Home | History | Annotate | Download | only in ARM
      1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the ARM machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "ARM.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMBaseInstrInfo.h"
     19 #include "ARMRelocations.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Function.h"
     26 #include "llvm/PassManager.h"
     27 #include "llvm/CodeGen/JITCodeEmitter.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFunctionPass.h"
     30 #include "llvm/CodeGen/MachineInstr.h"
     31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     32 #include "llvm/CodeGen/MachineModuleInfo.h"
     33 #include "llvm/CodeGen/Passes.h"
     34 #include "llvm/ADT/Statistic.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #ifndef NDEBUG
     39 #include <iomanip>
     40 #endif
     41 using namespace llvm;
     42 
     43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     44 
     45 namespace {
     46 
     47   class ARMCodeEmitter : public MachineFunctionPass {
     48     ARMJITInfo                *JTI;
     49     const ARMBaseInstrInfo    *II;
     50     const TargetData          *TD;
     51     const ARMSubtarget        *Subtarget;
     52     TargetMachine             &TM;
     53     JITCodeEmitter            &MCE;
     54     MachineModuleInfo *MMI;
     55     const std::vector<MachineConstantPoolEntry> *MCPEs;
     56     const std::vector<MachineJumpTableEntry> *MJTEs;
     57     bool IsPIC;
     58     bool IsThumb;
     59 
     60     void getAnalysisUsage(AnalysisUsage &AU) const {
     61       AU.addRequired<MachineModuleInfo>();
     62       MachineFunctionPass::getAnalysisUsage(AU);
     63     }
     64 
     65     static char ID;
     66   public:
     67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
     68       : MachineFunctionPass(ID), JTI(0),
     69         II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
     70         TD(tm.getTargetData()), TM(tm),
     71         MCE(mce), MCPEs(0), MJTEs(0),
     72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
     73 
     74     /// getBinaryCodeForInstr - This function, generated by the
     75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
     76     /// machine instructions.
     77     uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
     78 
     79     bool runOnMachineFunction(MachineFunction &MF);
     80 
     81     virtual const char *getPassName() const {
     82       return "ARM Machine Code Emitter";
     83     }
     84 
     85     void emitInstruction(const MachineInstr &MI);
     86 
     87   private:
     88 
     89     void emitWordLE(unsigned Binary);
     90     void emitDWordLE(uint64_t Binary);
     91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
     92     void emitConstPoolInstruction(const MachineInstr &MI);
     93     void emitMOVi32immInstruction(const MachineInstr &MI);
     94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
     95     void emitLEApcrelInstruction(const MachineInstr &MI);
     96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
     97     void emitPseudoMoveInstruction(const MachineInstr &MI);
     98     void addPCLabel(unsigned LabelID);
     99     void emitPseudoInstruction(const MachineInstr &MI);
    100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
    101                                     const MCInstrDesc &MCID,
    102                                     const MachineOperand &MO,
    103                                     unsigned OpIdx);
    104 
    105     unsigned getMachineSoImmOpValue(unsigned SoImm);
    106     unsigned getAddrModeSBit(const MachineInstr &MI,
    107                              const MCInstrDesc &MCID) const;
    108 
    109     void emitDataProcessingInstruction(const MachineInstr &MI,
    110                                        unsigned ImplicitRd = 0,
    111                                        unsigned ImplicitRn = 0);
    112 
    113     void emitLoadStoreInstruction(const MachineInstr &MI,
    114                                   unsigned ImplicitRd = 0,
    115                                   unsigned ImplicitRn = 0);
    116 
    117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
    118                                       unsigned ImplicitRn = 0);
    119 
    120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
    121 
    122     void emitMulFrmInstruction(const MachineInstr &MI);
    123 
    124     void emitExtendInstruction(const MachineInstr &MI);
    125 
    126     void emitMiscArithInstruction(const MachineInstr &MI);
    127 
    128     void emitSaturateInstruction(const MachineInstr &MI);
    129 
    130     void emitBranchInstruction(const MachineInstr &MI);
    131 
    132     void emitInlineJumpTable(unsigned JTIndex);
    133 
    134     void emitMiscBranchInstruction(const MachineInstr &MI);
    135 
    136     void emitVFPArithInstruction(const MachineInstr &MI);
    137 
    138     void emitVFPConversionInstruction(const MachineInstr &MI);
    139 
    140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
    141 
    142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
    143 
    144     void emitMiscInstruction(const MachineInstr &MI);
    145 
    146     void emitNEONLaneInstruction(const MachineInstr &MI);
    147     void emitNEONDupInstruction(const MachineInstr &MI);
    148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
    149     void emitNEON2RegInstruction(const MachineInstr &MI);
    150     void emitNEON3RegInstruction(const MachineInstr &MI);
    151 
    152     /// getMachineOpValue - Return binary encoding of operand. If the machine
    153     /// operand requires relocation, record the relocation and return zero.
    154     unsigned getMachineOpValue(const MachineInstr &MI,
    155                                const MachineOperand &MO) const;
    156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
    157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
    158     }
    159 
    160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
    161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
    162     //  operand values, instead querying getMachineOpValue() directly for
    163     //  each operand it needs to encode. Thus, any of the new encoder
    164     //  helper functions can simply return 0 as the values the return
    165     //  are already handled elsewhere. They are placeholders to allow this
    166     //  encoder to continue to function until the MC encoder is sufficiently
    167     //  far along that this one can be eliminated entirely.
    168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
    169       const { return 0; }
    170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
    171       const { return 0; }
    172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
    173       const { return 0; }
    174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
    175       const {
    176       if (IsThumb) {
    177         Val &= 0x0FFFFFFF;
    178         Val |= 0xE0000000;
    179       }
    180       return Val;
    181     }
    182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    183       const { return 0; }
    184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    185       const { return 0; }
    186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    187       const { return 0; }
    188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    189       const { return 0; }
    190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
    191       const { return 0; }
    192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
    193       const { return 0; }
    194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
    195       const { return 0; }
    196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    197       const { return 0; }
    198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
    199       unsigned Op) const { return 0; }
    200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    201       const { return 0; }
    202     unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    203       const { return 0; }
    204     unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    205       const { return 0; }
    206     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
    207       const { return 0; }
    208     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
    209       const { return 0; }
    210     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
    211       const { return 0; }
    212     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
    213       const { return 0; }
    214     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
    215       const { return 0; }
    216     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
    217       const { return 0; }
    218     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    219       const { return 0; }
    220     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
    221       const { return 0; }
    222     unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
    223       const { return 0; }
    224     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
    225       const { return 0; }
    226     unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
    227       const { return 0; }
    228     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
    229       const { return 0; }
    230     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
    231       const { return 0; }
    232     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
    233       const { return 0; }
    234     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
    235       const { return 0; }
    236     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    237       const { return 0; }
    238     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
    239       const { return 0; }
    240     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
    241                                                  unsigned Op)
    242       const { return 0; }
    243     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
    244       const { return 0; }
    245     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
    246       const { return 0; }
    247     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
    248                                             unsigned Op) const { return 0; }
    249     unsigned getSsatBitPosValue(const MachineInstr &MI,
    250                                 unsigned Op) const { return 0; }
    251     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
    252       const {return 0; }
    253     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
    254       const { return 0; }
    255 
    256     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    257       const {
    258       // {17-13} = reg
    259       // {12}    = (U)nsigned (add == '1', sub == '0')
    260       // {11-0}  = imm12
    261       const MachineOperand &MO  = MI.getOperand(Op);
    262       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    263       if (!MO.isReg()) {
    264         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    265         return 0;
    266       }
    267       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    268       int32_t Imm12 = MO1.getImm();
    269       uint32_t Binary;
    270       Binary = Imm12 & 0xfff;
    271       if (Imm12 >= 0)
    272         Binary |= (1 << 12);
    273       Binary |= (Reg << 13);
    274       return Binary;
    275     }
    276 
    277     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
    278       const {
    279       const MCInstrDesc &MCID = MI.getDesc();
    280       const MachineOperand &MO = MI.getOperand(Op);
    281 
    282       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
    283                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
    284 
    285       if (!MO.isImm()) {
    286         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    287         return 0;
    288       }
    289       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
    290       return Imm16;
    291     }
    292 
    293     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
    294       const { return 0;}
    295     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    296       const { return 0;}
    297     uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
    298       const { return 0;}
    299     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    300       const { return 0;}
    301     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
    302       const { return 0; }
    303     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
    304       const { return 0; }
    305     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
    306       const { return 0; }
    307     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
    308       const { return 0; }
    309     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
    310       const { return 0; }
    311     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
    312       // {12-9}  = reg
    313       // {8}     = (U)nsigned (add == '1', sub == '0')
    314       // {7-0}   = imm8
    315       uint32_t Binary = 0;
    316       const MachineOperand &MO  = MI.getOperand(Op);
    317       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    318       if (!MO.isReg()) {
    319         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    320         return 0;
    321       }
    322       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    323       int32_t Imm12 = MO1.getImm();
    324 
    325       // Special value for #-0
    326       if (Imm12 == INT32_MIN)
    327         Imm12 = 0;
    328 
    329       // Immediate is always encoded as positive. The 'U' bit controls add vs
    330       // sub.
