == ISD::BITCAST)
   7337     Op0 = Op0.getOperand(0);
   7338   if (Op1.getOpcode() == ISD::BITCAST)
   7339     Op1 = Op1.getOperand(0);
   7340   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   7341       Op0.getNode() == Op1.getNode() &&
   7342       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   7343     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
   7344                        N->getValueType(0), Op0.getOperand(0));
   7345   return SDValue();
   7346 }
   7347 
   7348 /// PerformSTORECombine - Target-specific dag combine xforms for
   7349 /// ISD::STORE.
   7350 static SDValue PerformSTORECombine(SDNode *N,
   7351                                    TargetLowering::DAGCombinerInfo &DCI) {
   7352   StoreSDNode *St = cast<StoreSDNode>(N);
   7353   if (St->isVolatile())
   7354     return SDValue();
   7355 
   7356   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   7357   // pack all of the elements in one place.  Next, store to memory in fewer
   7358   // chunks.
   7359   SDValue StVal = St->getValue();
   7360   EVT VT = StVal.getValueType();
   7361   if (St->isTruncatingStore() && VT.isVector()) {
   7362     SelectionDAG &DAG = DCI.DAG;
   7363     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7364     EVT StVT = St->getMemoryVT();
   7365     unsigned NumElems = VT.getVectorNumElements();
   7366     assert(StVT != VT && "Cannot truncate to the same type");
   7367     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   7368     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   7369 
   7370     // From, To sizes and ElemCount must be pow of two
   7371     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   7372 
   7373     // We are going to use the original vector elt for storing.
   7374     // Accumulated smaller vector elements must be a multiple of the store size.
   7375     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   7376 
   7377     unsigned SizeRatio  = FromEltSz / ToEltSz;
   7378     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   7379 
   7380     // Create a type on which we perform the shuffle.
   7381     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   7382                                      NumElems*SizeRatio);
   7383     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   7384 
   7385     DebugLoc DL = St->getDebugLoc();
   7386     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   7387     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   7388     for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
   7389 
   7390     // Can't shuffle using an illegal type.
   7391     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   7392 
   7393     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   7394                                 DAG.getUNDEF(WideVec.getValueType()),
   7395                                 ShuffleVec.data());
   7396     // At this point all of the data is stored at the bottom of the
   7397     // register. We now need to save it to mem.
   7398 
   7399     // Find the largest store unit
   7400     MVT StoreType = MVT::i8;
   7401     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   7402          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   7403       MVT Tp = (MVT::SimpleValueType)tp;
   7404       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   7405         StoreType = Tp;
   7406     }
   7407     // Didn't find a legal store type.
   7408     if (!TLI.isTypeLegal(StoreType))
   7409       return SDValue();
   7410 
   7411     // Bitcast the original vector into a vector of store-size units
   7412     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   7413             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   7414     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   7415     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   7416     SmallVector<SDValue, 8> Chains;
   7417     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   7418                                         TLI.getPointerTy());
   7419     SDValue BasePtr = St->getBasePtr();
   7420 
   7421     // Perform one or more big stores into memory.
   7422     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   7423     for (unsigned I = 0; I < E; I++) {
   7424       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   7425                                    StoreType, ShuffWide,
   7426                                    DAG.getIntPtrConstant(I));
   7427       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   7428                                 St->getPointerInfo(), St->isVolatile(),
   7429                                 St->isNonTemporal(), St->getAlignment());
   7430       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   7431                             Increment);
   7432       Chains.push_back(Ch);
   7433     }
   7434     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
   7435                        Chains.size());
   7436   }
   7437 
   7438   if (!ISD::isNormalStore(St))
   7439     return SDValue();
   7440 
   7441   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   7442   // ARM stores of arguments in the same cache line.
   7443   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   7444       StVal.getNode()->hasOneUse()) {
   7445     SelectionDAG  &DAG = DCI.DAG;
   7446     DebugLoc DL = St->getDebugLoc();
   7447     SDValue BasePtr = St->getBasePtr();
   7448     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   7449                                   StVal.getNode()->getOperand(0), BasePtr,
   7450                                   St->getPointerInfo(), St->isVolatile(),
   7451                                   St->isNonTemporal(), St->getAlignment());
   7452 
   7453     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   7454                                     DAG.getConstant(4, MVT::i32));
   7455     return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
   7456                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   7457                         St->isNonTemporal(),
   7458                         std::min(4U, St->getAlignment() / 2));
   7459   }
   7460 
   7461   if (StVal.getValueType() != MVT::i64 ||
   7462       StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7463     return SDValue();
   7464 
   7465   // Bitcast an i64 store extracted from a vector to f64.
   7466   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   7467   SelectionDAG &DAG = DCI.DAG;
   7468   DebugLoc dl = StVal.getDebugLoc();
   7469   SDValue IntVec = StVal.getOperand(0);
   7470   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   7471                                  IntVec.getValueType().getVectorNumElements());
   7472   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   7473   SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7474                                Vec, StVal.getOperand(1));
   7475   dl = N->getDebugLoc();
   7476   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   7477   // Make the DAGCombiner fold the bitcasts.
   7478   DCI.AddToWorklist(Vec.getNode());
   7479   DCI.AddToWorklist(ExtElt.getNode());
   7480   DCI.AddToWorklist(V.getNode());
   7481   return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   7482                       St->getPointerInfo(), St->isVolatile(),
   7483                       St->isNonTemporal(), St->getAlignment(),
   7484                       St->getTBAAInfo());
   7485 }
   7486 
   7487 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   7488 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   7489 /// i64 vector to have f64 elements, since the value can then be loaded
   7490 /// directly into a VFP register.
   7491 static bool hasNormalLoadOperand(SDNode *N) {
   7492   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   7493   for (unsigned i = 0; i < NumElts; ++i) {
   7494     SDNode *Elt = N->getOperand(i).getNode();
   7495     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   7496       return true;
   7497   }
   7498   return false;
   7499 }
   7500 
   7501 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   7502 /// ISD::BUILD_VECTOR.
   7503 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   7504                                           TargetLowering::DAGCombinerInfo &DCI){
   7505   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   7506   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   7507   // into a pair of GPRs, which is fine when the value is used as a scalar,
   7508   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   7509   SelectionDAG &DAG = DCI.DAG;
   7510   if (N->getNumOperands() == 2) {
   7511     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   7512     if (RV.getNode())
   7513       return RV;
   7514   }
   7515 
   7516   // Load i64 elements as f64 values so that type legalization does not split
   7517   // them up into i32 values.
   7518   EVT VT = N->getValueType(0);
   7519   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   7520     return SDValue();
   7521   DebugLoc dl = N->getDebugLoc();
   7522   SmallVector<SDValue, 8> Ops;
   7523   unsigned NumElts = VT.getVectorNumElements();
   7524   for (unsigned i = 0; i < NumElts; ++i) {
   7525     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   7526     Ops.push_back(V);
   7527     // Make the DAGCombiner fold the bitcast.
   7528     DCI.AddToWorklist(V.getNode());
   7529   }
   7530   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   7531   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
   7532   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   7533 }
   7534 
   7535 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   7536 /// ISD::INSERT_VECTOR_ELT.
   7537 static SDValue PerformInsertEltCombine(SDNode *N,
   7538                                        TargetLowering::DAGCombinerInfo &DCI) {
   7539   // Bitcast an i64 load inserted into a vector to f64.
   7540   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   7541   EVT VT = N->getValueType(0);
   7542   SDNode *Elt = N->getOperand(1).getNode();
   7543   if (VT.getVectorElementType() != MVT::i64 ||
   7544       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   7545     return SDValue();
   7546 
   7547   SelectionDAG &DAG = DCI.DAG;
   7548   DebugLoc dl = N->getDebugLoc();
   7549   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   7550                                  VT.getVectorNumElements());
   7551   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   7552   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   7553   // Make the DAGCombiner fold the bitcasts.
   7554   DCI.AddToWorklist(Vec.getNode());
   7555   DCI.AddToWorklist(V.getNode());
   7556   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   7557                                Vec, V, N->getOperand(2));
   7558   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   7559 }
   7560 
   7561 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   7562 /// ISD::VECTOR_SHUFFLE.
   7563 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   7564   // The LLVM shufflevector instruction does not require the shuffle mask
   7565   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   7566   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   7567   // operands do not match the mask length, they are extended by concatenating
   7568   // them with undef vectors.  That is probably the right thing for other
   7569   // targets, but for NEON it is better to concatenate two double-register
   7570   // size vector operands into a single quad-register size vector.  Do that
   7571   // transformation here:
   7572   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   7573   //   shuffle(concat(v1, v2), undef)
   7574   SDValue Op0 = N->getOperand(0);
   7575   SDValue Op1 = N->getOperand(1);
   7576   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   7577       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   7578       Op0.getNumOperands() != 2 ||
   7579       Op1.getNumOperands() != 2)
   7580     return SDValue();
   7581   SDValue Concat0Op1 = Op0.getOperand(1);
   7582   SDValue Concat1Op1 = Op1.getOperand(1);
   7583   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   7584       Concat1Op1.getOpcode() != ISD::UNDEF)
   7585     return SDValue();
   7586   // Skip the transformation if any of the types are illegal.
