1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetLoweringObjectFile.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// NOTE: The constructor takes ownership of TLOF. 37 TargetLowering::TargetLowering(const TargetMachine &tm, 38 const TargetLoweringObjectFile *tlof) 39 : TargetLoweringBase(tm, tlof) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return NULL; 43 } 44 45 /// Check whether a given call node is in tail position within its function. If 46 /// so, it sets Chain to the input chain of the tail call. 47 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 48 SDValue &Chain) const { 49 const Function *F = DAG.getMachineFunction().getFunction(); 50 51 // Conservatively require the attributes of the call to match those of 52 // the return. Ignore noalias because it doesn't affect the call sequence. 53 AttributeSet CallerAttrs = F->getAttributes(); 54 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 55 .removeAttribute(Attribute::NoAlias).hasAttributes()) 56 return false; 57 58 // It's not safe to eliminate the sign / zero extension of the return value. 59 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 60 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 61 return false; 62 63 // Check if the only use is a function return node. 64 return isUsedByReturnOnly(Node, Chain); 65 } 66 67 68 /// Generate a libcall taking the given operands as arguments and returning a 69 /// result of type RetVT. 70 SDValue TargetLowering::makeLibCall(SelectionDAG &DAG, 71 RTLIB::Libcall LC, EVT RetVT, 72 const SDValue *Ops, unsigned NumOps, 73 bool isSigned, SDLoc dl) const { 74 TargetLowering::ArgListTy Args; 75 Args.reserve(NumOps); 76 77 TargetLowering::ArgListEntry Entry; 78 for (unsigned i = 0; i != NumOps; ++i) { 79 Entry.Node = Ops[i]; 80 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 81 Entry.isSExt = isSigned; 82 Entry.isZExt = !isSigned; 83 Args.push_back(Entry); 84 } 85 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 86 87 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 88 TargetLowering:: 89 CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false, 90 false, 0, getLibcallCallingConv(LC), 91 /*isTailCall=*/false, 92 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, 93 Callee, Args, DAG, dl); 94 std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI); 95 96 return CallInfo.first; 97 } 98 99 100 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 101 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 102 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 103 SDValue &NewLHS, SDValue &NewRHS, 104 ISD::CondCode &CCCode, 105 SDLoc dl) const { 106 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 107 && "Unsupported setcc type!"); 108 109 // Expand into one or more soft-fp libcall(s). 110 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 111 switch (CCCode) { 112 case ISD::SETEQ: 113 case ISD::SETOEQ: 114 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 115 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 116 break; 117 case ISD::SETNE: 118 case ISD::SETUNE: 119 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 120 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 121 break; 122 case ISD::SETGE: 123 case ISD::SETOGE: 124 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 125 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 126 break; 127 case ISD::SETLT: 128 case ISD::SETOLT: 129 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 130 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 131 break; 132 case ISD::SETLE: 133 case ISD::SETOLE: 134 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 135 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 136 break; 137 case ISD::SETGT: 138 case ISD::SETOGT: 139 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 140 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 141 break; 142 case ISD::SETUO: 143 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 144 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 145 break; 146 case ISD::SETO: 147 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 148 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 149 break; 150 default: 151 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 152 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 153 switch (CCCode) { 154 case ISD::SETONE: 155 // SETONE = SETOLT | SETOGT 156 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 157 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 158 // Fallthrough 159 case ISD::SETUGT: 160 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 161 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 162 break; 163 case ISD::SETUGE: 164 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 165 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 166 break; 167 case ISD::SETULT: 168 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 169 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 170 break; 171 case ISD::SETULE: 172 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 173 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 174 break; 175 case ISD::SETUEQ: 176 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 177 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 178 break; 179 default: llvm_unreachable("Do not know how to soften this setcc!"); 180 } 181 } 182 183 // Use the target specific return value for comparions lib calls. 184 EVT RetVT = getCmpLibcallReturnType(); 185 SDValue Ops[2] = { NewLHS, NewRHS }; 186 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl); 187 NewRHS = DAG.getConstant(0, RetVT); 188 CCCode = getCmpLibcallCC(LC1); 189 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 190 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 191 getSetCCResultType(*DAG.getContext(), RetVT), 192 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 193 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl); 194 NewLHS = DAG.getNode(ISD::SETCC, dl, 195 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 196 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 197 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 198 NewRHS = SDValue(); 199 } 200 } 201 202 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 203 /// current function. The returned value is a member of the 204 /// MachineJumpTableInfo::JTEntryKind enum. 205 unsigned TargetLowering::getJumpTableEncoding() const { 206 // In non-pic modes, just use the address of a block. 207 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 208 return MachineJumpTableInfo::EK_BlockAddress; 209 210 // In PIC mode, if the target supports a GPRel32 directive, use it. 211 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 212 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 213 214 // Otherwise, use a label difference. 215 return MachineJumpTableInfo::EK_LabelDifference32; 216 } 217 218 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 219 SelectionDAG &DAG) const { 220 // If our PIC model is GP relative, use the global offset table as the base. 221 unsigned JTEncoding = getJumpTableEncoding(); 222 223 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 224 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 225 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 226 227 return Table; 228 } 229 230 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 231 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 232 /// MCExpr. 233 const MCExpr * 234 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 235 unsigned JTI,MCContext &Ctx) const{ 236 // The normal PIC reloc base is the label at the start of the jump table. 237 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 238 } 239 240 bool 241 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 242 // Assume that everything is safe in static mode. 243 if (getTargetMachine().getRelocationModel() == Reloc::Static) 244 return true; 245 246 // In dynamic-no-pic mode, assume that known defined values are safe. 247 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 248 GA && 249 !GA->getGlobal()->isDeclaration() && 250 !GA->getGlobal()->isWeakForLinker()) 251 return true; 252 253 // Otherwise assume nothing is safe. 254 return false; 255 } 256 257 //===----------------------------------------------------------------------===// 258 // Optimization Methods 259 //===----------------------------------------------------------------------===// 260 261 /// ShrinkDemandedConstant - Check to see if the specified operand of the 262 /// specified instruction is a constant integer. If so, check to see if there 263 /// are any bits set in the constant that are not demanded. If so, shrink the 264 /// constant and return true. 265 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 266 const APInt &Demanded) { 267 SDLoc dl(Op); 268 269 // FIXME: ISD::SELECT, ISD::SELECT_CC 270 switch (Op.getOpcode()) { 271 default: break; 272 case ISD::XOR: 273 case ISD::AND: 274 case ISD::OR: { 275 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 276 if (!C) return false; 277 278 if (Op.getOpcode() == ISD::XOR && 279 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 280 return false; 281 282 // if we can expand it to have all bits set, do it 283 if (C->getAPIntValue().intersects(~Demanded)) { 284 EVT VT = Op.getValueType(); 285 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 286 DAG.getConstant(Demanded & 287 C->getAPIntValue(), 288 VT)); 289 return CombineTo(Op, New); 290 } 291 292 break; 293 } 294 } 295 296 return false; 297 } 298 299 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 300 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 301 /// cast, but it could be generalized for targets with other types of 302 /// implicit widening casts. 303 bool 304 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 305 unsigned BitWidth, 306 const APInt &Demanded, 307 SDLoc dl) { 308 assert(Op.getNumOperands() == 2 && 309 "ShrinkDemandedOp only supports binary operators!"); 310 assert(Op.getNode()->getNumValues() == 1 && 311 "ShrinkDemandedOp only supports nodes with one result!"); 312 313 // Don't do this if the node has another user, which may require the 314 // full value. 315 if (!Op.getNode()->hasOneUse()) 316 return false; 317 318 // Search for the smallest integer type with free casts to and from 319 // Op's type. For expedience, just check power-of-2 integer types. 320 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 321 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 322 unsigned SmallVTBits = DemandedSize; 323 if (!isPowerOf2_32(SmallVTBits)) 324 SmallVTBits = NextPowerOf2(SmallVTBits); 325 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 326 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 327 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 328 TLI.isZExtFree(SmallVT, Op.getValueType())) { 329 // We found a type with free casts. 330 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 331 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 332 Op.getNode()->getOperand(0)), 333 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 334 Op.getNode()->getOperand(1))); 335 bool NeedZext = DemandedSize > SmallVTBits; 336 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 337 dl, Op.getValueType(), X); 338 return CombineTo(Op, Z); 339 } 340 } 341 return false; 342 } 343 344 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 345 /// DemandedMask bits of the result of Op are ever used downstream. If we can 346 /// use this information to simplify Op, create a new simplified DAG node and 347 /// return true, returning the original and new nodes in Old and New. Otherwise, 348 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 349 /// the expression (used to simplify the caller). The KnownZero/One bits may 350 /// only be accurate for those bits in the DemandedMask. 