    331       bool isAdd = true;
    332       if (Imm12 < 0) {
    333         Imm12 = -Imm12;
    334         isAdd = false;
    335       }
    336 
    337       // If immediate offset is omitted, default to +0.
    338       Binary |= 1 << 8;
    339       return Binary;
    340     }
    341     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
    342       const { return 0; }
    343 
    344     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
    345       const { return 0; }
    346 
    347     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
    348       const { return 0; }
    349     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
    350       const { return 0; }
    351     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
    352       const { return 0; }
    353     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
    354       const { return 0; }
    355 
    356     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    357     /// machine operand requires relocation, record the relocation and return
    358     /// zero.
    359     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
    360                             unsigned Reloc);
    361 
    362     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    363     ///
    364     unsigned getShiftOp(unsigned Imm) const ;
    365 
    366     /// Routines that handle operands which add machine relocations which are
    367     /// fixed up by the relocation stage.
    368     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    369                            bool MayNeedFarStub,  bool Indirect,
    370                            intptr_t ACPV = 0) const;
    371     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
    372     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
    373     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
    374     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
    375                                intptr_t JTBase = 0) const;
    376     unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
    377     unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
    378     unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
    379     unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
    380     unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
    381     unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
    382   };
    383 }
    384 
    385 char ARMCodeEmitter::ID = 0;
    386 
    387 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
    388 /// code to the specified MCE object.
    389 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
    390                                                 JITCodeEmitter &JCE) {
    391   return new ARMCodeEmitter(TM, JCE);
    392 }
    393 
    394 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
    395   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
    396           MF.getTarget().getRelocationModel() != Reloc::Static) &&
    397          "JIT relocation model must be set to static or default!");
    398   JTI = ((ARMBaseTargetMachine &)MF.getTarget()).getJITInfo();
    399   II = (const ARMBaseInstrInfo *)MF.getTarget().getInstrInfo();
    400   TD = MF.getTarget().getTargetData();
    401   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    402   MCPEs = &MF.getConstantPool()->getConstants();
    403   MJTEs = 0;
    404   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
    405   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    406   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
    407   JTI->Initialize(MF, IsPIC);
    408   MMI = &getAnalysis<MachineModuleInfo>();
    409   MCE.setModuleInfo(MMI);
    410 
    411   do {
    412     DEBUG(errs() << "JITTing function '"
    413           << MF.getName() << "'\n");
    414     MCE.startFunction(MF);
    415     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    416          MBB != E; ++MBB) {
    417       MCE.StartMachineBasicBlock(MBB);
    418       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    419            I != E; ++I)
    420         emitInstruction(*I);
    421     }
    422   } while (MCE.finishFunction(MF));
    423 
    424   return false;
    425 }
    426 
    427 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    428 ///
    429 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
    430   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
    431   default: llvm_unreachable("Unknown shift opc!");
    432   case ARM_AM::asr: return 2;
    433   case ARM_AM::lsl: return 0;
    434   case ARM_AM::lsr: return 1;
    435   case ARM_AM::ror:
    436   case ARM_AM::rrx: return 3;
    437   }
    438 }
    439 
    440 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    441 /// machine operand requires relocation, record the relocation and return zero.
    442 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
    443                                         const MachineOperand &MO,
    444                                         unsigned Reloc) {
    445   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
    446       && "Relocation to this function should be for movt or movw");
    447 
    448   if (MO.isImm())
    449     return static_cast<unsigned>(MO.getImm());
    450   else if (MO.isGlobal())
    451     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    452   else if (MO.isSymbol())
    453     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
    454   else if (MO.isMBB())
    455     emitMachineBasicBlock(MO.getMBB(), Reloc);
    456   else {
    457 #ifndef NDEBUG
    458     errs() << MO;
    459 #endif
    460     llvm_unreachable("Unsupported operand type for movw/movt");
    461   }
    462   return 0;
    463 }
    464 
    465 /// getMachineOpValue - Return binary encoding of operand. If the machine
    466 /// operand requires relocation, record the relocation and return zero.
    467 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
    468                                            const MachineOperand &MO) const {
    469   if (MO.isReg())
    470     return II->getRegisterInfo().getEncodingValue(MO.getReg());
    471   else if (MO.isImm())
    472     return static_cast<unsigned>(MO.getImm());
    473   else if (MO.isFPImm())
    474     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
    475                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
    476   else if (MO.isGlobal())
    477     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
    478   else if (MO.isSymbol())
    479     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
    480   else if (MO.isCPI()) {
    481     const MCInstrDesc &MCID = MI.getDesc();
    482     // For VFP load, the immediate offset is multiplied by 4.
    483     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
    484       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
    485     emitConstPoolAddress(MO.getIndex(), Reloc);
    486   } else if (MO.isJTI())
    487     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
    488   else if (MO.isMBB())
    489     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
    490   else
    491     llvm_unreachable("Unable to encode MachineOperand!");
    492   return 0;
    493 }
    494 
    495 /// emitGlobalAddress - Emit the specified address to the code stream.
    496 ///
    497 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    498                                        bool MayNeedFarStub, bool Indirect,
    499                                        intptr_t ACPV) const {
    500   MachineRelocation MR = Indirect
    501     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    502                                            const_cast<GlobalValue *>(GV),
    503                                            ACPV, MayNeedFarStub)
    504     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    505                                const_cast<GlobalValue *>(GV), ACPV,
    506                                MayNeedFarStub);
    507   MCE.addRelocation(MR);
    508 }
    509 
    510 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    511 /// be emitted to the current location in the function, and allow it to be PC
    512 /// relative.
    513 void ARMCodeEmitter::
    514 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
    515   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    516                                                  Reloc, ES));
    517 }
    518 
    519 /// emitConstPoolAddress - Arrange for the address of an constant pool
    520 /// to be emitted to the current location in the function, and allow it to be PC
    521 /// relative.
    522 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
    523   // Tell JIT emitter we'll resolve the address.
    524   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    525                                                     Reloc, CPI, 0, true));
    526 }
    527 
    528 /// emitJumpTableAddress - Arrange for the address of a jump table to
    529 /// be emitted to the current location in the function, and allow it to be PC
    530 /// relative.
    531 void ARMCodeEmitter::
    532 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
    533   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    534                                                     Reloc, JTIndex, 0, true));
    535 }
    536 
    537 /// emitMachineBasicBlock - Emit the specified address basic block.
    538 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
    539                                            unsigned Reloc,
    540                                            intptr_t JTBase) const {
    541   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    542                                              Reloc, BB, JTBase));
    543 }
    544 
    545 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
    546   DEBUG(errs() << "  0x";
    547         errs().write_hex(Binary) << "\n");
    548   MCE.emitWordLE(Binary);
    549 }
    550 
    551 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
    552   DEBUG(errs() << "  0x";
    553         errs().write_hex(Binary) << "\n");
    554   MCE.emitDWordLE(Binary);
    555 }
    556 
    557 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
    558   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
    559 
    560   MCE.processDebugLoc(MI.getDebugLoc(), true);
    561 
    562   ++NumEmitted;  // Keep track of the # of mi's emitted
    563   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
    564   default: {
    565     llvm_unreachable("Unhandled instruction encoding format!");
    566   }
    567   case ARMII::MiscFrm:
    568     if (MI.getOpcode() == ARM::LEApcrelJT) {
    569       // Materialize jumptable address.