   7587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7588   EVT VT = N->getValueType(0);
   7589   if (!TLI.isTypeLegal(VT) ||
   7590       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   7591       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   7592     return SDValue();
   7593 
   7594   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
   7595                                   Op0.getOperand(0), Op1.getOperand(0));
   7596   // Translate the shuffle mask.
   7597   SmallVector<int, 16> NewMask;
   7598   unsigned NumElts = VT.getVectorNumElements();
   7599   unsigned HalfElts = NumElts/2;
   7600   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   7601   for (unsigned n = 0; n < NumElts; ++n) {
   7602     int MaskElt = SVN->getMaskElt(n);
   7603     int NewElt = -1;
   7604     if (MaskElt < (int)HalfElts)
   7605       NewElt = MaskElt;
   7606     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   7607       NewElt = HalfElts + MaskElt - NumElts;
   7608     NewMask.push_back(NewElt);
   7609   }
   7610   return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
   7611                               DAG.getUNDEF(VT), NewMask.data());
   7612 }
   7613 
   7614 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
   7615 /// NEON load/store intrinsics to merge base address updates.
   7616 static SDValue CombineBaseUpdate(SDNode *N,
   7617                                  TargetLowering::DAGCombinerInfo &DCI) {
   7618   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   7619     return SDValue();
   7620 
   7621   SelectionDAG &DAG = DCI.DAG;
   7622   bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   7623                       N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   7624   unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
   7625   SDValue Addr = N->getOperand(AddrOpIdx);
   7626 
   7627   // Search for a use of the address operand that is an increment.
   7628   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   7629          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   7630     SDNode *User = *UI;
   7631     if (User->getOpcode() != ISD::ADD ||
   7632         UI.getUse().getResNo() != Addr.getResNo())
   7633       continue;
   7634 
   7635     // Check that the add is independent of the load/store.  Otherwise, folding
   7636     // it would create a cycle.
   7637     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   7638       continue;
   7639 
   7640     // Find the new opcode for the updating load/store.
   7641     bool isLoad = true;
   7642     bool isLaneOp = false;
   7643     unsigned NewOpc = 0;
   7644     unsigned NumVecs = 0;
   7645     if (isIntrinsic) {
   7646       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   7647       switch (IntNo) {
   7648       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   7649       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   7650         NumVecs = 1; break;
   7651       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   7652         NumVecs = 2; break;
   7653       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   7654         NumVecs = 3; break;
   7655       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   7656         NumVecs = 4; break;
   7657       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   7658         NumVecs = 2; isLaneOp = true; break;
   7659       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   7660         NumVecs = 3; isLaneOp = true; break;
   7661       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   7662         NumVecs = 4; isLaneOp = true; break;
   7663       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   7664         NumVecs = 1; isLoad = false; break;
   7665       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   7666         NumVecs = 2; isLoad = false; break;
   7667       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   7668         NumVecs = 3; isLoad = false; break;
   7669       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   7670         NumVecs = 4; isLoad = false; break;
   7671       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   7672         NumVecs = 2; isLoad = false; isLaneOp = true; break;
   7673       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   7674         NumVecs = 3; isLoad = false; isLaneOp = true; break;
   7675       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   7676         NumVecs = 4; isLoad = false; isLaneOp = true; break;
   7677       }
   7678     } else {
   7679       isLaneOp = true;
   7680       switch (N->getOpcode()) {
   7681       default: llvm_unreachable("unexpected opcode for Neon base update");
   7682       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   7683       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   7684       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   7685       }
   7686     }
   7687 
   7688     // Find the size of memory referenced by the load/store.
   7689     EVT VecTy;
   7690     if (isLoad)
   7691       VecTy = N->getValueType(0);
   7692     else
   7693       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   7694     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   7695     if (isLaneOp)
   7696       NumBytes /= VecTy.getVectorNumElements();
   7697 
   7698     // If the increment is a constant, it must match the memory ref size.
   7699     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   7700     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   7701       uint64_t IncVal = CInc->getZExtValue();
   7702       if (IncVal != NumBytes)
   7703         continue;
   7704     } else if (NumBytes >= 3 * 16) {
   7705       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   7706       // separate instructions that make it harder to use a non-constant update.
   7707       continue;
   7708     }
   7709 
   7710     // Create the new updating load/store node.
   7711     EVT Tys[6];
   7712     unsigned NumResultVecs = (isLoad ? NumVecs : 0);
   7713     unsigned n;
   7714     for (n = 0; n < NumResultVecs; ++n)
   7715       Tys[n] = VecTy;
   7716     Tys[n++] = MVT::i32;
   7717     Tys[n] = MVT::Other;
   7718     SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
   7719     SmallVector<SDValue, 8> Ops;
   7720     Ops.push_back(N->getOperand(0)); // incoming chain
   7721     Ops.push_back(N->getOperand(AddrOpIdx));
   7722     Ops.push_back(Inc);
   7723     for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
   7724       Ops.push_back(N->getOperand(i));
   7725     }
   7726     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
   7727     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
   7728                                            Ops.data(), Ops.size(),
   7729                                            MemInt->getMemoryVT(),
   7730                                            MemInt->getMemOperand());
   7731 
   7732     // Update the uses.
   7733     std::vector<SDValue> NewResults;
   7734     for (unsigned i = 0; i < NumResultVecs; ++i) {
   7735       NewResults.push_back(SDValue(UpdN.getNode(), i));
   7736     }
   7737     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   7738     DCI.CombineTo(N, NewResults);
   7739     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   7740 
   7741     break;
   7742   }
   7743   return SDValue();
   7744 }
   7745 
   7746 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   7747 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   7748 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   7749 /// return true.
   7750 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   7751   SelectionDAG &DAG = DCI.DAG;
   7752   EVT VT = N->getValueType(0);
   7753   // vldN-dup instructions only support 64-bit vectors for N > 1.
   7754   if (!VT.is64BitVector())
   7755     return false;
   7756 
   7757   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   7758   SDNode *VLD = N->getOperand(0).getNode();
   7759   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   7760     return false;
   7761   unsigned NumVecs = 0;
   7762   unsigned NewOpc = 0;
   7763   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   7764   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   7765     NumVecs = 2;
   7766     NewOpc = ARMISD::VLD2DUP;
   7767   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   7768     NumVecs = 3;
   7769     NewOpc = ARMISD::VLD3DUP;
   7770   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   7771     NumVecs = 4;
   7772     NewOpc = ARMISD::VLD4DUP;
   7773   } else {
   7774     return false;
   7775   }
   7776 
   7777   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   7778   // numbers match the load.
   7779   unsigned VLDLaneNo =
   7780     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   7781   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   7782        UI != UE; ++UI) {
   7783     // Ignore uses of the chain result.
   7784     if (UI.getUse().getResNo() == NumVecs)
   7785       continue;
   7786     SDNode *User = *UI;
   7787     if (User->getOpcode() != ARMISD::VDUPLANE ||
   7788         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   7789       return false;
   7790   }
   7791 
   7792   // Create the vldN-dup node.
   7793   EVT Tys[5];
   7794   unsigned n;
   7795   for (n = 0; n < NumVecs; ++n)
   7796     Tys[n] = VT;
   7797   Tys[n] = MVT::Other;
   7798   SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
   7799   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   7800   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   7801   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
   7802                                            Ops, 2, VLDMemInt->getMemoryVT(),
   7803                                            VLDMemInt->getMemOperand());
   7804 
   7805   // Update the uses.
   7806   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   7807        UI != UE; ++UI) {
   7808     unsigned ResNo = UI.getUse().getResNo();
   7809     // Ignore uses of the chain result.
   7810     if (ResNo == NumVecs)
   7811       continue;
   7812     SDNode *User = *UI;
   7813     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   7814   }
   7815 
   7816   // Now the vldN-lane intrinsic is dead except for its chain result.
   7817   // Update uses of the chain.
   7818   std::vector<SDValue> VLDDupResults;
   7819   for (unsigned n = 0; n < NumVecs; ++n)
   7820     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   7821   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   7822   DCI.CombineTo(VLD, VLDDupResults);
   7823 
   7824   return true;
   7825 }
   7826 
   7827 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   7828 /// ARMISD::VDUPLANE.
   7829 static SDValue PerformVDUPLANECombine(SDNode *N,
   7830                                       TargetLowering::DAGCombinerInfo &DCI) {
   7831   SDValue Op = N->getOperand(0);
   7832 
   7833   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   7834   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   7835   if (CombineVLDDUP(N, DCI))
   7836     return SDValue(N, 0);
   7837 
   7838   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   7839   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   7840   while (Op.getOpcode() == ISD::BITCAST)
   7841     Op = Op.getOperand(0);
   7842   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   7843     return SDValue();
   7844 
   7845   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   7846   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   7847   // The canonical VMOV for a zero vector uses a 32-bit element size.
