Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
     17 #   include "DwarfDebug.h"
     18 #   include "DwarfException.h"
     19 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
     20 #include "llvm/DebugInfo.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/CodeGen/GCMetadataPrinter.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/Analysis/ConstantFolding.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCContext.h"
     32 #include "llvm/MC/MCExpr.h"
     33 #include "llvm/MC/MCInst.h"
     34 #include "llvm/MC/MCSection.h"
     35 #include "llvm/MC/MCStreamer.h"
     36 #include "llvm/MC/MCSymbol.h"
     37 #include "llvm/Target/Mangler.h"
     38 #include "llvm/Target/TargetData.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetLowering.h"
     41 #include "llvm/Target/TargetLoweringObjectFile.h"
     42 #include "llvm/Target/TargetOptions.h"
     43 #include "llvm/Target/TargetRegisterInfo.h"
     44 #include "llvm/Assembly/Writer.h"
     45 #include "llvm/ADT/SmallString.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/Format.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Support/Timer.h"
     51 #include <ctype.h>
     52 using namespace llvm;
     53 
     54 static const char *DWARFGroupName = "DWARF Emission";
     55 static const char *DbgTimerName = "DWARF Debug Writer";
     56 static const char *EHTimerName = "DWARF Exception Writer";
     57 
     58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     59 
     60 char AsmPrinter::ID = 0;
     61 
     62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     63 static gcp_map_type &getGCMap(void *&P) {
     64   if (P == 0)
     65     P = new gcp_map_type();
     66   return *(gcp_map_type*)P;
     67 }
     68 
     69 
     70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     71 /// value in log2 form.  This rounds up to the preferred alignment if possible
     72 /// and legal.
     73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
     74                                    unsigned InBits = 0) {
     75   unsigned NumBits = 0;
     76   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     77     NumBits = TD.getPreferredAlignmentLog(GVar);
     78 
     79   // If InBits is specified, round it to it.
     80   if (InBits > NumBits)
     81     NumBits = InBits;
     82 
     83   // If the GV has a specified alignment, take it into account.
     84   if (GV->getAlignment() == 0)
     85     return NumBits;
     86 
     87   unsigned GVAlign = Log2_32(GV->getAlignment());
     88 
     89   // If the GVAlign is larger than NumBits, or if we are required to obey
     90   // NumBits because the GV has an assigned section, obey it.
     91   if (GVAlign > NumBits || GV->hasSection())
     92     NumBits = GVAlign;
     93   return NumBits;
     94 }
     95 
     96 
     97 
     98 
     99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
    100   : MachineFunctionPass(ID),
    101     TM(tm), MAI(tm.getMCAsmInfo()),
    102     OutContext(Streamer.getContext()),
    103     OutStreamer(Streamer),
    104     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    105   DD = 0; DE = 0; MMI = 0; LI = 0;
    106   CurrentFnSym = CurrentFnSymForSize = 0;
    107   GCMetadataPrinters = 0;
    108   VerboseAsm = Streamer.isVerboseAsm();
    109 }
    110 
    111 AsmPrinter::~AsmPrinter() {
    112   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    113 
    114   if (GCMetadataPrinters != 0) {
    115     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    116 
    117     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    118       delete I->second;
    119     delete &GCMap;
    120     GCMetadataPrinters = 0;
    121   }
    122 
    123   delete &OutStreamer;
    124 }
    125 
    126 /// getFunctionNumber - Return a unique ID for the current function.
    127 ///
    128 unsigned AsmPrinter::getFunctionNumber() const {
    129   return MF->getFunctionNumber();
    130 }
    131 
    132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    133   return TM.getTargetLowering()->getObjFileLowering();
    134 }
    135 
    136 
    137 /// getTargetData - Return information about data layout.
    138 const TargetData &AsmPrinter::getTargetData() const {
    139   return *TM.getTargetData();
    140 }
    141 
    142 /// getCurrentSection() - Return the current section we are emitting to.
    143 const MCSection *AsmPrinter::getCurrentSection() const {
    144   return OutStreamer.getCurrentSection();
    145 }
    146 
    147 
    148 
    149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    150   AU.setPreservesAll();
    151   MachineFunctionPass::getAnalysisUsage(AU);
    152   AU.addRequired<MachineModuleInfo>();
    153   AU.addRequired<GCModuleInfo>();
    154   if (isVerbose())
    155     AU.addRequired<MachineLoopInfo>();
    156 }
    157 
    158 bool AsmPrinter::doInitialization(Module &M) {
    159   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    160   MMI->AnalyzeModule(M);
    161 
    162   // Initialize TargetLoweringObjectFile.
    163   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    164     .Initialize(OutContext, TM);
    165 
    166   Mang = new Mangler(OutContext, *TM.getTargetData());
    167 
    168   // Allow the target to emit any magic that it wants at the start of the file.
    169   EmitStartOfAsmFile(M);
    170 
    171   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    172   // don't, this at least helps the user find where a global came from.
    173   if (MAI->hasSingleParameterDotFile()) {
    174     // .file "foo.c"
    175     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    176   }
    177 
    178   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    179   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    180   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    181     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    182       MP->beginAssembly(*this);
    183 
    184   // Emit module-level inline asm if it exists.
    185   if (!M.getModuleInlineAsm().empty()) {
    186     OutStreamer.AddComment("Start of file scope inline assembly");
    187     OutStreamer.AddBlankLine();
    188     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    189     OutStreamer.AddComment("End of file scope inline assembly");
    190     OutStreamer.AddBlankLine();
    191   }
    192 
    193 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    194   if (MAI->doesSupportDebugInformation())
    195     DD = new DwarfDebug(this, &M);
    196 
    197   switch (MAI->getExceptionHandlingType()) {
    198   case ExceptionHandling::None:
    199     return false;
    200   case ExceptionHandling::SjLj:
    201   case ExceptionHandling::DwarfCFI:
    202     DE = new DwarfCFIException(this);
    203     return false;
    204   case ExceptionHandling::ARM:
    205     DE = new ARMException(this);
    206     return false;
    207   case ExceptionHandling::Win64:
    208     DE = new Win64Exception(this);
    209     return false;
    210   }
    211 #else
    212   return false;
    213 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    214 
    215   llvm_unreachable("Unknown exception type.");
    216 }
    217 
    218 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    219   switch ((GlobalValue::LinkageTypes)Linkage) {
    220   case GlobalValue::CommonLinkage:
    221   case GlobalValue::LinkOnceAnyLinkage:
    222   case GlobalValue::LinkOnceODRLinkage:
    223   case GlobalValue::LinkOnceODRAutoHideLinkage:
    224   case GlobalValue::WeakAnyLinkage:
    225   case GlobalValue::WeakODRLinkage:
    226   case GlobalValue::LinkerPrivateWeakLinkage:
    227     if (MAI->getWeakDefDirective() != 0) {
    228       // .globl _foo
    229       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    230 
    231       if ((GlobalValue::LinkageTypes)Linkage !=
    232           GlobalValue::LinkOnceODRAutoHideLinkage)
    233         // .weak_definition _foo
    234         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    235       else
    236         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    237     } else if (MAI->getLinkOnceDirective() != 0) {
    238       // .globl _foo
    239       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    240       //NOTE: linkonce is handled by the section the symbol was assigned to.
    241     } else {
    242       // .weak _foo
    243       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    244     }
    245     break;
    246   case GlobalValue::DLLExportLinkage:
    247   case GlobalValue::AppendingLinkage:
    248     // FIXME: appending linkage variables should go into a section of
    249     // their name or something.  For now, just emit them as external.
    250   case GlobalValue::ExternalLinkage:
    251     // If external or appending, declare as a global symbol.
    252     // .globl _foo
    253     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    254     break;
    255   case GlobalValue::PrivateLinkage:
    256   case GlobalValue::InternalLinkage:
    257   case GlobalValue::LinkerPrivateLinkage:
    258     break;
    259   default:
    260     llvm_unreachable("Unknown linkage type!");
    261   }
    262 }
    263 
    264 
    265 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    266 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    267   if (GV->hasInitializer()) {
    268     // Check to see if this is a special global used by LLVM, if so, emit it.
    269     if (EmitSpecialLLVMGlobal(GV))
    270       return;
    271 
    272     if (isVerbose()) {
    273       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    274                      /*PrintType=*/false, GV->getParent());
    275       OutStreamer.GetCommentOS() << '\n';
    276     }
    277   }
    278 
    279   MCSymbol *GVSym = Mang->getSymbol(GV);
    280   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    281 
    282   if (!GV->hasInitializer())   // External globals require no extra code.
