Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
     11 // srem, urem, frem.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombine.h"
     16 #include "llvm/IntrinsicInst.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 
     23 /// simplifyValueKnownNonZero - The specific integer value is used in a context
     24 /// where it is known to be non-zero.  If this allows us to simplify the
     25 /// computation, do so and return the new operand, otherwise return null.
     26 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
     27   // If V has multiple uses, then we would have to do more analysis to determine
     28   // if this is safe.  For example, the use could be in dynamically unreached
     29   // code.
     30   if (!V->hasOneUse()) return 0;
     31 
     32   bool MadeChange = false;
     33 
     34   // ((1 << A) >>u B) --> (1 << (A-B))
     35   // Because V cannot be zero, we know that B is less than A.
     36   Value *A = 0, *B = 0, *PowerOf2 = 0;
     37   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
     38                       m_Value(B))) &&
     39       // The "1" can be any value known to be a power of 2.
     40       isPowerOfTwo(PowerOf2, IC.getTargetData())) {
     41     A = IC.Builder->CreateSub(A, B);
     42     return IC.Builder->CreateShl(PowerOf2, A);
     43   }
     44 
     45   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
     46   // inexact.  Similarly for <<.
     47   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
     48     if (I->isLogicalShift() &&
     49         isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
     50       // We know that this is an exact/nuw shift and that the input is a
     51       // non-zero context as well.
     52       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
     53         I->setOperand(0, V2);
     54         MadeChange = true;
     55       }
     56 
     57       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
     58         I->setIsExact();
     59         MadeChange = true;
     60       }
     61 
     62       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
     63         I->setHasNoUnsignedWrap();
     64         MadeChange = true;
     65       }
     66     }
     67 
     68   // TODO: Lots more we could do here:
     69   //    If V is a phi node, we can call this on each of its operands.
     70   //    "select cond, X, 0" can simplify to "X".
     71 
     72   return MadeChange ? V : 0;
     73 }
     74 
     75 
     76 /// MultiplyOverflows - True if the multiply can not be expressed in an int
     77 /// this size.
     78 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
     79   uint32_t W = C1->getBitWidth();
     80   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
     81   if (sign) {
     82     LHSExt = LHSExt.sext(W * 2);
     83     RHSExt = RHSExt.sext(W * 2);
     84   } else {
     85     LHSExt = LHSExt.zext(W * 2);
     86     RHSExt = RHSExt.zext(W * 2);
     87   }
     88 
     89   APInt MulExt = LHSExt * RHSExt;
     90 
     91   if (!sign)
     92     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
     93 
     94   APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
     95   APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
     96   return MulExt.slt(Min) || MulExt.sgt(Max);
     97 }
     98 
     99 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
    100   bool Changed = SimplifyAssociativeOrCommutative(I);
    101   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    102 
    103   if (Value *V = SimplifyMulInst(Op0, Op1, TD))
    104     return ReplaceInstUsesWith(I, V);
    105 
    106   if (Value *V = SimplifyUsingDistributiveLaws(I))
    107     return ReplaceInstUsesWith(I, V);
    108 
    109   if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
    110     return BinaryOperator::CreateNeg(Op0, I.getName());
    111 
    112   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    113 
    114     // ((X << C1)*C2) == (X * (C2 << C1))
    115     if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
    116       if (SI->getOpcode() == Instruction::Shl)
    117         if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
    118           return BinaryOperator::CreateMul(SI->getOperand(0),
    119                                            ConstantExpr::getShl(CI, ShOp));
    120 
    121     const APInt &Val = CI->getValue();
    122     if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
    123       Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
    124       BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
    125       if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
    126       if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
    127       return Shl;
    128     }
    129 
    130     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
    131     { Value *X; ConstantInt *C1;
    132       if (Op0->hasOneUse() &&
    133           match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
    134         Value *Add = Builder->CreateMul(X, CI);
    135         return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
    136       }
    137     }
    138 
    139     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
    140     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
    141     // The "* (2**n)" thus becomes a potential shifting opportunity.