   7848   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   7849   unsigned EltBits;
   7850   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   7851     EltSize = 8;
   7852   EVT VT = N->getValueType(0);
   7853   if (EltSize > VT.getVectorElementType().getSizeInBits())
   7854     return SDValue();
   7855 
   7856   return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   7857 }
   7858 
   7859 // isConstVecPow2 - Return true if each vector element is a power of 2, all
   7860 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
   7861 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
   7862 {
   7863   integerPart cN;
   7864   integerPart c0 = 0;
   7865   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
   7866        I != E; I++) {
   7867     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
   7868     if (!C)
   7869       return false;
   7870 
   7871     bool isExact;
   7872     APFloat APF = C->getValueAPF();
   7873     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
   7874         != APFloat::opOK || !isExact)
   7875       return false;
   7876 
   7877     c0 = (I == 0) ? cN : c0;
   7878     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
   7879       return false;
   7880   }
   7881   C = c0;
   7882   return true;
   7883 }
   7884 
   7885 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   7886 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   7887 /// when the VMUL has a constant operand that is a power of 2.
   7888 ///
   7889 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   7890 ///  vmul.f32        d16, d17, d16
   7891 ///  vcvt.s32.f32    d16, d16
   7892 /// becomes:
   7893 ///  vcvt.s32.f32    d16, d16, #3
   7894 static SDValue PerformVCVTCombine(SDNode *N,
   7895                                   TargetLowering::DAGCombinerInfo &DCI,
   7896                                   const ARMSubtarget *Subtarget) {
   7897   SelectionDAG &DAG = DCI.DAG;
   7898   SDValue Op = N->getOperand(0);
   7899 
   7900   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
   7901       Op.getOpcode() != ISD::FMUL)
   7902     return SDValue();
   7903 
   7904   uint64_t C;
   7905   SDValue N0 = Op->getOperand(0);
   7906   SDValue ConstVec = Op->getOperand(1);
   7907   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   7908 
   7909   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   7910       !isConstVecPow2(ConstVec, isSigned, C))
   7911     return SDValue();
   7912 
   7913   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   7914     Intrinsic::arm_neon_vcvtfp2fxu;
   7915   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   7916                      N->getValueType(0),
   7917                      DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
   7918                      DAG.getConstant(Log2_64(C), MVT::i32));
   7919 }
   7920 
   7921 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   7922 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   7923 /// when the VDIV has a constant operand that is a power of 2.
   7924 ///
   7925 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   7926 ///  vcvt.f32.s32    d16, d16
   7927 ///  vdiv.f32        d16, d17, d16
   7928 /// becomes:
   7929 ///  vcvt.f32.s32    d16, d16, #3
   7930 static SDValue PerformVDIVCombine(SDNode *N,
   7931                                   TargetLowering::DAGCombinerInfo &DCI,
   7932                                   const ARMSubtarget *Subtarget) {
   7933   SelectionDAG &DAG = DCI.DAG;
   7934   SDValue Op = N->getOperand(0);
   7935   unsigned OpOpcode = Op.getNode()->getOpcode();
   7936 
   7937   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
   7938       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   7939     return SDValue();
   7940 
   7941   uint64_t C;
   7942   SDValue ConstVec = N->getOperand(1);
   7943   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   7944 
   7945   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   7946       !isConstVecPow2(ConstVec, isSigned, C))
   7947     return SDValue();
   7948 
   7949   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   7950     Intrinsic::arm_neon_vcvtfxu2fp;
   7951   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   7952                      Op.getValueType(),
   7953                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
   7954                      Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
   7955 }
   7956 
   7957 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   7958 /// operand of a vector shift operation, where all the elements of the
   7959 /// build_vector must have the same constant integer value.
   7960 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   7961   // Ignore bit_converts.
   7962   while (Op.getOpcode() == ISD::BITCAST)
   7963     Op = Op.getOperand(0);
   7964   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   7965   APInt SplatBits, SplatUndef;
   7966   unsigned SplatBitSize;
   7967   bool HasAnyUndefs;
   7968   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   7969                                       HasAnyUndefs, ElementBits) ||
   7970       SplatBitSize > ElementBits)
   7971     return false;
   7972   Cnt = SplatBits.getSExtValue();
   7973   return true;
   7974 }
   7975 
   7976 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   7977 /// operand of a vector shift left operation.  That value must be in the range:
   7978 ///   0 <= Value < ElementBits for a left shift; or
   7979 ///   0 <= Value <= ElementBits for a long left shift.
   7980 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   7981   assert(VT.isVector() && "vector shift count is not a vector type");
   7982   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   7983   if (! getVShiftImm(Op, ElementBits, Cnt))
   7984     return false;
   7985   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   7986 }
   7987 
   7988 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   7989 /// operand of a vector shift right operation.  For a shift opcode, the value
   7990 /// is positive, but for an intrinsic the value count must be negative. The
   7991 /// absolute value must be in the range:
   7992 ///   1 <= |Value| <= ElementBits for a right shift; or
   7993 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   7994 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   7995                          int64_t &Cnt) {
   7996   assert(VT.isVector() && "vector shift count is not a vector type");
   7997   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   7998   if (! getVShiftImm(Op, ElementBits, Cnt))
   7999     return false;
   8000   if (isIntrinsic)
   8001     Cnt = -Cnt;
   8002   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   8003 }
   8004 
   8005 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   8006 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   8007   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   8008   switch (IntNo) {
   8009   default:
   8010     // Don't do anything for most intrinsics.
   8011     break;
   8012 
   8013   // Vector shifts: check for immediate versions and lower them.
   8014   // Note: This is done during DAG combining instead of DAG legalizing because
   8015   // the build_vectors for 64-bit vector element shift counts are generally
   8016   // not legal, and it is hard to see their values after they get legalized to
   8017   // loads from a constant pool.
   8018   case Intrinsic::arm_neon_vshifts:
   8019   case Intrinsic::arm_neon_vshiftu:
   8020   case Intrinsic::arm_neon_vshiftls:
   8021   case Intrinsic::arm_neon_vshiftlu:
   8022   case Intrinsic::arm_neon_vshiftn:
   8023   case Intrinsic::arm_neon_vrshifts:
   8024   case Intrinsic::arm_neon_vrshiftu:
   8025   case Intrinsic::arm_neon_vrshiftn:
   8026   case Intrinsic::arm_neon_vqshifts:
   8027   case Intrinsic::arm_neon_vqshiftu:
   8028   case Intrinsic::arm_neon_vqshiftsu:
   8029   case Intrinsic::arm_neon_vqshiftns:
   8030   case Intrinsic::arm_neon_vqshiftnu:
   8031   case Intrinsic::arm_neon_vqshiftnsu:
   8032   case Intrinsic::arm_neon_vqrshiftns:
   8033   case Intrinsic::arm_neon_vqrshiftnu:
   8034   case Intrinsic::arm_neon_vqrshiftnsu: {
   8035     EVT VT = N->getOperand(1).getValueType();
   8036     int64_t Cnt;
   8037     unsigned VShiftOpc = 0;
   8038 
   8039     switch (IntNo) {
   8040     case Intrinsic::arm_neon_vshifts:
   8041     case Intrinsic::arm_neon_vshiftu:
   8042       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   8043         VShiftOpc = ARMISD::VSHL;
   8044         break;
   8045       }
   8046       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   8047         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   8048                      ARMISD::VSHRs : ARMISD::VSHRu);
   8049         break;
   8050       }
   8051       return SDValue();
   8052 
   8053     case Intrinsic::arm_neon_vshiftls:
   8054     case Intrinsic::arm_neon_vshiftlu:
   8055       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
   8056         break;
   8057       llvm_unreachable("invalid shift count for vshll intrinsic");
   8058 
   8059     case Intrinsic::arm_neon_vrshifts:
   8060     case Intrinsic::arm_neon_vrshiftu:
   8061       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   8062         break;
   8063       return SDValue();
   8064 
   8065     case Intrinsic::arm_neon_vqshifts:
   8066     case Intrinsic::arm_neon_vqshiftu:
   8067       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   8068         break;
   8069       return SDValue();
   8070 
   8071     case Intrinsic::arm_neon_vqshiftsu:
   8072       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   8073         break;
   8074       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   8075 
   8076     case Intrinsic::arm_neon_vshiftn:
   8077     case Intrinsic::arm_neon_vrshiftn:
   8078     case Intrinsic::arm_neon_vqshiftns:
   8079     case Intrinsic::arm_neon_vqshiftnu:
   8080     case Intrinsic::arm_neon_vqshiftnsu:
   8081     case Intrinsic::arm_neon_vqrshiftns:
   8082     case Intrinsic::arm_neon_vqrshiftnu:
   8083     case Intrinsic::arm_neon_vqrshiftnsu:
   8084       // Narrowing shifts require an immediate right shift.