    570       emitLEApcrelJTInstruction(MI);
    571       break;
    572     }
    573     llvm_unreachable("Unhandled instruction encoding!");
    574   case ARMII::Pseudo:
    575     emitPseudoInstruction(MI);
    576     break;
    577   case ARMII::DPFrm:
    578   case ARMII::DPSoRegFrm:
    579     emitDataProcessingInstruction(MI);
    580     break;
    581   case ARMII::LdFrm:
    582   case ARMII::StFrm:
    583     emitLoadStoreInstruction(MI);
    584     break;
    585   case ARMII::LdMiscFrm:
    586   case ARMII::StMiscFrm:
    587     emitMiscLoadStoreInstruction(MI);
    588     break;
    589   case ARMII::LdStMulFrm:
    590     emitLoadStoreMultipleInstruction(MI);
    591     break;
    592   case ARMII::MulFrm:
    593     emitMulFrmInstruction(MI);
    594     break;
    595   case ARMII::ExtFrm:
    596     emitExtendInstruction(MI);
    597     break;
    598   case ARMII::ArithMiscFrm:
    599     emitMiscArithInstruction(MI);
    600     break;
    601   case ARMII::SatFrm:
    602     emitSaturateInstruction(MI);
    603     break;
    604   case ARMII::BrFrm:
    605     emitBranchInstruction(MI);
    606     break;
    607   case ARMII::BrMiscFrm:
    608     emitMiscBranchInstruction(MI);
    609     break;
    610   // VFP instructions.
    611   case ARMII::VFPUnaryFrm:
    612   case ARMII::VFPBinaryFrm:
    613     emitVFPArithInstruction(MI);
    614     break;
    615   case ARMII::VFPConv1Frm:
    616   case ARMII::VFPConv2Frm:
    617   case ARMII::VFPConv3Frm:
    618   case ARMII::VFPConv4Frm:
    619   case ARMII::VFPConv5Frm:
    620     emitVFPConversionInstruction(MI);
    621     break;
    622   case ARMII::VFPLdStFrm:
    623     emitVFPLoadStoreInstruction(MI);
    624     break;
    625   case ARMII::VFPLdStMulFrm:
    626     emitVFPLoadStoreMultipleInstruction(MI);
    627     break;
    628   case ARMII::VFPMiscFrm:
    629     emitMiscInstruction(MI);
    630     break;
    631   // NEON instructions.
    632   case ARMII::NGetLnFrm:
    633   case ARMII::NSetLnFrm:
    634     emitNEONLaneInstruction(MI);
    635     break;
    636   case ARMII::NDupFrm:
    637     emitNEONDupInstruction(MI);
    638     break;
    639   case ARMII::N1RegModImmFrm:
    640     emitNEON1RegModImmInstruction(MI);
    641     break;
    642   case ARMII::N2RegFrm:
    643     emitNEON2RegInstruction(MI);
    644     break;
    645   case ARMII::N3RegFrm:
    646     emitNEON3RegInstruction(MI);
    647     break;
    648   }
    649   MCE.processDebugLoc(MI.getDebugLoc(), false);
    650 }
    651 
    652 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
    653   DEBUG({
    654       errs() << "  ** Constant pool #" << CPI << " @ "
    655              << (void*)MCE.getCurrentPCValue() << " ";
    656       if (const Function *F = dyn_cast<Function>(C))
    657         errs() << F->getName();
    658       else
    659         errs() << *C;
    660       errs() << '\n';
    661     });
    662 
    663   switch (C->getValueID()) {
    664   default: {
    665     llvm_unreachable("Unable to handle this constantpool entry!");
    666     break;
    667   }
    668   case Value::GlobalVariableVal: {
    669     emitGlobalAddress(static_cast<const GlobalValue*>(C),
    670                       ARM::reloc_arm_absolute, isa<Function>(C), false);
    671     emitWordLE(0);
    672     break;
    673   }
    674   case Value::ConstantIntVal: {
    675     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
    676     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
    677     emitWordLE(Val);
    678     break;
    679   }
    680   case Value::ConstantFPVal: {
    681     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
    682     if (CFP->getType()->isFloatTy())
    683       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    684     else if (CFP->getType()->isDoubleTy())
    685       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    686     else {
    687       llvm_unreachable("Unable to handle this constantpool entry!");
    688     }
    689     break;
    690   }
    691   case Value::ConstantArrayVal: {
    692     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
    693     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    694       emitConstantToMemory(CPI, CA->getOperand(i));
    695     break;
    696   }
    697   }
    698 
    699   return;
    700 }
    701 
    702 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
    703   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
    704   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
    705   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
    706 
    707   // Remember the CONSTPOOL_ENTRY address for later relocation.
    708   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
    709 
    710   // Emit constpool island entry. In most cases, the actual values will be
    711   // resolved and relocated after code emission.
    712   if (MCPE.isMachineConstantPoolEntry()) {
    713     ARMConstantPoolValue *ACPV =
    714       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
    715 
    716     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
    717           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
    718 
    719     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
    720     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    721     if (GV) {
    722       Reloc::Model RelocM = TM.getRelocationModel();
    723       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
    724                         isa<Function>(GV),
    725                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
    726                         (intptr_t)ACPV);
    727     } else  {
    728       const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    729       emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
    730     }
    731     emitWordLE(0);
    732   } else {
    733     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
    734   }
    735 }
    736 
    737 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
    738   const MachineOperand &MO0 = MI.getOperand(0);
    739   const MachineOperand &MO1 = MI.getOperand(1);
    740 
    741   // Emit the 'movw' instruction.
    742   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
    743 
    744   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
    745 
    746   // Set the conditional execution predicate.
    747   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    748 
    749   // Encode Rd.
    750   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    751 
    752   // Encode imm16 as imm4:imm12
    753   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
    754   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
    755   emitWordLE(Binary);
    756 
    757   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
    758   // Emit the 'movt' instruction.
    759   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
    760 
    761   // Set the conditional execution predicate.
    762   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    763 
    764   // Encode Rd.
    765   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    766 
    767   // Encode imm16 as imm4:imm1, same as movw above.
    768   Binary |= Hi16 & 0xFFF;
    769   Binary |= ((Hi16 >> 12) & 0xF) << 16;
    770   emitWordLE(Binary);
    771 }
    772 
    773 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
    774   const MachineOperand &MO0 = MI.getOperand(0);
    775   const MachineOperand &MO1 = MI.getOperand(1);
    776   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
    777                                                   "Not a valid so_imm value!");
    778   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
    779   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
    780 
    781   // Emit the 'mov' instruction.
    782   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
    783 
    784   // Set the conditional execution predicate.
    785   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    786 
    787   // Encode Rd.
    788   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    789 
    790   // Encode so_imm.
    791   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    792   Binary |= 1 << ARMII::I_BitShift;
    793   Binary |= getMachineSoImmOpValue(V1);
    794   emitWordLE(Binary);
    795 
    796   // Now the 'orr' instruction.
    797   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
    798 
    799   // Set the conditional execution predicate.
    800   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    801 
    802   // Encode Rd.
    803   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    804 
    805   // Encode Rn.
    806   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
    807 
    808   // Encode so_imm.
    809   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    810   Binary |= 1 << ARMII::I_BitShift;
    811   Binary |= getMachineSoImmOpValue(V2);
    812   emitWordLE(Binary);
    813 }
    814 
    815 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
    816   // It's basically add r, pc, (LCPI - $+8)
    817   const MCInstrDesc &MCID = MI.getDesc();
    818 
    819   unsigned Binary = 0;
    820 
    821   // Set the conditional execution predicate
    822   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    823 
    824   // Encode S bit if MI modifies CPSR.
    825   Binary |= getAddrModeSBit(MI, MCID);
    826 
    827   // Encode Rd.
    828   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    829 
    830   // Encode Rn which is PC.
