Home | History | Annotate | Download | only in CodeGen
      1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The inline spiller modifies the machine function directly instead of
     11 // inserting spills and restores in VirtRegMap.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "Spiller.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/TinyPtrVector.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     21 #include "llvm/CodeGen/LiveRangeEdit.h"
     22 #include "llvm/CodeGen/LiveStackAnalysis.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBundle.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 
     36 using namespace llvm;
     37 
     38 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
     39 STATISTIC(NumSnippets,        "Number of spilled snippets");
     40 STATISTIC(NumSpills,          "Number of spills inserted");
     41 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
     42 STATISTIC(NumReloads,         "Number of reloads inserted");
     43 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
     44 STATISTIC(NumFolded,          "Number of folded stack accesses");
     45 STATISTIC(NumFoldedLoads,     "Number of folded loads");
     46 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
     47 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
     48 STATISTIC(NumHoists,          "Number of hoisted spills");
     49 
     50 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
     51                                      cl::desc("Disable inline spill hoisting"));
     52 
     53 namespace {
     54 class InlineSpiller : public Spiller {
     55   MachineFunction &MF;
     56   LiveIntervals &LIS;
     57   LiveStacks &LSS;
     58   AliasAnalysis *AA;
     59   MachineDominatorTree &MDT;
     60   MachineLoopInfo &Loops;
     61   VirtRegMap &VRM;
     62   MachineFrameInfo &MFI;
     63   MachineRegisterInfo &MRI;
     64   const TargetInstrInfo &TII;
     65   const TargetRegisterInfo &TRI;
     66 
     67   // Variables that are valid during spill(), but used by multiple methods.
     68   LiveRangeEdit *Edit;
     69   LiveInterval *StackInt;
     70   int StackSlot;
     71   unsigned Original;
     72 
     73   // All registers to spill to StackSlot, including the main register.
     74   SmallVector<unsigned, 8> RegsToSpill;
     75 
     76   // All COPY instructions to/from snippets.
     77   // They are ignored since both operands refer to the same stack slot.
     78   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
     79 
     80   // Values that failed to remat at some point.
     81   SmallPtrSet<VNInfo*, 8> UsedValues;
     82 
     83 public:
     84   // Information about a value that was defined by a copy from a sibling
     85   // register.
     86   struct SibValueInfo {
     87     // True when all reaching defs were reloads: No spill is necessary.
     88     bool AllDefsAreReloads;
     89 
     90     // True when value is defined by an original PHI not from splitting.
     91     bool DefByOrigPHI;
     92 
     93     // True when the COPY defining this value killed its source.
     94     bool KillsSource;
     95 
     96     // The preferred register to spill.
     97     unsigned SpillReg;
     98 
     99     // The value of SpillReg that should be spilled.
    100     VNInfo *SpillVNI;
    101 
    102     // The block where SpillVNI should be spilled. Currently, this must be the
    103     // block containing SpillVNI->def.
    104     MachineBasicBlock *SpillMBB;
    105 
    106     // A defining instruction that is not a sibling copy or a reload, or NULL.
    107     // This can be used as a template for rematerialization.
    108     MachineInstr *DefMI;
    109 
    110     // List of values that depend on this one.  These values are actually the
    111     // same, but live range splitting has placed them in different registers,
    112     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
    113     // copies of the current value and phi-kills.  Usually only phi-kills cause
    114     // more than one dependent value.
    115     TinyPtrVector<VNInfo*> Deps;
    116 
    117     SibValueInfo(unsigned Reg, VNInfo *VNI)
    118       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
    119         SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
    120 
    121     // Returns true when a def has been found.
    122     bool hasDef() const { return DefByOrigPHI || DefMI; }
    123   };
    124 
    125 private:
    126   // Values in RegsToSpill defined by sibling copies.
    127   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
    128   SibValueMap SibValues;
    129 
    130   // Dead defs generated during spilling.
    131   SmallVector<MachineInstr*, 8> DeadDefs;
    132 
    133   ~InlineSpiller() {}
    134 
    135 public:
    136   InlineSpiller(MachineFunctionPass &pass,
    137                 MachineFunction &mf,
    138                 VirtRegMap &vrm)
    139     : MF(mf),
    140       LIS(pass.getAnalysis<LiveIntervals>()),
    141       LSS(pass.getAnalysis<LiveStacks>()),
    142       AA(&pass.getAnalysis<AliasAnalysis>()),
    143       MDT(pass.getAnalysis<MachineDominatorTree>()),
    144       Loops(pass.getAnalysis<MachineLoopInfo>()),
    145       VRM(vrm),
    146       MFI(*mf.getFrameInfo()),
    147       MRI(mf.getRegInfo()),
    148       TII(*mf.getTarget().getInstrInfo()),
    149       TRI(*mf.getTarget().getRegisterInfo()) {}
    150 
    151   void spill(LiveRangeEdit &);
    152 
    153 private:
    154   bool isSnippet(const LiveInterval &SnipLI);
    155   void collectRegsToSpill();
    156 
    157   bool isRegToSpill(unsigned Reg) {
    158     return std::find(RegsToSpill.begin(),
    159                      RegsToSpill.end(), Reg) != RegsToSpill.end();
    160   }
    161 
    162   bool isSibling(unsigned Reg);
    163   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
    164   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
    165   void analyzeSiblingValues();
    166 
    167   bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
    168   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
    169 
    170   void markValueUsed(LiveInterval*, VNInfo*);
    171   bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
    172   void reMaterializeAll();
    173 
    174   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
    175   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
    176                          MachineInstr *LoadMI = 0);
    177   void insertReload(LiveInterval &NewLI, SlotIndex,
    178                     MachineBasicBlock::iterator MI);
    179   void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
    180                    SlotIndex, MachineBasicBlock::iterator MI);
    181 
    182   void spillAroundUses(unsigned Reg);
    183   void spillAll();
    184 };
    185 }
    186 
    187 namespace llvm {
    188 Spiller *createInlineSpiller(MachineFunctionPass &pass,
    189                              MachineFunction &mf,
    190                              VirtRegMap &vrm) {
    191   return new InlineSpiller(pass, mf, vrm);
    192 }
    193 }
    194 
    195 //===----------------------------------------------------------------------===//
    196 //                                Snippets
    197 //===----------------------------------------------------------------------===//
    198 
    199 // When spilling a virtual register, we also spill any snippets it is connected
    200 // to. The snippets are small live ranges that only have a single real use,
    201 // leftovers from live range splitting. Spilling them enables memory operand
    202 // folding or tightens the live range around the single use.
