1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a DAG pattern matching instruction selector for X86, 11 // converting from a legalized dag to a X86 dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "x86-isel" 16 #include "X86.h" 17 #include "X86InstrBuilder.h" 18 #include "X86MachineFunctionInfo.h" 19 #include "X86RegisterInfo.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetMachine.h" 22 #include "llvm/Instructions.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Type.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAGISel.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include "llvm/Support/CFG.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/ADT/Statistic.h" 40 using namespace llvm; 41 42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 43 44 //===----------------------------------------------------------------------===// 45 // Pattern Matcher Implementation 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 50 /// SDValue's instead of register numbers for the leaves of the matched 51 /// tree. 52 struct X86ISelAddressMode { 53 enum { 54 RegBase, 55 FrameIndexBase 56 } BaseType; 57 58 // This is really a union, discriminated by BaseType! 59 SDValue Base_Reg; 60 int Base_FrameIndex; 61 62 unsigned Scale; 63 SDValue IndexReg; 64 int32_t Disp; 65 SDValue Segment; 66 const GlobalValue *GV; 67 const Constant *CP; 68 const BlockAddress *BlockAddr; 69 const char *ES; 70 int JT; 71 unsigned Align; // CP alignment. 72 unsigned char SymbolFlags; // X86II::MO_* 73 74 X86ISelAddressMode() 75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 76 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 77 SymbolFlags(X86II::MO_NO_FLAG) { 78 } 79 80 bool hasSymbolicDisplacement() const { 81 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 82 } 83 84 bool hasBaseOrIndexReg() const { 85 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; 86 } 87 88 /// isRIPRelative - Return true if this addressing mode is already RIP 89 /// relative. 90 bool isRIPRelative() const { 91 if (BaseType != RegBase) return false; 92 if (RegisterSDNode *RegNode = 93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 94 return RegNode->getReg() == X86::RIP; 95 return false; 96 } 97 98 void setBaseReg(SDValue Reg) { 99 BaseType = RegBase; 100 Base_Reg = Reg; 101 } 102 103 void dump() { 104 dbgs() << "X86ISelAddressMode " << this << '\n'; 105 dbgs() << "Base_Reg "; 106 if (Base_Reg.getNode() != 0) 107 Base_Reg.getNode()->dump(); 108 else 109 dbgs() << "nul"; 110 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 111 << " Scale" << Scale << '\n' 112 << "IndexReg "; 113 if (IndexReg.getNode() != 0) 114 IndexReg.getNode()->dump(); 115 else 116 dbgs() << "nul"; 117 dbgs() << " Disp " << Disp << '\n' 118 << "GV "; 119 if (GV) 120 GV->dump(); 121 else 122 dbgs() << "nul"; 123 dbgs() << " CP "; 124 if (CP) 125 CP->dump(); 126 else 127 dbgs() << "nul"; 128 dbgs() << '\n' 129 << "ES "; 130 if (ES) 131 dbgs() << ES; 132 else 133 dbgs() << "nul"; 134 dbgs() << " JT" << JT << " Align" << Align << '\n'; 135 } 136 }; 137 } 138 139 namespace { 140 //===--------------------------------------------------------------------===// 141 /// ISel - X86 specific code to select X86 machine instructions for 142 /// SelectionDAG operations. 143 /// 144 class X86DAGToDAGISel : public SelectionDAGISel { 145 /// X86Lowering - This object fully describes how to lower LLVM code to an 146 /// X86-specific SelectionDAG. 147 const X86TargetLowering &X86Lowering; 148 149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 150 /// make the right decision when generating code for different targets. 151 const X86Subtarget *Subtarget; 152 153 /// OptForSize - If true, selector should try to optimize for code size 154 /// instead of performance. 155 bool OptForSize; 156 157 public: 158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 159 : SelectionDAGISel(tm, OptLevel), 160 X86Lowering(*tm.getTargetLowering()), 161 Subtarget(&tm.getSubtarget<X86Subtarget>()), 162 OptForSize(false) {} 163 164 virtual const char *getPassName() const { 165 return "X86 DAG->DAG Instruction Selection"; 166 } 167 168 virtual void EmitFunctionEntryCode(); 169 170 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; 171 172 virtual void PreprocessISelDAG(); 173 174 inline bool immSext8(SDNode *N) const { 175 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 176 } 177 178 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 179 // sign extended field. 180 inline bool i64immSExt32(SDNode *N) const { 181 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 182 return (int64_t)v == (int32_t)v; 183 } 184 185 // Include the pieces autogenerated from the target description. 186 #include "X86GenDAGISel.inc" 187 188 private: 189 SDNode *Select(SDNode *N); 190 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 191 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT); 192 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT); 193 194 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 195 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 196 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 197 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 198 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 199 unsigned Depth); 200 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 201 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 202 SDValue &Scale, SDValue &Index, SDValue &Disp, 203 SDValue &Segment); 204 bool SelectLEAAddr(SDValue N, SDValue &Base, 205 SDValue &Scale, SDValue &Index, SDValue &Disp, 206 SDValue &Segment); 207 bool SelectTLSADDRAddr(SDValue N, SDValue &Base, 208 SDValue &Scale, SDValue &Index, SDValue &Disp, 209 SDValue &Segment); 210 bool SelectScalarSSELoad(SDNode *Root, SDValue N, 211 SDValue &Base, SDValue &Scale, 212 SDValue &Index, SDValue &Disp, 213 SDValue &Segment, 214 SDValue &NodeWithChain); 215 216 bool TryFoldLoad(SDNode *P, SDValue N, 217 SDValue &Base, SDValue &Scale, 218 SDValue &Index, SDValue &Disp, 219 SDValue &Segment); 220 221 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 222 /// inline asm expressions. 223 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 224 char ConstraintCode, 225 std::vector<SDValue> &OutOps); 226 227 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 228 229 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 230 SDValue &Scale, SDValue &Index, 231 SDValue &Disp, SDValue &Segment) { 232 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 233 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) : 234 AM.Base_Reg; 235 Scale = getI8Imm(AM.Scale); 236 Index = AM.IndexReg; 237 // These are 32-bit even in 64-bit mode since RIP relative offset 238 // is 32-bit. 239 if (AM.GV) 240 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(), 241 MVT::i32, AM.Disp, 242 AM.SymbolFlags); 243 else if (AM.CP) 244 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 245 AM.Align, AM.Disp, AM.SymbolFlags); 246 else if (AM.ES) 247 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 248 else if (AM.JT != -1) 249 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 250 else if (AM.BlockAddr) 251 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32, 252 true, AM.SymbolFlags); 253 else 254 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 255 256 if (AM.Segment.getNode()) 257 Segment = AM.Segment; 258 else 259 Segment = CurDAG->getRegister(0, MVT::i32); 260 } 261 262 /// getI8Imm - Return a target constant with the specified value, of type 263 /// i8. 264 inline SDValue getI8Imm(unsigned Imm) { 265 return CurDAG->getTargetConstant(Imm, MVT::i8); 266 } 267 268 /// getI32Imm - Return a target constant with the specified value, of type 269 /// i32. 270 inline SDValue getI32Imm(unsigned Imm) { 271 return CurDAG->getTargetConstant(Imm, MVT::i32); 272 } 273 274 /// getGlobalBaseReg - Return an SDNode that returns the value of 275 /// the global base register. Output instructions required to 276 /// initialize the global base register, if necessary. 277 /// 278 SDNode *getGlobalBaseReg(); 279 280 /// getTargetMachine - Return a reference to the TargetMachine, casted 281 /// to the target-specific type. 282 const X86TargetMachine &getTargetMachine() { 283 return static_cast<const X86TargetMachine &>(TM); 284 } 285 286 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 287 /// to the target-specific type. 288 const X86InstrInfo *getInstrInfo() { 289 return getTargetMachine().getInstrInfo(); 290 } 291 }; 292 } 293 294 295 bool 296 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 297 if (OptLevel == CodeGenOpt::None) return false; 298 299 if (!N.hasOneUse()) 300 return false; 301 302 if (N.getOpcode() != ISD::LOAD) 303 return true; 304 305 // If N is a load, do additional profitability checks. 306 if (U == Root) { 307 switch (U->getOpcode()) { 308 default: break; 309 case X86ISD::ADD: 310 case X86ISD::SUB: 311 case X86ISD::AND: 312 case X86ISD::XOR: 313 case X86ISD::OR: 314 case ISD::ADD: 315 case ISD::ADDC: 316 case ISD::ADDE: 317 case ISD::AND: 318 case ISD::OR: 319 case ISD::XOR: { 320 SDValue Op1 = U->getOperand(1); 321 322 // If the other operand is a 8-bit immediate we should fold the immediate 323 // instead. This reduces code size. 324 // e.g. 325 // movl 4(%esp), %eax 326 // addl $4, %eax 327 // vs. 328 // movl $4, %eax 329 // addl 4(%esp), %eax 330 // The former is 2 bytes shorter. In case where the increment is 1, then 331 // the saving can be 4 bytes (by using incl %eax). 332 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 333 if (Imm->getAPIntValue().isSignedIntN(8)) 334 return false; 335 336 // If the other operand is a TLS address, we should fold it instead. 337 // This produces 338 // movl %gs:0, %eax 339 // leal i@NTPOFF(%eax), %eax 340 // instead of 341 // movl $i@NTPOFF, %eax 342 // addl %gs:0, %eax 343 // if the block also has an access to a second TLS address this will save 344 // a load. 345 // FIXME: This is probably also true for non TLS addresses. 346 if (Op1.getOpcode() == X86ISD::Wrapper) { 347 SDValue Val = Op1.getOperand(0); 348 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 349 return false; 350 } 351 } 352 } 353 } 354 355 return true; 356 } 357 358 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with 359 /// load's chain operand and move load below the call's chain operand. 