    831   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    832 
    833   // Encode the displacement which is a so_imm.
    834   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    835   Binary |= 1 << ARMII::I_BitShift;
    836   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
    837 
    838   emitWordLE(Binary);
    839 }
    840 
    841 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
    842   // It's basically add r, pc, (LJTI - $+8)
    843 
    844   const MCInstrDesc &MCID = MI.getDesc();
    845 
    846   // Emit the 'add' instruction.
    847   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
    848 
    849   // Set the conditional execution predicate
    850   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    851 
    852   // Encode S bit if MI modifies CPSR.
    853   Binary |= getAddrModeSBit(MI, MCID);
    854 
    855   // Encode Rd.
    856   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    857 
    858   // Encode Rn which is PC.
    859   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    860 
    861   // Encode the displacement.
    862   Binary |= 1 << ARMII::I_BitShift;
    863   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
    864 
    865   emitWordLE(Binary);
    866 }
    867 
    868 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
    869   unsigned Opcode = MI.getDesc().Opcode;
    870 
    871   // Part of binary is determined by TableGn.
    872   unsigned Binary = getBinaryCodeForInstr(MI);
    873 
    874   // Set the conditional execution predicate
    875   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    876 
    877   // Encode S bit if MI modifies CPSR.
    878   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
    879     Binary |= 1 << ARMII::S_BitShift;
    880 
    881   // Encode register def if there is one.
    882   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    883 
    884   // Encode the shift operation.
    885   switch (Opcode) {
    886   default: break;
    887   case ARM::RRX:
    888     // rrx
    889     Binary |= 0x6 << 4;
    890     break;
    891   case ARM::MOVsrl_flag:
    892     // lsr #1
    893     Binary |= (0x2 << 4) | (1 << 7);
    894     break;
    895   case ARM::MOVsra_flag:
    896     // asr #1
    897     Binary |= (0x4 << 4) | (1 << 7);
    898     break;
    899   }
    900 
    901   // Encode register Rm.
    902   Binary |= getMachineOpValue(MI, 1);
    903 
    904   emitWordLE(Binary);
    905 }
    906 
    907 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
    908   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
    909         << (void*)MCE.getCurrentPCValue() << '\n');
    910   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
    911 }
    912 
    913 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
    914   unsigned Opcode = MI.getDesc().Opcode;
    915   switch (Opcode) {
    916   default:
    917     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
    918   case ARM::B:
    919     emitBranchInstruction(MI);
    920     break;
    921   case ARM::BR_JTr:
    922   case ARM::BR_JTm:
    923   case ARM::BR_JTadd:
    924     emitMiscBranchInstruction(MI);
    925     break;
    926   case ARM::BX_CALL:
    927   case ARM::BMOVPCRX_CALL: {
    928     // First emit mov lr, pc
    929     unsigned Binary = 0x01a0e00f;
    930     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    931     emitWordLE(Binary);
    932 
    933     // and then emit the branch.
    934     emitMiscBranchInstruction(MI);
    935     break;
    936   }
    937   case TargetOpcode::INLINEASM: {
    938     // We allow inline assembler nodes with empty bodies - they can
    939     // implicitly define registers, which is ok for JIT.
    940     if (MI.getOperand(0).getSymbolName()[0]) {
    941       report_fatal_error("JIT does not support inline asm!");
    942     }
    943     break;
    944   }
    945   case TargetOpcode::PROLOG_LABEL:
    946   case TargetOpcode::EH_LABEL:
    947     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
    948     break;
    949   case TargetOpcode::IMPLICIT_DEF:
    950   case TargetOpcode::KILL:
    951     // Do nothing.
    952     break;
    953   case ARM::CONSTPOOL_ENTRY:
    954     emitConstPoolInstruction(MI);
    955     break;
    956   case ARM::LDMIA_RET:
    957     emitLoadStoreMultipleInstruction(MI);
    958     break;
    959   case ARM::PICADD: {
    960     // Remember of the address of the PC label for relocation later.
    961     addPCLabel(MI.getOperand(2).getImm());
    962     // PICADD is just an add instruction that implicitly read pc.
    963     emitDataProcessingInstruction(MI, 0, ARM::PC);
    964     break;
    965   }
    966   case ARM::PICLDR:
    967   case ARM::PICLDRB:
    968   case ARM::PICSTR:
    969   case ARM::PICSTRB: {
    970     // Remember of the address of the PC label for relocation later.
    971     addPCLabel(MI.getOperand(2).getImm());
    972     // These are just load / store instructions that implicitly read pc.
    973     emitLoadStoreInstruction(MI, 0, ARM::PC);
    974     break;
    975   }
    976   case ARM::PICLDRH:
    977   case ARM::PICLDRSH:
    978   case ARM::PICLDRSB:
    979   case ARM::PICSTRH: {
    980     // Remember of the address of the PC label for relocation later.
    981     addPCLabel(MI.getOperand(2).getImm());
    982     // These are just load / store instructions that implicitly read pc.
    983     emitMiscLoadStoreInstruction(MI, ARM::PC);
    984     break;
    985   }
    986 
    987   case ARM::MOVi32imm:
    988     // Two instructions to materialize a constant.
    989     if (Subtarget->hasV6T2Ops())
    990       emitMOVi32immInstruction(MI);
    991     else
    992       emitMOVi2piecesInstruction(MI);
    993     break;
    994   case ARM::LEApcrel:
    995     // Materialize constantpool index address.
    996     emitLEApcrelInstruction(MI);
    997     break;
    998   case ARM::LEApcrelJT:
    999     // Materialize jumptable address.
   1000     emitLEApcrelJTInstruction(MI);
   1001     break;
   1002   case ARM::RRX:
   1003   case ARM::MOVsrl_flag:
   1004   case ARM::MOVsra_flag:
   1005     emitPseudoMoveInstruction(MI);
   1006     break;
   1007   }
   1008 }
   1009 
   1010 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
   1011                                                 const MCInstrDesc &MCID,
   1012                                                 const MachineOperand &MO,
   1013                                                 unsigned OpIdx) {
   1014   unsigned Binary = getMachineOpValue(MI, MO);
   1015 
   1016   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
   1017   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
   1018   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
   1019 
   1020   // Encode the shift opcode.
   1021   unsigned SBits = 0;
   1022   unsigned Rs = MO1.getReg();
   1023   if (Rs) {
   1024     // Set shift operand (bit[7:4]).
   1025     // LSL - 0001
   1026     // LSR - 0011
   1027     // ASR - 0101
   1028     // ROR - 0111
   1029     // RRX - 0110 and bit[11:8] clear.
   1030     switch (SOpc) {
   1031     default: llvm_unreachable("Unknown shift opc!");
   1032     case ARM_AM::lsl: SBits = 0x1; break;
   1033     case ARM_AM::lsr: SBits = 0x3; break;
   1034     case ARM_AM::asr: SBits = 0x5; break;
   1035     case ARM_AM::ror: SBits = 0x7; break;
   1036     case ARM_AM::rrx: SBits = 0x6; break;
   1037     }
   1038   } else {
   1039     // Set shift operand (bit[6:4]).
   1040     // LSL - 000
   1041     // LSR - 010
   1042     // ASR - 100
   1043     // ROR - 110
   1044     switch (SOpc) {
   1045     default: llvm_unreachable("Unknown shift opc!");
   1046     case ARM_AM::lsl: SBits = 0x0; break;
   1047     case ARM_AM::lsr: SBits = 0x2; break;
   1048     case ARM_AM::asr: SBits = 0x4; break;
   1049     case ARM_AM::ror: SBits = 0x6; break;
   1050     }
   1051   }
   1052   Binary |= SBits << 4;
   1053   if (SOpc == ARM_AM::rrx)
   1054     return Binary;
   1055 
   1056   // Encode the shift operation Rs or shift_imm (except rrx).
   1057   if (Rs) {
   1058     // Encode Rs bit[11:8].
   1059     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
   1060     return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
   1061   }
   1062 
   1063   // Encode shift_imm bit[11:7].
   1064   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
   1065 }
   1066 
   1067 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
   1068   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
   1069   assert(SoImmVal != -1 && "Not a valid so_imm value!");
   1070 
   1071   // Encode rotate_imm.