    203 //
    204 // This minimizes register pressure and maximizes the store-to-load distance for
    205 // spill slots which can be important in tight loops.
    206 
    207 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
    208 /// otherwise return 0.
    209 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
    210   if (!MI->isFullCopy())
    211     return 0;
    212   if (MI->getOperand(0).getReg() == Reg)
    213       return MI->getOperand(1).getReg();
    214   if (MI->getOperand(1).getReg() == Reg)
    215       return MI->getOperand(0).getReg();
    216   return 0;
    217 }
    218 
    219 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
    220 /// It is assumed that SnipLI is a virtual register with the same original as
    221 /// Edit->getReg().
    222 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
    223   unsigned Reg = Edit->getReg();
    224 
    225   // A snippet is a tiny live range with only a single instruction using it
    226   // besides copies to/from Reg or spills/fills. We accept:
    227   //
    228   //   %snip = COPY %Reg / FILL fi#
    229   //   %snip = USE %snip
    230   //   %Reg = COPY %snip / SPILL %snip, fi#
    231   //
    232   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    233     return false;
    234 
    235   MachineInstr *UseMI = 0;
    236 
    237   // Check that all uses satisfy our criteria.
    238   for (MachineRegisterInfo::reg_nodbg_iterator
    239          RI = MRI.reg_nodbg_begin(SnipLI.reg);
    240        MachineInstr *MI = RI.skipInstruction();) {
    241 
    242     // Allow copies to/from Reg.
    243     if (isFullCopyOf(MI, Reg))
    244       continue;
    245 
    246     // Allow stack slot loads.
    247     int FI;
    248     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
    249       continue;
    250 
    251     // Allow stack slot stores.
    252     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
    253       continue;
    254 
    255     // Allow a single additional instruction.
    256     if (UseMI && MI != UseMI)
    257       return false;
    258     UseMI = MI;
    259   }
    260   return true;
    261 }
    262 
    263 /// collectRegsToSpill - Collect live range snippets that only have a single
    264 /// real use.
    265 void InlineSpiller::collectRegsToSpill() {
    266   unsigned Reg = Edit->getReg();
    267 
    268   // Main register always spills.
    269   RegsToSpill.assign(1, Reg);
    270   SnippetCopies.clear();
    271 
    272   // Snippets all have the same original, so there can't be any for an original
    273   // register.
    274   if (Original == Reg)
    275     return;
    276 
    277   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
    278        MachineInstr *MI = RI.skipInstruction();) {
    279     unsigned SnipReg = isFullCopyOf(MI, Reg);
    280     if (!isSibling(SnipReg))
    281       continue;
    282     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    283     if (!isSnippet(SnipLI))
    284       continue;
    285     SnippetCopies.insert(MI);
    286     if (isRegToSpill(SnipReg))
    287       continue;
    288     RegsToSpill.push_back(SnipReg);
    289     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    290     ++NumSnippets;
    291   }
    292 }
    293 
    294 
    295 //===----------------------------------------------------------------------===//
    296 //                            Sibling Values
    297 //===----------------------------------------------------------------------===//
    298 
    299 // After live range splitting, some values to be spilled may be defined by
    300 // copies from sibling registers. We trace the sibling copies back to the
    301 // original value if it still exists. We need it for rematerialization.
    302 //
    303 // Even when the value can't be rematerialized, we still want to determine if
    304 // the value has already been spilled, or we may want to hoist the spill from a
    305 // loop.
    306 
    307 bool InlineSpiller::isSibling(unsigned Reg) {
    308   return TargetRegisterInfo::isVirtualRegister(Reg) &&
    309            VRM.getOriginal(Reg) == Original;
    310 }
    311 
    312 #ifndef NDEBUG
    313 static raw_ostream &operator<<(raw_ostream &OS,
    314                                const InlineSpiller::SibValueInfo &SVI) {
    315   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
    316      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
    317   if (SVI.SpillMBB)
    318     OS << " in BB#" << SVI.SpillMBB->getNumber();
    319   if (SVI.AllDefsAreReloads)
    320     OS << " all-reloads";
    321   if (SVI.DefByOrigPHI)
    322     OS << " orig-phi";
    323   if (SVI.KillsSource)
    324     OS << " kill";
    325   OS << " deps[";
    326   for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
    327     OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
    328   OS << " ]";
    329   if (SVI.DefMI)
    330     OS << " def: " << *SVI.DefMI;
    331   else
    332     OS << '\n';
    333   return OS;
    334 }
    335 #endif
    336 
    337 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
    338 /// known.  Otherwise remember the dependency for later.
