Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the target machine instruction set to the code generator.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
     15 #define LLVM_TARGET_TARGETINSTRINFO_H
     16 
     17 #include "llvm/ADT/SmallSet.h"
     18 #include "llvm/CodeGen/DFAPacketizer.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/MC/MCInstrInfo.h"
     21 
     22 namespace llvm {
     23 
     24 class InstrItineraryData;
     25 class LiveVariables;
     26 class MCAsmInfo;
     27 class MachineMemOperand;
     28 class MachineRegisterInfo;
     29 class MDNode;
     30 class MCInst;
     31 class MCSchedModel;
     32 class SDNode;
     33 class ScheduleHazardRecognizer;
     34 class SelectionDAG;
     35 class ScheduleDAG;
     36 class TargetRegisterClass;
     37 class TargetRegisterInfo;
     38 class BranchProbability;
     39 
     40 template<class T> class SmallVectorImpl;
     41 
     42 
     43 //---------------------------------------------------------------------------
     44 ///
     45 /// TargetInstrInfo - Interface to description of machine instruction set
     46 ///
     47 class TargetInstrInfo : public MCInstrInfo {
     48   TargetInstrInfo(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     49   void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
     50 public:
     51   TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
     52     : CallFrameSetupOpcode(CFSetupOpcode),
     53       CallFrameDestroyOpcode(CFDestroyOpcode) {
     54   }
     55 
     56   virtual ~TargetInstrInfo();
     57 
     58   /// getRegClass - Givem a machine instruction descriptor, returns the register
     59   /// class constraint for OpNum, or NULL.
     60   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
     61                                          unsigned OpNum,
     62                                          const TargetRegisterInfo *TRI,
     63                                          const MachineFunction &MF) const;
     64 
     65   /// isTriviallyReMaterializable - Return true if the instruction is trivially
     66   /// rematerializable, meaning it has no side effects and requires no operands
     67   /// that aren't always available.
     68   bool isTriviallyReMaterializable(const MachineInstr *MI,
     69                                    AliasAnalysis *AA = 0) const {
     70     return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
     71            (MI->getDesc().isRematerializable() &&
     72             (isReallyTriviallyReMaterializable(MI, AA) ||
     73              isReallyTriviallyReMaterializableGeneric(MI, AA)));
     74   }
     75 
     76 protected:
     77   /// isReallyTriviallyReMaterializable - For instructions with opcodes for
     78   /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
     79   /// specify whether the instruction is actually trivially rematerializable,
     80   /// taking into consideration its operands. This predicate must return false
     81   /// if the instruction has any side effects other than producing a value, or
     82   /// if it requres any address registers that are not always available.
     83   virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
     84                                                  AliasAnalysis *AA) const {
     85     return false;
     86   }
     87 
     88 private:
     89   /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
     90   /// for which the M_REMATERIALIZABLE flag is set and the target hook
     91   /// isReallyTriviallyReMaterializable returns false, this function does
     92   /// target-independent tests to determine if the instruction is really
     93   /// trivially rematerializable.
     94   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
     95                                                 AliasAnalysis *AA) const;
     96 
     97 public:
     98   /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
     99   /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
    100   /// targets use pseudo instructions in order to abstract away the difference
    101   /// between operating with a frame pointer and operating without, through the
    102   /// use of these two instructions.
    103   ///
    104   int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
    105   int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
    106 
    107   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    108   /// extension instruction. That is, it's like a copy where it's legal for the
    109   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    110   /// true, then it's expected the pre-extension value is available as a subreg
    111   /// of the result register. This also returns the sub-register index in
    112   /// SubIdx.
    113   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    114                                      unsigned &SrcReg, unsigned &DstReg,
    115                                      unsigned &SubIdx) const {
    116     return false;
    117   }
    118 
    119   /// isLoadFromStackSlot - If the specified machine instruction is a direct
    120   /// load from a stack slot, return the virtual or physical register number of
    121   /// the destination along with the FrameIndex of the loaded stack slot.  If
    122   /// not, return 0.  This predicate must return 0 if the instruction has
    123   /// any side effects other than loading from the stack slot.
    124   virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
    125                                        int &FrameIndex) const {
    126     return 0;
    127   }
    128 
    129   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    130   /// stack locations as well.  This uses a heuristic so it isn't
    131   /// reliable for correctness.
    132   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    133                                              int &FrameIndex) const {
    134     return 0;
    135   }
    136 
    137   /// hasLoadFromStackSlot - If the specified machine instruction has
    138   /// a load from a stack slot, return true along with the FrameIndex
    139   /// of the loaded stack slot and the machine mem operand containing
    140   /// the reference.  If not, return false.  Unlike
    141   /// isLoadFromStackSlot, this returns true for any instructions that
    142   /// loads from the stack.  This is just a hint, as some cases may be
    143   /// missed.
