Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCalls.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitCall and visitInvoke functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Support/CallSite.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     19 #include "llvm/Transforms/Utils/Local.h"
     20 using namespace llvm;
     21 
     22 /// getPromotedType - Return the specified type promoted as it would be to pass
     23 /// though a va_arg area.
     24 static Type *getPromotedType(Type *Ty) {
     25   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
     26     if (ITy->getBitWidth() < 32)
     27       return Type::getInt32Ty(Ty->getContext());
     28   }
     29   return Ty;
     30 }
     31 
     32 
     33 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
     34   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
     35   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
     36   unsigned MinAlign = std::min(DstAlign, SrcAlign);
     37   unsigned CopyAlign = MI->getAlignment();
     38 
     39   if (CopyAlign < MinAlign) {
     40     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
     41                                              MinAlign, false));
     42     return MI;
     43   }
     44 
     45   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
     46   // load/store.
     47   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
     48   if (MemOpLength == 0) return 0;
     49 
     50   // Source and destination pointer types are always "i8*" for intrinsic.  See
     51   // if the size is something we can handle with a single primitive load/store.
     52   // A single load+store correctly handles overlapping memory in the memmove
     53   // case.
     54   uint64_t Size = MemOpLength->getLimitedValue();
     55   assert(Size && "0-sized memory transfering should be removed already.");
     56 
     57   if (Size > 8 || (Size&(Size-1)))
     58     return 0;  // If not 1/2/4/8 bytes, exit.
     59 
     60   // Use an integer load+store unless we can find something better.
     61   unsigned SrcAddrSp =
     62     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
     63   unsigned DstAddrSp =
     64     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
     65 
     66   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
     67   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
     68   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
     69 
     70   // Memcpy forces the use of i8* for the source and destination.  That means
     71   // that if you're using memcpy to move one double around, you'll get a cast
     72   // from double* to i8*.  We'd much rather use a double load+store rather than
     73   // an i64 load+store, here because this improves the odds that the source or
     74   // dest address will be promotable.  See if we can find a better type than the
     75   // integer datatype.
     76   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
     77   if (StrippedDest != MI->getArgOperand(0)) {
     78     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
     79                                     ->getElementType();
     80     if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
     81       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
     82       // down through these levels if so.
     83       while (!SrcETy->isSingleValueType()) {
     84         if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
     85           if (STy->getNumElements() == 1)
     86             SrcETy = STy->getElementType(0);
     87           else
     88             break;
     89         } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
     90           if (ATy->getNumElements() == 1)
     91             SrcETy = ATy->getElementType();
     92           else
     93             break;
     94         } else
     95           break;
     96       }
     97 
     98       if (SrcETy->isSingleValueType()) {
     99         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
    100         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
    101       }
    102     }
    103   }
    104 
    105 
    106   // If the memcpy/memmove provides better alignment info than we can
    107   // infer, use it.
    108   SrcAlign = std::max(SrcAlign, CopyAlign);
    109   DstAlign = std::max(DstAlign, CopyAlign);
    110 
    111   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
    112   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
    113   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
    114   L->setAlignment(SrcAlign);
    115   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
    116   S->setAlignment(DstAlign);
    117 
    118   // Set the size of the copy to 0, it will be deleted on the next iteration.
    119   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
    120   return MI;
    121 }
    122 
    123 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
    124   unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
    125   if (MI->getAlignment() < Alignment) {
    126     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
    127                                              Alignment, false));
    128     return MI;
    129   }
    130 
    131   // Extract the length and alignment and fill if they are constant.
    132   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
    133   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
    134   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
    135     return 0;
    136   uint64_t Len = LenC->getLimitedValue();
    137   Alignment = MI->getAlignment();
    138   assert(Len && "0-sized memory setting should be removed already.");
    139 
    140   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
    141   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
    142     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
    143 
    144     Value *Dest = MI->getDest();
    145     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
    146     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
    147     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
    148 
    149     // Alignment 0 is identity for alignment 1 for memset, but not store.
    150     if (Alignment == 0) Alignment = 1;
    151 
    152     // Extract the fill value and store.
    153     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
    154     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
    155                                         MI->isVolatile());
    156     S->setAlignment(Alignment);
    157 
    158     // Set the size of the copy to 0, it will be deleted on the next iteration.
    159     MI->setLength(Constant::getNullValue(LenC->getType()));
    160     return MI;
    161   }
    162 
    163   return 0;
    164 }
    165 
    166 /// visitCallInst - CallInst simplification.  This mostly only handles folding
    167 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
    168 /// the heavy lifting.
    169 ///
    170 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
    171   if (isFreeCall(&CI, TLI))
    172     return visitFree(CI);
    173 
    174   // If the caller function is nounwind, mark the call as nounwind, even if the
    175   // callee isn't.
    176   if (CI.getParent()->getParent()->doesNotThrow() &&
    177       !CI.doesNotThrow()) {
    178     CI.setDoesNotThrow();
    179     return &CI;
    180   }
    181 
    182   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
    183   if (!II) return visitCallSite(&CI);
    184 
    185   // Intrinsics cannot occur in an invoke, so handle them here instead of in
    186   // visitCallSite.
    187   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
    188     bool Changed = false;
    189 
    190     // memmove/cpy/set of zero bytes is a noop.
    191     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
    192       if (NumBytes->isNullValue())
    193         return EraseInstFromFunction(CI);
    194 
    195       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
    196         if (CI->getZExtValue() == 1) {
    197           // Replace the instruction with just byte operations.  We would
    198           // transform other cases to loads/stores, but we don't know if
    199           // alignment is sufficient.
    200         }
    201     }
    202 
    203     // No other transformations apply to volatile transfers.
    204     if (MI->isVolatile())
    205       return 0;
    206 
    207     // If we have a memmove and the source operation is a constant global,
    208     // then the source and dest pointers can't alias, so we can change this
    209     // into a call to memcpy.
