Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonInstrInfo.h"
     15 #include "Hexagon.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/DFAPacketizer.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/PseudoSourceValue.h"
     26 #include "llvm/Support/MathExtras.h"
     27 #define GET_INSTRINFO_CTOR
     28 #define GET_INSTRMAP_INFO
     29 #include "HexagonGenInstrInfo.inc"
     30 #include "HexagonGenDFAPacketizer.inc"
     31 
     32 using namespace llvm;
     33 
     34 ///
     35 /// Constants for Hexagon instructions.
     36 ///
     37 const int Hexagon_MEMW_OFFSET_MAX = 4095;
     38 const int Hexagon_MEMW_OFFSET_MIN = -4096;
     39 const int Hexagon_MEMD_OFFSET_MAX = 8191;
     40 const int Hexagon_MEMD_OFFSET_MIN = -8192;
     41 const int Hexagon_MEMH_OFFSET_MAX = 2047;
     42 const int Hexagon_MEMH_OFFSET_MIN = -2048;
     43 const int Hexagon_MEMB_OFFSET_MAX = 1023;
     44 const int Hexagon_MEMB_OFFSET_MIN = -1024;
     45 const int Hexagon_ADDI_OFFSET_MAX = 32767;
     46 const int Hexagon_ADDI_OFFSET_MIN = -32768;
     47 const int Hexagon_MEMD_AUTOINC_MAX = 56;
     48 const int Hexagon_MEMD_AUTOINC_MIN = -64;
     49 const int Hexagon_MEMW_AUTOINC_MAX = 28;
     50 const int Hexagon_MEMW_AUTOINC_MIN = -32;
     51 const int Hexagon_MEMH_AUTOINC_MAX = 14;
     52 const int Hexagon_MEMH_AUTOINC_MIN = -16;
     53 const int Hexagon_MEMB_AUTOINC_MAX = 7;
     54 const int Hexagon_MEMB_AUTOINC_MIN = -8;
     55 
     56 
     57 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
     58   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
     59     RI(ST, *this), Subtarget(ST) {
     60 }
     61 
     62 
     63 /// isLoadFromStackSlot - If the specified machine instruction is a direct
     64 /// load from a stack slot, return the virtual or physical register number of
     65 /// the destination along with the FrameIndex of the loaded stack slot.  If
     66 /// not, return 0.  This predicate must return 0 if the instruction has
     67 /// any side effects other than loading from the stack slot.
     68 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
     69                                              int &FrameIndex) const {
     70 
     71 
     72   switch (MI->getOpcode()) {
     73   default: break;
     74   case Hexagon::LDriw:
     75   case Hexagon::LDrid:
     76   case Hexagon::LDrih:
     77   case Hexagon::LDrib:
     78   case Hexagon::LDriub:
     79     if (MI->getOperand(2).isFI() &&
     80         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
     81       FrameIndex = MI->getOperand(2).getIndex();
     82       return MI->getOperand(0).getReg();
     83     }
     84     break;
     85   }
     86   return 0;
     87 }
     88 
     89 
     90 /// isStoreToStackSlot - If the specified machine instruction is a direct
     91 /// store to a stack slot, return the virtual or physical register number of
     92 /// the source reg along with the FrameIndex of the loaded stack slot.  If
     93 /// not, return 0.  This predicate must return 0 if the instruction has
     94 /// any side effects other than storing to the stack slot.
     95 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
     96                                             int &FrameIndex) const {
     97   switch (MI->getOpcode()) {
     98   default: break;
     99   case Hexagon::STriw:
    100   case Hexagon::STrid:
    101   case Hexagon::STrih:
    102   case Hexagon::STrib:
    103     if (MI->getOperand(2).isFI() &&
    104         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
    105       FrameIndex = MI->getOperand(0).getIndex();
    106       return MI->getOperand(2).getReg();
    107     }
    108     break;
    109   }
    110   return 0;
    111 }
    112 
    113 
    114 unsigned
    115 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
    116                              MachineBasicBlock *FBB,
    117                              const SmallVectorImpl<MachineOperand> &Cond,
    118                              DebugLoc DL) const{
    119 
    120     int BOpc   = Hexagon::JMP;
    121     int BccOpc = Hexagon::JMP_c;
    122 
    123     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    124 
    125     int regPos = 0;
    126     // Check if ReverseBranchCondition has asked to reverse this branch
    127     // If we want to reverse the branch an odd number of times, we want
    128     // JMP_cNot.
    129     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
    130       BccOpc = Hexagon::JMP_cNot;
    131       regPos = 1;
    132     }
    133 
    134     if (FBB == 0) {
    135       if (Cond.empty()) {
    136         // Due to a bug in TailMerging/CFG Optimization, we need to add a
    137         // special case handling of a predicated jump followed by an
    138         // unconditional jump. If not, Tail Merging and CFG Optimization go
    139         // into an infinite loop.
    140         MachineBasicBlock *NewTBB, *NewFBB;
    141         SmallVector<MachineOperand, 4> Cond;
    142         MachineInstr *Term = MBB.getFirstTerminator();
    143         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
    144                                                  false)) {
    145           MachineBasicBlock *NextBB =
    146             llvm::next(MachineFunction::iterator(&MBB));
    147           if (NewTBB == NextBB) {
    148             ReverseBranchCondition(Cond);
    149             RemoveBranch(MBB);
    150             return InsertBranch(MBB, TBB, 0, Cond, DL);
    151           }
    152         }
    153         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    154       } else {
    155         BuildMI(&MBB, DL,
    156                 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    157       }
    158       return 1;
    159     }
    160 
    161     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    162     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    163 
    164     return 2;
    165 }
    166 
    167 
    168 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    169                                      MachineBasicBlock *&TBB,
    170                                  MachineBasicBlock *&FBB,
    171                                  SmallVectorImpl<MachineOperand> &Cond,
    172                                  bool AllowModify) const {
    173   TBB = NULL;
    174   FBB = NULL;
    175 
    176   // If the block has no terminators, it just falls into the block after it.
    177   MachineBasicBlock::iterator I = MBB.end();
    178   if (I == MBB.begin())
    179     return false;
    180 
    181   // A basic block may looks like this:
    182   //
    183   //  [   insn
    184   //     EH_LABEL
    185   //      insn
    186   //      insn
    187   //      insn
    188   //     EH_LABEL
    189   //      insn     ]
    190   //
    191   // It has two succs but does not have a terminator
    192   // Don't know how to handle it.
    193   do {
    194     --I;
    195     if (I->isEHLabel())
    196       return true;
    197   } while (I != MBB.begin());
    198 
    199   I = MBB.end();
    200   --I;
    201 
    202   while (I->isDebugValue()) {
    203     if (I == MBB.begin())
    204       return false;
    205     --I;
    206   }
    207   if (!isUnpredicatedTerminator(I))
    208     return false;
    209 
    210   // Get the last instruction in the block.
    211   MachineInstr *LastInst = I;
    212 
    213   // If there is only one terminator instruction, process it.
    214   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    215     if (LastInst->getOpcode() == Hexagon::JMP) {
    216       TBB = LastInst->getOperand(0).getMBB();
    217       return false;
    218     }
    219     if (LastInst->getOpcode() == Hexagon::JMP_c) {
    220       // Block ends with fall-through true condbranch.
    221       TBB = LastInst->getOperand(1).getMBB();
    222       Cond.push_back(LastInst->getOperand(0));
    223       return false;
    224     }
    225     if (LastInst->getOpcode() == Hexagon::JMP_cNot) {
    226       // Block ends with fall-through false condbranch.
    227       TBB = LastInst->getOperand(1).getMBB();
    228       Cond.push_back(MachineOperand::CreateImm(0));
    229       Cond.push_back(LastInst->getOperand(0));
    230       return false;
    231     }
    232     // Otherwise, don't know what this is.
    233     return true;
    234   }
    235 
    236   // Get the instruction before it if it's a terminator.
    237   MachineInstr *SecondLastInst = I;
    238 
    239   // If there are three terminators, we don't know what sort of block this is.
    240   if (SecondLastInst && I != MBB.begin() &&
    241       isUnpredicatedTerminator(--I))
    242     return true;
    243 
    244   // If the block ends with Hexagon::BRCOND and Hexagon:JMP, handle it.
    245   if (((SecondLastInst->getOpcode() == Hexagon::BRCOND) ||
    246       (SecondLastInst->getOpcode() == Hexagon::JMP_c)) &&
    247       LastInst->getOpcode() == Hexagon::JMP) {
    248     TBB =  SecondLastInst->getOperand(1).getMBB();
    249     Cond.push_back(SecondLastInst->getOperand(0));
    250     FBB = LastInst->getOperand(0).getMBB();
    251     return false;
    252   }
    253 
    254   // If the block ends with Hexagon::JMP_cNot and Hexagon:JMP, handle it.
    255   if ((SecondLastInst->getOpcode() == Hexagon::JMP_cNot) &&
    256       LastInst->getOpcode() == Hexagon::JMP) {
    257     TBB =  SecondLastInst->getOperand(1).getMBB();
    258     Cond.push_back(MachineOperand::CreateImm(0));
    259     Cond.push_back(SecondLastInst->getOperand(0));
    260     FBB = LastInst->getOperand(0).getMBB();
    261     return false;
    262   }
    263 
    264   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
    265   // executed, so remove it.
    266   if (SecondLastInst->getOpcode() == Hexagon::JMP &&
    267       LastInst->getOpcode() == Hexagon::JMP) {
    268     TBB = SecondLastInst->getOperand(0).getMBB();
    269     I = LastInst;
    270     if (AllowModify)
    271       I->eraseFromParent();
    272     return false;
    273   }
    274 
    275   // Otherwise, can't handle this.
    276   return true;
    277 }
    278 
    279 
    280 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    281   int BOpc   = Hexagon::JMP;
    282   int BccOpc = Hexagon::JMP_c;
    283   int BccOpcNot = Hexagon::JMP_cNot;
    284 
    285   MachineBasicBlock::iterator I = MBB.end();
    286   if (I == MBB.begin()) return 0;
    287   --I;
    288   if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
    289       I->getOpcode() != BccOpcNot)
    290     return 0;
    291 
    292   // Remove the branch.
    293   I->eraseFromParent();
    294 
    295   I = MBB.end();
    296 
    297   if (I == MBB.begin()) return 1;
    298   --I;
    299   if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
    300     return 1;
    301 
    302   // Remove the branch.
    303   I->eraseFromParent();
    304   return 2;
    305 }
    306 
    307 
    308 /// \brief For a comparison instruction, return the source registers in
    309 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
    310 /// compares against in CmpValue. Return true if the comparison instruction
    311 /// can be analyzed.
    312 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
    313                                       unsigned &SrcReg, unsigned &SrcReg2,
    314                                       int &Mask, int &Value) const {
    315   unsigned Opc = MI->getOpcode();
    316 
    317   // Set mask and the first source register.
    318   switch (Opc) {
    319     case Hexagon::CMPEHexagon4rr:
    320     case Hexagon::CMPEQri:
    321     case Hexagon::CMPEQrr:
    322     case Hexagon::CMPGT64rr:
    323     case Hexagon::CMPGTU64rr:
    324     case Hexagon::CMPGTUri:
    325     case Hexagon::CMPGTUrr:
    326     case Hexagon::CMPGTri:
    327     case Hexagon::CMPGTrr:
    328     case Hexagon::CMPLTUrr:
    329     case Hexagon::CMPLTrr:
    330       SrcReg = MI->getOperand(1).getReg();
    331       Mask = ~0;
    332       break;
    333     case Hexagon::CMPbEQri_V4:
    334     case Hexagon::CMPbEQrr_sbsb_V4:
    335     case Hexagon::CMPbEQrr_ubub_V4:
    336     case Hexagon::CMPbGTUri_V4:
    337     case Hexagon::CMPbGTUrr_V4:
    338     case Hexagon::CMPbGTrr_V4:
    339       SrcReg = MI->getOperand(1).getReg();
    340       Mask = 0xFF;
    341       break;
    342     case Hexagon::CMPhEQri_V4:
    343     case Hexagon::CMPhEQrr_shl_V4:
    344     case Hexagon::CMPhEQrr_xor_V4:
    345     case Hexagon::CMPhGTUri_V4:
    346     case Hexagon::CMPhGTUrr_V4:
    347     case Hexagon::CMPhGTrr_shl_V4:
    348       SrcReg = MI->getOperand(1).getReg();
    349       Mask = 0xFFFF;
    350       break;
    351   }
    352 
    353   // Set the value/second source register.
    354   switch (Opc) {
    355     case Hexagon::CMPEHexagon4rr:
    356     case Hexagon::CMPEQrr:
    357     case Hexagon::CMPGT64rr:
    358     case Hexagon::CMPGTU64rr:
    359     case Hexagon::CMPGTUrr:
    360     case Hexagon::CMPGTrr:
    361     case Hexagon::CMPbEQrr_sbsb_V4:
    362     case Hexagon::CMPbEQrr_ubub_V4:
    363     case Hexagon::CMPbGTUrr_V4:
    364     case Hexagon::CMPbGTrr_V4:
    365     case Hexagon::CMPhEQrr_shl_V4:
    366     case Hexagon::CMPhEQrr_xor_V4:
    367     case Hexagon::CMPhGTUrr_V4:
    368     case Hexagon::CMPhGTrr_shl_V4:
    369     case Hexagon::CMPLTUrr:
    370     case Hexagon::CMPLTrr:
    371       SrcReg2 = MI->getOperand(2).getReg();
    372       return true;
    373 
    374     case Hexagon::CMPEQri:
    375     case Hexagon::CMPGTUri:
    376     case Hexagon::CMPGTri:
    377     case Hexagon::CMPbEQri_V4:
    378     case Hexagon::CMPbGTUri_V4:
    379     case Hexagon::CMPhEQri_V4:
    380     case Hexagon::CMPhGTUri_V4:
    381       SrcReg2 = 0;
    382       Value = MI->getOperand(2).getImm();
    383       return true;
    384   }
    385 
    386   return false;
    387 }
    388 
    389 
    390 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    391                                  MachineBasicBlock::iterator I, DebugLoc DL,
    392                                  unsigned DestReg, unsigned SrcReg,
    393                                  bool KillSrc) const {
    394   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    395     BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
    396     return;
    397   }
    398   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    399     BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
    400     return;
    401   }
    402   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    403     // Map Pd = Ps to Pd = or(Ps, Ps).
    404     BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
    405             DestReg).addReg(SrcReg).addReg(SrcReg);
    406     return;
    407   }
    408   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
    409       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    410     // We can have an overlap between single and double reg: r1:0 = r0.
    411     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
    412         // r1:0 = r0
    413         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    414                 Hexagon::subreg_hireg))).addImm(0);
    415     } else {
    416         // r1:0 = r1 or no overlap.