    144   virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
    145                                     const MachineMemOperand *&MMO,
    146                                     int &FrameIndex) const;
    147 
    148   /// isStoreToStackSlot - If the specified machine instruction is a direct
    149   /// store to a stack slot, return the virtual or physical register number of
    150   /// the source reg along with the FrameIndex of the loaded stack slot.  If
    151   /// not, return 0.  This predicate must return 0 if the instruction has
    152   /// any side effects other than storing to the stack slot.
    153   virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
    154                                       int &FrameIndex) const {
    155     return 0;
    156   }
    157 
    158   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    159   /// stack locations as well.  This uses a heuristic so it isn't
    160   /// reliable for correctness.
    161   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    162                                             int &FrameIndex) const {
    163     return 0;
    164   }
    165 
    166   /// hasStoreToStackSlot - If the specified machine instruction has a
    167   /// store to a stack slot, return true along with the FrameIndex of
    168   /// the loaded stack slot and the machine mem operand containing the
    169   /// reference.  If not, return false.  Unlike isStoreToStackSlot,
    170   /// this returns true for any instructions that stores to the
    171   /// stack.  This is just a hint, as some cases may be missed.
    172   virtual bool hasStoreToStackSlot(const MachineInstr *MI,
    173                                    const MachineMemOperand *&MMO,
    174                                    int &FrameIndex) const;
    175 
    176   /// reMaterialize - Re-issue the specified 'original' instruction at the
    177   /// specific location targeting a new destination register.
    178   /// The register in Orig->getOperand(0).getReg() will be substituted by
    179   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
    180   /// SubIdx.
    181   virtual void reMaterialize(MachineBasicBlock &MBB,
    182                              MachineBasicBlock::iterator MI,
    183                              unsigned DestReg, unsigned SubIdx,
    184                              const MachineInstr *Orig,
    185                              const TargetRegisterInfo &TRI) const;
    186 
    187   /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
    188   /// MachineFunction::CloneMachineInstr(), but the target may update operands
    189   /// that are required to be unique.
    190   ///
    191   /// The instruction must be duplicable as indicated by isNotDuplicable().
    192   virtual MachineInstr *duplicate(MachineInstr *Orig,
    193                                   MachineFunction &MF) const;
    194 
    195   /// convertToThreeAddress - This method must be implemented by targets that
    196   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    197   /// may be able to convert a two-address instruction into one or more true
    198   /// three-address instructions on demand.  This allows the X86 target (for
    199   /// example) to convert ADD and SHL instructions into LEA instructions if they
    200   /// would require register copies due to two-addressness.
    201   ///
    202   /// This method returns a null pointer if the transformation cannot be
    203   /// performed, otherwise it returns the last new instruction.
    204   ///
    205   virtual MachineInstr *
    206   convertToThreeAddress(MachineFunction::iterator &MFI,
    207                    MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
    208     return 0;
    209   }
    210 
    211   /// commuteInstruction - If a target has any instructions that are
    212   /// commutable but require converting to different instructions or making
    213   /// non-trivial changes to commute them, this method can overloaded to do
    214   /// that.  The default implementation simply swaps the commutable operands.
    215   /// If NewMI is false, MI is modified in place and returned; otherwise, a
    216   /// new machine instruction is created and returned.  Do not call this
    217   /// method for a non-commutable instruction, but there may be some cases
    218   /// where this method fails and returns null.
    219   virtual MachineInstr *commuteInstruction(MachineInstr *MI,
    220                                            bool NewMI = false) const;
    221 
    222   /// findCommutedOpIndices - If specified MI is commutable, return the two
    223   /// operand indices that would swap value. Return false if the instruction
    224   /// is not in a form which this routine understands.
    225   virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    226                                      unsigned &SrcOpIdx2) const;
    227 
    228   /// produceSameValue - Return true if two machine instructions would produce
    229   /// identical values. By default, this is only true when the two instructions
    230   /// are deemed identical except for defs. If this function is called when the
    231   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
    232   /// aggressive checks.
    233   virtual bool produceSameValue(const MachineInstr *MI0,
    234                                 const MachineInstr *MI1,
    235                                 const MachineRegisterInfo *MRI = 0) const;
    236 
    237   /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
    238   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
    239   /// implemented for a target).  Upon success, this returns false and returns
    240   /// with the following information in various cases:
    241   ///
    242   /// 1. If this block ends with no branches (it just falls through to its succ)
    243   ///    just return false, leaving TBB/FBB null.
    244   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
    245   ///    the destination block.
    246   /// 3. If this block ends with a conditional branch and it falls through to a
    247   ///    successor block, it sets TBB to be the branch destination block and a
    248   ///    list of operands that evaluate the condition. These operands can be
    249   ///    passed to other TargetInstrInfo methods to create new branches.
    250   /// 4. If this block ends with a conditional branch followed by an
    251   ///    unconditional branch, it returns the 'true' destination in TBB, the
    252   ///    'false' destination in FBB, and a list of operands that evaluate the
    253   ///    condition.  These operands can be passed to other TargetInstrInfo
    254   ///    methods to create new branches.