    283     return;
    284 
    285   if (MAI->hasDotTypeDotSizeDirective())
    286     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    287 
    288   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    289 
    290   const TargetData *TD = TM.getTargetData();
    291   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    292 
    293   // If the alignment is specified, we *must* obey it.  Overaligning a global
    294   // with a specified alignment is a prompt way to break globals emitted to
    295   // sections and expected to be contiguous (e.g. ObjC metadata).
    296   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    297 
    298   // Handle common and BSS local symbols (.lcomm).
    299   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    300     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    301     unsigned Align = 1 << AlignLog;
    302 
    303     // Handle common symbols.
    304     if (GVKind.isCommon()) {
    305       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    306         Align = 0;
    307 
    308       // .comm _foo, 42, 4
    309       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    310       return;
    311     }
    312 
    313     // Handle local BSS symbols.
    314     if (MAI->hasMachoZeroFillDirective()) {
    315       const MCSection *TheSection =
    316         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    317       // .zerofill __DATA, __bss, _foo, 400, 5
    318       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    319       return;
    320     }
    321 
    322     if (Align == 1 ||
    323         MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    324       // .lcomm _foo, 42
    325       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    326       return;
    327     }
    328 
    329     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    330       Align = 0;
    331 
    332     // .local _foo
    333     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    334     // .comm _foo, 42, 4
    335     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    336     return;
    337   }
    338 
    339   const MCSection *TheSection =
    340     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    341 
    342   // Handle the zerofill directive on darwin, which is a special form of BSS
    343   // emission.
    344   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    345     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    346 
    347     // .globl _foo
    348     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    349     // .zerofill __DATA, __common, _foo, 400, 5
    350     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    351     return;
    352   }
    353 
    354   // Handle thread local data for mach-o which requires us to output an
    355   // additional structure of data and mangle the original symbol so that we
    356   // can reference it later.
    357   //
    358   // TODO: This should become an "emit thread local global" method on TLOF.
    359   // All of this macho specific stuff should be sunk down into TLOFMachO and
    360   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    361   // TLOF class.  This will also make it more obvious that stuff like
    362   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    363   // specific code.
    364   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    365     // Emit the .tbss symbol
    366     MCSymbol *MangSym =
    367       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    368 
    369     if (GVKind.isThreadBSS())
    370       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    371     else if (GVKind.isThreadData()) {
    372       OutStreamer.SwitchSection(TheSection);
    373 
    374       EmitAlignment(AlignLog, GV);
    375       OutStreamer.EmitLabel(MangSym);
    376 
    377       EmitGlobalConstant(GV->getInitializer());
    378     }
    379 
    380     OutStreamer.AddBlankLine();
    381 
    382     // Emit the variable struct for the runtime.
    383     const MCSection *TLVSect
    384       = getObjFileLowering().getTLSExtraDataSection();
    385 
    386     OutStreamer.SwitchSection(TLVSect);
    387     // Emit the linkage here.
    388     EmitLinkage(GV->getLinkage(), GVSym);
    389     OutStreamer.EmitLabel(GVSym);
    390 
    391     // Three pointers in size:
    392     //   - __tlv_bootstrap - used to make sure support exists
    393     //   - spare pointer, used when mapped by the runtime
    394     //   - pointer to mangled symbol above with initializer
    395     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    396     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    397                           PtrSize, 0);
    398     OutStreamer.EmitIntValue(0, PtrSize, 0);
    399     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
    400 
    401     OutStreamer.AddBlankLine();
    402     return;
    403   }
    404 
    405   OutStreamer.SwitchSection(TheSection);
    406 
    407   EmitLinkage(GV->getLinkage(), GVSym);
    408   EmitAlignment(AlignLog, GV);
    409 
    410   OutStreamer.EmitLabel(GVSym);
    411 
    412   EmitGlobalConstant(GV->getInitializer());
    413 
    414   if (MAI->hasDotTypeDotSizeDirective())
    415     // .size foo, 42
    416     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    417 
    418   OutStreamer.AddBlankLine();
    419 }
    420 
    421 /// EmitFunctionHeader - This method emits the header for the current
    422 /// function.
    423 void AsmPrinter::EmitFunctionHeader() {
    424   // Print out constants referenced by the function
    425   EmitConstantPool();
    426 
    427   // Print the 'header' of function.
    428   const Function *F = MF->getFunction();
    429 
    430   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    431   EmitVisibility(CurrentFnSym, F->getVisibility());
    432 
    433   EmitLinkage(F->getLinkage(), CurrentFnSym);
    434   EmitAlignment(MF->getAlignment(), F);
    435 
    436   if (MAI->hasDotTypeDotSizeDirective())
    437     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    438 
    439   if (isVerbose()) {
    440     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    441                    /*PrintType=*/false, F->getParent());
    442     OutStreamer.GetCommentOS() << '\n';
    443   }
    444 
    445   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    446   // do their wild and crazy things as required.
    447   EmitFunctionEntryLabel();
    448 
    449   // If the function had address-taken blocks that got deleted, then we have
    450   // references to the dangling symbols.  Emit them at the start of the function
    451   // so that we don't get references to undefined symbols.
    452   std::vector<MCSymbol*> DeadBlockSyms;
    453   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    454   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    455     OutStreamer.AddComment("Address taken block that was later removed");
    456     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    457   }
    458 
    459   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    460   if (MAI->getLinkOnceDirective() != 0 &&
    461       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    462     // FIXME: What is this?
    463     MCSymbol *FakeStub =
    464       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    465                                    CurrentFnSym->getName());
    466     OutStreamer.EmitLabel(FakeStub);
    467   }
    468 
    469   // Emit pre-function debug and/or EH information.
    470 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    471   if (DE) {
    472     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    473     DE->BeginFunction(MF);
    474   }
    475   if (DD) {
    476     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    477     DD->beginFunction(MF);
    478   }
    479 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    480 }
    481 
    482 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    483 /// function.  This can be overridden by targets as required to do custom stuff.
    484 void AsmPrinter::EmitFunctionEntryLabel() {
    485   // The function label could have already been emitted if two symbols end up
    486   // conflicting due to asm renaming.  Detect this and emit an error.
    487   if (CurrentFnSym->isUndefined())
    488     return OutStreamer.EmitLabel(CurrentFnSym);
    489 
    490   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    491                      "' label emitted multiple times to assembly file");
    492 }
    493 
    494 /// emitComments - Pretty-print comments for instructions.
    495 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    496   const MachineFunction *MF = MI.getParent()->getParent();
    497   const TargetMachine &TM = MF->getTarget();
    498 
    499   // Check for spills and reloads
    500   int FI;
    501 
    502   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    503 
    504   // We assume a single instruction only has a spill or reload, not
    505   // both.
    506   const MachineMemOperand *MMO;
    507   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    508     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    509       MMO = *MI.memoperands_begin();
    510       CommentOS << MMO->getSize() << "-byte Reload\n";
    511     }
    512   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    513     if (FrameInfo->isSpillSlotObjectIndex(FI))
    514       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    515   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    516     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    517       MMO = *MI.memoperands_begin();
    518       CommentOS << MMO->getSize() << "-byte Spill\n";
    519     }
    520   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    521     if (FrameInfo->isSpillSlotObjectIndex(FI))
    522       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    523   }
    524 
    525   // Check for spill-induced copies
    526   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    527     CommentOS << " Reload Reuse\n";
    528 }
    529 
    530 /// emitImplicitDef - This method emits the specified machine instruction
    531 /// that is an implicit def.
    532 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    533   unsigned RegNo = MI->getOperand(0).getReg();
    534   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    535                             AP.TM.getRegisterInfo()->getName(RegNo));
    536   AP.OutStreamer.AddBlankLine();
    537 }
    538 
    539 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    540   std::string Str = "kill:";
    541   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    542     const MachineOperand &Op = MI->getOperand(i);
    543     assert(Op.isReg() && "KILL instruction must have only register operands");
    544     Str += ' ';
    545     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    546     Str += (Op.isDef() ? "<def>" : "<kill>");
    547   }
    548   AP.OutStreamer.AddComment(Str);
    549   AP.OutStreamer.AddBlankLine();
    550 }
    551 
    552 /// emitDebugValueComment - This method handles the target-independent form
    553 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    554 /// means the target will need to handle MI in EmitInstruction.
    555 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    556   // This code handles only the 3-operand target-independent form.
