Home | History | Annotate | Download | only in X86
      1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineModuleInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCSymbol.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 
     33 using namespace llvm;
     34 
     35 // FIXME: completely move here.
     36 extern cl::opt<bool> ForceStackAlign;
     37 
     38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     39   return !MF.getFrameInfo()->hasVarSizedObjects();
     40 }
     41 
     42 /// hasFP - Return true if the specified function should have a dedicated frame
     43 /// pointer register.  This is true if the function has variable sized allocas
     44 /// or if frame pointer elimination is disabled.
     45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     46   const MachineFrameInfo *MFI = MF.getFrameInfo();
     47   const MachineModuleInfo &MMI = MF.getMMI();
     48   const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
     49 
     50   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
     51           RegInfo->needsStackRealignment(MF) ||
     52           MFI->hasVarSizedObjects() ||
     53           MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() ||
     54           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     55           MMI.callsUnwindInit() || MMI.callsEHReturn());
     56 }
     57 
     58 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
     59   if (IsLP64) {
     60     if (isInt<8>(Imm))
     61       return X86::SUB64ri8;
     62     return X86::SUB64ri32;
     63   } else {
     64     if (isInt<8>(Imm))
     65       return X86::SUB32ri8;
     66     return X86::SUB32ri;
     67   }
     68 }
     69 
     70 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
     71   if (IsLP64) {
     72     if (isInt<8>(Imm))
     73       return X86::ADD64ri8;
     74     return X86::ADD64ri32;
     75   } else {
     76     if (isInt<8>(Imm))
     77       return X86::ADD32ri8;
     78     return X86::ADD32ri;
     79   }
     80 }
     81 
     82 static unsigned getLEArOpcode(unsigned IsLP64) {
     83   return IsLP64 ? X86::LEA64r : X86::LEA32r;
     84 }
     85 
     86 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
     87 /// when it reaches the "return" instruction. We can then pop a stack object
     88 /// to this register without worry about clobbering it.
     89 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
     90                                        MachineBasicBlock::iterator &MBBI,
     91                                        const TargetRegisterInfo &TRI,
     92                                        bool Is64Bit) {
     93   const MachineFunction *MF = MBB.getParent();
     94   const Function *F = MF->getFunction();
     95   if (!F || MF->getMMI().callsEHReturn())
     96     return 0;
     97 
     98   static const uint16_t CallerSavedRegs32Bit[] = {
     99     X86::EAX, X86::EDX, X86::ECX, 0
    100   };
    101 
    102   static const uint16_t CallerSavedRegs64Bit[] = {
    103     X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
    104     X86::R8,  X86::R9,  X86::R10, X86::R11, 0
    105   };
    106 
    107   unsigned Opc = MBBI->getOpcode();
    108   switch (Opc) {
    109   default: return 0;
    110   case X86::RET:
    111   case X86::RETI:
    112   case X86::TCRETURNdi:
    113   case X86::TCRETURNri:
    114   case X86::TCRETURNmi:
    115   case X86::TCRETURNdi64:
    116   case X86::TCRETURNri64:
    117   case X86::TCRETURNmi64:
    118   case X86::EH_RETURN:
    119   case X86::EH_RETURN64: {
    120     SmallSet<uint16_t, 8> Uses;
    121     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    122       MachineOperand &MO = MBBI->getOperand(i);
    123       if (!MO.isReg() || MO.isDef())
    124         continue;
    125       unsigned Reg = MO.getReg();
    126       if (!Reg)
    127         continue;
    128       for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
    129         Uses.insert(*AI);
    130     }
    131 
    132     const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
    133     for (; *CS; ++CS)
    134       if (!Uses.count(*CS))
    135         return *CS;
    136   }
    137   }
    138 
    139   return 0;
    140 }
    141 
    142 
    143 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    144 /// stack pointer by a constant value.
    145 static
    146 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    147                   unsigned StackPtr, int64_t NumBytes,
    148                   bool Is64Bit, bool IsLP64, bool UseLEA,
    149                   const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
    150   bool isSub = NumBytes < 0;
    151   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    152   unsigned Opc;
    153   if (UseLEA)
    154     Opc = getLEArOpcode(IsLP64);
    155   else
    156     Opc = isSub
    157       ? getSUBriOpcode(IsLP64, Offset)
    158       : getADDriOpcode(IsLP64, Offset);
    159 
    160   uint64_t Chunk = (1LL << 31) - 1;
    161   DebugLoc DL = MBB.findDebugLoc(MBBI);
    162 
    163   while (Offset) {
    164     uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
    165     if (ThisVal == (Is64Bit ? 8 : 4)) {
    166       // Use push / pop instead.
    167       unsigned Reg = isSub
    168         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    169         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    170       if (Reg) {
    171         Opc = isSub
    172           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    173           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    174         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    175           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    176         if (isSub)
    177           MI->setFlag(MachineInstr::FrameSetup);
    178         Offset -= ThisVal;
    179         continue;
    180       }
    181     }
    182 
    183     MachineInstr *MI = NULL;
    184 
    185     if (UseLEA) {
    186       MI =  addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
    187                           StackPtr, false, isSub ? -ThisVal : ThisVal);
    188     } else {
    189       MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    190             .addReg(StackPtr)
    191             .addImm(ThisVal);
    192       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    193     }
    194 
    195     if (isSub)
    196       MI->setFlag(MachineInstr::FrameSetup);
    197 
    198     Offset -= ThisVal;
    199   }
    200 }
    201 
    202 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
    203 static
    204 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    205                       unsigned StackPtr, uint64_t *NumBytes = NULL) {
    206   if (MBBI == MBB.begin()) return;
    207 
    208   MachineBasicBlock::iterator PI = prior(MBBI);
    209   unsigned Opc = PI->getOpcode();
    210   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    211        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
    212        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    213       PI->getOperand(0).getReg() == StackPtr) {
    214     if (NumBytes)
    215       *NumBytes += PI->getOperand(2).getImm();
    216     MBB.erase(PI);
    217   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    218               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    219              PI->getOperand(0).getReg() == StackPtr) {
    220     if (NumBytes)
    221       *NumBytes -= PI->getOperand(2).getImm();
    222     MBB.erase(PI);
    223   }
    224 }
    225 
    226 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
    227 static
    228 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
    229                         MachineBasicBlock::iterator &MBBI,
    230                         unsigned StackPtr, uint64_t *NumBytes = NULL) {
    231   // FIXME:  THIS ISN'T RUN!!!
    232   return;
    233 
    234   if (MBBI == MBB.end()) return;
    235 
    236   MachineBasicBlock::iterator NI = llvm::next(MBBI);
    237   if (NI == MBB.end()) return;
    238 
    239   unsigned Opc = NI->getOpcode();
    240   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    241        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    242       NI->getOperand(0).getReg() == StackPtr) {
    243     if (NumBytes)
    244       *NumBytes -= NI->getOperand(2).getImm();
    245     MBB.erase(NI);
    246     MBBI = NI;
    247   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    248               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    249              NI->getOperand(0).getReg() == StackPtr) {
    250     if (NumBytes)
    251       *NumBytes += NI->getOperand(2).getImm();
    252     MBB.erase(NI);
    253     MBBI = NI;
    254   }
    255 }
    256 
    257 /// mergeSPUpdates - Checks the instruction before/after the passed
    258 /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
    259 /// stack adjustment is returned as a positive value for ADD/LEA and a negative for
    260 /// SUB.
