Home | History | Annotate | Download | only in ARM
      1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMBaseInstrInfo.h"
     15 #include "ARM.h"
     16 #include "ARMBaseRegisterInfo.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMHazardRecognizer.h"
     19 #include "ARMMachineFunctionInfo.h"
     20 #include "MCTargetDesc/ARMAddressingModes.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalValue.h"
     24 #include "llvm/CodeGen/LiveVariables.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineMemOperand.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/CodeGen/SelectionDAGNodes.h"
     32 #include "llvm/MC/MCAsmInfo.h"
     33 #include "llvm/Support/BranchProbability.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/ADT/STLExtras.h"
     38 
     39 #define GET_INSTRINFO_CTOR
     40 #include "ARMGenInstrInfo.inc"
     41 
     42 using namespace llvm;
     43 
     44 static cl::opt<bool>
     45 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     46                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     47 
     48 static cl::opt<bool>
     49 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
     50            cl::desc("Widen ARM vmovs to vmovd when possible"));
     51 
     52 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     53 struct ARM_MLxEntry {
     54   unsigned MLxOpc;     // MLA / MLS opcode
     55   unsigned MulOpc;     // Expanded multiplication opcode
     56   unsigned AddSubOpc;  // Expanded add / sub opcode
     57   bool NegAcc;         // True if the acc is negated before the add / sub.
     58   bool HasLane;        // True if instruction has an extra "lane" operand.
     59 };
     60 
     61 static const ARM_MLxEntry ARM_MLxTable[] = {
     62   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     63   // fp scalar ops
     64   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     65   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     66   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     67   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     68   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     69   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     70   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     71   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     72 
     73   // fp SIMD ops
     74   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
     75   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
     76   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
     77   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
     78   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
     79   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
     80   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
     81   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
     82 };
     83 
     84 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
     85   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
     86     Subtarget(STI) {
     87   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
     88     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
     89       assert(false && "Duplicated entries?");
     90     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
     91     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
     92   }
     93 }
     94 
     95 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
     96 // currently defaults to no prepass hazard recognizer.
     97 ScheduleHazardRecognizer *ARMBaseInstrInfo::
     98 CreateTargetHazardRecognizer(const TargetMachine *TM,
     99                              const ScheduleDAG *DAG) const {
    100   if (usePreRAHazardRecognizer()) {
    101     const InstrItineraryData *II = TM->getInstrItineraryData();
    102     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
    103   }
    104   return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
    105 }
    106 
    107 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    108 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    109                                    const ScheduleDAG *DAG) const {
    110   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    111     return (ScheduleHazardRecognizer *)
    112       new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
    113   return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
    114 }
    115 
    116 MachineInstr *
    117 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    118                                         MachineBasicBlock::iterator &MBBI,
    119                                         LiveVariables *LV) const {
    120   // FIXME: Thumb2 support.
    121 
    122   if (!EnableARM3Addr)
    123     return NULL;
    124 
    125   MachineInstr *MI = MBBI;
    126   MachineFunction &MF = *MI->getParent()->getParent();
    127   uint64_t TSFlags = MI->getDesc().TSFlags;
    128   bool isPre = false;
    129   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    130   default: return NULL;
    131   case ARMII::IndexModePre:
    132     isPre = true;
    133     break;
    134   case ARMII::IndexModePost:
    135     break;
    136   }
    137 
    138   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    139   // operation.
    140   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
    141   if (MemOpc == 0)
    142     return NULL;
    143 
    144   MachineInstr *UpdateMI = NULL;
    145   MachineInstr *MemMI = NULL;
    146   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    147   const MCInstrDesc &MCID = MI->getDesc();
    148   unsigned NumOps = MCID.getNumOperands();
    149   bool isLoad = !MI->mayStore();
    150   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
    151   const MachineOperand &Base = MI->getOperand(2);
    152   const MachineOperand &Offset = MI->getOperand(NumOps-3);
    153   unsigned WBReg = WB.getReg();
    154   unsigned BaseReg = Base.getReg();
    155   unsigned OffReg = Offset.getReg();
    156   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
    157   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
    158   switch (AddrMode) {
    159   default: llvm_unreachable("Unknown indexed op!");
    160   case ARMII::AddrMode2: {
    161     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    162     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    163     if (OffReg == 0) {
    164       if (ARM_AM::getSOImmVal(Amt) == -1)
    165         // Can't encode it in a so_imm operand. This transformation will
    166         // add more than 1 instruction. Abandon!
    167         return NULL;
    168       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    169                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    170         .addReg(BaseReg).addImm(Amt)
    171         .addImm(Pred).addReg(0).addReg(0);
    172     } else if (Amt != 0) {
    173       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    174       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    175       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    176                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
    177         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
    178         .addImm(Pred).addReg(0).addReg(0);
    179     } else
    180       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    181                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    182         .addReg(BaseReg).addReg(OffReg)
    183         .addImm(Pred).addReg(0).addReg(0);
    184     break;
    185   }
    186   case ARMII::AddrMode3 : {
    187     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    188     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    189     if (OffReg == 0)
    190       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    191       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    193         .addReg(BaseReg).addImm(Amt)
    194         .addImm(Pred).addReg(0).addReg(0);
    195     else
    196       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    197                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    198         .addReg(BaseReg).addReg(OffReg)
    199         .addImm(Pred).addReg(0).addReg(0);
    200     break;
    201   }
    202   }
    203 
    204   std::vector<MachineInstr*> NewMIs;
    205   if (isPre) {
    206     if (isLoad)
    207       MemMI = BuildMI(MF, MI->getDebugLoc(),
    208                       get(MemOpc), MI->getOperand(0).getReg())
    209         .addReg(WBReg).addImm(0).addImm(Pred);
    210     else
    211       MemMI = BuildMI(MF, MI->getDebugLoc(),
    212                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    213         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    214     NewMIs.push_back(MemMI);
    215     NewMIs.push_back(UpdateMI);
    216   } else {
    217     if (isLoad)
    218       MemMI = BuildMI(MF, MI->getDebugLoc(),
    219                       get(MemOpc), MI->getOperand(0).getReg())
    220         .addReg(BaseReg).addImm(0).addImm(Pred);
    221     else
    222       MemMI = BuildMI(MF, MI->getDebugLoc(),
    223                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    224         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    225     if (WB.isDead())
    226       UpdateMI->getOperand(0).setIsDead();
    227     NewMIs.push_back(UpdateMI);
    228     NewMIs.push_back(MemMI);
    229   }
    230 
    231   // Transfer LiveVariables states, kill / dead info.
    232   if (LV) {
    233     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    234       MachineOperand &MO = MI->getOperand(i);
    235       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    236         unsigned Reg = MO.getReg();
    237 
    238         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    239         if (MO.isDef()) {
    240           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    241           if (MO.isDead())
    242             LV->addVirtualRegisterDead(Reg, NewMI);
    243         }
    244         if (MO.isUse() && MO.isKill()) {
    245           for (unsigned j = 0; j < 2; ++j) {
    246             // Look at the two new MI's in reverse order.
    247             MachineInstr *NewMI = NewMIs[j];
    248             if (!NewMI->readsRegister(Reg))
    249               continue;
    250             LV->addVirtualRegisterKilled(Reg, NewMI);
    251             if (VI.removeKill(MI))
    252               VI.Kills.push_back(NewMI);
    253             break;
    254           }
    255         }
    256       }
    257     }
    258   }
    259 
    260   MFI->insert(MBBI, NewMIs[1]);
    261   MFI->insert(MBBI, NewMIs[0]);
    262   return NewMIs[0];
    263 }
    264 
    265 // Branch analysis.
    266 bool
    267 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    268                                 MachineBasicBlock *&FBB,
    269                                 SmallVectorImpl<MachineOperand> &Cond,
    270                                 bool AllowModify) const {
    271   // If the block has no terminators, it just falls into the block after it.
    272   MachineBasicBlock::iterator I = MBB.end();
    273   if (I == MBB.begin())
    274     return false;
    275   --I;
    276   while (I->isDebugValue()) {
    277     if (I == MBB.begin())
    278       return false;
    279     --I;
    280   }
    281   if (!isUnpredicatedTerminator(I))
    282     return false;
    283 
    284   // Get the last instruction in the block.
    285   MachineInstr *LastInst = I;
    286 
    287   // If there is only one terminator instruction, process it.
    288   unsigned LastOpc = LastInst->getOpcode();
    289   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    290     if (isUncondBranchOpcode(LastOpc)) {
    291       TBB = LastInst->getOperand(0).getMBB();
    292       return false;
    293     }
    294     if (isCondBranchOpcode(LastOpc)) {
    295       // Block ends with fall-through condbranch.
    296       TBB = LastInst->getOperand(0).getMBB();
    297       Cond.push_back(LastInst->getOperand(1));
    298       Cond.push_back(LastInst->getOperand(2));
    299       return false;
    300     }
    301     return true;  // Can't handle indirect branch.
    302   }
    303 
    304   // Get the instruction before it if it is a terminator.
    305   MachineInstr *SecondLastInst = I;
    306   unsigned SecondLastOpc = SecondLastInst->getOpcode();
    307 
    308   // If AllowModify is true and the block ends with two or more unconditional
    309   // branches, delete all but the first unconditional branch.
    310   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
    311     while (isUncondBranchOpcode(SecondLastOpc)) {
    312       LastInst->eraseFromParent();
    313       LastInst = SecondLastInst;
    314       LastOpc = LastInst->getOpcode();
    315       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    316         // Return now the only terminator is an unconditional branch.
    317         TBB = LastInst->getOperand(0).getMBB();
    318         return false;
    319       } else {
    320         SecondLastInst = I;
    321         SecondLastOpc = SecondLastInst->getOpcode();
    322       }
    323     }
    324   }
    325 
    326   // If there are three terminators, we don't know what sort of block this is.
    327   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    328     return true;
    329 
    330   // If the block ends with a B and a Bcc, handle it.
    331   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    332     TBB =  SecondLastInst->getOperand(0).getMBB();
    333     Cond.push_back(SecondLastInst->getOperand(1));
    334     Cond.push_back(SecondLastInst->getOperand(2));
    335     FBB = LastInst->getOperand(0).getMBB();
    336     return false;
    337   }
    338 
    339   // If the block ends with two unconditional branches, handle it.  The second
    340   // one is not executed, so remove it.
    341   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    342     TBB = SecondLastInst->getOperand(0).getMBB();
    343     I = LastInst;
    344     if (AllowModify)
    345       I->eraseFromParent();
    346     return false;
    347   }
    348 
    349   // ...likewise if it ends with a branch table followed by an unconditional
    350   // branch. The branch folder can create these, and we must get rid of them for
    351   // correctness of Thumb constant islands.
    352   if ((isJumpTableBranchOpcode(SecondLastOpc) ||
    353        isIndirectBranchOpcode(SecondLastOpc)) &&
    354       isUncondBranchOpcode(LastOpc)) {
    355     I = LastInst;
    356     if (AllowModify)
    357       I->eraseFromParent();
    358     return true;
    359   }
    360 
    361   // Otherwise, can't handle this.
    362   return true;
    363 }
    364 
    365 
    366 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    367   MachineBasicBlock::iterator I = MBB.end();
    368   if (I == MBB.begin()) return 0;
    369   --I;
    370   while (I->isDebugValue()) {
    371     if (I == MBB.begin())
    372       return 0;
    373     --I;
    374   }
    375   if (!isUncondBranchOpcode(I->getOpcode()) &&
    376       !isCondBranchOpcode(I->getOpcode()))
    377     return 0;
    378 
    379   // Remove the branch.
    380   I->eraseFromParent();
    381 
    382   I = MBB.end();
    383 
    384   if (I == MBB.begin()) return 1;
    385   --I;
    386   if (!isCondBranchOpcode(I->getOpcode()))
    387     return 1;
    388 
    389   // Remove the branch.
    390   I->eraseFromParent();
    391   return 2;
    392 }
    393 
    394 unsigned
    395 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    396                                MachineBasicBlock *FBB,
    397                                const SmallVectorImpl<MachineOperand> &Cond,
    398                                DebugLoc DL) const {
    399   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    400   int BOpc   = !AFI->isThumbFunction()
    401     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    402   int BccOpc = !AFI->isThumbFunction()
    403     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    404   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
    405 
    406   // Shouldn't be a fall through.
    407   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    408   assert((Cond.size() == 2 || Cond.size() == 0) &&
    409          "ARM branch conditions have two components!");
    410 
    411   if (FBB == 0) {
    412     if (Cond.empty()) { // Unconditional branch?
    413       if (isThumb)
    414         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
    415       else
    416         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    417     } else
    418       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    419         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    420     return 1;
    421   }
    422 
    423   // Two-way conditional branch.