    557   if (MI->getNumOperands() != 3)
    558     return false;
    559 
    560   SmallString<128> Str;
    561   raw_svector_ostream OS(Str);
    562   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    563 
    564   // cast away const; DIetc do not take const operands for some reason.
    565   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    566   if (V.getContext().isSubprogram())
    567     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
    568   OS << V.getName() << " <- ";
    569 
    570   // Register or immediate value. Register 0 means undef.
    571   if (MI->getOperand(0).isFPImm()) {
    572     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    573     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    574       OS << (double)APF.convertToFloat();
    575     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    576       OS << APF.convertToDouble();
    577     } else {
    578       // There is no good way to print long double.  Convert a copy to
    579       // double.  Ah well, it's only a comment.
    580       bool ignored;
    581       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    582                   &ignored);
    583       OS << "(long double) " << APF.convertToDouble();
    584     }
    585   } else if (MI->getOperand(0).isImm()) {
    586     OS << MI->getOperand(0).getImm();
    587   } else if (MI->getOperand(0).isCImm()) {
    588     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    589   } else {
    590     assert(MI->getOperand(0).isReg() && "Unknown operand type");
    591     if (MI->getOperand(0).getReg() == 0) {
    592       // Suppress offset, it is not meaningful here.
    593       OS << "undef";
    594       // NOTE: Want this comment at start of line, don't emit with AddComment.
    595       AP.OutStreamer.EmitRawText(OS.str());
    596       return true;
    597     }
    598     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
    599   }
    600 
    601   OS << '+' << MI->getOperand(1).getImm();
    602   // NOTE: Want this comment at start of line, don't emit with AddComment.
    603   AP.OutStreamer.EmitRawText(OS.str());
    604   return true;
    605 }
    606 
    607 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    608   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    609       MF->getFunction()->needsUnwindTableEntry())
    610     return CFI_M_EH;
    611 
    612   if (MMI->hasDebugInfo())
    613     return CFI_M_Debug;
    614 
    615   return CFI_M_None;
    616 }
    617 
    618 bool AsmPrinter::needsSEHMoves() {
    619   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    620     MF->getFunction()->needsUnwindTableEntry();
    621 }
    622 
    623 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
    624   return MAI->doesDwarfUseRelocationsAcrossSections();
    625 }
    626 
    627 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    628   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    629 
    630   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    631     return;
    632 
    633   if (needsCFIMoves() == CFI_M_None)
    634     return;
    635 
    636   if (MMI->getCompactUnwindEncoding() != 0)
    637     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    638 
    639   MachineModuleInfo &MMI = MF->getMMI();
    640   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    641   bool FoundOne = false;
    642   (void)FoundOne;
    643   for (std::vector<MachineMove>::iterator I = Moves.begin(),
    644          E = Moves.end(); I != E; ++I) {
    645     if (I->getLabel() == Label) {
    646       EmitCFIFrameMove(*I);
    647       FoundOne = true;
    648     }
    649   }
    650   assert(FoundOne);
    651 }
    652 
    653 /// EmitFunctionBody - This method emits the body and trailer for a
    654 /// function.
    655 void AsmPrinter::EmitFunctionBody() {
    656   // Emit target-specific gunk before the function body.
    657   EmitFunctionBodyStart();
    658 
    659   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    660 
    661   // Print out code for the function.
    662   bool HasAnyRealCode = false;
    663   const MachineInstr *LastMI = 0;
    664   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    665        I != E; ++I) {
    666     // Print a label for the basic block.
    667     EmitBasicBlockStart(I);
    668     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    669          II != IE; ++II) {
    670       LastMI = II;
    671 
    672       // Print the assembly for the instruction.
    673       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    674           !II->isDebugValue()) {
    675         HasAnyRealCode = true;
    676 
    677         ++EmittedInsts;
    678       }
    679 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    680       if (ShouldPrintDebugScopes) {
    681         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    682         DD->beginInstruction(II);
    683       }
    684 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    685 
    686       if (isVerbose())
    687         emitComments(*II, OutStreamer.GetCommentOS());
    688 
    689       switch (II->getOpcode()) {
    690       case TargetOpcode::PROLOG_LABEL:
    691         emitPrologLabel(*II);
    692         break;
    693 
    694       case TargetOpcode::EH_LABEL:
    695       case TargetOpcode::GC_LABEL:
    696         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    697         break;
    698       case TargetOpcode::INLINEASM:
    699         EmitInlineAsm(II);
    700         break;
    701       case TargetOpcode::DBG_VALUE:
    702         if (isVerbose()) {
    703           if (!emitDebugValueComment(II, *this))
    704             EmitInstruction(II);
    705         }
    706         break;
    707       case TargetOpcode::IMPLICIT_DEF:
    708         if (isVerbose()) emitImplicitDef(II, *this);
    709         break;
    710       case TargetOpcode::KILL:
    711         if (isVerbose()) emitKill(II, *this);
    712         break;
    713       default:
    714         if (!TM.hasMCUseLoc())
    715           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    716 
    717         EmitInstruction(II);
    718         break;
    719       }
    720 
    721 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    722       if (ShouldPrintDebugScopes) {
    723         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    724         DD->endInstruction(II);
    725       }
    726 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    727     }
    728   }
    729 
    730   // If the last instruction was a prolog label, then we have a situation where
    731   // we emitted a prolog but no function body. This results in the ending prolog
    732   // label equaling the end of function label and an invalid "row" in the
    733   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    734   // valid.
    735   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    736 
    737   // If the function is empty and the object file uses .subsections_via_symbols,
    738   // then we need to emit *something* to the function body to prevent the
    739   // labels from collapsing together.  Just emit a noop.
    740   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    741     MCInst Noop;
    742     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    743     if (Noop.getOpcode()) {
    744       OutStreamer.AddComment("avoids zero-length function");
    745       OutStreamer.EmitInstruction(Noop);
    746     } else  // Target not mc-ized yet.
    747       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    748   }
    749 
    750   const Function *F = MF->getFunction();
    751   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
    752     const BasicBlock *BB = i;
    753     if (!BB->hasAddressTaken())
    754       continue;
    755     MCSymbol *Sym = GetBlockAddressSymbol(BB);
    756     if (Sym->isDefined())
    757       continue;
    758     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    759     OutStreamer.EmitLabel(Sym);
    760   }
    761 
    762   // Emit target-specific gunk after the function body.
    763   EmitFunctionBodyEnd();
    764 
    765   // If the target wants a .size directive for the size of the function, emit
    766   // it.
    767   if (MAI->hasDotTypeDotSizeDirective()) {
    768     // Create a symbol for the end of function, so we can get the size as
    769     // difference between the function label and the temp label.
    770     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    771     OutStreamer.EmitLabel(FnEndLabel);
    772 
    773     const MCExpr *SizeExp =
    774       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    775                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    776                                                       OutContext),
    777                               OutContext);
    778     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    779   }
    780 
    781   // Emit post-function debug information.
    782 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    783   if (DD) {
    784     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    785     DD->endFunction(MF);
    786   }
    787   if (DE) {
    788     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    789     DE->EndFunction();
    790   }
    791 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    792   MMI->EndFunction();
    793 
    794   // Print out jump tables referenced by the function.
    795   EmitJumpTableInfo();
    796 
    797   OutStreamer.AddBlankLine();
    798 }
    799 
    800 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
    801 /// operands.
    802 MachineLocation AsmPrinter::
    803 getDebugValueLocation(const MachineInstr *MI) const {
    804   // Target specific DBG_VALUE instructions are handled by each target.
    805   return MachineLocation();
    806 }
    807 
    808 /// EmitDwarfRegOp - Emit dwarf register operation.
    809 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
    810   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    811   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    812 
    813   for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
    814        ++SR) {
    815     Reg = TRI->getDwarfRegNum(*SR, false);
    816     // FIXME: Get the bit range this register uses of the superregister
    817     // so that we can produce a DW_OP_bit_piece
    818   }
    819 
    820   // FIXME: Handle cases like a super register being encoded as
    821   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    822 
    823   // FIXME: We have no reasonable way of handling errors in here. The
    824   // caller might be in the middle of an dwarf expression. We should
    825   // probably assert that Reg >= 0 once debug info generation is more mature.