    261 static int mergeSPUpdates(MachineBasicBlock &MBB,
    262                            MachineBasicBlock::iterator &MBBI,
    263                            unsigned StackPtr,
    264                            bool doMergeWithPrevious) {
    265   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    266       (!doMergeWithPrevious && MBBI == MBB.end()))
    267     return 0;
    268 
    269   MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
    270   MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
    271   unsigned Opc = PI->getOpcode();
    272   int Offset = 0;
    273 
    274   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    275        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
    276        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    277       PI->getOperand(0).getReg() == StackPtr){
    278     Offset += PI->getOperand(2).getImm();
    279     MBB.erase(PI);
    280     if (!doMergeWithPrevious) MBBI = NI;
    281   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    282               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    283              PI->getOperand(0).getReg() == StackPtr) {
    284     Offset -= PI->getOperand(2).getImm();
    285     MBB.erase(PI);
    286     if (!doMergeWithPrevious) MBBI = NI;
    287   }
    288 
    289   return Offset;
    290 }
    291 
    292 static bool isEAXLiveIn(MachineFunction &MF) {
    293   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
    294        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    295     unsigned Reg = II->first;
    296 
    297     if (Reg == X86::EAX || Reg == X86::AX ||
    298         Reg == X86::AH || Reg == X86::AL)
    299       return true;
    300   }
    301 
    302   return false;
    303 }
    304 
    305 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
    306                                                  MCSymbol *Label,
    307                                                  unsigned FramePtr) const {
    308   MachineFrameInfo *MFI = MF.getFrameInfo();
    309   MachineModuleInfo &MMI = MF.getMMI();
    310   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
    311 
    312   // Add callee saved registers to move list.
    313   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    314   if (CSI.empty()) return;
    315 
    316   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    317   bool HasFP = hasFP(MF);
    318 
    319   // Calculate amount of bytes used for return address storing.
    320   int stackGrowth = -RegInfo->getSlotSize();
    321 
    322   // FIXME: This is dirty hack. The code itself is pretty mess right now.
    323   // It should be rewritten from scratch and generalized sometimes.
    324 
    325   // Determine maximum offset (minimum due to stack growth).
    326   int64_t MaxOffset = 0;
    327   for (std::vector<CalleeSavedInfo>::const_iterator
    328          I = CSI.begin(), E = CSI.end(); I != E; ++I)
    329     MaxOffset = std::min(MaxOffset,
    330                          MFI->getObjectOffset(I->getFrameIdx()));
    331 
    332   // Calculate offsets.
    333   int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
    334   for (std::vector<CalleeSavedInfo>::const_iterator
    335          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    336     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    337     unsigned Reg = I->getReg();
    338     Offset = MaxOffset - Offset + saveAreaOffset;
    339 
    340     // Don't output a new machine move if we're re-saving the frame
    341     // pointer. This happens when the PrologEpilogInserter has inserted an extra
    342     // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
    343     // generates one when frame pointers are used. If we generate a "machine
    344     // move" for this extra "PUSH", the linker will lose track of the fact that
    345     // the frame pointer should have the value of the first "PUSH" when it's
    346     // trying to unwind.
    347     //
    348     // FIXME: This looks inelegant. It's possibly correct, but it's covering up
    349     //        another bug. I.e., one where we generate a prolog like this:
    350     //
    351     //          pushl  %ebp
    352     //          movl   %esp, %ebp
    353     //          pushl  %ebp
    354     //          pushl  %esi
    355     //           ...
    356     //
    357     //        The immediate re-push of EBP is unnecessary. At the least, it's an
    358     //        optimization bug. EBP can be used as a scratch register in certain
    359     //        cases, but probably not when we have a frame pointer.
    360     if (HasFP && FramePtr == Reg)
    361       continue;
    362 
    363     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
    364     MMI.addFrameInst(MCCFIInstruction::createOffset(Label, DwarfReg, Offset));
    365   }
    366 }
    367 
    368 /// getCompactUnwindRegNum - Get the compact unwind number for a given
    369 /// register. The number corresponds to the enum lists in
    370 /// compact_unwind_encoding.h.
    371 static int getCompactUnwindRegNum(unsigned Reg, bool is64Bit) {
    372   static const uint16_t CU32BitRegs[] = {
    373     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    374   };
    375   static const uint16_t CU64BitRegs[] = {
    376     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    377   };
    378   const uint16_t *CURegs = is64Bit ? CU64BitRegs : CU32BitRegs;
    379   for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
    380     if (*CURegs == Reg)
    381       return Idx;
    382 
    383   return -1;
    384 }
    385 
    386 // Number of registers that can be saved in a compact unwind encoding.
    387 #define CU_NUM_SAVED_REGS 6
    388 
    389 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
    390 /// used with frameless stacks. It is passed the number of registers to be saved
    391 /// and an array of the registers saved.
    392 static uint32_t
    393 encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
    394                                          unsigned RegCount, bool Is64Bit) {
    395   // The saved registers are numbered from 1 to 6. In order to encode the order
    396   // in which they were saved, we re-number them according to their place in the
    397   // register order. The re-numbering is relative to the last re-numbered
    398   // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
    399   //
    400   //    Orig  Re-Num
    401   //    ----  ------
    402   //     6       6
    403   //     2       2
    404   //     4       3
    405   //     5       3
    406   //
    407   for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
    408     int CUReg = getCompactUnwindRegNum(SavedRegs[i], Is64Bit);
    409     if (CUReg == -1) return ~0U;
    410     SavedRegs[i] = CUReg;
    411   }
    412 
    413   // Reverse the list.
    414   std::swap(SavedRegs[0], SavedRegs[5]);
    415   std::swap(SavedRegs[1], SavedRegs[4]);
    416   std::swap(SavedRegs[2], SavedRegs[3]);
    417 
    418   uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    419   for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
    420     unsigned Countless = 0;
    421     for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
    422       if (SavedRegs[j] < SavedRegs[i])
    423         ++Countless;
    424 
    425     RenumRegs[i] = SavedRegs[i] - Countless - 1;
    426   }
    427 
    428   // Take the renumbered values and encode them into a 10-bit number.
    429   uint32_t permutationEncoding = 0;
    430   switch (RegCount) {
    431   case 6:
    432     permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    433                            + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    434                            +     RenumRegs[4];
    435     break;
    436   case 5:
    437     permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    438                            + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    439                            +     RenumRegs[5];
    440     break;
    441   case 4:
    442     permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    443                            + 3 * RenumRegs[4] +      RenumRegs[5];
    444     break;
    445   case 3:
    446     permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    447                            +     RenumRegs[5];
    448     break;
    449   case 2:
    450     permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    451     break;
    452   case 1:
    453     permutationEncoding |=       RenumRegs[5];
    454     break;
    455   }
    456 
    457   assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    458          "Invalid compact register encoding!");
    459   return permutationEncoding;
    460 }
    461 
    462 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
    463 /// compact encoding with a frame pointer.
    464 static uint32_t
    465 encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
    466                                       bool Is64Bit) {
    467   // Encode the registers in the order they were saved, 3-bits per register. The
    468   // registers are numbered from 1 to CU_NUM_SAVED_REGS.
    469   uint32_t RegEnc = 0;
    470   for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
    471     unsigned Reg = SavedRegs[I];
    472     if (Reg == 0) continue;
    473 
    474     int CURegNum = getCompactUnwindRegNum(Reg, Is64Bit);
    475     if (CURegNum == -1) return ~0U;
    476 
    477     // Encode the 3-bit register number in order, skipping over 3-bits for each
    478     // register.
    479     RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    480   }
    481 
    482   assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
    483   return RegEnc;
    484 }
    485 
    486 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
    487   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    488   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    489   unsigned StackPtr = RegInfo->getStackRegister();
    490 
    491   bool Is64Bit = STI.is64Bit();
    492   bool HasFP = hasFP(MF);
    493 
    494   unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
    495   unsigned SavedRegIdx = 0;
    496 
    497   unsigned OffsetSize = (Is64Bit ? 8 : 4);
    498 
    499   unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
    500   unsigned PushInstrSize = 1;
    501   unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
    502   unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
    503   unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
    504 
    505   unsigned StackDivide = (Is64Bit ? 8 : 4);
    506 
    507   unsigned InstrOffset = 0;
    508   unsigned StackAdjust = 0;
    509   unsigned StackSize = 0;
    510 
    511   MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
    512   bool ExpectEnd = false;
    513   for (MachineBasicBlock::iterator
    514          MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
    515     MachineInstr &MI = *MBBI;
    516     unsigned Opc = MI.getOpcode();
    517     if (Opc == X86::PROLOG_LABEL) continue;
    518     if (!MI.getFlag(MachineInstr::FrameSetup)) break;
    519 
    520     // We don't exect any more prolog instructions.