    424   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    425     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    426   if (isThumb)
    427     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
    428   else
    429     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    430   return 2;
    431 }
    432 
    433 bool ARMBaseInstrInfo::
    434 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    435   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    436   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    437   return false;
    438 }
    439 
    440 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
    441   if (MI->isBundle()) {
    442     MachineBasicBlock::const_instr_iterator I = MI;
    443     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    444     while (++I != E && I->isInsideBundle()) {
    445       int PIdx = I->findFirstPredOperandIdx();
    446       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
    447         return true;
    448     }
    449     return false;
    450   }
    451 
    452   int PIdx = MI->findFirstPredOperandIdx();
    453   return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
    454 }
    455 
    456 bool ARMBaseInstrInfo::
    457 PredicateInstruction(MachineInstr *MI,
    458                      const SmallVectorImpl<MachineOperand> &Pred) const {
    459   unsigned Opc = MI->getOpcode();
    460   if (isUncondBranchOpcode(Opc)) {
    461     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
    462     MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
    463     MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
    464     return true;
    465   }
    466 
    467   int PIdx = MI->findFirstPredOperandIdx();
    468   if (PIdx != -1) {
    469     MachineOperand &PMO = MI->getOperand(PIdx);
    470     PMO.setImm(Pred[0].getImm());
    471     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    472     return true;
    473   }
    474   return false;
    475 }
    476 
    477 bool ARMBaseInstrInfo::
    478 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    479                   const SmallVectorImpl<MachineOperand> &Pred2) const {
    480   if (Pred1.size() > 2 || Pred2.size() > 2)
    481     return false;
    482 
    483   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    484   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    485   if (CC1 == CC2)
    486     return true;
    487 
    488   switch (CC1) {
    489   default:
    490     return false;
    491   case ARMCC::AL:
    492     return true;
    493   case ARMCC::HS:
    494     return CC2 == ARMCC::HI;
    495   case ARMCC::LS:
    496     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    497   case ARMCC::GE:
    498     return CC2 == ARMCC::GT;
    499   case ARMCC::LE:
    500     return CC2 == ARMCC::LT;
    501   }
    502 }
    503 
    504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
    505                                     std::vector<MachineOperand> &Pred) const {
    506   bool Found = false;
    507   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    508     const MachineOperand &MO = MI->getOperand(i);
    509     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
    510         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
    511       Pred.push_back(MO);
    512       Found = true;
    513     }
    514   }
    515 
    516   return Found;
    517 }
    518 
    519 /// isPredicable - Return true if the specified instruction can be predicated.
    520 /// By default, this returns true for every instruction with a
    521 /// PredicateOperand.
    522 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
    523   if (!MI->isPredicable())
    524     return false;
    525 
    526   if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
    527     ARMFunctionInfo *AFI =
    528       MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
    529     return AFI->isThumb2Function();
    530   }
    531   return true;
    532 }
    533 
    534 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
    535 LLVM_ATTRIBUTE_NOINLINE
    536 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    537                                 unsigned JTI);
    538 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    539                                 unsigned JTI) {
    540   assert(JTI < JT.size());
    541   return JT[JTI].MBBs.size();
    542 }
    543 
    544 /// GetInstSize - Return the size of the specified MachineInstr.
    545 ///
    546 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
    547   const MachineBasicBlock &MBB = *MI->getParent();
    548   const MachineFunction *MF = MBB.getParent();
    549   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    550 
    551   const MCInstrDesc &MCID = MI->getDesc();
    552   if (MCID.getSize())
    553     return MCID.getSize();
    554 
    555   // If this machine instr is an inline asm, measure it.
    556   if (MI->getOpcode() == ARM::INLINEASM)
    557     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
    558   if (MI->isLabel())
    559     return 0;
    560   unsigned Opc = MI->getOpcode();
    561   switch (Opc) {
    562   case TargetOpcode::IMPLICIT_DEF:
    563   case TargetOpcode::KILL:
    564   case TargetOpcode::PROLOG_LABEL:
    565   case TargetOpcode::EH_LABEL:
    566   case TargetOpcode::DBG_VALUE:
    567     return 0;
    568   case TargetOpcode::BUNDLE:
    569     return getInstBundleLength(MI);
    570   case ARM::MOVi16_ga_pcrel:
    571   case ARM::MOVTi16_ga_pcrel:
    572   case ARM::t2MOVi16_ga_pcrel:
    573   case ARM::t2MOVTi16_ga_pcrel:
    574     return 4;
    575   case ARM::MOVi32imm:
    576   case ARM::t2MOVi32imm:
    577     return 8;
    578   case ARM::CONSTPOOL_ENTRY:
    579     // If this machine instr is a constant pool entry, its size is recorded as
    580     // operand #2.
    581     return MI->getOperand(2).getImm();
    582   case ARM::Int_eh_sjlj_longjmp:
    583     return 16;
    584   case ARM::tInt_eh_sjlj_longjmp:
    585     return 10;
    586   case ARM::Int_eh_sjlj_setjmp:
    587   case ARM::Int_eh_sjlj_setjmp_nofp:
    588     return 20;
    589   case ARM::tInt_eh_sjlj_setjmp:
    590   case ARM::t2Int_eh_sjlj_setjmp:
    591   case ARM::t2Int_eh_sjlj_setjmp_nofp:
    592     return 12;
    593   case ARM::BR_JTr:
    594   case ARM::BR_JTm:
    595   case ARM::BR_JTadd:
    596   case ARM::tBR_JTr:
    597   case ARM::t2BR_JT:
    598   case ARM::t2TBB_JT:
    599   case ARM::t2TBH_JT: {
    600     // These are jumptable branches, i.e. a branch followed by an inlined
    601     // jumptable. The size is 4 + 4 * number of entries. For TBB, each
    602     // entry is one byte; TBH two byte each.
    603     unsigned EntrySize = (Opc == ARM::t2TBB_JT)
    604       ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
    605     unsigned NumOps = MCID.getNumOperands();
    606     MachineOperand JTOP =
    607       MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
    608     unsigned JTI = JTOP.getIndex();
    609     const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
    610     assert(MJTI != 0);
    611     const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
    612     assert(JTI < JT.size());
    613     // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
    614     // 4 aligned. The assembler / linker may add 2 byte padding just before
    615     // the JT entries.  The size does not include this padding; the
    616     // constant islands pass does separate bookkeeping for it.
    617     // FIXME: If we know the size of the function is less than (1 << 16) *2
    618     // bytes, we can use 16-bit entries instead. Then there won't be an
    619     // alignment issue.
    620     unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
    621     unsigned NumEntries = getNumJTEntries(JT, JTI);
    622     if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
    623       // Make sure the instruction that follows TBB is 2-byte aligned.
    624       // FIXME: Constant island pass should insert an "ALIGN" instruction
    625       // instead.
    626       ++NumEntries;
    627     return NumEntries * EntrySize + InstSize;
    628   }
    629   default:
    630     // Otherwise, pseudo-instruction sizes are zero.
    631     return 0;
    632   }
    633 }
    634 
    635 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
    636   unsigned Size = 0;
    637   MachineBasicBlock::const_instr_iterator I = MI;
    638   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    639   while (++I != E && I->isInsideBundle()) {
    640     assert(!I->isBundle() && "No nested bundle!");
    641     Size += GetInstSizeInBytes(&*I);
    642   }
    643   return Size;
    644 }
    645 
    646 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    647                                    MachineBasicBlock::iterator I, DebugLoc DL,
    648                                    unsigned DestReg, unsigned SrcReg,
    649                                    bool KillSrc) const {
    650   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    651   bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
    652 
    653   if (GPRDest && GPRSrc) {
    654     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    655                                   .addReg(SrcReg, getKillRegState(KillSrc))));
    656     return;
    657   }
    658 
    659   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    660   bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
    661 
    662   unsigned Opc = 0;
    663   if (SPRDest && SPRSrc)
    664     Opc = ARM::VMOVS;
    665   else if (GPRDest && SPRSrc)
    666     Opc = ARM::VMOVRS;
    667   else if (SPRDest && GPRSrc)
    668     Opc = ARM::VMOVSR;
    669   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
    670     Opc = ARM::VMOVD;
    671   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    672     Opc = ARM::VORRq;
    673 
    674   if (Opc) {
    675     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    676     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    677     if (Opc == ARM::VORRq)
    678       MIB.addReg(SrcReg, getKillRegState(KillSrc));
    679     AddDefaultPred(MIB);
    680     return;
    681   }
    682 
    683   // Handle register classes that require multiple instructions.
    684   unsigned BeginIdx = 0;
    685   unsigned SubRegs = 0;
    686   unsigned Spacing = 1;
    687 
    688   // Use VORRq when possible.
    689   if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
    690     Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
    691   else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
    692     Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
    693   // Fall back to VMOVD.
    694   else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
    695     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
    696   else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
    697     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
    698   else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
    699     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
    700 
    701   else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
    702     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
    703   else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
    704     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
    705   else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
    706     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
    707 
    708   if (Opc) {
    709     const TargetRegisterInfo *TRI = &getRegisterInfo();
    710     MachineInstrBuilder Mov;
    711     for (unsigned i = 0; i != SubRegs; ++i) {
    712       unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
    713       unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
    714       assert(Dst && Src && "Bad sub-register");
    715       Mov = AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
    716                              .addReg(Src));
    717       // VORR takes two source operands.
    718       if (Opc == ARM::VORRq)
    719         Mov.addReg(Src);
    720     }
    721     // Add implicit super-register defs and kills to the last instruction.
    722     Mov->addRegisterDefined(DestReg, TRI);
    723     if (KillSrc)
    724       Mov->addRegisterKilled(SrcReg, TRI);
    725     return;
    726   }
    727 
    728   llvm_unreachable("Impossible reg-to-reg copy");
    729 }
    730 
    731 static const
    732 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
    733                              unsigned Reg, unsigned SubIdx, unsigned State,
    734                              const TargetRegisterInfo *TRI) {
    735   if (!SubIdx)
    736     return MIB.addReg(Reg, State);
    737 
    738   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    739     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    740   return MIB.addReg(Reg, State, SubIdx);
    741 }
    742 
    743 void ARMBaseInstrInfo::
    744 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    745                     unsigned SrcReg, bool isKill, int FI,
    746                     const TargetRegisterClass *RC,
    747                     const TargetRegisterInfo *TRI) const {
    748   DebugLoc DL;
    749   if (I != MBB.end()) DL = I->getDebugLoc();
    750   MachineFunction &MF = *MBB.getParent();
    751   MachineFrameInfo &MFI = *MF.getFrameInfo();
    752   unsigned Align = MFI.getObjectAlignment(FI);
    753 
    754   MachineMemOperand *MMO =
    755     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    756                             MachineMemOperand::MOStore,
    757                             MFI.getObjectSize(FI),
    758                             Align);
    759 
    760   switch (RC->getSize()) {
    761     case 4:
    762       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    763         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
    764                    .addReg(SrcReg, getKillRegState(isKill))
    765                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    766       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    767         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
    768                    .addReg(SrcReg, getKillRegState(isKill))
    769                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    770       } else
    771         llvm_unreachable("Unknown reg class!");
    772       break;
    773     case 8:
    774       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    775         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
    776                    .addReg(SrcReg, getKillRegState(isKill))
    777                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    778       } else
    779         llvm_unreachable("Unknown reg class!");
    780       break;
    781     case 16:
    782       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    783         // Use aligned spills if the stack can be realigned.
    784         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    785           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
    786                      .addFrameIndex(FI).addImm(16)
    787                      .addReg(SrcReg, getKillRegState(isKill))
    788                      .addMemOperand(MMO));
    789         } else {
    790           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
    791                      .addReg(SrcReg, getKillRegState(isKill))
    792                      .addFrameIndex(FI)
    793                      .addMemOperand(MMO));
    794         }
    795       } else
    796         llvm_unreachable("Unknown reg class!");
    797       break;
    798     case 32:
    799       if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
    800         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    801           // FIXME: It's possible to only store part of the QQ register if the
    802           // spilled def has a sub-register index.