360 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 361 SDValue Call, SDValue OrigChain) { 362 SmallVector<SDValue, 8> Ops; 363 SDValue Chain = OrigChain.getOperand(0); 364 if (Chain.getNode() == Load.getNode()) 365 Ops.push_back(Load.getOperand(0)); 366 else { 367 assert(Chain.getOpcode() == ISD::TokenFactor && 368 "Unexpected chain operand"); 369 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 370 if (Chain.getOperand(i).getNode() == Load.getNode()) 371 Ops.push_back(Load.getOperand(0)); 372 else 373 Ops.push_back(Chain.getOperand(i)); 374 SDValue NewChain = 375 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(), 376 MVT::Other, &Ops[0], Ops.size()); 377 Ops.clear(); 378 Ops.push_back(NewChain); 379 } 380 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) 381 Ops.push_back(OrigChain.getOperand(i)); 382 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); 383 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 384 Load.getOperand(1), Load.getOperand(2)); 385 Ops.clear(); 386 Ops.push_back(SDValue(Load.getNode(), 1)); 387 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i) 388 Ops.push_back(Call.getOperand(i)); 389 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size()); 390 } 391 392 /// isCalleeLoad - Return true if call address is a load and it can be 393 /// moved below CALLSEQ_START and the chains leading up to the call. 394 /// Return the CALLSEQ_START by reference as a second output. 395 /// In the case of a tail call, there isn't a callseq node between the call 396 /// chain and the load. 397 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 398 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 399 return false; 400 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 401 if (!LD || 402 LD->isVolatile() || 403 LD->getAddressingMode() != ISD::UNINDEXED || 404 LD->getExtensionType() != ISD::NON_EXTLOAD) 405 return false; 406 407 // Now let's find the callseq_start. 408 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 409 if (!Chain.hasOneUse()) 410 return false; 411 Chain = Chain.getOperand(0); 412 } 413 414 if (!Chain.getNumOperands()) 415 return false; 416 if (Chain.getOperand(0).getNode() == Callee.getNode()) 417 return true; 418 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 419 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 420 Callee.getValue(1).hasOneUse()) 421 return true; 422 return false; 423 } 424 425 void X86DAGToDAGISel::PreprocessISelDAG() { 426 // OptForSize is used in pattern predicates that isel is matching. 427 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize); 428 429 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 430 E = CurDAG->allnodes_end(); I != E; ) { 431 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 432 433 if (OptLevel != CodeGenOpt::None && 434 (N->getOpcode() == X86ISD::CALL || 435 N->getOpcode() == X86ISD::TC_RETURN)) { 436 /// Also try moving call address load from outside callseq_start to just 437 /// before the call to allow it to be folded. 438 /// 439 /// [Load chain] 440 /// ^ 441 /// | 442 /// [Load] 443 /// ^ ^ 444 /// | | 445 /// / \-- 446 /// / | 447 ///[CALLSEQ_START] | 448 /// ^ | 449 /// | | 450 /// [LOAD/C2Reg] | 451 /// | | 452 /// \ / 453 /// \ / 454 /// [CALL] 455 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 456 SDValue Chain = N->getOperand(0); 457 SDValue Load = N->getOperand(1); 458 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 459 continue; 460 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 461 ++NumLoadMoved; 462 continue; 463 } 464 465 // Lower fpround and fpextend nodes that target the FP stack to be store and 466 // load to the stack. This is a gross hack. We would like to simply mark 467 // these as being illegal, but when we do that, legalize produces these when 468 // it expands calls, then expands these in the same legalize pass. We would 469 // like dag combine to be able to hack on these between the call expansion 470 // and the node legalization. As such this pass basically does "really 471 // late" legalization of these inline with the X86 isel pass. 472 // FIXME: This should only happen when not compiled with -O0. 473 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 474 continue; 475 476 EVT SrcVT = N->getOperand(0).getValueType(); 477 EVT DstVT = N->getValueType(0); 478 479 // If any of the sources are vectors, no fp stack involved. 480 if (SrcVT.isVector() || DstVT.isVector()) 481 continue; 482 483 // If the source and destination are SSE registers, then this is a legal 484 // conversion that should not be lowered. 485 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT); 486 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT); 487 if (SrcIsSSE && DstIsSSE) 488 continue; 489 490 if (!SrcIsSSE && !DstIsSSE) { 491 // If this is an FPStack extension, it is a noop. 492 if (N->getOpcode() == ISD::FP_EXTEND) 493 continue; 494 // If this is a value-preserving FPStack truncation, it is a noop. 495 if (N->getConstantOperandVal(1)) 496 continue; 497 } 498 499 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 500 // FPStack has extload and truncstore. SSE can fold direct loads into other 501 // operations. Based on this, decide what we want to do. 502 EVT MemVT; 503 if (N->getOpcode() == ISD::FP_ROUND) 504 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 505 else 506 MemVT = SrcIsSSE ? SrcVT : DstVT; 507 508 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 509 DebugLoc dl = N->getDebugLoc(); 510 511 // FIXME: optimize the case where the src/dest is a load or store? 512 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 513 N->getOperand(0), 514 MemTmp, MachinePointerInfo(), MemVT, 515 false, false, 0); 516 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 517 MachinePointerInfo(), 518 MemVT, false, false, 0); 519 520 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 521 // extload we created. This will cause general havok on the dag because 522 // anything below the conversion could be folded into other existing nodes. 523 // To avoid invalidating 'I', back it up to the convert node. 524 --I; 525 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 526 527 // Now that we did that, the node is dead. Increment the iterator to the 528 // next node to process, then delete N. 529 ++I; 530 CurDAG->DeleteNode(N); 531 } 532 } 533 534 535 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 536 /// the main function. 537 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 538 MachineFrameInfo *MFI) { 539 const TargetInstrInfo *TII = TM.getInstrInfo(); 540 if (Subtarget->isTargetCygMing()) { 541 unsigned CallOp = 542 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; 543 BuildMI(BB, DebugLoc(), 544 TII->get(CallOp)).addExternalSymbol("__main"); 545 } 546 } 547 548 void X86DAGToDAGISel::EmitFunctionEntryCode() { 549 // If this is main, emit special code for main. 550 if (const Function *Fn = MF->getFunction()) 551 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 552 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); 553 } 554 555 static bool isDispSafeForFrameIndex(int64_t Val) { 556 // On 64-bit platforms, we can run into an issue where a frame index 557 // includes a displacement that, when added to the explicit displacement, 558 // will overflow the displacement field. Assuming that the frame index 559 // displacement fits into a 31-bit integer (which is only slightly more 560 // aggressive than the current fundamental assumption that it fits into 561 // a 32-bit integer), a 31-bit disp should always be safe. 562 return isInt<31>(Val); 563 } 564 565 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, 566 X86ISelAddressMode &AM) { 567 int64_t Val = AM.Disp + Offset; 568 CodeModel::Model M = TM.getCodeModel(); 569 if (Subtarget->is64Bit()) { 570 if (!X86::isOffsetSuitableForCodeModel(Val, M, 571 AM.hasSymbolicDisplacement())) 572 return true; 573 // In addition to the checks required for a register base, check that 574 // we do not try to use an unsafe Disp with a frame index. 575 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 576 !isDispSafeForFrameIndex(Val)) 577 return true; 578 } 579 AM.Disp = Val; 580 return false; 581 582 } 583 584 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 585 SDValue Address = N->getOperand(1); 586 587 // load gs:0 -> GS segment register. 588 // load fs:0 -> FS segment register. 589 // 590 // This optimization is valid because the GNU TLS model defines that 591 // gs:0 (or fs:0 on X86-64) contains its own address. 592 // For more information see http://people.redhat.com/drepper/tls.pdf 593 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 594 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && 595 Subtarget->isTargetELF()) 596 switch (N->getPointerInfo().getAddrSpace()) { 597 case 256: 598 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 599 return false; 600 case 257: 601 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 602 return false; 603 } 604 605 return true; 606 } 607 608 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 609 /// into an addressing mode. These wrap things that will resolve down into a 610 /// symbol reference. If no match is possible, this returns true, otherwise it 611 /// returns false. 612 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 613 // If the addressing mode already has a symbol as the displacement, we can 614 // never match another symbol. 615 if (AM.hasSymbolicDisplacement()) 616 return true; 617 618 SDValue N0 = N.getOperand(0); 619 CodeModel::Model M = TM.getCodeModel(); 620 621 // Handle X86-64 rip-relative addresses. We check this before checking direct 622 // folding because RIP is preferable to non-RIP accesses. 623 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && 624 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 625 // they cannot be folded into immediate fields. 626 // FIXME: This can be improved for kernel and other models? 627 (M == CodeModel::Small || M == CodeModel::Kernel)) { 628 // Base and index reg must be 0 in order to use %rip as base. 629 if (AM.hasBaseOrIndexReg()) 630 return true; 631 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 632 X86ISelAddressMode Backup = AM; 633 AM.GV = G->getGlobal(); 634 AM.SymbolFlags = G->getTargetFlags(); 635 if (FoldOffsetIntoAddress(G->getOffset(), AM)) { 636 AM = Backup; 637 return true; 638 } 639 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 640 X86ISelAddressMode Backup = AM; 641 AM.CP = CP->getConstVal(); 642 AM.Align = CP->getAlignment(); 643 AM.SymbolFlags = CP->getTargetFlags(); 644 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { 645 AM = Backup; 646 return true; 647 } 648 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 649 AM.ES = S->getSymbol(); 650 AM.SymbolFlags = S->getTargetFlags(); 651 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 652 AM.JT = J->getIndex(); 653 AM.SymbolFlags = J->getTargetFlags(); 654 } else { 655 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 656 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 657 } 658 659 if (N.getOpcode() == X86ISD::WrapperRIP) 660 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 661 return false; 662 } 663 664 // Handle the case when globals fit in our immediate field: This is true for 665 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit 666 // mode, this only applies to a non-RIP-relative computation. 