    255   ///
    256   /// Note that RemoveBranch and InsertBranch must be implemented to support
    257   /// cases where this method returns success.
    258   ///
    259   /// If AllowModify is true, then this routine is allowed to modify the basic
    260   /// block (e.g. delete instructions after the unconditional branch).
    261   ///
    262   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    263                              MachineBasicBlock *&FBB,
    264                              SmallVectorImpl<MachineOperand> &Cond,
    265                              bool AllowModify = false) const {
    266     return true;
    267   }
    268 
    269   /// RemoveBranch - Remove the branching code at the end of the specific MBB.
    270   /// This is only invoked in cases where AnalyzeBranch returns success. It
    271   /// returns the number of instructions that were removed.
    272   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
    273     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
    274   }
    275 
    276   /// InsertBranch - Insert branch code into the end of the specified
    277   /// MachineBasicBlock.  The operands to this method are the same as those
    278   /// returned by AnalyzeBranch.  This is only invoked in cases where
    279   /// AnalyzeBranch returns success. It returns the number of instructions
    280   /// inserted.
    281   ///
    282   /// It is also invoked by tail merging to add unconditional branches in
    283   /// cases where AnalyzeBranch doesn't apply because there was no original
    284   /// branch to analyze.  At least this much must be implemented, else tail
    285   /// merging needs to be disabled.
    286   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    287                                 MachineBasicBlock *FBB,
    288                                 const SmallVectorImpl<MachineOperand> &Cond,
    289                                 DebugLoc DL) const {
    290     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
    291   }
    292 
    293   /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
    294   /// after it, replacing it with an unconditional branch to NewDest. This is
    295   /// used by the tail merging pass.
    296   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    297                                        MachineBasicBlock *NewDest) const;
    298 
    299   /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
    300   /// block at the specified instruction (i.e. instruction would be the start
    301   /// of a new basic block).
    302   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
    303                                    MachineBasicBlock::iterator MBBI) const {
    304     return true;
    305   }
    306 
    307   /// isProfitableToIfCvt - Return true if it's profitable to predicate
    308   /// instructions with accumulated instruction latency of "NumCycles"
    309   /// of the specified basic block, where the probability of the instructions
    310   /// being executed is given by Probability, and Confidence is a measure
    311   /// of our confidence that it will be properly predicted.
    312   virtual
    313   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    314                            unsigned ExtraPredCycles,
    315                            const BranchProbability &Probability) const {
    316     return false;
    317   }
    318 
    319   /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
    320   /// checks for the case where two basic blocks from true and false path
    321   /// of a if-then-else (diamond) are predicated on mutally exclusive
    322   /// predicates, where the probability of the true path being taken is given
    323   /// by Probability, and Confidence is a measure of our confidence that it
    324   /// will be properly predicted.
    325   virtual bool
    326   isProfitableToIfCvt(MachineBasicBlock &TMBB,
    327                       unsigned NumTCycles, unsigned ExtraTCycles,
    328                       MachineBasicBlock &FMBB,
    329                       unsigned NumFCycles, unsigned ExtraFCycles,
    330                       const BranchProbability &Probability) const {
    331     return false;
    332   }
    333 
    334   /// isProfitableToDupForIfCvt - Return true if it's profitable for
    335   /// if-converter to duplicate instructions of specified accumulated
    336   /// instruction latencies in the specified MBB to enable if-conversion.
    337   /// The probability of the instructions being executed is given by
    338   /// Probability, and Confidence is a measure of our confidence that it
    339   /// will be properly predicted.
    340   virtual bool
    341   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
    342                             const BranchProbability &Probability) const {
    343     return false;
    344   }
    345 
    346   /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
    347   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
    348   /// exclusive predicates.
    349   /// e.g.
    350   ///   subeq  r0, r1, #1
    351   ///   addne  r0, r1, #1
    352   /// =>
    353   ///   sub    r0, r1, #1
    354   ///   addne  r0, r1, #1
    355   ///
    356   /// This may be profitable is conditional instructions are always executed.
    357   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
    358                                          MachineBasicBlock &FMBB) const {
    359     return false;
    360   }
    361 
    362   /// canInsertSelect - Return true if it is possible to insert a select
    363   /// instruction that chooses between TrueReg and FalseReg based on the
    364   /// condition code in Cond.
    365   ///
    366   /// When successful, also return the latency in cycles from TrueReg,
    367   /// FalseReg, and Cond to the destination register. The Cond latency should
    368   /// compensate for a conditional branch being removed. For example, if a
    369   /// conditional branch has a 3 cycle latency from the condition code read,
    370   /// and a cmov instruction has a 2 cycle latency from the condition code
    371   /// read, CondCycles should be returned as -1.
    372   ///
    373   /// @param MBB         Block where select instruction would be inserted.
    374   /// @param Cond        Condition returned by AnalyzeBranch.