    803           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
    804                      .addFrameIndex(FI).addImm(16)
    805                      .addReg(SrcReg, getKillRegState(isKill))
    806                      .addMemOperand(MMO));
    807         } else {
    808           MachineInstrBuilder MIB =
    809           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    810                        .addFrameIndex(FI))
    811                        .addMemOperand(MMO);
    812           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    813           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    814           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    815                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    816         }
    817       } else
    818         llvm_unreachable("Unknown reg class!");
    819       break;
    820     case 64:
    821       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
    822         MachineInstrBuilder MIB =
    823           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    824                          .addFrameIndex(FI))
    825                          .addMemOperand(MMO);
    826         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    827         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    828         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    829         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    830         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
    831         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
    832         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
    833               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
    834       } else
    835         llvm_unreachable("Unknown reg class!");
    836       break;
    837     default:
    838       llvm_unreachable("Unknown reg class!");
    839   }
    840 }
    841 
    842 unsigned
    843 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    844                                      int &FrameIndex) const {
    845   switch (MI->getOpcode()) {
    846   default: break;
    847   case ARM::STRrs:
    848   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
    849     if (MI->getOperand(1).isFI() &&
    850         MI->getOperand(2).isReg() &&
    851         MI->getOperand(3).isImm() &&
    852         MI->getOperand(2).getReg() == 0 &&
    853         MI->getOperand(3).getImm() == 0) {
    854       FrameIndex = MI->getOperand(1).getIndex();
    855       return MI->getOperand(0).getReg();
    856     }
    857     break;
    858   case ARM::STRi12:
    859   case ARM::t2STRi12:
    860   case ARM::tSTRspi:
    861   case ARM::VSTRD:
    862   case ARM::VSTRS:
    863     if (MI->getOperand(1).isFI() &&
    864         MI->getOperand(2).isImm() &&
    865         MI->getOperand(2).getImm() == 0) {
    866       FrameIndex = MI->getOperand(1).getIndex();
    867       return MI->getOperand(0).getReg();
    868     }
    869     break;
    870   case ARM::VST1q64:
    871     if (MI->getOperand(0).isFI() &&
    872         MI->getOperand(2).getSubReg() == 0) {
    873       FrameIndex = MI->getOperand(0).getIndex();
    874       return MI->getOperand(2).getReg();
    875     }
    876     break;
    877   case ARM::VSTMQIA:
    878     if (MI->getOperand(1).isFI() &&
    879         MI->getOperand(0).getSubReg() == 0) {
    880       FrameIndex = MI->getOperand(1).getIndex();
    881       return MI->getOperand(0).getReg();
    882     }
    883     break;
    884   }
    885 
    886   return 0;
    887 }
    888 
    889 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
    890                                                     int &FrameIndex) const {
    891   const MachineMemOperand *Dummy;
    892   return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
    893 }
    894 
    895 void ARMBaseInstrInfo::
    896 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    897                      unsigned DestReg, int FI,
    898                      const TargetRegisterClass *RC,
    899                      const TargetRegisterInfo *TRI) const {
    900   DebugLoc DL;
    901   if (I != MBB.end()) DL = I->getDebugLoc();
    902   MachineFunction &MF = *MBB.getParent();
    903   MachineFrameInfo &MFI = *MF.getFrameInfo();
    904   unsigned Align = MFI.getObjectAlignment(FI);
    905   MachineMemOperand *MMO =
    906     MF.getMachineMemOperand(
    907                     MachinePointerInfo::getFixedStack(FI),
    908                             MachineMemOperand::MOLoad,
    909                             MFI.getObjectSize(FI),
    910                             Align);
    911 
    912   switch (RC->getSize()) {
    913   case 4:
    914     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    915       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
    916                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    917 
    918     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    919       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
    920                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    921     } else
    922       llvm_unreachable("Unknown reg class!");
    923     break;
    924   case 8:
    925     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    926       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
    927                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    928     } else
    929       llvm_unreachable("Unknown reg class!");
    930     break;
    931   case 16:
    932     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    933       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    934         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
    935                      .addFrameIndex(FI).addImm(16)
    936                      .addMemOperand(MMO));
    937       } else {
    938         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
    939                        .addFrameIndex(FI)
    940                        .addMemOperand(MMO));
    941       }
    942     } else
    943       llvm_unreachable("Unknown reg class!");
    944     break;
    945   case 32:
    946     if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
    947       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    948         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
    949                      .addFrameIndex(FI).addImm(16)
    950                      .addMemOperand(MMO));
    951       } else {
    952         MachineInstrBuilder MIB =
    953         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
    954                        .addFrameIndex(FI))
    955                        .addMemOperand(MMO);
    956         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
    957         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
    958         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
    959         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
    960         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
    961           MIB.addReg(DestReg, RegState::ImplicitDefine);
    962       }
    963     } else
    964       llvm_unreachable("Unknown reg class!");
    965     break;
    966   case 64:
    967     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
    968       MachineInstrBuilder MIB =
    969       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
    970                      .addFrameIndex(FI))
    971                      .addMemOperand(MMO);
    972       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
    973       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
    974       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
    975       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
    976       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
    977       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
    978       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
    979       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
    980       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
    981         MIB.addReg(DestReg, RegState::ImplicitDefine);
    982     } else
    983       llvm_unreachable("Unknown reg class!");
    984     break;
    985   default:
    986     llvm_unreachable("Unknown regclass!");
    987   }
    988 }
    989 
    990 unsigned
    991 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    992                                       int &FrameIndex) const {
    993   switch (MI->getOpcode()) {
    994   default: break;
    995   case ARM::LDRrs:
    996   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
    997     if (MI->getOperand(1).isFI() &&
    998         MI->getOperand(2).isReg() &&
    999         MI->getOperand(3).isImm() &&
   1000         MI->getOperand(2).getReg() == 0 &&
   1001         MI->getOperand(3).getImm() == 0) {
   1002       FrameIndex = MI->getOperand(1).getIndex();
   1003       return MI->getOperand(0).getReg();
   1004     }
   1005     break;
   1006   case ARM::LDRi12:
   1007   case ARM::t2LDRi12:
   1008   case ARM::tLDRspi:
   1009   case ARM::VLDRD:
   1010   case ARM::VLDRS:
   1011     if (MI->getOperand(1).isFI() &&
   1012         MI->getOperand(2).isImm() &&
   1013         MI->getOperand(2).getImm() == 0) {
   1014       FrameIndex = MI->getOperand(1).getIndex();
   1015       return MI->getOperand(0).getReg();
   1016     }
   1017     break;
   1018   case ARM::VLD1q64:
   1019     if (MI->getOperand(1).isFI() &&
   1020         MI->getOperand(0).getSubReg() == 0) {
   1021       FrameIndex = MI->getOperand(1).getIndex();
   1022       return MI->getOperand(0).getReg();
   1023     }
   1024     break;
   1025   case ARM::VLDMQIA:
   1026     if (MI->getOperand(1).isFI() &&
   1027         MI->getOperand(0).getSubReg() == 0) {
   1028       FrameIndex = MI->getOperand(1).getIndex();
   1029       return MI->getOperand(0).getReg();
   1030     }
   1031     break;
   1032   }
   1033 
   1034   return 0;
   1035 }
   1036 
   1037 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1038                                              int &FrameIndex) const {
   1039   const MachineMemOperand *Dummy;
   1040   return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1041 }
   1042 
   1043 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
   1044   // This hook gets to expand COPY instructions before they become
   1045   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
   1046   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
   1047   // changed into a VORR that can go down the NEON pipeline.
   1048   if (!WidenVMOVS || !MI->isCopy())
   1049     return false;
   1050 
   1051   // Look for a copy between even S-registers.  That is where we keep floats
   1052   // when using NEON v2f32 instructions for f32 arithmetic.
   1053   unsigned DstRegS = MI->getOperand(0).getReg();
   1054   unsigned SrcRegS = MI->getOperand(1).getReg();
   1055   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
   1056     return false;
   1057 
   1058   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1059   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
   1060                                               &ARM::DPRRegClass);
   1061   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
   1062                                               &ARM::DPRRegClass);
   1063   if (!DstRegD || !SrcRegD)
   1064     return false;
   1065 
   1066   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
   1067   // legal if the COPY already defines the full DstRegD, and it isn't a
   1068   // sub-register insertion.
   1069   if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
   1070     return false;
   1071 
   1072   // A dead copy shouldn't show up here, but reject it just in case.
   1073   if (MI->getOperand(0).isDead())
   1074     return false;
   1075 
   1076   // All clear, widen the COPY.
   1077   DEBUG(dbgs() << "widening:    " << *MI);
   1078 
   1079   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
   1080   // or some other super-register.
   1081   int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
   1082   if (ImpDefIdx != -1)
   1083     MI->RemoveOperand(ImpDefIdx);
   1084 
   1085   // Change the opcode and operands.
   1086   MI->setDesc(get(ARM::VMOVD));
   1087   MI->getOperand(0).setReg(DstRegD);
   1088   MI->getOperand(1).setReg(SrcRegD);
   1089   AddDefaultPred(MachineInstrBuilder(MI));
   1090 
   1091   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
   1092   // register scavenger and machine verifier, so we need to indicate that we
   1093   // are reading an undefined value from SrcRegD, but a proper value from
   1094   // SrcRegS.
   1095   MI->getOperand(1).setIsUndef();
   1096   MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
   1097 
   1098   // SrcRegD may actually contain an unrelated value in the ssub_1
   1099   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
   1100   if (MI->getOperand(1).isKill()) {
   1101     MI->getOperand(1).setIsKill(false);
   1102     MI->addRegisterKilled(SrcRegS, TRI, true);
   1103   }
   1104 
   1105   DEBUG(dbgs() << "replaced by: " << *MI);
   1106   return true;
   1107 }
   1108 
   1109 MachineInstr*
   1110 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
   1111                                            int FrameIx, uint64_t Offset,
   1112                                            const MDNode *MDPtr,
   1113                                            DebugLoc DL) const {
   1114   MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
   1115     .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
   1116   return &*MIB;
   1117 }
   1118 
   1119 /// Create a copy of a const pool value. Update CPI to the new index and return
   1120 /// the label UID.
   1121 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
   1122   MachineConstantPool *MCP = MF.getConstantPool();
   1123   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1124 
   1125   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
   1126   assert(MCPE.isMachineConstantPoolEntry() &&
   1127          "Expecting a machine constantpool entry!");
   1128   ARMConstantPoolValue *ACPV =
   1129     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
   1130 
   1131   unsigned PCLabelId = AFI->createPICLabelUId();
   1132   ARMConstantPoolValue *NewCPV = 0;
   1133   // FIXME: The below assumes PIC relocation model and that the function
   1134   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
   1135   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
   1136   // instructions, so that's probably OK, but is PIC always correct when
   1137   // we get here?
   1138   if (ACPV->isGlobalValue())
   1139     NewCPV = ARMConstantPoolConstant::
   1140       Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
   1141              ARMCP::CPValue, 4);
   1142   else if (ACPV->isExtSymbol())
   1143     NewCPV = ARMConstantPoolSymbol::
   1144       Create(MF.getFunction()->getContext(),
   1145              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
   1146   else if (ACPV->isBlockAddress())
   1147     NewCPV = ARMConstantPoolConstant::
   1148       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
   1149              ARMCP::CPBlockAddress, 4);
   1150   else if (ACPV->isLSDA())
   1151     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
   1152                                              ARMCP::CPLSDA, 4);
   1153   else if (ACPV->isMachineBasicBlock())
   1154     NewCPV = ARMConstantPoolMBB::
   1155       Create(MF.getFunction()->getContext(),
   1156              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
   1157   else
   1158     llvm_unreachable("Unexpected ARM constantpool value type!!");
   1159   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
   1160   return PCLabelId;
   1161 }
   1162 
   1163 void ARMBaseInstrInfo::
   1164 reMaterialize(MachineBasicBlock &MBB,
   1165               MachineBasicBlock::iterator I,
   1166               unsigned DestReg, unsigned SubIdx,
   1167               const MachineInstr *Orig,
   1168               const TargetRegisterInfo &TRI) const {
   1169   unsigned Opcode = Orig->getOpcode();
   1170   switch (Opcode) {
   1171   default: {
   1172     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1173     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1174     MBB.insert(I, MI);
   1175     break;
   1176   }
   1177   case ARM::tLDRpci_pic:
   1178   case ARM::t2LDRpci_pic: {
   1179     MachineFunction &MF = *MBB.getParent();
   1180     unsigned CPI = Orig->getOperand(1).getIndex();
   1181     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1182     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
   1183                                       DestReg)
   1184       .addConstantPoolIndex(CPI).addImm(PCLabelId);
   1185     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
   1186     break;
   1187   }
   1188   }
   1189 }
   1190 
   1191 MachineInstr *
   1192 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
   1193   MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
   1194   switch(Orig->getOpcode()) {
   1195   case ARM::tLDRpci_pic:
   1196   case ARM::t2LDRpci_pic: {
   1197     unsigned CPI = Orig->getOperand(1).getIndex();
   1198     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1199     Orig->getOperand(1).setIndex(CPI);
   1200     Orig->getOperand(2).setImm(PCLabelId);
   1201     break;
   1202   }
   1203   }
   1204   return MI;
   1205 }
   1206 
   1207 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
   1208                                         const MachineInstr *MI1,
   1209                                         const MachineRegisterInfo *MRI) const {
   1210   int Opcode = MI0->getOpcode();
   1211   if (Opcode == ARM::t2LDRpci ||
   1212       Opcode == ARM::t2LDRpci_pic ||
   1213       Opcode == ARM::tLDRpci ||
   1214       Opcode == ARM::tLDRpci_pic ||
   1215       Opcode == ARM::MOV_ga_dyn ||
   1216       Opcode == ARM::MOV_ga_pcrel ||
   1217       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1218       Opcode == ARM::t2MOV_ga_dyn ||
   1219       Opcode == ARM::t2MOV_ga_pcrel) {
   1220     if (MI1->getOpcode() != Opcode)
   1221       return false;
   1222     if (MI0->getNumOperands() != MI1->getNumOperands())
   1223       return false;
   1224 
   1225     const MachineOperand &MO0 = MI0->getOperand(1);
   1226     const MachineOperand &MO1 = MI1->getOperand(1);
   1227     if (MO0.getOffset() != MO1.getOffset())
   1228       return false;
   1229 
   1230     if (Opcode == ARM::MOV_ga_dyn ||
   1231         Opcode == ARM::MOV_ga_pcrel ||
   1232         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1233         Opcode == ARM::t2MOV_ga_dyn ||
   1234         Opcode == ARM::t2MOV_ga_pcrel)
   1235       // Ignore the PC labels.
   1236       return MO0.getGlobal() == MO1.getGlobal();
   1237 
   1238     const MachineFunction *MF = MI0->getParent()->getParent();
   1239     const MachineConstantPool *MCP = MF->getConstantPool();
   1240     int CPI0 = MO0.getIndex();
   1241     int CPI1 = MO1.getIndex();
   1242     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1243     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1244     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1245     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1246     if (isARMCP0 && isARMCP1) {
   1247       ARMConstantPoolValue *ACPV0 =
   1248         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1249       ARMConstantPoolValue *ACPV1 =
   1250         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1251       return ACPV0->hasSameValue(ACPV1);
   1252     } else if (!isARMCP0 && !isARMCP1) {
   1253       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1254     }
   1255     return false;
   1256   } else if (Opcode == ARM::PICLDR) {
   1257     if (MI1->getOpcode() != Opcode)
   1258       return false;
   1259     if (MI0->getNumOperands() != MI1->getNumOperands())
   1260       return false;
   1261 
   1262     unsigned Addr0 = MI0->getOperand(1).getReg();
   1263     unsigned Addr1 = MI1->getOperand(1).getReg();
   1264     if (Addr0 != Addr1) {
   1265       if (!MRI ||
   1266           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1267           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1268         return false;
   1269 
   1270       // This assumes SSA form.