    826 
    827   if (int Offset =  MLoc.getOffset()) {
    828     if (Reg < 32) {
    829       OutStreamer.AddComment(
    830         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    831       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    832     } else {
    833       OutStreamer.AddComment("DW_OP_bregx");
    834       EmitInt8(dwarf::DW_OP_bregx);
    835       OutStreamer.AddComment(Twine(Reg));
    836       EmitULEB128(Reg);
    837     }
    838     EmitSLEB128(Offset);
    839   } else {
    840     if (Reg < 32) {
    841       OutStreamer.AddComment(
    842         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    843       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    844     } else {
    845       OutStreamer.AddComment("DW_OP_regx");
    846       EmitInt8(dwarf::DW_OP_regx);
    847       OutStreamer.AddComment(Twine(Reg));
    848       EmitULEB128(Reg);
    849     }
    850   }
    851 
    852   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    853 }
    854 
    855 bool AsmPrinter::doFinalization(Module &M) {
    856   // Emit global variables.
    857   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    858        I != E; ++I)
    859     EmitGlobalVariable(I);
    860 
    861   // Emit visibility info for declarations
    862   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    863     const Function &F = *I;
    864     if (!F.isDeclaration())
    865       continue;
    866     GlobalValue::VisibilityTypes V = F.getVisibility();
    867     if (V == GlobalValue::DefaultVisibility)
    868       continue;
    869 
    870     MCSymbol *Name = Mang->getSymbol(&F);
    871     EmitVisibility(Name, V, false);
    872   }
    873 
    874   // Emit module flags.
    875   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
    876   M.getModuleFlagsMetadata(ModuleFlags);
    877   if (!ModuleFlags.empty())
    878     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
    879 
    880   // Finalize debug and EH information.
    881 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
    882   if (DE) {
    883     {
    884       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    885       DE->EndModule();
    886     }
    887     delete DE; DE = 0;
    888   }
    889   if (DD) {
    890     {
    891       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    892       DD->endModule();
    893     }
    894     delete DD; DD = 0;
    895   }
    896 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
    897 
    898   // If the target wants to know about weak references, print them all.
    899   if (MAI->getWeakRefDirective()) {
    900     // FIXME: This is not lazy, it would be nice to only print weak references
    901     // to stuff that is actually used.  Note that doing so would require targets
    902     // to notice uses in operands (due to constant exprs etc).  This should
    903     // happen with the MC stuff eventually.
    904 
    905     // Print out module-level global variables here.
    906     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    907          I != E; ++I) {
    908       if (!I->hasExternalWeakLinkage()) continue;
    909       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    910     }
    911 
    912     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    913       if (!I->hasExternalWeakLinkage()) continue;
    914       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    915     }
    916   }
    917 
    918   if (MAI->hasSetDirective()) {
    919     OutStreamer.AddBlankLine();
    920     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    921          I != E; ++I) {
    922       MCSymbol *Name = Mang->getSymbol(I);
    923 
    924       const GlobalValue *GV = I->getAliasedGlobal();
    925       MCSymbol *Target = Mang->getSymbol(GV);
    926 
    927       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    928         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    929       else if (I->hasWeakLinkage())
    930         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    931       else
    932         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    933 
    934       EmitVisibility(Name, I->getVisibility());
    935 
    936       // Emit the directives as assignments aka .set:
    937       OutStreamer.EmitAssignment(Name,
    938                                  MCSymbolRefExpr::Create(Target, OutContext));
    939     }
    940   }
    941 
    942   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    943   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    944   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    945     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    946       MP->finishAssembly(*this);
    947 
    948   // If we don't have any trampolines, then we don't require stack memory
    949   // to be executable. Some targets have a directive to declare this.
    950   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    951   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    952     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    953       OutStreamer.SwitchSection(S);
    954 
    955   // Allow the target to emit any magic that it wants at the end of the file,
    956   // after everything else has gone out.
    957   EmitEndOfAsmFile(M);
    958 
    959   delete Mang; Mang = 0;
    960   MMI = 0;
    961 
    962   OutStreamer.Finish();
    963   return false;
    964 }
    965 
    966 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    967   this->MF = &MF;
    968   // Get the function symbol.
    969   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    970   CurrentFnSymForSize = CurrentFnSym;
    971 
    972   if (isVerbose())
    973     LI = &getAnalysis<MachineLoopInfo>();
    974 }
    975 
    976 namespace {
    977   // SectionCPs - Keep track the alignment, constpool entries per Section.
    978   struct SectionCPs {
    979     const MCSection *S;
    980     unsigned Alignment;
    981     SmallVector<unsigned, 4> CPEs;
    982     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    983   };
    984 }
    985 
    986 /// EmitConstantPool - Print to the current output stream assembly
    987 /// representations of the constants in the constant pool MCP. This is
    988 /// used to print out constants which have been "spilled to memory" by
    989 /// the code generator.
    990 ///
    991 void AsmPrinter::EmitConstantPool() {
    992   const MachineConstantPool *MCP = MF->getConstantPool();
    993   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
    994   if (CP.empty()) return;
    995 
    996   // Calculate sections for constant pool entries. We collect entries to go into
    997   // the same section together to reduce amount of section switch statements.
    998   SmallVector<SectionCPs, 4> CPSections;
    999   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1000     const MachineConstantPoolEntry &CPE = CP[i];
   1001     unsigned Align = CPE.getAlignment();
   1002 
   1003     SectionKind Kind;
   1004     switch (CPE.getRelocationInfo()) {
   1005     default: llvm_unreachable("Unknown section kind");
   1006     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
   1007     case 1:
   1008       Kind = SectionKind::getReadOnlyWithRelLocal();
   1009       break;
   1010     case 0:
   1011     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
   1012     case 4:  Kind = SectionKind::getMergeableConst4(); break;
   1013     case 8:  Kind = SectionKind::getMergeableConst8(); break;
   1014     case 16: Kind = SectionKind::getMergeableConst16();break;
   1015     default: Kind = SectionKind::getMergeableConst(); break;
   1016     }
   1017     }
   1018 
   1019     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
   1020 
   1021     // The number of sections are small, just do a linear search from the
   1022     // last section to the first.
   1023     bool Found = false;
   1024     unsigned SecIdx = CPSections.size();
   1025     while (SecIdx != 0) {
   1026       if (CPSections[--SecIdx].S == S) {
   1027         Found = true;
   1028         break;
   1029       }
   1030     }
   1031     if (!Found) {
   1032       SecIdx = CPSections.size();
   1033       CPSections.push_back(SectionCPs(S, Align));
   1034     }
   1035 
   1036     if (Align > CPSections[SecIdx].Alignment)
   1037       CPSections[SecIdx].Alignment = Align;
   1038     CPSections[SecIdx].CPEs.push_back(i);
   1039   }
   1040 
   1041   // Now print stuff into the calculated sections.
   1042   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1043     OutStreamer.SwitchSection(CPSections[i].S);
   1044     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1045 
   1046     unsigned Offset = 0;
   1047     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1048       unsigned CPI = CPSections[i].CPEs[j];
   1049       MachineConstantPoolEntry CPE = CP[CPI];
   1050 
   1051       // Emit inter-object padding for alignment.
   1052       unsigned AlignMask = CPE.getAlignment() - 1;
   1053       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1054       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
   1055 
   1056       Type *Ty = CPE.getType();
   1057       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
   1058       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1059 
   1060       if (CPE.isMachineConstantPoolEntry())
   1061         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1062       else
   1063         EmitGlobalConstant(CPE.Val.ConstVal);
   1064     }
   1065   }
   1066 }
   1067 
   1068 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1069 /// by the current function to the current output stream.
   1070 ///
   1071 void AsmPrinter::EmitJumpTableInfo() {
   1072   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1073   if (MJTI == 0) return;
   1074   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1075   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1076   if (JT.empty()) return;
   1077 
   1078   // Pick the directive to use to print the jump table entries, and switch to
   1079   // the appropriate section.
   1080   const Function *F = MF->getFunction();
   1081   bool JTInDiffSection = false;
   1082   if (// In PIC mode, we need to emit the jump table to the same section as the
   1083       // function body itself, otherwise the label differences won't make sense.
   1084       // FIXME: Need a better predicate for this: what about custom entries?
   1085       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1086       // We should also do if the section name is NULL or function is declared
   1087       // in discardable section
   1088       // FIXME: this isn't the right predicate, should be based on the MCSection
   1089       // for the function.
   1090       F->isWeakForLinker()) {
   1091     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1092   } else {
   1093     // Otherwise, drop it in the readonly section.
   1094     const MCSection *ReadOnlySection =
   1095       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1096     OutStreamer.SwitchSection(ReadOnlySection);
   1097     JTInDiffSection = true;
   1098   }
   1099 
   1100   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
   1101 
   1102   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1103     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1104 
   1105     // If this jump table was deleted, ignore it.