   1072   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
   1073     << ARMII::SoRotImmShift;
   1074 
   1075   // Encode immed_8.
   1076   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
   1077   return Binary;
   1078 }
   1079 
   1080 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
   1081                                          const MCInstrDesc &MCID) const {
   1082   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
   1083     const MachineOperand &MO = MI.getOperand(i-1);
   1084     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
   1085       return 1 << ARMII::S_BitShift;
   1086   }
   1087   return 0;
   1088 }
   1089 
   1090 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
   1091                                                    unsigned ImplicitRd,
   1092                                                    unsigned ImplicitRn) {
   1093   const MCInstrDesc &MCID = MI.getDesc();
   1094 
   1095   // Part of binary is determined by TableGn.
   1096   unsigned Binary = getBinaryCodeForInstr(MI);
   1097 
   1098   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
   1099       emitWordLE(Binary);
   1100       return;
   1101   }
   1102 
   1103   // Set the conditional execution predicate
   1104   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1105 
   1106   // Encode S bit if MI modifies CPSR.
   1107   Binary |= getAddrModeSBit(MI, MCID);
   1108 
   1109   // Encode register def if there is one.
   1110   unsigned NumDefs = MCID.getNumDefs();
   1111   unsigned OpIdx = 0;
   1112   if (NumDefs)
   1113     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1114   else if (ImplicitRd)
   1115     // Special handling for implicit use (e.g. PC).
   1116     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1117 
   1118   if (MCID.Opcode == ARM::MOVi16) {
   1119       // Get immediate from MI.
   1120       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
   1121                       ARM::reloc_arm_movw);
   1122       // Encode imm which is the same as in emitMOVi32immInstruction().
   1123       Binary |= Lo16 & 0xFFF;
   1124       Binary |= ((Lo16 >> 12) & 0xF) << 16;
   1125       emitWordLE(Binary);
   1126       return;
   1127   } else if(MCID.Opcode == ARM::MOVTi16) {
   1128       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
   1129                        ARM::reloc_arm_movt) >> 16);
   1130       Binary |= Hi16 & 0xFFF;
   1131       Binary |= ((Hi16 >> 12) & 0xF) << 16;
   1132       emitWordLE(Binary);
   1133       return;
   1134   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
   1135       uint32_t v = ~MI.getOperand(2).getImm();
   1136       int32_t lsb = CountTrailingZeros_32(v);
   1137       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
   1138       // Instr{20-16} = msb, Instr{11-7} = lsb
   1139       Binary |= (msb & 0x1F) << 16;
   1140       Binary |= (lsb & 0x1F) << 7;
   1141       emitWordLE(Binary);
   1142       return;
   1143   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
   1144       // Encode Rn in Instr{0-3}
   1145       Binary |= getMachineOpValue(MI, OpIdx++);
   1146 
   1147       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
   1148       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
   1149 
   1150       // Instr{20-16} = widthm1, Instr{11-7} = lsb
   1151       Binary |= (widthm1 & 0x1F) << 16;
   1152       Binary |= (lsb & 0x1F) << 7;
   1153       emitWordLE(Binary);
   1154       return;
   1155   }
   1156 
   1157   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
   1158   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1159     ++OpIdx;
   1160 
   1161   // Encode first non-shifter register operand if there is one.
   1162   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
   1163   if (!isUnary) {
   1164     if (ImplicitRn)
   1165       // Special handling for implicit use (e.g. PC).
   1166       Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1167     else {
   1168       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
   1169       ++OpIdx;
   1170     }
   1171   }
   1172 
   1173   // Encode shifter operand.
   1174   const MachineOperand &MO = MI.getOperand(OpIdx);
   1175   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
   1176     // Encode SoReg.
   1177     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
   1178     return;
   1179   }
   1180 
   1181   if (MO.isReg()) {
   1182     // Encode register Rm.
   1183     emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
   1184     return;
   1185   }
   1186 
   1187   // Encode so_imm.
   1188   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
   1189 
   1190   emitWordLE(Binary);
   1191 }
   1192 
   1193 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
   1194                                               unsigned ImplicitRd,
   1195                                               unsigned ImplicitRn) {
   1196   const MCInstrDesc &MCID = MI.getDesc();
   1197   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1198   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1199 
   1200   // Part of binary is determined by TableGn.
   1201   unsigned Binary = getBinaryCodeForInstr(MI);
   1202 
   1203   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
   1204   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
   1205       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
   1206       MI.getOpcode() == ARM::STRBi12) {
   1207     emitWordLE(Binary);
   1208     return;
   1209   }
   1210 
   1211   if (MI.getOpcode() == ARM::BR_JTm)
   1212     Binary = 0x710F000;
   1213   else if (MI.getOpcode() == ARM::BR_JTr)
   1214     Binary = 0x1A0F000;
   1215 
   1216   // Set the conditional execution predicate
   1217   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1218 
   1219   unsigned OpIdx = 0;
   1220 
   1221   // Operand 0 of a pre- and post-indexed store is the address base
   1222   // writeback. Skip it.
   1223   bool Skipped = false;
   1224   if (IsPrePost && Form == ARMII::StFrm) {
   1225     ++OpIdx;
   1226     Skipped = true;
   1227   }
   1228 
   1229   // Set first operand
   1230   if (ImplicitRd)
   1231     // Special handling for implicit use (e.g. PC).
   1232     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1233   else
   1234     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1235 
   1236   // Set second operand
   1237   if (ImplicitRn)
   1238     // Special handling for implicit use (e.g. PC).
   1239     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1240   else
   1241     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1242 
   1243   // If this is a two-address operand, skip it. e.g. LDR_PRE.
   1244   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1245     ++OpIdx;
   1246 
   1247   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1248   unsigned AM2Opc = (ImplicitRn == ARM::PC)
   1249     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1250 
   1251   // Set bit U(23) according to sign of immed value (positive or negative).
   1252   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
   1253              ARMII::U_BitShift);
   1254   if (!MO2.getReg()) { // is immediate
   1255     if (ARM_AM::getAM2Offset(AM2Opc))
   1256       // Set the value of offset_12 field
   1257       Binary |= ARM_AM::getAM2Offset(AM2Opc);
   1258     emitWordLE(Binary);
   1259     return;
   1260   }
   1261 
   1262   // Set bit I(25), because this is not in immediate encoding.
   1263   Binary |= 1 << ARMII::I_BitShift;
   1264   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
   1265   // Set bit[3:0] to the corresponding Rm register
   1266   Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1267 
   1268   // If this instr is in scaled register offset/index instruction, set
   1269   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
   1270   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
   1271     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
   1272     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
   1273   }
   1274 
   1275   emitWordLE(Binary);
   1276 }
   1277 
   1278 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
   1279                                                   unsigned ImplicitRn) {
   1280   const MCInstrDesc &MCID = MI.getDesc();
   1281   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1282   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1283 
   1284   // Part of binary is determined by TableGn.
   1285   unsigned Binary = getBinaryCodeForInstr(MI);
   1286 
   1287   // Set the conditional execution predicate
   1288   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1289 
   1290   unsigned OpIdx = 0;
   1291 
   1292   // Operand 0 of a pre- and post-indexed store is the address base
   1293   // writeback. Skip it.
   1294   bool Skipped = false;
   1295   if (IsPrePost && Form == ARMII::StMiscFrm) {
   1296     ++OpIdx;
   1297     Skipped = true;
   1298   }
   1299 
   1300   // Set first operand
   1301   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1302 
   1303   // Skip LDRD and STRD's second operand.
   1304   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
   1305     ++OpIdx;
   1306 
   1307   // Set second operand
   1308   if (ImplicitRn)
   1309     // Special handling for implicit use (e.g. PC).
   1310     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1311   else
   1312     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1313 
   1314   // If this is a two-address operand, skip it. e.g. LDRH_POST.
   1315   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1316     ++OpIdx;
   1317 
   1318   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1319   unsigned AM3Opc = (ImplicitRn == ARM::PC)
   1320     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1321 
   1322   // Set bit U(23) according to sign of immed value (positive or negative)
   1323   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
   1324              ARMII::U_BitShift);
   1325 
   1326   // If this instr is in register offset/index encoding, set bit[3:0]
   1327   // to the corresponding Rm register.