    210     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
    211       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
    212         if (GVSrc->isConstant()) {
    213           Module *M = CI.getParent()->getParent()->getParent();
    214           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
    215           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
    216                            CI.getArgOperand(1)->getType(),
    217                            CI.getArgOperand(2)->getType() };
    218           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
    219           Changed = true;
    220         }
    221     }
    222 
    223     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
    224       // memmove(x,x,size) -> noop.
    225       if (MTI->getSource() == MTI->getDest())
    226         return EraseInstFromFunction(CI);
    227     }
    228 
    229     // If we can determine a pointer alignment that is bigger than currently
    230     // set, update the alignment.
    231     if (isa<MemTransferInst>(MI)) {
    232       if (Instruction *I = SimplifyMemTransfer(MI))
    233         return I;
    234     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
    235       if (Instruction *I = SimplifyMemSet(MSI))
    236         return I;
    237     }
    238 
    239     if (Changed) return II;
    240   }
    241 
    242   switch (II->getIntrinsicID()) {
    243   default: break;
    244   case Intrinsic::objectsize: {
    245     uint64_t Size;
    246     if (getObjectSize(II->getArgOperand(0), Size, TD, TLI))
    247       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
    248     return 0;
    249   }
    250   case Intrinsic::bswap:
    251     // bswap(bswap(x)) -> x
    252     if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
    253       if (Operand->getIntrinsicID() == Intrinsic::bswap)
    254         return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
    255 
    256     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
    257     if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
    258       if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
    259         if (Operand->getIntrinsicID() == Intrinsic::bswap) {
    260           unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
    261                        TI->getType()->getPrimitiveSizeInBits();
    262           Value *CV = ConstantInt::get(Operand->getType(), C);
    263           Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
    264           return new TruncInst(V, TI->getType());
    265         }
    266     }
    267 
    268     break;
    269   case Intrinsic::powi:
    270     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    271       // powi(x, 0) -> 1.0
    272       if (Power->isZero())
    273         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
    274       // powi(x, 1) -> x
    275       if (Power->isOne())
    276         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
    277       // powi(x, -1) -> 1/x
    278       if (Power->isAllOnesValue())
    279         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
    280                                           II->getArgOperand(0));
    281     }
    282     break;
    283   case Intrinsic::cttz: {
    284     // If all bits below the first known one are known zero,
    285     // this value is constant.
    286     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    287     // FIXME: Try to simplify vectors of integers.
    288     if (!IT) break;
    289     uint32_t BitWidth = IT->getBitWidth();
    290     APInt KnownZero(BitWidth, 0);
    291     APInt KnownOne(BitWidth, 0);
    292     ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
    293     unsigned TrailingZeros = KnownOne.countTrailingZeros();
    294     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
    295     if ((Mask & KnownZero) == Mask)
    296       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    297                                  APInt(BitWidth, TrailingZeros)));
    298 
    299     }
    300     break;
    301   case Intrinsic::ctlz: {
    302     // If all bits above the first known one are known zero,
    303     // this value is constant.
    304     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    305     // FIXME: Try to simplify vectors of integers.
    306     if (!IT) break;
    307     uint32_t BitWidth = IT->getBitWidth();
    308     APInt KnownZero(BitWidth, 0);
    309     APInt KnownOne(BitWidth, 0);
    310     ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
    311     unsigned LeadingZeros = KnownOne.countLeadingZeros();
    312     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
    313     if ((Mask & KnownZero) == Mask)
    314       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    315                                  APInt(BitWidth, LeadingZeros)));
    316 
    317     }
    318     break;
    319   case Intrinsic::uadd_with_overflow: {
    320     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    321     IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
    322     uint32_t BitWidth = IT->getBitWidth();
    323     APInt LHSKnownZero(BitWidth, 0);
    324     APInt LHSKnownOne(BitWidth, 0);
    325     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
    326     bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
    327     bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
    328 
    329     if (LHSKnownNegative || LHSKnownPositive) {
    330       APInt RHSKnownZero(BitWidth, 0);
    331       APInt RHSKnownOne(BitWidth, 0);
    332       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
    333       bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
    334       bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
    335       if (LHSKnownNegative && RHSKnownNegative) {
    336         // The sign bit is set in both cases: this MUST overflow.
    337         // Create a simple add instruction, and insert it into the struct.
    338         Value *Add = Builder->CreateAdd(LHS, RHS);
    339         Add->takeName(&CI);
    340         Constant *V[] = {
    341           UndefValue::get(LHS->getType()),
    342           ConstantInt::getTrue(II->getContext())
    343         };
    344         StructType *ST = cast<StructType>(II->getType());
    345         Constant *Struct = ConstantStruct::get(ST, V);
    346         return InsertValueInst::Create(Struct, Add, 0);
    347       }
    348 
    349       if (LHSKnownPositive && RHSKnownPositive) {
    350         // The sign bit is clear in both cases: this CANNOT overflow.
    351         // Create a simple add instruction, and insert it into the struct.
    352         Value *Add = Builder->CreateNUWAdd(LHS, RHS);
    353         Add->takeName(&CI);
    354         Constant *V[] = {
    355           UndefValue::get(LHS->getType()),
    356           ConstantInt::getFalse(II->getContext())
    357         };
    358         StructType *ST = cast<StructType>(II->getType());
    359         Constant *Struct = ConstantStruct::get(ST, V);
    360         return InsertValueInst::Create(Struct, Add, 0);
    361       }
    362     }
    363   }
    364   // FALL THROUGH uadd into sadd
    365   case Intrinsic::sadd_with_overflow:
    366     // Canonicalize constants into the RHS.