667 if (!Subtarget->is64Bit() || 668 M == CodeModel::Small || M == CodeModel::Kernel) { 669 assert(N.getOpcode() != X86ISD::WrapperRIP && 670 "RIP-relative addressing already handled"); 671 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 672 AM.GV = G->getGlobal(); 673 AM.Disp += G->getOffset(); 674 AM.SymbolFlags = G->getTargetFlags(); 675 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 676 AM.CP = CP->getConstVal(); 677 AM.Align = CP->getAlignment(); 678 AM.Disp += CP->getOffset(); 679 AM.SymbolFlags = CP->getTargetFlags(); 680 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 681 AM.ES = S->getSymbol(); 682 AM.SymbolFlags = S->getTargetFlags(); 683 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 684 AM.JT = J->getIndex(); 685 AM.SymbolFlags = J->getTargetFlags(); 686 } else { 687 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress(); 688 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags(); 689 } 690 return false; 691 } 692 693 return true; 694 } 695 696 /// MatchAddress - Add the specified node to the specified addressing mode, 697 /// returning true if it cannot be done. This just pattern matches for the 698 /// addressing mode. 699 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 700 if (MatchAddressRecursively(N, AM, 0)) 701 return true; 702 703 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 704 // a smaller encoding and avoids a scaled-index. 705 if (AM.Scale == 2 && 706 AM.BaseType == X86ISelAddressMode::RegBase && 707 AM.Base_Reg.getNode() == 0) { 708 AM.Base_Reg = AM.IndexReg; 709 AM.Scale = 1; 710 } 711 712 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 713 // because it has a smaller encoding. 714 // TODO: Which other code models can use this? 715 if (TM.getCodeModel() == CodeModel::Small && 716 Subtarget->is64Bit() && 717 AM.Scale == 1 && 718 AM.BaseType == X86ISelAddressMode::RegBase && 719 AM.Base_Reg.getNode() == 0 && 720 AM.IndexReg.getNode() == 0 && 721 AM.SymbolFlags == X86II::MO_NO_FLAG && 722 AM.hasSymbolicDisplacement()) 723 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 724 725 return false; 726 } 727 728 // Insert a node into the DAG at least before the Pos node's position. This 729 // will reposition the node as needed, and will assign it a node ID that is <= 730 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node 731 // IDs! The selection DAG must no longer depend on their uniqueness when this 732 // is used. 733 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 734 if (N.getNode()->getNodeId() == -1 || 735 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { 736 DAG.RepositionNode(Pos.getNode(), N.getNode()); 737 N.getNode()->setNodeId(Pos.getNode()->getNodeId()); 738 } 739 } 740 741 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This 742 // allows us to convert the shift and and into an h-register extract and 743 // a scaled index. Returns false if the simplification is performed. 744 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 745 uint64_t Mask, 746 SDValue Shift, SDValue X, 747 X86ISelAddressMode &AM) { 748 if (Shift.getOpcode() != ISD::SRL || 749 !isa<ConstantSDNode>(Shift.getOperand(1)) || 750 !Shift.hasOneUse()) 751 return true; 752 753 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 754 if (ScaleLog <= 0 || ScaleLog >= 4 || 755 Mask != (0xffu << ScaleLog)) 756 return true; 757 758 EVT VT = N.getValueType(); 759 DebugLoc DL = N.getDebugLoc(); 760 SDValue Eight = DAG.getConstant(8, MVT::i8); 761 SDValue NewMask = DAG.getConstant(0xff, VT); 762 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 763 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 764 SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); 765 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 766 767 // Insert the new nodes into the topological ordering. We must do this in 768 // a valid topological ordering as nothing is going to go back and re-sort 769 // these nodes. We continually insert before 'N' in sequence as this is 770 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 771 // hierarchy left to express. 772 InsertDAGNode(DAG, N, Eight); 773 InsertDAGNode(DAG, N, Srl); 774 InsertDAGNode(DAG, N, NewMask); 775 InsertDAGNode(DAG, N, And); 776 InsertDAGNode(DAG, N, ShlCount); 777 InsertDAGNode(DAG, N, Shl); 778 DAG.ReplaceAllUsesWith(N, Shl); 779 AM.IndexReg = And; 780 AM.Scale = (1 << ScaleLog); 781 return false; 782 } 783 784 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 785 // allows us to fold the shift into this addressing mode. Returns false if the 786 // transform succeeded. 787 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 788 uint64_t Mask, 789 SDValue Shift, SDValue X, 790 X86ISelAddressMode &AM) { 791 if (Shift.getOpcode() != ISD::SHL || 792 !isa<ConstantSDNode>(Shift.getOperand(1))) 793 return true; 794 795 // Not likely to be profitable if either the AND or SHIFT node has more 796 // than one use (unless all uses are for address computation). Besides, 797 // isel mechanism requires their node ids to be reused. 798 if (!N.hasOneUse() || !Shift.hasOneUse()) 799 return true; 800 801 // Verify that the shift amount is something we can fold. 802 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 803 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 804 return true; 805 806 EVT VT = N.getValueType(); 807 DebugLoc DL = N.getDebugLoc(); 808 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); 809 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 810 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 811 812 // Insert the new nodes into the topological ordering. We must do this in 813 // a valid topological ordering as nothing is going to go back and re-sort 814 // these nodes. We continually insert before 'N' in sequence as this is 815 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 816 // hierarchy left to express. 817 InsertDAGNode(DAG, N, NewMask); 818 InsertDAGNode(DAG, N, NewAnd); 819 InsertDAGNode(DAG, N, NewShift); 820 DAG.ReplaceAllUsesWith(N, NewShift); 821 822 AM.Scale = 1 << ShiftAmt; 823 AM.IndexReg = NewAnd; 824 return false; 825 } 826 827 // Implement some heroics to detect shifts of masked values where the mask can 828 // be replaced by extending the shift and undoing that in the addressing mode 829 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 830 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 831 // the addressing mode. This results in code such as: 832 // 833 // int f(short *y, int *lookup_table) { 834 // ... 835 // return *y + lookup_table[*y >> 11]; 836 // } 837 // 838 // Turning into: 839 // movzwl (%rdi), %eax 840 // movl %eax, %ecx 841 // shrl $11, %ecx 842 // addl (%rsi,%rcx,4), %eax 843 // 844 // Instead of: 845 // movzwl (%rdi), %eax 846 // movl %eax, %ecx 847 // shrl $9, %ecx 848 // andl $124, %rcx 849 // addl (%rsi,%rcx), %eax 850 // 851 // Note that this function assumes the mask is provided as a mask *after* the 852 // value is shifted. The input chain may or may not match that, but computing 853 // such a mask is trivial. 854 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 855 uint64_t Mask, 856 SDValue Shift, SDValue X, 857 X86ISelAddressMode &AM) { 858 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 859 !isa<ConstantSDNode>(Shift.getOperand(1))) 860 return true; 861 862 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 863 unsigned MaskLZ = CountLeadingZeros_64(Mask); 864 unsigned MaskTZ = CountTrailingZeros_64(Mask); 865 866 // The amount of shift we're trying to fit into the addressing mode is taken 867 // from the trailing zeros of the mask. 868 unsigned AMShiftAmt = MaskTZ; 869 870 // There is nothing we can do here unless the mask is removing some bits. 871 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 872 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; 873 874 // We also need to ensure that mask is a continuous run of bits. 875 if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 876 877 // Scale the leading zero count down based on the actual size of the value. 878 // Also scale it down based on the size of the shift. 879 MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt; 880 881 // The final check is to ensure that any masked out high bits of X are 882 // already known to be zero. Otherwise, the mask has a semantic impact 883 // other than masking out a couple of low bits. Unfortunately, because of 884 // the mask, zero extensions will be removed from operands in some cases. 885 // This code works extra hard to look through extensions because we can 886 // replace them with zero extensions cheaply if necessary. 887 bool ReplacingAnyExtend = false; 888 if (X.getOpcode() == ISD::ANY_EXTEND) { 889 unsigned ExtendBits = 890 X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits(); 891 // Assume that we'll replace the any-extend with a zero-extend, and 892 // narrow the search to the extended value. 893 X = X.getOperand(0); 894 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 895 ReplacingAnyExtend = true; 896 } 897 APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(), 898 MaskLZ); 899 APInt KnownZero, KnownOne; 900 DAG.ComputeMaskedBits(X, KnownZero, KnownOne); 901 if (MaskedHighBits != KnownZero) return true; 902 903 // We've identified a pattern that can be transformed into a single shift 904 // and an addressing mode. Make it so. 905 EVT VT = N.getValueType(); 906 if (ReplacingAnyExtend) { 907 assert(X.getValueType() != VT); 908 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 909 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X); 910 InsertDAGNode(DAG, N, NewX); 911 X = NewX; 912 } 913 DebugLoc DL = N.getDebugLoc(); 914 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); 915 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 916 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); 917 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 918 919 // Insert the new nodes into the topological ordering. We must do this in 920 // a valid topological ordering as nothing is going to go back and re-sort 921 // these nodes. We continually insert before 'N' in sequence as this is 922 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 923 // hierarchy left to express. 924 InsertDAGNode(DAG, N, NewSRLAmt); 925 InsertDAGNode(DAG, N, NewSRL); 926 InsertDAGNode(DAG, N, NewSHLAmt); 927 InsertDAGNode(DAG, N, NewSHL); 928 DAG.ReplaceAllUsesWith(N, NewSHL); 929 930 AM.Scale = 1 << AMShiftAmt; 931 AM.IndexReg = NewSRL; 932 return false; 933 } 934 935 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 936 unsigned Depth) { 937 DebugLoc dl = N.getDebugLoc(); 938 DEBUG({ 939 dbgs() << "MatchAddress: "; 940 AM.dump(); 941 }); 942 // Limit recursion. 943 if (Depth > 5) 944 return MatchAddressBase(N, AM); 945 946 // If this is already a %rip relative address, we can only merge immediates 947 // into it. Instead of handling this in every case, we handle it here. 948 // RIP relative addressing: %rip + 32-bit displacement! 