351 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 352 const APInt &DemandedMask, 353 APInt &KnownZero, 354 APInt &KnownOne, 355 TargetLoweringOpt &TLO, 356 unsigned Depth) const { 357 unsigned BitWidth = DemandedMask.getBitWidth(); 358 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 359 "Mask size mismatches value type size!"); 360 APInt NewMask = DemandedMask; 361 SDLoc dl(Op); 362 363 // Don't know anything. 364 KnownZero = KnownOne = APInt(BitWidth, 0); 365 366 // Other users may use these bits. 367 if (!Op.getNode()->hasOneUse()) { 368 if (Depth != 0) { 369 // If not at the root, Just compute the KnownZero/KnownOne bits to 370 // simplify things downstream. 371 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 372 return false; 373 } 374 // If this is the root being simplified, allow it to have multiple uses, 375 // just set the NewMask to all bits. 376 NewMask = APInt::getAllOnesValue(BitWidth); 377 } else if (DemandedMask == 0) { 378 // Not demanding any bits from Op. 379 if (Op.getOpcode() != ISD::UNDEF) 380 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 381 return false; 382 } else if (Depth == 6) { // Limit search depth. 383 return false; 384 } 385 386 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 387 switch (Op.getOpcode()) { 388 case ISD::Constant: 389 // We know all of the bits for a constant! 390 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 391 KnownZero = ~KnownOne; 392 return false; // Don't fall through, will infinitely loop. 393 case ISD::AND: 394 // If the RHS is a constant, check to see if the LHS would be zero without 395 // using the bits from the RHS. Below, we use knowledge about the RHS to 396 // simplify the LHS, here we're using information from the LHS to simplify 397 // the RHS. 398 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 399 APInt LHSZero, LHSOne; 400 // Do not increment Depth here; that can cause an infinite loop. 401 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 402 // If the LHS already has zeros where RHSC does, this and is dead. 403 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 404 return TLO.CombineTo(Op, Op.getOperand(0)); 405 // If any of the set bits in the RHS are known zero on the LHS, shrink 406 // the constant. 407 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 408 return true; 409 } 410 411 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 412 KnownOne, TLO, Depth+1)) 413 return true; 414 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 415 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 416 KnownZero2, KnownOne2, TLO, Depth+1)) 417 return true; 418 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 419 420 // If all of the demanded bits are known one on one side, return the other. 421 // These bits cannot contribute to the result of the 'and'. 422 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 423 return TLO.CombineTo(Op, Op.getOperand(0)); 424 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 425 return TLO.CombineTo(Op, Op.getOperand(1)); 426 // If all of the demanded bits in the inputs are known zeros, return zero. 427 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 428 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 429 // If the RHS is a constant, see if we can simplify it. 430 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 431 return true; 432 // If the operation can be done in a smaller type, do so. 433 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 434 return true; 435 436 // Output known-1 bits are only known if set in both the LHS & RHS. 437 KnownOne &= KnownOne2; 438 // Output known-0 are known to be clear if zero in either the LHS | RHS. 439 KnownZero |= KnownZero2; 440 break; 441 case ISD::OR: 442 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 443 KnownOne, TLO, Depth+1)) 444 return true; 445 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 446 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 447 KnownZero2, KnownOne2, TLO, Depth+1)) 448 return true; 449 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 450 451 // If all of the demanded bits are known zero on one side, return the other. 452 // These bits cannot contribute to the result of the 'or'. 453 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 454 return TLO.CombineTo(Op, Op.getOperand(0)); 455 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 456 return TLO.CombineTo(Op, Op.getOperand(1)); 457 // If all of the potentially set bits on one side are known to be set on 458 // the other side, just use the 'other' side. 459 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 460 return TLO.CombineTo(Op, Op.getOperand(0)); 461 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 462 return TLO.CombineTo(Op, Op.getOperand(1)); 463 // If the RHS is a constant, see if we can simplify it. 464 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 465 return true; 466 // If the operation can be done in a smaller type, do so. 467 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 468 return true; 469 470 // Output known-0 bits are only known if clear in both the LHS & RHS. 471 KnownZero &= KnownZero2; 472 // Output known-1 are known to be set if set in either the LHS | RHS. 473 KnownOne |= KnownOne2; 474 break; 475 case ISD::XOR: 476 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 477 KnownOne, TLO, Depth+1)) 478 return true; 479 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 480 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 481 KnownOne2, TLO, Depth+1)) 482 return true; 483 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 484 485 // If all of the demanded bits are known zero on one side, return the other. 486 // These bits cannot contribute to the result of the 'xor'. 487 if ((KnownZero & NewMask) == NewMask) 488 return TLO.CombineTo(Op, Op.getOperand(0)); 489 if ((KnownZero2 & NewMask) == NewMask) 490 return TLO.CombineTo(Op, Op.getOperand(1)); 491 // If the operation can be done in a smaller type, do so. 492 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 493 return true; 494 495 // If all of the unknown bits are known to be zero on one side or the other 496 // (but not both) turn this into an *inclusive* or. 497 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 498 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 499 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 500 Op.getOperand(0), 501 Op.getOperand(1))); 502 503 // Output known-0 bits are known if clear or set in both the LHS & RHS. 504 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 505 // Output known-1 are known to be set if set in only one of the LHS, RHS. 506 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 507 508 // If all of the demanded bits on one side are known, and all of the set 509 // bits on that side are also known to be set on the other side, turn this 510 // into an AND, as we know the bits will be cleared. 511 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 512 // NB: it is okay if more bits are known than are requested 513 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 514 if (KnownOne == KnownOne2) { // set bits are the same on both sides 515 EVT VT = Op.getValueType(); 516 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 517 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 518 Op.getOperand(0), ANDC)); 519 } 520 } 521 522 // If the RHS is a constant, see if we can simplify it. 523 // for XOR, we prefer to force bits to 1 if they will make a -1. 524 // if we can't force bits, try to shrink constant 525 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 526 APInt Expanded = C->getAPIntValue() | (~NewMask); 527 // if we can expand it to have all bits set, do it 528 if (Expanded.isAllOnesValue()) { 529 if (Expanded != C->getAPIntValue()) { 530 EVT VT = Op.getValueType(); 531 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 532 TLO.DAG.getConstant(Expanded, VT)); 533 return TLO.CombineTo(Op, New); 534 } 535 // if it already has all the bits set, nothing to change 536 // but don't shrink either! 537 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 538 return true; 539 } 540 } 541 542 KnownZero = KnownZeroOut; 543 KnownOne = KnownOneOut; 544 break; 545 case ISD::SELECT: 546 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 547 KnownOne, TLO, Depth+1)) 548 return true; 549 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 550 KnownOne2, TLO, Depth+1)) 551 return true; 552 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 553 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 554 555 // If the operands are constants, see if we can simplify them. 556 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 557 return true; 558 559 // Only known if known in both the LHS and RHS. 560 KnownOne &= KnownOne2; 561 KnownZero &= KnownZero2; 562 break; 563 case ISD::SELECT_CC: 564 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 565 KnownOne, TLO, Depth+1)) 566 return true; 567 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 568 KnownOne2, TLO, Depth+1)) 569 return true; 570 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 571 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 572 573 // If the operands are constants, see if we can simplify them. 574 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 575 return true; 576 577 // Only known if known in both the LHS and RHS. 578 KnownOne &= KnownOne2; 579 KnownZero &= KnownZero2; 580 break; 581 case ISD::SHL: 582 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 583 unsigned ShAmt = SA->getZExtValue(); 584 SDValue InOp = Op.getOperand(0); 585 586 // If the shift count is an invalid immediate, don't do anything. 587 if (ShAmt >= BitWidth) 588 break; 589 590 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 591 // single shift. We can do this if the bottom bits (which are shifted 592 // out) are never demanded. 593 if (InOp.getOpcode() == ISD::SRL && 594 isa<ConstantSDNode>(InOp.getOperand(1))) { 595 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 596 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 597 unsigned Opc = ISD::SHL; 598 int Diff = ShAmt-C1; 599 if (Diff < 0) { 600 Diff = -Diff; 601 Opc = ISD::SRL; 602 } 603 604 SDValue NewSA = 605 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 606 EVT VT = Op.getValueType(); 607 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 608 InOp.getOperand(0), NewSA)); 609 } 610 } 611 612 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 613 KnownZero, KnownOne, TLO, Depth+1)) 614 return true; 615 616 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 617 // are not demanded. This will likely allow the anyext to be folded away. 618 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 619 SDValue InnerOp = InOp.getNode()->getOperand(0); 620 EVT InnerVT = InnerOp.getValueType(); 621 unsigned InnerBits = InnerVT.getSizeInBits(); 622 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 623 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 624 EVT ShTy = getShiftAmountTy(InnerVT); 625 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 626 ShTy = InnerVT; 627 SDValue NarrowShl = 628 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 629 TLO.DAG.getConstant(ShAmt, ShTy)); 630 return 631 TLO.CombineTo(Op, 632 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 633 NarrowShl)); 634 } 635 } 636 637 KnownZero <<= SA->getZExtValue(); 638 KnownOne <<= SA->getZExtValue(); 639 // low bits known zero. 640 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 641 } 642 break; 643 case ISD::SRL: 644 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 645 EVT VT = Op.getValueType(); 646 unsigned ShAmt = SA->getZExtValue(); 647 unsigned VTSize = VT.getSizeInBits(); 648 SDValue InOp = Op.getOperand(0); 649 650 // If the shift count is an invalid immediate, don't do anything. 651 if (ShAmt >= BitWidth) 652 break; 653 654 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 655 // single shift. We can do this if the top bits (which are shifted out) 656 // are never demanded. 