    339 ///
    340 /// @param SVI SibValues entry to propagate.
    341 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
    342 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
    343                                           VNInfo *VNI) {
    344   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
    345   TinyPtrVector<VNInfo*> FirstDeps;
    346   if (VNI) {
    347     FirstDeps.push_back(VNI);
    348     SVI->second.Deps.push_back(VNI);
    349   }
    350 
    351   // Has the value been completely determined yet?  If not, defer propagation.
    352   if (!SVI->second.hasDef())
    353     return;
    354 
    355   // Work list of values to propagate.  It would be nice to use a SetVector
    356   // here, but then we would be forced to use a SmallSet.
    357   SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
    358   SmallPtrSet<VNInfo*, 8> WorkSet;
    359 
    360   do {
    361     SVI = WorkList.pop_back_val();
    362     WorkSet.erase(SVI->first);
    363     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
    364     VNI = 0;
    365 
    366     SibValueInfo &SV = SVI->second;
    367     if (!SV.SpillMBB)
    368       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
    369 
    370     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
    371                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
    372 
    373     assert(SV.hasDef() && "Propagating undefined value");
    374 
    375     // Should this value be propagated as a preferred spill candidate?  We don't
    376     // propagate values of registers that are about to spill.
    377     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
    378     unsigned SpillDepth = ~0u;
    379 
    380     for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
    381          DepE = Deps->end(); DepI != DepE; ++DepI) {
    382       SibValueMap::iterator DepSVI = SibValues.find(*DepI);
    383       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
    384       SibValueInfo &DepSV = DepSVI->second;
    385       if (!DepSV.SpillMBB)
    386         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
    387 
    388       bool Changed = false;
    389 
    390       // Propagate defining instruction.
    391       if (!DepSV.hasDef()) {
    392         Changed = true;
    393         DepSV.DefMI = SV.DefMI;
    394         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
    395       }
    396 
    397       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
    398       // all predecessors.
    399       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
    400         Changed = true;
    401         DepSV.AllDefsAreReloads = false;
    402       }
    403 
    404       // Propagate best spill value.
    405       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
    406         if (SV.SpillMBB == DepSV.SpillMBB) {
    407           // DepSV is in the same block.  Hoist when dominated.
    408           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
    409             // This is an alternative def earlier in the same MBB.
    410             // Hoist the spill as far as possible in SpillMBB. This can ease
    411             // register pressure:
    412             //
    413             //   x = def
    414             //   y = use x
    415             //   s = copy x
    416             //
    417             // Hoisting the spill of s to immediately after the def removes the
    418             // interference between x and y:
    419             //
    420             //   x = def
    421             //   spill x
    422             //   y = use x<kill>
    423             //
    424             // This hoist only helps when the DepSV copy kills its source.
    425             Changed = true;
    426             DepSV.SpillReg = SV.SpillReg;
    427             DepSV.SpillVNI = SV.SpillVNI;
    428             DepSV.SpillMBB = SV.SpillMBB;
    429           }
    430         } else {
    431           // DepSV is in a different block.
    432           if (SpillDepth == ~0u)
    433             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
    434 
    435           // Also hoist spills to blocks with smaller loop depth, but make sure
    436           // that the new value dominates.  Non-phi dependents are always
    437           // dominated, phis need checking.
    438           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
    439               (!DepSVI->first->isPHIDef() ||
    440                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
    441             Changed = true;
    442             DepSV.SpillReg = SV.SpillReg;
    443             DepSV.SpillVNI = SV.SpillVNI;
    444             DepSV.SpillMBB = SV.SpillMBB;
    445           }
    446         }
    447       }
    448 
    449       if (!Changed)
    450         continue;
    451 
    452       // Something changed in DepSVI. Propagate to dependents.
    453       if (WorkSet.insert(DepSVI->first))
    454         WorkList.push_back(DepSVI);
    455 
    456       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
    457             << DepSVI->first->def << " to:\t" << DepSV);
    458     }
    459   } while (!WorkList.empty());
    460 }
    461 
    462 /// traceSiblingValue - Trace a value that is about to be spilled back to the
    463 /// real defining instructions by looking through sibling copies. Always stay
    464 /// within the range of OrigVNI so the registers are known to carry the same
    465 /// value.
    466 ///
    467 /// Determine if the value is defined by all reloads, so spilling isn't
    468 /// necessary - the value is already in the stack slot.
    469 ///
    470 /// Return a defining instruction that may be a candidate for rematerialization.
    471 ///
    472 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
    473                                                VNInfo *OrigVNI) {
    474   // Check if a cached value already exists.
    475   SibValueMap::iterator SVI;
    476   bool Inserted;
    477   tie(SVI, Inserted) =
    478     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
    479   if (!Inserted) {
    480     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
    481                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
    482     return SVI->second.DefMI;
    483   }
    484 
    485   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
    486                << UseVNI->id << '@' << UseVNI->def << '\n');
    487 
    488   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
    489   // processed.
    490   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
    491   WorkList.push_back(std::make_pair(UseReg, UseVNI));
    492 
    493   do {
    494     unsigned Reg;
    495     VNInfo *VNI;
    496     tie(Reg, VNI) = WorkList.pop_back_val();
    497     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
    498                  << ":\t");
    499 
    500     // First check if this value has already been computed.