    375   /// @param TrueReg     Virtual register to select when Cond is true.
    376   /// @param FalseReg    Virtual register to select when Cond is false.
    377   /// @param CondCycles  Latency from Cond+Branch to select output.
    378   /// @param TrueCycles  Latency from TrueReg to select output.
    379   /// @param FalseCycles Latency from FalseReg to select output.
    380   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
    381                                const SmallVectorImpl<MachineOperand> &Cond,
    382                                unsigned TrueReg, unsigned FalseReg,
    383                                int &CondCycles,
    384                                int &TrueCycles, int &FalseCycles) const {
    385     return false;
    386   }
    387 
    388   /// insertSelect - Insert a select instruction into MBB before I that will
    389   /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
    390   /// Cond is false.
    391   ///
    392   /// This function can only be called after canInsertSelect() returned true.
    393   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
    394   /// that the same flags or registers required by Cond are available at the
    395   /// insertion point.
    396   ///
    397   /// @param MBB      Block where select instruction should be inserted.
    398   /// @param I        Insertion point.
    399   /// @param DL       Source location for debugging.
    400   /// @param DstReg   Virtual register to be defined by select instruction.
    401   /// @param Cond     Condition as computed by AnalyzeBranch.
    402   /// @param TrueReg  Virtual register to copy when Cond is true.
    403   /// @param FalseReg Virtual register to copy when Cons is false.
    404   virtual void insertSelect(MachineBasicBlock &MBB,
    405                             MachineBasicBlock::iterator I, DebugLoc DL,
    406                             unsigned DstReg,
    407                             const SmallVectorImpl<MachineOperand> &Cond,
    408                             unsigned TrueReg, unsigned FalseReg) const {
    409     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
    410   }
    411 
    412   /// analyzeSelect - Analyze the given select instruction, returning true if
    413   /// it cannot be understood. It is assumed that MI->isSelect() is true.
    414   ///
    415   /// When successful, return the controlling condition and the operands that
    416   /// determine the true and false result values.
    417   ///
    418   ///   Result = SELECT Cond, TrueOp, FalseOp
    419   ///
    420   /// Some targets can optimize select instructions, for example by predicating
    421   /// the instruction defining one of the operands. Such targets should set
    422   /// Optimizable.
    423   ///
    424   /// @param         MI Select instruction to analyze.
    425   /// @param Cond    Condition controlling the select.
    426   /// @param TrueOp  Operand number of the value selected when Cond is true.
    427   /// @param FalseOp Operand number of the value selected when Cond is false.
    428   /// @param Optimizable Returned as true if MI is optimizable.
    429   /// @returns False on success.
    430   virtual bool analyzeSelect(const MachineInstr *MI,
    431                              SmallVectorImpl<MachineOperand> &Cond,
    432                              unsigned &TrueOp, unsigned &FalseOp,
    433                              bool &Optimizable) const {
    434     assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
    435     return true;
    436   }
    437 
    438   /// optimizeSelect - Given a select instruction that was understood by
    439   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
    440   /// merging it with one of its operands. Returns NULL on failure.
    441   ///
    442   /// When successful, returns the new select instruction. The client is
    443   /// responsible for deleting MI.
    444   ///
    445   /// If both sides of the select can be optimized, PreferFalse is used to pick
    446   /// a side.
    447   ///
    448   /// @param MI          Optimizable select instruction.
    449   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
    450   /// @returns Optimized instruction or NULL.
    451   virtual MachineInstr *optimizeSelect(MachineInstr *MI,
    452                                        bool PreferFalse = false) const {
    453     // This function must be implemented if Optimizable is ever set.
    454     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
    455   }
    456 
    457   /// copyPhysReg - Emit instructions to copy a pair of physical registers.
    458   ///
    459   /// This function should support copies within any legal register class as
    460   /// well as any cross-class copies created during instruction selection.
    461   ///
    462   /// The source and destination registers may overlap, which may require a
    463   /// careful implementation when multiple copy instructions are required for
    464   /// large registers. See for example the ARM target.
    465   virtual void copyPhysReg(MachineBasicBlock &MBB,
    466                            MachineBasicBlock::iterator MI, DebugLoc DL,
    467                            unsigned DestReg, unsigned SrcReg,
    468                            bool KillSrc) const {
    469     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
    470   }
    471 
    472   /// storeRegToStackSlot - Store the specified register of the given register
    473   /// class to the specified stack frame index. The store instruction is to be
    474   /// added to the given machine basic block before the specified machine
    475   /// instruction. If isKill is true, the register operand is the last use and
    476   /// must be marked kill.
    477   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    478                                    MachineBasicBlock::iterator MI,
    479                                    unsigned SrcReg, bool isKill, int FrameIndex,
    480                                    const TargetRegisterClass *RC,
    481                                    const TargetRegisterInfo *TRI) const {
    482     llvm_unreachable("Target didn't implement "
    483                      "TargetInstrInfo::storeRegToStackSlot!");
    484   }
    485 
    486   /// loadRegFromStackSlot - Load the specified register of the given register
    487   /// class from the specified stack frame index. The load instruction is to be
    488   /// added to the given machine basic block before the specified machine
    489   /// instruction.