    521     if (ExpectEnd) return CU::UNWIND_MODE_DWARF;
    522 
    523     if (Opc == PushInstr) {
    524       // If there are too many saved registers, we cannot use compact encoding.
    525       if (SavedRegIdx >= CU_NUM_SAVED_REGS) return CU::UNWIND_MODE_DWARF;
    526 
    527       unsigned Reg = MI.getOperand(0).getReg();
    528       if (Reg == (Is64Bit ? X86::RAX : X86::EAX)) {
    529         ExpectEnd = true;
    530         continue;
    531       }
    532 
    533       SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
    534       StackAdjust += OffsetSize;
    535       InstrOffset += PushInstrSize;
    536     } else if (Opc == MoveInstr) {
    537       unsigned SrcReg = MI.getOperand(1).getReg();
    538       unsigned DstReg = MI.getOperand(0).getReg();
    539 
    540       if (DstReg != FramePtr || SrcReg != StackPtr)
    541         return CU::UNWIND_MODE_DWARF;
    542 
    543       StackAdjust = 0;
    544       memset(SavedRegs, 0, sizeof(SavedRegs));
    545       SavedRegIdx = 0;
    546       InstrOffset += MoveInstrSize;
    547     } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    548                Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
    549       if (StackSize)
    550         // We already have a stack size.
    551         return CU::UNWIND_MODE_DWARF;
    552 
    553       if (!MI.getOperand(0).isReg() ||
    554           MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
    555           MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
    556         // We need this to be a stack adjustment pointer. Something like:
    557         //
    558         //   %RSP<def> = SUB64ri8 %RSP, 48
    559         return CU::UNWIND_MODE_DWARF;
    560 
    561       StackSize = MI.getOperand(2).getImm() / StackDivide;
    562       SubtractInstrIdx += InstrOffset;
    563       ExpectEnd = true;
    564     }
    565   }
    566 
    567   // Encode that we are using EBP/RBP as the frame pointer.
    568   uint32_t CompactUnwindEncoding = 0;
    569   StackAdjust /= StackDivide;
    570   if (HasFP) {
    571     if ((StackAdjust & 0xFF) != StackAdjust)
    572       // Offset was too big for compact encoding.
    573       return CU::UNWIND_MODE_DWARF;
    574 
    575     // Get the encoding of the saved registers when we have a frame pointer.
    576     uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
    577     if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    578 
    579     CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
    580     CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
    581     CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
    582   } else {
    583     ++StackAdjust;
    584     uint32_t TotalStackSize = StackAdjust + StackSize;
    585     if ((TotalStackSize & 0xFF) == TotalStackSize) {
    586       // Frameless stack with a small stack size.
    587       CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
    588 
    589       // Encode the stack size.
    590       CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
    591     } else {
    592       if ((StackAdjust & 0x7) != StackAdjust)
    593         // The extra stack adjustments are too big for us to handle.
    594         return CU::UNWIND_MODE_DWARF;
    595 
    596       // Frameless stack with an offset too large for us to encode compactly.
    597       CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
    598 
    599       // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    600       // instruction.
    601       CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    602 
    603       // Encode any extra stack stack adjustments (done via push instructions).
    604       CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
    605     }
    606 
    607     // Encode the number of registers saved.
    608     CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
    609 
    610     // Get the encoding of the saved registers when we don't have a frame
    611     // pointer.
    612     uint32_t RegEnc =
    613       encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
    614                                                Is64Bit);
    615     if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
    616 
    617     // Encode the register encoding.
    618     CompactUnwindEncoding |=
    619       RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
    620   }
    621 
    622   return CompactUnwindEncoding;
    623 }
    624 
    625 /// usesTheStack - This function checks if any of the users of EFLAGS
    626 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
    627 /// to use the stack, and if we don't adjust the stack we clobber the first
    628 /// frame index.
    629 /// See X86InstrInfo::copyPhysReg.
    630 static bool usesTheStack(MachineFunction &MF) {
    631   MachineRegisterInfo &MRI = MF.getRegInfo();
    632 
    633   for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS),
    634        re = MRI.reg_end(); ri != re; ++ri)
    635     if (ri->isCopy())
    636       return true;
    637 
    638   return false;
    639 }
    640 
    641 /// emitPrologue - Push callee-saved registers onto the stack, which
    642 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    643 /// space for local variables. Also emit labels used by the exception handler to
    644 /// generate the exception handling frames.
    645 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
    646   MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
    647   MachineBasicBlock::iterator MBBI = MBB.begin();
    648   MachineFrameInfo *MFI = MF.getFrameInfo();
    649   const Function *Fn = MF.getFunction();
    650   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    651   const X86InstrInfo &TII = *TM.getInstrInfo();
    652   MachineModuleInfo &MMI = MF.getMMI();
    653   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    654   bool needsFrameMoves = MMI.hasDebugInfo() ||
    655     Fn->needsUnwindTableEntry();
    656   uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
    657   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    658   bool HasFP = hasFP(MF);
    659   bool Is64Bit = STI.is64Bit();
    660   bool IsLP64 = STI.isTarget64BitLP64();
    661   bool IsWin64 = STI.isTargetWin64();
    662   bool UseLEA = STI.useLeaForSP();
    663   unsigned StackAlign = getStackAlignment();
    664   unsigned SlotSize = RegInfo->getSlotSize();
    665   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    666   unsigned StackPtr = RegInfo->getStackRegister();
    667   unsigned BasePtr = RegInfo->getBaseRegister();
    668   DebugLoc DL;
    669 
    670   // If we're forcing a stack realignment we can't rely on just the frame
    671   // info, we need to know the ABI stack alignment as well in case we
    672   // have a call out.  Otherwise just make sure we have some alignment - we'll
    673   // go with the minimum SlotSize.
    674   if (ForceStackAlign) {
    675     if (MFI->hasCalls())
    676       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    677     else if (MaxAlign < SlotSize)
    678       MaxAlign = SlotSize;
    679   }
    680 
    681   // Add RETADDR move area to callee saved frame size.
    682   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    683   if (TailCallReturnAddrDelta < 0)
    684     X86FI->setCalleeSavedFrameSize(
    685       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    686 
    687   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    688   // function, and use up to 128 bytes of stack space, don't have a frame
    689   // pointer, calls, or dynamic alloca then we do not need to adjust the
    690   // stack pointer (we fit in the Red Zone). We also check that we don't
    691   // push and pop from the stack.
    692   if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    693                                                    Attribute::NoRedZone) &&
    694       !RegInfo->needsStackRealignment(MF) &&
    695       !MFI->hasVarSizedObjects() &&                     // No dynamic alloca.
    696       !MFI->adjustsStack() &&                           // No calls.
    697       !IsWin64 &&                                       // Win64 has no Red Zone
    698       !usesTheStack(MF) &&                              // Don't push and pop.
    699       !MF.getTarget().Options.EnableSegmentedStacks) {  // Regular stack
    700     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    701     if (HasFP) MinSize += SlotSize;
    702     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    703     MFI->setStackSize(StackSize);
    704   }
    705 
    706   // Insert stack pointer adjustment for later moving of return addr.  Only
    707   // applies to tail call optimized functions where the callee argument stack
    708   // size is bigger than the callers.
    709   if (TailCallReturnAddrDelta < 0) {
    710     MachineInstr *MI =
    711       BuildMI(MBB, MBBI, DL,
    712               TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
    713               StackPtr)
    714         .addReg(StackPtr)
    715         .addImm(-TailCallReturnAddrDelta)
    716         .setMIFlag(MachineInstr::FrameSetup);
    717     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    718   }
    719 
    720   // Mapping for machine moves:
    721   //
    722   //   DST: VirtualFP AND
    723   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    724   //        ELSE                        => DW_CFA_def_cfa
    725   //
    726   //   SRC: VirtualFP AND
    727   //        DST: Register               => DW_CFA_def_cfa_register
    728   //
    729   //   ELSE
    730   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    731   //        REG < 64                    => DW_CFA_offset + Reg
    732   //        ELSE                        => DW_CFA_offset_extended
    733 
    734   uint64_t NumBytes = 0;
    735   int stackGrowth = -SlotSize;
    736 
    737   if (HasFP) {
    738     // Calculate required stack adjustment.