   1106     if (JTBBs.empty()) continue;
   1107 
   1108     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1109     // .set directive for each unique entry.  This reduces the number of
   1110     // relocations the assembler will generate for the jump table.
   1111     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1112         MAI->hasSetDirective()) {
   1113       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1114       const TargetLowering *TLI = TM.getTargetLowering();
   1115       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1116       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1117         const MachineBasicBlock *MBB = JTBBs[ii];
   1118         if (!EmittedSets.insert(MBB)) continue;
   1119 
   1120         // .set LJTSet, LBB32-base
   1121         const MCExpr *LHS =
   1122           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1123         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1124                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1125       }
   1126     }
   1127 
   1128     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1129     // before each jump table.  The first label is never referenced, but tells
   1130     // the assembler and linker the extents of the jump table object.  The
   1131     // second label is actually referenced by the code.
   1132     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1133       // FIXME: This doesn't have to have any specific name, just any randomly
   1134       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1135       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1136 
   1137     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1138 
   1139     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1140       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1141   }
   1142 }
   1143 
   1144 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1145 /// current stream.
   1146 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1147                                     const MachineBasicBlock *MBB,
   1148                                     unsigned UID) const {
   1149   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1150   const MCExpr *Value = 0;
   1151   switch (MJTI->getEntryKind()) {
   1152   case MachineJumpTableInfo::EK_Inline:
   1153     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1154   case MachineJumpTableInfo::EK_Custom32:
   1155     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1156                                                               OutContext);
   1157     break;
   1158   case MachineJumpTableInfo::EK_BlockAddress:
   1159     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1160     //     .word LBB123
   1161     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1162     break;
   1163   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1164     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1165     // with a relocation as gp-relative, e.g.:
   1166     //     .gprel32 LBB123
   1167     MCSymbol *MBBSym = MBB->getSymbol();
   1168     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1169     return;
   1170   }
   1171 
   1172   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1173     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1174     // with a relocation as gp-relative, e.g.:
   1175     //     .gpdword LBB123
   1176     MCSymbol *MBBSym = MBB->getSymbol();
   1177     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1178     return;
   1179   }
   1180 
   1181   case MachineJumpTableInfo::EK_LabelDifference32: {
   1182     // EK_LabelDifference32 - Each entry is the address of the block minus
   1183     // the address of the jump table.  This is used for PIC jump tables where
   1184     // gprel32 is not supported.  e.g.:
   1185     //      .word LBB123 - LJTI1_2
   1186     // If the .set directive is supported, this is emitted as:
   1187     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1188     //      .word L4_5_set_123
   1189 
   1190     // If we have emitted set directives for the jump table entries, print
   1191     // them rather than the entries themselves.  If we're emitting PIC, then
   1192     // emit the table entries as differences between two text section labels.
   1193     if (MAI->hasSetDirective()) {
   1194       // If we used .set, reference the .set's symbol.
   1195       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1196                                       OutContext);
   1197       break;
   1198     }
   1199     // Otherwise, use the difference as the jump table entry.
   1200     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1201     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1202     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1203     break;
   1204   }
   1205   }
   1206 
   1207   assert(Value && "Unknown entry kind!");
   1208 
   1209   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
   1210   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
   1211 }
   1212 
   1213 
   1214 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1215 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1216 /// do nothing and return false.
   1217 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1218   if (GV->getName() == "llvm.used") {
   1219     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1220       EmitLLVMUsedList(GV->getInitializer());
   1221     return true;
   1222   }
   1223 
   1224   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1225   if (GV->getSection() == "llvm.metadata" ||
   1226       GV->hasAvailableExternallyLinkage())
   1227     return true;
   1228 
   1229   if (!GV->hasAppendingLinkage()) return false;
   1230 
   1231   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1232 
   1233   if (GV->getName() == "llvm.global_ctors") {
   1234     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1235 
   1236     if (TM.getRelocationModel() == Reloc::Static &&
   1237         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1238       StringRef Sym(".constructors_used");
   1239       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1240                                       MCSA_Reference);
   1241     }
   1242     return true;
   1243   }
   1244 
   1245   if (GV->getName() == "llvm.global_dtors") {
   1246     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1247 
   1248     if (TM.getRelocationModel() == Reloc::Static &&
   1249         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1250       StringRef Sym(".destructors_used");
   1251       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1252                                       MCSA_Reference);
   1253     }
   1254     return true;
   1255   }
   1256 
   1257   return false;
   1258 }
   1259 
   1260 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1261 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1262 /// is true, as being used with this directive.
   1263 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
   1264   // Should be an array of 'i8*'.
   1265   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1266   if (InitList == 0) return;
   1267 
   1268   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1269     const GlobalValue *GV =
   1270       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1271     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1272       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1273   }
   1274 }
   1275 
   1276 typedef std::pair<unsigned, Constant*> Structor;
   1277 
   1278 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1279   return lhs.first < rhs.first;
   1280 }
   1281 
   1282 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1283 /// priority.
   1284 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1285   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1286   // init priority.
   1287   if (!isa<ConstantArray>(List)) return;
   1288 
   1289   // Sanity check the structors list.
   1290   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1291   if (!InitList) return; // Not an array!
   1292   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1293   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1294   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1295       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1296 
   1297   // Gather the structors in a form that's convenient for sorting by priority.
   1298   SmallVector<Structor, 8> Structors;
   1299   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1300     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1301     if (!CS) continue; // Malformed.
   1302     if (CS->getOperand(1)->isNullValue())
   1303       break;  // Found a null terminator, skip the rest.
   1304     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1305     if (!Priority) continue; // Malformed.
   1306     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1307                                        CS->getOperand(1)));
   1308   }
   1309 
   1310   // Emit the function pointers in the target-specific order
   1311   const TargetData *TD = TM.getTargetData();
   1312   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1313   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
   1314   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
   1315     const MCSection *OutputSection =
   1316       (isCtor ?
   1317        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
   1318        getObjFileLowering().getStaticDtorSection(Structors[i].first));
   1319     OutStreamer.SwitchSection(OutputSection);
   1320     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1321       EmitAlignment(Align);
   1322     EmitXXStructor(Structors[i].second);
   1323   }
   1324 }
   1325 
   1326 //===--------------------------------------------------------------------===//
   1327 // Emission and print routines
   1328 //
   1329 
   1330 /// EmitInt8 - Emit a byte directive and value.
   1331 ///
   1332 void AsmPrinter::EmitInt8(int Value) const {
   1333   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
   1334 }
   1335 
   1336 /// EmitInt16 - Emit a short directive and value.
   1337 ///
   1338 void AsmPrinter::EmitInt16(int Value) const {
   1339   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
   1340 }
   1341 
   1342 /// EmitInt32 - Emit a long directive and value.
   1343 ///
   1344 void AsmPrinter::EmitInt32(int Value) const {
   1345   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
   1346 }
   1347 
   1348 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1349 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1350 /// labels.  This implicitly uses .set if it is available.
   1351 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1352                                      unsigned Size) const {
   1353   // Get the Hi-Lo expression.
   1354   const MCExpr *Diff =
   1355     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1356                             MCSymbolRefExpr::Create(Lo, OutContext),
   1357                             OutContext);
   1358 
   1359   if (!MAI->hasSetDirective()) {
   1360     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
   1361     return;
   1362   }
   1363 
   1364   // Otherwise, emit with .set (aka assignment).
   1365   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1366   OutStreamer.EmitAssignment(SetLabel, Diff);
   1367   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
   1368 }
   1369 
   1370 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1371 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1372 /// specify the labels.  This implicitly uses .set if it is available.
   1373 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1374                                            const MCSymbol *Lo, unsigned Size)
   1375   const {
   1376 
   1377   // Emit Hi+Offset - Lo
   1378   // Get the Hi+Offset expression.
   1379   const MCExpr *Plus =
   1380     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1381                             MCConstantExpr::Create(Offset, OutContext),
   1382                             OutContext);
   1383 
   1384   // Get the Hi+Offset-Lo expression.
   1385   const MCExpr *Diff =
   1386     MCBinaryExpr::CreateSub(Plus,
   1387                             MCSymbolRefExpr::Create(Lo, OutContext),
   1388                             OutContext);
   1389 
   1390   if (!MAI->hasSetDirective())
   1391     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
   1392   else {
   1393     // Otherwise, emit with .set (aka assignment).
   1394     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1395     OutStreamer.EmitAssignment(SetLabel, Diff);
   1396     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
   1397   }
   1398 }
   1399 
   1400 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1401 /// where the size in bytes of the directive is specified by Size and Label
   1402 /// specifies the label.  This implicitly uses .set if it is available.
