Home | History | Annotate | Download | only in CodeGen
      1 //===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ScheduleDAG class, which is used as the common
     11 // base class for instruction schedulers. This encapsulates the scheduling DAG,
     12 // which is shared between SelectionDAG and MachineInstr scheduling.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_SCHEDULEDAG_H
     17 #define LLVM_CODEGEN_SCHEDULEDAG_H
     18 
     19 #include "llvm/CodeGen/MachineBasicBlock.h"
     20 #include "llvm/Target/TargetLowering.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/BitVector.h"
     23 #include "llvm/ADT/GraphTraits.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/ADT/PointerIntPair.h"
     26 
     27 namespace llvm {
     28   class AliasAnalysis;
     29   class SUnit;
     30   class MachineConstantPool;
     31   class MachineFunction;
     32   class MachineRegisterInfo;
     33   class MachineInstr;
     34   class TargetRegisterInfo;
     35   class ScheduleDAG;
     36   class SDNode;
     37   class TargetInstrInfo;
     38   class MCInstrDesc;
     39   class TargetMachine;
     40   class TargetRegisterClass;
     41   template<class Graph> class GraphWriter;
     42 
     43   /// SDep - Scheduling dependency. This represents one direction of an
     44   /// edge in the scheduling DAG.
     45   class SDep {
     46   public:
     47     /// Kind - These are the different kinds of scheduling dependencies.
     48     enum Kind {
     49       Data,        ///< Regular data dependence (aka true-dependence).
     50       Anti,        ///< A register anti-dependedence (aka WAR).
     51       Output,      ///< A register output-dependence (aka WAW).
     52       Order        ///< Any other ordering dependency.
     53     };
     54 
     55   private:
     56     /// Dep - A pointer to the depending/depended-on SUnit, and an enum
     57     /// indicating the kind of the dependency.
     58     PointerIntPair<SUnit *, 2, Kind> Dep;
     59 
     60     /// Contents - A union discriminated by the dependence kind.
     61     union {
     62       /// Reg - For Data, Anti, and Output dependencies, the associated
     63       /// register. For Data dependencies that don't currently have a register
     64       /// assigned, this is set to zero.
     65       unsigned Reg;
     66 
     67       /// Order - Additional information about Order dependencies.
     68       struct {
     69         /// isNormalMemory - True if both sides of the dependence
     70         /// access memory in non-volatile and fully modeled ways.
     71         bool isNormalMemory : 1;
     72 
     73         /// isMustAlias - True if both sides of the dependence are known to
     74         /// access the same memory.
     75         bool isMustAlias : 1;
     76 
     77         /// isArtificial - True if this is an artificial dependency, meaning
     78         /// it is not necessary for program correctness, and may be safely
     79         /// deleted if necessary.
     80         bool isArtificial : 1;
     81       } Order;
     82     } Contents;
     83 
     84     /// Latency - The time associated with this edge. Often this is just
     85     /// the value of the Latency field of the predecessor, however advanced
     86     /// models may provide additional information about specific edges.
     87     unsigned Latency;
     88     /// Record MinLatency seperately from "expected" Latency.
     89     unsigned MinLatency;
     90 
     91   public:
     92     /// SDep - Construct a null SDep. This is only for use by container
     93     /// classes which require default constructors. SUnits may not
     94     /// have null SDep edges.
     95     SDep() : Dep(0, Data) {}
     96 
     97     /// SDep - Construct an SDep with the specified values.