   1271       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1272       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1273       // Check if the loaded value, e.g. a constantpool of a global address, are
   1274       // the same.
   1275       if (!produceSameValue(Def0, Def1, MRI))
   1276         return false;
   1277     }
   1278 
   1279     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
   1280       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
   1281       const MachineOperand &MO0 = MI0->getOperand(i);
   1282       const MachineOperand &MO1 = MI1->getOperand(i);
   1283       if (!MO0.isIdenticalTo(MO1))
   1284         return false;
   1285     }
   1286     return true;
   1287   }
   1288 
   1289   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1290 }
   1291 
   1292 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1293 /// determine if two loads are loading from the same base address. It should
   1294 /// only return true if the base pointers are the same and the only differences
   1295 /// between the two addresses is the offset. It also returns the offsets by
   1296 /// reference.
   1297 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1298                                                int64_t &Offset1,
   1299                                                int64_t &Offset2) const {
   1300   // Don't worry about Thumb: just ARM and Thumb2.
   1301   if (Subtarget.isThumb1Only()) return false;
   1302 
   1303   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1304     return false;
   1305 
   1306   switch (Load1->getMachineOpcode()) {
   1307   default:
   1308     return false;
   1309   case ARM::LDRi12:
   1310   case ARM::LDRBi12:
   1311   case ARM::LDRD:
   1312   case ARM::LDRH:
   1313   case ARM::LDRSB:
   1314   case ARM::LDRSH:
   1315   case ARM::VLDRD:
   1316   case ARM::VLDRS:
   1317   case ARM::t2LDRi8:
   1318   case ARM::t2LDRDi8:
   1319   case ARM::t2LDRSHi8:
   1320   case ARM::t2LDRi12:
   1321   case ARM::t2LDRSHi12:
   1322     break;
   1323   }
   1324 
   1325   switch (Load2->getMachineOpcode()) {
   1326   default:
   1327     return false;
   1328   case ARM::LDRi12:
   1329   case ARM::LDRBi12:
   1330   case ARM::LDRD:
   1331   case ARM::LDRH:
   1332   case ARM::LDRSB:
   1333   case ARM::LDRSH:
   1334   case ARM::VLDRD:
   1335   case ARM::VLDRS:
   1336   case ARM::t2LDRi8:
   1337   case ARM::t2LDRDi8:
   1338   case ARM::t2LDRSHi8:
   1339   case ARM::t2LDRi12:
   1340   case ARM::t2LDRSHi12:
   1341     break;
   1342   }
   1343 
   1344   // Check if base addresses and chain operands match.
   1345   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1346       Load1->getOperand(4) != Load2->getOperand(4))
   1347     return false;
   1348 
   1349   // Index should be Reg0.
   1350   if (Load1->getOperand(3) != Load2->getOperand(3))
   1351     return false;
   1352 
   1353   // Determine the offsets.
   1354   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1355       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1356     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1357     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1358     return true;
   1359   }
   1360 
   1361   return false;
   1362 }
   1363 
   1364 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1365 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1366 /// be scheduled togther. On some targets if two loads are loading from
   1367 /// addresses in the same cache line, it's better if they are scheduled
   1368 /// together. This function takes two integers that represent the load offsets
   1369 /// from the common base address. It returns true if it decides it's desirable
   1370 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1371 /// have already been scheduled after Load1.
   1372 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1373                                                int64_t Offset1, int64_t Offset2,
   1374                                                unsigned NumLoads) const {
   1375   // Don't worry about Thumb: just ARM and Thumb2.
   1376   if (Subtarget.isThumb1Only()) return false;
   1377 
   1378   assert(Offset2 > Offset1);
   1379 
   1380   if ((Offset2 - Offset1) / 8 > 64)
   1381     return false;
   1382 
   1383   if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
   1384     return false;  // FIXME: overly conservative?
   1385 
   1386   // Four loads in a row should be sufficient.
   1387   if (NumLoads >= 3)
   1388     return false;
   1389 
   1390   return true;
   1391 }
   1392 
   1393 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1394                                             const MachineBasicBlock *MBB,
   1395                                             const MachineFunction &MF) const {
   1396   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1397   // due to the special treatment of IT instructions below, otherwise a
   1398   // dbg_value followed by an IT will result in the IT instruction being
   1399   // considered a scheduling hazard, which is wrong. It should be the actual
   1400   // instruction preceding the dbg_value instruction(s), just like it is
   1401   // when debug info is not present.
   1402   if (MI->isDebugValue())
   1403     return false;
   1404 
   1405   // Terminators and labels can't be scheduled around.
   1406   if (MI->isTerminator() || MI->isLabel())
   1407     return true;
   1408 
   1409   // Treat the start of the IT block as a scheduling boundary, but schedule
   1410   // t2IT along with all instructions following it.
   1411   // FIXME: This is a big hammer. But the alternative is to add all potential
   1412   // true and anti dependencies to IT block instructions as implicit operands
   1413   // to the t2IT instruction. The added compile time and complexity does not
   1414   // seem worth it.
   1415   MachineBasicBlock::const_iterator I = MI;
   1416   // Make sure to skip any dbg_value instructions
   1417   while (++I != MBB->end() && I->isDebugValue())
   1418     ;
   1419   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1420     return true;
   1421 
   1422   // Don't attempt to schedule around any instruction that defines
   1423   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1424   // saves compile time, because it doesn't require every single
   1425   // stack slot reference to depend on the instruction that does the
   1426   // modification.
   1427   // Calls don't actually change the stack pointer, even if they have imp-defs.
   1428   // No ARM calling conventions change the stack pointer. (X86 calling
   1429   // conventions sometimes do).
   1430   if (!MI->isCall() && MI->definesRegister(ARM::SP))
   1431     return true;
   1432 
   1433   return false;
   1434 }
   1435 
   1436 bool ARMBaseInstrInfo::
   1437 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1438                     unsigned NumCycles, unsigned ExtraPredCycles,
   1439                     const BranchProbability &Probability) const {
   1440   if (!NumCycles)
   1441     return false;
   1442 
   1443   // Attempt to estimate the relative costs of predication versus branching.
   1444   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
   1445   UnpredCost /= Probability.getDenominator();
   1446   UnpredCost += 1; // The branch itself
   1447   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1448 
   1449   return (NumCycles + ExtraPredCycles) <= UnpredCost;
   1450 }
   1451 
   1452 bool ARMBaseInstrInfo::
   1453 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1454                     unsigned TCycles, unsigned TExtra,
   1455                     MachineBasicBlock &FMBB,
   1456                     unsigned FCycles, unsigned FExtra,
   1457                     const BranchProbability &Probability) const {
   1458   if (!TCycles || !FCycles)
   1459     return false;
   1460 
   1461   // Attempt to estimate the relative costs of predication versus branching.
   1462   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
   1463   TUnpredCost /= Probability.getDenominator();
   1464 
   1465   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
   1466   unsigned FUnpredCost = Comp * FCycles;
   1467   FUnpredCost /= Probability.getDenominator();
   1468 
   1469   unsigned UnpredCost = TUnpredCost + FUnpredCost;
   1470   UnpredCost += 1; // The branch itself
   1471   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1472 
   1473   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
   1474 }
   1475 
   1476 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1477 /// condition, otherwise returns AL. It also returns the condition code
   1478 /// register by reference.
   1479 ARMCC::CondCodes
   1480 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
   1481   int PIdx = MI->findFirstPredOperandIdx();
   1482   if (PIdx == -1) {
   1483     PredReg = 0;
   1484     return ARMCC::AL;
   1485   }
   1486 
   1487   PredReg = MI->getOperand(PIdx+1).getReg();
   1488   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
   1489 }
   1490 
   1491 
   1492 int llvm::getMatchingCondBranchOpcode(int Opc) {
   1493   if (Opc == ARM::B)
   1494     return ARM::Bcc;
   1495   if (Opc == ARM::tB)
   1496     return ARM::tBcc;
   1497   if (Opc == ARM::t2B)
   1498     return ARM::t2Bcc;
   1499 
   1500   llvm_unreachable("Unknown unconditional branch opcode!");
   1501 }
   1502 
   1503 /// commuteInstruction - Handle commutable instructions.
   1504 MachineInstr *
   1505 ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   1506   switch (MI->getOpcode()) {
   1507   case ARM::MOVCCr:
   1508   case ARM::t2MOVCCr: {
   1509     // MOVCC can be commuted by inverting the condition.
   1510     unsigned PredReg = 0;
   1511     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
   1512     // MOVCC AL can't be inverted. Shouldn't happen.
   1513     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
   1514       return NULL;
   1515     MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   1516     if (!MI)
   1517       return NULL;
   1518     // After swapping the MOVCC operands, also invert the condition.
   1519     MI->getOperand(MI->findFirstPredOperandIdx())
   1520       .setImm(ARMCC::getOppositeCondition(CC));
   1521     return MI;
   1522   }
   1523   }
   1524   return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   1525 }
   1526 
   1527 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
   1528 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
   1529 /// def operand.
   1530 ///
   1531 /// This will go away once we can teach tblgen how to set the optional CPSR def
   1532 /// operand itself.
   1533 struct AddSubFlagsOpcodePair {
   1534   unsigned PseudoOpc;
   1535   unsigned MachineOpc;
   1536 };
   1537 
   1538 static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
   1539   {ARM::ADDSri, ARM::ADDri},
   1540   {ARM::ADDSrr, ARM::ADDrr},
   1541   {ARM::ADDSrsi, ARM::ADDrsi},
   1542   {ARM::ADDSrsr, ARM::ADDrsr},
   1543 
   1544   {ARM::SUBSri, ARM::SUBri},
   1545   {ARM::SUBSrr, ARM::SUBrr},
   1546   {ARM::SUBSrsi, ARM::SUBrsi},
   1547   {ARM::SUBSrsr, ARM::SUBrsr},
   1548 
   1549   {ARM::RSBSri, ARM::RSBri},
   1550   {ARM::RSBSrsi, ARM::RSBrsi},
   1551   {ARM::RSBSrsr, ARM::RSBrsr},
   1552 
   1553   {ARM::t2ADDSri, ARM::t2ADDri},
   1554   {ARM::t2ADDSrr, ARM::t2ADDrr},
   1555   {ARM::t2ADDSrs, ARM::t2ADDrs},
   1556 
   1557   {ARM::t2SUBSri, ARM::t2SUBri},
   1558   {ARM::t2SUBSrr, ARM::t2SUBrr},
   1559   {ARM::t2SUBSrs, ARM::t2SUBrs},
   1560 
   1561   {ARM::t2RSBSri, ARM::t2RSBri},
   1562   {ARM::t2RSBSrs, ARM::t2RSBrs},
   1563 };
   1564 
   1565 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
   1566   static const int NPairs =
   1567     sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
   1568   for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0],
   1569          *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) {
   1570     if (OldOpc == OpcPair->PseudoOpc) {
   1571       return OpcPair->MachineOpc;
   1572     }
   1573   }
   1574   return 0;
   1575 }
   1576 
   1577 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   1578                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
   1579                                unsigned DestReg, unsigned BaseReg, int NumBytes,
   1580                                ARMCC::CondCodes Pred, unsigned PredReg,
   1581                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
   1582   bool isSub = NumBytes < 0;
   1583   if (isSub) NumBytes = -NumBytes;
   1584 
   1585   while (NumBytes) {
   1586     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   1587     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   1588     assert(ThisVal && "Didn't extract field correctly");
   1589 
   1590     // We will handle these bits from offset, clear them.
   1591     NumBytes &= ~ThisVal;
   1592 
   1593     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   1594 
   1595     // Build the new ADD / SUB.
   1596     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   1597     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   1598       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
   1599       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   1600       .setMIFlags(MIFlags);
   1601     BaseReg = DestReg;
   1602   }
   1603 }
   1604 
   1605 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   1606                                 unsigned FrameReg, int &Offset,
   1607                                 const ARMBaseInstrInfo &TII) {
   1608   unsigned Opcode = MI.getOpcode();
   1609   const MCInstrDesc &Desc = MI.getDesc();
   1610   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   1611   bool isSub = false;
   1612 
   1613   // Memory operands in inline assembly always use AddrMode2.
   1614   if (Opcode == ARM::INLINEASM)
   1615     AddrMode = ARMII::AddrMode2;
   1616 
   1617   if (Opcode == ARM::ADDri) {
   1618     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   1619     if (Offset == 0) {
   1620       // Turn it into a move.
   1621       MI.setDesc(TII.get(ARM::MOVr));
   1622       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1623       MI.RemoveOperand(FrameRegIdx+1);
   1624       Offset = 0;
   1625       return true;
   1626     } else if (Offset < 0) {
   1627       Offset = -Offset;
   1628       isSub = true;
   1629       MI.setDesc(TII.get(ARM::SUBri));
   1630     }
   1631 
   1632     // Common case: small offset, fits into instruction.
   1633     if (ARM_AM::getSOImmVal(Offset) != -1) {
   1634       // Replace the FrameIndex with sp / fp
   1635       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1636       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   1637       Offset = 0;
   1638       return true;
   1639     }
   1640 
   1641     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   1642     // as possible.
   1643     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   1644     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   1645 
   1646     // We will handle these bits from offset, clear them.
   1647     Offset &= ~ThisImmVal;
   1648 
   1649     // Get the properly encoded SOImmVal field.
