1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef X86INSTRUCTIONINFO_H 15 #define X86INSTRUCTIONINFO_H 16 17 #include "X86.h" 18 #include "X86RegisterInfo.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 22 #define GET_INSTRINFO_HEADER 23 #include "X86GenInstrInfo.inc" 24 25 namespace llvm { 26 class X86RegisterInfo; 27 class X86TargetMachine; 28 29 namespace X86 { 30 // X86 specific condition code. These correspond to X86_*_COND in 31 // X86InstrInfo.td. They must be kept in synch. 32 enum CondCode { 33 COND_A = 0, 34 COND_AE = 1, 35 COND_B = 2, 36 COND_BE = 3, 37 COND_E = 4, 38 COND_G = 5, 39 COND_GE = 6, 40 COND_L = 7, 41 COND_LE = 8, 42 COND_NE = 9, 43 COND_NO = 10, 44 COND_NP = 11, 45 COND_NS = 12, 46 COND_O = 13, 47 COND_P = 14, 48 COND_S = 15, 49 50 // Artificial condition codes. These are used by AnalyzeBranch 51 // to indicate a block terminated with two conditional branches to 52 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, 53 // which can't be represented on x86 with a single condition. These 54 // are never used in MachineInstrs. 55 COND_NE_OR_P, 56 COND_NP_OR_E, 57 58 COND_INVALID 59 }; 60 61 // Turn condition code into conditional branch opcode. 62 unsigned GetCondBranchFromCond(CondCode CC); 63 64 /// GetOppositeBranchCondition - Return the inverse of the specified cond, 65 /// e.g. turning COND_E to COND_NE. 66 CondCode GetOppositeBranchCondition(X86::CondCode CC); 67 } // end namespace X86; 68 69 70 /// isGlobalStubReference - Return true if the specified TargetFlag operand is 71 /// a reference to a stub for a global, not the global itself. 72 inline static bool isGlobalStubReference(unsigned char TargetFlag) { 73 switch (TargetFlag) { 74 case X86II::MO_DLLIMPORT: // dllimport stub. 75 case X86II::MO_GOTPCREL: // rip-relative GOT reference. 76 case X86II::MO_GOT: // normal GOT reference. 77 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. 78 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. 79 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. 80 return true; 81 default: 82 return false; 83 } 84 } 85 86 /// isGlobalRelativeToPICBase - Return true if the specified global value 87 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this 88 /// is true, the addressing mode has the PIC base register added in (e.g. EBX). 89 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { 90 switch (TargetFlag) { 91 case X86II::MO_GOTOFF: // isPICStyleGOT: local global. 92 case X86II::MO_GOT: // isPICStyleGOT: other global. 93 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. 94 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. 95 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. 96 case X86II::MO_TLVP: // ??? Pretty sure.. 97 return true; 98 default: 99 return false; 100 } 101 } 102 103 inline static bool isScale(const MachineOperand &MO) { 104 return MO.isImm() && 105 (MO.getImm() == 1 || MO.getImm() == 2 || 106 MO.getImm() == 4 || MO.getImm() == 8); 107 } 108 109 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { 110 if (MI->getOperand(Op).isFI()) return true; 111 return Op+4 <= MI->getNumOperands() && 112 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && 113 MI->getOperand(Op+2).isReg() && 114 (MI->getOperand(Op+3).isImm() || 115 MI->getOperand(Op+3).isGlobal() || 116 MI->getOperand(Op+3).isCPI() || 117 MI->getOperand(Op+3).isJTI()); 118 } 119 120 inline static bool isMem(const MachineInstr *MI, unsigned Op) { 121 if (MI->getOperand(Op).isFI()) return true; 122 return Op+5 <= MI->getNumOperands() && 123 MI->getOperand(Op+4).isReg() && 124 isLeaMem(MI, Op); 125 } 126 127 class X86InstrInfo : public X86GenInstrInfo { 128 X86TargetMachine &TM; 129 const X86RegisterInfo RI; 130 131 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, 132 /// RegOp2MemOpTable2 - Load / store folding opcode maps. 133 /// 134 typedef DenseMap<unsigned, 135 std::pair<unsigned, unsigned> > RegOp2MemOpTableType; 136 RegOp2MemOpTableType RegOp2MemOpTable2Addr; 137 RegOp2MemOpTableType RegOp2MemOpTable0; 138 RegOp2MemOpTableType RegOp2MemOpTable1; 139 RegOp2MemOpTableType RegOp2MemOpTable2; 140 141 /// MemOp2RegOpTable - Load / store unfolding opcode map. 142 /// 143 typedef DenseMap<unsigned, 144 std::pair<unsigned, unsigned> > MemOp2RegOpTableType; 145 MemOp2RegOpTableType MemOp2RegOpTable; 146 147 void AddTableEntry(RegOp2MemOpTableType &R2MTable, 148 MemOp2RegOpTableType &M2RTable, 149 unsigned RegOp, unsigned MemOp, unsigned Flags); 150 151 public: 152 explicit X86InstrInfo(X86TargetMachine &tm); 153 154 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As 155 /// such, whenever a client has an instance of instruction info, it should 156 /// always be able to get register info as well (through this method). 