Home | History | Annotate | Download | only in X86
      1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a DAG pattern matching instruction selector for X86,
     11 // converting from a legalized dag to a X86 dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86MachineFunctionInfo.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/SelectionDAGISel.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/Type.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
     40 
     41 //===----------------------------------------------------------------------===//
     42 //                      Pattern Matcher Implementation
     43 //===----------------------------------------------------------------------===//
     44 
     45 namespace {
     46   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
     47   /// SDValue's instead of register numbers for the leaves of the matched
     48   /// tree.
     49   struct X86ISelAddressMode {
     50     enum {
     51       RegBase,
     52       FrameIndexBase
     53     } BaseType;
     54 
     55     // This is really a union, discriminated by BaseType!
     56     SDValue Base_Reg;
     57     int Base_FrameIndex;
     58 
     59     unsigned Scale;
     60     SDValue IndexReg;
     61     int32_t Disp;
     62     SDValue Segment;
     63     const GlobalValue *GV;
     64     const Constant *CP;
     65     const BlockAddress *BlockAddr;
     66     const char *ES;
     67     int JT;
     68     unsigned Align;    // CP alignment.
     69     unsigned char SymbolFlags;  // X86II::MO_*
     70 
     71     X86ISelAddressMode()
     72       : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
     73         Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
     74         SymbolFlags(X86II::MO_NO_FLAG) {
     75     }
     76 
     77     bool hasSymbolicDisplacement() const {
     78       return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
     79     }
     80 
     81     bool hasBaseOrIndexReg() const {
     82       return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
     83     }
     84 
     85     /// isRIPRelative - Return true if this addressing mode is already RIP
     86     /// relative.
     87     bool isRIPRelative() const {
     88       if (BaseType != RegBase) return false;
     89       if (RegisterSDNode *RegNode =
     90             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
     91         return RegNode->getReg() == X86::RIP;
     92       return false;
     93     }
     94 
     95     void setBaseReg(SDValue Reg) {
     96       BaseType = RegBase;
     97       Base_Reg = Reg;
     98     }
     99 
    100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    101     void dump() {
    102       dbgs() << "X86ISelAddressMode " << this << '\n';
    103       dbgs() << "Base_Reg ";
    104       if (Base_Reg.getNode() != 0)
    105         Base_Reg.getNode()->dump();
    106       else
    107         dbgs() << "nul";
    108       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
    109              << " Scale" << Scale << '\n'
    110              << "IndexReg ";
    111       if (IndexReg.getNode() != 0)
    112         IndexReg.getNode()->dump();
    113       else
    114         dbgs() << "nul";
    115       dbgs() << " Disp " << Disp << '\n'
    116              << "GV ";
    117       if (GV)
    118         GV->dump();
    119       else
    120         dbgs() << "nul";
    121       dbgs() << " CP ";
    122       if (CP)
    123         CP->dump();
    124       else
    125         dbgs() << "nul";
    126       dbgs() << '\n'
    127              << "ES ";
    128       if (ES)
    129         dbgs() << ES;
    130       else
    131         dbgs() << "nul";
    132       dbgs() << " JT" << JT << " Align" << Align << '\n';
    133     }
    134 #endif
    135   };
    136 }
    137 
    138 namespace {
    139   //===--------------------------------------------------------------------===//
    140   /// ISel - X86 specific code to select X86 machine instructions for
    141   /// SelectionDAG operations.
    142   ///
    143   class X86DAGToDAGISel : public SelectionDAGISel {
    144     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    145     /// make the right decision when generating code for different targets.
    146     const X86Subtarget *Subtarget;
    147 
    148     /// OptForSize - If true, selector should try to optimize for code size
    149     /// instead of performance.
    150     bool OptForSize;
    151 
    152   public:
    153     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
    154       : SelectionDAGISel(tm, OptLevel),
    155         Subtarget(&tm.getSubtarget<X86Subtarget>()),
    156         OptForSize(false) {}
    157 
    158     virtual const char *getPassName() const {
    159       return "X86 DAG->DAG Instruction Selection";
    160     }
    161 
    162     virtual void EmitFunctionEntryCode();
    163 
    164     virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
    165 
    166     virtual void PreprocessISelDAG();
    167 
    168     inline bool immSext8(SDNode *N) const {
    169       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    170     }
    171 
    172     // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    173     // sign extended field.
    174     inline bool i64immSExt32(SDNode *N) const {
    175       uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
    176       return (int64_t)v == (int32_t)v;
    177     }
    178 
    179 // Include the pieces autogenerated from the target description.
    180 #include "X86GenDAGISel.inc"
    181 
    182   private:
    183     SDNode *Select(SDNode *N);
    184     SDNode *SelectGather(SDNode *N, unsigned Opc);
    185     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    186     SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
    187 
    188     bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    189     bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    190     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    191     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    192     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    193                                  unsigned Depth);
    194     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    195     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
    196                     SDValue &Scale, SDValue &Index, SDValue &Disp,
    197                     SDValue &Segment);
    198     bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
    199     bool SelectLEAAddr(SDValue N, SDValue &Base,
    200                        SDValue &Scale, SDValue &Index, SDValue &Disp,
    201                        SDValue &Segment);
    202     bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
    203                             SDValue &Scale, SDValue &Index, SDValue &Disp,
    204                             SDValue &Segment);
    205     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
    206                            SDValue &Scale, SDValue &Index, SDValue &Disp,
    207                            SDValue &Segment);
    208     bool SelectScalarSSELoad(SDNode *Root, SDValue N,
    209                              SDValue &Base, SDValue &Scale,
    210                              SDValue &Index, SDValue &Disp,
    211                              SDValue &Segment,
    212                              SDValue &NodeWithChain);
    213 
    214     bool TryFoldLoad(SDNode *P, SDValue N,
    215                      SDValue &Base, SDValue &Scale,
    216                      SDValue &Index, SDValue &Disp,
    217                      SDValue &Segment);
    218 
    219     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    220     /// inline asm expressions.
    221     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    222                                               char ConstraintCode,
    223                                               std::vector<SDValue> &OutOps);
    224 
    225     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
    226 
    227     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
    228                                    SDValue &Scale, SDValue &Index,
    229                                    SDValue &Disp, SDValue &Segment) {
    230       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
    231         CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
    232                                     getTargetLowering()->getPointerTy()) :
    233         AM.Base_Reg;
    234       Scale = getI8Imm(AM.Scale);
    235       Index = AM.IndexReg;
    236       // These are 32-bit even in 64-bit mode since RIP relative offset
    237       // is 32-bit.
    238       if (AM.GV)
    239         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
    240                                               MVT::i32, AM.Disp,
    241                                               AM.SymbolFlags);
    242       else if (AM.CP)
    243         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
    244                                              AM.Align, AM.Disp, AM.SymbolFlags);
    245       else if (AM.ES) {
    246         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
    247         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
    248       } else if (AM.JT != -1) {
    249         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
    250         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
    251       } else if (AM.BlockAddr)
    252         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
    253                                              AM.SymbolFlags);
    254       else
    255         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
    256 
    257       if (AM.Segment.getNode())
    258         Segment = AM.Segment;
    259       else
    260         Segment = CurDAG->getRegister(0, MVT::i32);
    261     }
    262 
    263     /// getI8Imm - Return a target constant with the specified value, of type
    264     /// i8.
    265     inline SDValue getI8Imm(unsigned Imm) {
    266       return CurDAG->getTargetConstant(Imm, MVT::i8);
    267     }
    268 
    269     /// getI32Imm - Return a target constant with the specified value, of type
    270     /// i32.
    271     inline SDValue getI32Imm(unsigned Imm) {
    272       return CurDAG->getTargetConstant(Imm, MVT::i32);
    273     }
    274 
    275     /// getGlobalBaseReg - Return an SDNode that returns the value of
    276     /// the global base register. Output instructions required to
    277     /// initialize the global base register, if necessary.
    278     ///
    279     SDNode *getGlobalBaseReg();
    280 
    281     /// getTargetMachine - Return a reference to the TargetMachine, casted
    282     /// to the target-specific type.
    283     const X86TargetMachine &getTargetMachine() const {
    284       return static_cast<const X86TargetMachine &>(TM);
    285     }
    286 
    287     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    288     /// to the target-specific type.