   1650     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   1651            "Bit extraction didn't work?");
   1652     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   1653  } else {
   1654     unsigned ImmIdx = 0;
   1655     int InstrOffs = 0;
   1656     unsigned NumBits = 0;
   1657     unsigned Scale = 1;
   1658     switch (AddrMode) {
   1659     case ARMII::AddrMode_i12: {
   1660       ImmIdx = FrameRegIdx + 1;
   1661       InstrOffs = MI.getOperand(ImmIdx).getImm();
   1662       NumBits = 12;
   1663       break;
   1664     }
   1665     case ARMII::AddrMode2: {
   1666       ImmIdx = FrameRegIdx+2;
   1667       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   1668       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1669         InstrOffs *= -1;
   1670       NumBits = 12;
   1671       break;
   1672     }
   1673     case ARMII::AddrMode3: {
   1674       ImmIdx = FrameRegIdx+2;
   1675       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   1676       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1677         InstrOffs *= -1;
   1678       NumBits = 8;
   1679       break;
   1680     }
   1681     case ARMII::AddrMode4:
   1682     case ARMII::AddrMode6:
   1683       // Can't fold any offset even if it's zero.
   1684       return false;
   1685     case ARMII::AddrMode5: {
   1686       ImmIdx = FrameRegIdx+1;
   1687       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   1688       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1689         InstrOffs *= -1;
   1690       NumBits = 8;
   1691       Scale = 4;
   1692       break;
   1693     }
   1694     default:
   1695       llvm_unreachable("Unsupported addressing mode!");
   1696     }
   1697 
   1698     Offset += InstrOffs * Scale;
   1699     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   1700     if (Offset < 0) {
   1701       Offset = -Offset;
   1702       isSub = true;
   1703     }
   1704 
   1705     // Attempt to fold address comp. if opcode has offset bits
   1706     if (NumBits > 0) {
   1707       // Common case: small offset, fits into instruction.
   1708       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   1709       int ImmedOffset = Offset / Scale;
   1710       unsigned Mask = (1 << NumBits) - 1;
   1711       if ((unsigned)Offset <= Mask * Scale) {
   1712         // Replace the FrameIndex with sp
   1713         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1714         // FIXME: When addrmode2 goes away, this will simplify (like the
   1715         // T2 version), as the LDR.i12 versions don't need the encoding
   1716         // tricks for the offset value.
   1717         if (isSub) {
   1718           if (AddrMode == ARMII::AddrMode_i12)
   1719             ImmedOffset = -ImmedOffset;
   1720           else
   1721             ImmedOffset |= 1 << NumBits;
   1722         }
   1723         ImmOp.ChangeToImmediate(ImmedOffset);
   1724         Offset = 0;
   1725         return true;
   1726       }
   1727 
   1728       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   1729       ImmedOffset = ImmedOffset & Mask;
   1730       if (isSub) {
   1731         if (AddrMode == ARMII::AddrMode_i12)
   1732           ImmedOffset = -ImmedOffset;
   1733         else
   1734           ImmedOffset |= 1 << NumBits;
   1735       }
   1736       ImmOp.ChangeToImmediate(ImmedOffset);
   1737       Offset &= ~(Mask*Scale);
   1738     }
   1739   }
   1740 
   1741   Offset = (isSub) ? -Offset : Offset;
   1742   return Offset == 0;
   1743 }
   1744 
   1745 bool ARMBaseInstrInfo::
   1746 AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
   1747                int &CmpValue) const {
   1748   switch (MI->getOpcode()) {
   1749   default: break;
   1750   case ARM::CMPri:
   1751   case ARM::t2CMPri:
   1752     SrcReg = MI->getOperand(0).getReg();
   1753     CmpMask = ~0;
   1754     CmpValue = MI->getOperand(1).getImm();
   1755     return true;
   1756   case ARM::TSTri:
   1757   case ARM::t2TSTri:
   1758     SrcReg = MI->getOperand(0).getReg();
   1759     CmpMask = MI->getOperand(1).getImm();
   1760     CmpValue = 0;
   1761     return true;
   1762   }
   1763 
   1764   return false;
   1765 }
   1766 
   1767 /// isSuitableForMask - Identify a suitable 'and' instruction that
   1768 /// operates on the given source register and applies the same mask
   1769 /// as a 'tst' instruction. Provide a limited look-through for copies.
   1770 /// When successful, MI will hold the found instruction.
   1771 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   1772                               int CmpMask, bool CommonUse) {
   1773   switch (MI->getOpcode()) {
   1774     case ARM::ANDri:
   1775     case ARM::t2ANDri:
   1776       if (CmpMask != MI->getOperand(2).getImm())
   1777         return false;
   1778       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   1779         return true;
   1780       break;
   1781     case ARM::COPY: {
   1782       // Walk down one instruction which is potentially an 'and'.
   1783       const MachineInstr &Copy = *MI;
   1784       MachineBasicBlock::iterator AND(
   1785         llvm::next(MachineBasicBlock::iterator(MI)));
   1786       if (AND == MI->getParent()->end()) return false;
   1787       MI = AND;
   1788       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
   1789                                CmpMask, true);
   1790     }
   1791   }
   1792 
   1793   return false;
   1794 }
   1795 
   1796 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
   1797 /// comparison into one that sets the zero bit in the flags register.
   1798 bool ARMBaseInstrInfo::
   1799 OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
   1800                      int CmpValue, const MachineRegisterInfo *MRI) const {
   1801   if (CmpValue != 0)
   1802     return false;
   1803 
   1804   MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
   1805   if (llvm::next(DI) != MRI->def_end())
   1806     // Only support one definition.
   1807     return false;
   1808 
   1809   MachineInstr *MI = &*DI;
   1810 
   1811   // Masked compares sometimes use the same register as the corresponding 'and'.
   1812   if (CmpMask != ~0) {
   1813     if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
   1814       MI = 0;
   1815       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
   1816            UE = MRI->use_end(); UI != UE; ++UI) {
   1817         if (UI->getParent() != CmpInstr->getParent()) continue;
   1818         MachineInstr *PotentialAND = &*UI;
   1819         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
   1820           continue;
   1821         MI = PotentialAND;
   1822         break;
   1823       }
   1824       if (!MI) return false;
   1825     }
   1826   }
   1827 
   1828   // Conservatively refuse to convert an instruction which isn't in the same BB
   1829   // as the comparison.
   1830   if (MI->getParent() != CmpInstr->getParent())
   1831     return false;
   1832 
   1833   // Check that CPSR isn't set between the comparison instruction and the one we
   1834   // want to change.
   1835   MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin();
   1836 
   1837   // Early exit if CmpInstr is at the beginning of the BB.
   1838   if (I == B) return false;
   1839 
   1840   --I;
   1841   for (; I != E; --I) {
   1842     const MachineInstr &Instr = *I;
   1843 
   1844     for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
   1845       const MachineOperand &MO = Instr.getOperand(IO);
   1846       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR))
   1847         return false;
   1848       if (!MO.isReg()) continue;
   1849 
   1850       // This instruction modifies or uses CPSR after the one we want to
   1851       // change. We can't do this transformation.
   1852       if (MO.getReg() == ARM::CPSR)
   1853         return false;
   1854     }
   1855 
   1856     if (I == B)
   1857       // The 'and' is below the comparison instruction.
   1858       return false;
   1859   }
   1860 
   1861   // Set the "zero" bit in CPSR.
   1862   switch (MI->getOpcode()) {
   1863   default: break;
   1864   case ARM::RSBrr:
   1865   case ARM::RSBri:
   1866   case ARM::RSCrr:
   1867   case ARM::RSCri:
   1868   case ARM::ADDrr:
   1869   case ARM::ADDri:
   1870   case ARM::ADCrr:
   1871   case ARM::ADCri:
   1872   case ARM::SUBrr:
   1873   case ARM::SUBri:
   1874   case ARM::SBCrr:
   1875   case ARM::SBCri:
   1876   case ARM::t2RSBri:
   1877   case ARM::t2ADDrr:
   1878   case ARM::t2ADDri:
   1879   case ARM::t2ADCrr:
   1880   case ARM::t2ADCri:
   1881   case ARM::t2SUBrr:
   1882   case ARM::t2SUBri:
   1883   case ARM::t2SBCrr:
   1884   case ARM::t2SBCri:
   1885   case ARM::ANDrr:
   1886   case ARM::ANDri:
   1887   case ARM::t2ANDrr:
   1888   case ARM::t2ANDri:
   1889   case ARM::ORRrr:
   1890   case ARM::ORRri:
   1891   case ARM::t2ORRrr:
   1892   case ARM::t2ORRri:
   1893   case ARM::EORrr:
   1894   case ARM::EORri:
   1895   case ARM::t2EORrr:
   1896   case ARM::t2EORri: {
   1897     // Scan forward for the use of CPSR, if it's a conditional code requires
   1898     // checking of V bit, then this is not safe to do. If we can't find the
   1899     // CPSR use (i.e. used in another block), then it's not safe to perform
   1900     // the optimization.
   1901     bool isSafe = false;
   1902     I = CmpInstr;
   1903     E = MI->getParent()->end();
   1904     while (!isSafe && ++I != E) {
   1905       const MachineInstr &Instr = *I;
   1906       for (unsigned IO = 0, EO = Instr.getNumOperands();
   1907            !isSafe && IO != EO; ++IO) {
   1908         const MachineOperand &MO = Instr.getOperand(IO);
   1909         if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
   1910           isSafe = true;
   1911           break;
   1912         }
   1913         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   1914           continue;
   1915         if (MO.isDef()) {
   1916           isSafe = true;
   1917           break;
   1918         }
   1919         // Condition code is after the operand before CPSR.
   1920         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
   1921         switch (CC) {
   1922         default:
   1923           isSafe = true;
   1924           break;
   1925         case ARMCC::VS:
   1926         case ARMCC::VC:
   1927         case ARMCC::GE:
   1928         case ARMCC::LT:
   1929         case ARMCC::GT:
   1930         case ARMCC::LE:
   1931           return false;
   1932         }
   1933       }
   1934     }
   1935 
   1936     if (!isSafe)
   1937       return false;
   1938 
   1939     // Toggle the optional operand to CPSR.
   1940     MI->getOperand(5).setReg(ARM::CPSR);
   1941     MI->getOperand(5).setIsDef(true);
   1942     CmpInstr->eraseFromParent();
   1943     return true;
   1944   }
   1945   }
   1946 
   1947   return false;
   1948 }
   1949 
   1950 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
   1951                                      MachineInstr *DefMI, unsigned Reg,
   1952                                      MachineRegisterInfo *MRI) const {
   1953   // Fold large immediates into add, sub, or, xor.
   1954   unsigned DefOpc = DefMI->getOpcode();
   1955   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   1956     return false;
   1957   if (!DefMI->getOperand(1).isImm())
   1958     // Could be t2MOVi32imm <ga:xx>
   1959     return false;
   1960 
   1961   if (!MRI->hasOneNonDBGUse(Reg))
   1962     return false;
   1963 
   1964   const MCInstrDesc &DefMCID = DefMI->getDesc();
   1965   if (DefMCID.hasOptionalDef()) {
   1966     unsigned NumOps = DefMCID.getNumOperands();
   1967     const MachineOperand &MO = DefMI->getOperand(NumOps-1);
   1968     if (MO.getReg() == ARM::CPSR && !MO.isDead())
   1969       // If DefMI defines CPSR and it is not dead, it's obviously not safe
   1970       // to delete DefMI.
   1971       return false;
   1972   }
   1973 
   1974   const MCInstrDesc &UseMCID = UseMI->getDesc();
   1975   if (UseMCID.hasOptionalDef()) {
   1976     unsigned NumOps = UseMCID.getNumOperands();
   1977     if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
   1978       // If the instruction sets the flag, do not attempt this optimization
   1979       // since it may change the semantics of the code.
   1980       return false;
   1981   }
   1982 
   1983   unsigned UseOpc = UseMI->getOpcode();
   1984   unsigned NewUseOpc = 0;
   1985   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
   1986   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   1987   bool Commute = false;
   1988   switch (UseOpc) {
   1989   default: return false;
   1990   case ARM::SUBrr:
   1991   case ARM::ADDrr:
   1992   case ARM::ORRrr:
   1993   case ARM::EORrr:
   1994   case ARM::t2SUBrr:
   1995   case ARM::t2ADDrr:
   1996   case ARM::t2ORRrr:
   1997   case ARM::t2EORrr: {
   1998     Commute = UseMI->getOperand(2).getReg() != Reg;
   1999     switch (UseOpc) {
   2000     default: break;
   2001     case ARM::SUBrr: {
   2002       if (Commute)
   2003         return false;
   2004       ImmVal = -ImmVal;
   2005       NewUseOpc = ARM::SUBri;
   2006       // Fallthrough
   2007     }
   2008     case ARM::ADDrr:
   2009     case ARM::ORRrr:
   2010     case ARM::EORrr: {
   2011       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   2012         return false;
   2013       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   2014       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   2015       switch (UseOpc) {
   2016       default: break;
   2017       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
   2018       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   2019       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   2020       }
   2021       break;
   2022     }
   2023     case ARM::t2SUBrr: {
   2024       if (Commute)
   2025         return false;
   2026       ImmVal = -ImmVal;
   2027       NewUseOpc = ARM::t2SUBri;
   2028       // Fallthrough
   2029     }
   2030     case ARM::t2ADDrr:
   2031     case ARM::t2ORRrr:
   2032     case ARM::t2EORrr: {
   2033       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   2034         return false;
   2035       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   2036       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   2037       switch (UseOpc) {
   2038       default: break;
   2039       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
   2040       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   2041       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   2042       }
   2043       break;
   2044     }
   2045     }
   2046   }
   2047   }
   2048 
   2049   unsigned OpIdx = Commute ? 2 : 1;
   2050   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
   2051   bool isKill = UseMI->getOperand(OpIdx).isKill();
   2052   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   2053   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
   2054                                       UseMI, UseMI->getDebugLoc(),
   2055                                       get(NewUseOpc), NewReg)
   2056                               .addReg(Reg1, getKillRegState(isKill))
   2057                               .addImm(SOImmValV1)));
   2058   UseMI->setDesc(get(NewUseOpc));
   2059   UseMI->getOperand(1).setReg(NewReg);
   2060   UseMI->getOperand(1).setIsKill();
   2061   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
   2062   DefMI->eraseFromParent();
   2063   return true;
   2064 }
   2065 
   2066 unsigned
   2067 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   2068                                  const MachineInstr *MI) const {
   2069   if (!ItinData || ItinData->isEmpty())
   2070     return 1;
   2071 
   2072   const MCInstrDesc &Desc = MI->getDesc();
   2073   unsigned Class = Desc.getSchedClass();
   2074   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
   2075   if (UOps)
   2076     return UOps;
   2077 
   2078   unsigned Opc = MI->getOpcode();
   2079   switch (Opc) {
   2080   default:
   2081     llvm_unreachable("Unexpected multi-uops instruction!");
   2082   case ARM::VLDMQIA:
   2083   case ARM::VSTMQIA:
   2084     return 2;
   2085 
   2086   // The number of uOps for load / store multiple are determined by the number
   2087   // registers.