    501     SVI = SibValues.find(VNI);
    502     assert(SVI != SibValues.end() && "Missing SibValues entry");
    503 
    504     // Trace through PHI-defs created by live range splitting.
    505     if (VNI->isPHIDef()) {
    506       // Stop at original PHIs.  We don't know the value at the predecessors.
    507       if (VNI->def == OrigVNI->def) {
    508         DEBUG(dbgs() << "orig phi value\n");
    509         SVI->second.DefByOrigPHI = true;
    510         SVI->second.AllDefsAreReloads = false;
    511         propagateSiblingValue(SVI);
    512         continue;
    513       }
    514 
    515       // This is a PHI inserted by live range splitting.  We could trace the
    516       // live-out value from predecessor blocks, but that search can be very
    517       // expensive if there are many predecessors and many more PHIs as
    518       // generated by tail-dup when it sees an indirectbr.  Instead, look at
    519       // all the non-PHI defs that have the same value as OrigVNI.  They must
    520       // jointly dominate VNI->def.  This is not optimal since VNI may actually
    521       // be jointly dominated by a smaller subset of defs, so there is a change
    522       // we will miss a AllDefsAreReloads optimization.
    523 
    524       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
    525       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
    526       LiveInterval &LI = LIS.getInterval(Reg);
    527       LiveInterval &OrigLI = LIS.getInterval(Original);
    528 
    529       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
    530            VI != VE; ++VI) {
    531         VNInfo *VNI2 = *VI;
    532         if (VNI2->isUnused())
    533           continue;
    534         if (!OrigLI.containsOneValue() &&
    535             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
    536           continue;
    537         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
    538           PHIs.push_back(VNI2);
    539         else
    540           NonPHIs.push_back(VNI2);
    541       }
    542       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
    543                    << " phi-defs, and " << NonPHIs.size()
    544                    << " non-phi/orig defs\n");
    545 
    546       // Create entries for all the PHIs.  Don't add them to the worklist, we
    547       // are processing all of them in one go here.
    548       for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    549         SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
    550 
    551       // Add every PHI as a dependent of all the non-PHIs.
    552       for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
    553         VNInfo *NonPHI = NonPHIs[i];
    554         // Known value? Try an insertion.
    555         tie(SVI, Inserted) =
    556           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
    557         // Add all the PHIs as dependents of NonPHI.
    558         for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
    559           SVI->second.Deps.push_back(PHIs[pi]);
    560         // This is the first time we see NonPHI, add it to the worklist.
    561         if (Inserted)
    562           WorkList.push_back(std::make_pair(Reg, NonPHI));
    563         else
    564           // Propagate to all inserted PHIs, not just VNI.
    565           propagateSiblingValue(SVI);
    566       }
    567 
    568       // Next work list item.
    569       continue;
    570     }
    571 
    572     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    573     assert(MI && "Missing def");
    574 
    575     // Trace through sibling copies.
    576     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
    577       if (isSibling(SrcReg)) {
    578         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
    579         LiveRangeQuery SrcQ(SrcLI, VNI->def);
    580         assert(SrcQ.valueIn() && "Copy from non-existing value");
    581         // Check if this COPY kills its source.
    582         SVI->second.KillsSource = SrcQ.isKill();
    583         VNInfo *SrcVNI = SrcQ.valueIn();
    584         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
    585                      << SrcVNI->id << '@' << SrcVNI->def
    586                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
    587         // Known sibling source value? Try an insertion.
    588         tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
    589                                                  SibValueInfo(SrcReg, SrcVNI)));
    590         // This is the first time we see Src, add it to the worklist.
    591         if (Inserted)
    592           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
    593         propagateSiblingValue(SVI, VNI);
    594         // Next work list item.
    595         continue;
    596       }
    597     }
    598 
    599     // Track reachable reloads.
    600     SVI->second.DefMI = MI;
    601     SVI->second.SpillMBB = MI->getParent();
    602     int FI;
    603     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
    604       DEBUG(dbgs() << "reload\n");
    605       propagateSiblingValue(SVI);
    606       // Next work list item.
    607       continue;
    608     }
    609 
    610     // Potential remat candidate.
    611     DEBUG(dbgs() << "def " << *MI);
    612     SVI->second.AllDefsAreReloads = false;
    613     propagateSiblingValue(SVI);
    614   } while (!WorkList.empty());
    615 
    616   // Look up the value we were looking for.  We already did this lookup at the
    617   // top of the function, but SibValues may have been invalidated.
    618   SVI = SibValues.find(UseVNI);
    619   assert(SVI != SibValues.end() && "Didn't compute requested info");
    620   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
    621   return SVI->second.DefMI;
    622 }
    623 
    624 /// analyzeSiblingValues - Trace values defined by sibling copies back to
    625 /// something that isn't a sibling copy.
    626 ///
    627 /// Keep track of values that may be rematerializable.
    628 void InlineSpiller::analyzeSiblingValues() {
    629   SibValues.clear();
    630 
    631   // No siblings at all?
    632   if (Edit->getReg() == Original)
    633     return;
    634 
    635   LiveInterval &OrigLI = LIS.getInterval(Original);
    636   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    637     unsigned Reg = RegsToSpill[i];
    638     LiveInterval &LI = LIS.getInterval(Reg);
    639     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
    640          VE = LI.vni_end(); VI != VE; ++VI) {
    641       VNInfo *VNI = *VI;
    642       if (VNI->isUnused())
    643         continue;
    644       MachineInstr *DefMI = 0;
    645       if (!VNI->isPHIDef()) {
    646        DefMI = LIS.getInstructionFromIndex(VNI->def);
    647        assert(DefMI && "No defining instruction");
    648       }
    649       // Check possible sibling copies.