    289     const X86InstrInfo *getInstrInfo() const {
    290       return getTargetMachine().getInstrInfo();
    291     }
    292   };
    293 }
    294 
    295 
    296 bool
    297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
    298   if (OptLevel == CodeGenOpt::None) return false;
    299 
    300   if (!N.hasOneUse())
    301     return false;
    302 
    303   if (N.getOpcode() != ISD::LOAD)
    304     return true;
    305 
    306   // If N is a load, do additional profitability checks.
    307   if (U == Root) {
    308     switch (U->getOpcode()) {
    309     default: break;
    310     case X86ISD::ADD:
    311     case X86ISD::SUB:
    312     case X86ISD::AND:
    313     case X86ISD::XOR:
    314     case X86ISD::OR:
    315     case ISD::ADD:
    316     case ISD::ADDC:
    317     case ISD::ADDE:
    318     case ISD::AND:
    319     case ISD::OR:
    320     case ISD::XOR: {
    321       SDValue Op1 = U->getOperand(1);
    322 
    323       // If the other operand is a 8-bit immediate we should fold the immediate
    324       // instead. This reduces code size.
    325       // e.g.
    326       // movl 4(%esp), %eax
    327       // addl $4, %eax
    328       // vs.
    329       // movl $4, %eax
    330       // addl 4(%esp), %eax
    331       // The former is 2 bytes shorter. In case where the increment is 1, then
    332       // the saving can be 4 bytes (by using incl %eax).
    333       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
    334         if (Imm->getAPIntValue().isSignedIntN(8))
    335           return false;
    336 
    337       // If the other operand is a TLS address, we should fold it instead.
    338       // This produces
    339       // movl    %gs:0, %eax
    340       // leal    i@NTPOFF(%eax), %eax
    341       // instead of
    342       // movl    $i@NTPOFF, %eax
    343       // addl    %gs:0, %eax
    344       // if the block also has an access to a second TLS address this will save
    345       // a load.
    346       // FIXME: This is probably also true for non TLS addresses.
    347       if (Op1.getOpcode() == X86ISD::Wrapper) {
    348         SDValue Val = Op1.getOperand(0);
    349         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
    350           return false;
    351       }
    352     }
    353     }
    354   }
    355 
    356   return true;
    357 }
    358 
    359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
    360 /// load's chain operand and move load below the call's chain operand.
    361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
    362                                SDValue Call, SDValue OrigChain) {
    363   SmallVector<SDValue, 8> Ops;
    364   SDValue Chain = OrigChain.getOperand(0);
    365   if (Chain.getNode() == Load.getNode())
    366     Ops.push_back(Load.getOperand(0));
    367   else {
    368     assert(Chain.getOpcode() == ISD::TokenFactor &&
    369            "Unexpected chain operand");
    370     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
    371       if (Chain.getOperand(i).getNode() == Load.getNode())
    372         Ops.push_back(Load.getOperand(0));
    373       else
    374         Ops.push_back(Chain.getOperand(i));
    375     SDValue NewChain =
    376       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
    377                       MVT::Other, &Ops[0], Ops.size());
    378     Ops.clear();
    379     Ops.push_back(NewChain);
    380   }
    381   for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    382     Ops.push_back(OrigChain.getOperand(i));
    383   CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
    384   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
    385                              Load.getOperand(1), Load.getOperand(2));
    386 
    387   unsigned NumOps = Call.getNode()->getNumOperands();
    388   Ops.clear();
    389   Ops.push_back(SDValue(Load.getNode(), 1));
    390   for (unsigned i = 1, e = NumOps; i != e; ++i)
    391     Ops.push_back(Call.getOperand(i));
    392   CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
    393 }
    394 
    395 /// isCalleeLoad - Return true if call address is a load and it can be
    396 /// moved below CALLSEQ_START and the chains leading up to the call.
    397 /// Return the CALLSEQ_START by reference as a second output.
    398 /// In the case of a tail call, there isn't a callseq node between the call
    399 /// chain and the load.
    400 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
    401   // The transformation is somewhat dangerous if the call's chain was glued to
    402   // the call. After MoveBelowOrigChain the load is moved between the call and
    403   // the chain, this can create a cycle if the load is not folded. So it is
    404   // *really* important that we are sure the load will be folded.
    405   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    406     return false;
    407   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
    408   if (!LD ||
    409       LD->isVolatile() ||
    410       LD->getAddressingMode() != ISD::UNINDEXED ||
    411       LD->getExtensionType() != ISD::NON_EXTLOAD)
    412     return false;
    413 
    414   // Now let's find the callseq_start.
    415   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    416     if (!Chain.hasOneUse())
    417       return false;
    418     Chain = Chain.getOperand(0);
    419   }
    420 
    421   if (!Chain.getNumOperands())
    422     return false;
    423   // Since we are not checking for AA here, conservatively abort if the chain
    424   // writes to memory. It's not safe to move the callee (a load) across a store.
    425   if (isa<MemSDNode>(Chain.getNode()) &&
    426       cast<MemSDNode>(Chain.getNode())->writeMem())
    427     return false;
    428   if (Chain.getOperand(0).getNode() == Callee.getNode())
    429     return true;
    430   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
    431       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
    432       Callee.getValue(1).hasOneUse())
    433     return true;
    434   return false;
    435 }
    436 
    437 void X86DAGToDAGISel::PreprocessISelDAG() {
    438   // OptForSize is used in pattern predicates that isel is matching.
    439   OptForSize = MF->getFunction()->getAttributes().
    440     hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
    441 
    442   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
    443        E = CurDAG->allnodes_end(); I != E; ) {
    444     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
    445 
    446     if (OptLevel != CodeGenOpt::None &&
    447         // Only does this when target favors doesn't favor register indirect
    448         // call.
    449         ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
    450          (N->getOpcode() == X86ISD::TC_RETURN &&
    451           // Only does this if load can be folded into TC_RETURN.
    452           (Subtarget->is64Bit() ||
    453            getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
    454       /// Also try moving call address load from outside callseq_start to just
    455       /// before the call to allow it to be folded.
    456       ///
    457       ///     [Load chain]
    458       ///         ^
    459       ///         |
    460       ///       [Load]
    461       ///       ^    ^
    462       ///       |    |
    463       ///      /      \--
    464       ///     /          |
    465       ///[CALLSEQ_START] |
    466       ///     ^          |
    467       ///     |          |
    468       /// [LOAD/C2Reg]   |
    469       ///     |          |
    470       ///      \        /
    471       ///       \      /
    472       ///       [CALL]
    473       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
    474       SDValue Chain = N->getOperand(0);
    475       SDValue Load  = N->getOperand(1);
    476       if (!isCalleeLoad(Load, Chain, HasCallSeq))
    477         continue;
    478       MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
    479       ++NumLoadMoved;
    480       continue;
    481     }
    482 
    483     // Lower fpround and fpextend nodes that target the FP stack to be store and
    484     // load to the stack.  This is a gross hack.  We would like to simply mark
    485     // these as being illegal, but when we do that, legalize produces these when
    486     // it expands calls, then expands these in the same legalize pass.  We would
    487     // like dag combine to be able to hack on these between the call expansion
    488     // and the node legalization.  As such this pass basically does "really
    489     // late" legalization of these inline with the X86 isel pass.
    490     // FIXME: This should only happen when not compiled with -O0.
    491     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
    492       continue;
    493 
    494     EVT SrcVT = N->getOperand(0).getValueType();
    495     EVT DstVT = N->getValueType(0);
    496 
    497     // If any of the sources are vectors, no fp stack involved.
    498     if (SrcVT.isVector() || DstVT.isVector())
    499       continue;
    500 
    501     // If the source and destination are SSE registers, then this is a legal
    502     // conversion that should not be lowered.
    503     const X86TargetLowering *X86Lowering =
    504         static_cast<const X86TargetLowering *>(getTargetLowering());
    505     bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
    506     bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
    507     if (SrcIsSSE && DstIsSSE)
    508       continue;
    509 
    510     if (!SrcIsSSE && !DstIsSSE) {
    511       // If this is an FPStack extension, it is a noop.
    512       if (N->getOpcode() == ISD::FP_EXTEND)
    513         continue;
    514       // If this is a value-preserving FPStack truncation, it is a noop.
    515       if (N->getConstantOperandVal(1))
    516         continue;
    517     }
    518 
    519     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    520     // FPStack has extload and truncstore.  SSE can fold direct loads into other
    521     // operations.  Based on this, decide what we want to do.
    522     EVT MemVT;
    523     if (N->getOpcode() == ISD::FP_ROUND)
    524       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    525     else
    526       MemVT = SrcIsSSE ? SrcVT : DstVT;
    527 
    528     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    529     SDLoc dl(N);
    530 
    531     // FIXME: optimize the case where the src/dest is a load or store?