    142     {
    143       const APInt &   Val = CI->getValue();
    144       const APInt &PosVal = Val.abs();
    145       if (Val.isNegative() && PosVal.isPowerOf2()) {
    146         Value *X = 0, *Y = 0;
    147         if (Op0->hasOneUse()) {
    148           ConstantInt *C1;
    149           Value *Sub = 0;
    150           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
    151             Sub = Builder->CreateSub(X, Y, "suba");
    152           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
    153             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
    154           if (Sub)
    155             return
    156               BinaryOperator::CreateMul(Sub,
    157                                         ConstantInt::get(Y->getType(), PosVal));
    158         }
    159       }
    160     }
    161   }
    162 
    163   // Simplify mul instructions with a constant RHS.
    164   if (isa<Constant>(Op1)) {
    165     // Try to fold constant mul into select arguments.
    166     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    167       if (Instruction *R = FoldOpIntoSelect(I, SI))
    168         return R;
    169 
    170     if (isa<PHINode>(Op0))
    171       if (Instruction *NV = FoldOpIntoPhi(I))
    172         return NV;
    173   }
    174 
    175   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    176     if (Value *Op1v = dyn_castNegVal(Op1))
    177       return BinaryOperator::CreateMul(Op0v, Op1v);
    178 
    179   // (X / Y) *  Y = X - (X % Y)
    180   // (X / Y) * -Y = (X % Y) - X
    181   {
    182     Value *Op1C = Op1;
    183     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
    184     if (!BO ||
    185         (BO->getOpcode() != Instruction::UDiv &&
    186          BO->getOpcode() != Instruction::SDiv)) {
    187       Op1C = Op0;
    188       BO = dyn_cast<BinaryOperator>(Op1);
    189     }
    190     Value *Neg = dyn_castNegVal(Op1C);
    191     if (BO && BO->hasOneUse() &&
    192         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
    193         (BO->getOpcode() == Instruction::UDiv ||
    194          BO->getOpcode() == Instruction::SDiv)) {
    195       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
    196 
    197       // If the division is exact, X % Y is zero, so we end up with X or -X.
    198       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
    199         if (SDiv->isExact()) {
    200           if (Op1BO == Op1C)
    201             return ReplaceInstUsesWith(I, Op0BO);
    202           return BinaryOperator::CreateNeg(Op0BO);
    203         }
    204 
    205       Value *Rem;
    206       if (BO->getOpcode() == Instruction::UDiv)
    207         Rem = Builder->CreateURem(Op0BO, Op1BO);
    208       else
    209         Rem = Builder->CreateSRem(Op0BO, Op1BO);
    210       Rem->takeName(BO);
    211 
    212       if (Op1BO == Op1C)
    213         return BinaryOperator::CreateSub(Op0BO, Rem);
    214       return BinaryOperator::CreateSub(Rem, Op0BO);
    215     }
    216   }
    217 
    218   /// i1 mul -> i1 and.
    219   if (I.getType()->isIntegerTy(1))
    220     return BinaryOperator::CreateAnd(Op0, Op1);
    221 
    222   // X*(1 << Y) --> X << Y
    223   // (1 << Y)*X --> X << Y
    224   {
    225     Value *Y;
    226     if (match(Op0, m_Shl(m_One(), m_Value(Y))))
    227       return BinaryOperator::CreateShl(Op1, Y);
    228     if (match(Op1, m_Shl(m_One(), m_Value(Y))))
    229       return BinaryOperator::CreateShl(Op0, Y);
    230   }
    231 
    232   // If one of the operands of the multiply is a cast from a boolean value, then
    233   // we know the bool is either zero or one, so this is a 'masking' multiply.
    234   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
    235   if (!I.getType()->isVectorTy()) {
    236     // -2 is "-1 << 1" so it is all bits set except the low one.