    650       if (VNI->isPHIDef() || DefMI->isCopy()) {
    651         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
    652         assert(OrigVNI && "Def outside original live range");
    653         if (OrigVNI->def != VNI->def)
    654           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
    655       }
    656       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
    657         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
    658                      << VNI->def << " may remat from " << *DefMI);
    659       }
    660     }
    661   }
    662 }
    663 
    664 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
    665 /// a spill at a better location.
    666 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
    667   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
    668   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
    669   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
    670   SibValueMap::iterator I = SibValues.find(VNI);
    671   if (I == SibValues.end())
    672     return false;
    673 
    674   const SibValueInfo &SVI = I->second;
    675 
    676   // Let the normal folding code deal with the boring case.
    677   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
    678     return false;
    679 
    680   // SpillReg may have been deleted by remat and DCE.
    681   if (!LIS.hasInterval(SVI.SpillReg)) {
    682     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
    683     SibValues.erase(I);
    684     return false;
    685   }
    686 
    687   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
    688   if (!SibLI.containsValue(SVI.SpillVNI)) {
    689     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
    690     SibValues.erase(I);
    691     return false;
    692   }
    693 
    694   // Conservatively extend the stack slot range to the range of the original
    695   // value. We may be able to do better with stack slot coloring by being more
    696   // careful here.
    697   assert(StackInt && "No stack slot assigned yet.");
    698   LiveInterval &OrigLI = LIS.getInterval(Original);
    699   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    700   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
    701   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
    702                << *StackInt << '\n');
    703 
    704   // Already spilled everywhere.
    705   if (SVI.AllDefsAreReloads) {
    706     DEBUG(dbgs() << "\tno spill needed: " << SVI);
    707     ++NumOmitReloadSpill;
    708     return true;
    709   }
    710   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
    711   // any later spills of the same value.
    712   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
    713 
    714   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
    715   MachineBasicBlock::iterator MII;
    716   if (SVI.SpillVNI->isPHIDef())
    717     MII = MBB->SkipPHIsAndLabels(MBB->begin());
    718   else {
    719     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
    720     assert(DefMI && "Defining instruction disappeared");
    721     MII = DefMI;
    722     ++MII;
    723   }
    724   // Insert spill without kill flag immediately after def.
    725   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
    726                           MRI.getRegClass(SVI.SpillReg), &TRI);
    727   --MII; // Point to store instruction.
    728   LIS.InsertMachineInstrInMaps(MII);
    729   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
    730 
    731   ++NumSpills;
    732   ++NumHoists;
    733   return true;
    734 }
    735 
    736 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
    737 /// redundant spills of this value in SLI.reg and sibling copies.
    738 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
    739   assert(VNI && "Missing value");
    740   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    741   WorkList.push_back(std::make_pair(&SLI, VNI));
    742   assert(StackInt && "No stack slot assigned yet.");
    743 
    744   do {
    745     LiveInterval *LI;
    746     tie(LI, VNI) = WorkList.pop_back_val();
    747     unsigned Reg = LI->reg;
    748     DEBUG(dbgs() << "Checking redundant spills for "
    749                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
    750 
    751     // Regs to spill are taken care of.
    752     if (isRegToSpill(Reg))
    753       continue;
    754 
    755     // Add all of VNI's live range to StackInt.
    756     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    757     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
    758 
    759     // Find all spills and copies of VNI.
    760     for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
    761          MachineInstr *MI = UI.skipInstruction();) {
    762       if (!MI->isCopy() && !MI->mayStore())
    763         continue;
    764       SlotIndex Idx = LIS.getInstructionIndex(MI);
    765       if (LI->getVNInfoAt(Idx) != VNI)
    766         continue;
    767 
    768       // Follow sibling copies down the dominator tree.
    769       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
    770         if (isSibling(DstReg)) {
    771            LiveInterval &DstLI = LIS.getInterval(DstReg);
    772            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
    773            assert(DstVNI && "Missing defined value");
    774            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
    775            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
    776         }
    777         continue;
    778       }
    779 
    780       // Erase spills.
    781       int FI;
    782       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
    783         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
    784         // eliminateDeadDefs won't normally remove stores, so switch opcode.
    785         MI->setDesc(TII.get(TargetOpcode::KILL));
    786         DeadDefs.push_back(MI);
    787         ++NumSpillsRemoved;
    788         --NumSpills;
    789       }
    790     }
    791   } while (!WorkList.empty());
    792 }
    793 
    794 
    795 //===----------------------------------------------------------------------===//
    796 //                            Rematerialization
    797 //===----------------------------------------------------------------------===//
    798 
    799 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
    800 /// instruction cannot be eliminated. See through snippet copies
    801 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
    802   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
    803   WorkList.push_back(std::make_pair(LI, VNI));
    804   do {
    805     tie(LI, VNI) = WorkList.pop_back_val();
    806     if (!UsedValues.insert(VNI))
    807       continue;
    808 
    809     if (VNI->isPHIDef()) {
    810       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
    811       for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    812              PE = MBB->pred_end(); PI != PE; ++PI) {
    813         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
    814         if (PVNI)
    815           WorkList.push_back(std::make_pair(LI, PVNI));
    816       }
    817       continue;
    818     }
    819 
    820     // Follow snippet copies.