   2088   //
   2089   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   2090   // same cycle. The scheduling for the first load / store must be done
   2091   // separately by assuming the the address is not 64-bit aligned.
   2092   //
   2093   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   2094   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   2095   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   2096   case ARM::VLDMDIA:
   2097   case ARM::VLDMDIA_UPD:
   2098   case ARM::VLDMDDB_UPD:
   2099   case ARM::VLDMSIA:
   2100   case ARM::VLDMSIA_UPD:
   2101   case ARM::VLDMSDB_UPD:
   2102   case ARM::VSTMDIA:
   2103   case ARM::VSTMDIA_UPD:
   2104   case ARM::VSTMDDB_UPD:
   2105   case ARM::VSTMSIA:
   2106   case ARM::VSTMSIA_UPD:
   2107   case ARM::VSTMSDB_UPD: {
   2108     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
   2109     return (NumRegs / 2) + (NumRegs % 2) + 1;
   2110   }
   2111 
   2112   case ARM::LDMIA_RET:
   2113   case ARM::LDMIA:
   2114   case ARM::LDMDA:
   2115   case ARM::LDMDB:
   2116   case ARM::LDMIB:
   2117   case ARM::LDMIA_UPD:
   2118   case ARM::LDMDA_UPD:
   2119   case ARM::LDMDB_UPD:
   2120   case ARM::LDMIB_UPD:
   2121   case ARM::STMIA:
   2122   case ARM::STMDA:
   2123   case ARM::STMDB:
   2124   case ARM::STMIB:
   2125   case ARM::STMIA_UPD:
   2126   case ARM::STMDA_UPD:
   2127   case ARM::STMDB_UPD:
   2128   case ARM::STMIB_UPD:
   2129   case ARM::tLDMIA:
   2130   case ARM::tLDMIA_UPD:
   2131   case ARM::tSTMIA_UPD:
   2132   case ARM::tPOP_RET:
   2133   case ARM::tPOP:
   2134   case ARM::tPUSH:
   2135   case ARM::t2LDMIA_RET:
   2136   case ARM::t2LDMIA:
   2137   case ARM::t2LDMDB:
   2138   case ARM::t2LDMIA_UPD:
   2139   case ARM::t2LDMDB_UPD:
   2140   case ARM::t2STMIA:
   2141   case ARM::t2STMDB:
   2142   case ARM::t2STMIA_UPD:
   2143   case ARM::t2STMDB_UPD: {
   2144     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
   2145     if (Subtarget.isCortexA8()) {
   2146       if (NumRegs < 4)
   2147         return 2;
   2148       // 4 registers would be issued: 2, 2.
   2149       // 5 registers would be issued: 2, 2, 1.
   2150       UOps = (NumRegs / 2);
   2151       if (NumRegs % 2)
   2152         ++UOps;
   2153       return UOps;
   2154     } else if (Subtarget.isCortexA9()) {
   2155       UOps = (NumRegs / 2);
   2156       // If there are odd number of registers or if it's not 64-bit aligned,
   2157       // then it takes an extra AGU (Address Generation Unit) cycle.
   2158       if ((NumRegs % 2) ||
   2159           !MI->hasOneMemOperand() ||
   2160           (*MI->memoperands_begin())->getAlignment() < 8)
   2161         ++UOps;
   2162       return UOps;
   2163     } else {
   2164       // Assume the worst.
   2165       return NumRegs;
   2166     }
   2167   }
   2168   }
   2169 }
   2170 
   2171 int
   2172 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   2173                                   const MCInstrDesc &DefMCID,
   2174                                   unsigned DefClass,
   2175                                   unsigned DefIdx, unsigned DefAlign) const {
   2176   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   2177   if (RegNo <= 0)
   2178     // Def is the address writeback.
   2179     return ItinData->getOperandCycle(DefClass, DefIdx);
   2180 
   2181   int DefCycle;
   2182   if (Subtarget.isCortexA8()) {
   2183     // (regno / 2) + (regno % 2) + 1
   2184     DefCycle = RegNo / 2 + 1;
   2185     if (RegNo % 2)
   2186       ++DefCycle;
   2187   } else if (Subtarget.isCortexA9()) {
   2188     DefCycle = RegNo;
   2189     bool isSLoad = false;
   2190 
   2191     switch (DefMCID.getOpcode()) {
   2192     default: break;
   2193     case ARM::VLDMSIA:
   2194     case ARM::VLDMSIA_UPD:
   2195     case ARM::VLDMSDB_UPD:
   2196       isSLoad = true;
   2197       break;
   2198     }
   2199 
   2200     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   2201     // then it takes an extra cycle.
   2202     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   2203       ++DefCycle;
   2204   } else {
   2205     // Assume the worst.
   2206     DefCycle = RegNo + 2;
   2207   }
   2208 
   2209   return DefCycle;
   2210 }
   2211 
   2212 int
   2213 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   2214                                  const MCInstrDesc &DefMCID,
   2215                                  unsigned DefClass,
   2216                                  unsigned DefIdx, unsigned DefAlign) const {
   2217   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   2218   if (RegNo <= 0)
   2219     // Def is the address writeback.
   2220     return ItinData->getOperandCycle(DefClass, DefIdx);
   2221 
   2222   int DefCycle;
   2223   if (Subtarget.isCortexA8()) {
   2224     // 4 registers would be issued: 1, 2, 1.
   2225     // 5 registers would be issued: 1, 2, 2.
   2226     DefCycle = RegNo / 2;
   2227     if (DefCycle < 1)
   2228       DefCycle = 1;
   2229     // Result latency is issue cycle + 2: E2.
   2230     DefCycle += 2;
   2231   } else if (Subtarget.isCortexA9()) {
   2232     DefCycle = (RegNo / 2);
   2233     // If there are odd number of registers or if it's not 64-bit aligned,
   2234     // then it takes an extra AGU (Address Generation Unit) cycle.
   2235     if ((RegNo % 2) || DefAlign < 8)
   2236       ++DefCycle;
   2237     // Result latency is AGU cycles + 2.
   2238     DefCycle += 2;
   2239   } else {
   2240     // Assume the worst.
   2241     DefCycle = RegNo + 2;
   2242   }
   2243 
   2244   return DefCycle;
   2245 }
   2246 
   2247 int
   2248 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   2249                                   const MCInstrDesc &UseMCID,
   2250                                   unsigned UseClass,
   2251                                   unsigned UseIdx, unsigned UseAlign) const {
   2252   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   2253   if (RegNo <= 0)
   2254     return ItinData->getOperandCycle(UseClass, UseIdx);
   2255 
   2256   int UseCycle;
   2257   if (Subtarget.isCortexA8()) {
   2258     // (regno / 2) + (regno % 2) + 1
   2259     UseCycle = RegNo / 2 + 1;
   2260     if (RegNo % 2)
   2261       ++UseCycle;
   2262   } else if (Subtarget.isCortexA9()) {
   2263     UseCycle = RegNo;
   2264     bool isSStore = false;
   2265 
   2266     switch (UseMCID.getOpcode()) {
   2267     default: break;
   2268     case ARM::VSTMSIA:
   2269     case ARM::VSTMSIA_UPD:
   2270     case ARM::VSTMSDB_UPD:
   2271       isSStore = true;
   2272       break;
   2273     }
   2274 
   2275     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   2276     // then it takes an extra cycle.
   2277     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   2278       ++UseCycle;
   2279   } else {
   2280     // Assume the worst.
   2281     UseCycle = RegNo + 2;
   2282   }
   2283 
   2284   return UseCycle;
   2285 }
   2286 
   2287 int
   2288 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   2289                                  const MCInstrDesc &UseMCID,
   2290                                  unsigned UseClass,
   2291                                  unsigned UseIdx, unsigned UseAlign) const {
   2292   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   2293   if (RegNo <= 0)
   2294     return ItinData->getOperandCycle(UseClass, UseIdx);
   2295 
   2296   int UseCycle;
   2297   if (Subtarget.isCortexA8()) {
   2298     UseCycle = RegNo / 2;
   2299     if (UseCycle < 2)
   2300       UseCycle = 2;
   2301     // Read in E3.
   2302     UseCycle += 2;
   2303   } else if (Subtarget.isCortexA9()) {
   2304     UseCycle = (RegNo / 2);
   2305     // If there are odd number of registers or if it's not 64-bit aligned,
   2306     // then it takes an extra AGU (Address Generation Unit) cycle.
   2307     if ((RegNo % 2) || UseAlign < 8)
   2308       ++UseCycle;
   2309   } else {
   2310     // Assume the worst.
   2311     UseCycle = 1;
   2312   }
   2313   return UseCycle;
   2314 }
   2315 
   2316 int
   2317 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2318                                     const MCInstrDesc &DefMCID,
   2319                                     unsigned DefIdx, unsigned DefAlign,
   2320                                     const MCInstrDesc &UseMCID,
   2321                                     unsigned UseIdx, unsigned UseAlign) const {
   2322   unsigned DefClass = DefMCID.getSchedClass();
   2323   unsigned UseClass = UseMCID.getSchedClass();
   2324 
   2325   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   2326     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   2327 
   2328   // This may be a def / use of a variable_ops instruction, the operand
   2329   // latency might be determinable dynamically. Let the target try to
   2330   // figure it out.
   2331   int DefCycle = -1;
   2332   bool LdmBypass = false;
   2333   switch (DefMCID.getOpcode()) {
   2334   default:
   2335     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   2336     break;
   2337 
   2338   case ARM::VLDMDIA:
   2339   case ARM::VLDMDIA_UPD:
   2340   case ARM::VLDMDDB_UPD:
   2341   case ARM::VLDMSIA:
   2342   case ARM::VLDMSIA_UPD:
   2343   case ARM::VLDMSDB_UPD:
   2344     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2345     break;
   2346 
   2347   case ARM::LDMIA_RET:
   2348   case ARM::LDMIA:
   2349   case ARM::LDMDA:
   2350   case ARM::LDMDB:
   2351   case ARM::LDMIB:
   2352   case ARM::LDMIA_UPD:
   2353   case ARM::LDMDA_UPD:
   2354   case ARM::LDMDB_UPD:
   2355   case ARM::LDMIB_UPD:
   2356   case ARM::tLDMIA:
   2357   case ARM::tLDMIA_UPD:
   2358   case ARM::tPUSH:
   2359   case ARM::t2LDMIA_RET:
   2360   case ARM::t2LDMIA:
   2361   case ARM::t2LDMDB:
   2362   case ARM::t2LDMIA_UPD:
   2363   case ARM::t2LDMDB_UPD:
   2364     LdmBypass = 1;
   2365     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2366     break;
   2367   }
   2368 
   2369   if (DefCycle == -1)
   2370     // We can't seem to determine the result latency of the def, assume it's 2.
   2371     DefCycle = 2;
   2372 
   2373   int UseCycle = -1;
   2374   switch (UseMCID.getOpcode()) {
   2375   default:
   2376     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   2377     break;
   2378 
   2379   case ARM::VSTMDIA:
   2380   case ARM::VSTMDIA_UPD:
   2381   case ARM::VSTMDDB_UPD:
   2382   case ARM::VSTMSIA:
   2383   case ARM::VSTMSIA_UPD:
   2384   case ARM::VSTMSDB_UPD:
   2385     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2386     break;
   2387 
   2388   case ARM::STMIA:
   2389   case ARM::STMDA:
   2390   case ARM::STMDB:
   2391   case ARM::STMIB:
   2392   case ARM::STMIA_UPD:
   2393   case ARM::STMDA_UPD:
   2394   case ARM::STMDB_UPD:
   2395   case ARM::STMIB_UPD:
   2396   case ARM::tSTMIA_UPD:
   2397   case ARM::tPOP_RET:
   2398   case ARM::tPOP:
   2399   case ARM::t2STMIA:
   2400   case ARM::t2STMDB:
   2401   case ARM::t2STMIA_UPD:
   2402   case ARM::t2STMDB_UPD:
   2403     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2404     break;
   2405   }
   2406 
   2407   if (UseCycle == -1)
   2408     // Assume it's read in the first stage.
   2409     UseCycle = 1;
   2410 
   2411   UseCycle = DefCycle - UseCycle + 1;
   2412   if (UseCycle > 0) {
   2413     if (LdmBypass) {
   2414       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   2415       // first def operand.