    490   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    491                                     MachineBasicBlock::iterator MI,
    492                                     unsigned DestReg, int FrameIndex,
    493                                     const TargetRegisterClass *RC,
    494                                     const TargetRegisterInfo *TRI) const {
    495     llvm_unreachable("Target didn't implement "
    496                      "TargetInstrInfo::loadRegFromStackSlot!");
    497   }
    498 
    499   /// expandPostRAPseudo - This function is called for all pseudo instructions
    500   /// that remain after register allocation. Many pseudo instructions are
    501   /// created to help register allocation. This is the place to convert them
    502   /// into real instructions. The target can edit MI in place, or it can insert
    503   /// new instructions and erase MI. The function should return true if
    504   /// anything was changed.
    505   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
    506     return false;
    507   }
    508 
    509   /// emitFrameIndexDebugValue - Emit a target-dependent form of
    510   /// DBG_VALUE encoding the address of a frame index.  Addresses would
    511   /// normally be lowered the same way as other addresses on the target,
    512   /// e.g. in load instructions.  For targets that do not support this
    513   /// the debug info is simply lost.
    514   /// If you add this for a target you should handle this DBG_VALUE in the
    515   /// target-specific AsmPrinter code as well; you will probably get invalid
    516   /// assembly output if you don't.
    517   virtual MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
    518                                                  int FrameIx,
    519                                                  uint64_t Offset,
    520                                                  const MDNode *MDPtr,
    521                                                  DebugLoc dl) const {
    522     return 0;
    523   }
    524 
    525   /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    526   /// slot into the specified machine instruction for the specified operand(s).
    527   /// If this is possible, a new instruction is returned with the specified
    528   /// operand folded, otherwise NULL is returned.
    529   /// The new instruction is inserted before MI, and the client is responsible
    530   /// for removing the old instruction.
    531   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    532                                   const SmallVectorImpl<unsigned> &Ops,
    533                                   int FrameIndex) const;
    534 
    535   /// foldMemoryOperand - Same as the previous version except it allows folding
    536   /// of any load and store from / to any address, not just from a specific
    537   /// stack slot.
    538   MachineInstr* foldMemoryOperand(MachineBasicBlock::iterator MI,
    539                                   const SmallVectorImpl<unsigned> &Ops,
    540                                   MachineInstr* LoadMI) const;
    541 
    542 protected:
    543   /// foldMemoryOperandImpl - Target-dependent implementation for
    544   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    545   /// take care of adding a MachineMemOperand to the newly created instruction.
    546   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    547                                           MachineInstr* MI,
    548                                           const SmallVectorImpl<unsigned> &Ops,
    549                                           int FrameIndex) const {
    550     return 0;
    551   }
    552 
    553   /// foldMemoryOperandImpl - Target-dependent implementation for
    554   /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
    555   /// take care of adding a MachineMemOperand to the newly created instruction.
    556   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    557                                               MachineInstr* MI,
    558                                           const SmallVectorImpl<unsigned> &Ops,
    559                                               MachineInstr* LoadMI) const {
    560     return 0;
    561   }
    562 
    563 public:
    564   /// canFoldMemoryOperand - Returns true for the specified load / store if
    565   /// folding is possible.
    566   virtual
    567   bool canFoldMemoryOperand(const MachineInstr *MI,
    568                             const SmallVectorImpl<unsigned> &Ops) const;
    569 
    570   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    571   /// a store or a load and a store into two or more instruction. If this is
    572   /// possible, returns true as well as the new instructions by reference.
    573   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    574                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    575                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
    576     return false;
    577   }
    578 
    579   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    580                                    SmallVectorImpl<SDNode*> &NewNodes) const {
    581     return false;
    582   }
    583 
    584   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    585   /// instruction after load / store are unfolded from an instruction of the
    586   /// specified opcode. It returns zero if the specified unfolding is not
    587   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    588   /// index of the operand which will hold the register holding the loaded
    589   /// value.
    590   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    591                                       bool UnfoldLoad, bool UnfoldStore,
    592                                       unsigned *LoadRegIndex = 0) const {
    593     return 0;
    594   }
    595 
    596   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    597   /// to determine if two loads are loading from the same base address. It
    598   /// should only return true if the base pointers are the same and the
    599   /// only differences between the two addresses are the offset. It also returns
    600   /// the offsets by reference.
    601   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    602                                     int64_t &Offset1, int64_t &Offset2) const {
    603     return false;
    604   }
    605 
    606   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    607   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    608   /// be scheduled togther. On some targets if two loads are loading from
    609   /// addresses in the same cache line, it's better if they are scheduled
    610   /// together. This function takes two integers that represent the load offsets
    611   /// from the common base address. It returns true if it decides it's desirable
    612   /// to schedule the two loads together. "NumLoads" is the number of loads that
    613   /// have already been scheduled after Load1.