    367     if (isa<Constant>(II->getArgOperand(0)) &&
    368         !isa<Constant>(II->getArgOperand(1))) {
    369       Value *LHS = II->getArgOperand(0);
    370       II->setArgOperand(0, II->getArgOperand(1));
    371       II->setArgOperand(1, LHS);
    372       return II;
    373     }
    374 
    375     // X + undef -> undef
    376     if (isa<UndefValue>(II->getArgOperand(1)))
    377       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    378 
    379     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    380       // X + 0 -> {X, false}
    381       if (RHS->isZero()) {
    382         Constant *V[] = {
    383           UndefValue::get(II->getArgOperand(0)->getType()),
    384           ConstantInt::getFalse(II->getContext())
    385         };
    386         Constant *Struct =
    387           ConstantStruct::get(cast<StructType>(II->getType()), V);
    388         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    389       }
    390     }
    391     break;
    392   case Intrinsic::usub_with_overflow:
    393   case Intrinsic::ssub_with_overflow:
    394     // undef - X -> undef
    395     // X - undef -> undef
    396     if (isa<UndefValue>(II->getArgOperand(0)) ||
    397         isa<UndefValue>(II->getArgOperand(1)))
    398       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    399 
    400     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    401       // X - 0 -> {X, false}
    402       if (RHS->isZero()) {
    403         Constant *V[] = {
    404           UndefValue::get(II->getArgOperand(0)->getType()),
    405           ConstantInt::getFalse(II->getContext())
    406         };
    407         Constant *Struct =
    408           ConstantStruct::get(cast<StructType>(II->getType()), V);
    409         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    410       }
    411     }
    412     break;
    413   case Intrinsic::umul_with_overflow: {
    414     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    415     unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
    416 
    417     APInt LHSKnownZero(BitWidth, 0);
    418     APInt LHSKnownOne(BitWidth, 0);
    419     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
    420     APInt RHSKnownZero(BitWidth, 0);
    421     APInt RHSKnownOne(BitWidth, 0);
    422     ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
    423 
    424     // Get the largest possible values for each operand.
    425     APInt LHSMax = ~LHSKnownZero;
    426     APInt RHSMax = ~RHSKnownZero;
    427 
    428     // If multiplying the maximum values does not overflow then we can turn
    429     // this into a plain NUW mul.
    430     bool Overflow;
    431     LHSMax.umul_ov(RHSMax, Overflow);
    432     if (!Overflow) {
    433       Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
    434       Constant *V[] = {
    435         UndefValue::get(LHS->getType()),
    436         Builder->getFalse()
    437       };
    438       Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
    439       return InsertValueInst::Create(Struct, Mul, 0);
    440     }
    441   } // FALL THROUGH
    442   case Intrinsic::smul_with_overflow:
    443     // Canonicalize constants into the RHS.
    444     if (isa<Constant>(II->getArgOperand(0)) &&
    445         !isa<Constant>(II->getArgOperand(1))) {
    446       Value *LHS = II->getArgOperand(0);
    447       II->setArgOperand(0, II->getArgOperand(1));
    448       II->setArgOperand(1, LHS);
    449       return II;
    450     }
    451 
    452     // X * undef -> undef
    453     if (isa<UndefValue>(II->getArgOperand(1)))
    454       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    455 
    456     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    457       // X*0 -> {0, false}
    458       if (RHSI->isZero())
    459         return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
    460 
    461       // X * 1 -> {X, false}
    462       if (RHSI->equalsInt(1)) {
    463         Constant *V[] = {
    464           UndefValue::get(II->getArgOperand(0)->getType()),
    465           ConstantInt::getFalse(II->getContext())
    466         };
    467         Constant *Struct =
    468           ConstantStruct::get(cast<StructType>(II->getType()), V);
    469         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    470       }
    471     }
    472     break;
    473   case Intrinsic::ppc_altivec_lvx:
    474   case Intrinsic::ppc_altivec_lvxl:
    475     // Turn PPC lvx -> load if the pointer is known aligned.
    476     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
    477       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
    478                                          PointerType::getUnqual(II->getType()));
    479       return new LoadInst(Ptr);
    480     }
    481     break;
    482   case Intrinsic::ppc_altivec_stvx:
    483   case Intrinsic::ppc_altivec_stvxl:
    484     // Turn stvx -> store if the pointer is known aligned.
    485     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
    486       Type *OpPtrTy =
    487         PointerType::getUnqual(II->getArgOperand(0)->getType());
    488       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
    489       return new StoreInst(II->getArgOperand(0), Ptr);
    490     }
    491     break;
    492   case Intrinsic::x86_sse_storeu_ps:
    493   case Intrinsic::x86_sse2_storeu_pd:
    494   case Intrinsic::x86_sse2_storeu_dq:
    495     // Turn X86 storeu -> store if the pointer is known aligned.
    496     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
    497       Type *OpPtrTy =
    498         PointerType::getUnqual(II->getArgOperand(1)->getType());
    499       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
    500       return new StoreInst(II->getArgOperand(1), Ptr);
    501     }
    502     break;
    503 
    504   case Intrinsic::x86_sse_cvtss2si:
    505   case Intrinsic::x86_sse_cvtss2si64:
    506   case Intrinsic::x86_sse_cvttss2si:
    507   case Intrinsic::x86_sse_cvttss2si64:
    508   case Intrinsic::x86_sse2_cvtsd2si:
    509   case Intrinsic::x86_sse2_cvtsd2si64:
    510   case Intrinsic::x86_sse2_cvttsd2si:
    511   case Intrinsic::x86_sse2_cvttsd2si64: {
    512     // These intrinsics only demand the 0th element of their input vectors. If
    513     // we can simplify the input based on that, do so now.
    514     unsigned VWidth =
    515       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    516     APInt DemandedElts(VWidth, 1);
    517     APInt UndefElts(VWidth, 0);
    518     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
    519                                               DemandedElts, UndefElts)) {
    520       II->setArgOperand(0, V);
    521       return II;
    522     }
    523     break;
    524   }
    525 
    526 
    527   case Intrinsic::x86_sse41_pmovsxbw:
    528   case Intrinsic::x86_sse41_pmovsxwd:
    529   case Intrinsic::x86_sse41_pmovsxdq:
    530   case Intrinsic::x86_sse41_pmovzxbw:
    531   case Intrinsic::x86_sse41_pmovzxwd:
    532   case Intrinsic::x86_sse41_pmovzxdq: {
    533     // pmov{s|z}x ignores the upper half of their input vectors.