   1328   if (MO2.getReg()) {
   1329     Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1330     emitWordLE(Binary);
   1331     return;
   1332   }
   1333 
   1334   // This instr is in immediate offset/index encoding, set bit 22 to 1.
   1335   Binary |= 1 << ARMII::AM3_I_BitShift;
   1336   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
   1337     // Set operands
   1338     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
   1339     Binary |= (ImmOffs & 0xF);                      // immedL
   1340   }
   1341 
   1342   emitWordLE(Binary);
   1343 }
   1344 
   1345 static unsigned getAddrModeUPBits(unsigned Mode) {
   1346   unsigned Binary = 0;
   1347 
   1348   // Set addressing mode by modifying bits U(23) and P(24)
   1349   // IA - Increment after  - bit U = 1 and bit P = 0
   1350   // IB - Increment before - bit U = 1 and bit P = 1
   1351   // DA - Decrement after  - bit U = 0 and bit P = 0
   1352   // DB - Decrement before - bit U = 0 and bit P = 1
   1353   switch (Mode) {
   1354   default: llvm_unreachable("Unknown addressing sub-mode!");
   1355   case ARM_AM::da:                                     break;
   1356   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
   1357   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
   1358   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
   1359   }
   1360 
   1361   return Binary;
   1362 }
   1363 
   1364 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1365   const MCInstrDesc &MCID = MI.getDesc();
   1366   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1367 
   1368   // Part of binary is determined by TableGn.
   1369   unsigned Binary = getBinaryCodeForInstr(MI);
   1370 
   1371   if (MCID.getOpcode() == ARM::LDMIA_RET) {
   1372     IsUpdating = true;
   1373     Binary |= 0x8B00000;
   1374   }
   1375 
   1376   // Set the conditional execution predicate
   1377   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1378 
   1379   // Skip operand 0 of an instruction with base register update.
   1380   unsigned OpIdx = 0;
   1381   if (IsUpdating)
   1382     ++OpIdx;
   1383 
   1384   // Set base address operand
   1385   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1386 
   1387   // Set addressing mode by modifying bits U(23) and P(24)
   1388   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1389   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1390 
   1391   // Set bit W(21)
   1392   if (IsUpdating)
   1393     Binary |= 0x1 << ARMII::W_BitShift;
   1394 
   1395   // Set registers
   1396   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
   1397     const MachineOperand &MO = MI.getOperand(i);
   1398     if (!MO.isReg() || MO.isImplicit())
   1399       break;
   1400     unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
   1401     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
   1402            RegNum < 16);
   1403     Binary |= 0x1 << RegNum;
   1404   }
   1405 
   1406   emitWordLE(Binary);
   1407 }
   1408 
   1409 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
   1410   const MCInstrDesc &MCID = MI.getDesc();
   1411 
   1412   // Part of binary is determined by TableGn.
   1413   unsigned Binary = getBinaryCodeForInstr(MI);
   1414 
   1415   // Set the conditional execution predicate
   1416   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1417 
   1418   // Encode S bit if MI modifies CPSR.
   1419   Binary |= getAddrModeSBit(MI, MCID);
   1420 
   1421   // 32x32->64bit operations have two destination registers. The number
   1422   // of register definitions will tell us if that's what we're dealing with.
   1423   unsigned OpIdx = 0;
   1424   if (MCID.getNumDefs() == 2)
   1425     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
   1426 
   1427   // Encode Rd
   1428   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
   1429 
   1430   // Encode Rm
   1431   Binary |= getMachineOpValue(MI, OpIdx++);
   1432 
   1433   // Encode Rs
   1434   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
   1435 
   1436   // Many multiple instructions (e.g. MLA) have three src operands. Encode
   1437   // it as Rn (for multiply, that's in the same offset as RdLo.
   1438   if (MCID.getNumOperands() > OpIdx &&
   1439       !MCID.OpInfo[OpIdx].isPredicate() &&
   1440       !MCID.OpInfo[OpIdx].isOptionalDef())
   1441     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
   1442 
   1443   emitWordLE(Binary);
   1444 }
   1445 
   1446 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
   1447   const MCInstrDesc &MCID = MI.getDesc();
   1448 
   1449   // Part of binary is determined by TableGn.
   1450   unsigned Binary = getBinaryCodeForInstr(MI);
   1451 
   1452   // Set the conditional execution predicate
   1453   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1454 
   1455   unsigned OpIdx = 0;
   1456 
   1457   // Encode Rd
   1458   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1459 
   1460   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
   1461   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1462   if (MO2.isReg()) {
   1463     // Two register operand form.
   1464     // Encode Rn.
   1465     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
   1466 
   1467     // Encode Rm.
   1468     Binary |= getMachineOpValue(MI, MO2);
   1469     ++OpIdx;
   1470   } else {
   1471     Binary |= getMachineOpValue(MI, MO1);
   1472   }
   1473 
   1474   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
   1475   if (MI.getOperand(OpIdx).isImm() &&
   1476       !MCID.OpInfo[OpIdx].isPredicate() &&
   1477       !MCID.OpInfo[OpIdx].isOptionalDef())
   1478     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
   1479 
   1480   emitWordLE(Binary);
   1481 }
   1482 
   1483 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
   1484   const MCInstrDesc &MCID = MI.getDesc();
   1485 
   1486   // Part of binary is determined by TableGn.
   1487   unsigned Binary = getBinaryCodeForInstr(MI);
   1488 
   1489   // Set the conditional execution predicate
   1490   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1491 
   1492   // PKH instructions are finished at this point
   1493   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
   1494     emitWordLE(Binary);
   1495     return;
   1496   }
   1497 
   1498   unsigned OpIdx = 0;
   1499 
   1500   // Encode Rd
   1501   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1502 
   1503   const MachineOperand &MO = MI.getOperand(OpIdx++);
   1504   if (OpIdx == MCID.getNumOperands() ||
   1505       MCID.OpInfo[OpIdx].isPredicate() ||
   1506       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1507     // Encode Rm and it's done.
   1508     Binary |= getMachineOpValue(MI, MO);
   1509     emitWordLE(Binary);
   1510     return;
   1511   }
   1512 
   1513   // Encode Rn.
   1514   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
   1515 
   1516   // Encode Rm.
   1517   Binary |= getMachineOpValue(MI, OpIdx++);
   1518 
   1519   // Encode shift_imm.
   1520   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
   1521   if (MCID.Opcode == ARM::PKHTB) {
   1522     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
   1523     if (ShiftAmt == 32)
   1524       ShiftAmt = 0;
   1525   }
   1526   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1527   Binary |= ShiftAmt << ARMII::ShiftShift;
   1528 
   1529   emitWordLE(Binary);
   1530 }
   1531 
   1532 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
   1533   const MCInstrDesc &MCID = MI.getDesc();
   1534 
   1535   // Part of binary is determined by TableGen.
   1536   unsigned Binary = getBinaryCodeForInstr(MI);
   1537 
   1538   // Set the conditional execution predicate
   1539   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1540 
   1541   // Encode Rd
   1542   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
   1543 
   1544   // Encode saturate bit position.
   1545   unsigned Pos = MI.getOperand(1).getImm();
   1546   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
   1547     Pos -= 1;
   1548   assert((Pos < 16 || (Pos < 32 &&
   1549                        MCID.Opcode != ARM::SSAT16 &&
   1550                        MCID.Opcode != ARM::USAT16)) &&
   1551          "saturate bit position out of range");
   1552   Binary |= Pos << 16;
   1553 
   1554   // Encode Rm
   1555   Binary |= getMachineOpValue(MI, 2);
   1556 
   1557   // Encode shift_imm.