    532     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
    533                                           N->getOperand(0),
    534                                           MemTmp, MachinePointerInfo(), MemVT,
    535                                           false, false, 0);
    536     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
    537                                         MachinePointerInfo(),
    538                                         MemVT, false, false, 0);
    539 
    540     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    541     // extload we created.  This will cause general havok on the dag because
    542     // anything below the conversion could be folded into other existing nodes.
    543     // To avoid invalidating 'I', back it up to the convert node.
    544     --I;
    545     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    546 
    547     // Now that we did that, the node is dead.  Increment the iterator to the
    548     // next node to process, then delete N.
    549     ++I;
    550     CurDAG->DeleteNode(N);
    551   }
    552 }
    553 
    554 
    555 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
    556 /// the main function.
    557 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
    558                                              MachineFrameInfo *MFI) {
    559   const TargetInstrInfo *TII = TM.getInstrInfo();
    560   if (Subtarget->isTargetCygMing()) {
    561     unsigned CallOp =
    562       Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
    563     BuildMI(BB, DebugLoc(),
    564             TII->get(CallOp)).addExternalSymbol("__main");
    565   }
    566 }
    567 
    568 void X86DAGToDAGISel::EmitFunctionEntryCode() {
    569   // If this is main, emit special code for main.
    570   if (const Function *Fn = MF->getFunction())
    571     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
    572       EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
    573 }
    574 
    575 static bool isDispSafeForFrameIndex(int64_t Val) {
    576   // On 64-bit platforms, we can run into an issue where a frame index
    577   // includes a displacement that, when added to the explicit displacement,
    578   // will overflow the displacement field. Assuming that the frame index
    579   // displacement fits into a 31-bit integer  (which is only slightly more
    580   // aggressive than the current fundamental assumption that it fits into
    581   // a 32-bit integer), a 31-bit disp should always be safe.
    582   return isInt<31>(Val);
    583 }
    584 
    585 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
    586                                             X86ISelAddressMode &AM) {
    587   int64_t Val = AM.Disp + Offset;
    588   CodeModel::Model M = TM.getCodeModel();
    589   if (Subtarget->is64Bit()) {
    590     if (!X86::isOffsetSuitableForCodeModel(Val, M,
    591                                            AM.hasSymbolicDisplacement()))
    592       return true;
    593     // In addition to the checks required for a register base, check that
    594     // we do not try to use an unsafe Disp with a frame index.
    595     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
    596         !isDispSafeForFrameIndex(Val))
    597       return true;
    598   }
    599   AM.Disp = Val;
    600   return false;
    601 
    602 }
    603 
    604 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
    605   SDValue Address = N->getOperand(1);
    606 
    607   // load gs:0 -> GS segment register.
    608   // load fs:0 -> FS segment register.
    609   //
    610   // This optimization is valid because the GNU TLS model defines that
    611   // gs:0 (or fs:0 on X86-64) contains its own address.
    612   // For more information see http://people.redhat.com/drepper/tls.pdf
    613   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    614     if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
    615         Subtarget->isTargetLinux())
    616       switch (N->getPointerInfo().getAddrSpace()) {
    617       case 256:
    618         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    619         return false;
    620       case 257:
    621         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
    622         return false;
    623       }
    624 
    625   return true;
    626 }
    627 
    628 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
    629 /// into an addressing mode.  These wrap things that will resolve down into a
    630 /// symbol reference.  If no match is possible, this returns true, otherwise it
    631 /// returns false.
    632 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
    633   // If the addressing mode already has a symbol as the displacement, we can
    634   // never match another symbol.
    635   if (AM.hasSymbolicDisplacement())
    636     return true;
    637 
    638   SDValue N0 = N.getOperand(0);
    639   CodeModel::Model M = TM.getCodeModel();
    640 
    641   // Handle X86-64 rip-relative addresses.  We check this before checking direct
    642   // folding because RIP is preferable to non-RIP accesses.
    643   if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
    644       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
    645       // they cannot be folded into immediate fields.
    646       // FIXME: This can be improved for kernel and other models?
    647       (M == CodeModel::Small || M == CodeModel::Kernel)) {
    648     // Base and index reg must be 0 in order to use %rip as base.
    649     if (AM.hasBaseOrIndexReg())
    650       return true;
    651     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    652       X86ISelAddressMode Backup = AM;
    653       AM.GV = G->getGlobal();
    654       AM.SymbolFlags = G->getTargetFlags();
    655       if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
    656         AM = Backup;
    657         return true;
    658       }
    659     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    660       X86ISelAddressMode Backup = AM;
    661       AM.CP = CP->getConstVal();
    662       AM.Align = CP->getAlignment();
    663       AM.SymbolFlags = CP->getTargetFlags();
    664       if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
    665         AM = Backup;
    666         return true;
    667       }
    668     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    669       AM.ES = S->getSymbol();
    670       AM.SymbolFlags = S->getTargetFlags();
    671     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    672       AM.JT = J->getIndex();
    673       AM.SymbolFlags = J->getTargetFlags();
    674     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
    675       X86ISelAddressMode Backup = AM;
    676       AM.BlockAddr = BA->getBlockAddress();
    677       AM.SymbolFlags = BA->getTargetFlags();
    678       if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
    679         AM = Backup;
    680         return true;
    681       }
    682     } else
    683       llvm_unreachable("Unhandled symbol reference node.");
    684 
    685     if (N.getOpcode() == X86ISD::WrapperRIP)
    686       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    687     return false;
    688   }
    689 
    690   // Handle the case when globals fit in our immediate field: This is true for
    691   // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
    692   // mode, this only applies to a non-RIP-relative computation.
    693   if (!Subtarget->is64Bit() ||
    694       M == CodeModel::Small || M == CodeModel::Kernel) {
    695     assert(N.getOpcode() != X86ISD::WrapperRIP &&
    696            "RIP-relative addressing already handled");
    697     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    698       AM.GV = G->getGlobal();
    699       AM.Disp += G->getOffset();
    700       AM.SymbolFlags = G->getTargetFlags();
    701     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    702       AM.CP = CP->getConstVal();
    703       AM.Align = CP->getAlignment();
    704       AM.Disp += CP->getOffset();
    705       AM.SymbolFlags = CP->getTargetFlags();
    706     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    707       AM.ES = S->getSymbol();
    708       AM.SymbolFlags = S->getTargetFlags();
    709     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    710       AM.JT = J->getIndex();
    711       AM.SymbolFlags = J->getTargetFlags();
    712     } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
    713       AM.BlockAddr = BA->getBlockAddress();
    714       AM.Disp += BA->getOffset();
    715       AM.SymbolFlags = BA->getTargetFlags();
    716     } else
    717       llvm_unreachable("Unhandled symbol reference node.");
    718     return false;
    719   }
    720 
    721   return true;
    722 }
    723 
    724 /// MatchAddress - Add the specified node to the specified addressing mode,
    725 /// returning true if it cannot be done.  This just pattern matches for the
    726 /// addressing mode.
    727 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
    728   if (MatchAddressRecursively(N, AM, 0))
    729     return true;
    730 
    731   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
    732   // a smaller encoding and avoids a scaled-index.
    733   if (AM.Scale == 2 &&
    734       AM.BaseType == X86ISelAddressMode::RegBase &&
    735       AM.Base_Reg.getNode() == 0) {
    736     AM.Base_Reg = AM.IndexReg;
    737     AM.Scale = 1;
    738   }
    739 
    740   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
    741   // because it has a smaller encoding.
    742   // TODO: Which other code models can use this?
    743   if (TM.getCodeModel() == CodeModel::Small &&
    744       Subtarget->is64Bit() &&
    745       AM.Scale == 1 &&
    746       AM.BaseType == X86ISelAddressMode::RegBase &&
    747       AM.Base_Reg.getNode() == 0 &&
    748       AM.IndexReg.getNode() == 0 &&
    749       AM.SymbolFlags == X86II::MO_NO_FLAG &&
    750       AM.hasSymbolicDisplacement())
    751     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
    752 
    753   return false;
    754 }
    755 
    756 // Insert a node into the DAG at least before the Pos node's position. This
    757 // will reposition the node as needed, and will assign it a node ID that is <=
    758 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
    759 // IDs! The selection DAG must no longer depend on their uniqueness when this
    760 // is used.