    237     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
    238 
    239     Value *BoolCast = 0, *OtherOp = 0;
    240     if (MaskedValueIsZero(Op0, Negative2))
    241       BoolCast = Op0, OtherOp = Op1;
    242     else if (MaskedValueIsZero(Op1, Negative2))
    243       BoolCast = Op1, OtherOp = Op0;
    244 
    245     if (BoolCast) {
    246       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
    247                                     BoolCast);
    248       return BinaryOperator::CreateAnd(V, OtherOp);
    249     }
    250   }
    251 
    252   return Changed ? &I : 0;
    253 }
    254 
    255 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
    256   bool Changed = SimplifyAssociativeOrCommutative(I);
    257   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    258 
    259   // Simplify mul instructions with a constant RHS.
    260   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
    261     if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
    262       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
    263       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
    264       if (Op1F->isExactlyValue(1.0))
    265         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'fmul double %X, 1.0'
    266     } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
    267       // As above, vector X*splat(1.0) -> X in all defined cases.
    268       if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
    269         if (F->isExactlyValue(1.0))
    270           return ReplaceInstUsesWith(I, Op0);
    271     }
    272 
    273     // Try to fold constant mul into select arguments.
    274     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    275       if (Instruction *R = FoldOpIntoSelect(I, SI))
    276         return R;
    277 
    278     if (isa<PHINode>(Op0))
    279       if (Instruction *NV = FoldOpIntoPhi(I))
    280         return NV;
    281   }
    282 
    283   if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
    284     if (Value *Op1v = dyn_castFNegVal(Op1))
    285       return BinaryOperator::CreateFMul(Op0v, Op1v);
    286 
    287   return Changed ? &I : 0;
    288 }
    289 
    290 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
    291 /// instruction.
    292 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
    293   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
    294 
    295   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
    296   int NonNullOperand = -1;
    297   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
    298     if (ST->isNullValue())
    299       NonNullOperand = 2;
    300   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
    301   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
    302     if (ST->isNullValue())
    303       NonNullOperand = 1;
    304 
    305   if (NonNullOperand == -1)
    306     return false;
    307 
    308   Value *SelectCond = SI->getOperand(0);
    309 
    310   // Change the div/rem to use 'Y' instead of the select.
    311   I.setOperand(1, SI->getOperand(NonNullOperand));
    312 
    313   // Okay, we know we replace the operand of the div/rem with 'Y' with no
    314   // problem.  However, the select, or the condition of the select may have
    315   // multiple uses.  Based on our knowledge that the operand must be non-zero,
    316   // propagate the known value for the select into other uses of it, and
    317   // propagate a known value of the condition into its other users.
    318 
    319   // If the select and condition only have a single use, don't bother with this,
    320   // early exit.
    321   if (SI->use_empty() && SelectCond->hasOneUse())
    322     return true;
    323 
    324   // Scan the current block backward, looking for other uses of SI.
    325   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
    326 
    327   while (BBI != BBFront) {
    328     --BBI;
    329     // If we found a call to a function, we can't assume it will return, so
    330     // information from below it cannot be propagated above it.
    331     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
    332       break;
    333 
    334     // Replace uses of the select or its condition with the known values.
    335     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
    336          I != E; ++I) {
    337       if (*I == SI) {
    338         *I = SI->getOperand(NonNullOperand);
    339         Worklist.Add(BBI);
    340       } else if (*I == SelectCond) {
    341         *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
    342                                    ConstantInt::getFalse(BBI->getContext());
    343         Worklist.Add(BBI);
    344       }
    345     }
    346 
    347     // If we past the instruction, quit looking for it.
    348     if (&*BBI == SI)
    349       SI = 0;
    350     if (&*BBI == SelectCond)
    351       SelectCond = 0;
    352 
    353     // If we ran out of things to eliminate, break out of the loop.