157 /// 158 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } 159 160 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" 161 /// extension instruction. That is, it's like a copy where it's legal for the 162 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns 163 /// true, then it's expected the pre-extension value is available as a subreg 164 /// of the result register. This also returns the sub-register index in 165 /// SubIdx. 166 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 167 unsigned &SrcReg, unsigned &DstReg, 168 unsigned &SubIdx) const; 169 170 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; 171 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination 172 /// stack locations as well. This uses a heuristic so it isn't 173 /// reliable for correctness. 174 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, 175 int &FrameIndex) const; 176 177 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; 178 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination 179 /// stack locations as well. This uses a heuristic so it isn't 180 /// reliable for correctness. 181 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, 182 int &FrameIndex) const; 183 184 bool isReallyTriviallyReMaterializable(const MachineInstr *MI, 185 AliasAnalysis *AA) const; 186 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 187 unsigned DestReg, unsigned SubIdx, 188 const MachineInstr *Orig, 189 const TargetRegisterInfo &TRI) const; 190 191 /// convertToThreeAddress - This method must be implemented by targets that 192 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 193 /// may be able to convert a two-address instruction into a true 194 /// three-address instruction on demand. This allows the X86 target (for 195 /// example) to convert ADD and SHL instructions into LEA instructions if they 196 /// would require register copies due to two-addressness. 197 /// 198 /// This method returns a null pointer if the transformation cannot be 199 /// performed, otherwise it returns the new instruction. 200 /// 201 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 202 MachineBasicBlock::iterator &MBBI, 203 LiveVariables *LV) const; 204 205 /// commuteInstruction - We have a few instructions that must be hacked on to 206 /// commute them. 207 /// 208 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; 209 210 // Branch analysis. 211 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; 212 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 213 MachineBasicBlock *&FBB, 214 SmallVectorImpl<MachineOperand> &Cond, 215 bool AllowModify) const; 216 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; 217 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 218 MachineBasicBlock *FBB, 219 const SmallVectorImpl<MachineOperand> &Cond, 220 DebugLoc DL) const; 221 virtual void copyPhysReg(MachineBasicBlock &MBB, 222 MachineBasicBlock::iterator MI, DebugLoc DL, 223 unsigned DestReg, unsigned SrcReg, 224 bool KillSrc) const; 225 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 226 MachineBasicBlock::iterator MI, 227 unsigned SrcReg, bool isKill, int FrameIndex, 228 const TargetRegisterClass *RC, 229 const TargetRegisterInfo *TRI) const; 230 231 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, 232 SmallVectorImpl<MachineOperand> &Addr, 233 const TargetRegisterClass *RC, 234 MachineInstr::mmo_iterator MMOBegin, 235 MachineInstr::mmo_iterator MMOEnd, 236 SmallVectorImpl<MachineInstr*> &NewMIs) const; 237 238 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 239 MachineBasicBlock::iterator MI, 240 unsigned DestReg, int FrameIndex, 241 const TargetRegisterClass *RC, 242 const TargetRegisterInfo *TRI) const; 243 244 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 245 SmallVectorImpl<MachineOperand> &Addr, 246 const TargetRegisterClass *RC, 247 MachineInstr::mmo_iterator MMOBegin, 248 MachineInstr::mmo_iterator MMOEnd, 249 SmallVectorImpl<MachineInstr*> &NewMIs) const; 250 251 virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const; 252 253 virtual 254 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, 255 int FrameIx, uint64_t Offset, 256 const MDNode *MDPtr, 257 DebugLoc DL) const; 258 259 /// foldMemoryOperand - If this target supports it, fold a load or store of 260 /// the specified stack slot into the specified machine instruction for the 261 /// specified operand(s). If this is possible, the target should perform the 262 /// folding and return true, otherwise it should return false. If it folds 263 /// the instruction, it is likely that the MachineInstruction the iterator 264 /// references has been changed. 