    821     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    822     if (!SnippetCopies.count(MI))
    823       continue;
    824     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    825     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
    826     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    827     assert(SnipVNI && "Snippet undefined before copy");
    828     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
    829   } while (!WorkList.empty());
    830 }
    831 
    832 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
    833 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
    834                                      MachineBasicBlock::iterator MI) {
    835   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
    836   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
    837 
    838   if (!ParentVNI) {
    839     DEBUG(dbgs() << "\tadding <undef> flags: ");
    840     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    841       MachineOperand &MO = MI->getOperand(i);
    842       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
    843         MO.setIsUndef();
    844     }
    845     DEBUG(dbgs() << UseIdx << '\t' << *MI);
    846     return true;
    847   }
    848 
    849   if (SnippetCopies.count(MI))
    850     return false;
    851 
    852   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
    853   LiveRangeEdit::Remat RM(ParentVNI);
    854   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
    855   if (SibI != SibValues.end())
    856     RM.OrigMI = SibI->second.DefMI;
    857   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
    858     markValueUsed(&VirtReg, ParentVNI);
    859     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
    860     return false;
    861   }
    862 
    863   // If the instruction also writes VirtReg.reg, it had better not require the
    864   // same register for uses and defs.
    865   SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    866   MIBundleOperands::VirtRegInfo RI =
    867     MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
    868   if (RI.Tied) {
    869     markValueUsed(&VirtReg, ParentVNI);
    870     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
    871     return false;
    872   }
    873 
    874   // Before rematerializing into a register for a single instruction, try to
    875   // fold a load into the instruction. That avoids allocating a new register.
    876   if (RM.OrigMI->canFoldAsLoad() &&
    877       foldMemoryOperand(Ops, RM.OrigMI)) {
    878     Edit->markRematerialized(RM.ParentVNI);
    879     ++NumFoldedLoads;
    880     return true;
    881   }
    882 
    883   // Alocate a new register for the remat.
    884   LiveInterval &NewLI = Edit->createFrom(Original);
    885   NewLI.markNotSpillable();
    886 
    887   // Finally we can rematerialize OrigMI before MI.
    888   SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
    889                                            TRI);
    890   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
    891                << *LIS.getInstructionFromIndex(DefIdx));
    892 
    893   // Replace operands
    894   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    895     MachineOperand &MO = MI->getOperand(Ops[i].second);
    896     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
    897       MO.setReg(NewLI.reg);
    898       MO.setIsKill();
    899     }
    900   }
    901   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
    902 
    903   VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
    904   NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
    905   DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
    906   ++NumRemats;
    907   return true;
    908 }
    909 
    910 /// reMaterializeAll - Try to rematerialize as many uses as possible,
    911 /// and trim the live ranges after.
    912 void InlineSpiller::reMaterializeAll() {
    913   // analyzeSiblingValues has already tested all relevant defining instructions.
    914   if (!Edit->anyRematerializable(AA))
    915     return;
    916 
    917   UsedValues.clear();
    918 
    919   // Try to remat before all uses of snippets.
    920   bool anyRemat = false;
    921   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    922     unsigned Reg = RegsToSpill[i];
    923     LiveInterval &LI = LIS.getInterval(Reg);
    924     for (MachineRegisterInfo::use_nodbg_iterator
    925          RI = MRI.use_nodbg_begin(Reg);
    926          MachineInstr *MI = RI.skipBundle();)
    927       anyRemat |= reMaterializeFor(LI, MI);
    928   }
    929   if (!anyRemat)
    930     return;
    931 
    932   // Remove any values that were completely rematted.
    933   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
    934     unsigned Reg = RegsToSpill[i];
    935     LiveInterval &LI = LIS.getInterval(Reg);
    936     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
    937          I != E; ++I) {
    938       VNInfo *VNI = *I;
    939       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
    940         continue;
    941       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    942       MI->addRegisterDead(Reg, &TRI);
    943       if (!MI->allDefsAreDead())
    944         continue;
    945       DEBUG(dbgs() << "All defs dead: " << *MI);
    946       DeadDefs.push_back(MI);
    947     }
    948   }
    949 
    950   // Eliminate dead code after remat. Note that some snippet copies may be
    951   // deleted here.
    952   if (DeadDefs.empty())
    953     return;
    954   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
    955   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
    956 
    957   // Get rid of deleted and empty intervals.
    958   for (unsigned i = RegsToSpill.size(); i != 0; --i) {
    959     unsigned Reg = RegsToSpill[i-1];
    960     if (!LIS.hasInterval(Reg)) {
    961       RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
    962       continue;
    963     }
    964     LiveInterval &LI = LIS.getInterval(Reg);
    965     if (!LI.empty())
    966       continue;
    967     Edit->eraseVirtReg(Reg);
    968     RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
    969   }
    970   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
    971 }
    972 
    973 
    974 //===----------------------------------------------------------------------===//
    975 //                                 Spilling
    976 //===----------------------------------------------------------------------===//
    977 
    978 /// If MI is a load or store of StackSlot, it can be removed.
    979 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
    980   int FI = 0;
    981   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
    982   bool IsLoad = InstrReg;
    983   if (!IsLoad)
    984     InstrReg = TII.isStoreToStackSlot(MI, FI);
    985 
    986   // We have a stack access. Is it the right register and slot?
