Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a pattern matching instruction selector for PowerPC,
     11 // converting from a legalized dag to a PPC dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "ppc-codegen"
     16 #include "PPC.h"
     17 #include "MCTargetDesc/PPCPredicates.h"
     18 #include "PPCTargetMachine.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/SelectionDAGISel.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/GlobalValue.h"
     28 #include "llvm/IR/GlobalVariable.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/MathExtras.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 using namespace llvm;
     36 
     37 namespace llvm {
     38   void initializePPCDAGToDAGISelPass(PassRegistry&);
     39 }
     40 
     41 namespace {
     42   //===--------------------------------------------------------------------===//
     43   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
     44   /// instructions for SelectionDAG operations.
     45   ///
     46   class PPCDAGToDAGISel : public SelectionDAGISel {
     47     const PPCTargetMachine &TM;
     48     const PPCTargetLowering &PPCLowering;
     49     const PPCSubtarget &PPCSubTarget;
     50     unsigned GlobalBaseReg;
     51   public:
     52     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
     53       : SelectionDAGISel(tm), TM(tm),
     54         PPCLowering(*TM.getTargetLowering()),
     55         PPCSubTarget(*TM.getSubtargetImpl()) {
     56       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
     57     }
     58 
     59     virtual bool runOnMachineFunction(MachineFunction &MF) {
     60       // Make sure we re-emit a set of the global base reg if necessary
     61       GlobalBaseReg = 0;
     62       SelectionDAGISel::runOnMachineFunction(MF);
     63 
     64       if (!PPCSubTarget.isSVR4ABI())
     65         InsertVRSaveCode(MF);
     66 
     67       return true;
     68     }
     69 
     70     virtual void PostprocessISelDAG();
     71 
     72     /// getI32Imm - Return a target constant with the specified value, of type
     73     /// i32.
     74     inline SDValue getI32Imm(unsigned Imm) {
     75       return CurDAG->getTargetConstant(Imm, MVT::i32);
     76     }
     77 
     78     /// getI64Imm - Return a target constant with the specified value, of type
     79     /// i64.
     80     inline SDValue getI64Imm(uint64_t Imm) {
     81       return CurDAG->getTargetConstant(Imm, MVT::i64);
     82     }
     83 
     84     /// getSmallIPtrImm - Return a target constant of pointer type.
     85     inline SDValue getSmallIPtrImm(unsigned Imm) {
     86       return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
     87     }
     88 
     89     /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
     90     /// with any number of 0s on either side.  The 1s are allowed to wrap from
     91     /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
     92     /// 0x0F0F0000 is not, since all 1s are not contiguous.
     93     static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
     94 
     95 
     96     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
     97     /// rotate and mask opcode and mask operation.
     98     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
     99                                 unsigned &SH, unsigned &MB, unsigned &ME);
    100 
    101     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    102     /// base register.  Return the virtual register that holds this value.
    103     SDNode *getGlobalBaseReg();
    104 
    105     // Select - Convert the specified operand from a target-independent to a
    106     // target-specific node if it hasn't already been changed.
    107     SDNode *Select(SDNode *N);
    108 
    109     SDNode *SelectBitfieldInsert(SDNode *N);
    110 
    111     /// SelectCC - Select a comparison of the specified values with the
    112     /// specified condition code, returning the CR# of the expression.
    113     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
    114 
    115     /// SelectAddrImm - Returns true if the address N can be represented by
    116     /// a base register plus a signed 16-bit displacement [r+imm].
    117     bool SelectAddrImm(SDValue N, SDValue &Disp,
    118                        SDValue &Base) {
    119       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
    120     }
    121 
    122     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    123     /// immediate field.  Note that the operand at this point is already the
    124     /// result of a prior SelectAddressRegImm call.
    125     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
    126       if (N.getOpcode() == ISD::TargetConstant ||
    127           N.getOpcode() == ISD::TargetGlobalAddress) {
    128         Out = N;
    129         return true;
    130       }
    131 
    132       return false;
    133     }
    134 
    135     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    136     /// represented as an indexed [r+r] operation.  Returns false if it can
    137     /// be represented by [r+imm], which are preferred.
    138     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
    139       return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
    140     }
    141 
    142     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    143     /// represented as an indexed [r+r] operation.
    144     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
    145       return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    146     }
    147 
    148     /// SelectAddrImmX4 - Returns true if the address N can be represented by
    149     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
    150     /// Suitable for use by STD and friends.
    151     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
    152       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
    153     }
    154 
    155     // Select an address into a single register.
    156     bool SelectAddr(SDValue N, SDValue &Base) {
    157       Base = N;
    158       return true;
    159     }
    160 
    161     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    162     /// inline asm expressions.  It is always correct to compute the value into
    163     /// a register.  The case of adding a (possibly relocatable) constant to a
    164     /// register can be improved, but it is wrong to substitute Reg+Reg for
    165     /// Reg in an asm, because the load or store opcode would have to change.
    166    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    167                                               char ConstraintCode,
    168                                               std::vector<SDValue> &OutOps) {
    169       OutOps.push_back(Op);
    170       return false;
    171     }
    172 
    173     void InsertVRSaveCode(MachineFunction &MF);
    174 
    175     virtual const char *getPassName() const {
    176       return "PowerPC DAG->DAG Pattern Instruction Selection";
    177     }
    178 
    179 // Include the pieces autogenerated from the target description.
    180 #include "PPCGenDAGISel.inc"
    181 
    182 private:
    183     SDNode *SelectSETCC(SDNode *N);
    184   };
    185 }
    186 
    187 /// InsertVRSaveCode - Once the entire function has been instruction selected,
    188 /// all virtual registers are created and all machine instructions are built,
    189 /// check to see if we need to save/restore VRSAVE.  If so, do it.
    190 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
    191   // Check to see if this function uses vector registers, which means we have to
    192   // save and restore the VRSAVE register and update it with the regs we use.
    193   //
    194   // In this case, there will be virtual registers of vector type created
    195   // by the scheduler.  Detect them now.
    196   bool HasVectorVReg = false;
    197   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
    198     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    199     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
    200       HasVectorVReg = true;
    201       break;
    202     }
    203   }
    204   if (!HasVectorVReg) return;  // nothing to do.
    205 
    206   // If we have a vector register, we want to emit code into the entry and exit
    207   // blocks to save and restore the VRSAVE register.  We do this here (instead
    208   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
    209   //
    210   // 1. This (trivially) reduces the load on the register allocator, by not
    211   //    having to represent the live range of the VRSAVE register.
    212   // 2. This (more significantly) allows us to create a temporary virtual
    213   //    register to hold the saved VRSAVE value, allowing this temporary to be
    214   //    register allocated, instead of forcing it to be spilled to the stack.