    534     unsigned VWidth =
    535       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    536     unsigned LowHalfElts = VWidth / 2;
    537     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
    538     APInt UndefElts(VWidth, 0);
    539     if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
    540                                                  InputDemandedElts,
    541                                                  UndefElts)) {
    542       II->setArgOperand(0, TmpV);
    543       return II;
    544     }
    545     break;
    546   }
    547 
    548   case Intrinsic::ppc_altivec_vperm:
    549     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
    550     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
    551       assert(Mask->getType()->getVectorNumElements() == 16 &&
    552              "Bad type for intrinsic!");
    553 
    554       // Check that all of the elements are integer constants or undefs.
    555       bool AllEltsOk = true;
    556       for (unsigned i = 0; i != 16; ++i) {
    557         Constant *Elt = Mask->getAggregateElement(i);
    558         if (Elt == 0 ||
    559             !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
    560           AllEltsOk = false;
    561           break;
    562         }
    563       }
    564 
    565       if (AllEltsOk) {
    566         // Cast the input vectors to byte vectors.
    567         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
    568                                             Mask->getType());
    569         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
    570                                             Mask->getType());
    571         Value *Result = UndefValue::get(Op0->getType());
    572 
    573         // Only extract each element once.
    574         Value *ExtractedElts[32];
    575         memset(ExtractedElts, 0, sizeof(ExtractedElts));
    576 
    577         for (unsigned i = 0; i != 16; ++i) {
    578           if (isa<UndefValue>(Mask->getAggregateElement(i)))
    579             continue;
    580           unsigned Idx =
    581             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
    582           Idx &= 31;  // Match the hardware behavior.
    583 
    584           if (ExtractedElts[Idx] == 0) {
    585             ExtractedElts[Idx] =
    586               Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
    587                                             Builder->getInt32(Idx&15));
    588           }
    589 
    590           // Insert this value into the result vector.
    591           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
    592                                                 Builder->getInt32(i));
    593         }
    594         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
    595       }
    596     }
    597     break;
    598 
    599   case Intrinsic::arm_neon_vld1:
    600   case Intrinsic::arm_neon_vld2:
    601   case Intrinsic::arm_neon_vld3:
    602   case Intrinsic::arm_neon_vld4:
    603   case Intrinsic::arm_neon_vld2lane:
    604   case Intrinsic::arm_neon_vld3lane:
    605   case Intrinsic::arm_neon_vld4lane:
    606   case Intrinsic::arm_neon_vst1:
    607   case Intrinsic::arm_neon_vst2:
    608   case Intrinsic::arm_neon_vst3:
    609   case Intrinsic::arm_neon_vst4:
    610   case Intrinsic::arm_neon_vst2lane:
    611   case Intrinsic::arm_neon_vst3lane:
    612   case Intrinsic::arm_neon_vst4lane: {
    613     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
    614     unsigned AlignArg = II->getNumArgOperands() - 1;
    615     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
    616     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
    617       II->setArgOperand(AlignArg,
    618                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
    619                                          MemAlign, false));
    620       return II;
    621     }
    622     break;
    623   }
    624 
    625   case Intrinsic::arm_neon_vmulls:
    626   case Intrinsic::arm_neon_vmullu: {
    627     Value *Arg0 = II->getArgOperand(0);
    628     Value *Arg1 = II->getArgOperand(1);
    629 
    630     // Handle mul by zero first:
    631     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
    632       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
    633     }
    634 
    635     // Check for constant LHS & RHS - in this case we just simplify.
    636     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu);
    637     VectorType *NewVT = cast<VectorType>(II->getType());
    638     unsigned NewWidth = NewVT->getElementType()->getIntegerBitWidth();
    639     if (ConstantDataVector *CV0 = dyn_cast<ConstantDataVector>(Arg0)) {
    640       if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
    641         VectorType* VT = cast<VectorType>(CV0->getType());
    642         SmallVector<Constant*, 4> NewElems;
    643         for (unsigned i = 0; i < VT->getNumElements(); ++i) {
    644           APInt CV0E =
    645             (cast<ConstantInt>(CV0->getAggregateElement(i)))->getValue();
    646           CV0E = Zext ? CV0E.zext(NewWidth) : CV0E.sext(NewWidth);
    647           APInt CV1E =
    648             (cast<ConstantInt>(CV1->getAggregateElement(i)))->getValue();
    649           CV1E = Zext ? CV1E.zext(NewWidth) : CV1E.sext(NewWidth);
    650           NewElems.push_back(
    651             ConstantInt::get(NewVT->getElementType(), CV0E * CV1E));
    652         }
    653         return ReplaceInstUsesWith(CI, ConstantVector::get(NewElems));
    654       }
    655 
    656       // Couldn't simplify - cannonicalize constant to the RHS.
    657       std::swap(Arg0, Arg1);
    658     }
    659 
    660     // Handle mul by one:
    661     if (ConstantDataVector *CV1 = dyn_cast<ConstantDataVector>(Arg1)) {
    662       if (ConstantInt *Splat =
    663             dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) {
    664         if (Splat->isOne()) {
    665           if (Zext)
    666             return CastInst::CreateZExtOrBitCast(Arg0, II->getType());
    667           // else
    668           return CastInst::CreateSExtOrBitCast(Arg0, II->getType());
    669         }
    670       }
    671     }
    672 
    673     break;
    674   }
    675 
    676   case Intrinsic::stackrestore: {
    677     // If the save is right next to the restore, remove the restore.  This can
    678     // happen when variable allocas are DCE'd.
    679     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
    680       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
    681         BasicBlock::iterator BI = SS;
    682         if (&*++BI == II)
    683           return EraseInstFromFunction(CI);
    684       }
    685     }
    686 
    687     // Scan down this block to see if there is another stack restore in the
    688     // same block without an intervening call/alloca.
    689     BasicBlock::iterator BI = II;
    690     TerminatorInst *TI = II->getParent()->getTerminator();
    691     bool CannotRemove = false;
    692     for (++BI; &*BI != TI; ++BI) {
    693       if (isa<AllocaInst>(BI)) {
    694         CannotRemove = true;
    695         break;
    696       }
    697       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
    698         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
    699           // If there is a stackrestore below this one, remove this one.