    739     uint64_t FrameSize = StackSize - SlotSize;
    740     if (RegInfo->needsStackRealignment(MF)) {
    741       // Callee-saved registers are pushed on stack before the stack
    742       // is realigned.
    743       FrameSize -= X86FI->getCalleeSavedFrameSize();
    744       NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
    745     } else {
    746       NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
    747     }
    748 
    749     // Get the offset of the stack slot for the EBP register, which is
    750     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
    751     // Update the frame offset adjustment.
    752     MFI->setOffsetAdjustment(-NumBytes);
    753 
    754     // Save EBP/RBP into the appropriate stack slot.
    755     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
    756       .addReg(FramePtr, RegState::Kill)
    757       .setMIFlag(MachineInstr::FrameSetup);
    758 
    759     if (needsFrameMoves) {
    760       // Mark the place where EBP/RBP was saved.
    761       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    762       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    763         .addSym(FrameLabel);
    764 
    765       // Define the current CFA rule to use the provided offset.
    766       assert(StackSize);
    767       MMI.addFrameInst(
    768           MCCFIInstruction::createDefCfaOffset(FrameLabel, 2 * stackGrowth));
    769 
    770       // Change the rule for the FramePtr to be an "offset" rule.
    771       unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
    772       MMI.addFrameInst(MCCFIInstruction::createOffset(FrameLabel, DwarfFramePtr,
    773                                                       2 * stackGrowth));
    774     }
    775 
    776     // Update EBP with the new base value.
    777     BuildMI(MBB, MBBI, DL,
    778             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
    779         .addReg(StackPtr)
    780         .setMIFlag(MachineInstr::FrameSetup);
    781 
    782     if (needsFrameMoves) {
    783       // Mark effective beginning of when frame pointer becomes valid.
    784       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    785       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    786         .addSym(FrameLabel);
    787 
    788       // Define the current CFA to use the EBP/RBP register.
    789       unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
    790       MMI.addFrameInst(
    791           MCCFIInstruction::createDefCfaRegister(FrameLabel, DwarfFramePtr));
    792     }
    793 
    794     // Mark the FramePtr as live-in in every block except the entry.
    795     for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
    796          I != E; ++I)
    797       I->addLiveIn(FramePtr);
    798   } else {
    799     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
    800   }
    801 
    802   // Skip the callee-saved push instructions.
    803   bool PushedRegs = false;
    804   int StackOffset = 2 * stackGrowth;
    805 
    806   while (MBBI != MBB.end() &&
    807          (MBBI->getOpcode() == X86::PUSH32r ||
    808           MBBI->getOpcode() == X86::PUSH64r)) {
    809     PushedRegs = true;
    810     MBBI->setFlag(MachineInstr::FrameSetup);
    811     ++MBBI;
    812 
    813     if (!HasFP && needsFrameMoves) {
    814       // Mark callee-saved push instruction.
    815       MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    816       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
    817 
    818       // Define the current CFA rule to use the provided offset.
    819       assert(StackSize);
    820       MMI.addFrameInst(
    821           MCCFIInstruction::createDefCfaOffset(Label, StackOffset));
    822       StackOffset += stackGrowth;
    823     }
    824   }
    825 
    826   // Realign stack after we pushed callee-saved registers (so that we'll be
    827   // able to calculate their offsets from the frame pointer).
    828 
    829   // NOTE: We push the registers before realigning the stack, so
    830   // vector callee-saved (xmm) registers may be saved w/o proper
    831   // alignment in this way. However, currently these regs are saved in
    832   // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
    833   // this shouldn't be a problem.
    834   if (RegInfo->needsStackRealignment(MF)) {
    835     assert(HasFP && "There should be a frame pointer if stack is realigned.");
    836     MachineInstr *MI =
    837       BuildMI(MBB, MBBI, DL,
    838               TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
    839       .addReg(StackPtr)
    840       .addImm(-MaxAlign)
    841       .setMIFlag(MachineInstr::FrameSetup);
    842 
    843     // The EFLAGS implicit def is dead.
    844     MI->getOperand(3).setIsDead();
    845   }
    846 
    847   // If there is an SUB32ri of ESP immediately before this instruction, merge
    848   // the two. This can be the case when tail call elimination is enabled and
    849   // the callee has more arguments then the caller.
    850   NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
    851 
    852   // If there is an ADD32ri or SUB32ri of ESP immediately after this
    853   // instruction, merge the two instructions.
    854   mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
    855 
    856   // Adjust stack pointer: ESP -= numbytes.
    857 
    858   // Windows and cygwin/mingw require a prologue helper routine when allocating
    859   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
    860   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
    861   // stack and adjust the stack pointer in one go.  The 64-bit version of
    862   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
    863   // responsible for adjusting the stack pointer.  Touching the stack at 4K
    864   // increments is necessary to ensure that the guard pages used by the OS
    865   // virtual memory manager are allocated in correct sequence.
    866   if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
    867     const char *StackProbeSymbol;
    868     bool isSPUpdateNeeded = false;
    869 
    870     if (Is64Bit) {
    871       if (STI.isTargetCygMing())
    872         StackProbeSymbol = "___chkstk";
    873       else {
    874         StackProbeSymbol = "__chkstk";
    875         isSPUpdateNeeded = true;
    876       }
    877     } else if (STI.isTargetCygMing())
    878       StackProbeSymbol = "_alloca";
    879     else
    880       StackProbeSymbol = "_chkstk";
    881 
    882     // Check whether EAX is livein for this function.
    883     bool isEAXAlive = isEAXLiveIn(MF);
    884 
    885     if (isEAXAlive) {
    886       // Sanity check that EAX is not livein for this function.
    887       // It should not be, so throw an assert.
    888       assert(!Is64Bit && "EAX is livein in x64 case!");
    889 
    890       // Save EAX
    891       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
    892         .addReg(X86::EAX, RegState::Kill)
    893         .setMIFlag(MachineInstr::FrameSetup);
    894     }
    895 
    896     if (Is64Bit) {
    897       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
    898       // Function prologue is responsible for adjusting the stack pointer.
    899       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
    900         .addImm(NumBytes)
    901         .setMIFlag(MachineInstr::FrameSetup);
    902     } else {
    903       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
    904       // We'll also use 4 already allocated bytes for EAX.
    905       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
    906         .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
    907         .setMIFlag(MachineInstr::FrameSetup);
    908     }
    909 
    910     BuildMI(MBB, MBBI, DL,
    911             TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
    912       .addExternalSymbol(StackProbeSymbol)
    913       .addReg(StackPtr,    RegState::Define | RegState::Implicit)
    914       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
    915       .setMIFlag(MachineInstr::FrameSetup);
    916 
    917     // MSVC x64's __chkstk does not adjust %rsp itself.
    918     // It also does not clobber %rax so we can reuse it when adjusting %rsp.
    919     if (isSPUpdateNeeded) {
    920       BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
    921         .addReg(StackPtr)
    922         .addReg(X86::RAX)
    923         .setMIFlag(MachineInstr::FrameSetup);
    924     }
    925 
    926     if (isEAXAlive) {
    927         // Restore EAX
    928         MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
    929                                                 X86::EAX),
    930                                         StackPtr, false, NumBytes - 4);
    931         MI->setFlag(MachineInstr::FrameSetup);
    932         MBB.insert(MBBI, MI);
    933     }
    934   } else if (NumBytes)
    935     emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
    936                  UseLEA, TII, *RegInfo);
    937 
    938   // If we need a base pointer, set it up here. It's whatever the value
    939   // of the stack pointer is at this point. Any variable size objects
    940   // will be allocated after this, so we can still use the base pointer
    941   // to reference locals.
    942   if (RegInfo->hasBasePointer(MF)) {
    943     // Update the frame pointer with the current stack pointer.