    417         BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
    418                 Hexagon::subreg_loreg))).addReg(SrcReg);
    419         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    420                 Hexagon::subreg_hireg))).addImm(0);
    421     }
    422     return;
    423   }
    424   if (Hexagon::CRRegsRegClass.contains(DestReg) &&
    425       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    426     BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
    427     return;
    428   }
    429   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    430       Hexagon::IntRegsRegClass.contains(DestReg)) {
    431     BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
    432       addReg(SrcReg, getKillRegState(KillSrc));
    433     return;
    434   }
    435   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
    436       Hexagon::PredRegsRegClass.contains(DestReg)) {
    437     BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
    438       addReg(SrcReg, getKillRegState(KillSrc));
    439     return;
    440   }
    441 
    442   llvm_unreachable("Unimplemented");
    443 }
    444 
    445 
    446 void HexagonInstrInfo::
    447 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    448                     unsigned SrcReg, bool isKill, int FI,
    449                     const TargetRegisterClass *RC,
    450                     const TargetRegisterInfo *TRI) const {
    451 
    452   DebugLoc DL = MBB.findDebugLoc(I);
    453   MachineFunction &MF = *MBB.getParent();
    454   MachineFrameInfo &MFI = *MF.getFrameInfo();
    455   unsigned Align = MFI.getObjectAlignment(FI);
    456 
    457   MachineMemOperand *MMO =
    458       MF.getMachineMemOperand(
    459                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    460                       MachineMemOperand::MOStore,
    461                       MFI.getObjectSize(FI),
    462                       Align);
    463 
    464   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    465     BuildMI(MBB, I, DL, get(Hexagon::STriw))
    466           .addFrameIndex(FI).addImm(0)
    467           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    468   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    469     BuildMI(MBB, I, DL, get(Hexagon::STrid))
    470           .addFrameIndex(FI).addImm(0)
    471           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    472   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    473     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
    474           .addFrameIndex(FI).addImm(0)
    475           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    476   } else {
    477     llvm_unreachable("Unimplemented");
    478   }
    479 }
    480 
    481 
    482 void HexagonInstrInfo::storeRegToAddr(
    483                                  MachineFunction &MF, unsigned SrcReg,
    484                                  bool isKill,
    485                                  SmallVectorImpl<MachineOperand> &Addr,
    486                                  const TargetRegisterClass *RC,
    487                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
    488 {
    489   llvm_unreachable("Unimplemented");
    490 }
    491 
    492 
    493 void HexagonInstrInfo::
    494 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    495                      unsigned DestReg, int FI,
    496                      const TargetRegisterClass *RC,
    497                      const TargetRegisterInfo *TRI) const {
    498   DebugLoc DL = MBB.findDebugLoc(I);
    499   MachineFunction &MF = *MBB.getParent();
    500   MachineFrameInfo &MFI = *MF.getFrameInfo();
    501   unsigned Align = MFI.getObjectAlignment(FI);
    502 
    503   MachineMemOperand *MMO =
    504       MF.getMachineMemOperand(
    505                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    506                       MachineMemOperand::MOLoad,
    507                       MFI.getObjectSize(FI),
    508                       Align);
    509   if (RC == &Hexagon::IntRegsRegClass) {
    510     BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
    511           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    512   } else if (RC == &Hexagon::DoubleRegsRegClass) {
    513     BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
    514           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    515   } else if (RC == &Hexagon::PredRegsRegClass) {
    516     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
    517           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    518   } else {
    519     llvm_unreachable("Can't store this register to stack slot");
    520   }
    521 }
    522 
    523 
    524 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    525                                         SmallVectorImpl<MachineOperand> &Addr,
    526                                         const TargetRegisterClass *RC,
    527                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
    528   llvm_unreachable("Unimplemented");
    529 }
    530 
    531 
    532 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
    533                                                     MachineInstr* MI,
    534                                           const SmallVectorImpl<unsigned> &Ops,
    535                                                     int FI) const {
    536   // Hexagon_TODO: Implement.
    537   return(0);
    538 }
    539 
    540 
    541 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
    542 
    543   MachineRegisterInfo &RegInfo = MF->getRegInfo();
    544   const TargetRegisterClass *TRC;
    545   if (VT == MVT::i1) {
    546     TRC = &Hexagon::PredRegsRegClass;
    547   } else if (VT == MVT::i32 || VT == MVT::f32) {
    548     TRC = &Hexagon::IntRegsRegClass;
    549   } else if (VT == MVT::i64 || VT == MVT::f64) {
    550     TRC = &Hexagon::DoubleRegsRegClass;
    551   } else {
    552     llvm_unreachable("Cannot handle this register class");
    553   }
    554 
    555   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
    556   return NewReg;
    557 }
    558 
    559 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
    560   // Constant extenders are allowed only for V4 and above.
    561   if (!Subtarget.hasV4TOps())
    562     return false;
    563 
    564   const MCInstrDesc &MID = MI->getDesc();
    565   const uint64_t F = MID.TSFlags;
    566   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
    567     return true;
    568 
    569   // TODO: This is largely obsolete now. Will need to be removed
    570   // in consecutive patches.
    571   switch(MI->getOpcode()) {
    572     // TFR_FI Remains a special case.
    573     case Hexagon::TFR_FI:
    574       return true;
    575     default:
    576       return false;
    577   }
    578   return  false;
    579 }
    580 
    581 // This returns true in two cases:
    582 // - The OP code itself indicates that this is an extended instruction.
    583 // - One of MOs has been marked with HMOTF_ConstExtended flag.
    584 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
    585   // First check if this is permanently extended op code.
    586   const uint64_t F = MI->getDesc().TSFlags;
    587   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
    588     return true;
    589   // Use MO operand flags to determine if one of MI's operands
    590   // has HMOTF_ConstExtended flag set.
    591   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
    592        E = MI->operands_end(); I != E; ++I) {
    593     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
    594       return true;
    595   }
    596   return  false;
    597 }
    598 
    599 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
    600   switch (MI->getOpcode()) {
    601     default: return false;
    602     // JMP_EQri
    603     case Hexagon::JMP_EQriPt_nv_V4:
    604     case Hexagon::JMP_EQriPnt_nv_V4:
    605     case Hexagon::JMP_EQriNotPt_nv_V4:
    606     case Hexagon::JMP_EQriNotPnt_nv_V4:
    607     case Hexagon::JMP_EQriPt_ie_nv_V4:
    608     case Hexagon::JMP_EQriPnt_ie_nv_V4:
    609     case Hexagon::JMP_EQriNotPt_ie_nv_V4:
    610     case Hexagon::JMP_EQriNotPnt_ie_nv_V4:
    611 
    612     // JMP_EQri - with -1
    613     case Hexagon::JMP_EQriPtneg_nv_V4:
    614     case Hexagon::JMP_EQriPntneg_nv_V4:
    615     case Hexagon::JMP_EQriNotPtneg_nv_V4:
    616     case Hexagon::JMP_EQriNotPntneg_nv_V4:
    617     case Hexagon::JMP_EQriPtneg_ie_nv_V4:
    618     case Hexagon::JMP_EQriPntneg_ie_nv_V4:
    619     case Hexagon::JMP_EQriNotPtneg_ie_nv_V4:
    620     case Hexagon::JMP_EQriNotPntneg_ie_nv_V4:
    621 
    622     // JMP_EQrr
    623     case Hexagon::JMP_EQrrPt_nv_V4:
    624     case Hexagon::JMP_EQrrPnt_nv_V4:
    625     case Hexagon::JMP_EQrrNotPt_nv_V4:
    626     case Hexagon::JMP_EQrrNotPnt_nv_V4:
    627     case Hexagon::JMP_EQrrPt_ie_nv_V4:
    628     case Hexagon::JMP_EQrrPnt_ie_nv_V4:
    629     case Hexagon::JMP_EQrrNotPt_ie_nv_V4:
    630     case Hexagon::JMP_EQrrNotPnt_ie_nv_V4:
    631 
    632     // JMP_GTri
    633     case Hexagon::JMP_GTriPt_nv_V4:
    634     case Hexagon::JMP_GTriPnt_nv_V4:
    635     case Hexagon::JMP_GTriNotPt_nv_V4:
    636     case Hexagon::JMP_GTriNotPnt_nv_V4:
    637     case Hexagon::JMP_GTriPt_ie_nv_V4:
    638     case Hexagon::JMP_GTriPnt_ie_nv_V4:
    639     case Hexagon::JMP_GTriNotPt_ie_nv_V4:
    640     case Hexagon::JMP_GTriNotPnt_ie_nv_V4:
    641 
    642     // JMP_GTri - with -1
    643     case Hexagon::JMP_GTriPtneg_nv_V4:
    644     case Hexagon::JMP_GTriPntneg_nv_V4:
    645     case Hexagon::JMP_GTriNotPtneg_nv_V4:
    646     case Hexagon::JMP_GTriNotPntneg_nv_V4:
    647     case Hexagon::JMP_GTriPtneg_ie_nv_V4:
    648     case Hexagon::JMP_GTriPntneg_ie_nv_V4:
    649     case Hexagon::JMP_GTriNotPtneg_ie_nv_V4:
    650     case Hexagon::JMP_GTriNotPntneg_ie_nv_V4:
    651 
    652     // JMP_GTrr
    653     case Hexagon::JMP_GTrrPt_nv_V4:
    654     case Hexagon::JMP_GTrrPnt_nv_V4:
    655     case Hexagon::JMP_GTrrNotPt_nv_V4:
    656     case Hexagon::JMP_GTrrNotPnt_nv_V4:
    657     case Hexagon::JMP_GTrrPt_ie_nv_V4:
    658     case Hexagon::JMP_GTrrPnt_ie_nv_V4:
    659     case Hexagon::JMP_GTrrNotPt_ie_nv_V4:
    660     case Hexagon::JMP_GTrrNotPnt_ie_nv_V4:
    661 
    662     // JMP_GTrrdn
    663     case Hexagon::JMP_GTrrdnPt_nv_V4:
    664     case Hexagon::JMP_GTrrdnPnt_nv_V4:
    665     case Hexagon::JMP_GTrrdnNotPt_nv_V4:
    666     case Hexagon::JMP_GTrrdnNotPnt_nv_V4:
    667     case Hexagon::JMP_GTrrdnPt_ie_nv_V4:
    668     case Hexagon::JMP_GTrrdnPnt_ie_nv_V4:
    669     case Hexagon::JMP_GTrrdnNotPt_ie_nv_V4:
    670     case Hexagon::JMP_GTrrdnNotPnt_ie_nv_V4:
    671 
    672     // JMP_GTUri
    673     case Hexagon::JMP_GTUriPt_nv_V4:
    674     case Hexagon::JMP_GTUriPnt_nv_V4:
    675     case Hexagon::JMP_GTUriNotPt_nv_V4:
    676     case Hexagon::JMP_GTUriNotPnt_nv_V4:
    677     case Hexagon::JMP_GTUriPt_ie_nv_V4:
    678     case Hexagon::JMP_GTUriPnt_ie_nv_V4:
    679     case Hexagon::JMP_GTUriNotPt_ie_nv_V4:
    680     case Hexagon::JMP_GTUriNotPnt_ie_nv_V4:
    681 
    682     // JMP_GTUrr
    683     case Hexagon::JMP_GTUrrPt_nv_V4:
    684     case Hexagon::JMP_GTUrrPnt_nv_V4:
    685     case Hexagon::JMP_GTUrrNotPt_nv_V4:
    686     case Hexagon::JMP_GTUrrNotPnt_nv_V4:
    687     case Hexagon::JMP_GTUrrPt_ie_nv_V4:
    688     case Hexagon::JMP_GTUrrPnt_ie_nv_V4:
    689     case Hexagon::JMP_GTUrrNotPt_ie_nv_V4:
    690     case Hexagon::JMP_GTUrrNotPnt_ie_nv_V4:
    691 
    692     // JMP_GTUrrdn
    693     case Hexagon::JMP_GTUrrdnPt_nv_V4:
    694     case Hexagon::JMP_GTUrrdnPnt_nv_V4:
    695     case Hexagon::JMP_GTUrrdnNotPt_nv_V4:
    696     case Hexagon::JMP_GTUrrdnNotPnt_nv_V4:
    697     case Hexagon::JMP_GTUrrdnPt_ie_nv_V4:
    698     case Hexagon::JMP_GTUrrdnPnt_ie_nv_V4:
    699     case Hexagon::JMP_GTUrrdnNotPt_ie_nv_V4:
    700     case Hexagon::JMP_GTUrrdnNotPnt_ie_nv_V4:
    701       return true;
    702   }
    703 }
    704 
    705 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
    706   switch (MI->getOpcode()) {
    707     default: return false;
    708     // Store Byte
    709     case Hexagon::STrib_nv_V4:
    710     case Hexagon::STrib_indexed_nv_V4:
    711     case Hexagon::STrib_indexed_shl_nv_V4:
    712     case Hexagon::STrib_shl_nv_V4:
    713     case Hexagon::STb_GP_nv_V4:
    714     case Hexagon::POST_STbri_nv_V4:
    715     case Hexagon::STrib_cPt_nv_V4:
    716     case Hexagon::STrib_cdnPt_nv_V4:
    717     case Hexagon::STrib_cNotPt_nv_V4:
    718     case Hexagon::STrib_cdnNotPt_nv_V4:
    719     case Hexagon::STrib_indexed_cPt_nv_V4:
    720     case Hexagon::STrib_indexed_cdnPt_nv_V4:
    721     case Hexagon::STrib_indexed_cNotPt_nv_V4:
    722     case Hexagon::STrib_indexed_cdnNotPt_nv_V4:
    723     case Hexagon::STrib_indexed_shl_cPt_nv_V4:
    724     case Hexagon::STrib_indexed_shl_cdnPt_nv_V4:
    725     case Hexagon::STrib_indexed_shl_cNotPt_nv_V4:
    726     case Hexagon::STrib_indexed_shl_cdnNotPt_nv_V4:
    727     case Hexagon::POST_STbri_cPt_nv_V4:
    728     case Hexagon::POST_STbri_cdnPt_nv_V4:
    729     case Hexagon::POST_STbri_cNotPt_nv_V4:
    730     case Hexagon::POST_STbri_cdnNotPt_nv_V4:
    731     case Hexagon::STb_GP_cPt_nv_V4:
    732     case Hexagon::STb_GP_cNotPt_nv_V4:
    733     case Hexagon::STb_GP_cdnPt_nv_V4:
    734     case Hexagon::STb_GP_cdnNotPt_nv_V4:
    735     case Hexagon::STrib_abs_nv_V4:
    736     case Hexagon::STrib_abs_cPt_nv_V4:
    737     case Hexagon::STrib_abs_cdnPt_nv_V4:
    738     case Hexagon::STrib_abs_cNotPt_nv_V4:
    739     case Hexagon::STrib_abs_cdnNotPt_nv_V4:
    740     case Hexagon::STrib_imm_abs_nv_V4:
    741     case Hexagon::STrib_imm_abs_cPt_nv_V4:
    742     case Hexagon::STrib_imm_abs_cdnPt_nv_V4:
    743     case Hexagon::STrib_imm_abs_cNotPt_nv_V4:
    744     case Hexagon::STrib_imm_abs_cdnNotPt_nv_V4:
    745 
    746     // Store Halfword
    747     case Hexagon::STrih_nv_V4:
    748     case Hexagon::STrih_indexed_nv_V4:
    749     case Hexagon::STrih_indexed_shl_nv_V4:
    750     case Hexagon::STrih_shl_nv_V4:
    751     case Hexagon::STh_GP_nv_V4:
    752     case Hexagon::POST_SThri_nv_V4:
    753     case Hexagon::STrih_cPt_nv_V4:
    754     case Hexagon::STrih_cdnPt_nv_V4:
    755     case Hexagon::STrih_cNotPt_nv_V4:
    756     case Hexagon::STrih_cdnNotPt_nv_V4:
    757     case Hexagon::STrih_indexed_cPt_nv_V4:
    758     case Hexagon::STrih_indexed_cdnPt_nv_V4:
    759     case Hexagon::STrih_indexed_cNotPt_nv_V4:
    760     case Hexagon::STrih_indexed_cdnNotPt_nv_V4:
    761     case Hexagon::STrih_indexed_shl_cPt_nv_V4:
    762     case Hexagon::STrih_indexed_shl_cdnPt_nv_V4:
    763     case Hexagon::STrih_indexed_shl_cNotPt_nv_V4:
    764     case Hexagon::STrih_indexed_shl_cdnNotPt_nv_V4:
    765     case Hexagon::POST_SThri_cPt_nv_V4:
    766     case Hexagon::POST_SThri_cdnPt_nv_V4:
    767     case Hexagon::POST_SThri_cNotPt_nv_V4:
    768     case Hexagon::POST_SThri_cdnNotPt_nv_V4:
    769     case Hexagon::STh_GP_cPt_nv_V4:
    770     case Hexagon::STh_GP_cNotPt_nv_V4:
    771     case Hexagon::STh_GP_cdnPt_nv_V4:
    772     case Hexagon::STh_GP_cdnNotPt_nv_V4:
    773     case Hexagon::STrih_abs_nv_V4:
    774     case Hexagon::STrih_abs_cPt_nv_V4:
    775     case Hexagon::STrih_abs_cdnPt_nv_V4:
    776     case Hexagon::STrih_abs_cNotPt_nv_V4:
    777     case Hexagon::STrih_abs_cdnNotPt_nv_V4:
    778     case Hexagon::STrih_imm_abs_nv_V4:
    779     case Hexagon::STrih_imm_abs_cPt_nv_V4:
    780     case Hexagon::STrih_imm_abs_cdnPt_nv_V4:
    781     case Hexagon::STrih_imm_abs_cNotPt_nv_V4:
    782     case Hexagon::STrih_imm_abs_cdnNotPt_nv_V4:
    783 
    784     // Store Word
    785     case Hexagon::STriw_nv_V4:
    786     case Hexagon::STriw_indexed_nv_V4:
    787     case Hexagon::STriw_indexed_shl_nv_V4:
    788     case Hexagon::STriw_shl_nv_V4:
    789     case Hexagon::STw_GP_nv_V4:
    790     case Hexagon::POST_STwri_nv_V4:
    791     case Hexagon::STriw_cPt_nv_V4:
    792     case Hexagon::STriw_cdnPt_nv_V4:
    793     case Hexagon::STriw_cNotPt_nv_V4:
    794     case Hexagon::STriw_cdnNotPt_nv_V4:
    795     case Hexagon::STriw_indexed_cPt_nv_V4:
    796     case Hexagon::STriw_indexed_cdnPt_nv_V4:
    797     case Hexagon::STriw_indexed_cNotPt_nv_V4:
    798     case Hexagon::STriw_indexed_cdnNotPt_nv_V4:
    799     case Hexagon::STriw_indexed_shl_cPt_nv_V4:
    800     case Hexagon::STriw_indexed_shl_cdnPt_nv_V4:
    801     case Hexagon::STriw_indexed_shl_cNotPt_nv_V4:
    802     case Hexagon::STriw_indexed_shl_cdnNotPt_nv_V4:
    803     case Hexagon::POST_STwri_cPt_nv_V4:
    804     case Hexagon::POST_STwri_cdnPt_nv_V4:
    805     case Hexagon::POST_STwri_cNotPt_nv_V4:
    806     case Hexagon::POST_STwri_cdnNotPt_nv_V4:
    807     case Hexagon::STw_GP_cPt_nv_V4:
    808     case Hexagon::STw_GP_cNotPt_nv_V4:
    809     case Hexagon::STw_GP_cdnPt_nv_V4:
    810     case Hexagon::STw_GP_cdnNotPt_nv_V4:
    811     case Hexagon::STriw_abs_nv_V4:
    812     case Hexagon::STriw_abs_cPt_nv_V4:
    813     case Hexagon::STriw_abs_cdnPt_nv_V4:
    814     case Hexagon::STriw_abs_cNotPt_nv_V4:
    815     case Hexagon::STriw_abs_cdnNotPt_nv_V4:
    816     case Hexagon::STriw_imm_abs_nv_V4:
    817     case Hexagon::STriw_imm_abs_cPt_nv_V4:
    818     case Hexagon::STriw_imm_abs_cdnPt_nv_V4:
    819     case Hexagon::STriw_imm_abs_cNotPt_nv_V4:
    820     case Hexagon::STriw_imm_abs_cdnNotPt_nv_V4:
    821       return true;
    822   }
    823 }
    824 
    825 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
    826   switch (MI->getOpcode())
    827   {
    828     default: return false;
    829     // Load Byte
    830     case Hexagon::POST_LDrib:
    831     case Hexagon::POST_LDrib_cPt:
    832     case Hexagon::POST_LDrib_cNotPt:
    833     case Hexagon::POST_LDrib_cdnPt_V4:
    834     case Hexagon::POST_LDrib_cdnNotPt_V4:
    835 
    836     // Load unsigned byte
    837     case Hexagon::POST_LDriub:
    838     case Hexagon::POST_LDriub_cPt:
    839     case Hexagon::POST_LDriub_cNotPt:
    840     case Hexagon::POST_LDriub_cdnPt_V4:
    841     case Hexagon::POST_LDriub_cdnNotPt_V4:
    842 
    843     // Load halfword
    844     case Hexagon::POST_LDrih:
    845     case Hexagon::POST_LDrih_cPt:
    846     case Hexagon::POST_LDrih_cNotPt:
    847     case Hexagon::POST_LDrih_cdnPt_V4:
    848     case Hexagon::POST_LDrih_cdnNotPt_V4:
    849 
    850     // Load unsigned halfword
    851     case Hexagon::POST_LDriuh:
    852     case Hexagon::POST_LDriuh_cPt:
    853     case Hexagon::POST_LDriuh_cNotPt:
    854     case Hexagon::POST_LDriuh_cdnPt_V4:
    855     case Hexagon::POST_LDriuh_cdnNotPt_V4:
    856 
    857     // Load word
    858     case Hexagon::POST_LDriw:
    859     case Hexagon::POST_LDriw_cPt:
    860     case Hexagon::POST_LDriw_cNotPt:
    861     case Hexagon::POST_LDriw_cdnPt_V4:
    862     case Hexagon::POST_LDriw_cdnNotPt_V4:
    863 
    864     // Load double word
    865     case Hexagon::POST_LDrid:
    866     case Hexagon::POST_LDrid_cPt:
    867     case Hexagon::POST_LDrid_cNotPt:
    868     case Hexagon::POST_LDrid_cdnPt_V4:
    869     case Hexagon::POST_LDrid_cdnNotPt_V4:
    870 
    871     // Store byte
    872     case Hexagon::POST_STbri:
    873     case Hexagon::POST_STbri_cPt:
    874     case Hexagon::POST_STbri_cNotPt:
    875     case Hexagon::POST_STbri_cdnPt_V4:
    876     case Hexagon::POST_STbri_cdnNotPt_V4:
    877 
    878     // Store halfword
    879     case Hexagon::POST_SThri:
    880     case Hexagon::POST_SThri_cPt:
    881     case Hexagon::POST_SThri_cNotPt:
    882     case Hexagon::POST_SThri_cdnPt_V4:
    883     case Hexagon::POST_SThri_cdnNotPt_V4:
    884 
    885     // Store word
    886     case Hexagon::POST_STwri:
    887     case Hexagon::POST_STwri_cPt:
    888     case Hexagon::POST_STwri_cNotPt:
    889     case Hexagon::POST_STwri_cdnPt_V4:
    890     case Hexagon::POST_STwri_cdnNotPt_V4:
    891 
    892     // Store double word
    893     case Hexagon::POST_STdri:
    894     case Hexagon::POST_STdri_cPt:
    895     case Hexagon::POST_STdri_cNotPt:
    896     case Hexagon::POST_STdri_cdnPt_V4:
    897     case Hexagon::POST_STdri_cdnNotPt_V4:
    898       return true;
    899   }
    900 }
    901 
    902 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
    903   if (isNewValueJump(MI))
    904     return true;
    905 
    906   if (isNewValueStore(MI))
    907     return true;
    908 
    909   return false;
    910 }
    911 
    912 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
    913   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
    914 }
    915 
    916 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
    917   bool isPred = MI->getDesc().isPredicable();
    918 
    919   if (!isPred)
    920     return false;
    921 
    922   const int Opc = MI->getOpcode();
    923 
    924   switch(Opc) {
    925   case Hexagon::TFRI:
    926     return isInt<12>(MI->getOperand(1).getImm());
    927 
    928   case Hexagon::STrid:
    929   case Hexagon::STrid_indexed:
    930     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
    931 
    932   case Hexagon::STriw:
    933   case Hexagon::STriw_indexed:
    934   case Hexagon::STriw_nv_V4:
    935     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
    936 
    937   case Hexagon::STrih:
    938   case Hexagon::STrih_indexed:
    939   case Hexagon::STrih_nv_V4:
    940     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
    941 
    942   case Hexagon::STrib:
    943   case Hexagon::STrib_indexed:
    944   case Hexagon::STrib_nv_V4:
    945     return isUInt<6>(MI->getOperand(1).getImm());
    946 
    947   case Hexagon::LDrid:
    948   case Hexagon::LDrid_indexed:
    949     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
    950 
    951   case Hexagon::LDriw:
    952   case Hexagon::LDriw_indexed:
    953     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
    954 
    955   case Hexagon::LDrih:
    956   case Hexagon::LDriuh:
    957   case Hexagon::LDrih_indexed:
    958   case Hexagon::LDriuh_indexed:
    959     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
    960 
    961   case Hexagon::LDrib:
    962   case Hexagon::LDriub:
    963   case Hexagon::LDrib_indexed:
    964   case Hexagon::LDriub_indexed:
    965     return isUInt<6>(MI->getOperand(2).getImm());
    966 
    967   case Hexagon::POST_LDrid:
    968     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
    969 
    970   case Hexagon::POST_LDriw:
    971     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
    972 
    973   case Hexagon::POST_LDrih:
    974   case Hexagon::POST_LDriuh:
    975     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
    976 
    977   case Hexagon::POST_LDrib:
    978   case Hexagon::POST_LDriub:
    979     return isInt<4>(MI->getOperand(3).getImm());
    980 
    981   case Hexagon::STrib_imm_V4:
    982   case Hexagon::STrih_imm_V4:
    983   case Hexagon::STriw_imm_V4:
    984     return (isUInt<6>(MI->getOperand(1).getImm()) &&
    985             isInt<6>(MI->getOperand(2).getImm()));
    986 
    987   case Hexagon::ADD_ri:
    988     return isInt<8>(MI->getOperand(2).getImm());
    989 
    990   case Hexagon::ASLH:
    991   case Hexagon::ASRH:
    992   case Hexagon::SXTB:
    993   case Hexagon::SXTH:
    994   case Hexagon::ZXTB:
    995   case Hexagon::ZXTH:
    996     return Subtarget.hasV4TOps();
    997 
    998   case Hexagon::JMPR:
    999     return false;
   1000   }
   1001 
   1002   return true;
   1003 }
   1004 
   1005 // This function performs the following inversiones:
   1006 //
   1007 //  cPt    ---> cNotPt
   1008 //  cNotPt ---> cPt
   1009 //
   1010 // however, these inversiones are NOT included:
   1011 //
   1012 //  cdnPt      -X-> cdnNotPt
   1013 //  cdnNotPt   -X-> cdnPt
   1014 //  cPt_nv     -X-> cNotPt_nv (new value stores)
   1015 //  cNotPt_nv  -X-> cPt_nv    (new value stores)
   1016 //
   1017 // because only the following transformations are allowed:
   1018 //
   1019 //  cNotPt  ---> cdnNotPt
   1020 //  cPt     ---> cdnPt
   1021 //  cNotPt  ---> cNotPt_nv
   1022 //  cPt     ---> cPt_nv
   1023 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
   1024   switch(Opc) {
   1025     default: llvm_unreachable("Unexpected predicated instruction");
   1026     case Hexagon::TFR_cPt:
   1027       return Hexagon::TFR_cNotPt;
   1028     case Hexagon::TFR_cNotPt:
   1029       return Hexagon::TFR_cPt;
   1030 
   1031     case Hexagon::TFRI_cPt:
   1032       return Hexagon::TFRI_cNotPt;
   1033     case Hexagon::TFRI_cNotPt:
   1034       return Hexagon::TFRI_cPt;
   1035 
   1036     case Hexagon::JMP_c:
   1037       return Hexagon::JMP_cNot;
   1038     case Hexagon::JMP_cNot:
   1039       return Hexagon::JMP_c;
   1040 
   1041     case Hexagon::ADD_ri_cPt:
   1042       return Hexagon::ADD_ri_cNotPt;
   1043     case Hexagon::ADD_ri_cNotPt:
   1044       return Hexagon::ADD_ri_cPt;
   1045 
   1046     case Hexagon::ADD_rr_cPt:
   1047       return Hexagon::ADD_rr_cNotPt;
   1048     case Hexagon::ADD_rr_cNotPt:
   1049       return Hexagon::ADD_rr_cPt;
   1050 
   1051     case Hexagon::XOR_rr_cPt:
   1052       return Hexagon::XOR_rr_cNotPt;
   1053     case Hexagon::XOR_rr_cNotPt:
   1054       return Hexagon::XOR_rr_cPt;
   1055 
   1056     case Hexagon::AND_rr_cPt:
   1057       return Hexagon::AND_rr_cNotPt;
   1058     case Hexagon::AND_rr_cNotPt:
   1059       return Hexagon::AND_rr_cPt;
   1060 
   1061     case Hexagon::OR_rr_cPt:
   1062       return Hexagon::OR_rr_cNotPt;
   1063     case Hexagon::OR_rr_cNotPt:
   1064       return Hexagon::OR_rr_cPt;
   1065 
   1066     case Hexagon::SUB_rr_cPt:
   1067       return Hexagon::SUB_rr_cNotPt;
   1068     case Hexagon::SUB_rr_cNotPt:
   1069       return Hexagon::SUB_rr_cPt;
   1070 
   1071     case Hexagon::COMBINE_rr_cPt:
   1072       return Hexagon::COMBINE_rr_cNotPt;
   1073     case Hexagon::COMBINE_rr_cNotPt:
   1074       return Hexagon::COMBINE_rr_cPt;
   1075 
   1076     case Hexagon::ASLH_cPt_V4:
   1077       return Hexagon::ASLH_cNotPt_V4;
   1078     case Hexagon::ASLH_cNotPt_V4:
   1079       return Hexagon::ASLH_cPt_V4;
   1080 
   1081     case Hexagon::ASRH_cPt_V4:
   1082       return Hexagon::ASRH_cNotPt_V4;
   1083     case Hexagon::ASRH_cNotPt_V4:
   1084       return Hexagon::ASRH_cPt_V4;
   1085 
   1086     case Hexagon::SXTB_cPt_V4:
   1087       return Hexagon::SXTB_cNotPt_V4;
   1088     case Hexagon::SXTB_cNotPt_V4:
   1089       return Hexagon::SXTB_cPt_V4;
   1090 
   1091     case Hexagon::SXTH_cPt_V4:
   1092       return Hexagon::SXTH_cNotPt_V4;
   1093     case Hexagon::SXTH_cNotPt_V4:
   1094       return Hexagon::SXTH_cPt_V4;
   1095 
   1096     case Hexagon::ZXTB_cPt_V4:
   1097       return Hexagon::ZXTB_cNotPt_V4;
   1098     case Hexagon::ZXTB_cNotPt_V4:
   1099       return Hexagon::ZXTB_cPt_V4;
   1100 
   1101     case Hexagon::ZXTH_cPt_V4:
   1102       return Hexagon::ZXTH_cNotPt_V4;
   1103     case Hexagon::ZXTH_cNotPt_V4:
   1104       return Hexagon::ZXTH_cPt_V4;
   1105 
   1106 
   1107     case Hexagon::JMPR_cPt:
   1108       return Hexagon::JMPR_cNotPt;
   1109     case Hexagon::JMPR_cNotPt:
   1110       return Hexagon::JMPR_cPt;
   1111 
   1112   // V4 indexed+scaled load.