    354     if (SelectCond == 0 && SI == 0)
    355       break;
    356 
    357   }
    358   return true;
    359 }
    360 
    361 
    362 /// This function implements the transforms common to both integer division
    363 /// instructions (udiv and sdiv). It is called by the visitors to those integer
    364 /// division instructions.
    365 /// @brief Common integer divide transforms
    366 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
    367   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    368 
    369   // The RHS is known non-zero.
    370   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
    371     I.setOperand(1, V);
    372     return &I;
    373   }
    374 
    375   // Handle cases involving: [su]div X, (select Cond, Y, Z)
    376   // This does not apply for fdiv.
    377   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    378     return &I;
    379 
    380   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    381     // (X / C1) / C2  -> X / (C1*C2)
    382     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
    383       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
    384         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
    385           if (MultiplyOverflows(RHS, LHSRHS,
    386                                 I.getOpcode()==Instruction::SDiv))
    387             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
    388           return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
    389                                         ConstantExpr::getMul(RHS, LHSRHS));
    390         }
    391 
    392     if (!RHS->isZero()) { // avoid X udiv 0
    393       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    394         if (Instruction *R = FoldOpIntoSelect(I, SI))
    395           return R;
    396       if (isa<PHINode>(Op0))
    397         if (Instruction *NV = FoldOpIntoPhi(I))
    398           return NV;
    399     }
    400   }
    401 
    402   // See if we can fold away this div instruction.
    403   if (SimplifyDemandedInstructionBits(I))
    404     return &I;
    405 
    406   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
    407   Value *X = 0, *Z = 0;
    408   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
    409     bool isSigned = I.getOpcode() == Instruction::SDiv;
    410     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
    411         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
    412       return BinaryOperator::Create(I.getOpcode(), X, Op1);
    413   }
    414 
    415   return 0;
    416 }
    417 
    418 /// dyn_castZExtVal - Checks if V is a zext or constant that can
    419 /// be truncated to Ty without losing bits.
    420 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
    421   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
    422     if (Z->getSrcTy() == Ty)
    423       return Z->getOperand(0);
    424   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
    425     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
    426       return ConstantExpr::getTrunc(C, Ty);
    427   }
    428   return 0;
    429 }
    430 
    431 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
    432   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    433 
    434   if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
    435     return ReplaceInstUsesWith(I, V);
    436 
    437   // Handle the integer div common cases
    438   if (Instruction *Common = commonIDivTransforms(I))
    439     return Common;
    440 
    441   {
    442     // X udiv 2^C -> X >> C
    443     // Check to see if this is an unsigned division with an exact power of 2,
    444     // if so, convert to a right shift.
    445     const APInt *C;
    446     if (match(Op1, m_Power2(C))) {
    447       BinaryOperator *LShr =
    448       BinaryOperator::CreateLShr(Op0,
    449                                  ConstantInt::get(Op0->getType(),
    450                                                   C->logBase2()));
    451       if (I.isExact()) LShr->setIsExact();
    452       return LShr;
    453     }
    454   }
    455 
    456   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
    457     // X udiv C, where C >= signbit
    458     if (C->getValue().isNegative()) {
    459       Value *IC = Builder->CreateICmpULT(Op0, C);
    460       return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
    461                                 ConstantInt::get(I.getType(), 1));
    462     }
    463   }
    464 
    465   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
    466   if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
    467     Value *X;
    468     ConstantInt *C1;
    469     if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
    470       APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
    471       return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
    472     }
    473   }
    474 
    475   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    476   { const APInt *CI; Value *N;
    477     if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
    478         match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
    479       if (*CI != 1)
    480         N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
    481       if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
    482         N = Builder->CreateZExt(N, Z->getDestTy());
    483       if (I.isExact())
    484         return BinaryOperator::CreateExactLShr(Op0, N);
    485       return BinaryOperator::CreateLShr(Op0, N);
    486     }
    487   }
    488 
    489   // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
    490   // where C1&C2 are powers of two.