    944     unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
    945     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
    946       .addReg(StackPtr)
    947       .setMIFlag(MachineInstr::FrameSetup);
    948   }
    949 
    950   if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
    951     // Mark end of stack pointer adjustment.
    952     MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    953     BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    954       .addSym(Label);
    955 
    956     if (!HasFP && NumBytes) {
    957       // Define the current CFA rule to use the provided offset.
    958       assert(StackSize);
    959       MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(
    960           Label, -StackSize + stackGrowth));
    961     }
    962 
    963     // Emit DWARF info specifying the offsets of the callee-saved registers.
    964     if (PushedRegs)
    965       emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
    966   }
    967 
    968   // Darwin 10.7 and greater has support for compact unwind encoding.
    969   if (STI.getTargetTriple().isMacOSX() &&
    970       !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
    971     MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
    972 }
    973 
    974 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
    975                                     MachineBasicBlock &MBB) const {
    976   const MachineFrameInfo *MFI = MF.getFrameInfo();
    977   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    978   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    979   const X86InstrInfo &TII = *TM.getInstrInfo();
    980   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
    981   assert(MBBI != MBB.end() && "Returning block has no instructions");
    982   unsigned RetOpcode = MBBI->getOpcode();
    983   DebugLoc DL = MBBI->getDebugLoc();
    984   bool Is64Bit = STI.is64Bit();
    985   bool IsLP64 = STI.isTarget64BitLP64();
    986   bool UseLEA = STI.useLeaForSP();
    987   unsigned StackAlign = getStackAlignment();
    988   unsigned SlotSize = RegInfo->getSlotSize();
    989   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    990   unsigned StackPtr = RegInfo->getStackRegister();
    991 
    992   switch (RetOpcode) {
    993   default:
    994     llvm_unreachable("Can only insert epilog into returning blocks");
    995   case X86::RET:
    996   case X86::RETI:
    997   case X86::TCRETURNdi:
    998   case X86::TCRETURNri:
    999   case X86::TCRETURNmi:
   1000   case X86::TCRETURNdi64:
   1001   case X86::TCRETURNri64:
   1002   case X86::TCRETURNmi64:
   1003   case X86::EH_RETURN:
   1004   case X86::EH_RETURN64:
   1005     break;  // These are ok
   1006   }
   1007 
   1008   // Get the number of bytes to allocate from the FrameInfo.
   1009   uint64_t StackSize = MFI->getStackSize();
   1010   uint64_t MaxAlign  = MFI->getMaxAlignment();
   1011   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1012   uint64_t NumBytes = 0;
   1013 
   1014   // If we're forcing a stack realignment we can't rely on just the frame
   1015   // info, we need to know the ABI stack alignment as well in case we
   1016   // have a call out.  Otherwise just make sure we have some alignment - we'll
   1017   // go with the minimum.
   1018   if (ForceStackAlign) {
   1019     if (MFI->hasCalls())
   1020       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
   1021     else
   1022       MaxAlign = MaxAlign ? MaxAlign : 4;
   1023   }
   1024 
   1025   if (hasFP(MF)) {
   1026     // Calculate required stack adjustment.
   1027     uint64_t FrameSize = StackSize - SlotSize;
   1028     if (RegInfo->needsStackRealignment(MF)) {
   1029       // Callee-saved registers were pushed on stack before the stack
   1030       // was realigned.
   1031       FrameSize -= CSSize;
   1032       NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
   1033     } else {
   1034       NumBytes = FrameSize - CSSize;
   1035     }
   1036 
   1037     // Pop EBP.
   1038     BuildMI(MBB, MBBI, DL,
   1039             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
   1040   } else {
   1041     NumBytes = StackSize - CSSize;
   1042   }
   1043 
   1044   // Skip the callee-saved pop instructions.
   1045   while (MBBI != MBB.begin()) {
   1046     MachineBasicBlock::iterator PI = prior(MBBI);
   1047     unsigned Opc = PI->getOpcode();
   1048 
   1049     if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
   1050         !PI->isTerminator())
   1051       break;
   1052 
   1053     --MBBI;
   1054   }
   1055   MachineBasicBlock::iterator FirstCSPop = MBBI;
   1056 
   1057   DL = MBBI->getDebugLoc();
   1058 
   1059   // If there is an ADD32ri or SUB32ri of ESP immediately before this
   1060   // instruction, merge the two instructions.
   1061   if (NumBytes || MFI->hasVarSizedObjects())
   1062     mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
   1063 
   1064   // If dynamic alloca is used, then reset esp to point to the last callee-saved
   1065   // slot before popping them off! Same applies for the case, when stack was
   1066   // realigned.
   1067   if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
   1068     if (RegInfo->needsStackRealignment(MF))
   1069       MBBI = FirstCSPop;
   1070     if (CSSize != 0) {
   1071       unsigned Opc = getLEArOpcode(IsLP64);
   1072       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
   1073                    FramePtr, false, -CSSize);
   1074     } else {
   1075       unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
   1076       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
   1077         .addReg(FramePtr);
   1078     }
   1079   } else if (NumBytes) {
   1080     // Adjust stack pointer back: ESP += numbytes.
   1081     emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
   1082                  TII, *RegInfo);
   1083   }
   1084 
   1085   // We're returning from function via eh_return.
   1086   if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
   1087     MBBI = MBB.getLastNonDebugInstr();
   1088     MachineOperand &DestAddr  = MBBI->getOperand(0);
   1089     assert(DestAddr.isReg() && "Offset should be in register!");
   1090     BuildMI(MBB, MBBI, DL,
   1091             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1092             StackPtr).addReg(DestAddr.getReg());
   1093   } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
   1094              RetOpcode == X86::TCRETURNmi ||
   1095              RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
   1096              RetOpcode == X86::TCRETURNmi64) {
   1097     bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
   1098     // Tail call return: adjust the stack pointer and jump to callee.
   1099     MBBI = MBB.getLastNonDebugInstr();
   1100     MachineOperand &JumpTarget = MBBI->getOperand(0);
   1101     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
   1102     assert(StackAdjust.isImm() && "Expecting immediate value.");
   1103 
   1104     // Adjust stack pointer.
   1105     int StackAdj = StackAdjust.getImm();
   1106     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
   1107     int Offset = 0;
   1108     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
   1109 
   1110     // Incoporate the retaddr area.
   1111     Offset = StackAdj-MaxTCDelta;
   1112     assert(Offset >= 0 && "Offset should never be negative");
   1113 
   1114     if (Offset) {
   1115       // Check for possible merge with preceding ADD instruction.
   1116       Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1117       emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
   1118                    UseLEA, TII, *RegInfo);
   1119     }
   1120 
   1121     // Jump to label or value in register.
   1122     if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
   1123       MachineInstrBuilder MIB =
   1124         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
   1125                                        ? X86::TAILJMPd : X86::TAILJMPd64));
   1126       if (JumpTarget.isGlobal())
   1127         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
   1128                              JumpTarget.getTargetFlags());
   1129       else {
   1130         assert(JumpTarget.isSymbol());
   1131         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
   1132                               JumpTarget.getTargetFlags());
   1133       }
   1134     } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
   1135       MachineInstrBuilder MIB =
   1136         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
   1137                                        ? X86::TAILJMPm : X86::TAILJMPm64));
   1138       for (unsigned i = 0; i != 5; ++i)
   1139         MIB.addOperand(MBBI->getOperand(i));
   1140     } else if (RetOpcode == X86::TCRETURNri64) {
   1141       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
   1142         addReg(JumpTarget.getReg(), RegState::Kill);
   1143     } else {
   1144       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
   1145         addReg(JumpTarget.getReg(), RegState::Kill);
   1146     }
   1147 
   1148     MachineInstr *NewMI = prior(MBBI);
   1149     NewMI->copyImplicitOps(MF, MBBI);
   1150 
   1151     // Delete the pseudo instruction TCRETURN.
   1152     MBB.erase(MBBI);
   1153   } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
   1154              (X86FI->getTCReturnAddrDelta() < 0)) {
   1155     // Add the return addr area delta back since we are not tail calling.