   1113     case Hexagon::LDrid_indexed_shl_cPt_V4:
   1114       return Hexagon::LDrid_indexed_shl_cNotPt_V4;
   1115     case Hexagon::LDrid_indexed_shl_cNotPt_V4:
   1116       return Hexagon::LDrid_indexed_shl_cPt_V4;
   1117 
   1118     case Hexagon::LDrib_indexed_shl_cPt_V4:
   1119       return Hexagon::LDrib_indexed_shl_cNotPt_V4;
   1120     case Hexagon::LDrib_indexed_shl_cNotPt_V4:
   1121       return Hexagon::LDrib_indexed_shl_cPt_V4;
   1122 
   1123     case Hexagon::LDriub_indexed_shl_cPt_V4:
   1124       return Hexagon::LDriub_indexed_shl_cNotPt_V4;
   1125     case Hexagon::LDriub_indexed_shl_cNotPt_V4:
   1126       return Hexagon::LDriub_indexed_shl_cPt_V4;
   1127 
   1128     case Hexagon::LDrih_indexed_shl_cPt_V4:
   1129       return Hexagon::LDrih_indexed_shl_cNotPt_V4;
   1130     case Hexagon::LDrih_indexed_shl_cNotPt_V4:
   1131       return Hexagon::LDrih_indexed_shl_cPt_V4;
   1132 
   1133     case Hexagon::LDriuh_indexed_shl_cPt_V4:
   1134       return Hexagon::LDriuh_indexed_shl_cNotPt_V4;
   1135     case Hexagon::LDriuh_indexed_shl_cNotPt_V4:
   1136       return Hexagon::LDriuh_indexed_shl_cPt_V4;
   1137 
   1138     case Hexagon::LDriw_indexed_shl_cPt_V4:
   1139       return Hexagon::LDriw_indexed_shl_cNotPt_V4;
   1140     case Hexagon::LDriw_indexed_shl_cNotPt_V4:
   1141       return Hexagon::LDriw_indexed_shl_cPt_V4;
   1142 
   1143     // Byte.
   1144     case Hexagon::POST_STbri_cPt:
   1145       return Hexagon::POST_STbri_cNotPt;
   1146     case Hexagon::POST_STbri_cNotPt:
   1147       return Hexagon::POST_STbri_cPt;
   1148 
   1149     case Hexagon::STrib_cPt:
   1150       return Hexagon::STrib_cNotPt;
   1151     case Hexagon::STrib_cNotPt:
   1152       return Hexagon::STrib_cPt;
   1153 
   1154     case Hexagon::STrib_indexed_cPt:
   1155       return Hexagon::STrib_indexed_cNotPt;
   1156     case Hexagon::STrib_indexed_cNotPt:
   1157       return Hexagon::STrib_indexed_cPt;
   1158 
   1159     case Hexagon::STrib_imm_cPt_V4:
   1160       return Hexagon::STrib_imm_cNotPt_V4;
   1161     case Hexagon::STrib_imm_cNotPt_V4:
   1162       return Hexagon::STrib_imm_cPt_V4;
   1163 
   1164     case Hexagon::STrib_indexed_shl_cPt_V4:
   1165       return Hexagon::STrib_indexed_shl_cNotPt_V4;
   1166     case Hexagon::STrib_indexed_shl_cNotPt_V4:
   1167       return Hexagon::STrib_indexed_shl_cPt_V4;
   1168 
   1169   // Halfword.
   1170     case Hexagon::POST_SThri_cPt:
   1171       return Hexagon::POST_SThri_cNotPt;
   1172     case Hexagon::POST_SThri_cNotPt:
   1173       return Hexagon::POST_SThri_cPt;
   1174 
   1175     case Hexagon::STrih_cPt:
   1176       return Hexagon::STrih_cNotPt;
   1177     case Hexagon::STrih_cNotPt:
   1178       return Hexagon::STrih_cPt;
   1179 
   1180     case Hexagon::STrih_indexed_cPt:
   1181       return Hexagon::STrih_indexed_cNotPt;
   1182     case Hexagon::STrih_indexed_cNotPt:
   1183       return Hexagon::STrih_indexed_cPt;
   1184 
   1185     case Hexagon::STrih_imm_cPt_V4:
   1186       return Hexagon::STrih_imm_cNotPt_V4;
   1187     case Hexagon::STrih_imm_cNotPt_V4:
   1188       return Hexagon::STrih_imm_cPt_V4;
   1189 
   1190     case Hexagon::STrih_indexed_shl_cPt_V4:
   1191       return Hexagon::STrih_indexed_shl_cNotPt_V4;
   1192     case Hexagon::STrih_indexed_shl_cNotPt_V4:
   1193       return Hexagon::STrih_indexed_shl_cPt_V4;
   1194 
   1195   // Word.
   1196     case Hexagon::POST_STwri_cPt:
   1197       return Hexagon::POST_STwri_cNotPt;
   1198     case Hexagon::POST_STwri_cNotPt:
   1199       return Hexagon::POST_STwri_cPt;
   1200 
   1201     case Hexagon::STriw_cPt:
   1202       return Hexagon::STriw_cNotPt;
   1203     case Hexagon::STriw_cNotPt:
   1204       return Hexagon::STriw_cPt;
   1205 
   1206     case Hexagon::STriw_indexed_cPt:
   1207       return Hexagon::STriw_indexed_cNotPt;
   1208     case Hexagon::STriw_indexed_cNotPt:
   1209       return Hexagon::STriw_indexed_cPt;
   1210 
   1211     case Hexagon::STriw_indexed_shl_cPt_V4:
   1212       return Hexagon::STriw_indexed_shl_cNotPt_V4;
   1213     case Hexagon::STriw_indexed_shl_cNotPt_V4:
   1214       return Hexagon::STriw_indexed_shl_cPt_V4;
   1215 
   1216     case Hexagon::STriw_imm_cPt_V4:
   1217       return Hexagon::STriw_imm_cNotPt_V4;
   1218     case Hexagon::STriw_imm_cNotPt_V4:
   1219       return Hexagon::STriw_imm_cPt_V4;
   1220 
   1221   // Double word.
   1222     case Hexagon::POST_STdri_cPt:
   1223       return Hexagon::POST_STdri_cNotPt;
   1224     case Hexagon::POST_STdri_cNotPt:
   1225       return Hexagon::POST_STdri_cPt;
   1226 
   1227     case Hexagon::STrid_cPt:
   1228       return Hexagon::STrid_cNotPt;
   1229     case Hexagon::STrid_cNotPt:
   1230       return Hexagon::STrid_cPt;
   1231 
   1232     case Hexagon::STrid_indexed_cPt:
   1233       return Hexagon::STrid_indexed_cNotPt;
   1234     case Hexagon::STrid_indexed_cNotPt:
   1235       return Hexagon::STrid_indexed_cPt;
   1236 
   1237     case Hexagon::STrid_indexed_shl_cPt_V4:
   1238       return Hexagon::STrid_indexed_shl_cNotPt_V4;
   1239     case Hexagon::STrid_indexed_shl_cNotPt_V4:
   1240       return Hexagon::STrid_indexed_shl_cPt_V4;
   1241 
   1242     // V4 Store to global address.
   1243     case Hexagon::STd_GP_cPt_V4:
   1244       return Hexagon::STd_GP_cNotPt_V4;
   1245     case Hexagon::STd_GP_cNotPt_V4:
   1246       return Hexagon::STd_GP_cPt_V4;
   1247 
   1248     case Hexagon::STb_GP_cPt_V4:
   1249       return Hexagon::STb_GP_cNotPt_V4;
   1250     case Hexagon::STb_GP_cNotPt_V4:
   1251       return Hexagon::STb_GP_cPt_V4;
   1252 
   1253     case Hexagon::STh_GP_cPt_V4:
   1254       return Hexagon::STh_GP_cNotPt_V4;
   1255     case Hexagon::STh_GP_cNotPt_V4:
   1256       return Hexagon::STh_GP_cPt_V4;
   1257 
   1258     case Hexagon::STw_GP_cPt_V4:
   1259       return Hexagon::STw_GP_cNotPt_V4;
   1260     case Hexagon::STw_GP_cNotPt_V4:
   1261       return Hexagon::STw_GP_cPt_V4;
   1262 
   1263   // Load.
   1264     case Hexagon::LDrid_cPt:
   1265       return Hexagon::LDrid_cNotPt;
   1266     case Hexagon::LDrid_cNotPt:
   1267       return Hexagon::LDrid_cPt;
   1268 
   1269     case Hexagon::LDriw_cPt:
   1270       return Hexagon::LDriw_cNotPt;
   1271     case Hexagon::LDriw_cNotPt:
   1272       return Hexagon::LDriw_cPt;
   1273 
   1274     case Hexagon::LDrih_cPt:
   1275       return Hexagon::LDrih_cNotPt;
   1276     case Hexagon::LDrih_cNotPt:
   1277       return Hexagon::LDrih_cPt;
   1278 
   1279     case Hexagon::LDriuh_cPt:
   1280       return Hexagon::LDriuh_cNotPt;
   1281     case Hexagon::LDriuh_cNotPt:
   1282       return Hexagon::LDriuh_cPt;
   1283 
   1284     case Hexagon::LDrib_cPt:
   1285       return Hexagon::LDrib_cNotPt;
   1286     case Hexagon::LDrib_cNotPt:
   1287       return Hexagon::LDrib_cPt;
   1288 
   1289     case Hexagon::LDriub_cPt:
   1290       return Hexagon::LDriub_cNotPt;
   1291     case Hexagon::LDriub_cNotPt:
   1292       return Hexagon::LDriub_cPt;
   1293 
   1294  // Load Indexed.
   1295     case Hexagon::LDrid_indexed_cPt:
   1296       return Hexagon::LDrid_indexed_cNotPt;
   1297     case Hexagon::LDrid_indexed_cNotPt:
   1298       return Hexagon::LDrid_indexed_cPt;
   1299 
   1300     case Hexagon::LDriw_indexed_cPt:
   1301       return Hexagon::LDriw_indexed_cNotPt;
   1302     case Hexagon::LDriw_indexed_cNotPt:
   1303       return Hexagon::LDriw_indexed_cPt;
   1304 
   1305     case Hexagon::LDrih_indexed_cPt:
   1306       return Hexagon::LDrih_indexed_cNotPt;
   1307     case Hexagon::LDrih_indexed_cNotPt:
   1308       return Hexagon::LDrih_indexed_cPt;
   1309 
   1310     case Hexagon::LDriuh_indexed_cPt:
   1311       return Hexagon::LDriuh_indexed_cNotPt;
   1312     case Hexagon::LDriuh_indexed_cNotPt:
   1313       return Hexagon::LDriuh_indexed_cPt;
   1314 
   1315     case Hexagon::LDrib_indexed_cPt:
   1316       return Hexagon::LDrib_indexed_cNotPt;
   1317     case Hexagon::LDrib_indexed_cNotPt:
   1318       return Hexagon::LDrib_indexed_cPt;
   1319 
   1320     case Hexagon::LDriub_indexed_cPt:
   1321       return Hexagon::LDriub_indexed_cNotPt;
   1322     case Hexagon::LDriub_indexed_cNotPt:
   1323       return Hexagon::LDriub_indexed_cPt;
   1324 
   1325   // Post Inc Load.
   1326     case Hexagon::POST_LDrid_cPt:
   1327       return Hexagon::POST_LDrid_cNotPt;
   1328     case Hexagon::POST_LDriw_cNotPt:
   1329       return Hexagon::POST_LDriw_cPt;
   1330 
   1331     case Hexagon::POST_LDrih_cPt:
   1332       return Hexagon::POST_LDrih_cNotPt;
   1333     case Hexagon::POST_LDrih_cNotPt:
   1334       return Hexagon::POST_LDrih_cPt;
   1335 
   1336     case Hexagon::POST_LDriuh_cPt:
   1337       return Hexagon::POST_LDriuh_cNotPt;
   1338     case Hexagon::POST_LDriuh_cNotPt:
   1339       return Hexagon::POST_LDriuh_cPt;
   1340 
   1341     case Hexagon::POST_LDrib_cPt:
   1342       return Hexagon::POST_LDrib_cNotPt;
   1343     case Hexagon::POST_LDrib_cNotPt:
   1344       return Hexagon::POST_LDrib_cPt;
   1345 
   1346     case Hexagon::POST_LDriub_cPt:
   1347       return Hexagon::POST_LDriub_cNotPt;
   1348     case Hexagon::POST_LDriub_cNotPt:
   1349       return Hexagon::POST_LDriub_cPt;
   1350 
   1351   // Dealloc_return.