    614   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    615                                        int64_t Offset1, int64_t Offset2,
    616                                        unsigned NumLoads) const {
    617     return false;
    618   }
    619 
    620   /// \brief Get the base register and byte offset of a load/store instr.
    621   virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
    622                                     unsigned &BaseReg, unsigned &Offset,
    623                                     const TargetRegisterInfo *TRI) const {
    624     return false;
    625   }
    626 
    627   virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
    628                                   MachineInstr *SecondLdSt,
    629                                   unsigned NumLoads) const {
    630     return false;
    631   }
    632 
    633   /// \brief Can this target fuse the given instructions if they are scheduled
    634   /// adjacent.
    635   virtual bool shouldScheduleAdjacent(MachineInstr* First,
    636                                       MachineInstr *Second) const {
    637     return false;
    638   }
    639 
    640   /// ReverseBranchCondition - Reverses the branch condition of the specified
    641   /// condition list, returning false on success and true if it cannot be
    642   /// reversed.
    643   virtual
    644   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    645     return true;
    646   }
    647 
    648   /// insertNoop - Insert a noop into the instruction stream at the specified
    649   /// point.
    650   virtual void insertNoop(MachineBasicBlock &MBB,
    651                           MachineBasicBlock::iterator MI) const;
    652 
    653 
    654   /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    655   virtual void getNoopForMachoTarget(MCInst &NopInst) const {
    656     // Default to just using 'nop' string.
    657   }
    658 
    659 
    660   /// isPredicated - Returns true if the instruction is already predicated.
    661   ///
    662   virtual bool isPredicated(const MachineInstr *MI) const {
    663     return false;
    664   }
    665 
    666   /// isUnpredicatedTerminator - Returns true if the instruction is a
    667   /// terminator instruction that has not been predicated.
    668   virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
    669 
    670   /// PredicateInstruction - Convert the instruction into a predicated
    671   /// instruction. It returns true if the operation was successful.
    672   virtual
    673   bool PredicateInstruction(MachineInstr *MI,
    674                         const SmallVectorImpl<MachineOperand> &Pred) const;
    675 
    676   /// SubsumesPredicate - Returns true if the first specified predicate
    677   /// subsumes the second, e.g. GE subsumes GT.
    678   virtual
    679   bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    680                          const SmallVectorImpl<MachineOperand> &Pred2) const {
    681     return false;
    682   }
    683 
    684   /// DefinesPredicate - If the specified instruction defines any predicate
    685   /// or condition code register(s) used for predication, returns true as well
    686   /// as the definition predicate(s) by reference.
    687   virtual bool DefinesPredicate(MachineInstr *MI,
    688                                 std::vector<MachineOperand> &Pred) const {
    689     return false;
    690   }
    691 
    692   /// isPredicable - Return true if the specified instruction can be predicated.
    693   /// By default, this returns true for every instruction with a
    694   /// PredicateOperand.
    695   virtual bool isPredicable(MachineInstr *MI) const {
    696     return MI->getDesc().isPredicable();
    697   }
    698 
    699   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    700   /// instruction that defines the specified register class.
    701   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
    702     return true;
    703   }
    704 
    705   /// isSchedulingBoundary - Test if the given instruction should be
    706   /// considered a scheduling boundary. This primarily includes labels and
    707   /// terminators.
    708   virtual bool isSchedulingBoundary(const MachineInstr *MI,
    709                                     const MachineBasicBlock *MBB,
    710                                     const MachineFunction &MF) const;
    711 
    712   /// Measure the specified inline asm to determine an approximation of its
    713   /// length.
    714   virtual unsigned getInlineAsmLength(const char *Str,
    715                                       const MCAsmInfo &MAI) const;
    716 
    717   /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
    718   /// use for this target when scheduling the machine instructions before
    719   /// register allocation.
    720   virtual ScheduleHazardRecognizer*
    721   CreateTargetHazardRecognizer(const TargetMachine *TM,
    722                                const ScheduleDAG *DAG) const;
    723 
    724   /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
    725   /// to use for this target when scheduling the machine instructions before
    726   /// register allocation.
    727   virtual ScheduleHazardRecognizer*
    728   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
    729                                  const ScheduleDAG *DAG) const;
    730 
    731   /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
    732   /// recognizer to use for this target when scheduling the machine instructions
    733   /// after register allocation.
    734   virtual ScheduleHazardRecognizer*
    735   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
    736                                      const ScheduleDAG *DAG) const;
    737 
    738   /// Provide a global flag for disabling the PreRA hazard recognizer that
    739   /// targets may choose to honor.
    740   bool usePreRAHazardRecognizer() const;
    741 
    742   /// analyzeCompare - For a comparison instruction, return the source registers
    743   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    744   /// compares against in CmpValue. Return true if the comparison instruction
    745   /// can be analyzed.