    761 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
    762   if (N.getNode()->getNodeId() == -1 ||
    763       N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
    764     DAG.RepositionNode(Pos.getNode(), N.getNode());
    765     N.getNode()->setNodeId(Pos.getNode()->getNodeId());
    766   }
    767 }
    768 
    769 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
    770 // allows us to convert the shift and and into an h-register extract and
    771 // a scaled index. Returns false if the simplification is performed.
    772 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
    773                                       uint64_t Mask,
    774                                       SDValue Shift, SDValue X,
    775                                       X86ISelAddressMode &AM) {
    776   if (Shift.getOpcode() != ISD::SRL ||
    777       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
    778       !Shift.hasOneUse())
    779     return true;
    780 
    781   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
    782   if (ScaleLog <= 0 || ScaleLog >= 4 ||
    783       Mask != (0xffu << ScaleLog))
    784     return true;
    785 
    786   EVT VT = N.getValueType();
    787   SDLoc DL(N);
    788   SDValue Eight = DAG.getConstant(8, MVT::i8);
    789   SDValue NewMask = DAG.getConstant(0xff, VT);
    790   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
    791   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
    792   SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
    793   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
    794 
    795   // Insert the new nodes into the topological ordering. We must do this in
    796   // a valid topological ordering as nothing is going to go back and re-sort
    797   // these nodes. We continually insert before 'N' in sequence as this is
    798   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    799   // hierarchy left to express.
    800   InsertDAGNode(DAG, N, Eight);
    801   InsertDAGNode(DAG, N, Srl);
    802   InsertDAGNode(DAG, N, NewMask);
    803   InsertDAGNode(DAG, N, And);
    804   InsertDAGNode(DAG, N, ShlCount);
    805   InsertDAGNode(DAG, N, Shl);
    806   DAG.ReplaceAllUsesWith(N, Shl);
    807   AM.IndexReg = And;
    808   AM.Scale = (1 << ScaleLog);
    809   return false;
    810 }
    811 
    812 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
    813 // allows us to fold the shift into this addressing mode. Returns false if the
    814 // transform succeeded.
    815 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
    816                                         uint64_t Mask,
    817                                         SDValue Shift, SDValue X,
    818                                         X86ISelAddressMode &AM) {
    819   if (Shift.getOpcode() != ISD::SHL ||
    820       !isa<ConstantSDNode>(Shift.getOperand(1)))
    821     return true;
    822 
    823   // Not likely to be profitable if either the AND or SHIFT node has more
    824   // than one use (unless all uses are for address computation). Besides,
    825   // isel mechanism requires their node ids to be reused.
    826   if (!N.hasOneUse() || !Shift.hasOneUse())
    827     return true;
    828 
    829   // Verify that the shift amount is something we can fold.
    830   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
    831   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
    832     return true;
    833 
    834   EVT VT = N.getValueType();
    835   SDLoc DL(N);
    836   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
    837   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
    838   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
    839 
    840   // Insert the new nodes into the topological ordering. We must do this in
    841   // a valid topological ordering as nothing is going to go back and re-sort
    842   // these nodes. We continually insert before 'N' in sequence as this is
    843   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    844   // hierarchy left to express.
    845   InsertDAGNode(DAG, N, NewMask);
    846   InsertDAGNode(DAG, N, NewAnd);
    847   InsertDAGNode(DAG, N, NewShift);
    848   DAG.ReplaceAllUsesWith(N, NewShift);
    849 
    850   AM.Scale = 1 << ShiftAmt;
    851   AM.IndexReg = NewAnd;
    852   return false;
    853 }
    854 
    855 // Implement some heroics to detect shifts of masked values where the mask can
    856 // be replaced by extending the shift and undoing that in the addressing mode
    857 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
    858 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
    859 // the addressing mode. This results in code such as:
    860 //
    861 //   int f(short *y, int *lookup_table) {
    862 //     ...
    863 //     return *y + lookup_table[*y >> 11];
    864 //   }
    865 //
    866 // Turning into:
    867 //   movzwl (%rdi), %eax
    868 //   movl %eax, %ecx
    869 //   shrl $11, %ecx
    870 //   addl (%rsi,%rcx,4), %eax
    871 //
    872 // Instead of:
    873 //   movzwl (%rdi), %eax
    874 //   movl %eax, %ecx
    875 //   shrl $9, %ecx
    876 //   andl $124, %rcx
    877 //   addl (%rsi,%rcx), %eax
    878 //
    879 // Note that this function assumes the mask is provided as a mask *after* the
    880 // value is shifted. The input chain may or may not match that, but computing
    881 // such a mask is trivial.
    882 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
    883                                     uint64_t Mask,
    884                                     SDValue Shift, SDValue X,
    885                                     X86ISelAddressMode &AM) {
    886   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
    887       !isa<ConstantSDNode>(Shift.getOperand(1)))
    888     return true;
    889 
    890   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
    891   unsigned MaskLZ = countLeadingZeros(Mask);
    892   unsigned MaskTZ = countTrailingZeros(Mask);
    893 
    894   // The amount of shift we're trying to fit into the addressing mode is taken
    895   // from the trailing zeros of the mask.
    896   unsigned AMShiftAmt = MaskTZ;
    897 
    898   // There is nothing we can do here unless the mask is removing some bits.
    899   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
    900   if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
    901 
    902   // We also need to ensure that mask is a continuous run of bits.
    903   if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
    904 
    905   // Scale the leading zero count down based on the actual size of the value.
    906   // Also scale it down based on the size of the shift.
    907   MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
    908 
    909   // The final check is to ensure that any masked out high bits of X are
    910   // already known to be zero. Otherwise, the mask has a semantic impact
    911   // other than masking out a couple of low bits. Unfortunately, because of
    912   // the mask, zero extensions will be removed from operands in some cases.
    913   // This code works extra hard to look through extensions because we can
    914   // replace them with zero extensions cheaply if necessary.
    915   bool ReplacingAnyExtend = false;
    916   if (X.getOpcode() == ISD::ANY_EXTEND) {
    917     unsigned ExtendBits =
    918       X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
    919     // Assume that we'll replace the any-extend with a zero-extend, and
    920     // narrow the search to the extended value.
    921     X = X.getOperand(0);
    922     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
    923     ReplacingAnyExtend = true;
    924   }
    925   APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
    926                                                MaskLZ);
    927   APInt KnownZero, KnownOne;
    928   DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
    929   if (MaskedHighBits != KnownZero) return true;
    930 
    931   // We've identified a pattern that can be transformed into a single shift
    932   // and an addressing mode. Make it so.
    933   EVT VT = N.getValueType();
    934   if (ReplacingAnyExtend) {
    935     assert(X.getValueType() != VT);
    936     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
    937     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
    938     InsertDAGNode(DAG, N, NewX);
    939     X = NewX;
    940   }
    941   SDLoc DL(N);
    942   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
    943   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
    944   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
    945   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
    946 
    947   // Insert the new nodes into the topological ordering. We must do this in
    948   // a valid topological ordering as nothing is going to go back and re-sort
    949   // these nodes. We continually insert before 'N' in sequence as this is
    950   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
    951   // hierarchy left to express.
    952   InsertDAGNode(DAG, N, NewSRLAmt);
    953   InsertDAGNode(DAG, N, NewSRL);
    954   InsertDAGNode(DAG, N, NewSHLAmt);
    955   InsertDAGNode(DAG, N, NewSHL);
    956   DAG.ReplaceAllUsesWith(N, NewSHL);
    957 
    958   AM.Scale = 1 << AMShiftAmt;
    959   AM.IndexReg = NewSRL;
    960   return false;
    961 }
    962 
    963 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    964                                               unsigned Depth) {
    965   SDLoc dl(N);
    966   DEBUG({
    967       dbgs() << "MatchAddress: ";
    968       AM.dump();
    969     });
    970   // Limit recursion.
    971   if (Depth > 5)
    972     return MatchAddressBase(N, AM);
    973 
    974   // If this is already a %rip relative address, we can only merge immediates
    975   // into it.  Instead of handling this in every case, we handle it here.
    976   // RIP relative addressing: %rip + 32-bit displacement!
    977   if (AM.isRIPRelative()) {
    978     // FIXME: JumpTable and ExternalSymbol address currently don't like
    979     // displacements.  It isn't very important, but this should be fixed for
    980     // consistency.