   1156     int delta = -1*X86FI->getTCReturnAddrDelta();
   1157     MBBI = MBB.getLastNonDebugInstr();
   1158 
   1159     // Check for possible merge with preceding ADD instruction.
   1160     delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1161     emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
   1162                  *RegInfo);
   1163   }
   1164 }
   1165 
   1166 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
   1167   const X86RegisterInfo *RegInfo =
   1168     static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1169   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1170   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1171   uint64_t StackSize = MFI->getStackSize();
   1172 
   1173   if (RegInfo->hasBasePointer(MF)) {
   1174     assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
   1175     if (FI < 0) {
   1176       // Skip the saved EBP.
   1177       return Offset + RegInfo->getSlotSize();
   1178     } else {
   1179       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1180       return Offset + StackSize;
   1181     }
   1182   } else if (RegInfo->needsStackRealignment(MF)) {
   1183     if (FI < 0) {
   1184       // Skip the saved EBP.
   1185       return Offset + RegInfo->getSlotSize();
   1186     } else {
   1187       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1188       return Offset + StackSize;
   1189     }
   1190     // FIXME: Support tail calls
   1191   } else {
   1192     if (!hasFP(MF))
   1193       return Offset + StackSize;
   1194 
   1195     // Skip the saved EBP.
   1196     Offset += RegInfo->getSlotSize();
   1197 
   1198     // Skip the RETADDR move area
   1199     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1200     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1201     if (TailCallReturnAddrDelta < 0)
   1202       Offset -= TailCallReturnAddrDelta;
   1203   }
   1204 
   1205   return Offset;
   1206 }
   1207 
   1208 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
   1209                                              unsigned &FrameReg) const {
   1210   const X86RegisterInfo *RegInfo =
   1211       static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1212   // We can't calculate offset from frame pointer if the stack is realigned,
   1213   // so enforce usage of stack/base pointer.  The base pointer is used when we
   1214   // have dynamic allocas in addition to dynamic realignment.
   1215   if (RegInfo->hasBasePointer(MF))
   1216     FrameReg = RegInfo->getBaseRegister();
   1217   else if (RegInfo->needsStackRealignment(MF))
   1218     FrameReg = RegInfo->getStackRegister();
   1219   else
   1220     FrameReg = RegInfo->getFrameRegister(MF);
   1221   return getFrameIndexOffset(MF, FI);
   1222 }
   1223 
   1224 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
   1225                                              MachineBasicBlock::iterator MI,
   1226                                         const std::vector<CalleeSavedInfo> &CSI,
   1227                                           const TargetRegisterInfo *TRI) const {
   1228   if (CSI.empty())
   1229     return false;
   1230 
   1231   DebugLoc DL = MBB.findDebugLoc(MI);
   1232 
   1233   MachineFunction &MF = *MBB.getParent();
   1234 
   1235   unsigned SlotSize = STI.is64Bit() ? 8 : 4;
   1236   unsigned FPReg = TRI->getFrameRegister(MF);
   1237   unsigned CalleeFrameSize = 0;
   1238 
   1239   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1240   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1241 
   1242   // Push GPRs. It increases frame size.
   1243   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1244   for (unsigned i = CSI.size(); i != 0; --i) {
   1245     unsigned Reg = CSI[i-1].getReg();
   1246     if (!X86::GR64RegClass.contains(Reg) &&
   1247         !X86::GR32RegClass.contains(Reg))
   1248       continue;
   1249     // Add the callee-saved register as live-in. It's killed at the spill.
   1250     MBB.addLiveIn(Reg);
   1251     if (Reg == FPReg)
   1252       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
   1253       continue;
   1254     CalleeFrameSize += SlotSize;
   1255     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
   1256       .setMIFlag(MachineInstr::FrameSetup);
   1257   }
   1258 
   1259   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
   1260 
   1261   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1262   // It can be done by spilling XMMs to stack frame.
   1263   // Note that only Win64 ABI might spill XMMs.
   1264   for (unsigned i = CSI.size(); i != 0; --i) {
   1265     unsigned Reg = CSI[i-1].getReg();
   1266     if (X86::GR64RegClass.contains(Reg) ||
   1267         X86::GR32RegClass.contains(Reg))
   1268       continue;
   1269     // Add the callee-saved register as live-in. It's killed at the spill.
   1270     MBB.addLiveIn(Reg);
   1271     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1272     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
   1273                             RC, TRI);
   1274   }
   1275 
   1276   return true;
   1277 }
   1278 
   1279 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1280                                                MachineBasicBlock::iterator MI,
   1281                                         const std::vector<CalleeSavedInfo> &CSI,
   1282                                           const TargetRegisterInfo *TRI) const {
   1283   if (CSI.empty())
   1284     return false;
   1285 
   1286   DebugLoc DL = MBB.findDebugLoc(MI);
   1287 
   1288   MachineFunction &MF = *MBB.getParent();
   1289   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1290 
   1291   // Reload XMMs from stack frame.
   1292   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1293     unsigned Reg = CSI[i].getReg();
   1294     if (X86::GR64RegClass.contains(Reg) ||
   1295         X86::GR32RegClass.contains(Reg))
   1296       continue;
   1297     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1298     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
   1299                              RC, TRI);
   1300   }
   1301 
   1302   // POP GPRs.
   1303   unsigned FPReg = TRI->getFrameRegister(MF);
   1304   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1305   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1306     unsigned Reg = CSI[i].getReg();
   1307     if (!X86::GR64RegClass.contains(Reg) &&
   1308         !X86::GR32RegClass.contains(Reg))
   1309       continue;
   1310     if (Reg == FPReg)
   1311       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
   1312       continue;
   1313     BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
   1314   }
   1315   return true;
   1316 }
   1317 
   1318 void
   1319 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
   1320                                                    RegScavenger *RS) const {
   1321   MachineFrameInfo *MFI = MF.getFrameInfo();
   1322   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
   1323   unsigned SlotSize = RegInfo->getSlotSize();
   1324 
   1325   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1326   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1327 
   1328   if (TailCallReturnAddrDelta < 0) {
   1329     // create RETURNADDR area
   1330     //   arg
   1331     //   arg
   1332     //   RETADDR
   1333     //   { ...
   1334     //     RETADDR area
   1335     //     ...
   1336     //   }
   1337     //   [EBP]
   1338     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   1339                            TailCallReturnAddrDelta - SlotSize, true);
   1340   }
   1341 
   1342   if (hasFP(MF)) {
   1343     assert((TailCallReturnAddrDelta <= 0) &&
   1344            "The Delta should always be zero or negative");
   1345     const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
   1346 
   1347     // Create a frame entry for the EBP register that must be saved.
   1348     int FrameIdx = MFI->CreateFixedObject(SlotSize,
   1349                                           -(int)SlotSize +
   1350                                           TFI.getOffsetOfLocalArea() +
   1351                                           TailCallReturnAddrDelta,
   1352                                           true);
   1353     assert(FrameIdx == MFI->getObjectIndexBegin() &&
   1354            "Slot for EBP register must be last in order to be found!");
   1355     (void)FrameIdx;
   1356   }
   1357 
   1358   // Spill the BasePtr if it's used.
   1359   if (RegInfo->hasBasePointer(MF))
   1360     MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
   1361 }
   1362 
   1363 static bool
   1364 HasNestArgument(const MachineFunction *MF) {
   1365   const Function *F = MF->getFunction();
   1366   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1367        I != E; I++) {
   1368     if (I->hasNestAttr())
   1369       return true;
   1370   }
   1371   return false;
   1372 }
   1373 
   1374 /// GetScratchRegister - Get a temp register for performing work in the
   1375 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
   1376 /// and the properties of the function either one or two registers will be
   1377 /// needed. Set primary to true for the first register, false for the second.
   1378 static unsigned
   1379 GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
   1380   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   1381 
   1382   // Erlang stuff.