    746   virtual bool analyzeCompare(const MachineInstr *MI,
    747                               unsigned &SrcReg, unsigned &SrcReg2,
    748                               int &Mask, int &Value) const {
    749     return false;
    750   }
    751 
    752   /// optimizeCompareInstr - See if the comparison instruction can be converted
    753   /// into something more efficient. E.g., on ARM most instructions can set the
    754   /// flags register, obviating the need for a separate CMP.
    755   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
    756                                     unsigned SrcReg, unsigned SrcReg2,
    757                                     int Mask, int Value,
    758                                     const MachineRegisterInfo *MRI) const {
    759     return false;
    760   }
    761 
    762   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    763   /// operand at the use. We fold the load instructions if and only if the
    764   /// def and use are in the same BB. We only look at one load and see
    765   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    766   /// defined by the load we are trying to fold. DefMI returns the machine
    767   /// instruction that defines FoldAsLoadDefReg, and the function returns
    768   /// the machine instruction generated due to folding.
    769   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    770                         const MachineRegisterInfo *MRI,
    771                         unsigned &FoldAsLoadDefReg,
    772                         MachineInstr *&DefMI) const {
    773     return 0;
    774   }
    775 
    776   /// FoldImmediate - 'Reg' is known to be defined by a move immediate
    777   /// instruction, try to fold the immediate into the use instruction.
    778   virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    779                              unsigned Reg, MachineRegisterInfo *MRI) const {
    780     return false;
    781   }
    782 
    783   /// getNumMicroOps - Return the number of u-operations the given machine
    784   /// instruction will be decoded to on the target cpu. The itinerary's
    785   /// IssueWidth is the number of microops that can be dispatched each
    786   /// cycle. An instruction with zero microops takes no dispatch resources.
    787   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
    788                                   const MachineInstr *MI) const;
    789 
    790   /// isZeroCost - Return true for pseudo instructions that don't consume any
    791   /// machine resources in their current form. These are common cases that the
    792   /// scheduler should consider free, rather than conservatively handling them
    793   /// as instructions with no itinerary.
    794   bool isZeroCost(unsigned Opcode) const {
    795     return Opcode <= TargetOpcode::COPY;
    796   }
    797 
    798   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    799                                 SDNode *DefNode, unsigned DefIdx,
    800                                 SDNode *UseNode, unsigned UseIdx) const;
    801 
    802   /// getOperandLatency - Compute and return the use operand latency of a given
    803   /// pair of def and use.
    804   /// In most cases, the static scheduling itinerary was enough to determine the
    805   /// operand latency. But it may not be possible for instructions with variable
    806   /// number of defs / uses.
    807   ///
    808   /// This is a raw interface to the itinerary that may be directly overriden by
    809   /// a target. Use computeOperandLatency to get the best estimate of latency.
    810   virtual int getOperandLatency(const InstrItineraryData *ItinData,
    811                                 const MachineInstr *DefMI, unsigned DefIdx,
    812                                 const MachineInstr *UseMI,
    813                                 unsigned UseIdx) const;
    814 
    815   /// computeOperandLatency - Compute and return the latency of the given data
    816   /// dependent def and use when the operand indices are already known.
    817   ///
    818   /// FindMin may be set to get the minimum vs. expected latency.
    819   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
    820                                  const MachineInstr *DefMI, unsigned DefIdx,
    821                                  const MachineInstr *UseMI, unsigned UseIdx,
    822                                  bool FindMin = false) const;
    823 
    824   /// getInstrLatency - Compute the instruction latency of a given instruction.
    825   /// If the instruction has higher cost when predicated, it's returned via
    826   /// PredCost.
    827   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
    828                                    const MachineInstr *MI,
    829                                    unsigned *PredCost = 0) const;
    830 
    831   virtual int getInstrLatency(const InstrItineraryData *ItinData,
    832                               SDNode *Node) const;
    833 
    834   /// Return the default expected latency for a def based on it's opcode.
    835   unsigned defaultDefLatency(const MCSchedModel *SchedModel,
    836                              const MachineInstr *DefMI) const;
    837 
    838   int computeDefOperandLatency(const InstrItineraryData *ItinData,
    839                                const MachineInstr *DefMI, bool FindMin) const;
    840 
    841   /// isHighLatencyDef - Return true if this opcode has high latency to its
    842   /// result.
    843   virtual bool isHighLatencyDef(int opc) const { return false; }
    844 
    845   /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
    846   /// and an use in the current loop, return true if the target considered
    847   /// it 'high'. This is used by optimization passes such as machine LICM to
    848   /// determine whether it makes sense to hoist an instruction out even in
    849   /// high register pressure situation.
    850   virtual
    851   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    852                              const MachineRegisterInfo *MRI,
    853                              const MachineInstr *DefMI, unsigned DefIdx,
    854                              const MachineInstr *UseMI, unsigned UseIdx) const {
    855     return false;
    856   }
    857 
    858   /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
    859   /// if the target considered it 'low'.