   1352     case Hexagon::DEALLOC_RET_cPt_V4:
   1353       return Hexagon::DEALLOC_RET_cNotPt_V4;
   1354     case Hexagon::DEALLOC_RET_cNotPt_V4:
   1355       return Hexagon::DEALLOC_RET_cPt_V4;
   1356 
   1357    // New Value Jump.
   1358    // JMPEQ_ri - with -1.
   1359     case Hexagon::JMP_EQriPtneg_nv_V4:
   1360       return Hexagon::JMP_EQriNotPtneg_nv_V4;
   1361     case Hexagon::JMP_EQriNotPtneg_nv_V4:
   1362       return Hexagon::JMP_EQriPtneg_nv_V4;
   1363 
   1364     case Hexagon::JMP_EQriPntneg_nv_V4:
   1365       return Hexagon::JMP_EQriNotPntneg_nv_V4;
   1366     case Hexagon::JMP_EQriNotPntneg_nv_V4:
   1367       return Hexagon::JMP_EQriPntneg_nv_V4;
   1368 
   1369    // JMPEQ_ri.
   1370      case Hexagon::JMP_EQriPt_nv_V4:
   1371       return Hexagon::JMP_EQriNotPt_nv_V4;
   1372     case Hexagon::JMP_EQriNotPt_nv_V4:
   1373       return Hexagon::JMP_EQriPt_nv_V4;
   1374 
   1375      case Hexagon::JMP_EQriPnt_nv_V4:
   1376       return Hexagon::JMP_EQriNotPnt_nv_V4;
   1377     case Hexagon::JMP_EQriNotPnt_nv_V4:
   1378       return Hexagon::JMP_EQriPnt_nv_V4;
   1379 
   1380    // JMPEQ_rr.
   1381      case Hexagon::JMP_EQrrPt_nv_V4:
   1382       return Hexagon::JMP_EQrrNotPt_nv_V4;
   1383     case Hexagon::JMP_EQrrNotPt_nv_V4:
   1384       return Hexagon::JMP_EQrrPt_nv_V4;
   1385 
   1386      case Hexagon::JMP_EQrrPnt_nv_V4:
   1387       return Hexagon::JMP_EQrrNotPnt_nv_V4;
   1388     case Hexagon::JMP_EQrrNotPnt_nv_V4:
   1389       return Hexagon::JMP_EQrrPnt_nv_V4;
   1390 
   1391    // JMPGT_ri - with -1.
   1392     case Hexagon::JMP_GTriPtneg_nv_V4:
   1393       return Hexagon::JMP_GTriNotPtneg_nv_V4;
   1394     case Hexagon::JMP_GTriNotPtneg_nv_V4:
   1395       return Hexagon::JMP_GTriPtneg_nv_V4;
   1396 
   1397     case Hexagon::JMP_GTriPntneg_nv_V4:
   1398       return Hexagon::JMP_GTriNotPntneg_nv_V4;
   1399     case Hexagon::JMP_GTriNotPntneg_nv_V4:
   1400       return Hexagon::JMP_GTriPntneg_nv_V4;
   1401 
   1402    // JMPGT_ri.
   1403      case Hexagon::JMP_GTriPt_nv_V4:
   1404       return Hexagon::JMP_GTriNotPt_nv_V4;
   1405     case Hexagon::JMP_GTriNotPt_nv_V4:
   1406       return Hexagon::JMP_GTriPt_nv_V4;
   1407 
   1408      case Hexagon::JMP_GTriPnt_nv_V4:
   1409       return Hexagon::JMP_GTriNotPnt_nv_V4;
   1410     case Hexagon::JMP_GTriNotPnt_nv_V4:
   1411       return Hexagon::JMP_GTriPnt_nv_V4;
   1412 
   1413    // JMPGT_rr.
   1414      case Hexagon::JMP_GTrrPt_nv_V4:
   1415       return Hexagon::JMP_GTrrNotPt_nv_V4;
   1416     case Hexagon::JMP_GTrrNotPt_nv_V4:
   1417       return Hexagon::JMP_GTrrPt_nv_V4;
   1418 
   1419      case Hexagon::JMP_GTrrPnt_nv_V4:
   1420       return Hexagon::JMP_GTrrNotPnt_nv_V4;
   1421     case Hexagon::JMP_GTrrNotPnt_nv_V4:
   1422       return Hexagon::JMP_GTrrPnt_nv_V4;
   1423 
   1424    // JMPGT_rrdn.
   1425      case Hexagon::JMP_GTrrdnPt_nv_V4:
   1426       return Hexagon::JMP_GTrrdnNotPt_nv_V4;
   1427     case Hexagon::JMP_GTrrdnNotPt_nv_V4:
   1428       return Hexagon::JMP_GTrrdnPt_nv_V4;
   1429 
   1430      case Hexagon::JMP_GTrrdnPnt_nv_V4:
   1431       return Hexagon::JMP_GTrrdnNotPnt_nv_V4;
   1432     case Hexagon::JMP_GTrrdnNotPnt_nv_V4:
   1433       return Hexagon::JMP_GTrrdnPnt_nv_V4;
   1434 
   1435    // JMPGTU_ri.
   1436      case Hexagon::JMP_GTUriPt_nv_V4:
   1437       return Hexagon::JMP_GTUriNotPt_nv_V4;
   1438     case Hexagon::JMP_GTUriNotPt_nv_V4:
   1439       return Hexagon::JMP_GTUriPt_nv_V4;
   1440 
   1441      case Hexagon::JMP_GTUriPnt_nv_V4:
   1442       return Hexagon::JMP_GTUriNotPnt_nv_V4;
   1443     case Hexagon::JMP_GTUriNotPnt_nv_V4:
   1444       return Hexagon::JMP_GTUriPnt_nv_V4;
   1445 
   1446    // JMPGTU_rr.
   1447      case Hexagon::JMP_GTUrrPt_nv_V4:
   1448       return Hexagon::JMP_GTUrrNotPt_nv_V4;
   1449     case Hexagon::JMP_GTUrrNotPt_nv_V4:
   1450       return Hexagon::JMP_GTUrrPt_nv_V4;
   1451 
   1452      case Hexagon::JMP_GTUrrPnt_nv_V4:
   1453       return Hexagon::JMP_GTUrrNotPnt_nv_V4;
   1454     case Hexagon::JMP_GTUrrNotPnt_nv_V4:
   1455       return Hexagon::JMP_GTUrrPnt_nv_V4;
   1456 
   1457    // JMPGTU_rrdn.
   1458      case Hexagon::JMP_GTUrrdnPt_nv_V4:
   1459       return Hexagon::JMP_GTUrrdnNotPt_nv_V4;
   1460     case Hexagon::JMP_GTUrrdnNotPt_nv_V4:
   1461       return Hexagon::JMP_GTUrrdnPt_nv_V4;
   1462 
   1463      case Hexagon::JMP_GTUrrdnPnt_nv_V4:
   1464       return Hexagon::JMP_GTUrrdnNotPnt_nv_V4;
   1465     case Hexagon::JMP_GTUrrdnNotPnt_nv_V4:
   1466       return Hexagon::JMP_GTUrrdnPnt_nv_V4;
   1467   }
   1468 }
   1469 
   1470 
   1471 int HexagonInstrInfo::
   1472 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
   1473   enum Hexagon::PredSense inPredSense;
   1474   inPredSense = invertPredicate ? Hexagon::PredSense_false :
   1475                                   Hexagon::PredSense_true;
   1476   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
   1477   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
   1478     return CondOpcode;
   1479 
   1480   // This switch case will be removed once all the instructions have been
   1481   // modified to use relation maps.
   1482   switch(Opc) {
   1483   case Hexagon::TFR:
   1484     return !invertPredicate ? Hexagon::TFR_cPt :
   1485                               Hexagon::TFR_cNotPt;
   1486   case Hexagon::TFRI_f:
   1487     return !invertPredicate ? Hexagon::TFRI_cPt_f :
   1488                               Hexagon::TFRI_cNotPt_f;
   1489   case Hexagon::TFRI:
   1490     return !invertPredicate ? Hexagon::TFRI_cPt :
   1491                               Hexagon::TFRI_cNotPt;
   1492   case Hexagon::JMP:
   1493     return !invertPredicate ? Hexagon::JMP_c :
   1494                               Hexagon::JMP_cNot;
   1495   case Hexagon::JMP_EQrrPt_nv_V4:
   1496     return !invertPredicate ? Hexagon::JMP_EQrrPt_nv_V4 :
   1497                               Hexagon::JMP_EQrrNotPt_nv_V4;
   1498   case Hexagon::JMP_EQriPt_nv_V4:
   1499     return !invertPredicate ? Hexagon::JMP_EQriPt_nv_V4 :
   1500                               Hexagon::JMP_EQriNotPt_nv_V4;
   1501   case Hexagon::COMBINE_rr:
   1502     return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
   1503                               Hexagon::COMBINE_rr_cNotPt;
   1504   case Hexagon::ASLH:
   1505     return !invertPredicate ? Hexagon::ASLH_cPt_V4 :
   1506                               Hexagon::ASLH_cNotPt_V4;
   1507   case Hexagon::ASRH:
   1508     return !invertPredicate ? Hexagon::ASRH_cPt_V4 :
   1509                               Hexagon::ASRH_cNotPt_V4;
   1510   case Hexagon::SXTB:
   1511     return !invertPredicate ? Hexagon::SXTB_cPt_V4 :
   1512                               Hexagon::SXTB_cNotPt_V4;
   1513   case Hexagon::SXTH:
   1514     return !invertPredicate ? Hexagon::SXTH_cPt_V4 :
   1515                               Hexagon::SXTH_cNotPt_V4;
   1516   case Hexagon::ZXTB:
   1517     return !invertPredicate ? Hexagon::ZXTB_cPt_V4 :
   1518                               Hexagon::ZXTB_cNotPt_V4;
   1519   case Hexagon::ZXTH:
   1520     return !invertPredicate ? Hexagon::ZXTH_cPt_V4 :
   1521                               Hexagon::ZXTH_cNotPt_V4;
   1522 
   1523   case Hexagon::JMPR:
   1524     return !invertPredicate ? Hexagon::JMPR_cPt :
   1525                               Hexagon::JMPR_cNotPt;
   1526 
   1527   // V4 indexed+scaled load.
   1528   case Hexagon::LDrid_indexed_shl_V4:
   1529     return !invertPredicate ? Hexagon::LDrid_indexed_shl_cPt_V4 :
   1530                               Hexagon::LDrid_indexed_shl_cNotPt_V4;
   1531   case Hexagon::LDrib_indexed_shl_V4:
   1532     return !invertPredicate ? Hexagon::LDrib_indexed_shl_cPt_V4 :
   1533                               Hexagon::LDrib_indexed_shl_cNotPt_V4;
   1534   case Hexagon::LDriub_indexed_shl_V4:
   1535     return !invertPredicate ? Hexagon::LDriub_indexed_shl_cPt_V4 :
   1536                               Hexagon::LDriub_indexed_shl_cNotPt_V4;
   1537   case Hexagon::LDrih_indexed_shl_V4:
   1538     return !invertPredicate ? Hexagon::LDrih_indexed_shl_cPt_V4 :
   1539                               Hexagon::LDrih_indexed_shl_cNotPt_V4;
   1540   case Hexagon::LDriuh_indexed_shl_V4:
   1541     return !invertPredicate ? Hexagon::LDriuh_indexed_shl_cPt_V4 :
   1542                               Hexagon::LDriuh_indexed_shl_cNotPt_V4;
   1543   case Hexagon::LDriw_indexed_shl_V4:
   1544     return !invertPredicate ? Hexagon::LDriw_indexed_shl_cPt_V4 :
   1545                               Hexagon::LDriw_indexed_shl_cNotPt_V4;
   1546 
   1547   // V4 Load from global address
   1548   case Hexagon::LDd_GP_V4:
   1549     return !invertPredicate ? Hexagon::LDd_GP_cPt_V4 :
   1550                               Hexagon::LDd_GP_cNotPt_V4;
   1551   case Hexagon::LDb_GP_V4:
   1552     return !invertPredicate ? Hexagon::LDb_GP_cPt_V4 :
   1553                               Hexagon::LDb_GP_cNotPt_V4;
   1554   case Hexagon::LDub_GP_V4:
   1555     return !invertPredicate ? Hexagon::LDub_GP_cPt_V4 :
   1556                               Hexagon::LDub_GP_cNotPt_V4;
   1557   case Hexagon::LDh_GP_V4:
   1558     return !invertPredicate ? Hexagon::LDh_GP_cPt_V4 :
   1559                               Hexagon::LDh_GP_cNotPt_V4;
   1560   case Hexagon::LDuh_GP_V4:
   1561     return !invertPredicate ? Hexagon::LDuh_GP_cPt_V4 :
   1562                               Hexagon::LDuh_GP_cNotPt_V4;
   1563   case Hexagon::LDw_GP_V4:
   1564     return !invertPredicate ? Hexagon::LDw_GP_cPt_V4 :
   1565                               Hexagon::LDw_GP_cNotPt_V4;
   1566 
   1567     // Byte.
   1568   case Hexagon::POST_STbri:
   1569     return !invertPredicate ? Hexagon::POST_STbri_cPt :
   1570                               Hexagon::POST_STbri_cNotPt;
   1571   case Hexagon::STrib:
   1572     return !invertPredicate ? Hexagon::STrib_cPt :
   1573                               Hexagon::STrib_cNotPt;
   1574   case Hexagon::STrib_indexed:
   1575     return !invertPredicate ? Hexagon::STrib_indexed_cPt :
   1576                               Hexagon::STrib_indexed_cNotPt;
   1577   case Hexagon::STrib_imm_V4:
   1578     return !invertPredicate ? Hexagon::STrib_imm_cPt_V4 :
   1579                               Hexagon::STrib_imm_cNotPt_V4;
   1580   case Hexagon::STrib_indexed_shl_V4:
   1581     return !invertPredicate ? Hexagon::STrib_indexed_shl_cPt_V4 :
   1582                               Hexagon::STrib_indexed_shl_cNotPt_V4;
   1583   // Halfword.