   1383   if (CallingConvention == CallingConv::HiPE) {
   1384     if (Is64Bit)
   1385       return Primary ? X86::R14 : X86::R13;
   1386     else
   1387       return Primary ? X86::EBX : X86::EDI;
   1388   }
   1389 
   1390   if (Is64Bit)
   1391     return Primary ? X86::R11 : X86::R12;
   1392 
   1393   bool IsNested = HasNestArgument(&MF);
   1394 
   1395   if (CallingConvention == CallingConv::X86_FastCall ||
   1396       CallingConvention == CallingConv::Fast) {
   1397     if (IsNested)
   1398       report_fatal_error("Segmented stacks does not support fastcall with "
   1399                          "nested function.");
   1400     return Primary ? X86::EAX : X86::ECX;
   1401   }
   1402   if (IsNested)
   1403     return Primary ? X86::EDX : X86::EAX;
   1404   return Primary ? X86::ECX : X86::EAX;
   1405 }
   1406 
   1407 // The stack limit in the TCB is set to this many bytes above the actual stack
   1408 // limit.
   1409 static const uint64_t kSplitStackAvailable = 256;
   1410 
   1411 void
   1412 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
   1413   MachineBasicBlock &prologueMBB = MF.front();
   1414   MachineFrameInfo *MFI = MF.getFrameInfo();
   1415   const X86InstrInfo &TII = *TM.getInstrInfo();
   1416   uint64_t StackSize;
   1417   bool Is64Bit = STI.is64Bit();
   1418   unsigned TlsReg, TlsOffset;
   1419   DebugLoc DL;
   1420 
   1421   unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
   1422   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1423          "Scratch register is live-in");
   1424 
   1425   if (MF.getFunction()->isVarArg())
   1426     report_fatal_error("Segmented stacks do not support vararg functions.");
   1427   if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
   1428       !STI.isTargetWin32() && !STI.isTargetFreeBSD())
   1429     report_fatal_error("Segmented stacks not supported on this platform.");
   1430 
   1431   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   1432   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   1433   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1434   bool IsNested = false;
   1435 
   1436   // We need to know if the function has a nest argument only in 64 bit mode.
   1437   if (Is64Bit)
   1438     IsNested = HasNestArgument(&MF);
   1439 
   1440   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   1441   // allocMBB needs to be last (terminating) instruction.
   1442 
   1443   for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
   1444          e = prologueMBB.livein_end(); i != e; i++) {
   1445     allocMBB->addLiveIn(*i);
   1446     checkMBB->addLiveIn(*i);
   1447   }
   1448 
   1449   if (IsNested)
   1450     allocMBB->addLiveIn(X86::R10);
   1451 
   1452   MF.push_front(allocMBB);
   1453   MF.push_front(checkMBB);
   1454 
   1455   // Eventually StackSize will be calculated by a link-time pass; which will
   1456   // also decide whether checking code needs to be injected into this particular
   1457   // prologue.
   1458   StackSize = MFI->getStackSize();
   1459 
   1460   // When the frame size is less than 256 we just compare the stack
   1461   // boundary directly to the value of the stack pointer, per gcc.
   1462   bool CompareStackPointer = StackSize < kSplitStackAvailable;
   1463 
   1464   // Read the limit off the current stacklet off the stack_guard location.
   1465   if (Is64Bit) {
   1466     if (STI.isTargetLinux()) {
   1467       TlsReg = X86::FS;
   1468       TlsOffset = 0x70;
   1469     } else if (STI.isTargetDarwin()) {
   1470       TlsReg = X86::GS;
   1471       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
   1472     } else if (STI.isTargetFreeBSD()) {
   1473       TlsReg = X86::FS;
   1474       TlsOffset = 0x18;
   1475     } else {
   1476       report_fatal_error("Segmented stacks not supported on this platform.");
   1477     }
   1478 
   1479     if (CompareStackPointer)
   1480       ScratchReg = X86::RSP;
   1481     else
   1482       BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
   1483         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   1484 
   1485     BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
   1486       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1487   } else {
   1488     if (STI.isTargetLinux()) {
   1489       TlsReg = X86::GS;
   1490       TlsOffset = 0x30;
   1491     } else if (STI.isTargetDarwin()) {
   1492       TlsReg = X86::GS;
   1493       TlsOffset = 0x48 + 90*4;
   1494     } else if (STI.isTargetWin32()) {
   1495       TlsReg = X86::FS;
   1496       TlsOffset = 0x14; // pvArbitrary, reserved for application use
   1497     } else if (STI.isTargetFreeBSD()) {
   1498       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
   1499     } else {
   1500       report_fatal_error("Segmented stacks not supported on this platform.");
   1501     }
   1502 
   1503     if (CompareStackPointer)
   1504       ScratchReg = X86::ESP;
   1505     else
   1506       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   1507         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   1508 
   1509     if (STI.isTargetLinux() || STI.isTargetWin32()) {
   1510       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   1511         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1512     } else if (STI.isTargetDarwin()) {
   1513 
   1514       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
   1515       unsigned ScratchReg2;
   1516       bool SaveScratch2;
   1517       if (CompareStackPointer) {
   1518         // The primary scratch register is available for holding the TLS offset
   1519         ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
   1520         SaveScratch2 = false;
   1521       } else {
   1522         // Need to use a second register to hold the TLS offset
   1523         ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
   1524 
   1525         // Unfortunately, with fastcc the second scratch register may hold an arg
   1526         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
   1527       }
   1528 
   1529       // If Scratch2 is live-in then it needs to be saved
   1530       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
   1531              "Scratch register is live-in and not saved");
   1532 
   1533       if (SaveScratch2)
   1534         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
   1535           .addReg(ScratchReg2, RegState::Kill);
   1536 
   1537       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
   1538         .addImm(TlsOffset);
   1539       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
   1540         .addReg(ScratchReg)
   1541         .addReg(ScratchReg2).addImm(1).addReg(0)
   1542         .addImm(0)
   1543         .addReg(TlsReg);
   1544 
   1545       if (SaveScratch2)
   1546         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
   1547     }
   1548   }
   1549 
   1550   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   1551   // It jumps to normal execution of the function body.
   1552   BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
   1553 
   1554   // On 32 bit we first push the arguments size and then the frame size. On 64
   1555   // bit, we pass the stack frame size in r10 and the argument size in r11.
   1556   if (Is64Bit) {
   1557     // Functions with nested arguments use R10, so it needs to be saved across
   1558     // the call to _morestack
   1559 
   1560     if (IsNested)
   1561       BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
   1562 
   1563     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
   1564       .addImm(StackSize);
   1565     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
   1566       .addImm(X86FI->getArgumentStackSize());
   1567     MF.getRegInfo().setPhysRegUsed(X86::R10);
   1568     MF.getRegInfo().setPhysRegUsed(X86::R11);
   1569   } else {
   1570     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1571       .addImm(X86FI->getArgumentStackSize());
   1572     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1573       .addImm(StackSize);
   1574   }
   1575 
   1576   // __morestack is in libgcc
   1577   if (Is64Bit)
   1578     BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   1579       .addExternalSymbol("__morestack");
   1580   else
   1581     BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   1582       .addExternalSymbol("__morestack");
   1583 
   1584   if (IsNested)
   1585     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
   1586   else
   1587     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
   1588 
   1589   allocMBB->addSuccessor(&prologueMBB);
   1590 
   1591   checkMBB->addSuccessor(allocMBB);
   1592   checkMBB->addSuccessor(&prologueMBB);
   1593 
   1594 #ifdef XDEBUG
   1595   MF.verify();
   1596 #endif
   1597 }
   1598 
   1599 /// Erlang programs may need a special prologue to handle the stack size they
   1600 /// might need at runtime. That is because Erlang/OTP does not implement a C
   1601 /// stack but uses a custom implementation of hybrid stack/heap architecture.
   1602 /// (for more information see Eric Stenman's Ph.D. thesis:
   1603 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
   1604 ///
   1605 /// CheckStack:
   1606 ///	  temp0 = sp - MaxStack
   1607 ///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   1608 /// OldStart:
   1609 ///	  ...