    860   virtual
    861   bool hasLowDefLatency(const InstrItineraryData *ItinData,
    862                         const MachineInstr *DefMI, unsigned DefIdx) const;
    863 
    864   /// verifyInstruction - Perform target specific instruction verification.
    865   virtual
    866   bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
    867     return true;
    868   }
    869 
    870   /// getExecutionDomain - Return the current execution domain and bit mask of
    871   /// possible domains for instruction.
    872   ///
    873   /// Some micro-architectures have multiple execution domains, and multiple
    874   /// opcodes that perform the same operation in different domains.  For
    875   /// example, the x86 architecture provides the por, orps, and orpd
    876   /// instructions that all do the same thing.  There is a latency penalty if a
    877   /// register is written in one domain and read in another.
    878   ///
    879   /// This function returns a pair (domain, mask) containing the execution
    880   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
    881   /// function can be used to change the opcode to one of the domains in the
    882   /// bit mask.  Instructions whose execution domain can't be changed should
    883   /// return a 0 mask.
    884   ///
    885   /// The execution domain numbers don't have any special meaning except domain
    886   /// 0 is used for instructions that are not associated with any interesting
    887   /// execution domain.
    888   ///
    889   virtual std::pair<uint16_t, uint16_t>
    890   getExecutionDomain(const MachineInstr *MI) const {
    891     return std::make_pair(0, 0);
    892   }
    893 
    894   /// setExecutionDomain - Change the opcode of MI to execute in Domain.
    895   ///
    896   /// The bit (1 << Domain) must be set in the mask returned from
    897   /// getExecutionDomain(MI).
    898   ///
    899   virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
    900 
    901 
    902   /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
    903   /// before an instruction with an unwanted partial register update.
    904   ///
    905   /// Some instructions only write part of a register, and implicitly need to
    906   /// read the other parts of the register.  This may cause unwanted stalls
    907   /// preventing otherwise unrelated instructions from executing in parallel in
    908   /// an out-of-order CPU.
    909   ///
    910   /// For example, the x86 instruction cvtsi2ss writes its result to bits
    911   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
    912   /// the instruction needs to wait for the old value of the register to become
    913   /// available:
    914   ///
    915   ///   addps %xmm1, %xmm0
    916   ///   movaps %xmm0, (%rax)
    917   ///   cvtsi2ss %rbx, %xmm0
    918   ///
    919   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
    920   /// instruction before it can issue, even though the high bits of %xmm0
    921   /// probably aren't needed.
    922   ///
    923   /// This hook returns the preferred clearance before MI, measured in
    924   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
    925   /// instructions before MI.  It should only return a positive value for
    926   /// unwanted dependencies.  If the old bits of the defined register have
    927   /// useful values, or if MI is determined to otherwise read the dependency,
    928   /// the hook should return 0.
    929   ///
    930   /// The unwanted dependency may be handled by:
    931   ///
    932   /// 1. Allocating the same register for an MI def and use.  That makes the
    933   ///    unwanted dependency identical to a required dependency.
    934   ///
    935   /// 2. Allocating a register for the def that has no defs in the previous N
    936   ///    instructions.
    937   ///
    938   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
    939   ///    allows the target to insert a dependency breaking instruction.
    940   ///
    941   virtual unsigned
    942   getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    943                                const TargetRegisterInfo *TRI) const {
    944     // The default implementation returns 0 for no partial register dependency.
    945     return 0;
    946   }
    947 
    948   /// breakPartialRegDependency - Insert a dependency-breaking instruction
    949   /// before MI to eliminate an unwanted dependency on OpNum.
    950   ///
    951   /// If it wasn't possible to avoid a def in the last N instructions before MI
    952   /// (see getPartialRegUpdateClearance), this hook will be called to break the
    953   /// unwanted dependency.
    954   ///
    955   /// On x86, an xorps instruction can be used as a dependency breaker:
    956   ///
    957   ///   addps %xmm1, %xmm0
    958   ///   movaps %xmm0, (%rax)
    959   ///   xorps %xmm0, %xmm0
    960   ///   cvtsi2ss %rbx, %xmm0
    961   ///
    962   /// An <imp-kill> operand should be added to MI if an instruction was
    963   /// inserted.  This ties the instructions together in the post-ra scheduler.
    964   ///
    965   virtual void
    966   breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    967                             const TargetRegisterInfo *TRI) const {}
    968 
    969   /// Create machine specific model for scheduling.
    970   virtual DFAPacketizer*
    971     CreateTargetScheduleState(const TargetMachine*, const ScheduleDAG*) const {
    972     return NULL;
    973   }
    974 
    975 private:
    976   int CallFrameSetupOpcode, CallFrameDestroyOpcode;
    977 };
    978 
    979 } // End llvm namespace
    980 
    981 #endif
    982