   1584   case Hexagon::POST_SThri:
   1585     return !invertPredicate ? Hexagon::POST_SThri_cPt :
   1586                               Hexagon::POST_SThri_cNotPt;
   1587   case Hexagon::STrih:
   1588     return !invertPredicate ? Hexagon::STrih_cPt :
   1589                               Hexagon::STrih_cNotPt;
   1590   case Hexagon::STrih_indexed:
   1591     return !invertPredicate ? Hexagon::STrih_indexed_cPt :
   1592                               Hexagon::STrih_indexed_cNotPt;
   1593   case Hexagon::STrih_imm_V4:
   1594     return !invertPredicate ? Hexagon::STrih_imm_cPt_V4 :
   1595                               Hexagon::STrih_imm_cNotPt_V4;
   1596   case Hexagon::STrih_indexed_shl_V4:
   1597     return !invertPredicate ? Hexagon::STrih_indexed_shl_cPt_V4 :
   1598                               Hexagon::STrih_indexed_shl_cNotPt_V4;
   1599   // Word.
   1600   case Hexagon::POST_STwri:
   1601     return !invertPredicate ? Hexagon::POST_STwri_cPt :
   1602                               Hexagon::POST_STwri_cNotPt;
   1603   case Hexagon::STriw:
   1604     return !invertPredicate ? Hexagon::STriw_cPt :
   1605                               Hexagon::STriw_cNotPt;
   1606   case Hexagon::STriw_indexed:
   1607     return !invertPredicate ? Hexagon::STriw_indexed_cPt :
   1608                               Hexagon::STriw_indexed_cNotPt;
   1609   case Hexagon::STriw_indexed_shl_V4:
   1610     return !invertPredicate ? Hexagon::STriw_indexed_shl_cPt_V4 :
   1611                               Hexagon::STriw_indexed_shl_cNotPt_V4;
   1612   case Hexagon::STriw_imm_V4:
   1613     return !invertPredicate ? Hexagon::STriw_imm_cPt_V4 :
   1614                               Hexagon::STriw_imm_cNotPt_V4;
   1615   // Double word.
   1616   case Hexagon::POST_STdri:
   1617     return !invertPredicate ? Hexagon::POST_STdri_cPt :
   1618                               Hexagon::POST_STdri_cNotPt;
   1619   case Hexagon::STrid:
   1620     return !invertPredicate ? Hexagon::STrid_cPt :
   1621                               Hexagon::STrid_cNotPt;
   1622   case Hexagon::STrid_indexed:
   1623     return !invertPredicate ? Hexagon::STrid_indexed_cPt :
   1624                               Hexagon::STrid_indexed_cNotPt;
   1625   case Hexagon::STrid_indexed_shl_V4:
   1626     return !invertPredicate ? Hexagon::STrid_indexed_shl_cPt_V4 :
   1627                               Hexagon::STrid_indexed_shl_cNotPt_V4;
   1628 
   1629   // V4 Store to global address
   1630   case Hexagon::STd_GP_V4:
   1631     return !invertPredicate ? Hexagon::STd_GP_cPt_V4 :
   1632                               Hexagon::STd_GP_cNotPt_V4;
   1633   case Hexagon::STb_GP_V4:
   1634     return !invertPredicate ? Hexagon::STb_GP_cPt_V4 :
   1635                               Hexagon::STb_GP_cNotPt_V4;
   1636   case Hexagon::STh_GP_V4:
   1637     return !invertPredicate ? Hexagon::STh_GP_cPt_V4 :
   1638                               Hexagon::STh_GP_cNotPt_V4;
   1639   case Hexagon::STw_GP_V4:
   1640     return !invertPredicate ? Hexagon::STw_GP_cPt_V4 :
   1641                               Hexagon::STw_GP_cNotPt_V4;
   1642 
   1643   // Load.
   1644   case Hexagon::LDrid:
   1645     return !invertPredicate ? Hexagon::LDrid_cPt :
   1646                               Hexagon::LDrid_cNotPt;
   1647   case Hexagon::LDriw:
   1648     return !invertPredicate ? Hexagon::LDriw_cPt :
   1649                               Hexagon::LDriw_cNotPt;
   1650   case Hexagon::LDrih:
   1651     return !invertPredicate ? Hexagon::LDrih_cPt :
   1652                               Hexagon::LDrih_cNotPt;
   1653   case Hexagon::LDriuh:
   1654     return !invertPredicate ? Hexagon::LDriuh_cPt :
   1655                               Hexagon::LDriuh_cNotPt;
   1656   case Hexagon::LDrib:
   1657     return !invertPredicate ? Hexagon::LDrib_cPt :
   1658                               Hexagon::LDrib_cNotPt;
   1659   case Hexagon::LDriub:
   1660     return !invertPredicate ? Hexagon::LDriub_cPt :
   1661                               Hexagon::LDriub_cNotPt;
   1662  // Load Indexed.
   1663   case Hexagon::LDrid_indexed:
   1664     return !invertPredicate ? Hexagon::LDrid_indexed_cPt :
   1665                               Hexagon::LDrid_indexed_cNotPt;
   1666   case Hexagon::LDriw_indexed:
   1667     return !invertPredicate ? Hexagon::LDriw_indexed_cPt :
   1668                               Hexagon::LDriw_indexed_cNotPt;
   1669   case Hexagon::LDrih_indexed:
   1670     return !invertPredicate ? Hexagon::LDrih_indexed_cPt :
   1671                               Hexagon::LDrih_indexed_cNotPt;
   1672   case Hexagon::LDriuh_indexed:
   1673     return !invertPredicate ? Hexagon::LDriuh_indexed_cPt :
   1674                               Hexagon::LDriuh_indexed_cNotPt;
   1675   case Hexagon::LDrib_indexed:
   1676     return !invertPredicate ? Hexagon::LDrib_indexed_cPt :
   1677                               Hexagon::LDrib_indexed_cNotPt;
   1678   case Hexagon::LDriub_indexed:
   1679     return !invertPredicate ? Hexagon::LDriub_indexed_cPt :
   1680                               Hexagon::LDriub_indexed_cNotPt;
   1681   // Post Increment Load.
   1682   case Hexagon::POST_LDrid:
   1683     return !invertPredicate ? Hexagon::POST_LDrid_cPt :
   1684                               Hexagon::POST_LDrid_cNotPt;
   1685   case Hexagon::POST_LDriw:
   1686     return !invertPredicate ? Hexagon::POST_LDriw_cPt :
   1687                               Hexagon::POST_LDriw_cNotPt;
   1688   case Hexagon::POST_LDrih:
   1689     return !invertPredicate ? Hexagon::POST_LDrih_cPt :
   1690                               Hexagon::POST_LDrih_cNotPt;
   1691   case Hexagon::POST_LDriuh:
   1692     return !invertPredicate ? Hexagon::POST_LDriuh_cPt :
   1693                               Hexagon::POST_LDriuh_cNotPt;
   1694   case Hexagon::POST_LDrib:
   1695     return !invertPredicate ? Hexagon::POST_LDrib_cPt :
   1696                               Hexagon::POST_LDrib_cNotPt;
   1697   case Hexagon::POST_LDriub:
   1698     return !invertPredicate ? Hexagon::POST_LDriub_cPt :
   1699                               Hexagon::POST_LDriub_cNotPt;
   1700   // DEALLOC_RETURN.
   1701   case Hexagon::DEALLOC_RET_V4:
   1702     return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
   1703                               Hexagon::DEALLOC_RET_cNotPt_V4;
   1704   }
   1705   llvm_unreachable("Unexpected predicable instruction");
   1706 }
   1707 
   1708 
   1709 bool HexagonInstrInfo::
   1710 PredicateInstruction(MachineInstr *MI,
   1711                      const SmallVectorImpl<MachineOperand> &Cond) const {
   1712   int Opc = MI->getOpcode();
   1713   assert (isPredicable(MI) && "Expected predicable instruction");
   1714   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
   1715                      (Cond[0].getImm() == 0));
   1716 
   1717   // This will change MI's opcode to its predicate version.
   1718   // However, its operand list is still the old one, i.e. the
   1719   // non-predicate one.
   1720   MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
   1721 
   1722   int oper = -1;
   1723   unsigned int GAIdx = 0;
   1724 
   1725   // Indicates whether the current MI has a GlobalAddress operand
   1726   bool hasGAOpnd = false;
   1727   std::vector<MachineOperand> tmpOpnds;
   1728 
   1729   // Indicates whether we need to shift operands to right.
   1730   bool needShift = true;
   1731 
   1732   // The predicate is ALWAYS the FIRST input operand !!!
   1733   if (MI->getNumOperands() == 0) {
   1734     // The non-predicate version of MI does not take any operands,
   1735     // i.e. no outs and no ins. In this condition, the predicate
   1736     // operand will be directly placed at Operands[0]. No operand
   1737     // shift is needed.
   1738     // Example: BARRIER
   1739     needShift = false;
   1740     oper = -1;
   1741   }
   1742   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
   1743            && MI->getOperand(MI->getNumOperands()-1).isDef()
   1744            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
   1745     // The non-predicate version of MI does not have any input operands.
   1746     // In this condition, we extend the length of Operands[] by one and
   1747     // copy the original last operand to the newly allocated slot.
   1748     // At this moment, it is just a place holder. Later, we will put
   1749     // predicate operand directly into it. No operand shift is needed.
   1750     // Example: r0=BARRIER (this is a faked insn used here for illustration)
   1751     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
   1752     needShift = false;
   1753     oper = MI->getNumOperands() - 2;
   1754   }
   1755   else {
   1756     // We need to right shift all input operands by one. Duplicate the
   1757     // last operand into the newly allocated slot.
   1758     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
   1759   }
   1760 
   1761   if (needShift)
   1762   {
   1763     // Operands[ MI->getNumOperands() - 2 ] has been copied into
   1764     // Operands[ MI->getNumOperands() - 1 ], so we start from
   1765     // Operands[ MI->getNumOperands() - 3 ].
   1766     // oper is a signed int.
   1767     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
   1768     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
   1769     {
   1770       MachineOperand &MO = MI->getOperand(oper);
   1771 
   1772       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
   1773       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
   1774       //               /\~
   1775       //              /||\~
   1776       //               ||
   1777       //        Predicate Operand here
   1778       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
   1779         break;
   1780       }
   1781       if (MO.isReg()) {
   1782         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
   1783                                                 MO.isImplicit(), MO.isKill(),
   1784                                                 MO.isDead(), MO.isUndef(),
   1785                                                 MO.isDebug());
   1786       }
   1787       else if (MO.isImm()) {
   1788         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
   1789       }
   1790       else if (MO.isGlobal()) {
   1791         // MI can not have more than one GlobalAddress operand.
   1792         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
   1793 
   1794         // There is no member function called "ChangeToGlobalAddress" in the
   1795         // MachineOperand class (not like "ChangeToRegister" and
   1796         // "ChangeToImmediate"). So we have to remove them from Operands[] list
   1797         // first, and then add them back after we have inserted the predicate
   1798         // operand. tmpOpnds[] is to remember these operands before we remove
   1799         // them.
   1800         tmpOpnds.push_back(MO);
   1801 
   1802         // Operands[oper] is a GlobalAddress operand;
   1803         // Operands[oper+1] has been copied into Operands[oper+2];
   1804         hasGAOpnd = true;
   1805         GAIdx = oper;
   1806         continue;
   1807       }
   1808       else {
   1809         assert(false && "Unexpected operand type");
   1810       }
   1811     }
   1812   }
   1813 
   1814   int regPos = invertJump ? 1 : 0;
   1815   MachineOperand PredMO = Cond[regPos];
   1816 
   1817   // [oper] now points to the last explicit Def. Predicate operand must be
   1818   // located at [oper+1]. See diagram above.
   1819   // This assumes that the predicate is always the first operand,
   1820   // i.e. Operands[0+numResults], in the set of inputs
   1821   // It is better to have an assert here to check this. But I don't know how
   1822   // to write this assert because findFirstPredOperandIdx() would return -1
   1823   if (oper < -1) oper = -1;
   1824   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
   1825                                           PredMO.isImplicit(), PredMO.isKill(),
   1826                                           PredMO.isDead(), PredMO.isUndef(),
   1827                                           PredMO.isDebug());
   1828 
   1829   if (hasGAOpnd)
   1830   {
   1831     unsigned int i;
   1832 
   1833     // Operands[GAIdx] is the original GlobalAddress operand, which is
   1834     // already copied into tmpOpnds[0].
   1835     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
   1836     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
   1837     // so we start from [GAIdx+2]
   1838     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
   1839       tmpOpnds.push_back(MI->getOperand(i));
   1840 
   1841     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
   1842     // It is very important that we always remove from the end of Operands[]
   1843     // MI->getNumOperands() is at least 2 if program goes to here.
   1844     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
   1845       MI->RemoveOperand(i);
   1846 
   1847     for (i = 0; i < tmpOpnds.size(); ++i)
   1848       MI->addOperand(tmpOpnds[i]);
   1849   }
   1850 
   1851   return true;
   1852 }
   1853 
   1854 
   1855 bool
   1856 HexagonInstrInfo::
   1857 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1858                     unsigned NumCycles,
   1859                     unsigned ExtraPredCycles,
   1860                     const BranchProbability &Probability) const {
   1861   return true;
   1862 }
   1863 
   1864 
   1865 bool
   1866 HexagonInstrInfo::
   1867 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1868                     unsigned NumTCycles,
   1869                     unsigned ExtraTCycles,
   1870                     MachineBasicBlock &FMBB,
   1871                     unsigned NumFCycles,
   1872                     unsigned ExtraFCycles,
   1873                     const BranchProbability &Probability) const {
   1874   return true;
   1875 }
   1876 
   1877 
   1878 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
   1879   const uint64_t F = MI->getDesc().TSFlags;
   1880 
   1881   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1882 }
   1883 
   1884 bool
   1885 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
   1886                                    std::vector<MachineOperand> &Pred) const {
   1887   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
   1888     MachineOperand MO = MI->getOperand(oper);
   1889     if (MO.isReg() && MO.isDef()) {
   1890       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
   1891       if (RC == &Hexagon::PredRegsRegClass) {
   1892         Pred.push_back(MO);
   1893         return true;
   1894       }
   1895     }
   1896   }
   1897   return false;
   1898 }
   1899 
   1900 
   1901 bool
   1902 HexagonInstrInfo::
   1903 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
   1904                   const SmallVectorImpl<MachineOperand> &Pred2) const {
   1905   // TODO: Fix this
   1906   return false;
   1907 }
   1908 
   1909 
   1910 //
   1911 // We indicate that we want to reverse the branch by
   1912 // inserting a 0 at the beginning of the Cond vector.