   1403 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1404                                       unsigned Size)
   1405   const {
   1406 
   1407   // Emit Label+Offset (or just Label if Offset is zero)
   1408   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
   1409   if (Offset)
   1410     Expr = MCBinaryExpr::CreateAdd(Expr,
   1411                                    MCConstantExpr::Create(Offset, OutContext),
   1412                                    OutContext);
   1413 
   1414   OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
   1415 }
   1416 
   1417 
   1418 //===----------------------------------------------------------------------===//
   1419 
   1420 // EmitAlignment - Emit an alignment directive to the specified power of
   1421 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1422 // byte alignment.  If a global value is specified, and if that global has
   1423 // an explicit alignment requested, it will override the alignment request
   1424 // if required for correctness.
   1425 //
   1426 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1427   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
   1428 
   1429   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1430 
   1431   if (getCurrentSection()->getKind().isText())
   1432     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1433   else
   1434     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1435 }
   1436 
   1437 //===----------------------------------------------------------------------===//
   1438 // Constant emission.
   1439 //===----------------------------------------------------------------------===//
   1440 
   1441 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1442 ///
   1443 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
   1444   MCContext &Ctx = AP.OutContext;
   1445 
   1446   if (CV->isNullValue() || isa<UndefValue>(CV))
   1447     return MCConstantExpr::Create(0, Ctx);
   1448 
   1449   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1450     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1451 
   1452   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1453     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1454 
   1455   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1456     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1457 
   1458   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1459   if (CE == 0) {
   1460     llvm_unreachable("Unknown constant value to lower!");
   1461   }
   1462 
   1463   switch (CE->getOpcode()) {
   1464   default:
   1465     // If the code isn't optimized, there may be outstanding folding
   1466     // opportunities. Attempt to fold the expression using TargetData as a
   1467     // last resort before giving up.
   1468     if (Constant *C =
   1469           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
   1470       if (C != CE)
   1471         return lowerConstant(C, AP);
   1472 
   1473     // Otherwise report the problem to the user.
   1474     {
   1475       std::string S;
   1476       raw_string_ostream OS(S);
   1477       OS << "Unsupported expression in static initializer: ";
   1478       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1479                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1480       report_fatal_error(OS.str());
   1481     }
   1482   case Instruction::GetElementPtr: {
   1483     const TargetData &TD = *AP.TM.getTargetData();
   1484     // Generate a symbolic expression for the byte address
   1485     const Constant *PtrVal = CE->getOperand(0);
   1486     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
   1487     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
   1488 
   1489     const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
   1490     if (Offset == 0)
   1491       return Base;
   1492 
   1493     // Truncate/sext the offset to the pointer size.
   1494     unsigned Width = TD.getPointerSizeInBits();
   1495     if (Width < 64)
   1496       Offset = SignExtend64(Offset, Width);
   1497 
   1498     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1499                                    Ctx);
   1500   }
   1501 
   1502   case Instruction::Trunc:
   1503     // We emit the value and depend on the assembler to truncate the generated
   1504     // expression properly.  This is important for differences between
   1505     // blockaddress labels.  Since the two labels are in the same function, it
   1506     // is reasonable to treat their delta as a 32-bit value.
   1507     // FALL THROUGH.
   1508   case Instruction::BitCast:
   1509     return lowerConstant(CE->getOperand(0), AP);
   1510 
   1511   case Instruction::IntToPtr: {
   1512     const TargetData &TD = *AP.TM.getTargetData();
   1513     // Handle casts to pointers by changing them into casts to the appropriate
   1514     // integer type.  This promotes constant folding and simplifies this code.
   1515     Constant *Op = CE->getOperand(0);
   1516     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1517                                       false/*ZExt*/);
   1518     return lowerConstant(Op, AP);
   1519   }
   1520 
   1521   case Instruction::PtrToInt: {
   1522     const TargetData &TD = *AP.TM.getTargetData();
   1523     // Support only foldable casts to/from pointers that can be eliminated by
   1524     // changing the pointer to the appropriately sized integer type.
   1525     Constant *Op = CE->getOperand(0);
   1526     Type *Ty = CE->getType();
   1527 
   1528     const MCExpr *OpExpr = lowerConstant(Op, AP);
   1529 
   1530     // We can emit the pointer value into this slot if the slot is an
   1531     // integer slot equal to the size of the pointer.
   1532     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1533       return OpExpr;
   1534 
   1535     // Otherwise the pointer is smaller than the resultant integer, mask off
   1536     // the high bits so we are sure to get a proper truncation if the input is
   1537     // a constant expr.
   1538     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1539     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1540     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1541   }
   1542 
   1543   // The MC library also has a right-shift operator, but it isn't consistently
   1544   // signed or unsigned between different targets.
   1545   case Instruction::Add:
   1546   case Instruction::Sub:
   1547   case Instruction::Mul:
   1548   case Instruction::SDiv:
   1549   case Instruction::SRem:
   1550   case Instruction::Shl:
   1551   case Instruction::And:
   1552   case Instruction::Or:
   1553   case Instruction::Xor: {
   1554     const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
   1555     const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
   1556     switch (CE->getOpcode()) {
   1557     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1558     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1559     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1560     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1561     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1562     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1563     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1564     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1565     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1566     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1567     }
   1568   }
   1569   }
   1570 }
   1571 
   1572 static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
   1573                                    AsmPrinter &AP);
   1574 
   1575 /// isRepeatedByteSequence - Determine whether the given value is
   1576 /// composed of a repeated sequence of identical bytes and return the
   1577 /// byte value.  If it is not a repeated sequence, return -1.
   1578 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1579   StringRef Data = V->getRawDataValues();
   1580   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1581   char C = Data[0];
   1582   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1583     if (Data[i] != C) return -1;
   1584   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1585 }
   1586 
   1587 
   1588 /// isRepeatedByteSequence - Determine whether the given value is
   1589 /// composed of a repeated sequence of identical bytes and return the
   1590 /// byte value.  If it is not a repeated sequence, return -1.
   1591 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1592 
   1593   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1594     if (CI->getBitWidth() > 64) return -1;
   1595 
   1596     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
   1597     uint64_t Value = CI->getZExtValue();
   1598 
   1599     // Make sure the constant is at least 8 bits long and has a power
   1600     // of 2 bit width.  This guarantees the constant bit width is
   1601     // always a multiple of 8 bits, avoiding issues with padding out
   1602     // to Size and other such corner cases.
   1603     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1604 
   1605     uint8_t Byte = static_cast<uint8_t>(Value);
   1606 
   1607     for (unsigned i = 1; i < Size; ++i) {
   1608       Value >>= 8;
   1609       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1610     }
   1611     return Byte;
   1612   }
   1613   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1614     // Make sure all array elements are sequences of the same repeated
   1615     // byte.
   1616     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1617     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1618     if (Byte == -1) return -1;
   1619 
   1620     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1621       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1622       if (ThisByte == -1) return -1;
   1623       if (Byte != ThisByte) return -1;
   1624     }
   1625     return Byte;
   1626   }
   1627 
   1628   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1629     return isRepeatedByteSequence(CDS);
   1630 
   1631   return -1;
   1632 }
   1633 
   1634 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1635                                              unsigned AddrSpace,AsmPrinter &AP){
   1636 
   1637   // See if we can aggregate this into a .fill, if so, emit it as such.
   1638   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1639   if (Value != -1) {
   1640     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
   1641     // Don't emit a 1-byte object as a .fill.
   1642     if (Bytes > 1)
   1643       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1644   }
   1645 
   1646   // If this can be emitted with .ascii/.asciz, emit it as such.
   1647   if (CDS->isString())
   1648     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
   1649 
   1650   // Otherwise, emit the values in successive locations.
   1651   unsigned ElementByteSize = CDS->getElementByteSize();
   1652   if (isa<IntegerType>(CDS->getElementType())) {
   1653     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1654       if (AP.isVerbose())
   1655         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1656                                                 CDS->getElementAsInteger(i));
   1657       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1658                                   ElementByteSize, AddrSpace);
   1659     }
   1660   } else if (ElementByteSize == 4) {
   1661     // FP Constants are printed as integer constants to avoid losing
   1662     // precision.