    987   if (InstrReg != Reg || FI != StackSlot)
    988     return false;
    989 
    990   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
    991   LIS.RemoveMachineInstrFromMaps(MI);
    992   MI->eraseFromParent();
    993 
    994   if (IsLoad) {
    995     ++NumReloadsRemoved;
    996     --NumReloads;
    997   } else {
    998     ++NumSpillsRemoved;
    999     --NumSpills;
   1000   }
   1001 
   1002   return true;
   1003 }
   1004 
   1005 /// foldMemoryOperand - Try folding stack slot references in Ops into their
   1006 /// instructions.
   1007 ///
   1008 /// @param Ops    Operand indices from analyzeVirtReg().
   1009 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
   1010 /// @return       True on success.
   1011 bool InlineSpiller::
   1012 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
   1013                   MachineInstr *LoadMI) {
   1014   if (Ops.empty())
   1015     return false;
   1016   // Don't attempt folding in bundles.
   1017   MachineInstr *MI = Ops.front().first;
   1018   if (Ops.back().first != MI || MI->isBundled())
   1019     return false;
   1020 
   1021   bool WasCopy = MI->isCopy();
   1022   unsigned ImpReg = 0;
   1023 
   1024   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
   1025   // operands.
   1026   SmallVector<unsigned, 8> FoldOps;
   1027   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1028     unsigned Idx = Ops[i].second;
   1029     MachineOperand &MO = MI->getOperand(Idx);
   1030     if (MO.isImplicit()) {
   1031       ImpReg = MO.getReg();
   1032       continue;
   1033     }
   1034     // FIXME: Teach targets to deal with subregs.
   1035     if (MO.getSubReg())
   1036       return false;
   1037     // We cannot fold a load instruction into a def.
   1038     if (LoadMI && MO.isDef())
   1039       return false;
   1040     // Tied use operands should not be passed to foldMemoryOperand.
   1041     if (!MI->isRegTiedToDefOperand(Idx))
   1042       FoldOps.push_back(Idx);
   1043   }
   1044 
   1045   MachineInstr *FoldMI =
   1046                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
   1047                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
   1048   if (!FoldMI)
   1049     return false;
   1050   LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
   1051   MI->eraseFromParent();
   1052 
   1053   // TII.foldMemoryOperand may have left some implicit operands on the
   1054   // instruction.  Strip them.
   1055   if (ImpReg)
   1056     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
   1057       MachineOperand &MO = FoldMI->getOperand(i - 1);
   1058       if (!MO.isReg() || !MO.isImplicit())
   1059         break;
   1060       if (MO.getReg() == ImpReg)
   1061         FoldMI->RemoveOperand(i - 1);
   1062     }
   1063 
   1064   DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
   1065                << *FoldMI);
   1066   if (!WasCopy)
   1067     ++NumFolded;
   1068   else if (Ops.front().second == 0)
   1069     ++NumSpills;
   1070   else
   1071     ++NumReloads;
   1072   return true;
   1073 }
   1074 
   1075 /// insertReload - Insert a reload of NewLI.reg before MI.
   1076 void InlineSpiller::insertReload(LiveInterval &NewLI,
   1077                                  SlotIndex Idx,
   1078                                  MachineBasicBlock::iterator MI) {
   1079   MachineBasicBlock &MBB = *MI->getParent();
   1080   TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
   1081                            MRI.getRegClass(NewLI.reg), &TRI);
   1082   --MI; // Point to load instruction.
   1083   SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
   1084   // Some (out-of-tree) targets have EC reload instructions.
   1085   if (MachineOperand *MO = MI->findRegisterDefOperand(NewLI.reg))
   1086     if (MO->isEarlyClobber())
   1087       LoadIdx = LoadIdx.getRegSlot(true);
   1088   DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
   1089   VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
   1090   NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
   1091   ++NumReloads;
   1092 }
   1093 
   1094 /// insertSpill - Insert a spill of NewLI.reg after MI.
   1095 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
   1096                                 SlotIndex Idx, MachineBasicBlock::iterator MI) {
   1097   MachineBasicBlock &MBB = *MI->getParent();
   1098   TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
   1099                           MRI.getRegClass(NewLI.reg), &TRI);
   1100   --MI; // Point to store instruction.
   1101   SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
   1102   DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
   1103   VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
   1104   NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
   1105   ++NumSpills;
   1106 }
   1107 
   1108 /// spillAroundUses - insert spill code around each use of Reg.
   1109 void InlineSpiller::spillAroundUses(unsigned Reg) {
   1110   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
   1111   LiveInterval &OldLI = LIS.getInterval(Reg);
   1112 
   1113   // Iterate over instructions using Reg.
   1114   for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
   1115        MachineInstr *MI = RegI.skipBundle();) {
   1116 
   1117     // Debug values are not allowed to affect codegen.
   1118     if (MI->isDebugValue()) {
   1119       // Modify DBG_VALUE now that the value is in a spill slot.
   1120       uint64_t Offset = MI->getOperand(1).getImm();
   1121       const MDNode *MDPtr = MI->getOperand(2).getMetadata();
   1122       DebugLoc DL = MI->getDebugLoc();
   1123       if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
   1124                                                            Offset, MDPtr, DL)) {
   1125         DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
   1126         MachineBasicBlock *MBB = MI->getParent();
   1127         MBB->insert(MBB->erase(MI), NewDV);
   1128       } else {
   1129         DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
   1130         MI->eraseFromParent();
   1131       }
   1132       continue;
   1133     }
   1134 
   1135     // Ignore copies to/from snippets. We'll delete them.
   1136     if (SnippetCopies.count(MI))
   1137       continue;
   1138 
   1139     // Stack slot accesses may coalesce away.
   1140     if (coalesceStackAccess(MI, Reg))
   1141       continue;
   1142 
   1143     // Analyze instruction.