   1558   if (MCID.getNumOperands() == 4) {
   1559     unsigned ShiftOp = MI.getOperand(3).getImm();
   1560     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
   1561     if (Opc == ARM_AM::asr)
   1562       Binary |= (1 << 6);
   1563     unsigned ShiftAmt = MI.getOperand(3).getImm();
   1564     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
   1565       ShiftAmt = 0;
   1566     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1567     Binary |= ShiftAmt << ARMII::ShiftShift;
   1568   }
   1569 
   1570   emitWordLE(Binary);
   1571 }
   1572 
   1573 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
   1574   const MCInstrDesc &MCID = MI.getDesc();
   1575 
   1576   if (MCID.Opcode == ARM::TPsoft) {
   1577     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
   1578   }
   1579 
   1580   // Part of binary is determined by TableGn.
   1581   unsigned Binary = getBinaryCodeForInstr(MI);
   1582 
   1583   if (MCID.Opcode == ARM::B) {
   1584     Binary = 0xEA000000;
   1585   }
   1586 
   1587   // Set the conditional execution predicate
   1588   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1589 
   1590   // Set signed_immed_24 field
   1591   Binary |= getMachineOpValue(MI, 0);
   1592 
   1593   emitWordLE(Binary);
   1594 }
   1595 
   1596 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
   1597   // Remember the base address of the inline jump table.
   1598   uintptr_t JTBase = MCE.getCurrentPCValue();
   1599   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
   1600   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
   1601                << '\n');
   1602 
   1603   // Now emit the jump table entries.
   1604   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
   1605   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   1606     if (IsPIC)
   1607       // DestBB address - JT base.
   1608       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
   1609     else
   1610       // Absolute DestBB address.
   1611       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
   1612     emitWordLE(0);
   1613   }
   1614 }
   1615 
   1616 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
   1617   const MCInstrDesc &MCID = MI.getDesc();
   1618 
   1619   // Handle jump tables.
   1620   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
   1621     // First emit a ldr pc, [] instruction.
   1622     emitDataProcessingInstruction(MI, ARM::PC);
   1623 
   1624     // Then emit the inline jump table.
   1625     unsigned JTIndex =
   1626       (MCID.Opcode == ARM::BR_JTr)
   1627       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
   1628     emitInlineJumpTable(JTIndex);
   1629     return;
   1630   } else if (MCID.Opcode == ARM::BR_JTm) {
   1631     // First emit a ldr pc, [] instruction.
   1632     emitLoadStoreInstruction(MI, ARM::PC);
   1633 
   1634     // Then emit the inline jump table.
   1635     emitInlineJumpTable(MI.getOperand(3).getIndex());
   1636     return;
   1637   }
   1638 
   1639   // Part of binary is determined by TableGn.
   1640   unsigned Binary = getBinaryCodeForInstr(MI);
   1641 
   1642   // Set the conditional execution predicate
   1643   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1644 
   1645   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
   1646     // The return register is LR.
   1647     Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
   1648   else
   1649     // otherwise, set the return register
   1650     Binary |= getMachineOpValue(MI, 0);
   1651 
   1652   emitWordLE(Binary);
   1653 }
   1654 
   1655 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
   1656                                      unsigned OpIdx) const {
   1657   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1658   unsigned Binary = 0;
   1659   bool isSPVFP = ARM::SPRRegClass.contains(RegD);
   1660   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1661   if (!isSPVFP) {
   1662     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
   1663     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
   1664   } else {
   1665     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
   1666     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
   1667   }
   1668   return Binary;
   1669 }
   1670 
   1671 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
   1672                                      unsigned OpIdx) const {
   1673   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1674   unsigned Binary = 0;
   1675   bool isSPVFP = ARM::SPRRegClass.contains(RegN);
   1676   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1677   if (!isSPVFP) {
   1678     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
   1679     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
   1680   } else {
   1681     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
   1682     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
   1683   }
   1684   return Binary;
   1685 }
   1686 
   1687 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
   1688                                      unsigned OpIdx) const {
   1689   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1690   unsigned Binary = 0;
   1691   bool isSPVFP = ARM::SPRRegClass.contains(RegM);
   1692   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1693   if (!isSPVFP) {
   1694     Binary |=  (RegM & 0x0F);
   1695     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
   1696   } else {
   1697     Binary |= ((RegM & 0x1E) >> 1);
   1698     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
   1699   }
   1700   return Binary;
   1701 }
   1702 
   1703 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
   1704   const MCInstrDesc &MCID = MI.getDesc();
   1705 
   1706   // Part of binary is determined by TableGn.
   1707   unsigned Binary = getBinaryCodeForInstr(MI);
   1708 
   1709   // Set the conditional execution predicate
   1710   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1711 
   1712   unsigned OpIdx = 0;
   1713 
   1714   // Encode Dd / Sd.
   1715   Binary |= encodeVFPRd(MI, OpIdx++);
   1716 
   1717   // If this is a two-address operand, skip it, e.g. FMACD.
   1718   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1719     ++OpIdx;
   1720 
   1721   // Encode Dn / Sn.
   1722   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
   1723     Binary |= encodeVFPRn(MI, OpIdx++);
   1724 
   1725   if (OpIdx == MCID.getNumOperands() ||
   1726       MCID.OpInfo[OpIdx].isPredicate() ||
   1727       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1728     // FCMPEZD etc. has only one operand.
   1729     emitWordLE(Binary);
   1730     return;
   1731   }
   1732 
   1733   // Encode Dm / Sm.
   1734   Binary |= encodeVFPRm(MI, OpIdx);
   1735 
   1736   emitWordLE(Binary);
   1737 }
   1738 
   1739 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
   1740   const MCInstrDesc &MCID = MI.getDesc();
   1741   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1742 
   1743   // Part of binary is determined by TableGn.
   1744   unsigned Binary = getBinaryCodeForInstr(MI);
   1745 
   1746   // Set the conditional execution predicate
   1747   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1748 
   1749   switch (Form) {
   1750   default: break;
   1751   case ARMII::VFPConv1Frm:
   1752   case ARMII::VFPConv2Frm:
   1753   case ARMII::VFPConv3Frm:
   1754     // Encode Dd / Sd.
   1755     Binary |= encodeVFPRd(MI, 0);
   1756     break;
   1757   case ARMII::VFPConv4Frm:
   1758     // Encode Dn / Sn.
   1759     Binary |= encodeVFPRn(MI, 0);
   1760     break;
   1761   case ARMII::VFPConv5Frm:
   1762     // Encode Dm / Sm.
   1763     Binary |= encodeVFPRm(MI, 0);
   1764     break;
   1765   }
   1766 
   1767   switch (Form) {
   1768   default: break;
   1769   case ARMII::VFPConv1Frm:
   1770     // Encode Dm / Sm.
   1771     Binary |= encodeVFPRm(MI, 1);
   1772     break;
   1773   case ARMII::VFPConv2Frm:
   1774   case ARMII::VFPConv3Frm:
   1775     // Encode Dn / Sn.
   1776     Binary |= encodeVFPRn(MI, 1);
   1777     break;
   1778   case ARMII::VFPConv4Frm:
   1779   case ARMII::VFPConv5Frm:
   1780     // Encode Dd / Sd.
   1781     Binary |= encodeVFPRd(MI, 1);
   1782     break;
   1783   }
   1784 
   1785   if (Form == ARMII::VFPConv5Frm)
   1786     // Encode Dn / Sn.
   1787     Binary |= encodeVFPRn(MI, 2);
   1788   else if (Form == ARMII::VFPConv3Frm)
   1789     // Encode Dm / Sm.
   1790     Binary |= encodeVFPRm(MI, 2);
   1791 
   1792   emitWordLE(Binary);
   1793 }
   1794 
   1795 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
   1796   // Part of binary is determined by TableGn.
   1797   unsigned Binary = getBinaryCodeForInstr(MI);
   1798 
   1799   // Set the conditional execution predicate
   1800   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1801 
   1802   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
   1803       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
   1804     emitWordLE(Binary);
   1805     return;
   1806   }
   1807 
   1808   unsigned OpIdx = 0;
   1809 
   1810   // Encode Dd / Sd.
   1811   Binary |= encodeVFPRd(MI, OpIdx++);
   1812 
   1813   // Encode address base.
   1814   const MachineOperand &Base = MI.getOperand(OpIdx++);
   1815   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
   1816 
   1817   // If there is a non-zero immediate offset, encode it.