    981     if (!AM.ES && AM.JT != -1) return true;
    982 
    983     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
    984       if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
    985         return false;
    986     return true;
    987   }
    988 
    989   switch (N.getOpcode()) {
    990   default: break;
    991   case ISD::Constant: {
    992     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    993     if (!FoldOffsetIntoAddress(Val, AM))
    994       return false;
    995     break;
    996   }
    997 
    998   case X86ISD::Wrapper:
    999   case X86ISD::WrapperRIP:
   1000     if (!MatchWrapper(N, AM))
   1001       return false;
   1002     break;
   1003 
   1004   case ISD::LOAD:
   1005     if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
   1006       return false;
   1007     break;
   1008 
   1009   case ISD::FrameIndex:
   1010     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1011         AM.Base_Reg.getNode() == 0 &&
   1012         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
   1013       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
   1014       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
   1015       return false;
   1016     }
   1017     break;
   1018 
   1019   case ISD::SHL:
   1020     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
   1021       break;
   1022 
   1023     if (ConstantSDNode
   1024           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
   1025       unsigned Val = CN->getZExtValue();
   1026       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
   1027       // that the base operand remains free for further matching. If
   1028       // the base doesn't end up getting used, a post-processing step
   1029       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
   1030       if (Val == 1 || Val == 2 || Val == 3) {
   1031         AM.Scale = 1 << Val;
   1032         SDValue ShVal = N.getNode()->getOperand(0);
   1033 
   1034         // Okay, we know that we have a scale by now.  However, if the scaled
   1035         // value is an add of something and a constant, we can fold the
   1036         // constant into the disp field here.
   1037         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
   1038           AM.IndexReg = ShVal.getNode()->getOperand(0);
   1039           ConstantSDNode *AddVal =
   1040             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
   1041           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
   1042           if (!FoldOffsetIntoAddress(Disp, AM))
   1043             return false;
   1044         }
   1045 
   1046         AM.IndexReg = ShVal;
   1047         return false;
   1048       }
   1049     }
   1050     break;
   1051 
   1052   case ISD::SRL: {
   1053     // Scale must not be used already.
   1054     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
   1055 
   1056     SDValue And = N.getOperand(0);
   1057     if (And.getOpcode() != ISD::AND) break;
   1058     SDValue X = And.getOperand(0);
   1059 
   1060     // We only handle up to 64-bit values here as those are what matter for
   1061     // addressing mode optimizations.
   1062     if (X.getValueSizeInBits() > 64) break;
   1063 
   1064     // The mask used for the transform is expected to be post-shift, but we
   1065     // found the shift first so just apply the shift to the mask before passing
   1066     // it down.
   1067     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
   1068         !isa<ConstantSDNode>(And.getOperand(1)))
   1069       break;
   1070     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
   1071 
   1072     // Try to fold the mask and shift into the scale, and return false if we
   1073     // succeed.
   1074     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
   1075       return false;
   1076     break;
   1077   }
   1078 
   1079   case ISD::SMUL_LOHI:
   1080   case ISD::UMUL_LOHI:
   1081     // A mul_lohi where we need the low part can be folded as a plain multiply.
   1082     if (N.getResNo() != 0) break;
   1083     // FALL THROUGH
   1084   case ISD::MUL:
   1085   case X86ISD::MUL_IMM:
   1086     // X*[3,5,9] -> X+X*[2,4,8]
   1087     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1088         AM.Base_Reg.getNode() == 0 &&
   1089         AM.IndexReg.getNode() == 0) {
   1090       if (ConstantSDNode
   1091             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
   1092         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
   1093             CN->getZExtValue() == 9) {
   1094           AM.Scale = unsigned(CN->getZExtValue())-1;
   1095 
   1096           SDValue MulVal = N.getNode()->getOperand(0);
   1097           SDValue Reg;
   1098 
   1099           // Okay, we know that we have a scale by now.  However, if the scaled
   1100           // value is an add of something and a constant, we can fold the
   1101           // constant into the disp field here.
   1102           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
   1103               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
   1104             Reg = MulVal.getNode()->getOperand(0);
   1105             ConstantSDNode *AddVal =
   1106               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
   1107             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
   1108             if (FoldOffsetIntoAddress(Disp, AM))
   1109               Reg = N.getNode()->getOperand(0);
   1110           } else {
   1111             Reg = N.getNode()->getOperand(0);
   1112           }
   1113 
   1114           AM.IndexReg = AM.Base_Reg = Reg;
   1115           return false;
   1116         }
   1117     }
   1118     break;
   1119 
   1120   case ISD::SUB: {
   1121     // Given A-B, if A can be completely folded into the address and
   1122     // the index field with the index field unused, use -B as the index.
   1123     // This is a win if a has multiple parts that can be folded into
   1124     // the address. Also, this saves a mov if the base register has
   1125     // other uses, since it avoids a two-address sub instruction, however
   1126     // it costs an additional mov if the index register has other uses.
   1127 
   1128     // Add an artificial use to this node so that we can keep track of
   1129     // it if it gets CSE'd with a different node.
   1130     HandleSDNode Handle(N);
   1131 
   1132     // Test if the LHS of the sub can be folded.
   1133     X86ISelAddressMode Backup = AM;
   1134     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
   1135       AM = Backup;
   1136       break;
   1137     }
   1138     // Test if the index field is free for use.
   1139     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
   1140       AM = Backup;
   1141       break;
   1142     }
   1143 
   1144     int Cost = 0;
   1145     SDValue RHS = Handle.getValue().getNode()->getOperand(1);
   1146     // If the RHS involves a register with multiple uses, this
   1147     // transformation incurs an extra mov, due to the neg instruction
   1148     // clobbering its operand.
   1149     if (!RHS.getNode()->hasOneUse() ||
   1150         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
   1151         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
   1152         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
   1153         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
   1154          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
   1155       ++Cost;
   1156     // If the base is a register with multiple uses, this
   1157     // transformation may save a mov.
   1158     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
   1159          AM.Base_Reg.getNode() &&
   1160          !AM.Base_Reg.getNode()->hasOneUse()) ||
   1161         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1162       --Cost;
   1163     // If the folded LHS was interesting, this transformation saves
   1164     // address arithmetic.
   1165     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
   1166         ((AM.Disp != 0) && (Backup.Disp == 0)) +
   1167         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
   1168       --Cost;
   1169     // If it doesn't look like it may be an overall win, don't do it.
   1170     if (Cost >= 0) {
   1171       AM = Backup;
   1172       break;
   1173     }
   1174 
   1175     // Ok, the transformation is legal and appears profitable. Go for it.
   1176     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
   1177     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
   1178     AM.IndexReg = Neg;
   1179     AM.Scale = 1;
   1180 
   1181     // Insert the new nodes into the topological ordering.
   1182     InsertDAGNode(*CurDAG, N, Zero);
   1183     InsertDAGNode(*CurDAG, N, Neg);
   1184     return false;
   1185   }
   1186 
   1187   case ISD::ADD: {
   1188     // Add an artificial use to this node so that we can keep track of
   1189     // it if it gets CSE'd with a different node.
   1190     HandleSDNode Handle(N);
   1191 
   1192     X86ISelAddressMode Backup = AM;
   1193     if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
   1194         !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
   1195       return false;
   1196     AM = Backup;
   1197 
   1198     // Try again after commuting the operands.
   1199     if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
   1200         !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
   1201       return false;
   1202     AM = Backup;
   1203 
   1204     // If we couldn't fold both operands into the address at the same time,
   1205     // see if we can just put each operand into a register and fold at least
   1206     // the add.
   1207     if (AM.BaseType == X86ISelAddressMode::RegBase &&
   1208         !AM.Base_Reg.getNode() &&
   1209         !AM.IndexReg.getNode()) {
   1210       N = Handle.getValue();
   1211       AM.Base_Reg = N.getOperand(0);
   1212       AM.IndexReg = N.getOperand(1);
   1213       AM.Scale = 1;
   1214       return false;
   1215     }
   1216     N = Handle.getValue();
   1217     break;
   1218   }
   1219 
   1220   case ISD::OR:
   1221     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
   1222     if (CurDAG->isBaseWithConstantOffset(N)) {
   1223       X86ISelAddressMode Backup = AM;
   1224       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
   1225 
   1226       // Start with the LHS as an addr mode.
   1227       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
   1228           !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
   1229         return false;
   1230       AM = Backup;
   1231     }
   1232     break;
   1233 
   1234   case ISD::AND: {
   1235     // Perform some heroic transforms on an and of a constant-count shift
   1236     // with a constant to enable use of the scaled offset field.
   1237 
   1238     // Scale must not be used already.