     98     SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
     99          bool isNormalMemory = false, bool isMustAlias = false,
    100          bool isArtificial = false)
    101       : Dep(S, kind), Contents(), Latency(latency), MinLatency(latency) {
    102       switch (kind) {
    103       case Anti:
    104       case Output:
    105         assert(Reg != 0 &&
    106                "SDep::Anti and SDep::Output must use a non-zero Reg!");
    107         // fall through
    108       case Data:
    109         assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
    110         assert(!isArtificial && "isArtificial only applies with SDep::Order!");
    111         Contents.Reg = Reg;
    112         break;
    113       case Order:
    114         assert(Reg == 0 && "Reg given for non-register dependence!");
    115         Contents.Order.isNormalMemory = isNormalMemory;
    116         Contents.Order.isMustAlias = isMustAlias;
    117         Contents.Order.isArtificial = isArtificial;
    118         break;
    119       }
    120     }
    121 
    122     /// Return true if the specified SDep is equivalent except for latency.
    123     bool overlaps(const SDep &Other) const {
    124       if (Dep != Other.Dep) return false;
    125       switch (Dep.getInt()) {
    126       case Data:
    127       case Anti:
    128       case Output:
    129         return Contents.Reg == Other.Contents.Reg;
    130       case Order:
    131         return Contents.Order.isNormalMemory ==
    132                  Other.Contents.Order.isNormalMemory &&
    133                Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
    134                Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
    135       }
    136       llvm_unreachable("Invalid dependency kind!");
    137     }
    138 
    139     bool operator==(const SDep &Other) const {
    140       return overlaps(Other)
    141         && Latency == Other.Latency && MinLatency == Other.MinLatency;
    142     }
    143 
    144     bool operator!=(const SDep &Other) const {
    145       return !operator==(Other);
    146     }
    147 
    148     /// getLatency - Return the latency value for this edge, which roughly
    149     /// means the minimum number of cycles that must elapse between the
    150     /// predecessor and the successor, given that they have this edge
    151     /// between them.
    152     unsigned getLatency() const {
    153       return Latency;
    154     }
    155 
    156     /// setLatency - Set the latency for this edge.
    157     void setLatency(unsigned Lat) {
    158       Latency = Lat;
    159     }
    160 
    161     /// getMinLatency - Return the minimum latency for this edge. Minimum
    162     /// latency is used for scheduling groups, while normal (expected) latency
    163     /// is for instruction cost and critical path.
    164     unsigned getMinLatency() const {
    165       return MinLatency;
    166     }
    167 
    168     /// setMinLatency - Set the minimum latency for this edge.
    169     void setMinLatency(unsigned Lat) {
    170       MinLatency = Lat;
    171     }
    172 
    173     //// getSUnit - Return the SUnit to which this edge points.
    174     SUnit *getSUnit() const {
    175       return Dep.getPointer();
    176     }
    177 
    178     //// setSUnit - Assign the SUnit to which this edge points.
    179     void setSUnit(SUnit *SU) {
    180       Dep.setPointer(SU);
    181     }
    182 
    183     /// getKind - Return an enum value representing the kind of the dependence.
    184     Kind getKind() const {
    185       return Dep.getInt();
    186     }
    187 
    188     /// isCtrl - Shorthand for getKind() != SDep::Data.
    189     bool isCtrl() const {
    190       return getKind() != Data;
    191     }
    192 
    193     /// isNormalMemory - Test if this is an Order dependence between two
    194     /// memory accesses where both sides of the dependence access memory
    195     /// in non-volatile and fully modeled ways.
    196     bool isNormalMemory() const {
    197       return getKind() == Order && Contents.Order.isNormalMemory;
    198     }
    199 
    200     /// isMustAlias - Test if this is an Order dependence that is marked
    201     /// as "must alias", meaning that the SUnits at either end of the edge
    202     /// have a memory dependence on a known memory location.
    203     bool isMustAlias() const {
    204       return getKind() == Order && Contents.Order.isMustAlias;
    205     }
    206 
    207     /// isArtificial - Test if this is an Order dependence that is marked
    208     /// as "artificial", meaning it isn't necessary for correctness.
    209     bool isArtificial() const {
    210       return getKind() == Order && Contents.Order.isArtificial;
    211     }
    212 
    213     /// isAssignedRegDep - Test if this is a Data dependence that is
    214     /// associated with a register.