949 if (AM.isRIPRelative()) { 950 // FIXME: JumpTable and ExternalSymbol address currently don't like 951 // displacements. It isn't very important, but this should be fixed for 952 // consistency. 953 if (!AM.ES && AM.JT != -1) return true; 954 955 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 956 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) 957 return false; 958 return true; 959 } 960 961 switch (N.getOpcode()) { 962 default: break; 963 case ISD::Constant: { 964 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 965 if (!FoldOffsetIntoAddress(Val, AM)) 966 return false; 967 break; 968 } 969 970 case X86ISD::Wrapper: 971 case X86ISD::WrapperRIP: 972 if (!MatchWrapper(N, AM)) 973 return false; 974 break; 975 976 case ISD::LOAD: 977 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) 978 return false; 979 break; 980 981 case ISD::FrameIndex: 982 if (AM.BaseType == X86ISelAddressMode::RegBase && 983 AM.Base_Reg.getNode() == 0 && 984 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 985 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 986 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 987 return false; 988 } 989 break; 990 991 case ISD::SHL: 992 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 993 break; 994 995 if (ConstantSDNode 996 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 997 unsigned Val = CN->getZExtValue(); 998 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 999 // that the base operand remains free for further matching. If 1000 // the base doesn't end up getting used, a post-processing step 1001 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 1002 if (Val == 1 || Val == 2 || Val == 3) { 1003 AM.Scale = 1 << Val; 1004 SDValue ShVal = N.getNode()->getOperand(0); 1005 1006 // Okay, we know that we have a scale by now. However, if the scaled 1007 // value is an add of something and a constant, we can fold the 1008 // constant into the disp field here. 1009 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 1010 AM.IndexReg = ShVal.getNode()->getOperand(0); 1011 ConstantSDNode *AddVal = 1012 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 1013 uint64_t Disp = AddVal->getSExtValue() << Val; 1014 if (!FoldOffsetIntoAddress(Disp, AM)) 1015 return false; 1016 } 1017 1018 AM.IndexReg = ShVal; 1019 return false; 1020 } 1021 break; 1022 } 1023 1024 case ISD::SRL: { 1025 // Scale must not be used already. 1026 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1027 1028 SDValue And = N.getOperand(0); 1029 if (And.getOpcode() != ISD::AND) break; 1030 SDValue X = And.getOperand(0); 1031 1032 // We only handle up to 64-bit values here as those are what matter for 1033 // addressing mode optimizations. 1034 if (X.getValueSizeInBits() > 64) break; 1035 1036 // The mask used for the transform is expected to be post-shift, but we 1037 // found the shift first so just apply the shift to the mask before passing 1038 // it down. 1039 if (!isa<ConstantSDNode>(N.getOperand(1)) || 1040 !isa<ConstantSDNode>(And.getOperand(1))) 1041 break; 1042 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 1043 1044 // Try to fold the mask and shift into the scale, and return false if we 1045 // succeed. 1046 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 1047 return false; 1048 break; 1049 } 1050 1051 case ISD::SMUL_LOHI: 1052 case ISD::UMUL_LOHI: 1053 // A mul_lohi where we need the low part can be folded as a plain multiply. 1054 if (N.getResNo() != 0) break; 1055 // FALL THROUGH 1056 case ISD::MUL: 1057 case X86ISD::MUL_IMM: 1058 // X*[3,5,9] -> X+X*[2,4,8] 1059 if (AM.BaseType == X86ISelAddressMode::RegBase && 1060 AM.Base_Reg.getNode() == 0 && 1061 AM.IndexReg.getNode() == 0) { 1062 if (ConstantSDNode 1063 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 1064 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 1065 CN->getZExtValue() == 9) { 1066 AM.Scale = unsigned(CN->getZExtValue())-1; 1067 1068 SDValue MulVal = N.getNode()->getOperand(0); 1069 SDValue Reg; 1070 1071 // Okay, we know that we have a scale by now. However, if the scaled 1072 // value is an add of something and a constant, we can fold the 1073 // constant into the disp field here. 1074 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 1075 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 1076 Reg = MulVal.getNode()->getOperand(0); 1077 ConstantSDNode *AddVal = 1078 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 1079 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 1080 if (FoldOffsetIntoAddress(Disp, AM)) 1081 Reg = N.getNode()->getOperand(0); 1082 } else { 1083 Reg = N.getNode()->getOperand(0); 1084 } 1085 1086 AM.IndexReg = AM.Base_Reg = Reg; 1087 return false; 1088 } 1089 } 1090 break; 1091 1092 case ISD::SUB: { 1093 // Given A-B, if A can be completely folded into the address and 1094 // the index field with the index field unused, use -B as the index. 1095 // This is a win if a has multiple parts that can be folded into 1096 // the address. Also, this saves a mov if the base register has 1097 // other uses, since it avoids a two-address sub instruction, however 1098 // it costs an additional mov if the index register has other uses. 1099 1100 // Add an artificial use to this node so that we can keep track of 1101 // it if it gets CSE'd with a different node. 1102 HandleSDNode Handle(N); 1103 1104 // Test if the LHS of the sub can be folded. 1105 X86ISelAddressMode Backup = AM; 1106 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 1107 AM = Backup; 1108 break; 1109 } 1110 // Test if the index field is free for use. 1111 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 1112 AM = Backup; 1113 break; 1114 } 1115 1116 int Cost = 0; 1117 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 1118 // If the RHS involves a register with multiple uses, this 1119 // transformation incurs an extra mov, due to the neg instruction 1120 // clobbering its operand. 1121 if (!RHS.getNode()->hasOneUse() || 1122 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 1123 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 1124 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 1125 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 1126 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 1127 ++Cost; 1128 // If the base is a register with multiple uses, this 1129 // transformation may save a mov. 1130 if ((AM.BaseType == X86ISelAddressMode::RegBase && 1131 AM.Base_Reg.getNode() && 1132 !AM.Base_Reg.getNode()->hasOneUse()) || 1133 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1134 --Cost; 1135 // If the folded LHS was interesting, this transformation saves 1136 // address arithmetic. 1137 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 1138 ((AM.Disp != 0) && (Backup.Disp == 0)) + 1139 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 1140 --Cost; 1141 // If it doesn't look like it may be an overall win, don't do it. 1142 if (Cost >= 0) { 1143 AM = Backup; 1144 break; 1145 } 1146 1147 // Ok, the transformation is legal and appears profitable. Go for it. 1148 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 1149 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 1150 AM.IndexReg = Neg; 1151 AM.Scale = 1; 1152 1153 // Insert the new nodes into the topological ordering. 1154 InsertDAGNode(*CurDAG, N, Zero); 1155 InsertDAGNode(*CurDAG, N, Neg); 1156 return false; 1157 } 1158 1159 case ISD::ADD: { 1160 // Add an artificial use to this node so that we can keep track of 1161 // it if it gets CSE'd with a different node. 1162 HandleSDNode Handle(N); 1163 1164 X86ISelAddressMode Backup = AM; 1165 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1166 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 1167 return false; 1168 AM = Backup; 1169 1170 // Try again after commuting the operands. 1171 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& 1172 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) 1173 return false; 1174 AM = Backup; 1175 1176 // If we couldn't fold both operands into the address at the same time, 1177 // see if we can just put each operand into a register and fold at least 1178 // the add. 1179 if (AM.BaseType == X86ISelAddressMode::RegBase && 1180 !AM.Base_Reg.getNode() && 1181 !AM.IndexReg.getNode()) { 1182 N = Handle.getValue(); 1183 AM.Base_Reg = N.getOperand(0); 1184 AM.IndexReg = N.getOperand(1); 1185 AM.Scale = 1; 1186 return false; 1187 } 1188 N = Handle.getValue(); 1189 break; 1190 } 1191 1192 case ISD::OR: 1193 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 1194 if (CurDAG->isBaseWithConstantOffset(N)) { 1195 X86ISelAddressMode Backup = AM; 1196 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); 1197 1198 // Start with the LHS as an addr mode. 1199 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1200 !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) 1201 return false; 1202 AM = Backup; 1203 } 1204 break; 1205 1206 case ISD::AND: { 1207 // Perform some heroic transforms on an and of a constant-count shift 1208 // with a constant to enable use of the scaled offset field. 1209 1210 // Scale must not be used already. 1211 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1212 1213 SDValue Shift = N.getOperand(0); 1214 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; 1215 SDValue X = Shift.getOperand(0); 1216 1217 // We only handle up to 64-bit values here as those are what matter for 1218 // addressing mode optimizations. 1219 if (X.getValueSizeInBits() > 64) break; 1220 1221 if (!isa<ConstantSDNode>(N.getOperand(1))) 1222 break; 1223 uint64_t Mask = N.getConstantOperandVal(1); 1224 1225 // Try to fold the mask and shift into an extract and scale. 1226 if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 1227 return false; 1228 1229 // Try to fold the mask and shift directly into the scale. 1230 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 1231 return false; 1232 1233 // Try to swap the mask and shift to place shifts which can be done as 1234 // a scale on the outside of the mask. 1235 if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) 1236 return false; 1237 break; 1238 } 1239 } 1240 1241 return MatchAddressBase(N, AM); 1242 } 1243 1244 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1245 /// specified addressing mode without any further recursion. 1246 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1247 // Is the base register already occupied? 1248 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1249 // If so, check to see if the scale index register is set. 1250 if (AM.IndexReg.getNode() == 0) { 1251 AM.IndexReg = N; 1252 AM.Scale = 1; 1253 return false; 1254 } 1255 1256 // Otherwise, we cannot select it. 1257 return true; 1258 } 1259 1260 // Default, generate it as a register. 