   8085       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   8086         break;
   8087       llvm_unreachable("invalid shift count for narrowing vector shift "
   8088                        "intrinsic");
   8089 
   8090     default:
   8091       llvm_unreachable("unhandled vector shift");
   8092     }
   8093 
   8094     switch (IntNo) {
   8095     case Intrinsic::arm_neon_vshifts:
   8096     case Intrinsic::arm_neon_vshiftu:
   8097       // Opcode already set above.
   8098       break;
   8099     case Intrinsic::arm_neon_vshiftls:
   8100     case Intrinsic::arm_neon_vshiftlu:
   8101       if (Cnt == VT.getVectorElementType().getSizeInBits())
   8102         VShiftOpc = ARMISD::VSHLLi;
   8103       else
   8104         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
   8105                      ARMISD::VSHLLs : ARMISD::VSHLLu);
   8106       break;
   8107     case Intrinsic::arm_neon_vshiftn:
   8108       VShiftOpc = ARMISD::VSHRN; break;
   8109     case Intrinsic::arm_neon_vrshifts:
   8110       VShiftOpc = ARMISD::VRSHRs; break;
   8111     case Intrinsic::arm_neon_vrshiftu:
   8112       VShiftOpc = ARMISD::VRSHRu; break;
   8113     case Intrinsic::arm_neon_vrshiftn:
   8114       VShiftOpc = ARMISD::VRSHRN; break;
   8115     case Intrinsic::arm_neon_vqshifts:
   8116       VShiftOpc = ARMISD::VQSHLs; break;
   8117     case Intrinsic::arm_neon_vqshiftu:
   8118       VShiftOpc = ARMISD::VQSHLu; break;
   8119     case Intrinsic::arm_neon_vqshiftsu:
   8120       VShiftOpc = ARMISD::VQSHLsu; break;
   8121     case Intrinsic::arm_neon_vqshiftns:
   8122       VShiftOpc = ARMISD::VQSHRNs; break;
   8123     case Intrinsic::arm_neon_vqshiftnu:
   8124       VShiftOpc = ARMISD::VQSHRNu; break;
   8125     case Intrinsic::arm_neon_vqshiftnsu:
   8126       VShiftOpc = ARMISD::VQSHRNsu; break;
   8127     case Intrinsic::arm_neon_vqrshiftns:
   8128       VShiftOpc = ARMISD::VQRSHRNs; break;
   8129     case Intrinsic::arm_neon_vqrshiftnu:
   8130       VShiftOpc = ARMISD::VQRSHRNu; break;
   8131     case Intrinsic::arm_neon_vqrshiftnsu:
   8132       VShiftOpc = ARMISD::VQRSHRNsu; break;
   8133     }
   8134 
   8135     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   8136                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
   8137   }
   8138 
   8139   case Intrinsic::arm_neon_vshiftins: {
   8140     EVT VT = N->getOperand(1).getValueType();
   8141     int64_t Cnt;
   8142     unsigned VShiftOpc = 0;
   8143 
   8144     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   8145       VShiftOpc = ARMISD::VSLI;
   8146     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   8147       VShiftOpc = ARMISD::VSRI;
   8148     else {
   8149       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   8150     }
   8151 
   8152     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   8153                        N->getOperand(1), N->getOperand(2),
   8154                        DAG.getConstant(Cnt, MVT::i32));
   8155   }
   8156 
   8157   case Intrinsic::arm_neon_vqrshifts:
   8158   case Intrinsic::arm_neon_vqrshiftu:
   8159     // No immediate versions of these to check for.
   8160     break;
   8161   }
   8162 
   8163   return SDValue();
   8164 }
   8165 
   8166 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   8167 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   8168 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   8169 /// vector element shift counts are generally not legal, and it is hard to see
   8170 /// their values after they get legalized to loads from a constant pool.
   8171 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   8172                                    const ARMSubtarget *ST) {
   8173   EVT VT = N->getValueType(0);
   8174   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   8175     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   8176     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   8177     SDValue N1 = N->getOperand(1);
   8178     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   8179       SDValue N0 = N->getOperand(0);
   8180       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   8181           DAG.MaskedValueIsZero(N0.getOperand(0),
   8182                                 APInt::getHighBitsSet(32, 16)))
   8183         return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
   8184     }
   8185   }
   8186 
   8187   // Nothing to be done for scalar shifts.
   8188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8189   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   8190     return SDValue();
   8191 
   8192   assert(ST->hasNEON() && "unexpected vector shift");
   8193   int64_t Cnt;
   8194 
   8195   switch (N->getOpcode()) {
   8196   default: llvm_unreachable("unexpected shift opcode");
   8197 
   8198   case ISD::SHL:
   8199     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
   8200       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
   8201                          DAG.getConstant(Cnt, MVT::i32));
   8202     break;
   8203 
   8204   case ISD::SRA:
   8205   case ISD::SRL:
   8206     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   8207       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   8208                             ARMISD::VSHRs : ARMISD::VSHRu);
   8209       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
   8210                          DAG.getConstant(Cnt, MVT::i32));
   8211     }
   8212   }
   8213   return SDValue();
   8214 }
   8215 
   8216 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   8217 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   8218 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   8219                                     const ARMSubtarget *ST) {
   8220   SDValue N0 = N->getOperand(0);
   8221 
   8222   // Check for sign- and zero-extensions of vector extract operations of 8-
   8223   // and 16-bit vector elements.  NEON supports these directly.  They are
   8224   // handled during DAG combining because type legalization will promote them
   8225   // to 32-bit types and it is messy to recognize the operations after that.
   8226   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   8227     SDValue Vec = N0.getOperand(0);
   8228     SDValue Lane = N0.getOperand(1);
   8229     EVT VT = N->getValueType(0);
   8230     EVT EltVT = N0.getValueType();
   8231     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8232 
   8233     if (VT == MVT::i32 &&
   8234         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   8235         TLI.isTypeLegal(Vec.getValueType()) &&
   8236         isa<ConstantSDNode>(Lane)) {
   8237 
   8238       unsigned Opc = 0;
   8239       switch (N->getOpcode()) {
   8240       default: llvm_unreachable("unexpected opcode");
   8241       case ISD::SIGN_EXTEND:
   8242         Opc = ARMISD::VGETLANEs;
   8243         break;
   8244       case ISD::ZERO_EXTEND:
   8245       case ISD::ANY_EXTEND:
   8246         Opc = ARMISD::VGETLANEu;
   8247         break;
   8248       }
   8249       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
   8250     }
   8251   }
   8252 
   8253   return SDValue();
   8254 }
   8255 
   8256 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
   8257 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
   8258 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
   8259                                        const ARMSubtarget *ST) {
   8260   // If the target supports NEON, try to use vmax/vmin instructions for f32
   8261   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
   8262   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
   8263   // a NaN; only do the transformation when it matches that behavior.
   8264 
   8265   // For now only do this when using NEON for FP operations; if using VFP, it
   8266   // is not obvious that the benefit outweighs the cost of switching to the
   8267   // NEON pipeline.
   8268   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
   8269       N->getValueType(0) != MVT::f32)
   8270     return SDValue();
   8271 
   8272   SDValue CondLHS = N->getOperand(0);
   8273   SDValue CondRHS = N->getOperand(1);
   8274   SDValue LHS = N->getOperand(2);
   8275   SDValue RHS = N->getOperand(3);
   8276   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   8277 
   8278   unsigned Opcode = 0;
   8279   bool IsReversed;
   8280   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
   8281     IsReversed = false; // x CC y ? x : y
   8282   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
   8283     IsReversed = true ; // x CC y ? y : x
   8284   } else {
   8285     return SDValue();
   8286   }
   8287 
   8288   bool IsUnordered;
   8289   switch (CC) {
   8290   default: break;
   8291   case ISD::SETOLT:
   8292   case ISD::SETOLE:
   8293   case ISD::SETLT:
   8294   case ISD::SETLE:
   8295   case ISD::SETULT:
   8296   case ISD::SETULE:
   8297     // If LHS is NaN, an ordered comparison will be false and the result will
   8298     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
   8299     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   8300     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
   8301     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   8302       break;
   8303     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
   8304     // will return -0, so vmin can only be used for unsafe math or if one of
   8305     // the operands is known to be nonzero.
   8306     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
   8307         !DAG.getTarget().Options.UnsafeFPMath &&
   8308         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   8309       break;
   8310     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
   8311     break;
   8312 
   8313   case ISD::SETOGT:
   8314   case ISD::SETOGE:
   8315   case ISD::SETGT:
   8316   case ISD::SETGE:
   8317   case ISD::SETUGT:
   8318   case ISD::SETUGE:
   8319     // If LHS is NaN, an ordered comparison will be false and the result will
   8320     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
   8321     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   8322     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
   8323     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   8324       break;
   8325     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
   8326     // will return +0, so vmax can only be used for unsafe math or if one of
   8327     // the operands is known to be nonzero.