    215     bool isAssignedRegDep() const {
    216       return getKind() == Data && Contents.Reg != 0;
    217     }
    218 
    219     /// getReg - Return the register associated with this edge. This is
    220     /// only valid on Data, Anti, and Output edges. On Data edges, this
    221     /// value may be zero, meaning there is no associated register.
    222     unsigned getReg() const {
    223       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
    224              "getReg called on non-register dependence edge!");
    225       return Contents.Reg;
    226     }
    227 
    228     /// setReg - Assign the associated register for this edge. This is
    229     /// only valid on Data, Anti, and Output edges. On Anti and Output
    230     /// edges, this value must not be zero. On Data edges, the value may
    231     /// be zero, which would mean that no specific register is associated
    232     /// with this edge.
    233     void setReg(unsigned Reg) {
    234       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
    235              "setReg called on non-register dependence edge!");
    236       assert((getKind() != Anti || Reg != 0) &&
    237              "SDep::Anti edge cannot use the zero register!");
    238       assert((getKind() != Output || Reg != 0) &&
    239              "SDep::Output edge cannot use the zero register!");
    240       Contents.Reg = Reg;
    241     }
    242   };
    243 
    244   template <>
    245   struct isPodLike<SDep> { static const bool value = true; };
    246 
    247   /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
    248   class SUnit {
    249   private:
    250     SDNode *Node;                       // Representative node.
    251     MachineInstr *Instr;                // Alternatively, a MachineInstr.
    252   public:
    253     SUnit *OrigNode;                    // If not this, the node from which
    254                                         // this node was cloned.
    255                                         // (SD scheduling only)
    256 
    257     // Preds/Succs - The SUnits before/after us in the graph.
    258     SmallVector<SDep, 4> Preds;  // All sunit predecessors.
    259     SmallVector<SDep, 4> Succs;  // All sunit successors.
    260 
    261     typedef SmallVector<SDep, 4>::iterator pred_iterator;
    262     typedef SmallVector<SDep, 4>::iterator succ_iterator;
    263     typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
    264     typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
    265 
    266     unsigned NodeNum;                   // Entry # of node in the node vector.
    267     unsigned NodeQueueId;               // Queue id of node.
    268     unsigned NumPreds;                  // # of SDep::Data preds.
    269     unsigned NumSuccs;                  // # of SDep::Data sucss.
    270     unsigned NumPredsLeft;              // # of preds not scheduled.
    271     unsigned NumSuccsLeft;              // # of succs not scheduled.
    272     unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
    273     unsigned short Latency;             // Node latency.
    274     bool isVRegCycle      : 1;          // May use and def the same vreg.
    275     bool isCall           : 1;          // Is a function call.
    276     bool isCallOp         : 1;          // Is a function call operand.
    277     bool isTwoAddress     : 1;          // Is a two-address instruction.
    278     bool isCommutable     : 1;          // Is a commutable instruction.
    279     bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
    280     bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
    281     bool isPending        : 1;          // True once pending.
    282     bool isAvailable      : 1;          // True once available.
    283     bool isScheduled      : 1;          // True once scheduled.
    284     bool isScheduleHigh   : 1;          // True if preferable to schedule high.
    285     bool isScheduleLow    : 1;          // True if preferable to schedule low.
    286     bool isCloned         : 1;          // True if this node has been cloned.
    287     Sched::Preference SchedulingPref;   // Scheduling preference.
    288 
    289   private:
    290     bool isDepthCurrent   : 1;          // True if Depth is current.
    291     bool isHeightCurrent  : 1;          // True if Height is current.
    292     unsigned Depth;                     // Node depth.
    293     unsigned Height;                    // Node height.
    294   public:
    295     unsigned TopReadyCycle; // Cycle relative to start when node is ready.
    296     unsigned BotReadyCycle; // Cycle relative to end when node is ready.