    215 
    216   // Create two vregs - one to hold the VRSAVE register that is live-in to the
    217   // function and one for the value after having bits or'd into it.
    218   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    219   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    220 
    221   const TargetInstrInfo &TII = *TM.getInstrInfo();
    222   MachineBasicBlock &EntryBB = *Fn.begin();
    223   DebugLoc dl;
    224   // Emit the following code into the entry block:
    225   // InVRSAVE = MFVRSAVE
    226   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
    227   // MTVRSAVE UpdatedVRSAVE
    228   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
    229   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
    230   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
    231           UpdatedVRSAVE).addReg(InVRSAVE);
    232   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
    233 
    234   // Find all return blocks, outputting a restore in each epilog.
    235   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    236     if (!BB->empty() && BB->back().isReturn()) {
    237       IP = BB->end(); --IP;
    238 
    239       // Skip over all terminator instructions, which are part of the return
    240       // sequence.
    241       MachineBasicBlock::iterator I2 = IP;
    242       while (I2 != BB->begin() && (--I2)->isTerminator())
    243         IP = I2;
    244 
    245       // Emit: MTVRSAVE InVRSave
    246       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    247     }
    248   }
    249 }
    250 
    251 
    252 /// getGlobalBaseReg - Output the instructions required to put the
    253 /// base address to use for accessing globals into a register.
    254 ///
    255 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
    256   if (!GlobalBaseReg) {
    257     const TargetInstrInfo &TII = *TM.getInstrInfo();
    258     // Insert the set of GlobalBaseReg into the first MBB of the function
    259     MachineBasicBlock &FirstMBB = MF->front();
    260     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    261     DebugLoc dl;
    262 
    263     if (PPCLowering.getPointerTy() == MVT::i32) {
    264       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    265       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    266       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    267     } else {
    268       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
    269       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
    270       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
    271     }
    272   }
    273   return CurDAG->getRegister(GlobalBaseReg,
    274                              PPCLowering.getPointerTy()).getNode();
    275 }
    276 
    277 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    278 /// or 64-bit immediate, and if the value can be accurately represented as a
    279 /// sign extension from a 16-bit value.  If so, this returns true and the
    280 /// immediate.
    281 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    282   if (N->getOpcode() != ISD::Constant)
    283     return false;
    284 
    285   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    286   if (N->getValueType(0) == MVT::i32)
    287     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    288   else
    289     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    290 }
    291 
    292 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    293   return isIntS16Immediate(Op.getNode(), Imm);
    294 }
    295 
    296 
    297 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    298 /// operand. If so Imm will receive the 32-bit value.
    299 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    300   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    301     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    302     return true;
    303   }
    304   return false;
    305 }
    306 
    307 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
    308 /// operand.  If so Imm will receive the 64-bit value.
    309 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
    310   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    311     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    312     return true;
    313   }
    314   return false;
    315 }
    316 
    317 // isInt32Immediate - This method tests to see if a constant operand.
    318 // If so Imm will receive the 32 bit value.
    319 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    320   return isInt32Immediate(N.getNode(), Imm);
    321 }
    322 
    323 
    324 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    325 // opcode and that it has a immediate integer right operand.
    326 // If so Imm will receive the 32 bit value.
    327 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    328   return N->getOpcode() == Opc
    329          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
    330 }
    331 
    332 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
    333   if (!Val)
    334     return false;
    335 
    336   if (isShiftedMask_32(Val)) {
    337     // look for the first non-zero bit
    338     MB = countLeadingZeros(Val);
    339     // look for the first zero bit after the run of ones
    340     ME = countLeadingZeros((Val - 1) ^ Val);
    341     return true;
    342   } else {
    343     Val = ~Val; // invert mask
    344     if (isShiftedMask_32(Val)) {
    345       // effectively look for the first zero bit
    346       ME = countLeadingZeros(Val) - 1;
    347       // effectively look for the first one bit after the run of zeros
    348       MB = countLeadingZeros((Val - 1) ^ Val) + 1;
    349       return true;
    350     }
    351   }
    352   // no run present
    353   return false;
    354 }
    355 
    356 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
    357                                       bool isShiftMask, unsigned &SH,
    358                                       unsigned &MB, unsigned &ME) {
    359   // Don't even go down this path for i64, since different logic will be
    360   // necessary for rldicl/rldicr/rldimi.
    361   if (N->getValueType(0) != MVT::i32)
    362     return false;
    363 
    364   unsigned Shift  = 32;
    365   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
    366   unsigned Opcode = N->getOpcode();
    367   if (N->getNumOperands() != 2 ||
    368       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
    369     return false;
    370 
    371   if (Opcode == ISD::SHL) {
    372     // apply shift left to mask if it comes first
    373     if (isShiftMask) Mask = Mask << Shift;
    374     // determine which bits are made indeterminant by shift
    375     Indeterminant = ~(0xFFFFFFFFu << Shift);
    376   } else if (Opcode == ISD::SRL) {
    377     // apply shift right to mask if it comes first
    378     if (isShiftMask) Mask = Mask >> Shift;
    379     // determine which bits are made indeterminant by shift
    380     Indeterminant = ~(0xFFFFFFFFu >> Shift);
    381     // adjust for the left rotate
    382     Shift = 32 - Shift;
    383   } else if (Opcode == ISD::ROTL) {
    384     Indeterminant = 0;
    385   } else {
    386     return false;
    387   }
    388 
    389   // if the mask doesn't intersect any Indeterminant bits
    390   if (Mask && !(Mask & Indeterminant)) {
    391     SH = Shift & 31;
    392     // make sure the mask is still a mask (wrap arounds may not be)
    393     return isRunOfOnes(Mask, MB, ME);
    394   }
    395   return false;
    396 }
    397 
    398 /// SelectBitfieldInsert - turn an or of two masked values into
    399 /// the rotate left word immediate then mask insert (rlwimi) instruction.
    400 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
    401   SDValue Op0 = N->getOperand(0);
    402   SDValue Op1 = N->getOperand(1);
    403   SDLoc dl(N);
    404 
    405   APInt LKZ, LKO, RKZ, RKO;
    406   CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
    407   CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
    408 
    409   unsigned TargetMask = LKZ.getZExtValue();
    410   unsigned InsertMask = RKZ.getZExtValue();
    411 
    412   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    413     unsigned Op0Opc = Op0.getOpcode();
    414     unsigned Op1Opc = Op1.getOpcode();
    415     unsigned Value, SH = 0;
    416     TargetMask = ~TargetMask;
    417     InsertMask = ~InsertMask;
    418 
    419     // If the LHS has a foldable shift and the RHS does not, then swap it to the
    420     // RHS so that we can fold the shift into the insert.