1261 AM.BaseType = X86ISelAddressMode::RegBase; 1262 AM.Base_Reg = N; 1263 return false; 1264 } 1265 1266 /// SelectAddr - returns true if it is able pattern match an addressing mode. 1267 /// It returns the operands which make up the maximal addressing mode it can 1268 /// match by reference. 1269 /// 1270 /// Parent is the parent node of the addr operand that is being matched. It 1271 /// is always a load, store, atomic node, or null. It is only null when 1272 /// checking memory operands for inline asm nodes. 1273 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1274 SDValue &Scale, SDValue &Index, 1275 SDValue &Disp, SDValue &Segment) { 1276 X86ISelAddressMode AM; 1277 1278 if (Parent && 1279 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1280 // that are not a MemSDNode, and thus don't have proper addrspace info. 1281 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1282 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1283 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme 1284 unsigned AddrSpace = 1285 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1286 // AddrSpace 256 -> GS, 257 -> FS. 1287 if (AddrSpace == 256) 1288 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1289 if (AddrSpace == 257) 1290 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1291 } 1292 1293 if (MatchAddress(N, AM)) 1294 return false; 1295 1296 EVT VT = N.getValueType(); 1297 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1298 if (!AM.Base_Reg.getNode()) 1299 AM.Base_Reg = CurDAG->getRegister(0, VT); 1300 } 1301 1302 if (!AM.IndexReg.getNode()) 1303 AM.IndexReg = CurDAG->getRegister(0, VT); 1304 1305 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1306 return true; 1307 } 1308 1309 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1310 /// match a load whose top elements are either undef or zeros. The load flavor 1311 /// is derived from the type of N, which is either v4f32 or v2f64. 1312 /// 1313 /// We also return: 1314 /// PatternChainNode: this is the matched node that has a chain input and 1315 /// output. 1316 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, 1317 SDValue N, SDValue &Base, 1318 SDValue &Scale, SDValue &Index, 1319 SDValue &Disp, SDValue &Segment, 1320 SDValue &PatternNodeWithChain) { 1321 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1322 PatternNodeWithChain = N.getOperand(0); 1323 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1324 PatternNodeWithChain.hasOneUse() && 1325 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1326 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1327 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1328 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1329 return false; 1330 return true; 1331 } 1332 } 1333 1334 // Also handle the case where we explicitly require zeros in the top 1335 // elements. This is a vector shuffle from the zero vector. 1336 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1337 // Check to see if the top elements are all zeros (or bitcast of zeros). 1338 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1339 N.getOperand(0).getNode()->hasOneUse() && 1340 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1341 N.getOperand(0).getOperand(0).hasOneUse() && 1342 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1343 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1344 // Okay, this is a zero extending load. Fold it. 1345 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1346 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1347 return false; 1348 PatternNodeWithChain = SDValue(LD, 0); 1349 return true; 1350 } 1351 return false; 1352 } 1353 1354 1355 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1356 /// mode it matches can be cost effectively emitted as an LEA instruction. 1357 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, 1358 SDValue &Base, SDValue &Scale, 1359 SDValue &Index, SDValue &Disp, 1360 SDValue &Segment) { 1361 X86ISelAddressMode AM; 1362 1363 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1364 // segments. 1365 SDValue Copy = AM.Segment; 1366 SDValue T = CurDAG->getRegister(0, MVT::i32); 1367 AM.Segment = T; 1368 if (MatchAddress(N, AM)) 1369 return false; 1370 assert (T == AM.Segment); 1371 AM.Segment = Copy; 1372 1373 EVT VT = N.getValueType(); 1374 unsigned Complexity = 0; 1375 if (AM.BaseType == X86ISelAddressMode::RegBase) 1376 if (AM.Base_Reg.getNode()) 1377 Complexity = 1; 1378 else 1379 AM.Base_Reg = CurDAG->getRegister(0, VT); 1380 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1381 Complexity = 4; 1382 1383 if (AM.IndexReg.getNode()) 1384 Complexity++; 1385 else 1386 AM.IndexReg = CurDAG->getRegister(0, VT); 1387 1388 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1389 // a simple shift. 1390 if (AM.Scale > 1) 1391 Complexity++; 1392 1393 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1394 // to a LEA. This is determined with some expermentation but is by no means 1395 // optimal (especially for code size consideration). LEA is nice because of 1396 // its three-address nature. Tweak the cost function again when we can run 1397 // convertToThreeAddress() at register allocation time. 1398 if (AM.hasSymbolicDisplacement()) { 1399 // For X86-64, we should always use lea to materialize RIP relative 1400 // addresses. 1401 if (Subtarget->is64Bit()) 1402 Complexity = 4; 1403 else 1404 Complexity += 2; 1405 } 1406 1407 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1408 Complexity++; 1409 1410 // If it isn't worth using an LEA, reject it. 1411 if (Complexity <= 2) 1412 return false; 1413 1414 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1415 return true; 1416 } 1417 1418 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1419 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, 1420 SDValue &Scale, SDValue &Index, 1421 SDValue &Disp, SDValue &Segment) { 1422 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1423 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1424 1425 X86ISelAddressMode AM; 1426 AM.GV = GA->getGlobal(); 1427 AM.Disp += GA->getOffset(); 1428 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1429 AM.SymbolFlags = GA->getTargetFlags(); 1430 1431 if (N.getValueType() == MVT::i32) { 1432 AM.Scale = 1; 1433 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1434 } else { 1435 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1436 } 1437 1438 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1439 return true; 1440 } 1441 1442 1443 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, 1444 SDValue &Base, SDValue &Scale, 1445 SDValue &Index, SDValue &Disp, 1446 SDValue &Segment) { 1447 if (!ISD::isNON_EXTLoad(N.getNode()) || 1448 !IsProfitableToFold(N, P, P) || 1449 !IsLegalToFold(N, P, P, OptLevel)) 1450 return false; 1451 1452 return SelectAddr(N.getNode(), 1453 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1454 } 1455 1456 /// getGlobalBaseReg - Return an SDNode that returns the value of 1457 /// the global base register. Output instructions required to 1458 /// initialize the global base register, if necessary. 1459 /// 1460 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1461 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1462 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode(); 1463 } 1464 1465 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1466 SDValue Chain = Node->getOperand(0); 1467 SDValue In1 = Node->getOperand(1); 1468 SDValue In2L = Node->getOperand(2); 1469 SDValue In2H = Node->getOperand(3); 1470 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1471 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1472 return NULL; 1473 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1474 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1475 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1476 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), 1477 MVT::i32, MVT::i32, MVT::Other, Ops, 1478 array_lengthof(Ops)); 1479 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1480 return ResNode; 1481 } 1482 1483 // FIXME: Figure out some way to unify this with the 'or' and other code 1484 // below. 1485 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) { 1486 if (Node->hasAnyUseOfValue(0)) 1487 return 0; 1488 1489 // Optimize common patterns for __sync_add_and_fetch and 1490 // __sync_sub_and_fetch where the result is not used. This allows us 1491 // to use "lock" version of add, sub, inc, dec instructions. 1492 // FIXME: Do not use special instructions but instead add the "lock" 1493 // prefix to the target node somehow. The extra information will then be 1494 // transferred to machine instruction and it denotes the prefix. 1495 SDValue Chain = Node->getOperand(0); 1496 SDValue Ptr = Node->getOperand(1); 1497 SDValue Val = Node->getOperand(2); 1498 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1499 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1500 return 0; 1501 1502 bool isInc = false, isDec = false, isSub = false, isCN = false; 1503 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1504 if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) { 1505 isCN = true; 1506 int64_t CNVal = CN->getSExtValue(); 1507 if (CNVal == 1) 1508 isInc = true; 1509 else if (CNVal == -1) 1510 isDec = true; 1511 else if (CNVal >= 0) 1512 Val = CurDAG->getTargetConstant(CNVal, NVT); 1513 else { 1514 isSub = true; 1515 Val = CurDAG->getTargetConstant(-CNVal, NVT); 1516 } 1517 } else if (Val.hasOneUse() && 1518 Val.getOpcode() == ISD::SUB && 1519 X86::isZeroNode(Val.getOperand(0))) { 1520 isSub = true; 1521 Val = Val.getOperand(1); 1522 } 1523 1524 DebugLoc dl = Node->getDebugLoc(); 1525 unsigned Opc = 0; 1526 switch (NVT.getSimpleVT().SimpleTy) { 1527 default: return 0; 1528 case MVT::i8: 1529 if (isInc) 1530 Opc = X86::LOCK_INC8m; 1531 else if (isDec) 1532 Opc = X86::LOCK_DEC8m; 1533 else if (isSub) { 1534 if (isCN) 1535 Opc = X86::LOCK_SUB8mi; 1536 else 1537 Opc = X86::LOCK_SUB8mr; 1538 } else { 1539 if (isCN) 1540 Opc = X86::LOCK_ADD8mi; 1541 else 1542 Opc = X86::LOCK_ADD8mr; 1543 } 1544 break; 1545 case MVT::i16: 1546 if (isInc) 1547 Opc = X86::LOCK_INC16m; 1548 else if (isDec) 1549 Opc = X86::LOCK_DEC16m; 1550 else if (isSub) { 1551 if (isCN) { 1552 if (immSext8(Val.getNode())) 1553 Opc = X86::LOCK_SUB16mi8; 1554 else 1555 Opc = X86::LOCK_SUB16mi; 1556 } else 1557 Opc = X86::LOCK_SUB16mr; 1558 } else { 1559 if (isCN) { 1560 if (immSext8(Val.getNode())) 1561 Opc = X86::LOCK_ADD16mi8; 1562 else 1563 Opc = X86::LOCK_ADD16mi; 1564 } else 1565 Opc = X86::LOCK_ADD16mr; 1566 } 1567 break; 1568 case MVT::i32: 1569 if (isInc) 1570 Opc = X86::LOCK_INC32m; 1571 else if (isDec) 1572 Opc = X86::LOCK_DEC32m; 1573 else if (isSub) { 1574 if (isCN) { 1575 if (immSext8(Val.getNode())) 1576 Opc = X86::LOCK_SUB32mi8; 1577 else 1578 Opc = X86::LOCK_SUB32mi; 1579 } else 1580 Opc = X86::LOCK_SUB32mr; 1581 } else { 1582 if (isCN) { 1583 if (immSext8(Val.getNode())) 1584 Opc = X86::LOCK_ADD32mi8; 1585 else 1586 Opc = X86::LOCK_ADD32mi; 1587 } else 1588 Opc = X86::LOCK_ADD32mr; 1589 } 1590 break; 1591 case MVT::i64: 1592 if (isInc) 1593 Opc = X86::LOCK_INC64m; 1594 else if (isDec) 1595 Opc = X86::LOCK_DEC64m; 1596 else if (isSub) { 1597 Opc = X86::LOCK_SUB64mr; 1598 if (isCN) { 1599 if (immSext8(Val.getNode())) 1600 Opc = X86::LOCK_SUB64mi8; 1601 else if (i64immSExt32(Val.getNode())) 1602 Opc = X86::LOCK_SUB64mi32; 1603 } 1604 } else { 1605 Opc = X86::LOCK_ADD64mr; 1606 if (isCN) { 1607 if (immSext8(Val.getNode())) 1608 Opc = X86::LOCK_ADD64mi8; 1609 else if (i64immSExt32(Val.getNode())) 1610 Opc = X86::LOCK_ADD64mi32; 1611 } 1612 } 1613 break; 1614 } 1615 1616 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1617 dl, NVT), 0); 1618 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1619 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1620 if (isInc || isDec) { 1621 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1622 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0); 1623 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1624 SDValue RetVals[] = { Undef, Ret }; 1625 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1626 } else { 1627 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1628 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1629 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1630 SDValue RetVals[] = { Undef, Ret }; 1631 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1632 } 1633 } 1634 1635 enum AtomicOpc { 1636 OR, 1637 AND, 1638 XOR, 1639 AtomicOpcEnd 1640 }; 1641 1642 enum AtomicSz { 1643 ConstantI8, 1644 I8, 1645 SextConstantI16, 1646 ConstantI16, 1647 I16, 1648 SextConstantI32, 1649 ConstantI32, 1650 I32, 1651 SextConstantI64, 1652 ConstantI64, 1653 I64, 1654 AtomicSzEnd 1655 }; 1656 1657 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { 1658 { 1659 X86::LOCK_OR8mi, 1660 X86::LOCK_OR8mr, 1661 X86::LOCK_OR16mi8, 1662 X86::LOCK_OR16mi, 1663 X86::LOCK_OR16mr, 1664 X86::LOCK_OR32mi8, 1665 X86::LOCK_OR32mi, 1666 X86::LOCK_OR32mr, 1667 X86::LOCK_OR64mi8, 1668 X86::LOCK_OR64mi32, 1669 X86::LOCK_OR64mr 1670 }, 1671 { 1672 X86::LOCK_AND8mi, 1673 X86::LOCK_AND8mr, 1674 X86::LOCK_AND16mi8, 1675 X86::LOCK_AND16mi, 1676 X86::LOCK_AND16mr, 1677 X86::LOCK_AND32mi8, 1678 X86::LOCK_AND32mi, 1679 X86::LOCK_AND32mr, 1680 X86::LOCK_AND64mi8, 1681 X86::LOCK_AND64mi32, 1682 X86::LOCK_AND64mr 1683 }, 1684 { 1685 X86::LOCK_XOR8mi, 1686 X86::LOCK_XOR8mr, 1687 X86::LOCK_XOR16mi8, 1688 X86::LOCK_XOR16mi, 1689 X86::LOCK_XOR16mr, 1690 X86::LOCK_XOR32mi8, 1691 X86::LOCK_XOR32mi, 1692 X86::LOCK_XOR32mr, 1693 X86::LOCK_XOR64mi8, 1694 X86::LOCK_XOR64mi32, 1695 X86::LOCK_XOR64mr 1696 } 1697 }; 1698 1699 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) { 1700 if (Node->hasAnyUseOfValue(0)) 1701 return 0; 1702 1703 // Optimize common patterns for __sync_or_and_fetch and similar arith 1704 // operations where the result is not used. This allows us to use the "lock" 1705 // version of the arithmetic instruction. 1706 // FIXME: Same as for 'add' and 'sub', try to merge those down here. 1707 SDValue Chain = Node->getOperand(0); 1708 SDValue Ptr = Node->getOperand(1); 1709 SDValue Val = Node->getOperand(2); 1710 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1711 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1712 return 0; 1713 1714 // Which index into the table. 1715 enum AtomicOpc Op; 1716 switch (Node->getOpcode()) { 1717 case ISD::ATOMIC_LOAD_OR: 1718 Op = OR; 1719 break; 1720 case ISD::ATOMIC_LOAD_AND: 1721 Op = AND; 1722 break; 1723 case ISD::ATOMIC_LOAD_XOR: 1724 Op = XOR; 1725 break; 1726 default: 1727 return 0; 1728 } 1729 1730 bool isCN = false; 1731 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val); 1732 if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) { 1733 isCN = true; 1734 Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT); 1735 } 1736 1737 unsigned Opc = 0; 1738 switch (NVT.getSimpleVT().SimpleTy) { 1739 default: return 0; 1740 case MVT::i8: 1741 if (isCN) 1742 Opc = AtomicOpcTbl[Op][ConstantI8]; 1743 else 1744 Opc = AtomicOpcTbl[Op][I8]; 1745 break; 1746 case MVT::i16: 1747 if (isCN) { 1748 if (immSext8(Val.getNode())) 1749 Opc = AtomicOpcTbl[Op][SextConstantI16]; 1750 else 1751 Opc = AtomicOpcTbl[Op][ConstantI16]; 1752 } else 1753 Opc = AtomicOpcTbl[Op][I16]; 1754 break; 1755 case MVT::i32: 1756 if (isCN) { 1757 if (immSext8(Val.getNode())) 1758 Opc = AtomicOpcTbl[Op][SextConstantI32]; 1759 else 1760 Opc = AtomicOpcTbl[Op][ConstantI32]; 1761 } else 1762 Opc = AtomicOpcTbl[Op][I32]; 1763 break; 1764 case MVT::i64: 1765 Opc = AtomicOpcTbl[Op][I64]; 1766 if (isCN) { 1767 if (immSext8(Val.getNode())) 1768 Opc = AtomicOpcTbl[Op][SextConstantI64]; 1769 else if (i64immSExt32(Val.getNode())) 1770 Opc = AtomicOpcTbl[Op][ConstantI64]; 1771 } 1772 break; 1773 } 1774 1775 assert(Opc != 0 && "Invalid arith lock transform!"); 1776 1777 DebugLoc dl = Node->getDebugLoc(); 1778 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1779 dl, NVT), 0); 1780 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1781 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1782 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1783 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0); 1784 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1785 SDValue RetVals[] = { Undef, Ret }; 1786 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1787 } 1788 1789 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1790 /// any uses which require the SF or OF bits to be accurate. 1791 static bool HasNoSignedComparisonUses(SDNode *N) { 1792 // Examine each user of the node. 1793 for (SDNode::use_iterator UI = N->use_begin(), 1794 UE = N->use_end(); UI != UE; ++UI) { 1795 // Only examine CopyToReg uses. 1796 if (UI->getOpcode() != ISD::CopyToReg) 1797 return false; 1798 // Only examine CopyToReg uses that copy to EFLAGS. 1799 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1800 X86::EFLAGS) 1801 return false; 1802 // Examine each user of the CopyToReg use. 1803 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1804 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1805 // Only examine the Flag result. 1806 if (FlagUI.getUse().getResNo() != 1) continue; 1807 // Anything unusual: assume conservatively. 1808 if (!FlagUI->isMachineOpcode()) return false; 1809 // Examine the opcode of the user. 1810 switch (FlagUI->getMachineOpcode()) { 1811 // These comparisons don't treat the most significant bit specially. 1812 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1813 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1814 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1815 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1816 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: 1817 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: 1818 case X86::CMOVA16rr: case X86::CMOVA16rm: 1819 case X86::CMOVA32rr: case X86::CMOVA32rm: 1820 case X86::CMOVA64rr: case X86::CMOVA64rm: 1821 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1822 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1823 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1824 case X86::CMOVB16rr: case X86::CMOVB16rm: 1825 case X86::CMOVB32rr: case X86::CMOVB32rm: 1826 case X86::CMOVB64rr: case X86::CMOVB64rm: 1827 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1828 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1829 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1830 case X86::CMOVE16rr: case X86::CMOVE16rm: 1831 case X86::CMOVE32rr: case X86::CMOVE32rm: 1832 case X86::CMOVE64rr: case X86::CMOVE64rm: 1833 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1834 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1835 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1836 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1837 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1838 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1839 case X86::CMOVP16rr: case X86::CMOVP16rm: 1840 case X86::CMOVP32rr: case X86::CMOVP32rm: 1841 case X86::CMOVP64rr: case X86::CMOVP64rm: 1842 continue; 1843 // Anything else: assume conservatively. 1844 default: return false; 1845 } 1846 } 1847 } 1848 return true; 1849 } 1850 1851 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode 1852 /// is suitable for doing the {load; increment or decrement; store} to modify 1853 /// transformation. 1854 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, 1855 SDValue StoredVal, SelectionDAG *CurDAG, 1856 LoadSDNode* &LoadNode, SDValue &InputChain) { 1857 1858 // is the value stored the result of a DEC or INC? 1859 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; 1860 1861 // is the stored value result 0 of the load? 1862 if (StoredVal.getResNo() != 0) return false; 1863 1864 // are there other uses of the loaded value than the inc or dec? 1865 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 1866 1867 // is the store non-extending and non-indexed? 1868 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 1869 return false; 1870 1871 SDValue Load = StoredVal->getOperand(0); 1872 // Is the stored value a non-extending and non-indexed load? 1873 if (!ISD::isNormalLoad(Load.getNode())) return false; 1874 1875 // Return LoadNode by reference. 1876 LoadNode = cast<LoadSDNode>(Load); 1877 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) 1878 EVT LdVT = LoadNode->getMemoryVT(); 1879 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && 1880 LdVT != MVT::i8) 1881 return false; 1882 1883 // Is store the only read of the loaded value? 1884 if (!Load.hasOneUse()) 1885 return false; 1886 1887 // Is the address of the store the same as the load? 1888 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 1889 LoadNode->getOffset() != StoreNode->getOffset()) 1890 return false; 1891 1892 // Check if the chain is produced by the load or is a TokenFactor with 1893 // the load output chain as an operand. Return InputChain by reference. 1894 SDValue Chain = StoreNode->getChain(); 1895 1896 bool ChainCheck = false; 1897 if (Chain == Load.getValue(1)) { 1898 ChainCheck = true; 1899 InputChain = LoadNode->getChain(); 1900 } else if (Chain.getOpcode() == ISD::TokenFactor) { 1901 SmallVector<SDValue, 4> ChainOps; 1902 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 1903 SDValue Op = Chain.getOperand(i); 1904 if (Op == Load.getValue(1)) { 1905 ChainCheck = true; 1906 continue; 1907 } 1908 ChainOps.push_back(Op); 1909 } 1910 1911 if (ChainCheck) 1912 // Make a new TokenFactor with all the other input chains except 1913 // for the load. 1914 InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(), 1915 MVT::Other, &ChainOps[0], ChainOps.size()); 1916 } 1917 if (!ChainCheck) 1918 return false; 1919 1920 return true; 1921 } 1922 1923 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory 1924 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. 