    491   { Value *Cond; const APInt *C1, *C2;
    492     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
    493       // Construct the "on true" case of the select
    494       Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
    495                                        I.isExact());
    496 
    497       // Construct the "on false" case of the select
    498       Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
    499                                        I.isExact());
    500 
    501       // construct the select instruction and return it.
    502       return SelectInst::Create(Cond, TSI, FSI);
    503     }
    504   }
    505 
    506   // (zext A) udiv (zext B) --> zext (A udiv B)
    507   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
    508     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
    509       return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
    510                                               I.isExact()),
    511                           I.getType());
    512 
    513   return 0;
    514 }
    515 
    516 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
    517   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    518 
    519   if (Value *V = SimplifySDivInst(Op0, Op1, TD))
    520     return ReplaceInstUsesWith(I, V);
    521 
    522   // Handle the integer div common cases
    523   if (Instruction *Common = commonIDivTransforms(I))
    524     return Common;
    525 
    526   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
    527     // sdiv X, -1 == -X
    528     if (RHS->isAllOnesValue())
    529       return BinaryOperator::CreateNeg(Op0);
    530 
    531     // sdiv X, C  -->  ashr exact X, log2(C)
    532     if (I.isExact() && RHS->getValue().isNonNegative() &&
    533         RHS->getValue().isPowerOf2()) {
    534       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
    535                                             RHS->getValue().exactLogBase2());
    536       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
    537     }
    538 
    539     // -X/C  -->  X/-C  provided the negation doesn't overflow.
    540     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
    541       if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
    542         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
    543                                           ConstantExpr::getNeg(RHS));
    544   }
    545 
    546   // If the sign bits of both operands are zero (i.e. we can prove they are
    547   // unsigned inputs), turn this into a udiv.
    548   if (I.getType()->isIntegerTy()) {
    549     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
    550     if (MaskedValueIsZero(Op0, Mask)) {
    551       if (MaskedValueIsZero(Op1, Mask)) {
    552         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
    553         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
    554       }
    555 
    556       if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
    557         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
    558         // Safe because the only negative value (1 << Y) can take on is
    559         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
    560         // the sign bit set.
    561         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
    562       }
    563     }
    564   }
    565 
    566   return 0;
    567 }
    568 
    569 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
    570   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    571 
    572   if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
    573     return ReplaceInstUsesWith(I, V);
    574 
    575   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
    576     const APFloat &Op1F = Op1C->getValueAPF();
    577 
    578     // If the divisor has an exact multiplicative inverse we can turn the fdiv
    579     // into a cheaper fmul.
    580     APFloat Reciprocal(Op1F.getSemantics());
    581     if (Op1F.getExactInverse(&Reciprocal)) {
    582       ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
    583       return BinaryOperator::CreateFMul(Op0, RFP);
    584     }
    585   }
    586 
    587   return 0;
    588 }
    589 
    590 /// This function implements the transforms common to both integer remainder
    591 /// instructions (urem and srem). It is called by the visitors to those integer
    592 /// remainder instructions.
    593 /// @brief Common integer remainder transforms
    594 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
    595   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    596 
    597   // The RHS is known non-zero.
    598   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
    599     I.setOperand(1, V);
    600     return &I;
    601   }
    602 
    603   // Handle cases involving: rem X, (select Cond, Y, Z)
    604   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    605     return &I;
    606 
    607   if (isa<ConstantInt>(Op1)) {
    608     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
    609       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
    610         if (Instruction *R = FoldOpIntoSelect(I, SI))
    611           return R;
    612       } else if (isa<PHINode>(Op0I)) {
    613         if (Instruction *NV = FoldOpIntoPhi(I))
    614           return NV;
    615       }
    616 
    617       // See if we can fold away this rem instruction.