657 if (InOp.getOpcode() == ISD::SHL && 658 isa<ConstantSDNode>(InOp.getOperand(1))) { 659 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 660 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 661 unsigned Opc = ISD::SRL; 662 int Diff = ShAmt-C1; 663 if (Diff < 0) { 664 Diff = -Diff; 665 Opc = ISD::SHL; 666 } 667 668 SDValue NewSA = 669 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 670 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 671 InOp.getOperand(0), NewSA)); 672 } 673 } 674 675 // Compute the new bits that are at the top now. 676 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 677 KnownZero, KnownOne, TLO, Depth+1)) 678 return true; 679 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 680 KnownZero = KnownZero.lshr(ShAmt); 681 KnownOne = KnownOne.lshr(ShAmt); 682 683 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 684 KnownZero |= HighBits; // High bits known zero. 685 } 686 break; 687 case ISD::SRA: 688 // If this is an arithmetic shift right and only the low-bit is set, we can 689 // always convert this into a logical shr, even if the shift amount is 690 // variable. The low bit of the shift cannot be an input sign bit unless 691 // the shift amount is >= the size of the datatype, which is undefined. 692 if (NewMask == 1) 693 return TLO.CombineTo(Op, 694 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 695 Op.getOperand(0), Op.getOperand(1))); 696 697 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 698 EVT VT = Op.getValueType(); 699 unsigned ShAmt = SA->getZExtValue(); 700 701 // If the shift count is an invalid immediate, don't do anything. 702 if (ShAmt >= BitWidth) 703 break; 704 705 APInt InDemandedMask = (NewMask << ShAmt); 706 707 // If any of the demanded bits are produced by the sign extension, we also 708 // demand the input sign bit. 709 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 710 if (HighBits.intersects(NewMask)) 711 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 712 713 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 714 KnownZero, KnownOne, TLO, Depth+1)) 715 return true; 716 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 717 KnownZero = KnownZero.lshr(ShAmt); 718 KnownOne = KnownOne.lshr(ShAmt); 719 720 // Handle the sign bit, adjusted to where it is now in the mask. 721 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 722 723 // If the input sign bit is known to be zero, or if none of the top bits 724 // are demanded, turn this into an unsigned shift right. 725 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 726 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 727 Op.getOperand(0), 728 Op.getOperand(1))); 729 } else if (KnownOne.intersects(SignBit)) { // New bits are known one. 730 KnownOne |= HighBits; 731 } 732 } 733 break; 734 case ISD::SIGN_EXTEND_INREG: { 735 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 736 737 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 738 // If we only care about the highest bit, don't bother shifting right. 739 if (MsbMask == DemandedMask) { 740 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 741 SDValue InOp = Op.getOperand(0); 742 743 // Compute the correct shift amount type, which must be getShiftAmountTy 744 // for scalar types after legalization. 745 EVT ShiftAmtTy = Op.getValueType(); 746 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 747 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 748 749 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 750 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 751 Op.getValueType(), InOp, ShiftAmt)); 752 } 753 754 // Sign extension. Compute the demanded bits in the result that are not 755 // present in the input. 756 APInt NewBits = 757 APInt::getHighBitsSet(BitWidth, 758 BitWidth - ExVT.getScalarType().getSizeInBits()); 759 760 // If none of the extended bits are demanded, eliminate the sextinreg. 761 if ((NewBits & NewMask) == 0) 762 return TLO.CombineTo(Op, Op.getOperand(0)); 763 764 APInt InSignBit = 765 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 766 APInt InputDemandedBits = 767 APInt::getLowBitsSet(BitWidth, 768 ExVT.getScalarType().getSizeInBits()) & 769 NewMask; 770 771 // Since the sign extended bits are demanded, we know that the sign 772 // bit is demanded. 773 InputDemandedBits |= InSignBit; 774 775 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 776 KnownZero, KnownOne, TLO, Depth+1)) 777 return true; 778 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 779 780 // If the sign bit of the input is known set or clear, then we know the 781 // top bits of the result. 782 783 // If the input sign bit is known zero, convert this into a zero extension. 784 if (KnownZero.intersects(InSignBit)) 785 return TLO.CombineTo(Op, 786 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 787 788 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 789 KnownOne |= NewBits; 790 KnownZero &= ~NewBits; 791 } else { // Input sign bit unknown 792 KnownZero &= ~NewBits; 793 KnownOne &= ~NewBits; 794 } 795 break; 796 } 797 case ISD::ZERO_EXTEND: { 798 unsigned OperandBitWidth = 799 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 800 APInt InMask = NewMask.trunc(OperandBitWidth); 801 802 // If none of the top bits are demanded, convert this into an any_extend. 803 APInt NewBits = 804 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 805 if (!NewBits.intersects(NewMask)) 806 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 807 Op.getValueType(), 808 Op.getOperand(0))); 809 810 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 811 KnownZero, KnownOne, TLO, Depth+1)) 812 return true; 813 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 814 KnownZero = KnownZero.zext(BitWidth); 815 KnownOne = KnownOne.zext(BitWidth); 816 KnownZero |= NewBits; 817 break; 818 } 819 case ISD::SIGN_EXTEND: { 820 EVT InVT = Op.getOperand(0).getValueType(); 821 unsigned InBits = InVT.getScalarType().getSizeInBits(); 822 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 823 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 824 APInt NewBits = ~InMask & NewMask; 825 826 // If none of the top bits are demanded, convert this into an any_extend. 827 if (NewBits == 0) 828 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 829 Op.getValueType(), 830 Op.getOperand(0))); 831 832 // Since some of the sign extended bits are demanded, we know that the sign 833 // bit is demanded. 834 APInt InDemandedBits = InMask & NewMask; 835 InDemandedBits |= InSignBit; 836 InDemandedBits = InDemandedBits.trunc(InBits); 837 838 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 839 KnownOne, TLO, Depth+1)) 840 return true; 841 KnownZero = KnownZero.zext(BitWidth); 842 KnownOne = KnownOne.zext(BitWidth); 843 844 // If the sign bit is known zero, convert this to a zero extend. 845 if (KnownZero.intersects(InSignBit)) 846 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 847 Op.getValueType(), 848 Op.getOperand(0))); 849 850 // If the sign bit is known one, the top bits match. 851 if (KnownOne.intersects(InSignBit)) { 852 KnownOne |= NewBits; 853 assert((KnownZero & NewBits) == 0); 854 } else { // Otherwise, top bits aren't known. 855 assert((KnownOne & NewBits) == 0); 856 assert((KnownZero & NewBits) == 0); 857 } 858 break; 859 } 860 case ISD::ANY_EXTEND: { 861 unsigned OperandBitWidth = 862 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 863 APInt InMask = NewMask.trunc(OperandBitWidth); 864 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 865 KnownZero, KnownOne, TLO, Depth+1)) 866 return true; 867 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 868 KnownZero = KnownZero.zext(BitWidth); 869 KnownOne = KnownOne.zext(BitWidth); 870 break; 871 } 872 case ISD::TRUNCATE: { 873 // Simplify the input, using demanded bit information, and compute the known 874 // zero/one bits live out. 875 unsigned OperandBitWidth = 876 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 877 APInt TruncMask = NewMask.zext(OperandBitWidth); 878 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 879 KnownZero, KnownOne, TLO, Depth+1)) 880 return true; 881 KnownZero = KnownZero.trunc(BitWidth); 882 KnownOne = KnownOne.trunc(BitWidth); 883 884 // If the input is only used by this truncate, see if we can shrink it based 885 // on the known demanded bits. 886 if (Op.getOperand(0).getNode()->hasOneUse()) { 887 SDValue In = Op.getOperand(0); 888 switch (In.getOpcode()) { 889 default: break; 890 case ISD::SRL: 891 // Shrink SRL by a constant if none of the high bits shifted in are 892 // demanded. 893 if (TLO.LegalTypes() && 894 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 895 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 896 // undesirable. 897 break; 898 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 899 if (!ShAmt) 900 break; 901 SDValue Shift = In.getOperand(1); 902 if (TLO.LegalTypes()) { 903 uint64_t ShVal = ShAmt->getZExtValue(); 904 Shift = 905 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 906 } 907 908 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 909 OperandBitWidth - BitWidth); 910 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 911 912 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 913 // None of the shifted in bits are needed. Add a truncate of the 914 // shift input, then shift it. 915 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 916 Op.getValueType(), 917 In.getOperand(0)); 918 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 919 Op.getValueType(), 920 NewTrunc, 921 Shift)); 922 } 923 break; 924 } 925 } 926 927 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 928 break; 929 } 930 case ISD::AssertZext: { 931 // AssertZext demands all of the high bits, plus any of the low bits 932 // demanded by its users. 933 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 934 APInt InMask = APInt::getLowBitsSet(BitWidth, 935 VT.getSizeInBits()); 936 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 937 KnownZero, KnownOne, TLO, Depth+1)) 938 return true; 939 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 940 941 KnownZero |= ~InMask & NewMask; 942 break; 943 } 944 case ISD::BITCAST: 945 // If this is an FP->Int bitcast and if the sign bit is the only 946 // thing demanded, turn this into a FGETSIGN. 947 if (!TLO.LegalOperations() && 948 !Op.getValueType().isVector() && 949 !Op.getOperand(0).getValueType().isVector() && 950 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 951 Op.getOperand(0).getValueType().isFloatingPoint()) { 952 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 953 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 954 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 955 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 956 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 957 // place. We expect the SHL to be eliminated by other optimizations. 958 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 959 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 960 if (!OpVTLegal && OpVTSizeInBits > 32) 961 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 962 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 963 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 964 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 965 Op.getValueType(), 966 Sign, ShAmt)); 967 } 968 } 969 break; 970 case ISD::ADD: 971 case ISD::MUL: 972 case ISD::SUB: { 973 // Add, Sub, and Mul don't demand any bits in positions beyond that 974 // of the highest bit demanded of them. 975 APInt LoMask = APInt::getLowBitsSet(BitWidth, 976 BitWidth - NewMask.countLeadingZeros()); 977 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 978 KnownOne2, TLO, Depth+1)) 979 return true; 980 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 981 KnownOne2, TLO, Depth+1)) 982 return true; 983 // See if the operation should be performed at a smaller bit width. 984 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 985 return true; 986 } 987 // FALL THROUGH 988 default: 989 // Just use ComputeMaskedBits to compute output bits. 990 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 991 break; 992 } 993 994 // If we know the value of all of the demanded bits, return this as a 995 // constant. 