   1663     assert(CDS->getElementType()->isFloatTy());
   1664     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1665       union {
   1666         float F;
   1667         uint32_t I;
   1668       };
   1669 
   1670       F = CDS->getElementAsFloat(i);
   1671       if (AP.isVerbose())
   1672         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1673       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
   1674     }
   1675   } else {
   1676     assert(CDS->getElementType()->isDoubleTy());
   1677     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1678       union {
   1679         double F;
   1680         uint64_t I;
   1681       };
   1682 
   1683       F = CDS->getElementAsDouble(i);
   1684       if (AP.isVerbose())
   1685         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1686       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
   1687     }
   1688   }
   1689 
   1690   const TargetData &TD = *AP.TM.getTargetData();
   1691   unsigned Size = TD.getTypeAllocSize(CDS->getType());
   1692   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
   1693                         CDS->getNumElements();
   1694   if (unsigned Padding = Size - EmittedSize)
   1695     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1696 
   1697 }
   1698 
   1699 static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
   1700                                     AsmPrinter &AP) {
   1701   // See if we can aggregate some values.  Make sure it can be
   1702   // represented as a series of bytes of the constant value.
   1703   int Value = isRepeatedByteSequence(CA, AP.TM);
   1704 
   1705   if (Value != -1) {
   1706     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
   1707     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1708   }
   1709   else {
   1710     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1711       emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
   1712   }
   1713 }
   1714 
   1715 static void emitGlobalConstantVector(const ConstantVector *CV,
   1716                                      unsigned AddrSpace, AsmPrinter &AP) {
   1717   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1718     emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
   1719 
   1720   const TargetData &TD = *AP.TM.getTargetData();
   1721   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1722   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1723                          CV->getType()->getNumElements();
   1724   if (unsigned Padding = Size - EmittedSize)
   1725     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1726 }
   1727 
   1728 static void emitGlobalConstantStruct(const ConstantStruct *CS,
   1729                                      unsigned AddrSpace, AsmPrinter &AP) {
   1730   // Print the fields in successive locations. Pad to align if needed!
   1731   const TargetData *TD = AP.TM.getTargetData();
   1732   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1733   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1734   uint64_t SizeSoFar = 0;
   1735   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1736     const Constant *Field = CS->getOperand(i);
   1737 
   1738     // Check if padding is needed and insert one or more 0s.
   1739     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1740     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1741                         - Layout->getElementOffset(i)) - FieldSize;
   1742     SizeSoFar += FieldSize + PadSize;
   1743 
   1744     // Now print the actual field value.
   1745     emitGlobalConstantImpl(Field, AddrSpace, AP);
   1746 
   1747     // Insert padding - this may include padding to increase the size of the
   1748     // current field up to the ABI size (if the struct is not packed) as well
   1749     // as padding to ensure that the next field starts at the right offset.
   1750     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
   1751   }
   1752   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1753          "Layout of constant struct may be incorrect!");
   1754 }
   1755 
   1756 static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
   1757                                  AsmPrinter &AP) {
   1758   if (CFP->getType()->isHalfTy()) {
   1759     if (AP.isVerbose()) {
   1760       SmallString<10> Str;
   1761       CFP->getValueAPF().toString(Str);
   1762       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
   1763     }
   1764     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1765     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
   1766     return;
   1767   }
   1768 
   1769   if (CFP->getType()->isFloatTy()) {
   1770     if (AP.isVerbose()) {
   1771       float Val = CFP->getValueAPF().convertToFloat();
   1772       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1773       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
   1774                                     << " (" << format("0x%x", IntVal) << ")\n";
   1775     }
   1776     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1777     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
   1778     return;
   1779   }
   1780 
   1781   // FP Constants are printed as integer constants to avoid losing
   1782   // precision.
   1783   if (CFP->getType()->isDoubleTy()) {
   1784     if (AP.isVerbose()) {
   1785       double Val = CFP->getValueAPF().convertToDouble();
   1786       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1787       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
   1788                                     << " (" << format("0x%lx", IntVal) << ")\n";
   1789     }
   1790 
   1791     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1792     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1793     return;
   1794   }
   1795 
   1796   if (CFP->getType()->isX86_FP80Ty()) {
   1797     // all long double variants are printed as hex
   1798     // API needed to prevent premature destruction
   1799     APInt API = CFP->getValueAPF().bitcastToAPInt();
   1800     const uint64_t *p = API.getRawData();
   1801     if (AP.isVerbose()) {
   1802       // Convert to double so we can print the approximate val as a comment.
   1803       APFloat DoubleVal = CFP->getValueAPF();
   1804       bool ignored;
   1805       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
   1806                         &ignored);
   1807       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
   1808         << DoubleVal.convertToDouble() << '\n';
   1809     }
   1810 
   1811     if (AP.TM.getTargetData()->isBigEndian()) {
   1812       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1813       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1814     } else {
   1815       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1816       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1817     }
   1818 
   1819     // Emit the tail padding for the long double.
   1820     const TargetData &TD = *AP.TM.getTargetData();
   1821     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1822                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
   1823     return;
   1824   }
   1825 
   1826   assert(CFP->getType()->isPPC_FP128Ty() &&
   1827          "Floating point constant type not handled");
   1828   // All long double variants are printed as hex
   1829   // API needed to prevent premature destruction.
   1830   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1831   const uint64_t *p = API.getRawData();
   1832   if (AP.TM.getTargetData()->isBigEndian()) {
   1833     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1834     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1835   } else {
   1836     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1837     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1838   }
   1839 }
   1840 
   1841 static void emitGlobalConstantLargeInt(const ConstantInt *CI,
   1842                                        unsigned AddrSpace, AsmPrinter &AP) {
   1843   const TargetData *TD = AP.TM.getTargetData();
   1844   unsigned BitWidth = CI->getBitWidth();
   1845   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
   1846 
   1847   // We don't expect assemblers to support integer data directives
   1848   // for more than 64 bits, so we emit the data in at most 64-bit
   1849   // quantities at a time.
   1850   const uint64_t *RawData = CI->getValue().getRawData();
   1851   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1852     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1853     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1854   }
   1855 }
   1856 
   1857 static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
   1858                                    AsmPrinter &AP) {
   1859   const TargetData *TD = AP.TM.getTargetData();
   1860   uint64_t Size = TD->getTypeAllocSize(CV->getType());
   1861   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   1862     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
   1863 
   1864   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1865     switch (Size) {
   1866     case 1:
   1867     case 2:
   1868     case 4:
   1869     case 8:
   1870       if (AP.isVerbose())
   1871         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1872                                                 CI->getZExtValue());
   1873       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
   1874       return;
   1875     default:
   1876       emitGlobalConstantLargeInt(CI, AddrSpace, AP);
   1877       return;
   1878     }
   1879   }
   1880 
   1881   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1882     return emitGlobalConstantFP(CFP, AddrSpace, AP);
   1883 
   1884   if (isa<ConstantPointerNull>(CV)) {
   1885     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
   1886     return;
   1887   }
   1888 
   1889   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   1890     return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
   1891 
   1892   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1893     return emitGlobalConstantArray(CVA, AddrSpace, AP);
   1894 
   1895   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1896     return emitGlobalConstantStruct(CVS, AddrSpace, AP);
   1897 
   1898   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   1899     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   1900     // vectors).
   1901     if (CE->getOpcode() == Instruction::BitCast)
   1902       return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
   1903 
   1904     if (Size > 8) {
   1905       // If the constant expression's size is greater than 64-bits, then we have
   1906       // to emit the value in chunks. Try to constant fold the value and emit it
   1907       // that way.
   1908       Constant *New = ConstantFoldConstantExpression(CE, TD);
   1909       if (New && New != CE)
   1910         return emitGlobalConstantImpl(New, AddrSpace, AP);
   1911     }
   1912   }
   1913 
   1914   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1915     return emitGlobalConstantVector(V, AddrSpace, AP);
   1916 
   1917   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1918   // thread the streamer with EmitValue.
   1919   AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
   1920 }
   1921 
   1922 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1923 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
   1924   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
   1925   if (Size)
   1926     emitGlobalConstantImpl(CV, AddrSpace, *this);
   1927   else if (MAI->hasSubsectionsViaSymbols()) {
   1928     // If the global has zero size, emit a single byte so that two labels don't
   1929     // look like they are at the same location.
   1930     OutStreamer.EmitIntValue(0, 1, AddrSpace);
   1931   }
   1932 }
   1933 
   1934 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1935   // Target doesn't support this yet!
   1936   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1937 }
   1938 
   1939 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1940   if (Offset > 0)
   1941     OS << '+' << Offset;
   1942   else if (Offset < 0)
   1943     OS << Offset;
   1944 }
   1945 
   1946 //===----------------------------------------------------------------------===//
   1947 // Symbol Lowering Routines.