   1610 /// IncStack:
   1611 ///	  call inc_stack   # doubles the stack space
   1612 ///	  temp0 = sp - MaxStack
   1613 ///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   1614 void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
   1615   const X86InstrInfo &TII = *TM.getInstrInfo();
   1616   MachineFrameInfo *MFI = MF.getFrameInfo();
   1617   const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize();
   1618   const bool Is64Bit = STI.is64Bit();
   1619   DebugLoc DL;
   1620   // HiPE-specific values
   1621   const unsigned HipeLeafWords = 24;
   1622   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
   1623   const unsigned Guaranteed = HipeLeafWords * SlotSize;
   1624   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
   1625                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
   1626   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
   1627 
   1628   assert(STI.isTargetLinux() &&
   1629          "HiPE prologue is only supported on Linux operating systems.");
   1630 
   1631   // Compute the largest caller's frame that is needed to fit the callees'
   1632   // frames. This 'MaxStack' is computed from:
   1633   //
   1634   // a) the fixed frame size, which is the space needed for all spilled temps,
   1635   // b) outgoing on-stack parameter areas, and
   1636   // c) the minimum stack space this function needs to make available for the
   1637   //    functions it calls (a tunable ABI property).
   1638   if (MFI->hasCalls()) {
   1639     unsigned MoreStackForCalls = 0;
   1640 
   1641     for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
   1642          MBBI != MBBE; ++MBBI)
   1643       for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
   1644            MI != ME; ++MI) {
   1645         if (!MI->isCall())
   1646           continue;
   1647 
   1648         // Get callee operand.
   1649         const MachineOperand &MO = MI->getOperand(0);
   1650 
   1651         // Only take account of global function calls (no closures etc.).
   1652         if (!MO.isGlobal())
   1653           continue;
   1654 
   1655         const Function *F = dyn_cast<Function>(MO.getGlobal());
   1656         if (!F)
   1657           continue;
   1658 
   1659         // Do not update 'MaxStack' for primitive and built-in functions
   1660         // (encoded with names either starting with "erlang."/"bif_" or not
   1661         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
   1662         // "_", such as the BIF "suspend_0") as they are executed on another
   1663         // stack.
   1664         if (F->getName().find("erlang.") != StringRef::npos ||
   1665             F->getName().find("bif_") != StringRef::npos ||
   1666             F->getName().find_first_of("._") == StringRef::npos)
   1667           continue;
   1668 
   1669         unsigned CalleeStkArity =
   1670           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
   1671         if (HipeLeafWords - 1 > CalleeStkArity)
   1672           MoreStackForCalls = std::max(MoreStackForCalls,
   1673                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
   1674       }
   1675     MaxStack += MoreStackForCalls;
   1676   }
   1677 
   1678   // If the stack frame needed is larger than the guaranteed then runtime checks
   1679   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
   1680   if (MaxStack > Guaranteed) {
   1681     MachineBasicBlock &prologueMBB = MF.front();
   1682     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
   1683     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
   1684 
   1685     for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
   1686            E = prologueMBB.livein_end(); I != E; I++) {
   1687       stackCheckMBB->addLiveIn(*I);
   1688       incStackMBB->addLiveIn(*I);
   1689     }
   1690 
   1691     MF.push_front(incStackMBB);
   1692     MF.push_front(stackCheckMBB);
   1693 
   1694     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
   1695     unsigned LEAop, CMPop, CALLop;
   1696     if (Is64Bit) {
   1697       SPReg = X86::RSP;
   1698       PReg  = X86::RBP;
   1699       LEAop = X86::LEA64r;
   1700       CMPop = X86::CMP64rm;
   1701       CALLop = X86::CALL64pcrel32;
   1702       SPLimitOffset = 0x90;
   1703     } else {
   1704       SPReg = X86::ESP;
   1705       PReg  = X86::EBP;
   1706       LEAop = X86::LEA32r;
   1707       CMPop = X86::CMP32rm;
   1708       CALLop = X86::CALLpcrel32;
   1709       SPLimitOffset = 0x4c;
   1710     }
   1711 
   1712     ScratchReg = GetScratchRegister(Is64Bit, MF, true);
   1713     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1714            "HiPE prologue scratch register is live-in");
   1715 
   1716     // Create new MBB for StackCheck:
   1717     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
   1718                  SPReg, false, -MaxStack);
   1719     // SPLimitOffset is in a fixed heap location (pointed by BP).
   1720     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
   1721                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   1722     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
   1723 
   1724     // Create new MBB for IncStack:
   1725     BuildMI(incStackMBB, DL, TII.get(CALLop)).
   1726       addExternalSymbol("inc_stack_0");
   1727     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
   1728                  SPReg, false, -MaxStack);
   1729     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
   1730                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   1731     BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
   1732 
   1733     stackCheckMBB->addSuccessor(&prologueMBB, 99);
   1734     stackCheckMBB->addSuccessor(incStackMBB, 1);
   1735     incStackMBB->addSuccessor(&prologueMBB, 99);
   1736     incStackMBB->addSuccessor(incStackMBB, 1);
   1737   }
   1738 #ifdef XDEBUG
   1739   MF.verify();
   1740 #endif
   1741 }
   1742 
   1743 void X86FrameLowering::
   1744 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
   1745                               MachineBasicBlock::iterator I) const {
   1746   const X86InstrInfo &TII = *TM.getInstrInfo();
   1747   const X86RegisterInfo &RegInfo = *TM.getRegisterInfo();
   1748   unsigned StackPtr = RegInfo.getStackRegister();
   1749   bool reseveCallFrame = hasReservedCallFrame(MF);
   1750   int Opcode = I->getOpcode();
   1751   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
   1752   bool IsLP64 = STI.isTarget64BitLP64();
   1753   DebugLoc DL = I->getDebugLoc();
   1754   uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
   1755   uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
   1756   I = MBB.erase(I);
   1757 
   1758   if (!reseveCallFrame) {
   1759     // If the stack pointer can be changed after prologue, turn the
   1760     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
   1761     // adjcallstackdown instruction into 'add ESP, <amt>'
   1762     // TODO: consider using push / pop instead of sub + store / add
   1763     if (Amount == 0)
   1764       return;
   1765 
   1766     // We need to keep the stack aligned properly.  To do this, we round the
   1767     // amount of space needed for the outgoing arguments up to the next
   1768     // alignment boundary.
   1769     unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   1770     Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
   1771 
   1772     MachineInstr *New = 0;
   1773     if (Opcode == TII.getCallFrameSetupOpcode()) {
   1774       New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
   1775                     StackPtr)
   1776         .addReg(StackPtr)
   1777         .addImm(Amount);
   1778     } else {
   1779       assert(Opcode == TII.getCallFrameDestroyOpcode());
   1780 
   1781       // Factor out the amount the callee already popped.
   1782       Amount -= CalleeAmt;
   1783 
   1784       if (Amount) {
   1785         unsigned Opc = getADDriOpcode(IsLP64, Amount);
   1786         New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
   1787           .addReg(StackPtr).addImm(Amount);
   1788       }
   1789     }
   1790 
   1791     if (New) {
   1792       // The EFLAGS implicit def is dead.
   1793       New->getOperand(3).setIsDead();
   1794 
   1795       // Replace the pseudo instruction with a new instruction.
   1796       MBB.insert(I, New);
   1797     }
   1798 
   1799     return;
   1800   }
   1801 
   1802   if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
   1803     // If we are performing frame pointer elimination and if the callee pops
   1804     // something off the stack pointer, add it back.  We do this until we have
   1805     // more advanced stack pointer tracking ability.
   1806     unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
   1807     MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
   1808       .addReg(StackPtr).addImm(CalleeAmt);
   1809 
   1810     // The EFLAGS implicit def is dead.
   1811     New->getOperand(3).setIsDead();
   1812 
   1813     // We are not tracking the stack pointer adjustment by the callee, so make
   1814     // sure we restore the stack pointer immediately after the call, there may
   1815     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
   1816     MachineBasicBlock::iterator B = MBB.begin();
   1817     while (I != B && !llvm::prior(I)->isCall())
   1818       --I;
   1819     MBB.insert(I, New);
   1820   }
   1821 }
   1822 
   1823