   1913 //
   1914 bool HexagonInstrInfo::
   1915 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1916   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
   1917     Cond.erase(Cond.begin());
   1918   } else {
   1919     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
   1920   }
   1921   return false;
   1922 }
   1923 
   1924 
   1925 bool HexagonInstrInfo::
   1926 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
   1927                           const BranchProbability &Probability) const {
   1928   return (NumInstrs <= 4);
   1929 }
   1930 
   1931 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
   1932   switch (MI->getOpcode()) {
   1933   default: return false;
   1934   case Hexagon::DEALLOC_RET_V4 :
   1935   case Hexagon::DEALLOC_RET_cPt_V4 :
   1936   case Hexagon::DEALLOC_RET_cNotPt_V4 :
   1937   case Hexagon::DEALLOC_RET_cdnPnt_V4 :
   1938   case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
   1939   case Hexagon::DEALLOC_RET_cdnPt_V4 :
   1940   case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
   1941    return true;
   1942   }
   1943 }
   1944 
   1945 
   1946 bool HexagonInstrInfo::
   1947 isValidOffset(const int Opcode, const int Offset) const {
   1948   // This function is to check whether the "Offset" is in the correct range of
   1949   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
   1950   // inserted to calculate the final address. Due to this reason, the function
   1951   // assumes that the "Offset" has correct alignment.
   1952   // We used to assert if the offset was not properly aligned, however,
   1953   // there are cases where a misaligned pointer recast can cause this
   1954   // problem, and we need to allow for it. The front end warns of such
   1955   // misaligns with respect to load size.
   1956 
   1957   switch(Opcode) {
   1958 
   1959   case Hexagon::LDriw:
   1960   case Hexagon::LDriw_indexed:
   1961   case Hexagon::LDriw_f:
   1962   case Hexagon::STriw_indexed:
   1963   case Hexagon::STriw:
   1964   case Hexagon::STriw_f:
   1965     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
   1966       (Offset <= Hexagon_MEMW_OFFSET_MAX);
   1967 
   1968   case Hexagon::LDrid:
   1969   case Hexagon::LDrid_indexed:
   1970   case Hexagon::LDrid_f:
   1971   case Hexagon::STrid:
   1972   case Hexagon::STrid_indexed:
   1973   case Hexagon::STrid_f:
   1974     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
   1975       (Offset <= Hexagon_MEMD_OFFSET_MAX);
   1976 
   1977   case Hexagon::LDrih:
   1978   case Hexagon::LDriuh:
   1979   case Hexagon::STrih:
   1980     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
   1981       (Offset <= Hexagon_MEMH_OFFSET_MAX);
   1982 
   1983   case Hexagon::LDrib:
   1984   case Hexagon::STrib:
   1985   case Hexagon::LDriub:
   1986     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
   1987       (Offset <= Hexagon_MEMB_OFFSET_MAX);
   1988 
   1989   case Hexagon::ADD_ri:
   1990   case Hexagon::TFR_FI:
   1991     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
   1992       (Offset <= Hexagon_ADDI_OFFSET_MAX);
   1993 
   1994   case Hexagon::MEMw_ADDi_indexed_MEM_V4 :
   1995   case Hexagon::MEMw_SUBi_indexed_MEM_V4 :
   1996   case Hexagon::MEMw_ADDr_indexed_MEM_V4 :
   1997   case Hexagon::MEMw_SUBr_indexed_MEM_V4 :
   1998   case Hexagon::MEMw_ANDr_indexed_MEM_V4 :
   1999   case Hexagon::MEMw_ORr_indexed_MEM_V4 :
   2000   case Hexagon::MEMw_ADDi_MEM_V4 :
   2001   case Hexagon::MEMw_SUBi_MEM_V4 :
   2002   case Hexagon::MEMw_ADDr_MEM_V4 :
   2003   case Hexagon::MEMw_SUBr_MEM_V4 :
   2004   case Hexagon::MEMw_ANDr_MEM_V4 :
   2005   case Hexagon::MEMw_ORr_MEM_V4 :
   2006     return (0 <= Offset && Offset <= 255);
   2007 
   2008   case Hexagon::MEMh_ADDi_indexed_MEM_V4 :
   2009   case Hexagon::MEMh_SUBi_indexed_MEM_V4 :
   2010   case Hexagon::MEMh_ADDr_indexed_MEM_V4 :
   2011   case Hexagon::MEMh_SUBr_indexed_MEM_V4 :
   2012   case Hexagon::MEMh_ANDr_indexed_MEM_V4 :
   2013   case Hexagon::MEMh_ORr_indexed_MEM_V4 :
   2014   case Hexagon::MEMh_ADDi_MEM_V4 :
   2015   case Hexagon::MEMh_SUBi_MEM_V4 :
   2016   case Hexagon::MEMh_ADDr_MEM_V4 :
   2017   case Hexagon::MEMh_SUBr_MEM_V4 :
   2018   case Hexagon::MEMh_ANDr_MEM_V4 :
   2019   case Hexagon::MEMh_ORr_MEM_V4 :
   2020     return (0 <= Offset && Offset <= 127);
   2021 
   2022   case Hexagon::MEMb_ADDi_indexed_MEM_V4 :
   2023   case Hexagon::MEMb_SUBi_indexed_MEM_V4 :
   2024   case Hexagon::MEMb_ADDr_indexed_MEM_V4 :
   2025   case Hexagon::MEMb_SUBr_indexed_MEM_V4 :
   2026   case Hexagon::MEMb_ANDr_indexed_MEM_V4 :
   2027   case Hexagon::MEMb_ORr_indexed_MEM_V4 :
   2028   case Hexagon::MEMb_ADDi_MEM_V4 :
   2029   case Hexagon::MEMb_SUBi_MEM_V4 :
   2030   case Hexagon::MEMb_ADDr_MEM_V4 :
   2031   case Hexagon::MEMb_SUBr_MEM_V4 :
   2032   case Hexagon::MEMb_ANDr_MEM_V4 :
   2033   case Hexagon::MEMb_ORr_MEM_V4 :
   2034     return (0 <= Offset && Offset <= 63);
   2035 
   2036   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
   2037   // any size. Later pass knows how to handle it.
   2038   case Hexagon::STriw_pred:
   2039   case Hexagon::LDriw_pred:
   2040     return true;
   2041 
   2042   case Hexagon::LOOP0_i:
   2043     return isUInt<10>(Offset);
   2044 
   2045   // INLINEASM is very special.
   2046   case Hexagon::INLINEASM:
   2047     return true;
   2048   }
   2049 
   2050   llvm_unreachable("No offset range is defined for this opcode. "
   2051                    "Please define it in the above switch statement!");
   2052 }
   2053 
   2054 
   2055 //
   2056 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
   2057 //
   2058 bool HexagonInstrInfo::
   2059 isValidAutoIncImm(const EVT VT, const int Offset) const {
   2060 
   2061   if (VT == MVT::i64) {
   2062       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
   2063               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
   2064               (Offset & 0x7) == 0);
   2065   }
   2066   if (VT == MVT::i32) {
   2067       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
   2068               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
   2069               (Offset & 0x3) == 0);
   2070   }
   2071   if (VT == MVT::i16) {
   2072       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
   2073               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
   2074               (Offset & 0x1) == 0);
   2075   }
   2076   if (VT == MVT::i8) {
   2077       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
   2078               Offset <= Hexagon_MEMB_AUTOINC_MAX);
   2079   }
   2080   llvm_unreachable("Not an auto-inc opc!");
   2081 }
   2082 
   2083 
   2084 bool HexagonInstrInfo::
   2085 isMemOp(const MachineInstr *MI) const {
   2086   switch (MI->getOpcode())
   2087   {
   2088     default: return false;
   2089     case Hexagon::MEMw_ADDi_indexed_MEM_V4 :
   2090     case Hexagon::MEMw_SUBi_indexed_MEM_V4 :
   2091     case Hexagon::MEMw_ADDr_indexed_MEM_V4 :
   2092     case Hexagon::MEMw_SUBr_indexed_MEM_V4 :
   2093     case Hexagon::MEMw_ANDr_indexed_MEM_V4 :
   2094     case Hexagon::MEMw_ORr_indexed_MEM_V4 :
   2095     case Hexagon::MEMw_ADDi_MEM_V4 :
   2096     case Hexagon::MEMw_SUBi_MEM_V4 :
   2097     case Hexagon::MEMw_ADDr_MEM_V4 :
   2098     case Hexagon::MEMw_SUBr_MEM_V4 :
   2099     case Hexagon::MEMw_ANDr_MEM_V4 :
   2100     case Hexagon::MEMw_ORr_MEM_V4 :
   2101     case Hexagon::MEMh_ADDi_indexed_MEM_V4 :
   2102     case Hexagon::MEMh_SUBi_indexed_MEM_V4 :
   2103     case Hexagon::MEMh_ADDr_indexed_MEM_V4 :
   2104     case Hexagon::MEMh_SUBr_indexed_MEM_V4 :
   2105     case Hexagon::MEMh_ANDr_indexed_MEM_V4 :
   2106     case Hexagon::MEMh_ORr_indexed_MEM_V4 :
   2107     case Hexagon::MEMh_ADDi_MEM_V4 :
   2108     case Hexagon::MEMh_SUBi_MEM_V4 :
   2109     case Hexagon::MEMh_ADDr_MEM_V4 :
   2110     case Hexagon::MEMh_SUBr_MEM_V4 :
   2111     case Hexagon::MEMh_ANDr_MEM_V4 :
   2112     case Hexagon::MEMh_ORr_MEM_V4 :
   2113     case Hexagon::MEMb_ADDi_indexed_MEM_V4 :
   2114     case Hexagon::MEMb_SUBi_indexed_MEM_V4 :
   2115     case Hexagon::MEMb_ADDr_indexed_MEM_V4 :
   2116     case Hexagon::MEMb_SUBr_indexed_MEM_V4 :
   2117     case Hexagon::MEMb_ANDr_indexed_MEM_V4 :
   2118     case Hexagon::MEMb_ORr_indexed_MEM_V4 :
   2119     case Hexagon::MEMb_ADDi_MEM_V4 :
   2120     case Hexagon::MEMb_SUBi_MEM_V4 :
   2121     case Hexagon::MEMb_ADDr_MEM_V4 :
   2122     case Hexagon::MEMb_SUBr_MEM_V4 :
   2123     case Hexagon::MEMb_ANDr_MEM_V4 :
   2124     case Hexagon::MEMb_ORr_MEM_V4 :
   2125       return true;
   2126   }
   2127 }
   2128 
   2129 
   2130 bool HexagonInstrInfo::
   2131 isSpillPredRegOp(const MachineInstr *MI) const {
   2132   switch (MI->getOpcode()) {
   2133     default: return false;
   2134     case Hexagon::STriw_pred :
   2135     case Hexagon::LDriw_pred :
   2136       return true;
   2137   }
   2138 }
   2139 
   2140 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
   2141   switch (MI->getOpcode()) {
   2142     default: return false;
   2143     case Hexagon::CMPEQrr:
   2144     case Hexagon::CMPEQri:
   2145     case Hexagon::CMPLTrr:
   2146     case Hexagon::CMPGTrr:
   2147     case Hexagon::CMPGTri:
   2148     case Hexagon::CMPLTUrr:
   2149     case Hexagon::CMPGTUrr:
   2150     case Hexagon::CMPGTUri:
   2151     case Hexagon::CMPGEri:
   2152     case Hexagon::CMPGEUri:
   2153       return true;
   2154   }
   2155 }
   2156 
   2157 bool HexagonInstrInfo::
   2158 isConditionalTransfer (const MachineInstr *MI) const {
   2159   switch (MI->getOpcode()) {
   2160     default: return false;
   2161     case Hexagon::TFR_cPt:
   2162     case Hexagon::TFR_cNotPt:
   2163     case Hexagon::TFRI_cPt:
   2164     case Hexagon::TFRI_cNotPt:
   2165     case Hexagon::TFR_cdnPt:
   2166     case Hexagon::TFR_cdnNotPt:
   2167     case Hexagon::TFRI_cdnPt:
   2168     case Hexagon::TFRI_cdnNotPt:
   2169       return true;
   2170   }
   2171 }
   2172 
   2173 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
   2174   const HexagonRegisterInfo& QRI = getRegisterInfo();
   2175   switch (MI->getOpcode())
   2176   {
   2177     default: return false;
   2178     case Hexagon::ADD_ri_cPt:
   2179     case Hexagon::ADD_ri_cNotPt:
   2180     case Hexagon::ADD_rr_cPt:
   2181     case Hexagon::ADD_rr_cNotPt:
   2182     case Hexagon::XOR_rr_cPt:
   2183     case Hexagon::XOR_rr_cNotPt:
   2184     case Hexagon::AND_rr_cPt:
   2185     case Hexagon::AND_rr_cNotPt:
   2186     case Hexagon::OR_rr_cPt:
   2187     case Hexagon::OR_rr_cNotPt:
   2188     case Hexagon::SUB_rr_cPt:
   2189     case Hexagon::SUB_rr_cNotPt:
   2190     case Hexagon::COMBINE_rr_cPt:
   2191     case Hexagon::COMBINE_rr_cNotPt:
   2192       return true;
   2193     case Hexagon::ASLH_cPt_V4:
   2194     case Hexagon::ASLH_cNotPt_V4:
   2195     case Hexagon::ASRH_cPt_V4:
   2196     case Hexagon::ASRH_cNotPt_V4:
   2197     case Hexagon::SXTB_cPt_V4:
   2198     case Hexagon::SXTB_cNotPt_V4:
   2199     case Hexagon::SXTH_cPt_V4:
   2200     case Hexagon::SXTH_cNotPt_V4:
   2201     case Hexagon::ZXTB_cPt_V4:
   2202     case Hexagon::ZXTB_cNotPt_V4:
   2203     case Hexagon::ZXTH_cPt_V4:
   2204     case Hexagon::ZXTH_cNotPt_V4:
   2205       return QRI.Subtarget.hasV4TOps();
   2206   }
   2207 }
   2208 
   2209 bool HexagonInstrInfo::
   2210 isConditionalLoad (const MachineInstr* MI) const {
   2211   const HexagonRegisterInfo& QRI = getRegisterInfo();
   2212   switch (MI->getOpcode())
   2213   {
   2214     default: return false;
   2215     case Hexagon::LDrid_cPt :
   2216     case Hexagon::LDrid_cNotPt :
   2217     case Hexagon::LDrid_indexed_cPt :
   2218     case Hexagon::LDrid_indexed_cNotPt :
   2219     case Hexagon::LDriw_cPt :
   2220     case Hexagon::LDriw_cNotPt :
   2221     case Hexagon::LDriw_indexed_cPt :
   2222     case Hexagon::LDriw_indexed_cNotPt :
   2223     case Hexagon::LDrih_cPt :
   2224     case Hexagon::LDrih_cNotPt :
   2225     case Hexagon::LDrih_indexed_cPt :
   2226     case Hexagon::LDrih_indexed_cNotPt :
   2227     case Hexagon::LDrib_cPt :
   2228     case Hexagon::LDrib_cNotPt :
   2229     case Hexagon::LDrib_indexed_cPt :
   2230     case Hexagon::LDrib_indexed_cNotPt :
   2231     case Hexagon::LDriuh_cPt :
   2232     case Hexagon::LDriuh_cNotPt :
   2233     case Hexagon::LDriuh_indexed_cPt :
   2234     case Hexagon::LDriuh_indexed_cNotPt :
   2235     case Hexagon::LDriub_cPt :
   2236     case Hexagon::LDriub_cNotPt :
   2237     case Hexagon::LDriub_indexed_cPt :
   2238     case Hexagon::LDriub_indexed_cNotPt :
   2239       return true;
   2240     case Hexagon::POST_LDrid_cPt :
   2241     case Hexagon::POST_LDrid_cNotPt :
   2242     case Hexagon::POST_LDriw_cPt :
   2243     case Hexagon::POST_LDriw_cNotPt :
   2244     case Hexagon::POST_LDrih_cPt :
   2245     case Hexagon::POST_LDrih_cNotPt :
   2246     case Hexagon::POST_LDrib_cPt :
   2247     case Hexagon::POST_LDrib_cNotPt :
   2248     case Hexagon::POST_LDriuh_cPt :
   2249     case Hexagon::POST_LDriuh_cNotPt :
   2250     case Hexagon::POST_LDriub_cPt :
   2251     case Hexagon::POST_LDriub_cNotPt :
   2252       return QRI.Subtarget.hasV4TOps();
   2253     case Hexagon::LDrid_indexed_shl_cPt_V4 :
   2254     case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
   2255     case Hexagon::LDrib_indexed_shl_cPt_V4 :
   2256     case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
   2257     case Hexagon::LDriub_indexed_shl_cPt_V4 :
   2258     case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
   2259     case Hexagon::LDrih_indexed_shl_cPt_V4 :
   2260     case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
   2261     case Hexagon::LDriuh_indexed_shl_cPt_V4 :
   2262     case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
   2263     case Hexagon::LDriw_indexed_shl_cPt_V4 :
   2264     case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
   2265       return QRI.Subtarget.hasV4TOps();
   2266   }
   2267 }
   2268 
   2269 // Returns true if an instruction is a conditional store.