996 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 997 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 998 999 return false; 1000 } 1001 1002 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 1003 /// in Mask are known to be either zero or one and return them in the 1004 /// KnownZero/KnownOne bitsets. 1005 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1006 APInt &KnownZero, 1007 APInt &KnownOne, 1008 const SelectionDAG &DAG, 1009 unsigned Depth) const { 1010 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1011 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1012 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1013 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1014 "Should use MaskedValueIsZero if you don't know whether Op" 1015 " is a target node!"); 1016 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1017 } 1018 1019 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1020 /// targets that want to expose additional information about sign bits to the 1021 /// DAG Combiner. 1022 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1023 unsigned Depth) const { 1024 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1025 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1026 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1027 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1028 "Should use ComputeNumSignBits if you don't know whether Op" 1029 " is a target node!"); 1030 return 1; 1031 } 1032 1033 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1034 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1035 /// determine which bit is set. 1036 /// 1037 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1038 // A left-shift of a constant one will have exactly one bit set, because 1039 // shifting the bit off the end is undefined. 1040 if (Val.getOpcode() == ISD::SHL) 1041 if (ConstantSDNode *C = 1042 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1043 if (C->getAPIntValue() == 1) 1044 return true; 1045 1046 // Similarly, a right-shift of a constant sign-bit will have exactly 1047 // one bit set. 1048 if (Val.getOpcode() == ISD::SRL) 1049 if (ConstantSDNode *C = 1050 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1051 if (C->getAPIntValue().isSignBit()) 1052 return true; 1053 1054 // More could be done here, though the above checks are enough 1055 // to handle some common cases. 1056 1057 // Fall back to ComputeMaskedBits to catch other known cases. 1058 EVT OpVT = Val.getValueType(); 1059 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1060 APInt KnownZero, KnownOne; 1061 DAG.ComputeMaskedBits(Val, KnownZero, KnownOne); 1062 return (KnownZero.countPopulation() == BitWidth - 1) && 1063 (KnownOne.countPopulation() == 1); 1064 } 1065 1066 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1067 /// and cc. If it is unable to simplify it, return a null SDValue. 1068 SDValue 1069 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1070 ISD::CondCode Cond, bool foldBooleans, 1071 DAGCombinerInfo &DCI, SDLoc dl) const { 1072 SelectionDAG &DAG = DCI.DAG; 1073 1074 // These setcc operations always fold. 1075 switch (Cond) { 1076 default: break; 1077 case ISD::SETFALSE: 1078 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1079 case ISD::SETTRUE: 1080 case ISD::SETTRUE2: return DAG.getConstant(1, VT); 1081 } 1082 1083 // Ensure that the constant occurs on the RHS, and fold constant 1084 // comparisons. 1085 if (isa<ConstantSDNode>(N0.getNode())) 1086 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); 1087 1088 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1089 const APInt &C1 = N1C->getAPIntValue(); 1090 1091 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1092 // equality comparison, then we're just comparing whether X itself is 1093 // zero. 1094 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1095 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1096 N0.getOperand(1).getOpcode() == ISD::Constant) { 1097 const APInt &ShAmt 1098 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1099 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1100 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1101 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1102 // (srl (ctlz x), 5) == 0 -> X != 0 1103 // (srl (ctlz x), 5) != 1 -> X != 0 1104 Cond = ISD::SETNE; 1105 } else { 1106 // (srl (ctlz x), 5) != 0 -> X == 0 1107 // (srl (ctlz x), 5) == 1 -> X == 0 1108 Cond = ISD::SETEQ; 1109 } 1110 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1111 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1112 Zero, Cond); 1113 } 1114 } 1115 1116 SDValue CTPOP = N0; 1117 // Look through truncs that don't change the value of a ctpop. 1118 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1119 CTPOP = N0.getOperand(0); 1120 1121 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1122 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1123 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1124 EVT CTVT = CTPOP.getValueType(); 1125 SDValue CTOp = CTPOP.getOperand(0); 1126 1127 // (ctpop x) u< 2 -> (x & x-1) == 0 1128 // (ctpop x) u> 1 -> (x & x-1) != 0 1129 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1130 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1131 DAG.getConstant(1, CTVT)); 1132 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1133 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1134 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1135 } 1136 1137 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1138 } 1139 1140 // (zext x) == C --> x == (trunc C) 1141 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1142 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1143 unsigned MinBits = N0.getValueSizeInBits(); 1144 SDValue PreZExt; 1145 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1146 // ZExt 1147 MinBits = N0->getOperand(0).getValueSizeInBits(); 1148 PreZExt = N0->getOperand(0); 1149 } else if (N0->getOpcode() == ISD::AND) { 1150 // DAGCombine turns costly ZExts into ANDs 1151 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1152 if ((C->getAPIntValue()+1).isPowerOf2()) { 1153 MinBits = C->getAPIntValue().countTrailingOnes(); 1154 PreZExt = N0->getOperand(0); 1155 } 1156 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1157 // ZEXTLOAD 1158 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1159 MinBits = LN0->getMemoryVT().getSizeInBits(); 1160 PreZExt = N0; 1161 } 1162 } 1163 1164 // Make sure we're not losing bits from the constant. 1165 if (MinBits > 0 && 1166 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1167 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1168 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1169 // Will get folded away. 1170 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1171 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1172 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1173 } 1174 } 1175 } 1176 1177 // If the LHS is '(and load, const)', the RHS is 0, 1178 // the test is for equality or unsigned, and all 1 bits of the const are 1179 // in the same partial word, see if we can shorten the load. 1180 if (DCI.isBeforeLegalize() && 1181 N0.getOpcode() == ISD::AND && C1 == 0 && 1182 N0.getNode()->hasOneUse() && 1183 isa<LoadSDNode>(N0.getOperand(0)) && 1184 N0.getOperand(0).getNode()->hasOneUse() && 1185 isa<ConstantSDNode>(N0.getOperand(1))) { 1186 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1187 APInt bestMask; 1188 unsigned bestWidth = 0, bestOffset = 0; 1189 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1190 unsigned origWidth = N0.getValueType().getSizeInBits(); 1191 unsigned maskWidth = origWidth; 1192 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1193 // 8 bits, but have to be careful... 1194 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1195 origWidth = Lod->getMemoryVT().getSizeInBits(); 1196 const APInt &Mask = 1197 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1198 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1199 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1200 for (unsigned offset=0; offset<origWidth/width; offset++) { 1201 if ((newMask & Mask) == Mask) { 1202 if (!getDataLayout()->isLittleEndian()) 1203 bestOffset = (origWidth/width - offset - 1) * (width/8); 1204 else 1205 bestOffset = (uint64_t)offset * (width/8); 1206 bestMask = Mask.lshr(offset * (width/8) * 8); 1207 bestWidth = width; 1208 break; 1209 } 1210 newMask = newMask << width; 1211 } 1212 } 1213 } 1214 if (bestWidth) { 1215 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1216 if (newVT.isRound()) { 1217 EVT PtrType = Lod->getOperand(1).getValueType(); 1218 SDValue Ptr = Lod->getBasePtr(); 1219 if (bestOffset != 0) 1220 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1221 DAG.getConstant(bestOffset, PtrType)); 1222 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1223 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1224 Lod->getPointerInfo().getWithOffset(bestOffset), 1225 false, false, false, NewAlign); 1226 return DAG.getSetCC(dl, VT, 1227 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1228 DAG.getConstant(bestMask.trunc(bestWidth), 1229 newVT)), 1230 DAG.getConstant(0LL, newVT), Cond); 1231 } 1232 } 1233 } 1234 1235 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1236 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1237 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1238 1239 // If the comparison constant has bits in the upper part, the 1240 // zero-extended value could never match. 1241 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1242 C1.getBitWidth() - InSize))) { 1243 switch (Cond) { 1244 case ISD::SETUGT: 1245 case ISD::SETUGE: 1246 case ISD::SETEQ: return DAG.getConstant(0, VT); 1247 case ISD::SETULT: 1248 case ISD::SETULE: 1249 case ISD::SETNE: return DAG.getConstant(1, VT); 1250 case ISD::SETGT: 1251 case ISD::SETGE: 1252 // True if the sign bit of C1 is set. 1253 return DAG.getConstant(C1.isNegative(), VT); 1254 case ISD::SETLT: 1255 case ISD::SETLE: 1256 // True if the sign bit of C1 isn't set. 1257 return DAG.getConstant(C1.isNonNegative(), VT); 1258 default: 1259 break; 1260 } 1261 } 1262 1263 // Otherwise, we can perform the comparison with the low bits. 1264 switch (Cond) { 1265 case ISD::SETEQ: 1266 case ISD::SETNE: 1267 case ISD::SETUGT: 1268 case ISD::SETUGE: 1269 case ISD::SETULT: 1270 case ISD::SETULE: { 1271 EVT newVT = N0.getOperand(0).getValueType(); 1272 if (DCI.isBeforeLegalizeOps() || 1273 (isOperationLegal(ISD::SETCC, newVT) && 1274 getCondCodeAction(Cond, newVT.getSimpleVT())==Legal)) 1275 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1276 DAG.getConstant(C1.trunc(InSize), newVT), 1277 Cond); 1278 break; 1279 } 1280 default: 1281 break; // todo, be more careful with signed comparisons 1282 } 1283 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1284 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1285 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1286 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1287 EVT ExtDstTy = N0.getValueType(); 1288 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1289 1290 // If the constant doesn't fit into the number of bits for the source of 1291 // the sign extension, it is impossible for both sides to be equal. 1292 if (C1.getMinSignedBits() > ExtSrcTyBits) 1293 return DAG.getConstant(Cond == ISD::SETNE, VT); 1294 1295 SDValue ZextOp; 1296 EVT Op0Ty = N0.getOperand(0).getValueType(); 1297 if (Op0Ty == ExtSrcTy) { 1298 ZextOp = N0.getOperand(0); 1299 } else { 1300 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1301 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1302 DAG.getConstant(Imm, Op0Ty)); 1303 } 1304 if (!DCI.isCalledByLegalizer()) 1305 DCI.AddToWorklist(ZextOp.getNode()); 1306 // Otherwise, make this a use of a zext. 1307 return DAG.getSetCC(dl, VT, ZextOp, 1308 DAG.getConstant(C1 & APInt::getLowBitsSet( 1309 ExtDstTyBits, 1310 ExtSrcTyBits), 1311 ExtDstTy), 1312 Cond); 1313 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1315 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1316 if (N0.getOpcode() == ISD::SETCC && 1317 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1318 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1319 if (TrueWhenTrue) 1320 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1321 // Invert the condition. 