   1818   if (Base.isReg()) {
   1819     const MachineOperand &Offset = MI.getOperand(OpIdx);
   1820     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
   1821       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
   1822         Binary |= 1 << ARMII::U_BitShift;
   1823       Binary |= ImmOffs;
   1824       emitWordLE(Binary);
   1825       return;
   1826     }
   1827   }
   1828 
   1829   // If immediate offset is omitted, default to +0.
   1830   Binary |= 1 << ARMII::U_BitShift;
   1831 
   1832   emitWordLE(Binary);
   1833 }
   1834 
   1835 void
   1836 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1837   const MCInstrDesc &MCID = MI.getDesc();
   1838   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1839 
   1840   // Part of binary is determined by TableGn.
   1841   unsigned Binary = getBinaryCodeForInstr(MI);
   1842 
   1843   // Set the conditional execution predicate
   1844   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1845 
   1846   // Skip operand 0 of an instruction with base register update.
   1847   unsigned OpIdx = 0;
   1848   if (IsUpdating)
   1849     ++OpIdx;
   1850 
   1851   // Set base address operand
   1852   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1853 
   1854   // Set addressing mode by modifying bits U(23) and P(24)
   1855   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1856   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1857 
   1858   // Set bit W(21)
   1859   if (IsUpdating)
   1860     Binary |= 0x1 << ARMII::W_BitShift;
   1861 
   1862   // First register is encoded in Dd.
   1863   Binary |= encodeVFPRd(MI, OpIdx+2);
   1864 
   1865   // Count the number of registers.
   1866   unsigned NumRegs = 1;
   1867   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
   1868     const MachineOperand &MO = MI.getOperand(i);
   1869     if (!MO.isReg() || MO.isImplicit())
   1870       break;
   1871     ++NumRegs;
   1872   }
   1873   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
   1874   // Otherwise, it will be 0, in the case of 32-bit registers.
   1875   if(Binary & 0x100)
   1876     Binary |= NumRegs * 2;
   1877   else
   1878     Binary |= NumRegs;
   1879 
   1880   emitWordLE(Binary);
   1881 }
   1882 
   1883 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
   1884   unsigned Opcode = MI.getDesc().Opcode;
   1885   // Part of binary is determined by TableGn.
   1886   unsigned Binary = getBinaryCodeForInstr(MI);
   1887 
   1888   if (Opcode == ARM::FCONSTS) {
   1889     unsigned Imm = getMachineOpValue(MI, 1);
   1890     Binary &= ~(0x780000 >> 19);
   1891     Binary |= (Imm & 0x780000) >> 19;
   1892     Binary &= ~(0x3800000 >> 7);
   1893     Binary |= (Imm & 0x3800000) >> 7;
   1894     Binary = VFPThumb2PostEncoder(MI, Binary);
   1895   }
   1896 
   1897   // Set the conditional execution predicate
   1898   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1899 
   1900   emitWordLE(Binary);
   1901 }
   1902 
   1903 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
   1904                                       unsigned OpIdx) const {
   1905   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1906   unsigned Binary = 0;
   1907   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1908   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
   1909   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
   1910   return Binary;
   1911 }
   1912 
   1913 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
   1914                                       unsigned OpIdx) const {
   1915   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1916   unsigned Binary = 0;
   1917   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1918   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
   1919   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
   1920   return Binary;
   1921 }
   1922 
   1923 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
   1924                                       unsigned OpIdx) const {
   1925   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1926   unsigned Binary = 0;
   1927   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1928   Binary |= (RegM & 0xf);
   1929   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
   1930   return Binary;
   1931 }
   1932 
   1933 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
   1934 /// data-processing instruction to the corresponding Thumb encoding.
   1935 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
   1936   assert((Binary & 0xfe000000) == 0xf2000000 &&
   1937          "not an ARM NEON data-processing instruction");
   1938   unsigned UBit = (Binary >> 24) & 1;
   1939   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
   1940 }
   1941 
   1942 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
   1943   unsigned Binary = getBinaryCodeForInstr(MI);
   1944 
   1945   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
   1946   const MCInstrDesc &MCID = MI.getDesc();
   1947   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
   1948     RegTOpIdx = 0;
   1949     RegNOpIdx = 1;
   1950     LnOpIdx = 2;
   1951   } else { // ARMII::NSetLnFrm
   1952     RegTOpIdx = 2;
   1953     RegNOpIdx = 0;
   1954     LnOpIdx = 3;
   1955   }
   1956 
   1957   // Set the conditional execution predicate
   1958   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1959 
   1960   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
   1961   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1962   Binary |= (RegT << ARMII::RegRdShift);
   1963   Binary |= encodeNEONRn(MI, RegNOpIdx);
   1964 
   1965   unsigned LaneShift;
   1966   if ((Binary & (1 << 22)) != 0)
   1967     LaneShift = 0; // 8-bit elements
   1968   else if ((Binary & (1 << 5)) != 0)
   1969     LaneShift = 1; // 16-bit elements
   1970   else
   1971     LaneShift = 2; // 32-bit elements
   1972 
   1973   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
   1974   unsigned Opc1 = Lane >> 2;
   1975   unsigned Opc2 = Lane & 3;
   1976   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
   1977   Binary |= (Opc1 << 21);
   1978   Binary |= (Opc2 << 5);
   1979 
   1980   emitWordLE(Binary);
   1981 }
   1982 
   1983 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
   1984   unsigned Binary = getBinaryCodeForInstr(MI);
   1985 
   1986   // Set the conditional execution predicate
   1987   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1988 
   1989   unsigned RegT = MI.getOperand(1).getReg();
   1990   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1991   Binary |= (RegT << ARMII::RegRdShift);
   1992   Binary |= encodeNEONRn(MI, 0);
   1993   emitWordLE(Binary);
   1994 }
   1995 
   1996 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
   1997   unsigned Binary = getBinaryCodeForInstr(MI);
   1998   // Destination register is encoded in Dd.
   1999   Binary |= encodeNEONRd(MI, 0);
   2000   // Immediate fields: Op, Cmode, I, Imm3, Imm4
   2001   unsigned Imm = MI.getOperand(1).getImm();
   2002   unsigned Op = (Imm >> 12) & 1;
   2003   unsigned Cmode = (Imm >> 8) & 0xf;
   2004   unsigned I = (Imm >> 7) & 1;
   2005   unsigned Imm3 = (Imm >> 4) & 0x7;
   2006   unsigned Imm4 = Imm & 0xf;
   2007   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
   2008   if (IsThumb)
   2009     Binary = convertNEONDataProcToThumb(Binary);
   2010   emitWordLE(Binary);
   2011 }
   2012 
   2013 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
   2014   const MCInstrDesc &MCID = MI.getDesc();
   2015   unsigned Binary = getBinaryCodeForInstr(MI);
   2016   // Destination register is encoded in Dd; source register in Dm.
   2017   unsigned OpIdx = 0;
   2018   Binary |= encodeNEONRd(MI, OpIdx++);
   2019   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2020     ++OpIdx;
   2021   Binary |= encodeNEONRm(MI, OpIdx);
   2022   if (IsThumb)
   2023     Binary = convertNEONDataProcToThumb(Binary);
   2024   // FIXME: This does not handle VDUPfdf or VDUPfqf.
   2025   emitWordLE(Binary);
   2026 }
   2027 
   2028 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
   2029   const MCInstrDesc &MCID = MI.getDesc();
   2030   unsigned Binary = getBinaryCodeForInstr(MI);
   2031   // Destination register is encoded in Dd; source registers in Dn and Dm.
   2032   unsigned OpIdx = 0;
   2033   Binary |= encodeNEONRd(MI, OpIdx++);
   2034   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2035     ++OpIdx;
   2036   Binary |= encodeNEONRn(MI, OpIdx++);
   2037   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2038     ++OpIdx;
   2039   Binary |= encodeNEONRm(MI, OpIdx);
   2040   if (IsThumb)
   2041     Binary = convertNEONDataProcToThumb(Binary);
   2042   // FIXME: This does not handle VMOVDneon or VMOVQ.
   2043   emitWordLE(Binary);
   2044 }
   2045 
   2046 #include "ARMGenCodeEmitter.inc"
   2047