    421     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
    422       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
    423           Op0.getOperand(0).getOpcode() == ISD::SRL) {
    424         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
    425             Op1.getOperand(0).getOpcode() != ISD::SRL) {
    426           std::swap(Op0, Op1);
    427           std::swap(Op0Opc, Op1Opc);
    428           std::swap(TargetMask, InsertMask);
    429         }
    430       }
    431     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
    432       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
    433           Op1.getOperand(0).getOpcode() != ISD::SRL) {
    434         std::swap(Op0, Op1);
    435         std::swap(Op0Opc, Op1Opc);
    436         std::swap(TargetMask, InsertMask);
    437       }
    438     }
    439 
    440     unsigned MB, ME;
    441     if (isRunOfOnes(InsertMask, MB, ME)) {
    442       SDValue Tmp1, Tmp2;
    443 
    444       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
    445           isInt32Immediate(Op1.getOperand(1), Value)) {
    446         Op1 = Op1.getOperand(0);
    447         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
    448       }
    449       if (Op1Opc == ISD::AND) {
    450         unsigned SHOpc = Op1.getOperand(0).getOpcode();
    451         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
    452             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
    453 	  // Note that Value must be in range here (less than 32) because
    454 	  // otherwise there would not be any bits set in InsertMask.
    455           Op1 = Op1.getOperand(0).getOperand(0);
    456           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
    457         }
    458       }
    459 
    460       SH &= 31;
    461       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
    462                           getI32Imm(ME) };
    463       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
    464     }
    465   }
    466   return 0;
    467 }
    468 
    469 /// SelectCC - Select a comparison of the specified values with the specified
    470 /// condition code, returning the CR# of the expression.
    471 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
    472                                     ISD::CondCode CC, SDLoc dl) {
    473   // Always select the LHS.
    474   unsigned Opc;
    475 
    476   if (LHS.getValueType() == MVT::i32) {
    477     unsigned Imm;
    478     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
    479       if (isInt32Immediate(RHS, Imm)) {
    480         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
    481         if (isUInt<16>(Imm))
    482           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
    483                                                 getI32Imm(Imm & 0xFFFF)), 0);
    484         // If this is a 16-bit signed immediate, fold it.
    485         if (isInt<16>((int)Imm))
    486           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
    487                                                 getI32Imm(Imm & 0xFFFF)), 0);
    488 
    489         // For non-equality comparisons, the default code would materialize the
    490         // constant, then compare against it, like this:
    491         //   lis r2, 4660
    492         //   ori r2, r2, 22136
    493         //   cmpw cr0, r3, r2
    494         // Since we are just comparing for equality, we can emit this instead:
    495         //   xoris r0,r3,0x1234
    496         //   cmplwi cr0,r0,0x5678
    497         //   beq cr0,L6
    498         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
    499                                            getI32Imm(Imm >> 16)), 0);
    500         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
    501                                               getI32Imm(Imm & 0xFFFF)), 0);
    502       }
    503       Opc = PPC::CMPLW;
    504     } else if (ISD::isUnsignedIntSetCC(CC)) {
    505       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
    506         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
    507                                               getI32Imm(Imm & 0xFFFF)), 0);
    508       Opc = PPC::CMPLW;
    509     } else {
    510       short SImm;
    511       if (isIntS16Immediate(RHS, SImm))
    512         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
    513                                               getI32Imm((int)SImm & 0xFFFF)),
    514                          0);
    515       Opc = PPC::CMPW;
    516     }
    517   } else if (LHS.getValueType() == MVT::i64) {
    518     uint64_t Imm;
    519     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
    520       if (isInt64Immediate(RHS.getNode(), Imm)) {
    521         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
    522         if (isUInt<16>(Imm))
    523           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
    524                                                 getI32Imm(Imm & 0xFFFF)), 0);
    525         // If this is a 16-bit signed immediate, fold it.
    526         if (isInt<16>(Imm))
    527           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
    528                                                 getI32Imm(Imm & 0xFFFF)), 0);
    529 
    530         // For non-equality comparisons, the default code would materialize the
    531         // constant, then compare against it, like this:
    532         //   lis r2, 4660
    533         //   ori r2, r2, 22136
    534         //   cmpd cr0, r3, r2
    535         // Since we are just comparing for equality, we can emit this instead:
    536         //   xoris r0,r3,0x1234
    537         //   cmpldi cr0,r0,0x5678
    538         //   beq cr0,L6
    539         if (isUInt<32>(Imm)) {
    540           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
    541                                              getI64Imm(Imm >> 16)), 0);
    542           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
    543                                                 getI64Imm(Imm & 0xFFFF)), 0);
    544         }
    545       }
    546       Opc = PPC::CMPLD;
    547     } else if (ISD::isUnsignedIntSetCC(CC)) {
    548       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
    549         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
    550                                               getI64Imm(Imm & 0xFFFF)), 0);
    551       Opc = PPC::CMPLD;
    552     } else {
    553       short SImm;
    554       if (isIntS16Immediate(RHS, SImm))
    555         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
    556                                               getI64Imm(SImm & 0xFFFF)),
    557                          0);
    558       Opc = PPC::CMPD;
    559     }
    560   } else if (LHS.getValueType() == MVT::f32) {
    561     Opc = PPC::FCMPUS;
    562   } else {
    563     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
    564     Opc = PPC::FCMPUD;
    565   }
    566   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
    567 }
    568 
    569 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
    570   switch (CC) {
    571   case ISD::SETUEQ:
    572   case ISD::SETONE:
    573   case ISD::SETOLE:
    574   case ISD::SETOGE:
    575     llvm_unreachable("Should be lowered by legalize!");
    576   default: llvm_unreachable("Unknown condition!");
    577   case ISD::SETOEQ:
    578   case ISD::SETEQ:  return PPC::PRED_EQ;
    579   case ISD::SETUNE:
    580   case ISD::SETNE:  return PPC::PRED_NE;
    581   case ISD::SETOLT:
    582   case ISD::SETLT:  return PPC::PRED_LT;
    583   case ISD::SETULE:
    584   case ISD::SETLE:  return PPC::PRED_LE;
    585   case ISD::SETOGT:
    586   case ISD::SETGT:  return PPC::PRED_GT;
    587   case ISD::SETUGE:
    588   case ISD::SETGE:  return PPC::PRED_GE;
    589   case ISD::SETO:   return PPC::PRED_NU;
    590   case ISD::SETUO:  return PPC::PRED_UN;
    591     // These two are invalid for floating point.  Assume we have int.