   2270 //
   2271 // Note: It doesn't include conditional new-value stores as they can't be
   2272 // converted to .new predicate.
   2273 //
   2274 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
   2275 //                ^           ^
   2276 //               /             \ (not OK. it will cause new-value store to be
   2277 //              /               X conditional on p0.new while R2 producer is
   2278 //             /                 \ on p0)
   2279 //            /                   \.
   2280 //     p.new store                 p.old NV store
   2281 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
   2282 //            ^                  ^
   2283 //             \                /
   2284 //              \              /
   2285 //               \            /
   2286 //                 p.old store
   2287 //             [if (p0)memw(R0+#0)=R2]
   2288 //
   2289 // The above diagram shows the steps involoved in the conversion of a predicated
   2290 // store instruction to its .new predicated new-value form.
   2291 //
   2292 // The following set of instructions further explains the scenario where
   2293 // conditional new-value store becomes invalid when promoted to .new predicate
   2294 // form.
   2295 //
   2296 // { 1) if (p0) r0 = add(r1, r2)
   2297 //   2) p0 = cmp.eq(r3, #0) }
   2298 //
   2299 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
   2300 // the first two instructions because in instr 1, r0 is conditional on old value
   2301 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
   2302 // is not valid for new-value stores.
   2303 bool HexagonInstrInfo::
   2304 isConditionalStore (const MachineInstr* MI) const {
   2305   const HexagonRegisterInfo& QRI = getRegisterInfo();
   2306   switch (MI->getOpcode())
   2307   {
   2308     default: return false;
   2309     case Hexagon::STrib_imm_cPt_V4 :
   2310     case Hexagon::STrib_imm_cNotPt_V4 :
   2311     case Hexagon::STrib_indexed_shl_cPt_V4 :
   2312     case Hexagon::STrib_indexed_shl_cNotPt_V4 :
   2313     case Hexagon::STrib_cPt :
   2314     case Hexagon::STrib_cNotPt :
   2315     case Hexagon::POST_STbri_cPt :
   2316     case Hexagon::POST_STbri_cNotPt :
   2317     case Hexagon::STrid_indexed_cPt :
   2318     case Hexagon::STrid_indexed_cNotPt :
   2319     case Hexagon::STrid_indexed_shl_cPt_V4 :
   2320     case Hexagon::POST_STdri_cPt :
   2321     case Hexagon::POST_STdri_cNotPt :
   2322     case Hexagon::STrih_cPt :
   2323     case Hexagon::STrih_cNotPt :
   2324     case Hexagon::STrih_indexed_cPt :
   2325     case Hexagon::STrih_indexed_cNotPt :
   2326     case Hexagon::STrih_imm_cPt_V4 :
   2327     case Hexagon::STrih_imm_cNotPt_V4 :
   2328     case Hexagon::STrih_indexed_shl_cPt_V4 :
   2329     case Hexagon::STrih_indexed_shl_cNotPt_V4 :
   2330     case Hexagon::POST_SThri_cPt :
   2331     case Hexagon::POST_SThri_cNotPt :
   2332     case Hexagon::STriw_cPt :
   2333     case Hexagon::STriw_cNotPt :
   2334     case Hexagon::STriw_indexed_cPt :
   2335     case Hexagon::STriw_indexed_cNotPt :
   2336     case Hexagon::STriw_imm_cPt_V4 :
   2337     case Hexagon::STriw_imm_cNotPt_V4 :
   2338     case Hexagon::STriw_indexed_shl_cPt_V4 :
   2339     case Hexagon::STriw_indexed_shl_cNotPt_V4 :
   2340     case Hexagon::POST_STwri_cPt :
   2341     case Hexagon::POST_STwri_cNotPt :
   2342       return QRI.Subtarget.hasV4TOps();
   2343 
   2344     // V4 global address store before promoting to dot new.
   2345     case Hexagon::STd_GP_cPt_V4 :
   2346     case Hexagon::STd_GP_cNotPt_V4 :
   2347     case Hexagon::STb_GP_cPt_V4 :
   2348     case Hexagon::STb_GP_cNotPt_V4 :
   2349     case Hexagon::STh_GP_cPt_V4 :
   2350     case Hexagon::STh_GP_cNotPt_V4 :
   2351     case Hexagon::STw_GP_cPt_V4 :
   2352     case Hexagon::STw_GP_cNotPt_V4 :
   2353       return QRI.Subtarget.hasV4TOps();
   2354 
   2355     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   2356     // from the "Conditional Store" list. Because a predicated new value store
   2357     // would NOT be promoted to a double dot new store. See diagram below:
   2358     // This function returns yes for those stores that are predicated but not
   2359     // yet promoted to predicate dot new instructions.
   2360     //
   2361     //                          +---------------------+
   2362     //                    /-----| if (p0) memw(..)=r0 |---------\~
   2363     //                   ||     +---------------------+         ||
   2364     //          promote  ||       /\       /\                   ||  promote
   2365     //                   ||      /||\     /||\                  ||
   2366     //                  \||/    demote     ||                  \||/
   2367     //                   \/       ||       ||                   \/
   2368     //       +-------------------------+   ||   +-------------------------+
   2369     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
   2370     //       +-------------------------+   ||   +-------------------------+
   2371     //                        ||           ||         ||
   2372     //                        ||         demote      \||/
   2373     //                      promote        ||         \/ NOT possible
   2374     //                        ||           ||         /\~
   2375     //                       \||/          ||        /||\~
   2376     //                        \/           ||         ||
   2377     //                      +-----------------------------+
   2378     //                      | if (p0.new) memw(..)=r0.new |
   2379     //                      +-----------------------------+
   2380     //                           Double Dot New Store
   2381     //
   2382   }
   2383 }
   2384 
   2385 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
   2386   const uint64_t F = MI->getDesc().TSFlags;
   2387 
   2388   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
   2389 }
   2390 
   2391 /// immediateExtend - Changes the instruction in place to one using an immediate
   2392 /// extender.
   2393 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
   2394   assert((isExtendable(MI)||isConstExtended(MI)) &&
   2395                                "Instruction must be extendable");
   2396   // Find which operand is extendable.
   2397   short ExtOpNum = getCExtOpNum(MI);
   2398   MachineOperand &MO = MI->getOperand(ExtOpNum);
   2399   // This needs to be something we understand.
   2400   assert((MO.isMBB() || MO.isImm()) &&
   2401          "Branch with unknown extendable field type");
   2402   // Mark given operand as extended.
   2403   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
   2404 }
   2405 
   2406 DFAPacketizer *HexagonInstrInfo::
   2407 CreateTargetScheduleState(const TargetMachine *TM,
   2408                            const ScheduleDAG *DAG) const {
   2409   const InstrItineraryData *II = TM->getInstrItineraryData();
   2410   return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
   2411 }
   2412 
   2413 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   2414                                             const MachineBasicBlock *MBB,
   2415                                             const MachineFunction &MF) const {
   2416   // Debug info is never a scheduling boundary. It's necessary to be explicit
   2417   // due to the special treatment of IT instructions below, otherwise a
   2418   // dbg_value followed by an IT will result in the IT instruction being
   2419   // considered a scheduling hazard, which is wrong. It should be the actual
   2420   // instruction preceding the dbg_value instruction(s), just like it is
   2421   // when debug info is not present.
   2422   if (MI->isDebugValue())
   2423     return false;
   2424 
   2425   // Terminators and labels can't be scheduled around.
   2426   if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
   2427     return true;
   2428 
   2429   return false;
   2430 }
   2431 
   2432 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
   2433 
   2434   // Constant extenders are allowed only for V4 and above.
   2435   if (!Subtarget.hasV4TOps())
   2436     return false;
   2437 
   2438   const uint64_t F = MI->getDesc().TSFlags;
   2439   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
   2440   if (isExtended) // Instruction must be extended.
   2441     return true;
   2442 
   2443   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
   2444                           & HexagonII::ExtendableMask;
   2445   if (!isExtendable)
   2446     return false;
   2447 
   2448   short ExtOpNum = getCExtOpNum(MI);
   2449   const MachineOperand &MO = MI->getOperand(ExtOpNum);
   2450   // Use MO operand flags to determine if MO
   2451   // has the HMOTF_ConstExtended flag set.
   2452   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   2453     return true;
   2454   // If this is a Machine BB address we are talking about, and it is
   2455   // not marked as extended, say so.
   2456   if (MO.isMBB())
   2457     return false;
   2458 
   2459   // We could be using an instruction with an extendable immediate and shoehorn
   2460   // a global address into it. If it is a global address it will be constant
   2461   // extended. We do this for COMBINE.
   2462   // We currently only handle isGlobal() because it is the only kind of
   2463   // object we are going to end up with here for now.
   2464   // In the future we probably should add isSymbol(), etc.
   2465   if (MO.isGlobal() || MO.isSymbol())
   2466     return true;
   2467 
   2468   // If the extendable operand is not 'Immediate' type, the instruction should
   2469   // have 'isExtended' flag set.
   2470   assert(MO.isImm() && "Extendable operand must be Immediate type");
   2471 
   2472   int MinValue = getMinValue(MI);
   2473   int MaxValue = getMaxValue(MI);
   2474   int ImmValue = MO.getImm();
   2475 
   2476   return (ImmValue < MinValue || ImmValue > MaxValue);
   2477 }
   2478 
   2479 // Returns true if a particular operand is extendable for an instruction.
   2480 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
   2481                                          unsigned short OperandNum) const {
   2482   // Constant extenders are allowed only for V4 and above.
   2483   if (!Subtarget.hasV4TOps())
   2484     return false;
   2485 
   2486   const uint64_t F = MI->getDesc().TSFlags;
   2487 
   2488   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
   2489           == OperandNum;
   2490 }
   2491 
   2492 // Returns Operand Index for the constant extended instruction.
   2493 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
   2494   const uint64_t F = MI->getDesc().TSFlags;
   2495   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
   2496 }
   2497 
   2498 // Returns the min value that doesn't need to be extended.
   2499 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   2500   const uint64_t F = MI->getDesc().TSFlags;
   2501   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   2502                     & HexagonII::ExtentSignedMask;
   2503   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   2504                     & HexagonII::ExtentBitsMask;
   2505 
   2506   if (isSigned) // if value is signed
   2507     return -1 << (bits - 1);
   2508   else
   2509     return 0;
   2510 }
   2511 
   2512 // Returns the max value that doesn't need to be extended.
   2513 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   2514   const uint64_t F = MI->getDesc().TSFlags;
   2515   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   2516                     & HexagonII::ExtentSignedMask;
   2517   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   2518                     & HexagonII::ExtentBitsMask;
   2519 
   2520   if (isSigned) // if value is signed
   2521     return ~(-1 << (bits - 1));
   2522   else
   2523     return ~(-1 << bits);
   2524 }
   2525 
   2526 // Returns true if an instruction can be converted into a non-extended
   2527 // equivalent instruction.
   2528 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
   2529 
   2530   short NonExtOpcode;
   2531   // Check if the instruction has a register form that uses register in place
   2532   // of the extended operand, if so return that as the non-extended form.
   2533   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
   2534     return true;
   2535 
   2536   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   2537     // Check addressing mode and retreive non-ext equivalent instruction.
   2538 
   2539     switch (getAddrMode(MI)) {
   2540     case HexagonII::Absolute :
   2541       // Load/store with absolute addressing mode can be converted into
   2542       // base+offset mode.
   2543       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
   2544       break;
   2545     case HexagonII::BaseImmOffset :
   2546       // Load/store with base+offset addressing mode can be converted into
   2547       // base+register offset addressing mode. However left shift operand should
   2548       // be set to 0.
   2549       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
   2550       break;
   2551     default:
   2552       return false;
   2553     }
   2554     if (NonExtOpcode < 0)
   2555       return false;
   2556     return true;
   2557   }
   2558   return false;
   2559 }
   2560 
   2561 // Returns opcode of the non-extended equivalent instruction.
   2562 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
   2563 
   2564   // Check if the instruction has a register form that uses register in place
   2565   // of the extended operand, if so return that as the non-extended form.
   2566   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
   2567     if (NonExtOpcode >= 0)
   2568       return NonExtOpcode;
   2569 
   2570   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   2571     // Check addressing mode and retreive non-ext equivalent instruction.
   2572     switch (getAddrMode(MI)) {
   2573     case HexagonII::Absolute :
   2574       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
   2575     case HexagonII::BaseImmOffset :
   2576       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   2577     default:
   2578       return -1;
   2579     }
   2580   }
   2581   return -1;
   2582 }
   2583