1322 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1323 CC = ISD::getSetCCInverse(CC, 1324 N0.getOperand(0).getValueType().isInteger()); 1325 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1326 } 1327 1328 if ((N0.getOpcode() == ISD::XOR || 1329 (N0.getOpcode() == ISD::AND && 1330 N0.getOperand(0).getOpcode() == ISD::XOR && 1331 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1332 isa<ConstantSDNode>(N0.getOperand(1)) && 1333 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1334 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1335 // can only do this if the top bits are known zero. 1336 unsigned BitWidth = N0.getValueSizeInBits(); 1337 if (DAG.MaskedValueIsZero(N0, 1338 APInt::getHighBitsSet(BitWidth, 1339 BitWidth-1))) { 1340 // Okay, get the un-inverted input value. 1341 SDValue Val; 1342 if (N0.getOpcode() == ISD::XOR) 1343 Val = N0.getOperand(0); 1344 else { 1345 assert(N0.getOpcode() == ISD::AND && 1346 N0.getOperand(0).getOpcode() == ISD::XOR); 1347 // ((X^1)&1)^1 -> X & 1 1348 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1349 N0.getOperand(0).getOperand(0), 1350 N0.getOperand(1)); 1351 } 1352 1353 return DAG.getSetCC(dl, VT, Val, N1, 1354 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1355 } 1356 } else if (N1C->getAPIntValue() == 1 && 1357 (VT == MVT::i1 || 1358 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 1359 SDValue Op0 = N0; 1360 if (Op0.getOpcode() == ISD::TRUNCATE) 1361 Op0 = Op0.getOperand(0); 1362 1363 if ((Op0.getOpcode() == ISD::XOR) && 1364 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1365 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1366 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1367 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1368 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1369 Cond); 1370 } 1371 if (Op0.getOpcode() == ISD::AND && 1372 isa<ConstantSDNode>(Op0.getOperand(1)) && 1373 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1374 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1375 if (Op0.getValueType().bitsGT(VT)) 1376 Op0 = DAG.getNode(ISD::AND, dl, VT, 1377 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1378 DAG.getConstant(1, VT)); 1379 else if (Op0.getValueType().bitsLT(VT)) 1380 Op0 = DAG.getNode(ISD::AND, dl, VT, 1381 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1382 DAG.getConstant(1, VT)); 1383 1384 return DAG.getSetCC(dl, VT, Op0, 1385 DAG.getConstant(0, Op0.getValueType()), 1386 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1387 } 1388 if (Op0.getOpcode() == ISD::AssertZext && 1389 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1390 return DAG.getSetCC(dl, VT, Op0, 1391 DAG.getConstant(0, Op0.getValueType()), 1392 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1393 } 1394 } 1395 1396 APInt MinVal, MaxVal; 1397 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1398 if (ISD::isSignedIntSetCC(Cond)) { 1399 MinVal = APInt::getSignedMinValue(OperandBitSize); 1400 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1401 } else { 1402 MinVal = APInt::getMinValue(OperandBitSize); 1403 MaxVal = APInt::getMaxValue(OperandBitSize); 1404 } 1405 1406 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1407 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1408 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1409 // X >= C0 --> X > (C0-1) 1410 return DAG.getSetCC(dl, VT, N0, 1411 DAG.getConstant(C1-1, N1.getValueType()), 1412 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 1413 } 1414 1415 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1416 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1417 // X <= C0 --> X < (C0+1) 1418 return DAG.getSetCC(dl, VT, N0, 1419 DAG.getConstant(C1+1, N1.getValueType()), 1420 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 1421 } 1422 1423 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1424 return DAG.getConstant(0, VT); // X < MIN --> false 1425 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1426 return DAG.getConstant(1, VT); // X >= MIN --> true 1427 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1428 return DAG.getConstant(0, VT); // X > MAX --> false 1429 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1430 return DAG.getConstant(1, VT); // X <= MAX --> true 1431 1432 // Canonicalize setgt X, Min --> setne X, Min 1433 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1434 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1435 // Canonicalize setlt X, Max --> setne X, Max 1436 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1437 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1438 1439 // If we have setult X, 1, turn it into seteq X, 0 1440 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1441 return DAG.getSetCC(dl, VT, N0, 1442 DAG.getConstant(MinVal, N0.getValueType()), 1443 ISD::SETEQ); 1444 // If we have setugt X, Max-1, turn it into seteq X, Max 1445 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1446 return DAG.getSetCC(dl, VT, N0, 1447 DAG.getConstant(MaxVal, N0.getValueType()), 1448 ISD::SETEQ); 1449 1450 // If we have "setcc X, C0", check to see if we can shrink the immediate 1451 // by changing cc. 1452 1453 // SETUGT X, SINTMAX -> SETLT X, 0 1454 if (Cond == ISD::SETUGT && 1455 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1456 return DAG.getSetCC(dl, VT, N0, 1457 DAG.getConstant(0, N1.getValueType()), 1458 ISD::SETLT); 1459 1460 // SETULT X, SINTMIN -> SETGT X, -1 1461 if (Cond == ISD::SETULT && 1462 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1463 SDValue ConstMinusOne = 1464 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1465 N1.getValueType()); 1466 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1467 } 1468 1469 // Fold bit comparisons when we can. 1470 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1471 (VT == N0.getValueType() || 1472 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1473 N0.getOpcode() == ISD::AND) 1474 if (ConstantSDNode *AndRHS = 1475 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1476 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1477 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1478 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1479 // Perform the xform if the AND RHS is a single bit. 1480 if (AndRHS->getAPIntValue().isPowerOf2()) { 1481 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1482 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1483 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1484 } 1485 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1486 // (X & 8) == 8 --> (X & 8) >> 3 1487 // Perform the xform if C1 is a single bit. 1488 if (C1.isPowerOf2()) { 1489 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1490 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1491 DAG.getConstant(C1.logBase2(), ShiftTy))); 1492 } 1493 } 1494 } 1495 1496 if (C1.getMinSignedBits() <= 64 && 1497 !isLegalICmpImmediate(C1.getSExtValue())) { 1498 // (X & -256) == 256 -> (X >> 8) == 1 1499 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1500 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1501 if (ConstantSDNode *AndRHS = 1502 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1503 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1504 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1505 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1506 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1507 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1508 EVT CmpTy = N0.getValueType(); 1509 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1510 DAG.getConstant(ShiftBits, ShiftTy)); 1511 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1512 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1513 } 1514 } 1515 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1516 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1517 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1518 // X < 0x100000000 -> (X >> 32) < 1 1519 // X >= 0x100000000 -> (X >> 32) >= 1 1520 // X <= 0x0ffffffff -> (X >> 32) < 1 1521 // X > 0x0ffffffff -> (X >> 32) >= 1 1522 unsigned ShiftBits; 1523 APInt NewC = C1; 1524 ISD::CondCode NewCond = Cond; 1525 if (AdjOne) { 1526 ShiftBits = C1.countTrailingOnes(); 1527 NewC = NewC + 1; 1528 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1529 } else { 1530 ShiftBits = C1.countTrailingZeros(); 1531 } 1532 NewC = NewC.lshr(ShiftBits); 1533 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1534 EVT ShiftTy = DCI.isBeforeLegalizeOps() ? 1535 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1536 EVT CmpTy = N0.getValueType(); 1537 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1538 DAG.getConstant(ShiftBits, ShiftTy)); 1539 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1540 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1541 } 1542 } 1543 } 1544 } 1545 1546 if (isa<ConstantFPSDNode>(N0.getNode())) { 1547 // Constant fold or commute setcc. 1548 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1549 if (O.getNode()) return O; 1550 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1551 // If the RHS of an FP comparison is a constant, simplify it away in 1552 // some cases. 1553 if (CFP->getValueAPF().isNaN()) { 1554 // If an operand is known to be a nan, we can fold it. 1555 switch (ISD::getUnorderedFlavor(Cond)) { 1556 default: llvm_unreachable("Unknown flavor!"); 1557 case 0: // Known false. 1558 return DAG.getConstant(0, VT); 1559 case 1: // Known true. 1560 return DAG.getConstant(1, VT); 1561 case 2: // Undefined. 1562 return DAG.getUNDEF(VT); 1563 } 1564 } 1565 1566 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1567 // constant if knowing that the operand is non-nan is enough. We prefer to 1568 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1569 // materialize 0.0. 1570 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1571 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1572 1573 // If the condition is not legal, see if we can find an equivalent one 1574 // which is legal. 1575 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1576 // If the comparison was an awkward floating-point == or != and one of 1577 // the comparison operands is infinity or negative infinity, convert the 1578 // condition to a less-awkward <= or >=. 1579 if (CFP->getValueAPF().isInfinity()) { 1580 if (CFP->getValueAPF().isNegative()) { 1581 if (Cond == ISD::SETOEQ && 1582 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1583 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1584 if (Cond == ISD::SETUEQ && 1585 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1586 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1587 if (Cond == ISD::SETUNE && 1588 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1589 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1590 if (Cond == ISD::SETONE && 1591 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1592 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1593 } else { 1594 if (Cond == ISD::SETOEQ && 1595 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1596 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1597 if (Cond == ISD::SETUEQ && 1598 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1599 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1600 if (Cond == ISD::SETUNE && 1601 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1602 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1603 if (Cond == ISD::SETONE && 1604 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1605 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1606 } 1607 } 1608 } 1609 } 1610 1611 if (N0 == N1) { 1612 // The sext(setcc()) => setcc() optimization relies on the appropriate 1613 // constant being emitted. 