    592   case ISD::SETULT: return PPC::PRED_LT;
    593   case ISD::SETUGT: return PPC::PRED_GT;
    594   }
    595 }
    596 
    597 /// getCRIdxForSetCC - Return the index of the condition register field
    598 /// associated with the SetCC condition, and whether or not the field is
    599 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
    600 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
    601   Invert = false;
    602   switch (CC) {
    603   default: llvm_unreachable("Unknown condition!");
    604   case ISD::SETOLT:
    605   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
    606   case ISD::SETOGT:
    607   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
    608   case ISD::SETOEQ:
    609   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
    610   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
    611   case ISD::SETUGE:
    612   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
    613   case ISD::SETULE:
    614   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
    615   case ISD::SETUNE:
    616   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
    617   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
    618   case ISD::SETUEQ:
    619   case ISD::SETOGE:
    620   case ISD::SETOLE:
    621   case ISD::SETONE:
    622     llvm_unreachable("Invalid branch code: should be expanded by legalize");
    623   // These are invalid for floating point.  Assume integer.
    624   case ISD::SETULT: return 0;
    625   case ISD::SETUGT: return 1;
    626   }
    627 }
    628 
    629 // getVCmpInst: return the vector compare instruction for the specified
    630 // vector type and condition code. Since this is for altivec specific code,
    631 // only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
    632 static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
    633   switch (CC) {
    634     case ISD::SETEQ:
    635     case ISD::SETUEQ:
    636     case ISD::SETNE:
    637     case ISD::SETUNE:
    638       if (VecVT == MVT::v16i8)
    639         return PPC::VCMPEQUB;
    640       else if (VecVT == MVT::v8i16)
    641         return PPC::VCMPEQUH;
    642       else if (VecVT == MVT::v4i32)
    643         return PPC::VCMPEQUW;
    644       // v4f32 != v4f32 could be translate to unordered not equal
    645       else if (VecVT == MVT::v4f32)
    646         return PPC::VCMPEQFP;
    647       break;
    648     case ISD::SETLT:
    649     case ISD::SETGT:
    650     case ISD::SETLE:
    651     case ISD::SETGE:
    652       if (VecVT == MVT::v16i8)
    653         return PPC::VCMPGTSB;
    654       else if (VecVT == MVT::v8i16)
    655         return PPC::VCMPGTSH;
    656       else if (VecVT == MVT::v4i32)
    657         return PPC::VCMPGTSW;
    658       else if (VecVT == MVT::v4f32)
    659         return PPC::VCMPGTFP;
    660       break;
    661     case ISD::SETULT:
    662     case ISD::SETUGT:
    663     case ISD::SETUGE:
    664     case ISD::SETULE:
    665       if (VecVT == MVT::v16i8)
    666         return PPC::VCMPGTUB;
    667       else if (VecVT == MVT::v8i16)
    668         return PPC::VCMPGTUH;
    669       else if (VecVT == MVT::v4i32)
    670         return PPC::VCMPGTUW;
    671       break;
    672     case ISD::SETOEQ:
    673       if (VecVT == MVT::v4f32)
    674         return PPC::VCMPEQFP;
    675       break;
    676     case ISD::SETOLT:
    677     case ISD::SETOGT:
    678     case ISD::SETOLE:
    679       if (VecVT == MVT::v4f32)
    680         return PPC::VCMPGTFP;
    681       break;
    682     case ISD::SETOGE:
    683       if (VecVT == MVT::v4f32)
    684         return PPC::VCMPGEFP;
    685       break;
    686     default:
    687       break;
    688   }
    689   llvm_unreachable("Invalid integer vector compare condition");
    690 }
    691 
    692 // getVCmpEQInst: return the equal compare instruction for the specified vector
    693 // type. Since this is for altivec specific code, only support the altivec
    694 // types (v16i8, v8i16, v4i32, and v4f32).
    695 static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
    696   switch (VecVT) {
    697     case MVT::v16i8:
    698       return PPC::VCMPEQUB;
    699     case MVT::v8i16:
    700       return PPC::VCMPEQUH;
    701     case MVT::v4i32:
    702       return PPC::VCMPEQUW;
    703     case MVT::v4f32:
    704       return PPC::VCMPEQFP;
    705     default:
    706       llvm_unreachable("Invalid integer vector compare condition");
    707   }
    708 }
    709 
    710 
    711 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
    712   SDLoc dl(N);
    713   unsigned Imm;
    714   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
    715   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
    716   bool isPPC64 = (PtrVT == MVT::i64);
    717 
    718   if (isInt32Immediate(N->getOperand(1), Imm)) {
    719     // We can codegen setcc op, imm very efficiently compared to a brcond.
    720     // Check for those cases here.
    721     // setcc op, 0
    722     if (Imm == 0) {
    723       SDValue Op = N->getOperand(0);
    724       switch (CC) {
    725       default: break;
    726       case ISD::SETEQ: {
    727         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
    728         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
    729         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    730       }
    731       case ISD::SETNE: {
    732         if (isPPC64) break;
    733         SDValue AD =
    734           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
    735                                          Op, getI32Imm(~0U)), 0);
    736         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
    737                                     AD.getValue(1));
    738       }
    739       case ISD::SETLT: {
    740         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
    741         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    742       }
    743       case ISD::SETGT: {
    744         SDValue T =
    745           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
    746         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
    747         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
    748         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    749       }
    750       }
    751     } else if (Imm == ~0U) {        // setcc op, -1
    752       SDValue Op = N->getOperand(0);
    753       switch (CC) {
    754       default: break;
    755       case ISD::SETEQ:
    756         if (isPPC64) break;
    757         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
    758                                             Op, getI32Imm(1)), 0);
    759         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
    760                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
    761                                                              MVT::i32,
    762                                                              getI32Imm(0)), 0),
    763                                       Op.getValue(1));
    764       case ISD::SETNE: {
    765         if (isPPC64) break;
    766         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
    767         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
    768                                             Op, getI32Imm(~0U));
    769         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
    770                                     Op, SDValue(AD, 1));
    771       }
    772       case ISD::SETLT: {
    773         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
    774                                                     getI32Imm(1)), 0);
    775         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
    776                                                     Op), 0);
    777         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
    778         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    779       }
    780       case ISD::SETGT: {
    781         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
    782         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
    783                      0);
    784         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
    785                                     getI32Imm(1));
    786       }
    787       }
    788     }
    789   }
    790 
    791   SDValue LHS = N->getOperand(0);
    792   SDValue RHS = N->getOperand(1);
    793 
    794   // Altivec Vector compare instructions do not set any CR register by default and
    795   // vector compare operations return the same type as the operands.