   1239     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
   1240 
   1241     SDValue Shift = N.getOperand(0);
   1242     if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
   1243     SDValue X = Shift.getOperand(0);
   1244 
   1245     // We only handle up to 64-bit values here as those are what matter for
   1246     // addressing mode optimizations.
   1247     if (X.getValueSizeInBits() > 64) break;
   1248 
   1249     if (!isa<ConstantSDNode>(N.getOperand(1)))
   1250       break;
   1251     uint64_t Mask = N.getConstantOperandVal(1);
   1252 
   1253     // Try to fold the mask and shift into an extract and scale.
   1254     if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
   1255       return false;
   1256 
   1257     // Try to fold the mask and shift directly into the scale.
   1258     if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
   1259       return false;
   1260 
   1261     // Try to swap the mask and shift to place shifts which can be done as
   1262     // a scale on the outside of the mask.
   1263     if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
   1264       return false;
   1265     break;
   1266   }
   1267   }
   1268 
   1269   return MatchAddressBase(N, AM);
   1270 }
   1271 
   1272 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
   1273 /// specified addressing mode without any further recursion.
   1274 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   1275   // Is the base register already occupied?
   1276   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
   1277     // If so, check to see if the scale index register is set.
   1278     if (AM.IndexReg.getNode() == 0) {
   1279       AM.IndexReg = N;
   1280       AM.Scale = 1;
   1281       return false;
   1282     }
   1283 
   1284     // Otherwise, we cannot select it.
   1285     return true;
   1286   }
   1287 
   1288   // Default, generate it as a register.
   1289   AM.BaseType = X86ISelAddressMode::RegBase;
   1290   AM.Base_Reg = N;
   1291   return false;
   1292 }
   1293 
   1294 /// SelectAddr - returns true if it is able pattern match an addressing mode.
   1295 /// It returns the operands which make up the maximal addressing mode it can
   1296 /// match by reference.
   1297 ///
   1298 /// Parent is the parent node of the addr operand that is being matched.  It
   1299 /// is always a load, store, atomic node, or null.  It is only null when
   1300 /// checking memory operands for inline asm nodes.
   1301 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
   1302                                  SDValue &Scale, SDValue &Index,
   1303                                  SDValue &Disp, SDValue &Segment) {
   1304   X86ISelAddressMode AM;
   1305 
   1306   if (Parent &&
   1307       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
   1308       // that are not a MemSDNode, and thus don't have proper addrspace info.
   1309       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
   1310       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
   1311       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
   1312       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
   1313       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
   1314     unsigned AddrSpace =
   1315       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
   1316     // AddrSpace 256 -> GS, 257 -> FS.
   1317     if (AddrSpace == 256)
   1318       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
   1319     if (AddrSpace == 257)
   1320       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
   1321   }
   1322 
   1323   if (MatchAddress(N, AM))
   1324     return false;
   1325 
   1326   EVT VT = N.getValueType();
   1327   if (AM.BaseType == X86ISelAddressMode::RegBase) {
   1328     if (!AM.Base_Reg.getNode())
   1329       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1330   }
   1331 
   1332   if (!AM.IndexReg.getNode())
   1333     AM.IndexReg = CurDAG->getRegister(0, VT);
   1334 
   1335   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1336   return true;
   1337 }
   1338 
   1339 /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
   1340 /// match a load whose top elements are either undef or zeros.  The load flavor
   1341 /// is derived from the type of N, which is either v4f32 or v2f64.
   1342 ///
   1343 /// We also return:
   1344 ///   PatternChainNode: this is the matched node that has a chain input and
   1345 ///   output.
   1346 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
   1347                                           SDValue N, SDValue &Base,
   1348                                           SDValue &Scale, SDValue &Index,
   1349                                           SDValue &Disp, SDValue &Segment,
   1350                                           SDValue &PatternNodeWithChain) {
   1351   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   1352     PatternNodeWithChain = N.getOperand(0);
   1353     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
   1354         PatternNodeWithChain.hasOneUse() &&
   1355         IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1356         IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1357       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
   1358       if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1359         return false;
   1360       return true;
   1361     }
   1362   }
   1363 
   1364   // Also handle the case where we explicitly require zeros in the top
   1365   // elements.  This is a vector shuffle from the zero vector.
   1366   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
   1367       // Check to see if the top elements are all zeros (or bitcast of zeros).
   1368       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
   1369       N.getOperand(0).getNode()->hasOneUse() &&
   1370       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
   1371       N.getOperand(0).getOperand(0).hasOneUse() &&
   1372       IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1373       IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1374     // Okay, this is a zero extending load.  Fold it.
   1375     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
   1376     if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1377       return false;
   1378     PatternNodeWithChain = SDValue(LD, 0);
   1379     return true;
   1380   }
   1381   return false;
   1382 }
   1383 
   1384 
   1385 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
   1386   if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1387     uint64_t ImmVal = CN->getZExtValue();
   1388     if ((uint32_t)ImmVal != (uint64_t)ImmVal)
   1389       return false;
   1390 
   1391     Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
   1392     return true;
   1393   }
   1394 
   1395   // In static codegen with small code model, we can get the address of a label
   1396   // into a register with 'movl'. TableGen has already made sure we're looking
   1397   // at a label of some kind.
   1398   assert(N->getOpcode() == X86ISD::Wrapper &&
   1399          "Unexpected node type for MOV32ri64");
   1400   N = N.getOperand(0);
   1401 
   1402   if (N->getOpcode() != ISD::TargetConstantPool &&
   1403       N->getOpcode() != ISD::TargetJumpTable &&
   1404       N->getOpcode() != ISD::TargetGlobalAddress &&
   1405       N->getOpcode() != ISD::TargetExternalSymbol &&
   1406       N->getOpcode() != ISD::TargetBlockAddress)
   1407     return false;
   1408 
   1409   Imm = N;
   1410   return TM.getCodeModel() == CodeModel::Small;
   1411 }
   1412 
   1413 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
   1414                                          SDValue &Scale, SDValue &Index,
   1415                                          SDValue &Disp, SDValue &Segment) {
   1416   if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
   1417     return false;
   1418 
   1419   SDLoc DL(N);
   1420   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
   1421   if (RN && RN->getReg() == 0)
   1422     Base = CurDAG->getRegister(0, MVT::i64);
   1423   else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
   1424     // Base could already be %rip, particularly in the x32 ABI.
   1425     Base = SDValue(CurDAG->getMachineNode(
   1426                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
   1427                        CurDAG->getTargetConstant(0, MVT::i64),
   1428                        Base,
   1429                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
   1430                    0);
   1431   }
   1432 
   1433   RN = dyn_cast<RegisterSDNode>(Index);
   1434   if (RN && RN->getReg() == 0)
   1435     Index = CurDAG->getRegister(0, MVT::i64);
   1436   else {
   1437     assert(Index.getValueType() == MVT::i32 &&
   1438            "Expect to be extending 32-bit registers for use in LEA");
   1439     Index = SDValue(CurDAG->getMachineNode(
   1440                         TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
   1441                         CurDAG->getTargetConstant(0, MVT::i64),
   1442                         Index,
   1443                         CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
   1444                     0);
   1445   }
   1446 
   1447   return true;
   1448 }
   1449 
   1450 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
   1451 /// mode it matches can be cost effectively emitted as an LEA instruction.
   1452 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   1453                                     SDValue &Base, SDValue &Scale,
   1454                                     SDValue &Index, SDValue &Disp,
   1455                                     SDValue &Segment) {
   1456   X86ISelAddressMode AM;
   1457 
   1458   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
   1459   // segments.
   1460   SDValue Copy = AM.Segment;
   1461   SDValue T = CurDAG->getRegister(0, MVT::i32);
   1462   AM.Segment = T;
   1463   if (MatchAddress(N, AM))
   1464     return false;
   1465   assert (T == AM.Segment);
   1466   AM.Segment = Copy;
   1467 
   1468   EVT VT = N.getValueType();
   1469   unsigned Complexity = 0;
   1470   if (AM.BaseType == X86ISelAddressMode::RegBase)
   1471     if (AM.Base_Reg.getNode())
   1472       Complexity = 1;
   1473     else
   1474       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1475   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1476     Complexity = 4;
   1477 
   1478   if (AM.IndexReg.getNode())
   1479     Complexity++;
   1480   else
   1481     AM.IndexReg = CurDAG->getRegister(0, VT);
   1482 
   1483   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
   1484   // a simple shift.