1614 uint64_t EqVal = 0; 1615 switch (getBooleanContents(N0.getValueType().isVector())) { 1616 case UndefinedBooleanContent: 1617 case ZeroOrOneBooleanContent: 1618 EqVal = ISD::isTrueWhenEqual(Cond); 1619 break; 1620 case ZeroOrNegativeOneBooleanContent: 1621 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1622 break; 1623 } 1624 1625 // We can always fold X == X for integer setcc's. 1626 if (N0.getValueType().isInteger()) { 1627 return DAG.getConstant(EqVal, VT); 1628 } 1629 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1630 if (UOF == 2) // FP operators that are undefined on NaNs. 1631 return DAG.getConstant(EqVal, VT); 1632 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1633 return DAG.getConstant(EqVal, VT); 1634 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1635 // if it is not already. 1636 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1637 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1638 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1639 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1640 } 1641 1642 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1643 N0.getValueType().isInteger()) { 1644 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1645 N0.getOpcode() == ISD::XOR) { 1646 // Simplify (X+Y) == (X+Z) --> Y == Z 1647 if (N0.getOpcode() == N1.getOpcode()) { 1648 if (N0.getOperand(0) == N1.getOperand(0)) 1649 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1650 if (N0.getOperand(1) == N1.getOperand(1)) 1651 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1652 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1653 // If X op Y == Y op X, try other combinations. 1654 if (N0.getOperand(0) == N1.getOperand(1)) 1655 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1656 Cond); 1657 if (N0.getOperand(1) == N1.getOperand(0)) 1658 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1659 Cond); 1660 } 1661 } 1662 1663 // If RHS is a legal immediate value for a compare instruction, we need 1664 // to be careful about increasing register pressure needlessly. 1665 bool LegalRHSImm = false; 1666 1667 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1668 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1669 // Turn (X+C1) == C2 --> X == C2-C1 1670 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1671 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1672 DAG.getConstant(RHSC->getAPIntValue()- 1673 LHSR->getAPIntValue(), 1674 N0.getValueType()), Cond); 1675 } 1676 1677 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1678 if (N0.getOpcode() == ISD::XOR) 1679 // If we know that all of the inverted bits are zero, don't bother 1680 // performing the inversion. 1681 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1682 return 1683 DAG.getSetCC(dl, VT, N0.getOperand(0), 1684 DAG.getConstant(LHSR->getAPIntValue() ^ 1685 RHSC->getAPIntValue(), 1686 N0.getValueType()), 1687 Cond); 1688 } 1689 1690 // Turn (C1-X) == C2 --> X == C1-C2 1691 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1692 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1693 return 1694 DAG.getSetCC(dl, VT, N0.getOperand(1), 1695 DAG.getConstant(SUBC->getAPIntValue() - 1696 RHSC->getAPIntValue(), 1697 N0.getValueType()), 1698 Cond); 1699 } 1700 } 1701 1702 // Could RHSC fold directly into a compare? 1703 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1704 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1705 } 1706 1707 // Simplify (X+Z) == X --> Z == 0 1708 // Don't do this if X is an immediate that can fold into a cmp 1709 // instruction and X+Z has other uses. It could be an induction variable 1710 // chain, and the transform would increase register pressure. 1711 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1712 if (N0.getOperand(0) == N1) 1713 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1714 DAG.getConstant(0, N0.getValueType()), Cond); 1715 if (N0.getOperand(1) == N1) { 1716 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1717 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1718 DAG.getConstant(0, N0.getValueType()), Cond); 1719 if (N0.getNode()->hasOneUse()) { 1720 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1721 // (Z-X) == X --> Z == X<<1 1722 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1723 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1724 if (!DCI.isCalledByLegalizer()) 1725 DCI.AddToWorklist(SH.getNode()); 1726 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1727 } 1728 } 1729 } 1730 } 1731 1732 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1733 N1.getOpcode() == ISD::XOR) { 1734 // Simplify X == (X+Z) --> Z == 0 1735 if (N1.getOperand(0) == N0) 1736 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1737 DAG.getConstant(0, N1.getValueType()), Cond); 1738 if (N1.getOperand(1) == N0) { 1739 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1740 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1741 DAG.getConstant(0, N1.getValueType()), Cond); 1742 if (N1.getNode()->hasOneUse()) { 1743 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1744 // X == (Z-X) --> X<<1 == Z 1745 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1746 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1747 if (!DCI.isCalledByLegalizer()) 1748 DCI.AddToWorklist(SH.getNode()); 1749 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1750 } 1751 } 1752 } 1753 1754 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1755 // Note that where y is variable and is known to have at most 1756 // one bit set (for example, if it is z&1) we cannot do this; 1757 // the expressions are not equivalent when y==0. 1758 if (N0.getOpcode() == ISD::AND) 1759 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1760 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1761 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1762 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1763 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1764 } 1765 } 1766 if (N1.getOpcode() == ISD::AND) 1767 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1768 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1769 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1770 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1771 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1772 } 1773 } 1774 } 1775 1776 // Fold away ALL boolean setcc's. 1777 SDValue Temp; 1778 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1779 switch (Cond) { 1780 default: llvm_unreachable("Unknown integer setcc!"); 1781 case ISD::SETEQ: // X == Y -> ~(X^Y) 1782 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1783 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1784 if (!DCI.isCalledByLegalizer()) 1785 DCI.AddToWorklist(Temp.getNode()); 1786 break; 1787 case ISD::SETNE: // X != Y --> (X^Y) 1788 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1789 break; 1790 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1791 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1792 Temp = DAG.getNOT(dl, N0, MVT::i1); 1793 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1794 if (!DCI.isCalledByLegalizer()) 1795 DCI.AddToWorklist(Temp.getNode()); 1796 break; 1797 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1798 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1799 Temp = DAG.getNOT(dl, N1, MVT::i1); 1800 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1801 if (!DCI.isCalledByLegalizer()) 1802 DCI.AddToWorklist(Temp.getNode()); 1803 break; 1804 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1805 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1806 Temp = DAG.getNOT(dl, N0, MVT::i1); 1807 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1808 if (!DCI.isCalledByLegalizer()) 1809 DCI.AddToWorklist(Temp.getNode()); 1810 break; 1811 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1812 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1813 Temp = DAG.getNOT(dl, N1, MVT::i1); 1814 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1815 break; 1816 } 1817 if (VT != MVT::i1) { 1818 if (!DCI.isCalledByLegalizer()) 1819 DCI.AddToWorklist(N0.getNode()); 1820 // FIXME: If running after legalize, we probably can't do this. 1821 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1822 } 1823 return N0; 1824 } 1825 1826 // Could not fold it. 1827 return SDValue(); 1828 } 1829 1830 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 1831 /// node is a GlobalAddress + offset. 1832 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 1833 int64_t &Offset) const { 1834 if (isa<GlobalAddressSDNode>(N)) { 1835 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 1836 GA = GASD->getGlobal(); 1837 Offset += GASD->getOffset(); 1838 return true; 1839 } 1840 1841 if (N->getOpcode() == ISD::ADD) { 1842 SDValue N1 = N->getOperand(0); 1843 SDValue N2 = N->getOperand(1); 1844 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 1845 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 1846 if (V) { 1847 Offset += V->getSExtValue(); 1848 return true; 1849 } 1850 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 1851 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 1852 if (V) { 1853 Offset += V->getSExtValue(); 1854 return true; 1855 } 1856 } 1857 } 1858 1859 return false; 1860 } 1861 1862 1863 SDValue TargetLowering:: 1864 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 1865 // Default implementation: no optimization. 1866 return SDValue(); 1867 } 1868 1869 //===----------------------------------------------------------------------===// 1870 // Inline Assembler Implementation Methods 1871 //===----------------------------------------------------------------------===// 1872 1873 1874 TargetLowering::ConstraintType 1875 TargetLowering::getConstraintType(const std::string &Constraint) const { 1876 unsigned S = Constraint.size(); 1877 1878 if (S == 1) { 1879 switch (Constraint[0]) { 1880 default: break; 1881 case 'r': return C_RegisterClass; 1882 case 'm': // memory 1883 case 'o': // offsetable 1884 case 'V': // not offsetable 1885 return C_Memory; 1886 case 'i': // Simple Integer or Relocatable Constant 1887 case 'n': // Simple Integer 1888 case 'E': // Floating Point Constant 1889 case 'F': // Floating Point Constant 1890 case 's': // Relocatable Constant 1891 case 'p': // Address. 1892 case 'X': // Allow ANY value. 1893 case 'I': // Target registers. 1894 case 'J': 1895 case 'K': 1896 case 'L': 1897 case 'M': 1898 case 'N': 1899 case 'O': 1900 case 'P': 1901 case '<': 1902 case '>': 1903 return C_Other; 1904 } 1905 } 1906 1907 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 1908 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 1909 return C_Memory; 1910 return C_Register; 1911 } 1912 return C_Unknown; 1913 } 1914 1915 /// LowerXConstraint - try to replace an X constraint, which matches anything, 1916 /// with another that has more specific requirements based on the type of the 1917 /// corresponding operand. 1918 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 1919 if (ConstraintVT.isInteger()) 1920 return "r"; 1921 if (ConstraintVT.isFloatingPoint()) 1922 return "f"; // works for many targets 1923 return 0; 1924 } 1925 1926 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 1927 /// vector. If it is invalid, don't add anything to Ops. 1928 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 1929 std::string &Constraint, 1930 std::vector<SDValue> &Ops, 1931 SelectionDAG &DAG) const { 1932 1933 if (Constraint.length() > 1) return; 1934 1935 char ConstraintLetter = Constraint[0]; 1936 switch (ConstraintLetter) { 1937 default: break; 1938 case 'X': // Allows any operand; labels (basic block) use this. 1939 if (Op.getOpcode() == ISD::BasicBlock) { 1940 Ops.push_back(Op); 1941 return; 1942 } 1943 // fall through 1944 case 'i': // Simple Integer or Relocatable Constant 1945 case 'n': // Simple Integer 1946 case 's': { // Relocatable Constant 1947 // These operands are interested in values of the form (GV+C), where C may 1948 // be folded in as an offset of GV, or it may be explicitly added. Also, it 1949 // is possible and fine if either GV or C are missing. 