    796   if (LHS.getValueType().isVector()) {
    797     EVT VecVT = LHS.getValueType();
    798     MVT::SimpleValueType VT = VecVT.getSimpleVT().SimpleTy;
    799     unsigned int VCmpInst = getVCmpInst(VT, CC);
    800 
    801     switch (CC) {
    802       case ISD::SETEQ:
    803       case ISD::SETOEQ:
    804       case ISD::SETUEQ:
    805         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
    806       case ISD::SETNE:
    807       case ISD::SETONE:
    808       case ISD::SETUNE: {
    809         SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
    810         return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
    811       }
    812       case ISD::SETLT:
    813       case ISD::SETOLT:
    814       case ISD::SETULT:
    815         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
    816       case ISD::SETGT:
    817       case ISD::SETOGT:
    818       case ISD::SETUGT:
    819         return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
    820       case ISD::SETGE:
    821       case ISD::SETOGE:
    822       case ISD::SETUGE: {
    823         // Small optimization: Altivec provides a 'Vector Compare Greater Than
    824         // or Equal To' instruction (vcmpgefp), so in this case there is no
    825         // need for extra logic for the equal compare.
    826         if (VecVT.getSimpleVT().isFloatingPoint()) {
    827           return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
    828         } else {
    829           SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
    830           unsigned int VCmpEQInst = getVCmpEQInst(VT);
    831           SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
    832           return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
    833         }
    834       }
    835       case ISD::SETLE:
    836       case ISD::SETOLE:
    837       case ISD::SETULE: {
    838         SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
    839         unsigned int VCmpEQInst = getVCmpEQInst(VT);
    840         SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
    841         return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
    842       }
    843       default:
    844         llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
    845     }
    846   }
    847 
    848   bool Inv;
    849   unsigned Idx = getCRIdxForSetCC(CC, Inv);
    850   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
    851   SDValue IntCR;
    852 
    853   // Force the ccreg into CR7.
    854   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
    855 
    856   SDValue InFlag(0, 0);  // Null incoming flag value.
    857   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
    858                                InFlag).getValue(1);
    859 
    860   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
    861                                          CCReg), 0);
    862 
    863   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
    864                       getI32Imm(31), getI32Imm(31) };
    865   if (!Inv)
    866     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
    867 
    868   // Get the specified bit.
    869   SDValue Tmp =
    870     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
    871   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
    872 }
    873 
    874 
    875 // Select - Convert the specified operand from a target-independent to a
    876 // target-specific node if it hasn't already been changed.
    877 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
    878   SDLoc dl(N);
    879   if (N->isMachineOpcode())
    880     return NULL;   // Already selected.
    881 
    882   switch (N->getOpcode()) {
    883   default: break;
    884 
    885   case ISD::Constant: {
    886     if (N->getValueType(0) == MVT::i64) {
    887       // Get 64 bit value.
    888       int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
    889       // Assume no remaining bits.
    890       unsigned Remainder = 0;
    891       // Assume no shift required.
    892       unsigned Shift = 0;
    893 
    894       // If it can't be represented as a 32 bit value.
    895       if (!isInt<32>(Imm)) {
    896         Shift = countTrailingZeros<uint64_t>(Imm);
    897         int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    898 
    899         // If the shifted value fits 32 bits.
    900         if (isInt<32>(ImmSh)) {
    901           // Go with the shifted value.
    902           Imm = ImmSh;
    903         } else {
    904           // Still stuck with a 64 bit value.
    905           Remainder = Imm;
    906           Shift = 32;
    907           Imm >>= 32;
    908         }
    909       }
    910 
    911       // Intermediate operand.
    912       SDNode *Result;
    913 
    914       // Handle first 32 bits.
    915       unsigned Lo = Imm & 0xFFFF;
    916       unsigned Hi = (Imm >> 16) & 0xFFFF;
    917 
    918       // Simple value.
    919       if (isInt<16>(Imm)) {
    920        // Just the Lo bits.
    921         Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
    922       } else if (Lo) {
    923         // Handle the Hi bits.
    924         unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
    925         Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
    926         // And Lo bits.
    927         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    928                                         SDValue(Result, 0), getI32Imm(Lo));
    929       } else {
    930        // Just the Hi bits.
    931         Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
    932       }
    933 
    934       // If no shift, we're done.
    935       if (!Shift) return Result;
    936 
    937       // Shift for next step if the upper 32-bits were not zero.
    938       if (Imm) {
    939         Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
    940                                         SDValue(Result, 0),
    941                                         getI32Imm(Shift),
    942                                         getI32Imm(63 - Shift));
    943       }
    944 
    945       // Add in the last bits as required.
    946       if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    947         Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
    948                                         SDValue(Result, 0), getI32Imm(Hi));
    949       }
    950       if ((Lo = Remainder & 0xFFFF)) {
    951         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    952                                         SDValue(Result, 0), getI32Imm(Lo));
    953       }
    954 
    955       return Result;
    956     }
    957     break;
    958   }
    959 
    960   case ISD::SETCC:
    961     return SelectSETCC(N);
    962   case PPCISD::GlobalBaseReg:
    963     return getGlobalBaseReg();
    964 
    965   case ISD::FrameIndex: {
    966     int FI = cast<FrameIndexSDNode>(N)->getIndex();
    967     SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
    968     unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    969     if (N->hasOneUse())
    970       return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
    971                                   getSmallIPtrImm(0));
    972     return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
    973                                   getSmallIPtrImm(0));
    974   }
    975 
    976   case PPCISD::MFOCRF: {
    977     SDValue InFlag = N->getOperand(1);
    978     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
    979                                   N->getOperand(0), InFlag);
    980   }
    981 
    982   case ISD::SDIV: {
    983     // FIXME: since this depends on the setting of the carry flag from the srawi
    984     //        we should really be making notes about that for the scheduler.
    985     // FIXME: It sure would be nice if we could cheaply recognize the
    986     //        srl/add/sra pattern the dag combiner will generate for this as
    987     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
    988     unsigned Imm;
    989     if (isInt32Immediate(N->getOperand(1), Imm)) {
    990       SDValue N0 = N->getOperand(0);
    991       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
    992         SDNode *Op =
    993           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
    994                                  N0, getI32Imm(Log2_32(Imm)));
    995         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
    996                                     SDValue(Op, 0), SDValue(Op, 1));
    997       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
    998         SDNode *Op =
    999           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
   1000                                  N0, getI32Imm(Log2_32(-Imm)));
   1001         SDValue PT =
   1002           SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
   1003                                          SDValue(Op, 0), SDValue(Op, 1)),
   1004                     0);
   1005         return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
   1006       }
   1007     }
   1008 
   1009     // Other cases are autogenerated.
   1010     break;
   1011   }
   1012 
   1013   case ISD::LOAD: {
   1014     // Handle preincrement loads.
   1015     LoadSDNode *LD = cast<LoadSDNode>(N);
   1016     EVT LoadedVT = LD->getMemoryVT();
   1017 
   1018     // Normal loads are handled by code generated from the .td file.