   8328     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
   8329         !DAG.getTarget().Options.UnsafeFPMath &&
   8330         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   8331       break;
   8332     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
   8333     break;
   8334   }
   8335 
   8336   if (!Opcode)
   8337     return SDValue();
   8338   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
   8339 }
   8340 
   8341 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   8342 SDValue
   8343 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   8344   SDValue Cmp = N->getOperand(4);
   8345   if (Cmp.getOpcode() != ARMISD::CMPZ)
   8346     // Only looking at EQ and NE cases.
   8347     return SDValue();
   8348 
   8349   EVT VT = N->getValueType(0);
   8350   DebugLoc dl = N->getDebugLoc();
   8351   SDValue LHS = Cmp.getOperand(0);
   8352   SDValue RHS = Cmp.getOperand(1);
   8353   SDValue FalseVal = N->getOperand(0);
   8354   SDValue TrueVal = N->getOperand(1);
   8355   SDValue ARMcc = N->getOperand(2);
   8356   ARMCC::CondCodes CC =
   8357     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   8358 
   8359   // Simplify
   8360   //   mov     r1, r0
   8361   //   cmp     r1, x
   8362   //   mov     r0, y
   8363   //   moveq   r0, x
   8364   // to
   8365   //   cmp     r0, x
   8366   //   movne   r0, y
   8367   //
   8368   //   mov     r1, r0
   8369   //   cmp     r1, x
   8370   //   mov     r0, x
   8371   //   movne   r0, y
   8372   // to
   8373   //   cmp     r0, x
   8374   //   movne   r0, y
   8375   /// FIXME: Turn this into a target neutral optimization?
   8376   SDValue Res;
   8377   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   8378     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   8379                       N->getOperand(3), Cmp);
   8380   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   8381     SDValue ARMcc;
   8382     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   8383     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   8384                       N->getOperand(3), NewCmp);
   8385   }
   8386 
   8387   if (Res.getNode()) {
   8388     APInt KnownZero, KnownOne;
   8389     DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
   8390     // Capture demanded bits information that would be otherwise lost.
   8391     if (KnownZero == 0xfffffffe)
   8392       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8393                         DAG.getValueType(MVT::i1));
   8394     else if (KnownZero == 0xffffff00)
   8395       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8396                         DAG.getValueType(MVT::i8));
   8397     else if (KnownZero == 0xffff0000)
   8398       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8399                         DAG.getValueType(MVT::i16));
   8400   }
   8401 
   8402   return Res;
   8403 }
   8404 
   8405 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   8406                                              DAGCombinerInfo &DCI) const {
   8407   switch (N->getOpcode()) {
   8408   default: break;
   8409   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   8410   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   8411   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   8412   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   8413   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   8414   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   8415   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   8416   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
   8417   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   8418   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   8419   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
   8420   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   8421   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   8422   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   8423   case ISD::FP_TO_SINT:
   8424   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
   8425   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
   8426   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   8427   case ISD::SHL:
   8428   case ISD::SRA:
   8429   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   8430   case ISD::SIGN_EXTEND:
   8431   case ISD::ZERO_EXTEND:
   8432   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   8433   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
   8434   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   8435   case ARMISD::VLD2DUP:
   8436   case ARMISD::VLD3DUP:
   8437   case ARMISD::VLD4DUP:
   8438     return CombineBaseUpdate(N, DCI);
   8439   case ISD::INTRINSIC_VOID:
   8440   case ISD::INTRINSIC_W_CHAIN:
   8441     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   8442     case Intrinsic::arm_neon_vld1:
   8443     case Intrinsic::arm_neon_vld2:
   8444     case Intrinsic::arm_neon_vld3:
   8445     case Intrinsic::arm_neon_vld4:
   8446     case Intrinsic::arm_neon_vld2lane:
   8447     case Intrinsic::arm_neon_vld3lane:
   8448     case Intrinsic::arm_neon_vld4lane:
   8449     case Intrinsic::arm_neon_vst1:
   8450     case Intrinsic::arm_neon_vst2:
   8451     case Intrinsic::arm_neon_vst3:
   8452     case Intrinsic::arm_neon_vst4:
   8453     case Intrinsic::arm_neon_vst2lane:
   8454     case Intrinsic::arm_neon_vst3lane:
   8455     case Intrinsic::arm_neon_vst4lane:
   8456       return CombineBaseUpdate(N, DCI);
   8457     default: break;
   8458     }
   8459     break;
   8460   }
   8461   return SDValue();
   8462 }
   8463 
   8464 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   8465                                                           EVT VT) const {
   8466   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   8467 }
   8468 
   8469 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
   8470   if (!Subtarget->allowsUnalignedMem())
   8471     return false;
   8472 
   8473   switch (VT.getSimpleVT().SimpleTy) {
   8474   default:
   8475     return false;
   8476   case MVT::i8:
   8477   case MVT::i16:
   8478   case MVT::i32:
   8479     return true;
   8480   // FIXME: VLD1 etc with standard alignment is legal.
   8481   }
   8482 }
   8483 
   8484 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   8485                        unsigned AlignCheck) {
   8486   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   8487           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   8488 }
   8489 
   8490 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   8491                                            unsigned DstAlign, unsigned SrcAlign,
   8492                                            bool IsZeroVal,
   8493                                            bool MemcpyStrSrc,
   8494                                            MachineFunction &MF) const {
   8495   const Function *F = MF.getFunction();
   8496 
   8497   // See if we can use NEON instructions for this...
   8498   if (IsZeroVal &&
   8499       !F->hasFnAttr(Attribute::NoImplicitFloat) &&
   8500       Subtarget->hasNEON()) {
   8501     if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
   8502       return MVT::v4i32;
   8503     } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
   8504       return MVT::v2i32;
   8505     }
   8506   }
   8507 
   8508   // Lowering to i32/i16 if the size permits.
   8509   if (Size >= 4) {
   8510     return MVT::i32;
   8511   } else if (Size >= 2) {
   8512     return MVT::i16;
   8513   }
   8514 
   8515   // Let the target-independent logic figure it out.
   8516   return MVT::Other;
   8517 }
   8518 
   8519 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   8520   if (V < 0)
   8521     return false;
   8522 
   8523   unsigned Scale = 1;
   8524   switch (VT.getSimpleVT().SimpleTy) {
   8525   default: return false;
   8526   case MVT::i1:
   8527   case MVT::i8:
   8528     // Scale == 1;
   8529     break;
   8530   case MVT::i16:
   8531     // Scale == 2;
   8532     Scale = 2;
   8533     break;
   8534   case MVT::i32:
   8535     // Scale == 4;
   8536     Scale = 4;
   8537     break;
   8538   }
   8539 
   8540   if ((V & (Scale - 1)) != 0)
   8541     return false;
   8542   V /= Scale;
   8543   return V == (V & ((1LL << 5) - 1));
   8544 }
   8545 
   8546 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   8547                                       const ARMSubtarget *Subtarget) {
   8548   bool isNeg = false;
   8549   if (V < 0) {
   8550     isNeg = true;
   8551     V = - V;
   8552   }
   8553 
   8554   switch (VT.getSimpleVT().SimpleTy) {
   8555   default: return false;
   8556   case MVT::i1:
   8557   case MVT::i8:
   8558   case MVT::i16:
   8559   case MVT::i32:
   8560     // + imm12 or - imm8
   8561     if (isNeg)
   8562       return V == (V & ((1LL << 8) - 1));
   8563     return V == (V & ((1LL << 12) - 1));
   8564   case MVT::f32:
   8565   case MVT::f64:
   8566     // Same as ARM mode. FIXME: NEON?
   8567     if (!Subtarget->hasVFP2())
   8568       return false;
   8569     if ((V & 3) != 0)
   8570       return false;
   8571     V >>= 2;
   8572     return V == (V & ((1LL << 8) - 1));
   8573   }
   8574 }
   8575 
   8576 /// isLegalAddressImmediate - Return true if the integer value can be used
   8577 /// as the offset of the target addressing mode for load / store of the
   8578 /// given type.
   8579 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   8580                                     const ARMSubtarget *Subtarget) {
   8581   if (V == 0)
   8582     return true;
   8583 
   8584   if (!VT.isSimple())
   8585     return false;
   8586 
   8587   if (Subtarget->isThumb1Only())
   8588     return isLegalT1AddressImmediate(V, VT);
   8589   else if (Subtarget->isThumb2())
   8590     return isLegalT2AddressImmediate(V, VT, Subtarget);
   8591 
   8592   // ARM mode.