1950 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 1951 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 1952 1953 // If we have "(add GV, C)", pull out GV/C 1954 if (Op.getOpcode() == ISD::ADD) { 1955 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1956 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 1957 if (C == 0 || GA == 0) { 1958 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 1959 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 1960 } 1961 if (C == 0 || GA == 0) 1962 C = 0, GA = 0; 1963 } 1964 1965 // If we find a valid operand, map to the TargetXXX version so that the 1966 // value itself doesn't get selected. 1967 if (GA) { // Either &GV or &GV+C 1968 if (ConstraintLetter != 'n') { 1969 int64_t Offs = GA->getOffset(); 1970 if (C) Offs += C->getZExtValue(); 1971 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 1972 C ? SDLoc(C) : SDLoc(), 1973 Op.getValueType(), Offs)); 1974 return; 1975 } 1976 } 1977 if (C) { // just C, no GV. 1978 // Simple constants are not allowed for 's'. 1979 if (ConstraintLetter != 's') { 1980 // gcc prints these as sign extended. Sign extend value to 64 bits 1981 // now; without this it would get ZExt'd later in 1982 // ScheduleDAGSDNodes::EmitNode, which is very generic. 1983 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 1984 MVT::i64)); 1985 return; 1986 } 1987 } 1988 break; 1989 } 1990 } 1991 } 1992 1993 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 1994 getRegForInlineAsmConstraint(const std::string &Constraint, 1995 MVT VT) const { 1996 if (Constraint[0] != '{') 1997 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 1998 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 1999 2000 // Remove the braces from around the name. 2001 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2002 2003 std::pair<unsigned, const TargetRegisterClass*> R = 2004 std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2005 2006 // Figure out which register class contains this reg. 2007 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2008 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2009 E = RI->regclass_end(); RCI != E; ++RCI) { 2010 const TargetRegisterClass *RC = *RCI; 2011 2012 // If none of the value types for this register class are valid, we 2013 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2014 if (!isLegalRC(RC)) 2015 continue; 2016 2017 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2018 I != E; ++I) { 2019 if (RegName.equals_lower(RI->getName(*I))) { 2020 std::pair<unsigned, const TargetRegisterClass*> S = 2021 std::make_pair(*I, RC); 2022 2023 // If this register class has the requested value type, return it, 2024 // otherwise keep searching and return the first class found 2025 // if no other is found which explicitly has the requested type. 2026 if (RC->hasType(VT)) 2027 return S; 2028 else if (!R.second) 2029 R = S; 2030 } 2031 } 2032 } 2033 2034 return R; 2035 } 2036 2037 //===----------------------------------------------------------------------===// 2038 // Constraint Selection. 2039 2040 /// isMatchingInputConstraint - Return true of this is an input operand that is 2041 /// a matching constraint like "4". 2042 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2043 assert(!ConstraintCode.empty() && "No known constraint!"); 2044 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2045 } 2046 2047 /// getMatchedOperand - If this is an input matching constraint, this method 2048 /// returns the output operand it matches. 2049 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2050 assert(!ConstraintCode.empty() && "No known constraint!"); 2051 return atoi(ConstraintCode.c_str()); 2052 } 2053 2054 2055 /// ParseConstraints - Split up the constraint string from the inline 2056 /// assembly value into the specific constraints and their prefixes, 2057 /// and also tie in the associated operand values. 2058 /// If this returns an empty vector, and if the constraint string itself 2059 /// isn't empty, there was an error parsing. 2060 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2061 ImmutableCallSite CS) const { 2062 /// ConstraintOperands - Information about all of the constraints. 2063 AsmOperandInfoVector ConstraintOperands; 2064 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2065 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2066 2067 // Do a prepass over the constraints, canonicalizing them, and building up the 2068 // ConstraintOperands list. 2069 InlineAsm::ConstraintInfoVector 2070 ConstraintInfos = IA->ParseConstraints(); 2071 2072 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2073 unsigned ResNo = 0; // ResNo - The result number of the next output. 2074 2075 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2076 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2077 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2078 2079 // Update multiple alternative constraint count. 2080 if (OpInfo.multipleAlternatives.size() > maCount) 2081 maCount = OpInfo.multipleAlternatives.size(); 2082 2083 OpInfo.ConstraintVT = MVT::Other; 2084 2085 // Compute the value type for each operand. 2086 switch (OpInfo.Type) { 2087 case InlineAsm::isOutput: 2088 // Indirect outputs just consume an argument. 2089 if (OpInfo.isIndirect) { 2090 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2091 break; 2092 } 2093 2094 // The return value of the call is this value. As such, there is no 2095 // corresponding argument. 2096 assert(!CS.getType()->isVoidTy() && 2097 "Bad inline asm!"); 2098 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2099 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2100 } else { 2101 assert(ResNo == 0 && "Asm only has one result!"); 2102 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2103 } 2104 ++ResNo; 2105 break; 2106 case InlineAsm::isInput: 2107 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2108 break; 2109 case InlineAsm::isClobber: 2110 // Nothing to do. 2111 break; 2112 } 2113 2114 if (OpInfo.CallOperandVal) { 2115 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2116 if (OpInfo.isIndirect) { 2117 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2118 if (!PtrTy) 2119 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2120 OpTy = PtrTy->getElementType(); 2121 } 2122 2123 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2124 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2125 if (STy->getNumElements() == 1) 2126 OpTy = STy->getElementType(0); 2127 2128 // If OpTy is not a single value, it may be a struct/union that we 2129 // can tile with integers. 2130 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2131 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2132 switch (BitSize) { 2133 default: break; 2134 case 1: 2135 case 8: 2136 case 16: 2137 case 32: 2138 case 64: 2139 case 128: 2140 OpInfo.ConstraintVT = 2141 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2142 break; 2143 } 2144 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2145 OpInfo.ConstraintVT = MVT::getIntegerVT( 2146 8*getDataLayout()->getPointerSize(PT->getAddressSpace())); 2147 } else { 2148 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2149 } 2150 } 2151 } 2152 2153 // If we have multiple alternative constraints, select the best alternative. 2154 if (ConstraintInfos.size()) { 2155 if (maCount) { 2156 unsigned bestMAIndex = 0; 2157 int bestWeight = -1; 2158 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2159 int weight = -1; 2160 unsigned maIndex; 2161 // Compute the sums of the weights for each alternative, keeping track 2162 // of the best (highest weight) one so far. 2163 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2164 int weightSum = 0; 2165 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2166 cIndex != eIndex; ++cIndex) { 2167 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2168 if (OpInfo.Type == InlineAsm::isClobber) 2169 continue; 2170 2171 // If this is an output operand with a matching input operand, 2172 // look up the matching input. If their types mismatch, e.g. one 2173 // is an integer, the other is floating point, or their sizes are 2174 // different, flag it as an maCantMatch. 2175 if (OpInfo.hasMatchingInput()) { 2176 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2177 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2178 if ((OpInfo.ConstraintVT.isInteger() != 2179 Input.ConstraintVT.isInteger()) || 2180 (OpInfo.ConstraintVT.getSizeInBits() != 2181 Input.ConstraintVT.getSizeInBits())) { 2182 weightSum = -1; // Can't match. 2183 break; 2184 } 2185 } 2186 } 2187 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2188 if (weight == -1) { 2189 weightSum = -1; 2190 break; 2191 } 2192 weightSum += weight; 2193 } 2194 // Update best. 2195 if (weightSum > bestWeight) { 2196 bestWeight = weightSum; 2197 bestMAIndex = maIndex; 2198 } 2199 } 2200 2201 // Now select chosen alternative in each constraint. 2202 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2203 cIndex != eIndex; ++cIndex) { 2204 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2205 if (cInfo.Type == InlineAsm::isClobber) 2206 continue; 2207 cInfo.selectAlternative(bestMAIndex); 2208 } 2209 } 2210 } 2211 2212 // Check and hook up tied operands, choose constraint code to use. 2213 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2214 cIndex != eIndex; ++cIndex) { 2215 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2216 2217 // If this is an output operand with a matching input operand, look up the 2218 // matching input. If their types mismatch, e.g. one is an integer, the 2219 // other is floating point, or their sizes are different, flag it as an 2220 // error. 2221 if (OpInfo.hasMatchingInput()) { 2222 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2223 2224 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2225 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2226 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2227 OpInfo.ConstraintVT); 2228 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2229 getRegForInlineAsmConstraint(Input.ConstraintCode, 2230 Input.ConstraintVT); 2231 if ((OpInfo.ConstraintVT.isInteger() != 2232 Input.ConstraintVT.isInteger()) || 2233 (MatchRC.second != InputRC.second)) { 2234 report_fatal_error("Unsupported asm: input constraint" 2235 " with a matching output constraint of" 2236 " incompatible type!"); 2237 } 2238 } 2239 2240 } 2241 } 2242 2243 return ConstraintOperands; 2244 } 2245 2246 2247 /// getConstraintGenerality - Return an integer indicating how general CT 2248 /// is. 2249 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2250 switch (CT) { 2251 case TargetLowering::C_Other: 2252 case TargetLowering::C_Unknown: 2253 return 0; 2254 case TargetLowering::C_Register: 2255 return 1; 2256 case TargetLowering::C_RegisterClass: 2257 return 2; 2258 case TargetLowering::C_Memory: 2259 return 3; 2260 } 2261 llvm_unreachable("Invalid constraint type"); 2262 } 2263 2264 /// Examine constraint type and operand type and determine a weight value. 2265 /// This object must already have been set up with the operand type 2266 /// and the current alternative constraint selected. 2267 TargetLowering::ConstraintWeight 2268 TargetLowering::getMultipleConstraintMatchWeight( 2269 AsmOperandInfo &info, int maIndex) const { 2270 InlineAsm::ConstraintCodeVector *rCodes; 2271 if (maIndex >= (int)info.multipleAlternatives.size()) 2272 rCodes = &info.Codes; 2273 else 2274 rCodes = &info.multipleAlternatives[maIndex].Codes; 2275 ConstraintWeight BestWeight = CW_Invalid; 2276 2277 // Loop over the options, keeping track of the most general one. 2278 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2279 ConstraintWeight weight = 2280 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2281 if (weight > BestWeight) 2282 BestWeight = weight; 2283 } 2284 2285 return BestWeight; 2286 } 2287 2288 /// Examine constraint type and operand type and determine a weight value. 