   1019     if (LD->getAddressingMode() != ISD::PRE_INC)
   1020       break;
   1021 
   1022     SDValue Offset = LD->getOffset();
   1023     if (Offset.getOpcode() == ISD::TargetConstant ||
   1024         Offset.getOpcode() == ISD::TargetGlobalAddress) {
   1025 
   1026       unsigned Opcode;
   1027       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   1028       if (LD->getValueType(0) != MVT::i64) {
   1029         // Handle PPC32 integer and normal FP loads.
   1030         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   1031         switch (LoadedVT.getSimpleVT().SimpleTy) {
   1032           default: llvm_unreachable("Invalid PPC load type!");
   1033           case MVT::f64: Opcode = PPC::LFDU; break;
   1034           case MVT::f32: Opcode = PPC::LFSU; break;
   1035           case MVT::i32: Opcode = PPC::LWZU; break;
   1036           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
   1037           case MVT::i1:
   1038           case MVT::i8:  Opcode = PPC::LBZU; break;
   1039         }
   1040       } else {
   1041         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   1042         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   1043         switch (LoadedVT.getSimpleVT().SimpleTy) {
   1044           default: llvm_unreachable("Invalid PPC load type!");
   1045           case MVT::i64: Opcode = PPC::LDU; break;
   1046           case MVT::i32: Opcode = PPC::LWZU8; break;
   1047           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
   1048           case MVT::i1:
   1049           case MVT::i8:  Opcode = PPC::LBZU8; break;
   1050         }
   1051       }
   1052 
   1053       SDValue Chain = LD->getChain();
   1054       SDValue Base = LD->getBasePtr();
   1055       SDValue Ops[] = { Offset, Base, Chain };
   1056       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
   1057                                     PPCLowering.getPointerTy(),
   1058                                     MVT::Other, Ops);
   1059     } else {
   1060       unsigned Opcode;
   1061       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   1062       if (LD->getValueType(0) != MVT::i64) {
   1063         // Handle PPC32 integer and normal FP loads.
   1064         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   1065         switch (LoadedVT.getSimpleVT().SimpleTy) {
   1066           default: llvm_unreachable("Invalid PPC load type!");
   1067           case MVT::f64: Opcode = PPC::LFDUX; break;
   1068           case MVT::f32: Opcode = PPC::LFSUX; break;
   1069           case MVT::i32: Opcode = PPC::LWZUX; break;
   1070           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
   1071           case MVT::i1:
   1072           case MVT::i8:  Opcode = PPC::LBZUX; break;
   1073         }
   1074       } else {
   1075         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   1076         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
   1077                "Invalid sext update load");
   1078         switch (LoadedVT.getSimpleVT().SimpleTy) {
   1079           default: llvm_unreachable("Invalid PPC load type!");
   1080           case MVT::i64: Opcode = PPC::LDUX; break;
   1081           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
   1082           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
   1083           case MVT::i1:
   1084           case MVT::i8:  Opcode = PPC::LBZUX8; break;
   1085         }
   1086       }
   1087 
   1088       SDValue Chain = LD->getChain();
   1089       SDValue Base = LD->getBasePtr();
   1090       SDValue Ops[] = { Base, Offset, Chain };
   1091       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
   1092                                     PPCLowering.getPointerTy(),
   1093                                     MVT::Other, Ops);
   1094     }
   1095   }
   1096 
   1097   case ISD::AND: {
   1098     unsigned Imm, Imm2, SH, MB, ME;
   1099     uint64_t Imm64;
   1100 
   1101     // If this is an and of a value rotated between 0 and 31 bits and then and'd
   1102     // with a mask, emit rlwinm
   1103     if (isInt32Immediate(N->getOperand(1), Imm) &&
   1104         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
   1105       SDValue Val = N->getOperand(0).getOperand(0);
   1106       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   1107       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
   1108     }
   1109     // If this is just a masked value where the input is not handled above, and
   1110     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
   1111     if (isInt32Immediate(N->getOperand(1), Imm) &&
   1112         isRunOfOnes(Imm, MB, ME) &&
   1113         N->getOperand(0).getOpcode() != ISD::ROTL) {
   1114       SDValue Val = N->getOperand(0);
   1115       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
   1116       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
   1117     }
   1118     // If this is a 64-bit zero-extension mask, emit rldicl.
   1119     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
   1120         isMask_64(Imm64)) {
   1121       SDValue Val = N->getOperand(0);
   1122       MB = 64 - CountTrailingOnes_64(Imm64);
   1123       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
   1124       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
   1125     }
   1126     // AND X, 0 -> 0, not "rlwinm 32".
   1127     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
   1128       ReplaceUses(SDValue(N, 0), N->getOperand(1));
   1129       return NULL;
   1130     }
   1131     // ISD::OR doesn't get all the bitfield insertion fun.
   1132     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
   1133     if (isInt32Immediate(N->getOperand(1), Imm) &&
   1134         N->getOperand(0).getOpcode() == ISD::OR &&
   1135         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
   1136       unsigned MB, ME;
   1137       Imm = ~(Imm^Imm2);
   1138       if (isRunOfOnes(Imm, MB, ME)) {
   1139         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   1140                             N->getOperand(0).getOperand(1),
   1141                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
   1142         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
   1143       }
   1144     }
   1145 
   1146     // Other cases are autogenerated.
   1147     break;
   1148   }
   1149   case ISD::OR:
   1150     if (N->getValueType(0) == MVT::i32)
   1151       if (SDNode *I = SelectBitfieldInsert(N))
   1152         return I;
   1153 
   1154     // Other cases are autogenerated.
   1155     break;
   1156   case ISD::SHL: {
   1157     unsigned Imm, SH, MB, ME;
   1158     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   1159         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   1160       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   1161                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   1162       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
   1163     }
   1164 
   1165     // Other cases are autogenerated.
   1166     break;
   1167   }
   1168   case ISD::SRL: {
   1169     unsigned Imm, SH, MB, ME;
   1170     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   1171         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   1172       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   1173                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   1174       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
   1175     }
   1176 
   1177     // Other cases are autogenerated.
   1178     break;
   1179   }
   1180   case ISD::SELECT_CC: {
   1181     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   1182     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
   1183     bool isPPC64 = (PtrVT == MVT::i64);
   1184 
   1185     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
   1186     if (!isPPC64)
   1187       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   1188         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
   1189           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
   1190             if (N1C->isNullValue() && N3C->isNullValue() &&
   1191                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
   1192                 // FIXME: Implement this optzn for PPC64.