   1948 //===----------------------------------------------------------------------===//
   1949 
   1950 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1951 /// temporary label with the specified stem and unique ID.
   1952 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1953   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1954                                       Name + Twine(ID));
   1955 }
   1956 
   1957 /// GetTempSymbol - Return an assembler temporary label with the specified
   1958 /// stem.
   1959 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1960   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1961                                       Name);
   1962 }
   1963 
   1964 
   1965 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1966   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1967 }
   1968 
   1969 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1970   return MMI->getAddrLabelSymbol(BB);
   1971 }
   1972 
   1973 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1974 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1975   return OutContext.GetOrCreateSymbol
   1976     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1977      + "_" + Twine(CPID));
   1978 }
   1979 
   1980 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1981 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1982   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1983 }
   1984 
   1985 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1986 /// FIXME: privatize to AsmPrinter.
   1987 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   1988   return OutContext.GetOrCreateSymbol
   1989   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   1990    Twine(UID) + "_set_" + Twine(MBBID));
   1991 }
   1992 
   1993 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   1994 /// global value name as its base, with the specified suffix, and where the
   1995 /// symbol is forced to have private linkage if ForcePrivate is true.
   1996 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   1997                                                    StringRef Suffix,
   1998                                                    bool ForcePrivate) const {
   1999   SmallString<60> NameStr;
   2000   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   2001   NameStr.append(Suffix.begin(), Suffix.end());
   2002   return OutContext.GetOrCreateSymbol(NameStr.str());
   2003 }
   2004 
   2005 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   2006 /// ExternalSymbol.
   2007 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2008   SmallString<60> NameStr;
   2009   Mang->getNameWithPrefix(NameStr, Sym);
   2010   return OutContext.GetOrCreateSymbol(NameStr.str());
   2011 }
   2012 
   2013 
   2014 
   2015 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2016 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2017                                    unsigned FunctionNumber) {
   2018   if (Loop == 0) return;
   2019   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2020   OS.indent(Loop->getLoopDepth()*2)
   2021     << "Parent Loop BB" << FunctionNumber << "_"
   2022     << Loop->getHeader()->getNumber()
   2023     << " Depth=" << Loop->getLoopDepth() << '\n';
   2024 }
   2025 
   2026 
   2027 /// PrintChildLoopComment - Print comments about child loops within
   2028 /// the loop for this basic block, with nesting.
   2029 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2030                                   unsigned FunctionNumber) {
   2031   // Add child loop information
   2032   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   2033     OS.indent((*CL)->getLoopDepth()*2)
   2034       << "Child Loop BB" << FunctionNumber << "_"
   2035       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   2036       << '\n';
   2037     PrintChildLoopComment(OS, *CL, FunctionNumber);
   2038   }
   2039 }
   2040 
   2041 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2042 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2043                                        const MachineLoopInfo *LI,
   2044                                        const AsmPrinter &AP) {
   2045   // Add loop depth information
   2046   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2047   if (Loop == 0) return;
   2048 
   2049   MachineBasicBlock *Header = Loop->getHeader();
   2050   assert(Header && "No header for loop");
   2051 
   2052   // If this block is not a loop header, just print out what is the loop header
   2053   // and return.
   2054   if (Header != &MBB) {
   2055     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2056                               Twine(AP.getFunctionNumber())+"_" +
   2057                               Twine(Loop->getHeader()->getNumber())+
   2058                               " Depth="+Twine(Loop->getLoopDepth()));
   2059     return;
   2060   }
   2061 
   2062   // Otherwise, it is a loop header.  Print out information about child and
   2063   // parent loops.
   2064   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2065 
   2066   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2067 
   2068   OS << "=>";
   2069   OS.indent(Loop->getLoopDepth()*2-2);
   2070 
   2071   OS << "This ";
   2072   if (Loop->empty())
   2073     OS << "Inner ";
   2074   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2075 
   2076   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2077 }
   2078 
   2079 
   2080 /// EmitBasicBlockStart - This method prints the label for the specified
   2081 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2082 /// it if appropriate.
   2083 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   2084   // Emit an alignment directive for this block, if needed.
   2085   if (unsigned Align = MBB->getAlignment())
   2086     EmitAlignment(Align);
   2087 
   2088   // If the block has its address taken, emit any labels that were used to
   2089   // reference the block.  It is possible that there is more than one label
   2090   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2091   // the references were generated.
   2092   if (MBB->hasAddressTaken()) {
   2093     const BasicBlock *BB = MBB->getBasicBlock();
   2094     if (isVerbose())
   2095       OutStreamer.AddComment("Block address taken");
   2096 
   2097     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   2098 
   2099     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   2100       OutStreamer.EmitLabel(Syms[i]);
   2101   }
   2102 
   2103   // Print some verbose block comments.
   2104   if (isVerbose()) {
   2105     if (const BasicBlock *BB = MBB->getBasicBlock())
   2106       if (BB->hasName())
   2107         OutStreamer.AddComment("%" + BB->getName());
   2108     emitBasicBlockLoopComments(*MBB, LI, *this);
   2109   }
   2110 
   2111   // Print the main label for the block.
   2112   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   2113     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   2114       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2115       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   2116                               Twine(MBB->getNumber()) + ":");
   2117     }
   2118   } else {
   2119     OutStreamer.EmitLabel(MBB->getSymbol());
   2120   }
   2121 }
   2122 
   2123 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2124                                 bool IsDefinition) const {
   2125   MCSymbolAttr Attr = MCSA_Invalid;
   2126 
   2127   switch (Visibility) {
   2128   default: break;
   2129   case GlobalValue::HiddenVisibility:
   2130     if (IsDefinition)
   2131       Attr = MAI->getHiddenVisibilityAttr();
   2132     else
   2133       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2134     break;
   2135   case GlobalValue::ProtectedVisibility:
   2136     Attr = MAI->getProtectedVisibilityAttr();
   2137     break;
   2138   }
   2139 
   2140   if (Attr != MCSA_Invalid)
   2141     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2142 }
   2143 
   2144 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2145 /// exactly one predecessor and the control transfer mechanism between
   2146 /// the predecessor and this block is a fall-through.
   2147 bool AsmPrinter::
   2148 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2149   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2150   // then nothing falls through to it.
   2151   if (MBB->isLandingPad() || MBB->pred_empty())
   2152     return false;
   2153 
   2154   // If there isn't exactly one predecessor, it can't be a fall through.
   2155   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2156   ++PI2;
   2157   if (PI2 != MBB->pred_end())
   2158     return false;
   2159 
   2160   // The predecessor has to be immediately before this block.
   2161   MachineBasicBlock *Pred = *PI;
   2162 
   2163   if (!Pred->isLayoutSuccessor(MBB))
   2164     return false;
   2165 
   2166   // If the block is completely empty, then it definitely does fall through.
   2167   if (Pred->empty())
   2168     return true;
   2169 
   2170   // Check the terminators in the previous blocks
   2171   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2172          IE = Pred->end(); II != IE; ++II) {
   2173     MachineInstr &MI = *II;
   2174 
   2175     // If it is not a simple branch, we are in a table somewhere.
   2176     if (!MI.isBranch() || MI.isIndirectBranch())
   2177       return false;
   2178 
   2179     // If we are the operands of one of the branches, this is not
   2180     // a fall through.
   2181     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2182            OE = MI.operands_end(); OI != OE; ++OI) {
   2183       const MachineOperand& OP = *OI;
   2184       if (OP.isJTI())
   2185         return false;
   2186       if (OP.isMBB() && OP.getMBB() == MBB)
   2187         return false;
   2188     }
   2189   }
   2190 
   2191   return true;
   2192 }
   2193 
   2194 
   2195 
   2196 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2197   if (!S->usesMetadata())
   2198     return 0;
   2199 
   2200   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2201   gcp_map_type::iterator GCPI = GCMap.find(S);
   2202   if (GCPI != GCMap.end())
   2203     return GCPI->second;
   2204 
   2205   const char *Name = S->getName().c_str();
   2206 
   2207   for (GCMetadataPrinterRegistry::iterator
   2208          I = GCMetadataPrinterRegistry::begin(),
   2209          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2210     if (strcmp(Name, I->getName()) == 0) {
   2211       GCMetadataPrinter *GMP = I->instantiate();
   2212       GMP->S = S;
   2213       GCMap.insert(std::make_pair(S, GMP));
   2214       return GMP;
   2215     }
   2216 
   2217   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2218 }
   2219