    618       if (SimplifyDemandedInstructionBits(I))
    619         return &I;
    620     }
    621   }
    622 
    623   return 0;
    624 }
    625 
    626 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
    627   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    628 
    629   if (Value *V = SimplifyURemInst(Op0, Op1, TD))
    630     return ReplaceInstUsesWith(I, V);
    631 
    632   if (Instruction *common = commonIRemTransforms(I))
    633     return common;
    634 
    635   // X urem C^2 -> X and C-1
    636   { const APInt *C;
    637     if (match(Op1, m_Power2(C)))
    638       return BinaryOperator::CreateAnd(Op0,
    639                                        ConstantInt::get(I.getType(), *C-1));
    640   }
    641 
    642   // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
    643   if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
    644     Constant *N1 = Constant::getAllOnesValue(I.getType());
    645     Value *Add = Builder->CreateAdd(Op1, N1);
    646     return BinaryOperator::CreateAnd(Op0, Add);
    647   }
    648 
    649   // urem X, (select Cond, 2^C1, 2^C2) -->
    650   //    select Cond, (and X, C1-1), (and X, C2-1)
    651   // when C1&C2 are powers of two.
    652   { Value *Cond; const APInt *C1, *C2;
    653     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
    654       Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
    655       Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
    656       return SelectInst::Create(Cond, TrueAnd, FalseAnd);
    657     }
    658   }
    659 
    660   // (zext A) urem (zext B) --> zext (A urem B)
    661   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
    662     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
    663       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
    664                           I.getType());
    665 
    666   return 0;
    667 }
    668 
    669 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
    670   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    671 
    672   if (Value *V = SimplifySRemInst(Op0, Op1, TD))
    673     return ReplaceInstUsesWith(I, V);
    674 
    675   // Handle the integer rem common cases
    676   if (Instruction *Common = commonIRemTransforms(I))
    677     return Common;
    678 
    679   if (Value *RHSNeg = dyn_castNegVal(Op1))
    680     if (!isa<Constant>(RHSNeg) ||
    681         (isa<ConstantInt>(RHSNeg) &&
    682          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
    683       // X % -Y -> X % Y
    684       Worklist.AddValue(I.getOperand(1));
    685       I.setOperand(1, RHSNeg);
    686       return &I;
    687     }
    688 
    689   // If the sign bits of both operands are zero (i.e. we can prove they are
    690   // unsigned inputs), turn this into a urem.
    691   if (I.getType()->isIntegerTy()) {
    692     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
    693     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
    694       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
    695       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
    696     }
    697   }
    698 
    699   // If it's a constant vector, flip any negative values positive.
    700   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
    701     Constant *C = cast<Constant>(Op1);
    702     unsigned VWidth = C->getType()->getVectorNumElements();
    703 
    704     bool hasNegative = false;
    705     bool hasMissing = false;
    706     for (unsigned i = 0; i != VWidth; ++i) {
    707       Constant *Elt = C->getAggregateElement(i);
    708       if (Elt == 0) {
    709         hasMissing = true;
    710         break;
    711       }
    712 
    713       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
    714         if (RHS->isNegative())
    715           hasNegative = true;
    716     }
    717 
    718     if (hasNegative && !hasMissing) {
    719       SmallVector<Constant *, 16> Elts(VWidth);
    720       for (unsigned i = 0; i != VWidth; ++i) {
    721         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
    722         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
    723           if (RHS->isNegative())
    724             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
    725         }
    726       }
    727 
    728       Constant *NewRHSV = ConstantVector::get(Elts);
    729       if (NewRHSV != C) {  // Don't loop on -MININT
    730         Worklist.AddValue(I.getOperand(1));
    731         I.setOperand(1, NewRHSV);
    732         return &I;
    733       }
    734     }
    735   }
    736 
    737   return 0;
    738 }
    739 
    740 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
    741   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    742 
    743   if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
    744     return ReplaceInstUsesWith(I, V);
    745 
    746   // Handle cases involving: rem X, (select Cond, Y, Z)
    747   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    748     return &I;
    749 
    750   return 0;
    751 }
    752