    700           if (II->getIntrinsicID() == Intrinsic::stackrestore)
    701             return EraseInstFromFunction(CI);
    702           // Otherwise, ignore the intrinsic.
    703         } else {
    704           // If we found a non-intrinsic call, we can't remove the stack
    705           // restore.
    706           CannotRemove = true;
    707           break;
    708         }
    709       }
    710     }
    711 
    712     // If the stack restore is in a return, resume, or unwind block and if there
    713     // are no allocas or calls between the restore and the return, nuke the
    714     // restore.
    715     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
    716       return EraseInstFromFunction(CI);
    717     break;
    718   }
    719   }
    720 
    721   return visitCallSite(II);
    722 }
    723 
    724 // InvokeInst simplification
    725 //
    726 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
    727   return visitCallSite(&II);
    728 }
    729 
    730 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
    731 /// passed through the varargs area, we can eliminate the use of the cast.
    732 static bool isSafeToEliminateVarargsCast(const CallSite CS,
    733                                          const CastInst * const CI,
    734                                          const TargetData * const TD,
    735                                          const int ix) {
    736   if (!CI->isLosslessCast())
    737     return false;
    738 
    739   // The size of ByVal arguments is derived from the type, so we
    740   // can't change to a type with a different size.  If the size were
    741   // passed explicitly we could avoid this check.
    742   if (!CS.isByValArgument(ix))
    743     return true;
    744 
    745   Type* SrcTy =
    746             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
    747   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
    748   if (!SrcTy->isSized() || !DstTy->isSized())
    749     return false;
    750   if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
    751     return false;
    752   return true;
    753 }
    754 
    755 namespace {
    756 class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    757   InstCombiner *IC;
    758 protected:
    759   void replaceCall(Value *With) {
    760     NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
    761   }
    762   bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
    763     if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
    764       return true;
    765     if (ConstantInt *SizeCI =
    766                            dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
    767       if (SizeCI->isAllOnesValue())
    768         return true;
    769       if (isString) {
    770         uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
    771         // If the length is 0 we don't know how long it is and so we can't
    772         // remove the check.
    773         if (Len == 0) return false;
    774         return SizeCI->getZExtValue() >= Len;
    775       }
    776       if (ConstantInt *Arg = dyn_cast<ConstantInt>(
    777                                                   CI->getArgOperand(SizeArgOp)))
    778         return SizeCI->getZExtValue() >= Arg->getZExtValue();
    779     }
    780     return false;
    781   }
    782 public:
    783   InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
    784   Instruction *NewInstruction;
    785 };
    786 } // end anonymous namespace
    787 
    788 // Try to fold some different type of calls here.
    789 // Currently we're only working with the checking functions, memcpy_chk,
    790 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
    791 // strcat_chk and strncat_chk.
    792 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
    793   if (CI->getCalledFunction() == 0) return 0;
    794 
    795   InstCombineFortifiedLibCalls Simplifier(this);
    796   Simplifier.fold(CI, TD, TLI);
    797   return Simplifier.NewInstruction;
    798 }
    799 
    800 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
    801   // Strip off at most one level of pointer casts, looking for an alloca.  This
    802   // is good enough in practice and simpler than handling any number of casts.
    803   Value *Underlying = TrampMem->stripPointerCasts();
    804   if (Underlying != TrampMem &&
    805       (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
    806     return 0;
    807   if (!isa<AllocaInst>(Underlying))
    808     return 0;
    809 
    810   IntrinsicInst *InitTrampoline = 0;
    811   for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
    812        I != E; I++) {
    813     IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
    814     if (!II)
    815       return 0;
    816     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
    817       if (InitTrampoline)
    818         // More than one init_trampoline writes to this value.  Give up.
    819         return 0;
    820       InitTrampoline = II;
    821       continue;
    822     }
    823     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
    824       // Allow any number of calls to adjust.trampoline.
    825       continue;
    826     return 0;
    827   }
    828 
    829   // No call to init.trampoline found.
    830   if (!InitTrampoline)
    831     return 0;
    832 
    833   // Check that the alloca is being used in the expected way.
    834   if (InitTrampoline->getOperand(0) != TrampMem)
    835     return 0;
    836 
    837   return InitTrampoline;
    838 }
    839 
    840 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
    841                                                Value *TrampMem) {
    842   // Visit all the previous instructions in the basic block, and try to find a
    843   // init.trampoline which has a direct path to the adjust.trampoline.
    844   for (BasicBlock::iterator I = AdjustTramp,
    845        E = AdjustTramp->getParent()->begin(); I != E; ) {
    846     Instruction *Inst = --I;
    847     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    848       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
    849           II->getOperand(0) == TrampMem)
    850         return II;
    851     if (Inst->mayWriteToMemory())
    852       return 0;
    853   }
    854   return 0;
    855 }
    856 
    857 // Given a call to llvm.adjust.trampoline, find and return the corresponding
    858 // call to llvm.init.trampoline if the call to the trampoline can be optimized
    859 // to a direct call to a function.  Otherwise return NULL.
    860 //
    861 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
    862   Callee = Callee->stripPointerCasts();
    863   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
    864   if (!AdjustTramp ||
    865       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
    866     return 0;
    867 
    868   Value *TrampMem = AdjustTramp->getOperand(0);
    869 
    870   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
    871     return IT;
    872   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
    873     return IT;
    874   return 0;
    875 }
    876 
    877 // visitCallSite - Improvements for call and invoke instructions.
    878 //
    879 Instruction *InstCombiner::visitCallSite(CallSite CS) {
    880   if (isAllocLikeFn(CS.getInstruction(), TLI))
    881     return visitAllocSite(*CS.getInstruction());
    882 
    883   bool Changed = false;
    884 
    885   // If the callee is a pointer to a function, attempt to move any casts to the
    886   // arguments of the call/invoke.
    887   Value *Callee = CS.getCalledValue();
    888   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
    889     return 0;
    890 
    891   if (Function *CalleeF = dyn_cast<Function>(Callee))
    892     // If the call and callee calling conventions don't match, this call must
    893     // be unreachable, as the call is undefined.