   8593   if (V < 0)
   8594     V = - V;
   8595   switch (VT.getSimpleVT().SimpleTy) {
   8596   default: return false;
   8597   case MVT::i1:
   8598   case MVT::i8:
   8599   case MVT::i32:
   8600     // +- imm12
   8601     return V == (V & ((1LL << 12) - 1));
   8602   case MVT::i16:
   8603     // +- imm8
   8604     return V == (V & ((1LL << 8) - 1));
   8605   case MVT::f32:
   8606   case MVT::f64:
   8607     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   8608       return false;
   8609     if ((V & 3) != 0)
   8610       return false;
   8611     V >>= 2;
   8612     return V == (V & ((1LL << 8) - 1));
   8613   }
   8614 }
   8615 
   8616 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   8617                                                       EVT VT) const {
   8618   int Scale = AM.Scale;
   8619   if (Scale < 0)
   8620     return false;
   8621 
   8622   switch (VT.getSimpleVT().SimpleTy) {
   8623   default: return false;
   8624   case MVT::i1:
   8625   case MVT::i8:
   8626   case MVT::i16:
   8627   case MVT::i32:
   8628     if (Scale == 1)
   8629       return true;
   8630     // r + r << imm
   8631     Scale = Scale & ~1;
   8632     return Scale == 2 || Scale == 4 || Scale == 8;
   8633   case MVT::i64:
   8634     // r + r
   8635     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   8636       return true;
   8637     return false;
   8638   case MVT::isVoid:
   8639     // Note, we allow "void" uses (basically, uses that aren't loads or
   8640     // stores), because arm allows folding a scale into many arithmetic
   8641     // operations.  This should be made more precise and revisited later.
   8642 
   8643     // Allow r << imm, but the imm has to be a multiple of two.
   8644     if (Scale & 1) return false;
   8645     return isPowerOf2_32(Scale);
   8646   }
   8647 }
   8648 
   8649 /// isLegalAddressingMode - Return true if the addressing mode represented
   8650 /// by AM is legal for this target, for a load/store of the specified type.
   8651 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   8652                                               Type *Ty) const {
   8653   EVT VT = getValueType(Ty, true);
   8654   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   8655     return false;
   8656 
   8657   // Can never fold addr of global into load/store.
   8658   if (AM.BaseGV)
   8659     return false;
   8660 
   8661   switch (AM.Scale) {
   8662   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   8663     break;
   8664   case 1:
   8665     if (Subtarget->isThumb1Only())
   8666       return false;
   8667     // FALL THROUGH.
   8668   default:
   8669     // ARM doesn't support any R+R*scale+imm addr modes.
   8670     if (AM.BaseOffs)
   8671       return false;
   8672 
   8673     if (!VT.isSimple())
   8674       return false;
   8675 
   8676     if (Subtarget->isThumb2())
   8677       return isLegalT2ScaledAddressingMode(AM, VT);
   8678 
   8679     int Scale = AM.Scale;
   8680     switch (VT.getSimpleVT().SimpleTy) {
   8681     default: return false;
   8682     case MVT::i1:
   8683     case MVT::i8:
   8684     case MVT::i32:
   8685       if (Scale < 0) Scale = -Scale;
   8686       if (Scale == 1)
   8687         return true;
   8688       // r + r << imm
   8689       return isPowerOf2_32(Scale & ~1);
   8690     case MVT::i16:
   8691     case MVT::i64:
   8692       // r + r
   8693       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   8694         return true;
   8695       return false;
   8696 
   8697     case MVT::isVoid:
   8698       // Note, we allow "void" uses (basically, uses that aren't loads or
   8699       // stores), because arm allows folding a scale into many arithmetic
   8700       // operations.  This should be made more precise and revisited later.
   8701 
   8702       // Allow r << imm, but the imm has to be a multiple of two.
   8703       if (Scale & 1) return false;
   8704       return isPowerOf2_32(Scale);
   8705     }
   8706   }
   8707   return true;
   8708 }
   8709 
   8710 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   8711 /// icmp immediate, that is the target has icmp instructions which can compare
   8712 /// a register against the immediate without having to materialize the
   8713 /// immediate into a register.
   8714 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   8715   // Thumb2 and ARM modes can use cmn for negative immediates.
   8716   if (!Subtarget->isThumb())
   8717     return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
   8718   if (Subtarget->isThumb2())
   8719     return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
   8720   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   8721   return Imm >= 0 && Imm <= 255;
   8722 }
   8723 
   8724 /// isLegalAddImmediate - Return true if the specified immediate is legal
   8725 /// add immediate, that is the target has add instructions which can add
   8726 /// a register with the immediate without having to materialize the
   8727 /// immediate into a register.
   8728 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   8729   return ARM_AM::getSOImmVal(Imm) != -1;
   8730 }
   8731 
   8732 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   8733                                       bool isSEXTLoad, SDValue &Base,
   8734                                       SDValue &Offset, bool &isInc,
   8735                                       SelectionDAG &DAG) {
   8736   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   8737     return false;
   8738 
   8739   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   8740     // AddressingMode 3
   8741     Base = Ptr->getOperand(0);
   8742     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8743       int RHSC = (int)RHS->getZExtValue();
   8744       if (RHSC < 0 && RHSC > -256) {
   8745         assert(Ptr->getOpcode() == ISD::ADD);
   8746         isInc = false;
   8747         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8748         return true;
   8749       }
   8750     }
   8751     isInc = (Ptr->getOpcode() == ISD::ADD);
   8752     Offset = Ptr->getOperand(1);
   8753     return true;
   8754   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   8755     // AddressingMode 2
   8756     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8757       int RHSC = (int)RHS->getZExtValue();
   8758       if (RHSC < 0 && RHSC > -0x1000) {
   8759         assert(Ptr->getOpcode() == ISD::ADD);
   8760         isInc = false;
   8761         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8762         Base = Ptr->getOperand(0);
   8763         return true;
   8764       }
   8765     }
   8766 
   8767     if (Ptr->getOpcode() == ISD::ADD) {
   8768       isInc = true;
   8769       ARM_AM::ShiftOpc ShOpcVal=
   8770         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   8771       if (ShOpcVal != ARM_AM::no_shift) {
   8772         Base = Ptr->getOperand(1);
   8773         Offset = Ptr->getOperand(0);
   8774       } else {
   8775         Base = Ptr->getOperand(0);
   8776         Offset = Ptr->getOperand(1);
   8777       }
   8778       return true;
   8779     }
   8780 
   8781     isInc = (Ptr->getOpcode() == ISD::ADD);
   8782     Base = Ptr->getOperand(0);
   8783     Offset = Ptr->getOperand(1);
   8784     return true;
   8785   }
   8786 
   8787   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   8788   return false;
   8789 }
   8790 
   8791 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   8792                                      bool isSEXTLoad, SDValue &Base,
   8793                                      SDValue &Offset, bool &isInc,
   8794                                      SelectionDAG &DAG) {
   8795   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   8796     return false;
   8797 
   8798   Base = Ptr->getOperand(0);
   8799   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8800     int RHSC = (int)RHS->getZExtValue();
   8801     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   8802       assert(Ptr->getOpcode() == ISD::ADD);
   8803       isInc = false;
   8804       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8805       return true;
   8806     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   8807       isInc = Ptr->getOpcode() == ISD::ADD;
   8808       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
   8809       return true;
   8810     }
   8811   }
   8812 
   8813   return false;
   8814 }
   8815 
   8816 /// getPreIndexedAddressParts - returns true by value, base pointer and
   8817 /// offset pointer and addressing mode by reference if the node's address
   8818 /// can be legally represented as pre-indexed load / store address.
   8819 bool
   8820 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   8821                                              SDValue &Offset,
   8822                                              ISD::MemIndexedMode &AM,
   8823                                              SelectionDAG &DAG) const {
   8824   if (Subtarget->isThumb1Only())
   8825     return false;
   8826 
   8827   EVT VT;
   8828   SDValue Ptr;
   8829   bool isSEXTLoad = false;
   8830   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   8831     Ptr = LD->getBasePtr();
   8832     VT  = LD->getMemoryVT();
   8833     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   8834   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   8835     Ptr = ST->getBasePtr();
   8836     VT  = ST->getMemoryVT();
   8837   } else
   8838     return false;
   8839 
   8840   bool isInc;
   8841   bool isLegal = false;
   8842   if (Subtarget->isThumb2())
   8843     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   8844                                        Offset, isInc, DAG);
   8845   else
   8846     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   8847                                         Offset, isInc, DAG);
   8848   if (!isLegal)
   8849     return false;
   8850 
   8851   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   8852   return true;
   8853 }
   8854 
   8855 /// getPostIndexedAddressParts - returns true by value, base pointer and
   8856 /// offset pointer and addressing mode by reference if this node can be
   8857 /// combined with a load / store to form a post-indexed load / store.