265 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 266 MachineInstr* MI, 267 const SmallVectorImpl<unsigned> &Ops, 268 int FrameIndex) const; 269 270 /// foldMemoryOperand - Same as the previous version except it allows folding 271 /// of any load and store from / to any address, not just from a specific 272 /// stack slot. 273 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 274 MachineInstr* MI, 275 const SmallVectorImpl<unsigned> &Ops, 276 MachineInstr* LoadMI) const; 277 278 /// canFoldMemoryOperand - Returns true if the specified load / store is 279 /// folding is possible. 280 virtual bool canFoldMemoryOperand(const MachineInstr*, 281 const SmallVectorImpl<unsigned> &) const; 282 283 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 284 /// a store or a load and a store into two or more instruction. If this is 285 /// possible, returns true as well as the new instructions by reference. 286 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 287 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 288 SmallVectorImpl<MachineInstr*> &NewMIs) const; 289 290 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 291 SmallVectorImpl<SDNode*> &NewNodes) const; 292 293 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new 294 /// instruction after load / store are unfolded from an instruction of the 295 /// specified opcode. It returns zero if the specified unfolding is not 296 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 297 /// index of the operand which will hold the register holding the loaded 298 /// value. 299 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 300 bool UnfoldLoad, bool UnfoldStore, 301 unsigned *LoadRegIndex = 0) const; 302 303 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler 304 /// to determine if two loads are loading from the same base address. It 305 /// should only return true if the base pointers are the same and the 306 /// only differences between the two addresses are the offset. It also returns 307 /// the offsets by reference. 308 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 309 int64_t &Offset1, int64_t &Offset2) const; 310 311 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 312 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 313 /// be scheduled togther. On some targets if two loads are loading from 314 /// addresses in the same cache line, it's better if they are scheduled 315 /// together. This function takes two integers that represent the load offsets 316 /// from the common base address. It returns true if it decides it's desirable 317 /// to schedule the two loads together. "NumLoads" is the number of loads that 318 /// have already been scheduled after Load1. 319 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 320 int64_t Offset1, int64_t Offset2, 321 unsigned NumLoads) const; 322 323 virtual void getNoopForMachoTarget(MCInst &NopInst) const; 324 325 virtual 326 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; 327 328 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine 329 /// instruction that defines the specified register class. 330 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; 331 332 static bool isX86_64ExtendedReg(const MachineOperand &MO) { 333 if (!MO.isReg()) return false; 334 return X86II::isX86_64ExtendedReg(MO.getReg()); 335 } 336 337 /// getGlobalBaseReg - Return a virtual register initialized with the 338 /// the global base register value. Output instructions required to 339 /// initialize the register in the function entry block, if necessary. 340 /// 341 unsigned getGlobalBaseReg(MachineFunction *MF) const; 342 343 std::pair<uint16_t, uint16_t> 344 getExecutionDomain(const MachineInstr *MI) const; 345 346 void setExecutionDomain(MachineInstr *MI, unsigned Domain) const; 347 348 unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 349 const TargetRegisterInfo *TRI) const; 350 void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 351 const TargetRegisterInfo *TRI) const; 352 353 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 354 MachineInstr* MI, 355 unsigned OpNum, 356 const SmallVectorImpl<MachineOperand> &MOs, 357 unsigned Size, unsigned Alignment) const; 358 359 bool isHighLatencyDef(int opc) const; 360 361 bool hasHighOperandLatency(const InstrItineraryData *ItinData, 362 const MachineRegisterInfo *MRI, 363 const MachineInstr *DefMI, unsigned DefIdx, 364 const MachineInstr *UseMI, unsigned UseIdx) const; 365 366 private: 367 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, 368 MachineFunction::iterator &MFI, 369 MachineBasicBlock::iterator &MBBI, 370 LiveVariables *LV) const; 371 372 /// isFrameOperand - Return true and the FrameIndex if the specified 373 /// operand and follow operands form a reference to the stack frame. 374 bool isFrameOperand(const MachineInstr *MI, unsigned int Op, 375 int &FrameIndex) const; 376 }; 377 378 } // End llvm namespace 379 380 #endif 381