    894     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
    895         // Only do this for calls to a function with a body.  A prototype may
    896         // not actually end up matching the implementation's calling conv for a
    897         // variety of reasons (e.g. it may be written in assembly).
    898         !CalleeF->isDeclaration()) {
    899       Instruction *OldCall = CS.getInstruction();
    900       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
    901                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
    902                                   OldCall);
    903       // If OldCall dues not return void then replaceAllUsesWith undef.
    904       // This allows ValueHandlers and custom metadata to adjust itself.
    905       if (!OldCall->getType()->isVoidTy())
    906         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
    907       if (isa<CallInst>(OldCall))
    908         return EraseInstFromFunction(*OldCall);
    909 
    910       // We cannot remove an invoke, because it would change the CFG, just
    911       // change the callee to a null pointer.
    912       cast<InvokeInst>(OldCall)->setCalledFunction(
    913                                     Constant::getNullValue(CalleeF->getType()));
    914       return 0;
    915     }
    916 
    917   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
    918     // If CS does not return void then replaceAllUsesWith undef.
    919     // This allows ValueHandlers and custom metadata to adjust itself.
    920     if (!CS.getInstruction()->getType()->isVoidTy())
    921       ReplaceInstUsesWith(*CS.getInstruction(),
    922                           UndefValue::get(CS.getInstruction()->getType()));
    923 
    924     if (isa<InvokeInst>(CS.getInstruction())) {
    925       // Can't remove an invoke because we cannot change the CFG.
    926       return 0;
    927     }
    928 
    929     // This instruction is not reachable, just remove it.  We insert a store to
    930     // undef so that we know that this code is not reachable, despite the fact
    931     // that we can't modify the CFG here.
    932     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
    933                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
    934                   CS.getInstruction());
    935 
    936     return EraseInstFromFunction(*CS.getInstruction());
    937   }
    938 
    939   if (IntrinsicInst *II = FindInitTrampoline(Callee))
    940     return transformCallThroughTrampoline(CS, II);
    941 
    942   PointerType *PTy = cast<PointerType>(Callee->getType());
    943   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    944   if (FTy->isVarArg()) {
    945     int ix = FTy->getNumParams();
    946     // See if we can optimize any arguments passed through the varargs area of
    947     // the call.
    948     for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
    949            E = CS.arg_end(); I != E; ++I, ++ix) {
    950       CastInst *CI = dyn_cast<CastInst>(*I);
    951       if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
    952         *I = CI->getOperand(0);
    953         Changed = true;
    954       }
    955     }
    956   }
    957 
    958   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
    959     // Inline asm calls cannot throw - mark them 'nounwind'.
    960     CS.setDoesNotThrow();
    961     Changed = true;
    962   }
    963 
    964   // Try to optimize the call if possible, we require TargetData for most of
    965   // this.  None of these calls are seen as possibly dead so go ahead and
    966   // delete the instruction now.
    967   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
    968     Instruction *I = tryOptimizeCall(CI, TD);
    969     // If we changed something return the result, etc. Otherwise let
    970     // the fallthrough check.
    971     if (I) return EraseInstFromFunction(*I);
    972   }
    973 
    974   return Changed ? CS.getInstruction() : 0;
    975 }
    976 
    977 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
    978 // attempt to move the cast to the arguments of the call/invoke.
    979 //
    980 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
    981   Function *Callee =
    982     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
    983   if (Callee == 0)
    984     return false;
    985   Instruction *Caller = CS.getInstruction();
    986   const AttrListPtr &CallerPAL = CS.getAttributes();
    987 
    988   // Okay, this is a cast from a function to a different type.  Unless doing so
    989   // would cause a type conversion of one of our arguments, change this call to
    990   // be a direct call with arguments casted to the appropriate types.
    991   //
    992   FunctionType *FT = Callee->getFunctionType();
    993   Type *OldRetTy = Caller->getType();
    994   Type *NewRetTy = FT->getReturnType();
    995 
    996   if (NewRetTy->isStructTy())
    997     return false; // TODO: Handle multiple return values.
    998 
    999   // Check to see if we are changing the return type...
   1000   if (OldRetTy != NewRetTy) {
   1001     if (Callee->isDeclaration() &&
   1002         // Conversion is ok if changing from one pointer type to another or from
   1003         // a pointer to an integer of the same size.
   1004         !((OldRetTy->isPointerTy() || !TD ||
   1005            OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
   1006           (NewRetTy->isPointerTy() || !TD ||
   1007            NewRetTy == TD->getIntPtrType(Caller->getContext()))))
   1008       return false;   // Cannot transform this return value.
   1009 
   1010     if (!Caller->use_empty() &&
   1011         // void -> non-void is handled specially
   1012         !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
   1013       return false;   // Cannot transform this return value.
   1014 
   1015     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
   1016       Attributes RAttrs = CallerPAL.getRetAttributes();
   1017       if (RAttrs & Attribute::typeIncompatible(NewRetTy))
   1018         return false;   // Attribute not compatible with transformed value.
   1019     }
   1020 
   1021     // If the callsite is an invoke instruction, and the return value is used by
   1022     // a PHI node in a successor, we cannot change the return type of the call
   1023     // because there is no place to put the cast instruction (without breaking
   1024     // the critical edge).  Bail out in this case.
   1025     if (!Caller->use_empty())
   1026       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
   1027         for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
   1028              UI != E; ++UI)
   1029           if (PHINode *PN = dyn_cast<PHINode>(*UI))
   1030             if (PN->getParent() == II->getNormalDest() ||
   1031                 PN->getParent() == II->getUnwindDest())
   1032               return false;
   1033   }
   1034 
   1035   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
   1036   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
   1037 
   1038   CallSite::arg_iterator AI = CS.arg_begin();
   1039   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
   1040     Type *ParamTy = FT->getParamType(i);
   1041     Type *ActTy = (*AI)->getType();
   1042 
   1043     if (!CastInst::isCastable(ActTy, ParamTy))
   1044       return false;   // Cannot transform this parameter value.
   1045 
   1046     Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
   1047     if (Attrs & Attribute::typeIncompatible(ParamTy))
   1048       return false;   // Attribute not compatible with transformed value.