   2416       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   2417                                           UseClass, UseIdx))
   2418         --UseCycle;
   2419     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   2420                                                UseClass, UseIdx)) {
   2421       --UseCycle;
   2422     }
   2423   }
   2424 
   2425   return UseCycle;
   2426 }
   2427 
   2428 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
   2429                                            const MachineInstr *MI, unsigned Reg,
   2430                                            unsigned &DefIdx, unsigned &Dist) {
   2431   Dist = 0;
   2432 
   2433   MachineBasicBlock::const_iterator I = MI; ++I;
   2434   MachineBasicBlock::const_instr_iterator II =
   2435     llvm::prior(I.getInstrIterator());
   2436   assert(II->isInsideBundle() && "Empty bundle?");
   2437 
   2438   int Idx = -1;
   2439   while (II->isInsideBundle()) {
   2440     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
   2441     if (Idx != -1)
   2442       break;
   2443     --II;
   2444     ++Dist;
   2445   }
   2446 
   2447   assert(Idx != -1 && "Cannot find bundled definition!");
   2448   DefIdx = Idx;
   2449   return II;
   2450 }
   2451 
   2452 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
   2453                                            const MachineInstr *MI, unsigned Reg,
   2454                                            unsigned &UseIdx, unsigned &Dist) {
   2455   Dist = 0;
   2456 
   2457   MachineBasicBlock::const_instr_iterator II = MI; ++II;
   2458   assert(II->isInsideBundle() && "Empty bundle?");
   2459   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   2460 
   2461   // FIXME: This doesn't properly handle multiple uses.
   2462   int Idx = -1;
   2463   while (II != E && II->isInsideBundle()) {
   2464     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
   2465     if (Idx != -1)
   2466       break;
   2467     if (II->getOpcode() != ARM::t2IT)
   2468       ++Dist;
   2469     ++II;
   2470   }
   2471 
   2472   if (Idx == -1) {
   2473     Dist = 0;
   2474     return 0;
   2475   }
   2476 
   2477   UseIdx = Idx;
   2478   return II;
   2479 }
   2480 
   2481 int
   2482 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2483                              const MachineInstr *DefMI, unsigned DefIdx,
   2484                              const MachineInstr *UseMI, unsigned UseIdx) const {
   2485   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
   2486       DefMI->isRegSequence() || DefMI->isImplicitDef())
   2487     return 1;
   2488 
   2489   if (!ItinData || ItinData->isEmpty())
   2490     return DefMI->mayLoad() ? 3 : 1;
   2491 
   2492   const MCInstrDesc *DefMCID = &DefMI->getDesc();
   2493   const MCInstrDesc *UseMCID = &UseMI->getDesc();
   2494   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
   2495   unsigned Reg = DefMO.getReg();
   2496   if (Reg == ARM::CPSR) {
   2497     if (DefMI->getOpcode() == ARM::FMSTAT) {
   2498       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   2499       return Subtarget.isCortexA9() ? 1 : 20;
   2500     }
   2501 
   2502     // CPSR set and branch can be paired in the same cycle.
   2503     if (UseMI->isBranch())
   2504       return 0;
   2505 
   2506     // Otherwise it takes the instruction latency (generally one).
   2507     int Latency = getInstrLatency(ItinData, DefMI);
   2508 
   2509     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
   2510     // its uses. Instructions which are otherwise scheduled between them may
   2511     // incur a code size penalty (not able to use the CPSR setting 16-bit
   2512     // instructions).
   2513     if (Latency > 0 && Subtarget.isThumb2()) {
   2514       const MachineFunction *MF = DefMI->getParent()->getParent();
   2515       if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
   2516         --Latency;
   2517     }
   2518     return Latency;
   2519   }
   2520 
   2521   unsigned DefAlign = DefMI->hasOneMemOperand()
   2522     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
   2523   unsigned UseAlign = UseMI->hasOneMemOperand()
   2524     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
   2525 
   2526   unsigned DefAdj = 0;
   2527   if (DefMI->isBundle()) {
   2528     DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
   2529     if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
   2530         DefMI->isRegSequence() || DefMI->isImplicitDef())
   2531       return 1;
   2532     DefMCID = &DefMI->getDesc();
   2533   }
   2534   unsigned UseAdj = 0;
   2535   if (UseMI->isBundle()) {
   2536     unsigned NewUseIdx;
   2537     const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
   2538                                                    Reg, NewUseIdx, UseAdj);
   2539     if (NewUseMI) {
   2540       UseMI = NewUseMI;
   2541       UseIdx = NewUseIdx;
   2542       UseMCID = &UseMI->getDesc();
   2543     }
   2544   }
   2545 
   2546   int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
   2547                                   *UseMCID, UseIdx, UseAlign);
   2548   int Adj = DefAdj + UseAdj;
   2549   if (Adj) {
   2550     Latency -= (int)(DefAdj + UseAdj);
   2551     if (Latency < 1)
   2552       return 1;
   2553   }
   2554 
   2555   if (Latency > 1 &&
   2556       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
   2557     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   2558     // variants are one cycle cheaper.
   2559     switch (DefMCID->getOpcode()) {
   2560     default: break;
   2561     case ARM::LDRrs:
   2562     case ARM::LDRBrs: {
   2563       unsigned ShOpVal = DefMI->getOperand(3).getImm();
   2564       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2565       if (ShImm == 0 ||
   2566           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   2567         --Latency;
   2568       break;
   2569     }
   2570     case ARM::t2LDRs:
   2571     case ARM::t2LDRBs:
   2572     case ARM::t2LDRHs:
   2573     case ARM::t2LDRSHs: {
   2574       // Thumb2 mode: lsl only.
   2575       unsigned ShAmt = DefMI->getOperand(3).getImm();
   2576       if (ShAmt == 0 || ShAmt == 2)
   2577         --Latency;
   2578       break;
   2579     }
   2580     }
   2581   }
   2582 
   2583   if (DefAlign < 8 && Subtarget.isCortexA9())
   2584     switch (DefMCID->getOpcode()) {
   2585     default: break;
   2586     case ARM::VLD1q8:
   2587     case ARM::VLD1q16:
   2588     case ARM::VLD1q32:
   2589     case ARM::VLD1q64:
   2590     case ARM::VLD1q8wb_fixed:
   2591     case ARM::VLD1q16wb_fixed:
   2592     case ARM::VLD1q32wb_fixed:
   2593     case ARM::VLD1q64wb_fixed:
   2594     case ARM::VLD1q8wb_register:
   2595     case ARM::VLD1q16wb_register:
   2596     case ARM::VLD1q32wb_register:
   2597     case ARM::VLD1q64wb_register:
   2598     case ARM::VLD2d8:
   2599     case ARM::VLD2d16:
   2600     case ARM::VLD2d32:
   2601     case ARM::VLD2q8:
   2602     case ARM::VLD2q16:
   2603     case ARM::VLD2q32:
   2604     case ARM::VLD2d8wb_fixed:
   2605     case ARM::VLD2d16wb_fixed:
   2606     case ARM::VLD2d32wb_fixed:
   2607     case ARM::VLD2q8wb_fixed:
   2608     case ARM::VLD2q16wb_fixed:
   2609     case ARM::VLD2q32wb_fixed:
   2610     case ARM::VLD2d8wb_register:
   2611     case ARM::VLD2d16wb_register:
   2612     case ARM::VLD2d32wb_register:
   2613     case ARM::VLD2q8wb_register:
   2614     case ARM::VLD2q16wb_register:
   2615     case ARM::VLD2q32wb_register:
   2616     case ARM::VLD3d8:
   2617     case ARM::VLD3d16:
   2618     case ARM::VLD3d32:
   2619     case ARM::VLD1d64T:
   2620     case ARM::VLD3d8_UPD:
   2621     case ARM::VLD3d16_UPD:
   2622     case ARM::VLD3d32_UPD:
   2623     case ARM::VLD1d64Twb_fixed:
   2624     case ARM::VLD1d64Twb_register:
   2625     case ARM::VLD3q8_UPD:
   2626     case ARM::VLD3q16_UPD:
   2627     case ARM::VLD3q32_UPD:
   2628     case ARM::VLD4d8:
   2629     case ARM::VLD4d16:
   2630     case ARM::VLD4d32:
   2631     case ARM::VLD1d64Q:
   2632     case ARM::VLD4d8_UPD:
   2633     case ARM::VLD4d16_UPD:
   2634     case ARM::VLD4d32_UPD:
   2635     case ARM::VLD1d64Qwb_fixed:
   2636     case ARM::VLD1d64Qwb_register:
   2637     case ARM::VLD4q8_UPD:
   2638     case ARM::VLD4q16_UPD:
   2639     case ARM::VLD4q32_UPD:
   2640     case ARM::VLD1DUPq8:
   2641     case ARM::VLD1DUPq16:
   2642     case ARM::VLD1DUPq32:
   2643     case ARM::VLD1DUPq8wb_fixed:
   2644     case ARM::VLD1DUPq16wb_fixed:
   2645     case ARM::VLD1DUPq32wb_fixed:
   2646     case ARM::VLD1DUPq8wb_register:
   2647     case ARM::VLD1DUPq16wb_register:
   2648     case ARM::VLD1DUPq32wb_register:
   2649     case ARM::VLD2DUPd8:
   2650     case ARM::VLD2DUPd16:
   2651     case ARM::VLD2DUPd32:
   2652     case ARM::VLD2DUPd8wb_fixed:
   2653     case ARM::VLD2DUPd16wb_fixed:
   2654     case ARM::VLD2DUPd32wb_fixed:
   2655     case ARM::VLD2DUPd8wb_register:
   2656     case ARM::VLD2DUPd16wb_register:
   2657     case ARM::VLD2DUPd32wb_register:
   2658     case ARM::VLD4DUPd8:
   2659     case ARM::VLD4DUPd16:
   2660     case ARM::VLD4DUPd32:
   2661     case ARM::VLD4DUPd8_UPD:
   2662     case ARM::VLD4DUPd16_UPD:
   2663     case ARM::VLD4DUPd32_UPD:
   2664     case ARM::VLD1LNd8:
   2665     case ARM::VLD1LNd16:
   2666     case ARM::VLD1LNd32:
   2667     case ARM::VLD1LNd8_UPD:
   2668     case ARM::VLD1LNd16_UPD:
   2669     case ARM::VLD1LNd32_UPD:
   2670     case ARM::VLD2LNd8:
   2671     case ARM::VLD2LNd16:
   2672     case ARM::VLD2LNd32:
   2673     case ARM::VLD2LNq16:
   2674     case ARM::VLD2LNq32:
   2675     case ARM::VLD2LNd8_UPD:
   2676     case ARM::VLD2LNd16_UPD:
   2677     case ARM::VLD2LNd32_UPD:
   2678     case ARM::VLD2LNq16_UPD:
   2679     case ARM::VLD2LNq32_UPD:
   2680     case ARM::VLD4LNd8:
   2681     case ARM::VLD4LNd16:
   2682     case ARM::VLD4LNd32:
   2683     case ARM::VLD4LNq16:
   2684     case ARM::VLD4LNq32:
   2685     case ARM::VLD4LNd8_UPD:
   2686     case ARM::VLD4LNd16_UPD:
   2687     case ARM::VLD4LNd32_UPD:
   2688     case ARM::VLD4LNq16_UPD:
   2689     case ARM::VLD4LNq32_UPD:
   2690       // If the address is not 64-bit aligned, the latencies of these
   2691       // instructions increases by one.
   2692       ++Latency;
   2693       break;
   2694     }
   2695 
   2696   return Latency;
   2697 }
   2698 
   2699 int
   2700 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2701                                     SDNode *DefNode, unsigned DefIdx,
   2702                                     SDNode *UseNode, unsigned UseIdx) const {
   2703   if (!DefNode->isMachineOpcode())
   2704     return 1;
   2705 
   2706   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   2707 
   2708   if (isZeroCost(DefMCID.Opcode))
   2709     return 0;
   2710 
   2711   if (!ItinData || ItinData->isEmpty())
   2712     return DefMCID.mayLoad() ? 3 : 1;
   2713 
   2714   if (!UseNode->isMachineOpcode()) {
   2715     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   2716     if (Subtarget.isCortexA9())
   2717       return Latency <= 2 ? 1 : Latency - 1;
   2718     else
   2719       return Latency <= 3 ? 1 : Latency - 2;
   2720   }
   2721 
   2722   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   2723   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   2724   unsigned DefAlign = !DefMN->memoperands_empty()
   2725     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   2726   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   2727   unsigned UseAlign = !UseMN->memoperands_empty()
   2728     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   2729   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   2730                                   UseMCID, UseIdx, UseAlign);
   2731 
   2732   if (Latency > 1 &&
   2733       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
   2734     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   2735     // variants are one cycle cheaper.
   2736     switch (DefMCID.getOpcode()) {
   2737     default: break;
   2738     case ARM::LDRrs:
   2739     case ARM::LDRBrs: {
   2740       unsigned ShOpVal =
   2741         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   2742       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2743       if (ShImm == 0 ||
   2744           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   2745         --Latency;
   2746       break;
   2747     }
   2748     case ARM::t2LDRs:
   2749     case ARM::t2LDRBs:
   2750     case ARM::t2LDRHs:
   2751     case ARM::t2LDRSHs: {
   2752       // Thumb2 mode: lsl only.