    297 
    298     const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
    299     const TargetRegisterClass *CopySrcRC;
    300 
    301     /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
    302     /// an SDNode and any nodes flagged to it.
    303     SUnit(SDNode *node, unsigned nodenum)
    304       : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
    305         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
    306         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
    307         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
    308         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
    309         isPending(false), isAvailable(false), isScheduled(false),
    310         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
    311         SchedulingPref(Sched::None),
    312         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
    313         TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
    314 
    315     /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
    316     /// a MachineInstr.
    317     SUnit(MachineInstr *instr, unsigned nodenum)
    318       : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
    319         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
    320         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
    321         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
    322         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
    323         isPending(false), isAvailable(false), isScheduled(false),
    324         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
    325         SchedulingPref(Sched::None),
    326         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
    327         TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
    328 
    329     /// SUnit - Construct a placeholder SUnit.
    330     SUnit()
    331       : Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
    332         NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
    333         NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
    334         isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
    335         isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
    336         isPending(false), isAvailable(false), isScheduled(false),
    337         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
    338         SchedulingPref(Sched::None),
    339         isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
    340         TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
    341 
    342     /// setNode - Assign the representative SDNode for this SUnit.
    343     /// This may be used during pre-regalloc scheduling.
    344     void setNode(SDNode *N) {
    345       assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
    346       Node = N;
    347     }
    348 
    349     /// getNode - Return the representative SDNode for this SUnit.
    350     /// This may be used during pre-regalloc scheduling.
    351     SDNode *getNode() const {
    352       assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
    353       return Node;
    354     }
    355 
    356     /// isInstr - Return true if this SUnit refers to a machine instruction as
    357     /// opposed to an SDNode.
    358     bool isInstr() const { return Instr; }
    359 
    360     /// setInstr - Assign the instruction for the SUnit.
    361     /// This may be used during post-regalloc scheduling.
    362     void setInstr(MachineInstr *MI) {
    363       assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
    364       Instr = MI;
    365     }
    366 
    367     /// getInstr - Return the representative MachineInstr for this SUnit.
    368     /// This may be used during post-regalloc scheduling.
    369     MachineInstr *getInstr() const {
    370       assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
    371       return Instr;
    372     }
    373 
    374     /// addPred - This adds the specified edge as a pred of the current node if
    375     /// not already.  It also adds the current node as a successor of the
    376     /// specified node.
    377     bool addPred(const SDep &D);
    378 
    379     /// removePred - This removes the specified edge as a pred of the current
    380     /// node if it exists.  It also removes the current node as a successor of
    381     /// the specified node.
    382     void removePred(const SDep &D);
    383 
    384     /// getDepth - Return the depth of this node, which is the length of the
    385     /// maximum path up to any node which has no predecessors.
    386     unsigned getDepth() const {
    387       if (!isDepthCurrent)
    388         const_cast<SUnit *>(this)->ComputeDepth();
    389       return Depth;
    390     }
    391 
    392     /// getHeight - Return the height of this node, which is the length of the
    393     /// maximum path down to any node which has no successors.
    394     unsigned getHeight() const {
    395       if (!isHeightCurrent)
    396         const_cast<SUnit *>(this)->ComputeHeight();
    397       return Height;
    398     }
    399 
    400     /// setDepthToAtLeast - If NewDepth is greater than this node's
    401     /// depth value, set it to be the new depth value. This also
    402     /// recursively marks successor nodes dirty.
    403     void setDepthToAtLeast(unsigned NewDepth);
    404 
    405     /// setDepthToAtLeast - If NewDepth is greater than this node's
    406     /// depth value, set it to be the new height value. This also
    407     /// recursively marks predecessor nodes dirty.
    408     void setHeightToAtLeast(unsigned NewHeight);
    409 
    410     /// setDepthDirty - Set a flag in this node to indicate that its
    411     /// stored Depth value will require recomputation the next time
    412     /// getDepth() is called.