   8858 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   8859                                                    SDValue &Base,
   8860                                                    SDValue &Offset,
   8861                                                    ISD::MemIndexedMode &AM,
   8862                                                    SelectionDAG &DAG) const {
   8863   if (Subtarget->isThumb1Only())
   8864     return false;
   8865 
   8866   EVT VT;
   8867   SDValue Ptr;
   8868   bool isSEXTLoad = false;
   8869   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   8870     VT  = LD->getMemoryVT();
   8871     Ptr = LD->getBasePtr();
   8872     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   8873   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   8874     VT  = ST->getMemoryVT();
   8875     Ptr = ST->getBasePtr();
   8876   } else
   8877     return false;
   8878 
   8879   bool isInc;
   8880   bool isLegal = false;
   8881   if (Subtarget->isThumb2())
   8882     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   8883                                        isInc, DAG);
   8884   else
   8885     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   8886                                         isInc, DAG);
   8887   if (!isLegal)
   8888     return false;
   8889 
   8890   if (Ptr != Base) {
   8891     // Swap base ptr and offset to catch more post-index load / store when
   8892     // it's legal. In Thumb2 mode, offset must be an immediate.
   8893     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   8894         !Subtarget->isThumb2())
   8895       std::swap(Base, Offset);
   8896 
   8897     // Post-indexed load / store update the base pointer.
   8898     if (Ptr != Base)
   8899       return false;
   8900   }
   8901 
   8902   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   8903   return true;
   8904 }
   8905 
   8906 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   8907                                                        APInt &KnownZero,
   8908                                                        APInt &KnownOne,
   8909                                                        const SelectionDAG &DAG,
   8910                                                        unsigned Depth) const {
   8911   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   8912   switch (Op.getOpcode()) {
   8913   default: break;
   8914   case ARMISD::CMOV: {
   8915     // Bits are known zero/one if known on the LHS and RHS.
   8916     DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   8917     if (KnownZero == 0 && KnownOne == 0) return;
   8918 
   8919     APInt KnownZeroRHS, KnownOneRHS;
   8920     DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   8921     KnownZero &= KnownZeroRHS;
   8922     KnownOne  &= KnownOneRHS;
   8923     return;
   8924   }
   8925   }
   8926 }
   8927 
   8928 //===----------------------------------------------------------------------===//
   8929 //                           ARM Inline Assembly Support
   8930 //===----------------------------------------------------------------------===//
   8931 
   8932 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   8933   // Looking for "rev" which is V6+.
   8934   if (!Subtarget->hasV6Ops())
   8935     return false;
   8936 
   8937   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   8938   std::string AsmStr = IA->getAsmString();
   8939   SmallVector<StringRef, 4> AsmPieces;
   8940   SplitString(AsmStr, AsmPieces, ";\n");
   8941 
   8942   switch (AsmPieces.size()) {
   8943   default: return false;
   8944   case 1:
   8945     AsmStr = AsmPieces[0];
   8946     AsmPieces.clear();
   8947     SplitString(AsmStr, AsmPieces, " \t,");
   8948 
   8949     // rev $0, $1
   8950     if (AsmPieces.size() == 3 &&
   8951         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   8952         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   8953       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   8954       if (Ty && Ty->getBitWidth() == 32)
   8955         return IntrinsicLowering::LowerToByteSwap(CI);
   8956     }
   8957     break;
   8958   }
   8959 
   8960   return false;
   8961 }
   8962 
   8963 /// getConstraintType - Given a constraint letter, return the type of
   8964 /// constraint it is for this target.
   8965 ARMTargetLowering::ConstraintType
   8966 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
   8967   if (Constraint.size() == 1) {
   8968     switch (Constraint[0]) {
   8969     default:  break;
   8970     case 'l': return C_RegisterClass;
   8971     case 'w': return C_RegisterClass;
   8972     case 'h': return C_RegisterClass;
   8973     case 'x': return C_RegisterClass;
   8974     case 't': return C_RegisterClass;
   8975     case 'j': return C_Other; // Constant for movw.
   8976       // An address with a single base register. Due to the way we
   8977       // currently handle addresses it is the same as an 'r' memory constraint.
   8978     case 'Q': return C_Memory;
   8979     }
   8980   } else if (Constraint.size() == 2) {
   8981     switch (Constraint[0]) {
   8982     default: break;
   8983     // All 'U+' constraints are addresses.
   8984     case 'U': return C_Memory;
   8985     }
   8986   }
   8987   return TargetLowering::getConstraintType(Constraint);
   8988 }
   8989 
   8990 /// Examine constraint type and operand type and determine a weight value.
   8991 /// This object must already have been set up with the operand type
   8992 /// and the current alternative constraint selected.
   8993 TargetLowering::ConstraintWeight
   8994 ARMTargetLowering::getSingleConstraintMatchWeight(
   8995     AsmOperandInfo &info, const char *constraint) const {
   8996   ConstraintWeight weight = CW_Invalid;
   8997   Value *CallOperandVal = info.CallOperandVal;
   8998     // If we don't have a value, we can't do a match,
   8999     // but allow it at the lowest weight.
   9000   if (CallOperandVal == NULL)
   9001     return CW_Default;
   9002   Type *type = CallOperandVal->getType();
   9003   // Look at the constraint type.
   9004   switch (*constraint) {
   9005   default:
   9006     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   9007     break;
   9008   case 'l':
   9009     if (type->isIntegerTy()) {
   9010       if (Subtarget->isThumb())
   9011         weight = CW_SpecificReg;
   9012       else
   9013         weight = CW_Register;
   9014     }
   9015     break;
   9016   case 'w':
   9017     if (type->isFloatingPointTy())
   9018       weight = CW_Register;
   9019     break;
   9020   }
   9021   return weight;
   9022 }
   9023 
   9024 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   9025 RCPair
   9026 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   9027                                                 EVT VT) const {
   9028   if (Constraint.size() == 1) {
   9029     // GCC ARM Constraint Letters
   9030     switch (Constraint[0]) {
   9031     case 'l': // Low regs or general regs.
   9032       if (Subtarget->isThumb())
   9033         return RCPair(0U, ARM::tGPRRegisterClass);
   9034       else
   9035         return RCPair(0U, ARM::GPRRegisterClass);
   9036     case 'h': // High regs or no regs.
   9037       if (Subtarget->isThumb())
   9038         return RCPair(0U, ARM::hGPRRegisterClass);
   9039       break;
   9040     case 'r':
   9041       return RCPair(0U, ARM::GPRRegisterClass);
   9042     case 'w':
   9043       if (VT == MVT::f32)
   9044         return RCPair(0U, ARM::SPRRegisterClass);
   9045       if (VT.getSizeInBits() == 64)
   9046         return RCPair(0U, ARM::DPRRegisterClass);
   9047       if (VT.getSizeInBits() == 128)
   9048         return RCPair(0U, ARM::QPRRegisterClass);
   9049       break;
   9050     case 'x':
   9051       if (VT == MVT::f32)
   9052         return RCPair(0U, ARM::SPR_8RegisterClass);
   9053       if (VT.getSizeInBits() == 64)
   9054         return RCPair(0U, ARM::DPR_8RegisterClass);
   9055       if (VT.getSizeInBits() == 128)
   9056         return RCPair(0U, ARM::QPR_8RegisterClass);
   9057       break;
   9058     case 't':
   9059       if (VT == MVT::f32)
   9060         return RCPair(0U, ARM::SPRRegisterClass);
   9061       break;
   9062     }
   9063   }
   9064   if (StringRef("{cc}").equals_lower(Constraint))
   9065     return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
   9066 
   9067   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   9068 }
   9069 
   9070 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   9071 /// vector.  If it is invalid, don't add anything to Ops.
   9072 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   9073                                                      std::string &Constraint,
   9074                                                      std::vector<SDValue>&Ops,
   9075                                                      SelectionDAG &DAG) const {
   9076   SDValue Result(0, 0);
   9077 
   9078   // Currently only support length 1 constraints.
   9079   if (Constraint.length() != 1) return;
   9080 
   9081   char ConstraintLetter = Constraint[0];
   9082   switch (ConstraintLetter) {
   9083   default: break;
   9084   case 'j':
   9085   case 'I': case 'J': case 'K': case 'L':
   9086   case 'M': case 'N': case 'O':
   9087     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   9088     if (!C)
   9089       return;
   9090 
   9091     int64_t CVal64 = C->getSExtValue();
   9092     int CVal = (int) CVal64;
   9093     // None of these constraints allow values larger than 32 bits.  Check
   9094     // that the value fits in an int.
   9095     if (CVal != CVal64)
   9096       return;
   9097 
   9098     switch (ConstraintLetter) {
   9099       case 'j':
   9100         // Constant suitable for movw, must be between 0 and
   9101         // 65535.
   9102         if (Subtarget->hasV6T2Ops())
   9103           if (CVal >= 0 && CVal <= 65535)
   9104             break;
   9105         return;
   9106       case 'I':
   9107         if (Subtarget->isThumb1Only()) {
   9108           // This must be a constant between 0 and 255, for ADD
   9109           // immediates.
   9110           if (CVal >= 0 && CVal <= 255)
   9111             break;
   9112         } else if (Subtarget->isThumb2()) {
   9113           // A constant that can be used as an immediate value in a
   9114           // data-processing instruction.