1925 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { 1926 if (Opc == X86ISD::DEC) { 1927 if (LdVT == MVT::i64) return X86::DEC64m; 1928 if (LdVT == MVT::i32) return X86::DEC32m; 1929 if (LdVT == MVT::i16) return X86::DEC16m; 1930 if (LdVT == MVT::i8) return X86::DEC8m; 1931 } else { 1932 assert(Opc == X86ISD::INC && "unrecognized opcode"); 1933 if (LdVT == MVT::i64) return X86::INC64m; 1934 if (LdVT == MVT::i32) return X86::INC32m; 1935 if (LdVT == MVT::i16) return X86::INC16m; 1936 if (LdVT == MVT::i8) return X86::INC8m; 1937 } 1938 llvm_unreachable("unrecognized size for LdVT"); 1939 } 1940 1941 SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 1942 EVT NVT = Node->getValueType(0); 1943 unsigned Opc, MOpc; 1944 unsigned Opcode = Node->getOpcode(); 1945 DebugLoc dl = Node->getDebugLoc(); 1946 1947 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 1948 1949 if (Node->isMachineOpcode()) { 1950 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 1951 return NULL; // Already selected. 1952 } 1953 1954 switch (Opcode) { 1955 default: break; 1956 case X86ISD::GlobalBaseReg: 1957 return getGlobalBaseReg(); 1958 1959 case X86ISD::ATOMOR64_DAG: 1960 return SelectAtomic64(Node, X86::ATOMOR6432); 1961 case X86ISD::ATOMXOR64_DAG: 1962 return SelectAtomic64(Node, X86::ATOMXOR6432); 1963 case X86ISD::ATOMADD64_DAG: 1964 return SelectAtomic64(Node, X86::ATOMADD6432); 1965 case X86ISD::ATOMSUB64_DAG: 1966 return SelectAtomic64(Node, X86::ATOMSUB6432); 1967 case X86ISD::ATOMNAND64_DAG: 1968 return SelectAtomic64(Node, X86::ATOMNAND6432); 1969 case X86ISD::ATOMAND64_DAG: 1970 return SelectAtomic64(Node, X86::ATOMAND6432); 1971 case X86ISD::ATOMSWAP64_DAG: 1972 return SelectAtomic64(Node, X86::ATOMSWAP6432); 1973 1974 case ISD::ATOMIC_LOAD_ADD: { 1975 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT); 1976 if (RetVal) 1977 return RetVal; 1978 break; 1979 } 1980 case ISD::ATOMIC_LOAD_XOR: 1981 case ISD::ATOMIC_LOAD_AND: 1982 case ISD::ATOMIC_LOAD_OR: { 1983 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); 1984 if (RetVal) 1985 return RetVal; 1986 break; 1987 } 1988 case ISD::AND: 1989 case ISD::OR: 1990 case ISD::XOR: { 1991 // For operations of the form (x << C1) op C2, check if we can use a smaller 1992 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 1993 SDValue N0 = Node->getOperand(0); 1994 SDValue N1 = Node->getOperand(1); 1995 1996 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) 1997 break; 1998 1999 // i8 is unshrinkable, i16 should be promoted to i32. 2000 if (NVT != MVT::i32 && NVT != MVT::i64) 2001 break; 2002 2003 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 2004 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2005 if (!Cst || !ShlCst) 2006 break; 2007 2008 int64_t Val = Cst->getSExtValue(); 2009 uint64_t ShlVal = ShlCst->getZExtValue(); 2010 2011 // Make sure that we don't change the operation by removing bits. 2012 // This only matters for OR and XOR, AND is unaffected. 2013 if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val) 2014 break; 2015 2016 unsigned ShlOp, Op = 0; 2017 EVT CstVT = NVT; 2018 2019 // Check the minimum bitwidth for the new constant. 2020 // TODO: AND32ri is the same as AND64ri32 with zext imm. 2021 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr 2022 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 2023 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) 2024 CstVT = MVT::i8; 2025 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) 2026 CstVT = MVT::i32; 2027 2028 // Bail if there is no smaller encoding. 2029 if (NVT == CstVT) 2030 break; 2031 2032 switch (NVT.getSimpleVT().SimpleTy) { 2033 default: llvm_unreachable("Unsupported VT!"); 2034 case MVT::i32: 2035 assert(CstVT == MVT::i8); 2036 ShlOp = X86::SHL32ri; 2037 2038 switch (Opcode) { 2039 case ISD::AND: Op = X86::AND32ri8; break; 2040 case ISD::OR: Op = X86::OR32ri8; break; 2041 case ISD::XOR: Op = X86::XOR32ri8; break; 2042 } 2043 break; 2044 case MVT::i64: 2045 assert(CstVT == MVT::i8 || CstVT == MVT::i32); 2046 ShlOp = X86::SHL64ri; 2047 2048 switch (Opcode) { 2049 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; 2050 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; 2051 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; 2052 } 2053 break; 2054 } 2055 2056 // Emit the smaller op and the shift. 2057 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); 2058 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); 2059 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), 2060 getI8Imm(ShlVal)); 2061 } 2062 case X86ISD::UMUL: { 2063 SDValue N0 = Node->getOperand(0); 2064 SDValue N1 = Node->getOperand(1); 2065 2066 unsigned LoReg; 2067 switch (NVT.getSimpleVT().SimpleTy) { 2068 default: llvm_unreachable("Unsupported VT!"); 2069 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; 2070 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; 2071 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; 2072 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; 2073 } 2074 2075 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 2076 N0, SDValue()).getValue(1); 2077 2078 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 2079 SDValue Ops[] = {N1, InFlag}; 2080 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2); 2081 2082 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 2083 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 2084 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 2085 return NULL; 2086 } 2087 2088 case ISD::SMUL_LOHI: 2089 case ISD::UMUL_LOHI: { 2090 SDValue N0 = Node->getOperand(0); 2091 SDValue N1 = Node->getOperand(1); 2092 2093 bool isSigned = Opcode == ISD::SMUL_LOHI; 2094 if (!isSigned) { 2095 switch (NVT.getSimpleVT().SimpleTy) { 2096 default: llvm_unreachable("Unsupported VT!"); 2097 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 2098 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 2099 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; 2100 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; 2101 } 2102 } else { 2103 switch (NVT.getSimpleVT().SimpleTy) { 2104 default: llvm_unreachable("Unsupported VT!"); 2105 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 2106 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 2107 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 2108 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 2109 } 2110 } 2111 2112 unsigned LoReg, HiReg; 2113 switch (NVT.getSimpleVT().SimpleTy) { 2114 default: llvm_unreachable("Unsupported VT!"); 2115 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break; 2116 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break; 2117 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break; 2118 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break; 2119 } 2120 2121 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2122 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2123 // Multiply is commmutative. 2124 if (!foldedLoad) { 2125 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2126 if (foldedLoad) 2127 std::swap(N0, N1); 2128 } 2129 2130 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 2131 N0, SDValue()).getValue(1); 2132 2133 if (foldedLoad) { 2134 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2135 InFlag }; 2136 SDNode *CNode = 2137 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 2138 array_lengthof(Ops)); 2139 InFlag = SDValue(CNode, 1); 2140 2141 // Update the chain. 2142 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2143 } else { 2144 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag); 2145 InFlag = SDValue(CNode, 0); 2146 } 2147 2148 // Prevent use of AH in a REX instruction by referencing AX instead. 2149 if (HiReg == X86::AH && Subtarget->is64Bit() && 2150 !SDValue(Node, 1).use_empty()) { 2151 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2152 X86::AX, MVT::i16, InFlag); 2153 InFlag = Result.getValue(2); 2154 // Get the low part if needed. Don't use getCopyFromReg for aliasing 2155 // registers. 2156 if (!SDValue(Node, 0).use_empty()) 2157 ReplaceUses(SDValue(Node, 1), 2158 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2159 2160 // Shift AX down 8 bits. 2161 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2162 Result, 2163 CurDAG->getTargetConstant(8, MVT::i8)), 0); 2164 // Then truncate it down to i8. 2165 ReplaceUses(SDValue(Node, 1), 2166 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2167 } 2168 // Copy the low half of the result, if it is needed. 2169 if (!SDValue(Node, 0).use_empty()) { 2170 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2171 LoReg, NVT, InFlag); 2172 InFlag = Result.getValue(2); 2173 ReplaceUses(SDValue(Node, 0), Result); 2174 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2175 } 2176 // Copy the high half of the result, if it is needed. 2177 if (!SDValue(Node, 1).use_empty()) { 2178 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2179 HiReg, NVT, InFlag); 2180 InFlag = Result.getValue(2); 2181 ReplaceUses(SDValue(Node, 1), Result); 2182 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2183 } 2184 2185 return NULL; 2186 } 2187 2188 case ISD::SDIVREM: 2189 case ISD::UDIVREM: { 2190 SDValue N0 = Node->getOperand(0); 2191 SDValue N1 = Node->getOperand(1); 2192 2193 bool isSigned = Opcode == ISD::SDIVREM; 2194 if (!isSigned) { 2195 switch (NVT.getSimpleVT().SimpleTy) { 2196 default: llvm_unreachable("Unsupported VT!"); 2197 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 2198 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 2199 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 2200 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 2201 } 2202 } else { 2203 switch (NVT.getSimpleVT().SimpleTy) { 2204 default: llvm_unreachable("Unsupported VT!"); 2205 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 2206 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 2207 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 2208 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 2209 } 2210 } 2211 2212 unsigned LoReg, HiReg, ClrReg; 2213 unsigned ClrOpcode, SExtOpcode; 2214 switch (NVT.getSimpleVT().SimpleTy) { 2215 default: llvm_unreachable("Unsupported VT!"); 2216 case MVT::i8: 2217 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 2218 ClrOpcode = 0; 2219 SExtOpcode = X86::CBW; 2220 break; 2221 case MVT::i16: 2222 LoReg = X86::AX; HiReg = X86::DX; 2223 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX; 2224 SExtOpcode = X86::CWD; 2225 break; 2226 case MVT::i32: 2227 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 2228 ClrOpcode = X86::MOV32r0; 2229 SExtOpcode = X86::CDQ; 2230 break; 2231 case MVT::i64: 2232 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 2233 ClrOpcode = X86::MOV64r0; 2234 SExtOpcode = X86::CQO; 2235 break; 2236 } 2237 2238 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2239 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2240 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 2241 2242 SDValue InFlag; 2243 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 2244 // Special case for div8, just use a move with zero extension to AX to 2245 // clear the upper 8 bits (AH). 