    413     void setDepthDirty();
    414 
    415     /// setHeightDirty - Set a flag in this node to indicate that its
    416     /// stored Height value will require recomputation the next time
    417     /// getHeight() is called.
    418     void setHeightDirty();
    419 
    420     /// isPred - Test if node N is a predecessor of this node.
    421     bool isPred(SUnit *N) {
    422       for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
    423         if (Preds[i].getSUnit() == N)
    424           return true;
    425       return false;
    426     }
    427 
    428     /// isSucc - Test if node N is a successor of this node.
    429     bool isSucc(SUnit *N) {
    430       for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
    431         if (Succs[i].getSUnit() == N)
    432           return true;
    433       return false;
    434     }
    435 
    436     bool isTopReady() const {
    437       return NumPredsLeft == 0;
    438     }
    439     bool isBottomReady() const {
    440       return NumSuccsLeft == 0;
    441     }
    442 
    443     void dump(const ScheduleDAG *G) const;
    444     void dumpAll(const ScheduleDAG *G) const;
    445     void print(raw_ostream &O, const ScheduleDAG *G) const;
    446 
    447   private:
    448     void ComputeDepth();
    449     void ComputeHeight();
    450   };
    451 
    452   //===--------------------------------------------------------------------===//
    453   /// SchedulingPriorityQueue - This interface is used to plug different
    454   /// priorities computation algorithms into the list scheduler. It implements
    455   /// the interface of a standard priority queue, where nodes are inserted in
    456   /// arbitrary order and returned in priority order.  The computation of the
    457   /// priority and the representation of the queue are totally up to the
    458   /// implementation to decide.
    459   ///
    460   class SchedulingPriorityQueue {
    461     virtual void anchor();
    462     unsigned CurCycle;
    463     bool HasReadyFilter;
    464   public:
    465     SchedulingPriorityQueue(bool rf = false):
    466       CurCycle(0), HasReadyFilter(rf) {}
    467     virtual ~SchedulingPriorityQueue() {}
    468 
    469     virtual bool isBottomUp() const = 0;
    470 
    471     virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
    472     virtual void addNode(const SUnit *SU) = 0;
    473     virtual void updateNode(const SUnit *SU) = 0;
    474     virtual void releaseState() = 0;
    475 
    476     virtual bool empty() const = 0;
    477 
    478     bool hasReadyFilter() const { return HasReadyFilter; }
    479 
    480     virtual bool tracksRegPressure() const { return false; }
    481 
    482     virtual bool isReady(SUnit *) const {
    483       assert(!HasReadyFilter && "The ready filter must override isReady()");
    484       return true;
    485     }
    486     virtual void push(SUnit *U) = 0;
    487 
    488     void push_all(const std::vector<SUnit *> &Nodes) {
    489       for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
    490            E = Nodes.end(); I != E; ++I)
    491         push(*I);
    492     }
    493 
    494     virtual SUnit *pop() = 0;
    495 
    496     virtual void remove(SUnit *SU) = 0;
    497 
    498     virtual void dump(ScheduleDAG *) const {}
    499 
    500     /// scheduledNode - As each node is scheduled, this method is invoked.  This
    501     /// allows the priority function to adjust the priority of related
    502     /// unscheduled nodes, for example.
    503     ///
    504     virtual void scheduledNode(SUnit *) {}
    505 
    506     virtual void unscheduledNode(SUnit *) {}
    507 
    508     void setCurCycle(unsigned Cycle) {
    509       CurCycle = Cycle;
    510     }
    511 
    512     unsigned getCurCycle() const {
    513       return CurCycle;
    514     }
    515   };
    516 
    517   class ScheduleDAG {
    518   public:
    519     const TargetMachine &TM;              // Target processor
    520     const TargetInstrInfo *TII;           // Target instruction information
    521     const TargetRegisterInfo *TRI;        // Target processor register info
    522     MachineFunction &MF;                  // Machine function
    523     MachineRegisterInfo &MRI;             // Virtual/real register map
    524     std::vector<SUnit> SUnits;            // The scheduling units.