   9115           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   9116             break;
   9117         } else {
   9118           // A constant that can be used as an immediate value in a
   9119           // data-processing instruction.
   9120           if (ARM_AM::getSOImmVal(CVal) != -1)
   9121             break;
   9122         }
   9123         return;
   9124 
   9125       case 'J':
   9126         if (Subtarget->isThumb()) {  // FIXME thumb2
   9127           // This must be a constant between -255 and -1, for negated ADD
   9128           // immediates. This can be used in GCC with an "n" modifier that
   9129           // prints the negated value, for use with SUB instructions. It is
   9130           // not useful otherwise but is implemented for compatibility.
   9131           if (CVal >= -255 && CVal <= -1)
   9132             break;
   9133         } else {
   9134           // This must be a constant between -4095 and 4095. It is not clear
   9135           // what this constraint is intended for. Implemented for
   9136           // compatibility with GCC.
   9137           if (CVal >= -4095 && CVal <= 4095)
   9138             break;
   9139         }
   9140         return;
   9141 
   9142       case 'K':
   9143         if (Subtarget->isThumb1Only()) {
   9144           // A 32-bit value where only one byte has a nonzero value. Exclude
   9145           // zero to match GCC. This constraint is used by GCC internally for
   9146           // constants that can be loaded with a move/shift combination.
   9147           // It is not useful otherwise but is implemented for compatibility.
   9148           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   9149             break;
   9150         } else if (Subtarget->isThumb2()) {
   9151           // A constant whose bitwise inverse can be used as an immediate
   9152           // value in a data-processing instruction. This can be used in GCC
   9153           // with a "B" modifier that prints the inverted value, for use with
   9154           // BIC and MVN instructions. It is not useful otherwise but is
   9155           // implemented for compatibility.
   9156           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   9157             break;
   9158         } else {
   9159           // A constant whose bitwise inverse can be used as an immediate
   9160           // value in a data-processing instruction. This can be used in GCC
   9161           // with a "B" modifier that prints the inverted value, for use with
   9162           // BIC and MVN instructions. It is not useful otherwise but is
   9163           // implemented for compatibility.
   9164           if (ARM_AM::getSOImmVal(~CVal) != -1)
   9165             break;
   9166         }
   9167         return;
   9168 
   9169       case 'L':
   9170         if (Subtarget->isThumb1Only()) {
   9171           // This must be a constant between -7 and 7,
   9172           // for 3-operand ADD/SUB immediate instructions.
   9173           if (CVal >= -7 && CVal < 7)
   9174             break;
   9175         } else if (Subtarget->isThumb2()) {
   9176           // A constant whose negation can be used as an immediate value in a
   9177           // data-processing instruction. This can be used in GCC with an "n"
   9178           // modifier that prints the negated value, for use with SUB
   9179           // instructions. It is not useful otherwise but is implemented for
   9180           // compatibility.
   9181           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   9182             break;
   9183         } else {
   9184           // A constant whose negation can be used as an immediate value in a
   9185           // data-processing instruction. This can be used in GCC with an "n"
   9186           // modifier that prints the negated value, for use with SUB
   9187           // instructions. It is not useful otherwise but is implemented for
   9188           // compatibility.
   9189           if (ARM_AM::getSOImmVal(-CVal) != -1)
   9190             break;
   9191         }
   9192         return;
   9193 
   9194       case 'M':
   9195         if (Subtarget->isThumb()) { // FIXME thumb2
   9196           // This must be a multiple of 4 between 0 and 1020, for
   9197           // ADD sp + immediate.
   9198           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   9199             break;
   9200         } else {
   9201           // A power of two or a constant between 0 and 32.  This is used in
   9202           // GCC for the shift amount on shifted register operands, but it is
   9203           // useful in general for any shift amounts.
   9204           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   9205             break;
   9206         }
   9207         return;
   9208 
   9209       case 'N':
   9210         if (Subtarget->isThumb()) {  // FIXME thumb2
   9211           // This must be a constant between 0 and 31, for shift amounts.
   9212           if (CVal >= 0 && CVal <= 31)
   9213             break;
   9214         }
   9215         return;
   9216 
   9217       case 'O':
   9218         if (Subtarget->isThumb()) {  // FIXME thumb2
   9219           // This must be a multiple of 4 between -508 and 508, for
   9220           // ADD/SUB sp = sp + immediate.
   9221           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   9222             break;
   9223         }
   9224         return;
   9225     }
   9226     Result = DAG.getTargetConstant(CVal, Op.getValueType());
   9227     break;
   9228   }
   9229 
   9230   if (Result.getNode()) {
   9231     Ops.push_back(Result);
   9232     return;
   9233   }
   9234   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   9235 }
   9236 
   9237 bool
   9238 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   9239   // The ARM target isn't yet aware of offsets.
   9240   return false;
   9241 }
   9242 
   9243 bool ARM::isBitFieldInvertedMask(unsigned v) {
   9244   if (v == 0xffffffff)
   9245     return 0;
   9246   // there can be 1's on either or both "outsides", all the "inside"
   9247   // bits must be 0's
   9248   unsigned int lsb = 0, msb = 31;
   9249   while (v & (1 << msb)) --msb;
   9250   while (v & (1 << lsb)) ++lsb;
   9251   for (unsigned int i = lsb; i <= msb; ++i) {
   9252     if (v & (1 << i))
   9253       return 0;
   9254   }
   9255   return 1;
   9256 }
   9257 
   9258 /// isFPImmLegal - Returns true if the target can instruction select the
   9259 /// specified FP immediate natively. If false, the legalizer will
   9260 /// materialize the FP immediate as a load from a constant pool.
   9261 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   9262   if (!Subtarget->hasVFP3())
   9263     return false;
   9264   if (VT == MVT::f32)
   9265     return ARM_AM::getFP32Imm(Imm) != -1;
   9266   if (VT == MVT::f64)
   9267     return ARM_AM::getFP64Imm(Imm) != -1;
   9268   return false;
   9269 }
   9270 
   9271 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   9272 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   9273 /// specified in the intrinsic calls.
   9274 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   9275                                            const CallInst &I,
   9276                                            unsigned Intrinsic) const {
   9277   switch (Intrinsic) {
   9278   case Intrinsic::arm_neon_vld1:
   9279   case Intrinsic::arm_neon_vld2:
   9280   case Intrinsic::arm_neon_vld3:
   9281   case Intrinsic::arm_neon_vld4:
   9282   case Intrinsic::arm_neon_vld2lane:
   9283   case Intrinsic::arm_neon_vld3lane:
   9284   case Intrinsic::arm_neon_vld4lane: {
   9285     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9286     // Conservatively set memVT to the entire set of vectors loaded.
   9287     uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
   9288     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   9289     Info.ptrVal = I.getArgOperand(0);
   9290     Info.offset = 0;
   9291     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   9292     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   9293     Info.vol = false; // volatile loads with NEON intrinsics not supported
   9294     Info.readMem = true;
   9295     Info.writeMem = false;
   9296     return true;
   9297   }
   9298   case Intrinsic::arm_neon_vst1:
   9299   case Intrinsic::arm_neon_vst2:
   9300   case Intrinsic::arm_neon_vst3:
   9301   case Intrinsic::arm_neon_vst4:
   9302   case Intrinsic::arm_neon_vst2lane:
   9303   case Intrinsic::arm_neon_vst3lane:
   9304   case Intrinsic::arm_neon_vst4lane: {
   9305     Info.opc = ISD::INTRINSIC_VOID;
   9306     // Conservatively set memVT to the entire set of vectors stored.
   9307     unsigned NumElts = 0;
   9308     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   9309       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   9310       if (!ArgTy->isVectorTy())
   9311         break;
   9312       NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
   9313     }
   9314     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   9315     Info.ptrVal = I.getArgOperand(0);
   9316     Info.offset = 0;
   9317     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   9318     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   9319     Info.vol = false; // volatile stores with NEON intrinsics not supported
   9320     Info.readMem = false;
   9321     Info.writeMem = true;
   9322     return true;
   9323   }
   9324   case Intrinsic::arm_strexd: {
   9325     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9326     Info.memVT = MVT::i64;
   9327     Info.ptrVal = I.getArgOperand(2);
   9328     Info.offset = 0;
   9329     Info.align = 8;
   9330     Info.vol = true;
   9331     Info.readMem = false;
   9332     Info.writeMem = true;
   9333     return true;
   9334   }
   9335   case Intrinsic::arm_ldrexd: {
   9336     Info.opc = ISD::INTRINSIC_W_CHAIN;
   9337     Info.memVT = MVT::i64;
   9338     Info.ptrVal = I.getArgOperand(0);
   9339     Info.offset = 0;
   9340     Info.align = 8;
   9341     Info.vol = true;
   9342     Info.readMem = true;
   9343     Info.writeMem = false;
   9344     return true;
   9345   }
   9346   default:
   9347     break;
   9348   }
   9349 
   9350   return false;
   9351 }
   9352