2246 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 2247 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 2248 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 2249 Move = 2250 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, 2251 MVT::Other, Ops, 2252 array_lengthof(Ops)), 0); 2253 Chain = Move.getValue(1); 2254 ReplaceUses(N0.getValue(1), Chain); 2255 } else { 2256 Move = 2257 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); 2258 Chain = CurDAG->getEntryNode(); 2259 } 2260 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); 2261 InFlag = Chain.getValue(1); 2262 } else { 2263 InFlag = 2264 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2265 LoReg, N0, SDValue()).getValue(1); 2266 if (isSigned && !signBitIsZero) { 2267 // Sign extend the low part into the high part. 2268 InFlag = 2269 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 2270 } else { 2271 // Zero out the high part, effectively zero extending the input. 2272 SDValue ClrNode = 2273 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0); 2274 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 2275 ClrNode, InFlag).getValue(1); 2276 } 2277 } 2278 2279 if (foldedLoad) { 2280 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2281 InFlag }; 2282 SDNode *CNode = 2283 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops, 2284 array_lengthof(Ops)); 2285 InFlag = SDValue(CNode, 1); 2286 // Update the chain. 2287 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2288 } else { 2289 InFlag = 2290 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 2291 } 2292 2293 // Prevent use of AH in a REX instruction by referencing AX instead. 2294 // Shift it down 8 bits. 2295 if (HiReg == X86::AH && Subtarget->is64Bit() && 2296 !SDValue(Node, 1).use_empty()) { 2297 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2298 X86::AX, MVT::i16, InFlag); 2299 InFlag = Result.getValue(2); 2300 2301 // If we also need AL (the quotient), get it by extracting a subreg from 2302 // Result. The fast register allocator does not like multiple CopyFromReg 2303 // nodes using aliasing registers. 2304 if (!SDValue(Node, 0).use_empty()) 2305 ReplaceUses(SDValue(Node, 0), 2306 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2307 2308 // Shift AX right by 8 bits instead of using AH. 2309 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2310 Result, 2311 CurDAG->getTargetConstant(8, MVT::i8)), 2312 0); 2313 ReplaceUses(SDValue(Node, 1), 2314 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2315 } 2316 // Copy the division (low) result, if it is needed. 2317 if (!SDValue(Node, 0).use_empty()) { 2318 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2319 LoReg, NVT, InFlag); 2320 InFlag = Result.getValue(2); 2321 ReplaceUses(SDValue(Node, 0), Result); 2322 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2323 } 2324 // Copy the remainder (high) result, if it is needed. 2325 if (!SDValue(Node, 1).use_empty()) { 2326 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2327 HiReg, NVT, InFlag); 2328 InFlag = Result.getValue(2); 2329 ReplaceUses(SDValue(Node, 1), Result); 2330 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2331 } 2332 return NULL; 2333 } 2334 2335 case X86ISD::CMP: { 2336 SDValue N0 = Node->getOperand(0); 2337 SDValue N1 = Node->getOperand(1); 2338 2339 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2340 // use a smaller encoding. 2341 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 2342 HasNoSignedComparisonUses(Node)) 2343 // Look past the truncate if CMP is the only use of it. 2344 N0 = N0.getOperand(0); 2345 if ((N0.getNode()->getOpcode() == ISD::AND || 2346 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && 2347 N0.getNode()->hasOneUse() && 2348 N0.getValueType() != MVT::i8 && 2349 X86::isZeroNode(N1)) { 2350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2351 if (!C) break; 2352 2353 // For example, convert "testl %eax, $8" to "testb %al, $8" 2354 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2355 (!(C->getZExtValue() & 0x80) || 2356 HasNoSignedComparisonUses(Node))) { 2357 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 2358 SDValue Reg = N0.getNode()->getOperand(0); 2359 2360 // On x86-32, only the ABCD registers have 8-bit subregisters. 2361 if (!Subtarget->is64Bit()) { 2362 const TargetRegisterClass *TRC; 2363 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2364 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2365 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2366 default: llvm_unreachable("Unsupported TEST operand type!"); 2367 } 2368 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2369 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2370 Reg.getValueType(), Reg, RC), 0); 2371 } 2372 2373 // Extract the l-register. 2374 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 2375 MVT::i8, Reg); 2376 2377 // Emit a testb. 2378 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm); 2379 } 2380 2381 // For example, "testl %eax, $2048" to "testb %ah, $8". 2382 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2383 (!(C->getZExtValue() & 0x8000) || 2384 HasNoSignedComparisonUses(Node))) { 2385 // Shift the immediate right by 8 bits. 2386 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2387 MVT::i8); 2388 SDValue Reg = N0.getNode()->getOperand(0); 2389 2390 // Put the value in an ABCD register. 2391 const TargetRegisterClass *TRC; 2392 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2393 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2394 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2395 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2396 default: llvm_unreachable("Unsupported TEST operand type!"); 2397 } 2398 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2399 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2400 Reg.getValueType(), Reg, RC), 0); 2401 2402 // Extract the h-register. 2403 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 2404 MVT::i8, Reg); 2405 2406 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only 2407 // target GR8_NOREX registers, so make sure the register class is 2408 // forced. 2409 return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32, 2410 Subreg, ShiftedImm); 2411 } 2412 2413 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2414 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2415 N0.getValueType() != MVT::i16 && 2416 (!(C->getZExtValue() & 0x8000) || 2417 HasNoSignedComparisonUses(Node))) { 2418 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 2419 SDValue Reg = N0.getNode()->getOperand(0); 2420 2421 // Extract the 16-bit subregister. 2422 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 2423 MVT::i16, Reg); 2424 2425 // Emit a testw. 2426 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm); 2427 } 2428 2429 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2430 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2431 N0.getValueType() == MVT::i64 && 2432 (!(C->getZExtValue() & 0x80000000) || 2433 HasNoSignedComparisonUses(Node))) { 2434 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 2435 SDValue Reg = N0.getNode()->getOperand(0); 2436 2437 // Extract the 32-bit subregister. 2438 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 2439 MVT::i32, Reg); 2440 2441 // Emit a testl. 2442 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm); 2443 } 2444 } 2445 break; 2446 } 2447 case ISD::STORE: { 2448 // Change a chain of {load; incr or dec; store} of the same value into 2449 // a simple increment or decrement through memory of that value, if the 2450 // uses of the modified value and its address are suitable. 2451 // The DEC64m tablegen pattern is currently not able to match the case where 2452 // the EFLAGS on the original DEC are used. (This also applies to 2453 // {INC,DEC}X{64,32,16,8}.) 2454 // We'll need to improve tablegen to allow flags to be transferred from a 2455 // node in the pattern to the result node. probably with a new keyword 2456 // for example, we have this 2457 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2458 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2459 // (implicit EFLAGS)]>; 2460 // but maybe need something like this 2461 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2462 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2463 // (transferrable EFLAGS)]>; 2464 2465 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 2466 SDValue StoredVal = StoreNode->getOperand(1); 2467 unsigned Opc = StoredVal->getOpcode(); 2468 2469 LoadSDNode *LoadNode = 0; 2470 SDValue InputChain; 2471 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, 2472 LoadNode, InputChain)) 2473 break; 2474 2475 SDValue Base, Scale, Index, Disp, Segment; 2476 if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), 2477 Base, Scale, Index, Disp, Segment)) 2478 break; 2479 2480 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); 2481 MemOp[0] = StoreNode->getMemOperand(); 2482 MemOp[1] = LoadNode->getMemOperand(); 2483 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; 2484 EVT LdVT = LoadNode->getMemoryVT(); 2485 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); 2486 MachineSDNode *Result = CurDAG->getMachineNode(newOpc, 2487 Node->getDebugLoc(), 2488 MVT::i32, MVT::Other, Ops, 2489 array_lengthof(Ops)); 2490 Result->setMemRefs(MemOp, MemOp + 2); 2491 2492 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 2493 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 2494 2495 return Result; 2496 } 2497 } 2498 2499 SDNode *ResNode = SelectCode(Node); 2500 2501 DEBUG(dbgs() << "=> "; 2502 if (ResNode == NULL || ResNode == Node) 2503 Node->dump(CurDAG); 2504 else 2505 ResNode->dump(CurDAG); 2506 dbgs() << '\n'); 2507 2508 return ResNode; 2509 } 2510 2511 bool X86DAGToDAGISel:: 2512 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2513 std::vector<SDValue> &OutOps) { 2514 SDValue Op0, Op1, Op2, Op3, Op4; 2515 switch (ConstraintCode) { 2516 case 'o': // offsetable ?? 2517 case 'v': // not offsetable ?? 2518 default: return true; 2519 case 'm': // memory 2520 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) 2521 return true; 2522 break; 2523 } 2524 2525 OutOps.push_back(Op0); 2526 OutOps.push_back(Op1); 2527 OutOps.push_back(Op2); 2528 OutOps.push_back(Op3); 2529 OutOps.push_back(Op4); 2530 return false; 2531 } 2532 2533 /// createX86ISelDag - This pass converts a legalized DAG into a 2534 /// X86-specific DAG, ready for instruction scheduling. 2535 /// 2536 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2537 CodeGenOpt::Level OptLevel) { 2538 return new X86DAGToDAGISel(TM, OptLevel); 2539 } 2540