   1193                 N->getValueType(0) == MVT::i32) {
   1194               SDNode *Tmp =
   1195                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   1196                                        N->getOperand(0), getI32Imm(~0U));
   1197               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
   1198                                           SDValue(Tmp, 0), N->getOperand(0),
   1199                                           SDValue(Tmp, 1));
   1200             }
   1201 
   1202     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
   1203     unsigned BROpc = getPredicateForSetCC(CC);
   1204 
   1205     unsigned SelectCCOp;
   1206     if (N->getValueType(0) == MVT::i32)
   1207       SelectCCOp = PPC::SELECT_CC_I4;
   1208     else if (N->getValueType(0) == MVT::i64)
   1209       SelectCCOp = PPC::SELECT_CC_I8;
   1210     else if (N->getValueType(0) == MVT::f32)
   1211       SelectCCOp = PPC::SELECT_CC_F4;
   1212     else if (N->getValueType(0) == MVT::f64)
   1213       SelectCCOp = PPC::SELECT_CC_F8;
   1214     else
   1215       SelectCCOp = PPC::SELECT_CC_VRRC;
   1216 
   1217     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
   1218                         getI32Imm(BROpc) };
   1219     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
   1220   }
   1221   case PPCISD::BDNZ:
   1222   case PPCISD::BDZ: {
   1223     bool IsPPC64 = PPCSubTarget.isPPC64();
   1224     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
   1225     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
   1226                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
   1227                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
   1228                                 MVT::Other, Ops, 2);
   1229   }
   1230   case PPCISD::COND_BRANCH: {
   1231     // Op #0 is the Chain.
   1232     // Op #1 is the PPC::PRED_* number.
   1233     // Op #2 is the CR#
   1234     // Op #3 is the Dest MBB
   1235     // Op #4 is the Flag.
   1236     // Prevent PPC::PRED_* from being selected into LI.
   1237     SDValue Pred =
   1238       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
   1239     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
   1240       N->getOperand(0), N->getOperand(4) };
   1241     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
   1242   }
   1243   case ISD::BR_CC: {
   1244     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   1245     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
   1246     SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
   1247                         N->getOperand(4), N->getOperand(0) };
   1248     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
   1249   }
   1250   case ISD::BRIND: {
   1251     // FIXME: Should custom lower this.
   1252     SDValue Chain = N->getOperand(0);
   1253     SDValue Target = N->getOperand(1);
   1254     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
   1255     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
   1256     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
   1257                                            Chain), 0);
   1258     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
   1259   }
   1260   case PPCISD::TOC_ENTRY: {
   1261     assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
   1262 
   1263     // For medium and large code model, we generate two instructions as
   1264     // described below.  Otherwise we allow SelectCodeCommon to handle this,
   1265     // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
   1266     CodeModel::Model CModel = TM.getCodeModel();
   1267     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
   1268       break;
   1269 
   1270     // The first source operand is a TargetGlobalAddress or a
   1271     // TargetJumpTable.  If it is an externally defined symbol, a symbol
   1272     // with common linkage, a function address, or a jump table address,
   1273     // or if we are generating code for large code model, we generate:
   1274     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
   1275     // Otherwise we generate:
   1276     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
   1277     SDValue GA = N->getOperand(0);
   1278     SDValue TOCbase = N->getOperand(1);
   1279     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
   1280                                         TOCbase, GA);
   1281 
   1282     if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
   1283       return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
   1284                                     SDValue(Tmp, 0));
   1285 
   1286     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
   1287       const GlobalValue *GValue = G->getGlobal();
   1288       const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
   1289       const GlobalValue *RealGValue = GAlias ?
   1290         GAlias->resolveAliasedGlobal(false) : GValue;
   1291       const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
   1292       assert((GVar || isa<Function>(RealGValue)) &&
   1293              "Unexpected global value subclass!");
   1294 
   1295       // An external variable is one without an initializer.  For these,
   1296       // for variables with common linkage, and for Functions, generate
   1297       // the LDtocL form.
   1298       if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
   1299           RealGValue->hasAvailableExternallyLinkage())
   1300         return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
   1301                                       SDValue(Tmp, 0));
   1302     }
   1303 
   1304     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
   1305                                   SDValue(Tmp, 0), GA);
   1306   }
   1307   case PPCISD::VADD_SPLAT: {
   1308     // This expands into one of three sequences, depending on whether
   1309     // the first operand is odd or even, positive or negative.
   1310     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
   1311            isa<ConstantSDNode>(N->getOperand(1)) &&
   1312            "Invalid operand on VADD_SPLAT!");
   1313 
   1314     int Elt     = N->getConstantOperandVal(0);
   1315     int EltSize = N->getConstantOperandVal(1);
   1316     unsigned Opc1, Opc2, Opc3;
   1317     EVT VT;
   1318 
   1319     if (EltSize == 1) {
   1320       Opc1 = PPC::VSPLTISB;
   1321       Opc2 = PPC::VADDUBM;
   1322       Opc3 = PPC::VSUBUBM;
   1323       VT = MVT::v16i8;
   1324     } else if (EltSize == 2) {
   1325       Opc1 = PPC::VSPLTISH;
   1326       Opc2 = PPC::VADDUHM;
   1327       Opc3 = PPC::VSUBUHM;
   1328       VT = MVT::v8i16;
   1329     } else {
   1330       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
   1331       Opc1 = PPC::VSPLTISW;
   1332       Opc2 = PPC::VADDUWM;
   1333       Opc3 = PPC::VSUBUWM;
   1334       VT = MVT::v4i32;
   1335     }
   1336 
   1337     if ((Elt & 1) == 0) {
   1338       // Elt is even, in the range [-32,-18] + [16,30].
   1339       //
   1340       // Convert: VADD_SPLAT elt, size
   1341       // Into:    tmp = VSPLTIS[BHW] elt
   1342       //          VADDU[BHW]M tmp, tmp
   1343       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
   1344       SDValue EltVal = getI32Imm(Elt >> 1);
   1345       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   1346       SDValue TmpVal = SDValue(Tmp, 0);
   1347       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
   1348 
   1349     } else if (Elt > 0) {
   1350       // Elt is odd and positive, in the range [17,31].
   1351       //
   1352       // Convert: VADD_SPLAT elt, size
   1353       // Into:    tmp1 = VSPLTIS[BHW] elt-16
   1354       //          tmp2 = VSPLTIS[BHW] -16
   1355       //          VSUBU[BHW]M tmp1, tmp2
   1356       SDValue EltVal = getI32Imm(Elt - 16);
   1357       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   1358       EltVal = getI32Imm(-16);
   1359       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   1360       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
   1361                                     SDValue(Tmp2, 0));
   1362 
   1363     } else {
   1364       // Elt is odd and negative, in the range [-31,-17].
   1365       //
   1366       // Convert: VADD_SPLAT elt, size
   1367       // Into:    tmp1 = VSPLTIS[BHW] elt+16
   1368       //          tmp2 = VSPLTIS[BHW] -16
   1369       //          VADDU[BHW]M tmp1, tmp2
   1370       SDValue EltVal = getI32Imm(Elt + 16);
   1371       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   1372       EltVal = getI32Imm(-16);
   1373       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   1374       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
   1375                                     SDValue(Tmp2, 0));
   1376     }
   1377   }
   1378   }
   1379 
   1380   return SelectCode(N);
   1381 }
   1382 
   1383 /// PostProcessISelDAG - Perform some late peephole optimizations
   1384 /// on the DAG representation.