   1144     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
   1145     MIBundleOperands::VirtRegInfo RI =
   1146       MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
   1147 
   1148     // Find the slot index where this instruction reads and writes OldLI.
   1149     // This is usually the def slot, except for tied early clobbers.
   1150     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
   1151     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
   1152       if (SlotIndex::isSameInstr(Idx, VNI->def))
   1153         Idx = VNI->def;
   1154 
   1155     // Check for a sibling copy.
   1156     unsigned SibReg = isFullCopyOf(MI, Reg);
   1157     if (SibReg && isSibling(SibReg)) {
   1158       // This may actually be a copy between snippets.
   1159       if (isRegToSpill(SibReg)) {
   1160         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
   1161         SnippetCopies.insert(MI);
   1162         continue;
   1163       }
   1164       if (RI.Writes) {
   1165         // Hoist the spill of a sib-reg copy.
   1166         if (hoistSpill(OldLI, MI)) {
   1167           // This COPY is now dead, the value is already in the stack slot.
   1168           MI->getOperand(0).setIsDead();
   1169           DeadDefs.push_back(MI);
   1170           continue;
   1171         }
   1172       } else {
   1173         // This is a reload for a sib-reg copy. Drop spills downstream.
   1174         LiveInterval &SibLI = LIS.getInterval(SibReg);
   1175         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
   1176         // The COPY will fold to a reload below.
   1177       }
   1178     }
   1179 
   1180     // Attempt to fold memory ops.
   1181     if (foldMemoryOperand(Ops))
   1182       continue;
   1183 
   1184     // Allocate interval around instruction.
   1185     // FIXME: Infer regclass from instruction alone.
   1186     LiveInterval &NewLI = Edit->createFrom(Reg);
   1187     NewLI.markNotSpillable();
   1188 
   1189     if (RI.Reads)
   1190       insertReload(NewLI, Idx, MI);
   1191 
   1192     // Rewrite instruction operands.
   1193     bool hasLiveDef = false;
   1194     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1195       MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
   1196       MO.setReg(NewLI.reg);
   1197       if (MO.isUse()) {
   1198         if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
   1199           MO.setIsKill();
   1200       } else {
   1201         if (!MO.isDead())
   1202           hasLiveDef = true;
   1203       }
   1204     }
   1205     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
   1206 
   1207     // FIXME: Use a second vreg if instruction has no tied ops.
   1208     if (RI.Writes) {
   1209       if (hasLiveDef)
   1210         insertSpill(NewLI, OldLI, Idx, MI);
   1211       else {
   1212         // This instruction defines a dead value.  We don't need to spill it,
   1213         // but do create a live range for the dead value.
   1214         VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
   1215         NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
   1216       }
   1217     }
   1218 
   1219     DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
   1220   }
   1221 }
   1222 
   1223 /// spillAll - Spill all registers remaining after rematerialization.
   1224 void InlineSpiller::spillAll() {
   1225   // Update LiveStacks now that we are committed to spilling.
   1226   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
   1227     StackSlot = VRM.assignVirt2StackSlot(Original);
   1228     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
   1229     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
   1230   } else
   1231     StackInt = &LSS.getInterval(StackSlot);
   1232 
   1233   if (Original != Edit->getReg())
   1234     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
   1235 
   1236   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
   1237   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1238     StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
   1239                                    StackInt->getValNumInfo(0));
   1240   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
   1241 
   1242   // Spill around uses of all RegsToSpill.
   1243   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1244     spillAroundUses(RegsToSpill[i]);
   1245 
   1246   // Hoisted spills may cause dead code.
   1247   if (!DeadDefs.empty()) {
   1248     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
   1249     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
   1250   }
   1251 
   1252   // Finally delete the SnippetCopies.
   1253   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
   1254     for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
   1255          MachineInstr *MI = RI.skipInstruction();) {
   1256       assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
   1257       // FIXME: Do this with a LiveRangeEdit callback.
   1258       LIS.RemoveMachineInstrFromMaps(MI);
   1259       MI->eraseFromParent();
   1260     }
   1261   }
   1262 
   1263   // Delete all spilled registers.
   1264   for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
   1265     Edit->eraseVirtReg(RegsToSpill[i]);
   1266 }
   1267 
   1268 void InlineSpiller::spill(LiveRangeEdit &edit) {
   1269   ++NumSpilledRanges;
   1270   Edit = &edit;
   1271   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
   1272          && "Trying to spill a stack slot.");
   1273   // Share a stack slot among all descendants of Original.
   1274   Original = VRM.getOriginal(edit.getReg());
   1275   StackSlot = VRM.getStackSlot(Original);
   1276   StackInt = 0;
   1277 
   1278   DEBUG(dbgs() << "Inline spilling "
   1279                << MRI.getRegClass(edit.getReg())->getName()
   1280                << ':' << PrintReg(edit.getReg()) << ' ' << edit.getParent()
   1281                << "\nFrom original " << LIS.getInterval(Original) << '\n');
   1282   assert(edit.getParent().isSpillable() &&
   1283          "Attempting to spill already spilled value.");
   1284   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
   1285 
   1286   collectRegsToSpill();
   1287   analyzeSiblingValues();
   1288   reMaterializeAll();
   1289 
   1290   // Remat may handle everything.
   1291   if (!RegsToSpill.empty())
   1292     spillAll();
   1293 
   1294   Edit->calculateRegClassAndHint(MF, Loops);
   1295 }
   1296