   1049 
   1050     // If the parameter is passed as a byval argument, then we have to have a
   1051     // sized type and the sized type has to have the same size as the old type.
   1052     if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
   1053       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
   1054       if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
   1055         return false;
   1056 
   1057       Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
   1058       if (TD->getTypeAllocSize(CurElTy) !=
   1059           TD->getTypeAllocSize(ParamPTy->getElementType()))
   1060         return false;
   1061     }
   1062 
   1063     // Converting from one pointer type to another or between a pointer and an
   1064     // integer of the same size is safe even if we do not have a body.
   1065     bool isConvertible = ActTy == ParamTy ||
   1066       (TD && ((ParamTy->isPointerTy() ||
   1067       ParamTy == TD->getIntPtrType(Caller->getContext())) &&
   1068               (ActTy->isPointerTy() ||
   1069               ActTy == TD->getIntPtrType(Caller->getContext()))));
   1070     if (Callee->isDeclaration() && !isConvertible) return false;
   1071   }
   1072 
   1073   if (Callee->isDeclaration()) {
   1074     // Do not delete arguments unless we have a function body.
   1075     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
   1076       return false;
   1077 
   1078     // If the callee is just a declaration, don't change the varargsness of the
   1079     // call.  We don't want to introduce a varargs call where one doesn't
   1080     // already exist.
   1081     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
   1082     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
   1083       return false;
   1084 
   1085     // If both the callee and the cast type are varargs, we still have to make
   1086     // sure the number of fixed parameters are the same or we have the same
   1087     // ABI issues as if we introduce a varargs call.
   1088     if (FT->isVarArg() &&
   1089         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
   1090         FT->getNumParams() !=
   1091         cast<FunctionType>(APTy->getElementType())->getNumParams())
   1092       return false;
   1093   }
   1094 
   1095   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
   1096       !CallerPAL.isEmpty())
   1097     // In this case we have more arguments than the new function type, but we
   1098     // won't be dropping them.  Check that these extra arguments have attributes
   1099     // that are compatible with being a vararg call argument.
   1100     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
   1101       if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
   1102         break;
   1103       Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
   1104       if (PAttrs & Attribute::VarArgsIncompatible)
   1105         return false;
   1106     }
   1107 
   1108 
   1109   // Okay, we decided that this is a safe thing to do: go ahead and start
   1110   // inserting cast instructions as necessary.
   1111   std::vector<Value*> Args;
   1112   Args.reserve(NumActualArgs);
   1113   SmallVector<AttributeWithIndex, 8> attrVec;
   1114   attrVec.reserve(NumCommonArgs);
   1115 
   1116   // Get any return attributes.
   1117   Attributes RAttrs = CallerPAL.getRetAttributes();
   1118 
   1119   // If the return value is not being used, the type may not be compatible
   1120   // with the existing attributes.  Wipe out any problematic attributes.
   1121   RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
   1122 
   1123   // Add the new return attributes.
   1124   if (RAttrs)
   1125     attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
   1126 
   1127   AI = CS.arg_begin();
   1128   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
   1129     Type *ParamTy = FT->getParamType(i);
   1130     if ((*AI)->getType() == ParamTy) {
   1131       Args.push_back(*AI);
   1132     } else {
   1133       Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
   1134           false, ParamTy, false);
   1135       Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
   1136     }
   1137 
   1138     // Add any parameter attributes.
   1139     if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
   1140       attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
   1141   }
   1142 
   1143   // If the function takes more arguments than the call was taking, add them
   1144   // now.
   1145   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
   1146     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
   1147 
   1148   // If we are removing arguments to the function, emit an obnoxious warning.
   1149   if (FT->getNumParams() < NumActualArgs) {
   1150     if (!FT->isVarArg()) {
   1151       errs() << "WARNING: While resolving call to function '"
   1152              << Callee->getName() << "' arguments were dropped!\n";
   1153     } else {
   1154       // Add all of the arguments in their promoted form to the arg list.
   1155       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
   1156         Type *PTy = getPromotedType((*AI)->getType());
   1157         if (PTy != (*AI)->getType()) {
   1158           // Must promote to pass through va_arg area!
   1159           Instruction::CastOps opcode =
   1160             CastInst::getCastOpcode(*AI, false, PTy, false);
   1161           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
   1162         } else {
   1163           Args.push_back(*AI);
   1164         }
   1165 
   1166         // Add any parameter attributes.
   1167         if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
   1168           attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
   1169       }
   1170     }
   1171   }
   1172 
   1173   if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
   1174     attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
   1175 
   1176   if (NewRetTy->isVoidTy())
   1177     Caller->setName("");   // Void type should not have a name.
   1178 
   1179   const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec);
   1180 
   1181   Instruction *NC;
   1182   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1183     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
   1184                                II->getUnwindDest(), Args);
   1185     NC->takeName(II);
   1186     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
   1187     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
   1188   } else {
   1189     CallInst *CI = cast<CallInst>(Caller);
   1190     NC = Builder->CreateCall(Callee, Args);
   1191     NC->takeName(CI);
   1192     if (CI->isTailCall())
   1193       cast<CallInst>(NC)->setTailCall();
   1194     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
   1195     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
   1196   }
   1197 
   1198   // Insert a cast of the return type as necessary.
   1199   Value *NV = NC;
   1200   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
   1201     if (!NV->getType()->isVoidTy()) {
   1202       Instruction::CastOps opcode =
   1203         CastInst::getCastOpcode(NC, false, OldRetTy, false);
   1204       NV = NC = CastInst::Create(opcode, NC, OldRetTy);
   1205       NC->setDebugLoc(Caller->getDebugLoc());
   1206 
   1207       // If this is an invoke instruction, we should insert it after the first
   1208       // non-phi, instruction in the normal successor block.
   1209       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1210         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
   1211         InsertNewInstBefore(NC, *I);
   1212       } else {
   1213         // Otherwise, it's a call, just insert cast right after the call.