2289 /// This object must already have been set up with the operand type 2290 /// and the current alternative constraint selected. 2291 TargetLowering::ConstraintWeight 2292 TargetLowering::getSingleConstraintMatchWeight( 2293 AsmOperandInfo &info, const char *constraint) const { 2294 ConstraintWeight weight = CW_Invalid; 2295 Value *CallOperandVal = info.CallOperandVal; 2296 // If we don't have a value, we can't do a match, 2297 // but allow it at the lowest weight. 2298 if (CallOperandVal == NULL) 2299 return CW_Default; 2300 // Look at the constraint type. 2301 switch (*constraint) { 2302 case 'i': // immediate integer. 2303 case 'n': // immediate integer with a known value. 2304 if (isa<ConstantInt>(CallOperandVal)) 2305 weight = CW_Constant; 2306 break; 2307 case 's': // non-explicit intregal immediate. 2308 if (isa<GlobalValue>(CallOperandVal)) 2309 weight = CW_Constant; 2310 break; 2311 case 'E': // immediate float if host format. 2312 case 'F': // immediate float. 2313 if (isa<ConstantFP>(CallOperandVal)) 2314 weight = CW_Constant; 2315 break; 2316 case '<': // memory operand with autodecrement. 2317 case '>': // memory operand with autoincrement. 2318 case 'm': // memory operand. 2319 case 'o': // offsettable memory operand 2320 case 'V': // non-offsettable memory operand 2321 weight = CW_Memory; 2322 break; 2323 case 'r': // general register. 2324 case 'g': // general register, memory operand or immediate integer. 2325 // note: Clang converts "g" to "imr". 2326 if (CallOperandVal->getType()->isIntegerTy()) 2327 weight = CW_Register; 2328 break; 2329 case 'X': // any operand. 2330 default: 2331 weight = CW_Default; 2332 break; 2333 } 2334 return weight; 2335 } 2336 2337 /// ChooseConstraint - If there are multiple different constraints that we 2338 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2339 /// This is somewhat tricky: constraints fall into four classes: 2340 /// Other -> immediates and magic values 2341 /// Register -> one specific register 2342 /// RegisterClass -> a group of regs 2343 /// Memory -> memory 2344 /// Ideally, we would pick the most specific constraint possible: if we have 2345 /// something that fits into a register, we would pick it. The problem here 2346 /// is that if we have something that could either be in a register or in 2347 /// memory that use of the register could cause selection of *other* 2348 /// operands to fail: they might only succeed if we pick memory. Because of 2349 /// this the heuristic we use is: 2350 /// 2351 /// 1) If there is an 'other' constraint, and if the operand is valid for 2352 /// that constraint, use it. This makes us take advantage of 'i' 2353 /// constraints when available. 2354 /// 2) Otherwise, pick the most general constraint present. This prefers 2355 /// 'm' over 'r', for example. 2356 /// 2357 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2358 const TargetLowering &TLI, 2359 SDValue Op, SelectionDAG *DAG) { 2360 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2361 unsigned BestIdx = 0; 2362 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2363 int BestGenerality = -1; 2364 2365 // Loop over the options, keeping track of the most general one. 2366 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2367 TargetLowering::ConstraintType CType = 2368 TLI.getConstraintType(OpInfo.Codes[i]); 2369 2370 // If this is an 'other' constraint, see if the operand is valid for it. 2371 // For example, on X86 we might have an 'rI' constraint. If the operand 2372 // is an integer in the range [0..31] we want to use I (saving a load 2373 // of a register), otherwise we must use 'r'. 2374 if (CType == TargetLowering::C_Other && Op.getNode()) { 2375 assert(OpInfo.Codes[i].size() == 1 && 2376 "Unhandled multi-letter 'other' constraint"); 2377 std::vector<SDValue> ResultOps; 2378 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2379 ResultOps, *DAG); 2380 if (!ResultOps.empty()) { 2381 BestType = CType; 2382 BestIdx = i; 2383 break; 2384 } 2385 } 2386 2387 // Things with matching constraints can only be registers, per gcc 2388 // documentation. This mainly affects "g" constraints. 2389 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2390 continue; 2391 2392 // This constraint letter is more general than the previous one, use it. 2393 int Generality = getConstraintGenerality(CType); 2394 if (Generality > BestGenerality) { 2395 BestType = CType; 2396 BestIdx = i; 2397 BestGenerality = Generality; 2398 } 2399 } 2400 2401 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2402 OpInfo.ConstraintType = BestType; 2403 } 2404 2405 /// ComputeConstraintToUse - Determines the constraint code and constraint 2406 /// type to use for the specific AsmOperandInfo, setting 2407 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2408 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2409 SDValue Op, 2410 SelectionDAG *DAG) const { 2411 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2412 2413 // Single-letter constraints ('r') are very common. 2414 if (OpInfo.Codes.size() == 1) { 2415 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2416 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2417 } else { 2418 ChooseConstraint(OpInfo, *this, Op, DAG); 2419 } 2420 2421 // 'X' matches anything. 2422 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2423 // Labels and constants are handled elsewhere ('X' is the only thing 2424 // that matches labels). For Functions, the type here is the type of 2425 // the result, which is not what we want to look at; leave them alone. 2426 Value *v = OpInfo.CallOperandVal; 2427 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2428 OpInfo.CallOperandVal = v; 2429 return; 2430 } 2431 2432 // Otherwise, try to resolve it to something we know about by looking at 2433 // the actual operand type. 2434 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2435 OpInfo.ConstraintCode = Repl; 2436 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2437 } 2438 } 2439 } 2440 2441 /// \brief Given an exact SDIV by a constant, create a multiplication 2442 /// with the multiplicative inverse of the constant. 2443 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2444 SelectionDAG &DAG) const { 2445 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2446 APInt d = C->getAPIntValue(); 2447 assert(d != 0 && "Division by zero!"); 2448 2449 // Shift the value upfront if it is even, so the LSB is one. 2450 unsigned ShAmt = d.countTrailingZeros(); 2451 if (ShAmt) { 2452 // TODO: For UDIV use SRL instead of SRA. 2453 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2454 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 2455 d = d.ashr(ShAmt); 2456 } 2457 2458 // Calculate the multiplicative inverse, using Newton's method. 2459 APInt t, xn = d; 2460 while ((t = d*xn) != 1) 2461 xn *= APInt(d.getBitWidth(), 2) - t; 2462 2463 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2464 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2465 } 2466 2467 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2468 /// return a DAG expression to select that will generate the same value by 2469 /// multiplying by a magic number. See: 2470 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2471 SDValue TargetLowering:: 2472 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2473 std::vector<SDNode*> *Created) const { 2474 EVT VT = N->getValueType(0); 2475 SDLoc dl(N); 2476 2477 // Check to see if we can do this. 2478 // FIXME: We should be more aggressive here. 2479 if (!isTypeLegal(VT)) 2480 return SDValue(); 2481 2482 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2483 APInt::ms magics = d.magic(); 2484 2485 // Multiply the numerator (operand 0) by the magic value 2486 // FIXME: We should support doing a MUL in a wider type 2487 SDValue Q; 2488 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2489 isOperationLegalOrCustom(ISD::MULHS, VT)) 2490 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2491 DAG.getConstant(magics.m, VT)); 2492 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2493 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2494 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2495 N->getOperand(0), 2496 DAG.getConstant(magics.m, VT)).getNode(), 1); 2497 else 2498 return SDValue(); // No mulhs or equvialent 2499 // If d > 0 and m < 0, add the numerator 2500 if (d.isStrictlyPositive() && magics.m.isNegative()) { 2501 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2502 if (Created) 2503 Created->push_back(Q.getNode()); 2504 } 2505 // If d < 0 and m > 0, subtract the numerator. 2506 if (d.isNegative() && magics.m.isStrictlyPositive()) { 2507 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2508 if (Created) 2509 Created->push_back(Q.getNode()); 2510 } 2511 // Shift right algebraic if shift value is nonzero 2512 if (magics.s > 0) { 2513 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2514 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2515 if (Created) 2516 Created->push_back(Q.getNode()); 2517 } 2518 // Extract the sign bit and add it to the quotient 2519 SDValue T = 2520 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 2521 getShiftAmountTy(Q.getValueType()))); 2522 if (Created) 2523 Created->push_back(T.getNode()); 2524 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2525 } 2526 2527 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2528 /// return a DAG expression to select that will generate the same value by 2529 /// multiplying by a magic number. See: 2530 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2531 SDValue TargetLowering:: 2532 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 2533 std::vector<SDNode*> *Created) const { 2534 EVT VT = N->getValueType(0); 2535 SDLoc dl(N); 2536 2537 // Check to see if we can do this. 2538 // FIXME: We should be more aggressive here. 2539 if (!isTypeLegal(VT)) 2540 return SDValue(); 2541 2542 // FIXME: We should use a narrower constant when the upper 2543 // bits are known to be zero. 2544 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 2545 APInt::mu magics = N1C.magicu(); 2546 2547 SDValue Q = N->getOperand(0); 2548 2549 // If the divisor is even, we can avoid using the expensive fixup by shifting 2550 // the divided value upfront. 2551 if (magics.a != 0 && !N1C[0]) { 2552 unsigned Shift = N1C.countTrailingZeros(); 2553 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2554 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2555 if (Created) 2556 Created->push_back(Q.getNode()); 2557 2558 // Get magic number for the shifted divisor. 2559 magics = N1C.lshr(Shift).magicu(Shift); 2560 assert(magics.a == 0 && "Should use cheap fixup now"); 2561 } 2562 2563 // Multiply the numerator (operand 0) by the magic value 2564 // FIXME: We should support doing a MUL in a wider type 2565 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2566 isOperationLegalOrCustom(ISD::MULHU, VT)) 2567 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2568 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2569 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2570 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2571 DAG.getConstant(magics.m, VT)).getNode(), 1); 2572 else 2573 return SDValue(); // No mulhu or equvialent 2574 if (Created) 2575 Created->push_back(Q.getNode()); 2576 2577 if (magics.a == 0) { 2578 assert(magics.s < N1C.getBitWidth() && 2579 "We shouldn't generate an undefined shift!"); 2580 return DAG.getNode(ISD::SRL, dl, VT, Q, 2581 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2582 } else { 2583 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2584 if (Created) 2585 Created->push_back(NPQ.getNode()); 2586 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2587 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2588 if (Created) 2589 Created->push_back(NPQ.getNode()); 2590 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2591 if (Created) 2592 Created->push_back(NPQ.getNode()); 2593 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2594 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2595 } 2596 } 2597