    525     SUnit EntrySU;                        // Special node for the region entry.
    526     SUnit ExitSU;                         // Special node for the region exit.
    527 
    528 #ifdef NDEBUG
    529     static const bool StressSched = false;
    530 #else
    531     bool StressSched;
    532 #endif
    533 
    534     explicit ScheduleDAG(MachineFunction &mf);
    535 
    536     virtual ~ScheduleDAG();
    537 
    538     /// clearDAG - clear the DAG state (between regions).
    539     void clearDAG();
    540 
    541     /// getInstrDesc - Return the MCInstrDesc of this SUnit.
    542     /// Return NULL for SDNodes without a machine opcode.
    543     const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
    544       if (SU->isInstr()) return &SU->getInstr()->getDesc();
    545       return getNodeDesc(SU->getNode());
    546     }
    547 
    548     /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
    549     /// using 'dot'.
    550     ///
    551     void viewGraph(const Twine &Name, const Twine &Title);
    552     void viewGraph();
    553 
    554     virtual void dumpNode(const SUnit *SU) const = 0;
    555 
    556     /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
    557     /// of the ScheduleDAG.
    558     virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
    559 
    560     /// getDAGLabel - Return a label for the region of code covered by the DAG.
    561     virtual std::string getDAGName() const = 0;
    562 
    563     /// addCustomGraphFeatures - Add custom features for a visualization of
    564     /// the ScheduleDAG.
    565     virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
    566 
    567 #ifndef NDEBUG
    568     /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
    569     /// their state is consistent. Return the number of scheduled SUnits.
    570     unsigned VerifyScheduledDAG(bool isBottomUp);
    571 #endif
    572 
    573   protected:
    574     /// ComputeLatency - Compute node latency.
    575     ///
    576     virtual void computeLatency(SUnit *SU) = 0;
    577 
    578     /// ForceUnitLatencies - Return true if all scheduling edges should be given
    579     /// a latency value of one.  The default is to return false; schedulers may
    580     /// override this as needed.
    581     virtual bool forceUnitLatencies() const { return false; }
    582 
    583   private:
    584     // Return the MCInstrDesc of this SDNode or NULL.
    585     const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
    586   };
    587 
    588   class SUnitIterator : public std::iterator<std::forward_iterator_tag,
    589                                              SUnit, ptrdiff_t> {
    590     SUnit *Node;
    591     unsigned Operand;
    592 
    593     SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
    594   public:
    595     bool operator==(const SUnitIterator& x) const {
    596       return Operand == x.Operand;
    597     }
    598     bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
    599 
    600     const SUnitIterator &operator=(const SUnitIterator &I) {
    601       assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
    602       Operand = I.Operand;
    603       return *this;
    604     }
    605 
    606     pointer operator*() const {
    607       return Node->Preds[Operand].getSUnit();
    608     }
    609     pointer operator->() const { return operator*(); }
    610 
    611     SUnitIterator& operator++() {                // Preincrement
    612       ++Operand;
    613       return *this;
    614     }
    615     SUnitIterator operator++(int) { // Postincrement
    616       SUnitIterator tmp = *this; ++*this; return tmp;
    617     }
    618 
    619     static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
    620     static SUnitIterator end  (SUnit *N) {
    621       return SUnitIterator(N, (unsigned)N->Preds.size());
    622     }
    623 
    624     unsigned getOperand() const { return Operand; }
    625     const SUnit *getNode() const { return Node; }
    626     /// isCtrlDep - Test if this is not an SDep::Data dependence.