   1214         InsertNewInstBefore(NC, *Caller);
   1215       }
   1216       Worklist.AddUsersToWorkList(*Caller);
   1217     } else {
   1218       NV = UndefValue::get(Caller->getType());
   1219     }
   1220   }
   1221 
   1222   if (!Caller->use_empty())
   1223     ReplaceInstUsesWith(*Caller, NV);
   1224 
   1225   EraseInstFromFunction(*Caller);
   1226   return true;
   1227 }
   1228 
   1229 // transformCallThroughTrampoline - Turn a call to a function created by
   1230 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
   1231 // underlying function.
   1232 //
   1233 Instruction *
   1234 InstCombiner::transformCallThroughTrampoline(CallSite CS,
   1235                                              IntrinsicInst *Tramp) {
   1236   Value *Callee = CS.getCalledValue();
   1237   PointerType *PTy = cast<PointerType>(Callee->getType());
   1238   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1239   const AttrListPtr &Attrs = CS.getAttributes();
   1240 
   1241   // If the call already has the 'nest' attribute somewhere then give up -
   1242   // otherwise 'nest' would occur twice after splicing in the chain.
   1243   if (Attrs.hasAttrSomewhere(Attribute::Nest))
   1244     return 0;
   1245 
   1246   assert(Tramp &&
   1247          "transformCallThroughTrampoline called with incorrect CallSite.");
   1248 
   1249   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
   1250   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
   1251   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
   1252 
   1253   const AttrListPtr &NestAttrs = NestF->getAttributes();
   1254   if (!NestAttrs.isEmpty()) {
   1255     unsigned NestIdx = 1;
   1256     Type *NestTy = 0;
   1257     Attributes NestAttr = Attribute::None;
   1258 
   1259     // Look for a parameter marked with the 'nest' attribute.
   1260     for (FunctionType::param_iterator I = NestFTy->param_begin(),
   1261          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
   1262       if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
   1263         // Record the parameter type and any other attributes.
   1264         NestTy = *I;
   1265         NestAttr = NestAttrs.getParamAttributes(NestIdx);
   1266         break;
   1267       }
   1268 
   1269     if (NestTy) {
   1270       Instruction *Caller = CS.getInstruction();
   1271       std::vector<Value*> NewArgs;
   1272       NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
   1273 
   1274       SmallVector<AttributeWithIndex, 8> NewAttrs;
   1275       NewAttrs.reserve(Attrs.getNumSlots() + 1);
   1276 
   1277       // Insert the nest argument into the call argument list, which may
   1278       // mean appending it.  Likewise for attributes.
   1279 
   1280       // Add any result attributes.
   1281       if (Attributes Attr = Attrs.getRetAttributes())
   1282         NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
   1283 
   1284       {
   1285         unsigned Idx = 1;
   1286         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   1287         do {
   1288           if (Idx == NestIdx) {
   1289             // Add the chain argument and attributes.
   1290             Value *NestVal = Tramp->getArgOperand(2);
   1291             if (NestVal->getType() != NestTy)
   1292               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
   1293             NewArgs.push_back(NestVal);
   1294             NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
   1295           }
   1296 
   1297           if (I == E)
   1298             break;
   1299 
   1300           // Add the original argument and attributes.
   1301           NewArgs.push_back(*I);
   1302           if (Attributes Attr = Attrs.getParamAttributes(Idx))
   1303             NewAttrs.push_back
   1304               (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
   1305 
   1306           ++Idx, ++I;
   1307         } while (1);
   1308       }
   1309 
   1310       // Add any function attributes.
   1311       if (Attributes Attr = Attrs.getFnAttributes())
   1312         NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
   1313 
   1314       // The trampoline may have been bitcast to a bogus type (FTy).
   1315       // Handle this by synthesizing a new function type, equal to FTy
   1316       // with the chain parameter inserted.
   1317 
   1318       std::vector<Type*> NewTypes;
   1319       NewTypes.reserve(FTy->getNumParams()+1);
   1320 
   1321       // Insert the chain's type into the list of parameter types, which may
   1322       // mean appending it.
   1323       {
   1324         unsigned Idx = 1;
   1325         FunctionType::param_iterator I = FTy->param_begin(),
   1326           E = FTy->param_end();
   1327 
   1328         do {
   1329           if (Idx == NestIdx)
   1330             // Add the chain's type.
   1331             NewTypes.push_back(NestTy);
   1332 
   1333           if (I == E)
   1334             break;
   1335 
   1336           // Add the original type.
   1337           NewTypes.push_back(*I);
   1338 
   1339           ++Idx, ++I;
   1340         } while (1);
   1341       }
   1342 
   1343       // Replace the trampoline call with a direct call.  Let the generic
   1344       // code sort out any function type mismatches.
   1345       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
   1346                                                 FTy->isVarArg());
   1347       Constant *NewCallee =
   1348         NestF->getType() == PointerType::getUnqual(NewFTy) ?
   1349         NestF : ConstantExpr::getBitCast(NestF,
   1350                                          PointerType::getUnqual(NewFTy));
   1351       const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs);
   1352 
   1353       Instruction *NewCaller;
   1354       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1355         NewCaller = InvokeInst::Create(NewCallee,
   1356                                        II->getNormalDest(), II->getUnwindDest(),
   1357                                        NewArgs);
   1358         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
   1359         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
   1360       } else {
   1361         NewCaller = CallInst::Create(NewCallee, NewArgs);
   1362         if (cast<CallInst>(Caller)->isTailCall())
   1363           cast<CallInst>(NewCaller)->setTailCall();
   1364         cast<CallInst>(NewCaller)->
   1365           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
   1366         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
   1367       }
   1368 
   1369       return NewCaller;
   1370     }
   1371   }
   1372 
   1373   // Replace the trampoline call with a direct call.  Since there is no 'nest'
   1374   // parameter, there is no need to adjust the argument list.  Let the generic
   1375   // code sort out any function type mismatches.
   1376   Constant *NewCallee =
   1377     NestF->getType() == PTy ? NestF :
   1378                               ConstantExpr::getBitCast(NestF, PTy);
   1379   CS.setCalledFunction(NewCallee);
   1380   return CS.getInstruction();
   1381 }
   1382