   1385 void PPCDAGToDAGISel::PostprocessISelDAG() {
   1386 
   1387   // Skip peepholes at -O0.
   1388   if (TM.getOptLevel() == CodeGenOpt::None)
   1389     return;
   1390 
   1391   // These optimizations are currently supported only for 64-bit SVR4.
   1392   if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
   1393     return;
   1394 
   1395   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   1396   ++Position;
   1397 
   1398   while (Position != CurDAG->allnodes_begin()) {
   1399     SDNode *N = --Position;
   1400     // Skip dead nodes and any non-machine opcodes.
   1401     if (N->use_empty() || !N->isMachineOpcode())
   1402       continue;
   1403 
   1404     unsigned FirstOp;
   1405     unsigned StorageOpcode = N->getMachineOpcode();
   1406 
   1407     switch (StorageOpcode) {
   1408     default: continue;
   1409 
   1410     case PPC::LBZ:
   1411     case PPC::LBZ8:
   1412     case PPC::LD:
   1413     case PPC::LFD:
   1414     case PPC::LFS:
   1415     case PPC::LHA:
   1416     case PPC::LHA8:
   1417     case PPC::LHZ:
   1418     case PPC::LHZ8:
   1419     case PPC::LWA:
   1420     case PPC::LWZ:
   1421     case PPC::LWZ8:
   1422       FirstOp = 0;
   1423       break;
   1424 
   1425     case PPC::STB:
   1426     case PPC::STB8:
   1427     case PPC::STD:
   1428     case PPC::STFD:
   1429     case PPC::STFS:
   1430     case PPC::STH:
   1431     case PPC::STH8:
   1432     case PPC::STW:
   1433     case PPC::STW8:
   1434       FirstOp = 1;
   1435       break;
   1436     }
   1437 
   1438     // If this is a load or store with a zero offset, we may be able to
   1439     // fold an add-immediate into the memory operation.
   1440     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
   1441         N->getConstantOperandVal(FirstOp) != 0)
   1442       continue;
   1443 
   1444     SDValue Base = N->getOperand(FirstOp + 1);
   1445     if (!Base.isMachineOpcode())
   1446       continue;
   1447 
   1448     unsigned Flags = 0;
   1449     bool ReplaceFlags = true;
   1450 
   1451     // When the feeding operation is an add-immediate of some sort,
   1452     // determine whether we need to add relocation information to the
   1453     // target flags on the immediate operand when we fold it into the
   1454     // load instruction.
   1455     //
   1456     // For something like ADDItocL, the relocation information is
   1457     // inferred from the opcode; when we process it in the AsmPrinter,
   1458     // we add the necessary relocation there.  A load, though, can receive
   1459     // relocation from various flavors of ADDIxxx, so we need to carry
   1460     // the relocation information in the target flags.
   1461     switch (Base.getMachineOpcode()) {
   1462     default: continue;
   1463 
   1464     case PPC::ADDI8:
   1465     case PPC::ADDI:
   1466       // In some cases (such as TLS) the relocation information
   1467       // is already in place on the operand, so copying the operand
   1468       // is sufficient.
   1469       ReplaceFlags = false;
   1470       // For these cases, the immediate may not be divisible by 4, in
   1471       // which case the fold is illegal for DS-form instructions.  (The
   1472       // other cases provide aligned addresses and are always safe.)
   1473       if ((StorageOpcode == PPC::LWA ||
   1474            StorageOpcode == PPC::LD  ||
   1475            StorageOpcode == PPC::STD) &&
   1476           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
   1477            Base.getConstantOperandVal(1) % 4 != 0))
   1478         continue;
   1479       break;
   1480     case PPC::ADDIdtprelL:
   1481       Flags = PPCII::MO_DTPREL_LO;
   1482       break;
   1483     case PPC::ADDItlsldL:
   1484       Flags = PPCII::MO_TLSLD_LO;
   1485       break;
   1486     case PPC::ADDItocL:
   1487       Flags = PPCII::MO_TOC_LO;
   1488       break;
   1489     }
   1490 
   1491     // We found an opportunity.  Reverse the operands from the add
   1492     // immediate and substitute them into the load or store.  If
   1493     // needed, update the target flags for the immediate operand to
   1494     // reflect the necessary relocation information.
   1495     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
   1496     DEBUG(Base->dump(CurDAG));
   1497     DEBUG(dbgs() << "\nN: ");
   1498     DEBUG(N->dump(CurDAG));
   1499     DEBUG(dbgs() << "\n");
   1500 
   1501     SDValue ImmOpnd = Base.getOperand(1);
   1502 
   1503     // If the relocation information isn't already present on the
   1504     // immediate operand, add it now.
   1505     if (ReplaceFlags) {
   1506       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   1507         SDLoc dl(GA);
   1508         const GlobalValue *GV = GA->getGlobal();
   1509         // We can't perform this optimization for data whose alignment
   1510         // is insufficient for the instruction encoding.
   1511         if (GV->getAlignment() < 4 &&
   1512             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
   1513              StorageOpcode == PPC::LWA)) {
   1514           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
   1515           continue;
   1516         }
   1517         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
   1518       } else if (ConstantPoolSDNode *CP =
   1519                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
   1520         const Constant *C = CP->getConstVal();
   1521         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
   1522                                                 CP->getAlignment(),
   1523                                                 0, Flags);
   1524       }
   1525     }
   1526 
   1527     if (FirstOp == 1) // Store
   1528       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
   1529                                        Base.getOperand(0), N->getOperand(3));
   1530     else // Load
   1531       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
   1532                                        N->getOperand(2));
   1533 
   1534     // The add-immediate may now be dead, in which case remove it.
   1535     if (Base.getNode()->use_empty())
   1536       CurDAG->RemoveDeadNode(Base.getNode());
   1537   }
   1538 }
   1539 
   1540 
   1541 /// createPPCISelDag - This pass converts a legalized DAG into a
   1542 /// PowerPC-specific DAG, ready for instruction scheduling.
   1543 ///
   1544 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
   1545   return new PPCDAGToDAGISel(TM);
   1546 }
   1547 
   1548 static void initializePassOnce(PassRegistry &Registry) {
   1549   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
   1550   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
   1551                               false, false);
   1552   Registry.registerPass(*PI, true);
   1553 }
   1554 
   1555 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
   1556   CALL_ONCE_INITIALIZATION(initializePassOnce);
   1557 }
   1558 
   1559