    627     bool isCtrlDep() const {
    628       return getSDep().isCtrl();
    629     }
    630     bool isArtificialDep() const {
    631       return getSDep().isArtificial();
    632     }
    633     const SDep &getSDep() const {
    634       return Node->Preds[Operand];
    635     }
    636   };
    637 
    638   template <> struct GraphTraits<SUnit*> {
    639     typedef SUnit NodeType;
    640     typedef SUnitIterator ChildIteratorType;
    641     static inline NodeType *getEntryNode(SUnit *N) { return N; }
    642     static inline ChildIteratorType child_begin(NodeType *N) {
    643       return SUnitIterator::begin(N);
    644     }
    645     static inline ChildIteratorType child_end(NodeType *N) {
    646       return SUnitIterator::end(N);
    647     }
    648   };
    649 
    650   template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
    651     typedef std::vector<SUnit>::iterator nodes_iterator;
    652     static nodes_iterator nodes_begin(ScheduleDAG *G) {
    653       return G->SUnits.begin();
    654     }
    655     static nodes_iterator nodes_end(ScheduleDAG *G) {
    656       return G->SUnits.end();
    657     }
    658   };
    659 
    660   /// ScheduleDAGTopologicalSort is a class that computes a topological
    661   /// ordering for SUnits and provides methods for dynamically updating
    662   /// the ordering as new edges are added.
    663   ///
    664   /// This allows a very fast implementation of IsReachable, for example.
    665   ///
    666   class ScheduleDAGTopologicalSort {
    667     /// SUnits - A reference to the ScheduleDAG's SUnits.
    668     std::vector<SUnit> &SUnits;
    669 
    670     /// Index2Node - Maps topological index to the node number.
    671     std::vector<int> Index2Node;
    672     /// Node2Index - Maps the node number to its topological index.
    673     std::vector<int> Node2Index;
    674     /// Visited - a set of nodes visited during a DFS traversal.
    675     BitVector Visited;
    676 
    677     /// DFS - make a DFS traversal and mark all nodes affected by the
    678     /// edge insertion. These nodes will later get new topological indexes
    679     /// by means of the Shift method.
    680     void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
    681 
    682     /// Shift - reassign topological indexes for the nodes in the DAG
    683     /// to preserve the topological ordering.
    684     void Shift(BitVector& Visited, int LowerBound, int UpperBound);
    685 
    686     /// Allocate - assign the topological index to the node n.
    687     void Allocate(int n, int index);
    688 
    689   public:
    690     explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
    691 
    692     /// InitDAGTopologicalSorting - create the initial topological
    693     /// ordering from the DAG to be scheduled.
    694     void InitDAGTopologicalSorting();
    695 
    696     /// IsReachable - Checks if SU is reachable from TargetSU.
    697     bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
    698 
    699     /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
    700     /// will create a cycle.
    701     bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
    702 
    703     /// AddPred - Updates the topological ordering to accommodate an edge
    704     /// to be added from SUnit X to SUnit Y.
    705     void AddPred(SUnit *Y, SUnit *X);
    706 
    707     /// RemovePred - Updates the topological ordering to accommodate an
    708     /// an edge to be removed from the specified node N from the predecessors
    709     /// of the current node M.
    710     void RemovePred(SUnit *M, SUnit *N);
    711 
    712     typedef std::vector<int>::iterator iterator;
    713     typedef std::vector<int>::const_iterator const_iterator;
    714     iterator begin() { return Index2Node.begin(); }
    715     const_iterator begin() const { return Index2Node.begin(); }
    716     iterator end() { return Index2Node.end(); }
    717     const_iterator end() const { return Index2Node.end(); }
    718 
    719     typedef std::vector<int>::reverse_iterator reverse_iterator;
    720     typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
    721     reverse_iterator rbegin() { return Index2Node.rbegin(); }
    722     const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
    723     reverse_iterator rend() { return Index2Node.rend(); }
    724     const_reverse_iterator rend() const { return Index2Node.rend(); }
    725   };
    726 }
    727 
    728 #endif
    729