   1485   if (AM.Scale > 1)
   1486     Complexity++;
   1487 
   1488   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
   1489   // to a LEA. This is determined with some expermentation but is by no means
   1490   // optimal (especially for code size consideration). LEA is nice because of
   1491   // its three-address nature. Tweak the cost function again when we can run
   1492   // convertToThreeAddress() at register allocation time.
   1493   if (AM.hasSymbolicDisplacement()) {
   1494     // For X86-64, we should always use lea to materialize RIP relative
   1495     // addresses.
   1496     if (Subtarget->is64Bit())
   1497       Complexity = 4;
   1498     else
   1499       Complexity += 2;
   1500   }
   1501 
   1502   if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
   1503     Complexity++;
   1504 
   1505   // If it isn't worth using an LEA, reject it.
   1506   if (Complexity <= 2)
   1507     return false;
   1508 
   1509   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1510   return true;
   1511 }
   1512 
   1513 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
   1514 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
   1515                                         SDValue &Scale, SDValue &Index,
   1516                                         SDValue &Disp, SDValue &Segment) {
   1517   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
   1518   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
   1519 
   1520   X86ISelAddressMode AM;
   1521   AM.GV = GA->getGlobal();
   1522   AM.Disp += GA->getOffset();
   1523   AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
   1524   AM.SymbolFlags = GA->getTargetFlags();
   1525 
   1526   if (N.getValueType() == MVT::i32) {
   1527     AM.Scale = 1;
   1528     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
   1529   } else {
   1530     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
   1531   }
   1532 
   1533   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1534   return true;
   1535 }
   1536 
   1537 
   1538 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
   1539                                   SDValue &Base, SDValue &Scale,
   1540                                   SDValue &Index, SDValue &Disp,
   1541                                   SDValue &Segment) {
   1542   if (!ISD::isNON_EXTLoad(N.getNode()) ||
   1543       !IsProfitableToFold(N, P, P) ||
   1544       !IsLegalToFold(N, P, P, OptLevel))
   1545     return false;
   1546 
   1547   return SelectAddr(N.getNode(),
   1548                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
   1549 }
   1550 
   1551 /// getGlobalBaseReg - Return an SDNode that returns the value of
   1552 /// the global base register. Output instructions required to
   1553 /// initialize the global base register, if necessary.
   1554 ///
   1555 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
   1556   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
   1557   return CurDAG->getRegister(GlobalBaseReg,
   1558                              getTargetLowering()->getPointerTy()).getNode();
   1559 }
   1560 
   1561 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   1562   SDValue Chain = Node->getOperand(0);
   1563   SDValue In1 = Node->getOperand(1);
   1564   SDValue In2L = Node->getOperand(2);
   1565   SDValue In2H = Node->getOperand(3);
   1566 
   1567   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1568   if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1569     return NULL;
   1570   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1571   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1572   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
   1573   SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
   1574                                            MVT::i32, MVT::i32, MVT::Other, Ops);
   1575   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   1576   return ResNode;
   1577 }
   1578 
   1579 /// Atomic opcode table
   1580 ///
   1581 enum AtomicOpc {
   1582   ADD,
   1583   SUB,
   1584   INC,
   1585   DEC,
   1586   OR,
   1587   AND,
   1588   XOR,
   1589   AtomicOpcEnd
   1590 };
   1591 
   1592 enum AtomicSz {
   1593   ConstantI8,
   1594   I8,
   1595   SextConstantI16,
   1596   ConstantI16,
   1597   I16,
   1598   SextConstantI32,
   1599   ConstantI32,
   1600   I32,
   1601   SextConstantI64,
   1602   ConstantI64,
   1603   I64,
   1604   AtomicSzEnd
   1605 };
   1606 
   1607 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
   1608   {
   1609     X86::LOCK_ADD8mi,
   1610     X86::LOCK_ADD8mr,
   1611     X86::LOCK_ADD16mi8,
   1612     X86::LOCK_ADD16mi,
   1613     X86::LOCK_ADD16mr,
   1614     X86::LOCK_ADD32mi8,
   1615     X86::LOCK_ADD32mi,
   1616     X86::LOCK_ADD32mr,
   1617     X86::LOCK_ADD64mi8,
   1618     X86::LOCK_ADD64mi32,
   1619     X86::LOCK_ADD64mr,
   1620   },
   1621   {
   1622     X86::LOCK_SUB8mi,
   1623     X86::LOCK_SUB8mr,
   1624     X86::LOCK_SUB16mi8,
   1625     X86::LOCK_SUB16mi,
   1626     X86::LOCK_SUB16mr,
   1627     X86::LOCK_SUB32mi8,
   1628     X86::LOCK_SUB32mi,
   1629     X86::LOCK_SUB32mr,
   1630     X86::LOCK_SUB64mi8,
   1631     X86::LOCK_SUB64mi32,
   1632     X86::LOCK_SUB64mr,
   1633   },
   1634   {
   1635     0,
   1636     X86::LOCK_INC8m,
   1637     0,
   1638     0,
   1639     X86::LOCK_INC16m,
   1640     0,
   1641     0,
   1642     X86::LOCK_INC32m,
   1643     0,
   1644     0,
   1645     X86::LOCK_INC64m,
   1646   },
   1647   {
   1648     0,
   1649     X86::LOCK_DEC8m,
   1650     0,
   1651     0,
   1652     X86::LOCK_DEC16m,
   1653     0,
   1654     0,
   1655     X86::LOCK_DEC32m,
   1656     0,
   1657     0,
   1658     X86::LOCK_DEC64m,
   1659   },
   1660   {
   1661     X86::LOCK_OR8mi,
   1662     X86::LOCK_OR8mr,
   1663     X86::LOCK_OR16mi8,
   1664     X86::LOCK_OR16mi,
   1665     X86::LOCK_OR16mr,
   1666     X86::LOCK_OR32mi8,
   1667     X86::LOCK_OR32mi,
   1668     X86::LOCK_OR32mr,
   1669     X86::LOCK_OR64mi8,
   1670     X86::LOCK_OR64mi32,
   1671     X86::LOCK_OR64mr,
   1672   },
   1673   {
   1674     X86::LOCK_AND8mi,
   1675     X86::LOCK_AND8mr,
   1676     X86::LOCK_AND16mi8,
   1677     X86::LOCK_AND16mi,
   1678     X86::LOCK_AND16mr,
   1679     X86::LOCK_AND32mi8,
   1680     X86::LOCK_AND32mi,
   1681     X86::LOCK_AND32mr,
   1682     X86::LOCK_AND64mi8,
   1683     X86::LOCK_AND64mi32,
   1684     X86::LOCK_AND64mr,
   1685   },
   1686   {
   1687     X86::LOCK_XOR8mi,
   1688     X86::LOCK_XOR8mr,
   1689     X86::LOCK_XOR16mi8,
   1690     X86::LOCK_XOR16mi,
   1691     X86::LOCK_XOR16mr,
   1692     X86::LOCK_XOR32mi8,
   1693     X86::LOCK_XOR32mi,
   1694     X86::LOCK_XOR32mr,
   1695     X86::LOCK_XOR64mi8,
   1696     X86::LOCK_XOR64mi32,
   1697     X86::LOCK_XOR64mr,
   1698   }
   1699 };
   1700 
   1701 // Return the target constant operand for atomic-load-op and do simple
   1702 // translations, such as from atomic-load-add to lock-sub. The return value is
   1703 // one of the following 3 cases:
   1704 // + target-constant, the operand could be supported as a target constant.
   1705 // + empty, the operand is not needed any more with the new op selected.
   1706 // + non-empty, otherwise.
   1707 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
   1708                                                 SDLoc dl,
   1709                                                 enum AtomicOpc &Op, EVT NVT,
   1710                                                 SDValue Val) {
   1711   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
   1712     int64_t CNVal = CN->getSExtValue();
   1713     // Quit if not 32-bit imm.
   1714     if ((int32_t)CNVal != CNVal)
   1715       return Val;
   1716     // For atomic-load-add, we could do some optimizations.
   1717     if (Op == ADD) {
   1718       // Translate to INC/DEC if ADD by 1 or -1.
   1719       if ((CNVal == 1) || (CNVal == -1)) {
   1720         Op = (CNVal == 1) ? INC : DEC;
   1721         // No more constant operand after being translated into INC/DEC.
   1722         return SDValue();
   1723       }
   1724       // Translate to SUB if ADD by negative value.