   2753       unsigned ShAmt =
   2754         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   2755       if (ShAmt == 0 || ShAmt == 2)
   2756         --Latency;
   2757       break;
   2758     }
   2759     }
   2760   }
   2761 
   2762   if (DefAlign < 8 && Subtarget.isCortexA9())
   2763     switch (DefMCID.getOpcode()) {
   2764     default: break;
   2765     case ARM::VLD1q8:
   2766     case ARM::VLD1q16:
   2767     case ARM::VLD1q32:
   2768     case ARM::VLD1q64:
   2769     case ARM::VLD1q8wb_register:
   2770     case ARM::VLD1q16wb_register:
   2771     case ARM::VLD1q32wb_register:
   2772     case ARM::VLD1q64wb_register:
   2773     case ARM::VLD1q8wb_fixed:
   2774     case ARM::VLD1q16wb_fixed:
   2775     case ARM::VLD1q32wb_fixed:
   2776     case ARM::VLD1q64wb_fixed:
   2777     case ARM::VLD2d8:
   2778     case ARM::VLD2d16:
   2779     case ARM::VLD2d32:
   2780     case ARM::VLD2q8Pseudo:
   2781     case ARM::VLD2q16Pseudo:
   2782     case ARM::VLD2q32Pseudo:
   2783     case ARM::VLD2d8wb_fixed:
   2784     case ARM::VLD2d16wb_fixed:
   2785     case ARM::VLD2d32wb_fixed:
   2786     case ARM::VLD2q8PseudoWB_fixed:
   2787     case ARM::VLD2q16PseudoWB_fixed:
   2788     case ARM::VLD2q32PseudoWB_fixed:
   2789     case ARM::VLD2d8wb_register:
   2790     case ARM::VLD2d16wb_register:
   2791     case ARM::VLD2d32wb_register:
   2792     case ARM::VLD2q8PseudoWB_register:
   2793     case ARM::VLD2q16PseudoWB_register:
   2794     case ARM::VLD2q32PseudoWB_register:
   2795     case ARM::VLD3d8Pseudo:
   2796     case ARM::VLD3d16Pseudo:
   2797     case ARM::VLD3d32Pseudo:
   2798     case ARM::VLD1d64TPseudo:
   2799     case ARM::VLD3d8Pseudo_UPD:
   2800     case ARM::VLD3d16Pseudo_UPD:
   2801     case ARM::VLD3d32Pseudo_UPD:
   2802     case ARM::VLD3q8Pseudo_UPD:
   2803     case ARM::VLD3q16Pseudo_UPD:
   2804     case ARM::VLD3q32Pseudo_UPD:
   2805     case ARM::VLD3q8oddPseudo:
   2806     case ARM::VLD3q16oddPseudo:
   2807     case ARM::VLD3q32oddPseudo:
   2808     case ARM::VLD3q8oddPseudo_UPD:
   2809     case ARM::VLD3q16oddPseudo_UPD:
   2810     case ARM::VLD3q32oddPseudo_UPD:
   2811     case ARM::VLD4d8Pseudo:
   2812     case ARM::VLD4d16Pseudo:
   2813     case ARM::VLD4d32Pseudo:
   2814     case ARM::VLD1d64QPseudo:
   2815     case ARM::VLD4d8Pseudo_UPD:
   2816     case ARM::VLD4d16Pseudo_UPD:
   2817     case ARM::VLD4d32Pseudo_UPD:
   2818     case ARM::VLD4q8Pseudo_UPD:
   2819     case ARM::VLD4q16Pseudo_UPD:
   2820     case ARM::VLD4q32Pseudo_UPD:
   2821     case ARM::VLD4q8oddPseudo:
   2822     case ARM::VLD4q16oddPseudo:
   2823     case ARM::VLD4q32oddPseudo:
   2824     case ARM::VLD4q8oddPseudo_UPD:
   2825     case ARM::VLD4q16oddPseudo_UPD:
   2826     case ARM::VLD4q32oddPseudo_UPD:
   2827     case ARM::VLD1DUPq8:
   2828     case ARM::VLD1DUPq16:
   2829     case ARM::VLD1DUPq32:
   2830     case ARM::VLD1DUPq8wb_fixed:
   2831     case ARM::VLD1DUPq16wb_fixed:
   2832     case ARM::VLD1DUPq32wb_fixed:
   2833     case ARM::VLD1DUPq8wb_register:
   2834     case ARM::VLD1DUPq16wb_register:
   2835     case ARM::VLD1DUPq32wb_register:
   2836     case ARM::VLD2DUPd8:
   2837     case ARM::VLD2DUPd16:
   2838     case ARM::VLD2DUPd32:
   2839     case ARM::VLD2DUPd8wb_fixed:
   2840     case ARM::VLD2DUPd16wb_fixed:
   2841     case ARM::VLD2DUPd32wb_fixed:
   2842     case ARM::VLD2DUPd8wb_register:
   2843     case ARM::VLD2DUPd16wb_register:
   2844     case ARM::VLD2DUPd32wb_register:
   2845     case ARM::VLD4DUPd8Pseudo:
   2846     case ARM::VLD4DUPd16Pseudo:
   2847     case ARM::VLD4DUPd32Pseudo:
   2848     case ARM::VLD4DUPd8Pseudo_UPD:
   2849     case ARM::VLD4DUPd16Pseudo_UPD:
   2850     case ARM::VLD4DUPd32Pseudo_UPD:
   2851     case ARM::VLD1LNq8Pseudo:
   2852     case ARM::VLD1LNq16Pseudo:
   2853     case ARM::VLD1LNq32Pseudo:
   2854     case ARM::VLD1LNq8Pseudo_UPD:
   2855     case ARM::VLD1LNq16Pseudo_UPD:
   2856     case ARM::VLD1LNq32Pseudo_UPD:
   2857     case ARM::VLD2LNd8Pseudo:
   2858     case ARM::VLD2LNd16Pseudo:
   2859     case ARM::VLD2LNd32Pseudo:
   2860     case ARM::VLD2LNq16Pseudo:
   2861     case ARM::VLD2LNq32Pseudo:
   2862     case ARM::VLD2LNd8Pseudo_UPD:
   2863     case ARM::VLD2LNd16Pseudo_UPD:
   2864     case ARM::VLD2LNd32Pseudo_UPD:
   2865     case ARM::VLD2LNq16Pseudo_UPD:
   2866     case ARM::VLD2LNq32Pseudo_UPD:
   2867     case ARM::VLD4LNd8Pseudo:
   2868     case ARM::VLD4LNd16Pseudo:
   2869     case ARM::VLD4LNd32Pseudo:
   2870     case ARM::VLD4LNq16Pseudo:
   2871     case ARM::VLD4LNq32Pseudo:
   2872     case ARM::VLD4LNd8Pseudo_UPD:
   2873     case ARM::VLD4LNd16Pseudo_UPD:
   2874     case ARM::VLD4LNd32Pseudo_UPD:
   2875     case ARM::VLD4LNq16Pseudo_UPD:
   2876     case ARM::VLD4LNq32Pseudo_UPD:
   2877       // If the address is not 64-bit aligned, the latencies of these
   2878       // instructions increases by one.
   2879       ++Latency;
   2880       break;
   2881     }
   2882 
   2883   return Latency;
   2884 }
   2885 
   2886 unsigned
   2887 ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
   2888                                    const MachineInstr *DefMI, unsigned DefIdx,
   2889                                    const MachineInstr *DepMI) const {
   2890   unsigned Reg = DefMI->getOperand(DefIdx).getReg();
   2891   if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
   2892     return 1;
   2893 
   2894   // If the second MI is predicated, then there is an implicit use dependency.
   2895   return getOperandLatency(ItinData, DefMI, DefIdx, DepMI,
   2896                            DepMI->getNumOperands());
   2897 }
   2898 
   2899 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   2900                                       const MachineInstr *MI,
   2901                                       unsigned *PredCost) const {
   2902   if (MI->isCopyLike() || MI->isInsertSubreg() ||
   2903       MI->isRegSequence() || MI->isImplicitDef())
   2904     return 1;
   2905 
   2906   if (!ItinData || ItinData->isEmpty())
   2907     return 1;
   2908 
   2909   if (MI->isBundle()) {
   2910     int Latency = 0;
   2911     MachineBasicBlock::const_instr_iterator I = MI;
   2912     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   2913     while (++I != E && I->isInsideBundle()) {
   2914       if (I->getOpcode() != ARM::t2IT)
   2915         Latency += getInstrLatency(ItinData, I, PredCost);
   2916     }
   2917     return Latency;
   2918   }
   2919 
   2920   const MCInstrDesc &MCID = MI->getDesc();
   2921   unsigned Class = MCID.getSchedClass();
   2922   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
   2923   if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)))
   2924     // When predicated, CPSR is an additional source operand for CPSR updating
   2925     // instructions, this apparently increases their latencies.
   2926     *PredCost = 1;
   2927   if (UOps)
   2928     return ItinData->getStageLatency(Class);
   2929   return getNumMicroOps(ItinData, MI);
   2930 }
   2931 
   2932 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   2933                                       SDNode *Node) const {
   2934   if (!Node->isMachineOpcode())
   2935     return 1;
   2936 
   2937   if (!ItinData || ItinData->isEmpty())
   2938     return 1;
   2939 
   2940   unsigned Opcode = Node->getMachineOpcode();
   2941   switch (Opcode) {
   2942   default:
   2943     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   2944   case ARM::VLDMQIA:
   2945   case ARM::VSTMQIA:
   2946     return 2;
   2947   }
   2948 }
   2949 
   2950 bool ARMBaseInstrInfo::
   2951 hasHighOperandLatency(const InstrItineraryData *ItinData,
   2952                       const MachineRegisterInfo *MRI,
   2953                       const MachineInstr *DefMI, unsigned DefIdx,
   2954                       const MachineInstr *UseMI, unsigned UseIdx) const {
   2955   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   2956   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
   2957   if (Subtarget.isCortexA8() &&
   2958       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   2959     // CortexA8 VFP instructions are not pipelined.
   2960     return true;
   2961 
   2962   // Hoist VFP / NEON instructions with 4 or higher latency.
   2963   int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
   2964   if (Latency <= 3)
   2965     return false;
   2966   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   2967          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   2968 }
   2969 
   2970 bool ARMBaseInstrInfo::
   2971 hasLowDefLatency(const InstrItineraryData *ItinData,
   2972                  const MachineInstr *DefMI, unsigned DefIdx) const {
   2973   if (!ItinData || ItinData->isEmpty())
   2974     return false;
   2975 
   2976   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   2977   if (DDomain == ARMII::DomainGeneral) {
   2978     unsigned DefClass = DefMI->getDesc().getSchedClass();
   2979     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   2980     return (DefCycle != -1 && DefCycle <= 2);
   2981   }
   2982   return false;
   2983 }
   2984 
   2985 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
   2986                                          StringRef &ErrInfo) const {
   2987   if (convertAddSubFlagsOpcode(MI->getOpcode())) {
   2988     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
   2989     return false;
   2990   }
   2991   return true;
   2992 }
   2993 
   2994 bool
   2995 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   2996                                      unsigned &AddSubOpc,
   2997                                      bool &NegAcc, bool &HasLane) const {
   2998   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   2999   if (I == MLxEntryMap.end())
   3000     return false;
   3001 
   3002   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   3003   MulOpc = Entry.MulOpc;
   3004   AddSubOpc = Entry.AddSubOpc;
   3005   NegAcc = Entry.NegAcc;
   3006   HasLane = Entry.HasLane;
   3007   return true;
   3008 }
   3009 
   3010 //===----------------------------------------------------------------------===//
   3011 // Execution domains.
   3012 //===----------------------------------------------------------------------===//
   3013 //
   3014 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
   3015 // and some can go down both.  The vmov instructions go down the VFP pipeline,
   3016 // but they can be changed to vorr equivalents that are executed by the NEON
   3017 // pipeline.
   3018 //
   3019 // We use the following execution domain numbering:
   3020 //
   3021 enum ARMExeDomain {
   3022   ExeGeneric = 0,
   3023   ExeVFP = 1,
   3024   ExeNEON = 2
   3025 };
   3026 //
   3027 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
   3028 //
   3029 std::pair<uint16_t, uint16_t>
   3030 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   3031   // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
   3032   // predicated.
   3033   if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
   3034     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
   3035 
   3036   // No other instructions can be swizzled, so just determine their domain.
   3037   unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
   3038 
   3039   if (Domain & ARMII::DomainNEON)
   3040     return std::make_pair(ExeNEON, 0);
   3041 
   3042   // Certain instructions can go either way on Cortex-A8.
   3043   // Treat them as NEON instructions.
   3044   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
   3045     return std::make_pair(ExeNEON, 0);
   3046 
   3047   if (Domain & ARMII::DomainVFP)
   3048     return std::make_pair(ExeVFP, 0);
   3049 
   3050   return std::make_pair(ExeGeneric, 0);
   3051 }
   3052 
   3053 void
   3054 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   3055   // We only know how to change VMOVD into VORR.
   3056   assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
   3057   if (Domain != ExeNEON)
   3058     return;
   3059 
   3060   // Zap the predicate operands.
   3061   assert(!isPredicated(MI) && "Cannot predicate a VORRd");
   3062   MI->RemoveOperand(3);
   3063   MI->RemoveOperand(2);
   3064 
   3065   // Change to a VORRd which requires two identical use operands.
   3066   MI->setDesc(get(ARM::VORRd));
   3067 
   3068   // Add the extra source operand and new predicates.
   3069   // This will go before any implicit ops.
   3070   AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
   3071 }
   3072 
   3073 bool ARMBaseInstrInfo::hasNOP() const {
   3074   return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
   3075 }
   3076