   1725       if (CNVal < 0) {
   1726         Op = SUB;
   1727         CNVal = -CNVal;
   1728       }
   1729     }
   1730     return CurDAG->getTargetConstant(CNVal, NVT);
   1731   }
   1732 
   1733   // If the value operand is single-used, try to optimize it.
   1734   if (Op == ADD && Val.hasOneUse()) {
   1735     // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
   1736     if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
   1737       Op = SUB;
   1738       return Val.getOperand(1);
   1739     }
   1740     // A special case for i16, which needs truncating as, in most cases, it's
   1741     // promoted to i32. We will translate
   1742     // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
   1743     if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
   1744         Val.getOperand(0).getOpcode() == ISD::SUB &&
   1745         X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
   1746       Op = SUB;
   1747       Val = Val.getOperand(0);
   1748       return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
   1749                                             Val.getOperand(1));
   1750     }
   1751   }
   1752 
   1753   return Val;
   1754 }
   1755 
   1756 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
   1757   if (Node->hasAnyUseOfValue(0))
   1758     return 0;
   1759 
   1760   SDLoc dl(Node);
   1761 
   1762   // Optimize common patterns for __sync_or_and_fetch and similar arith
   1763   // operations where the result is not used. This allows us to use the "lock"
   1764   // version of the arithmetic instruction.
   1765   SDValue Chain = Node->getOperand(0);
   1766   SDValue Ptr = Node->getOperand(1);
   1767   SDValue Val = Node->getOperand(2);
   1768   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1769   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1770     return 0;
   1771 
   1772   // Which index into the table.
   1773   enum AtomicOpc Op;
   1774   switch (Node->getOpcode()) {
   1775     default:
   1776       return 0;
   1777     case ISD::ATOMIC_LOAD_OR:
   1778       Op = OR;
   1779       break;
   1780     case ISD::ATOMIC_LOAD_AND:
   1781       Op = AND;
   1782       break;
   1783     case ISD::ATOMIC_LOAD_XOR:
   1784       Op = XOR;
   1785       break;
   1786     case ISD::ATOMIC_LOAD_ADD:
   1787       Op = ADD;
   1788       break;
   1789   }
   1790 
   1791   Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
   1792   bool isUnOp = !Val.getNode();
   1793   bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
   1794 
   1795   unsigned Opc = 0;
   1796   switch (NVT.getSimpleVT().SimpleTy) {
   1797     default: return 0;
   1798     case MVT::i8:
   1799       if (isCN)
   1800         Opc = AtomicOpcTbl[Op][ConstantI8];
   1801       else
   1802         Opc = AtomicOpcTbl[Op][I8];
   1803       break;
   1804     case MVT::i16:
   1805       if (isCN) {
   1806         if (immSext8(Val.getNode()))
   1807           Opc = AtomicOpcTbl[Op][SextConstantI16];
   1808         else
   1809           Opc = AtomicOpcTbl[Op][ConstantI16];
   1810       } else
   1811         Opc = AtomicOpcTbl[Op][I16];
   1812       break;
   1813     case MVT::i32:
   1814       if (isCN) {
   1815         if (immSext8(Val.getNode()))
   1816           Opc = AtomicOpcTbl[Op][SextConstantI32];
   1817         else
   1818           Opc = AtomicOpcTbl[Op][ConstantI32];
   1819       } else
   1820         Opc = AtomicOpcTbl[Op][I32];
   1821       break;
   1822     case MVT::i64:
   1823       Opc = AtomicOpcTbl[Op][I64];
   1824       if (isCN) {
   1825         if (immSext8(Val.getNode()))
   1826           Opc = AtomicOpcTbl[Op][SextConstantI64];
   1827         else if (i64immSExt32(Val.getNode()))
   1828           Opc = AtomicOpcTbl[Op][ConstantI64];
   1829       }
   1830       break;
   1831   }
   1832 
   1833   assert(Opc != 0 && "Invalid arith lock transform!");
   1834 
   1835   SDValue Ret;
   1836   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1837                                                  dl, NVT), 0);
   1838   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1839   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1840   if (isUnOp) {
   1841     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
   1842     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
   1843   } else {
   1844     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1845     Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
   1846   }
   1847   cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1848   SDValue RetVals[] = { Undef, Ret };
   1849   return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1850 }
   1851 
   1852 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
   1853 /// any uses which require the SF or OF bits to be accurate.
   1854 static bool HasNoSignedComparisonUses(SDNode *N) {
   1855   // Examine each user of the node.
   1856   for (SDNode::use_iterator UI = N->use_begin(),
   1857          UE = N->use_end(); UI != UE; ++UI) {
   1858     // Only examine CopyToReg uses.
   1859     if (UI->getOpcode() != ISD::CopyToReg)
   1860       return false;
   1861     // Only examine CopyToReg uses that copy to EFLAGS.
   1862     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
   1863           X86::EFLAGS)
   1864       return false;
   1865     // Examine each user of the CopyToReg use.
   1866     for (SDNode::use_iterator FlagUI = UI->use_begin(),
   1867            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
   1868       // Only examine the Flag result.
   1869       if (FlagUI.getUse().getResNo() != 1) continue;
   1870       // Anything unusual: assume conservatively.
   1871       if (!FlagUI->isMachineOpcode()) return false;
   1872       // Examine the opcode of the user.
   1873       switch (FlagUI->getMachineOpcode()) {
   1874       // These comparisons don't treat the most significant bit specially.
   1875       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
   1876       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
   1877       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
   1878       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
   1879       case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
   1880       case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
   1881       case X86::CMOVA16rr: case X86::CMOVA16rm:
   1882       case X86::CMOVA32rr: case X86::CMOVA32rm:
   1883       case X86::CMOVA64rr: case X86::CMOVA64rm:
   1884       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
   1885       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
   1886       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
   1887       case X86::CMOVB16rr: case X86::CMOVB16rm:
   1888       case X86::CMOVB32rr: case X86::CMOVB32rm:
   1889       case X86::CMOVB64rr: case X86::CMOVB64rm:
   1890       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
   1891       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
   1892       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
   1893       case X86::CMOVE16rr: case X86::CMOVE16rm:
   1894       case X86::CMOVE32rr: case X86::CMOVE32rm:
   1895       case X86::CMOVE64rr: case X86::CMOVE64rm:
   1896       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
   1897       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
   1898       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
   1899       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
   1900       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
   1901       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
   1902       case X86::CMOVP16rr: case X86::CMOVP16rm:
   1903       case X86::CMOVP32rr: case X86::CMOVP32rm:
   1904       case X86::CMOVP64rr: case X86::CMOVP64rm:
   1905         continue;
   1906       // Anything else: assume conservatively.
   1907       default: return false;
   1908       }
   1909     }
   1910   }
   1911   return true;
   1912 }
   1913 
   1914 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
   1915 /// is suitable for doing the {load; increment or decrement; store} to modify
   1916 /// transformation.
   1917 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
   1918                                 SDValue StoredVal, SelectionDAG *CurDAG,
   1919                                 LoadSDNode* &LoadNode, SDValue &InputChain) {
   1920 
   1921   // is the value stored the result of a DEC or INC?
   1922   if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
   1923 
   1924   // is the stored value result 0 of the load?
   1925   if (StoredVal.getResNo() != 0) return false;
   1926 
   1927   // are there other uses of the loaded value than the inc or dec?
   1928   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
   1929 
   1930   // is the store non-extending and non-indexed?
   1931   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
   1932     return false;
   1933 
   1934   SDValue Load = StoredVal->getOperand(0);
   1935   // Is the stored value a non-extending and non-indexed load?
   1936   if (!ISD::isNormalLoad(Load.getNode())) return false;
   1937 
   1938   // Return LoadNode by reference.
   1939   LoadNode = cast<LoadSDNode>(Load);
   1940   // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
   1941   EVT LdVT = LoadNode->getMemoryVT();
   1942   if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
   1943       LdVT != MVT::i8)
   1944     return false;
   1945 
   1946   // Is store the only read of the loaded value?
   1947   if (!Load.hasOneUse())
   1948     return false;
   1949 
   1950   // Is the address of the store the same as the load?
   1951   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
   1952       LoadNode->getOffset() != StoreNode->getOffset())
   1953     return false;
   1954 
   1955   // Check if the chain is produced by the load or is a TokenFactor with
   1956   // the load output chain as an operand. Return InputChain by reference.
   1957   SDValue Chain = StoreNode->getChain();
   1958 
   1959   bool ChainCheck = false;
   1960   if (Chain == Load.getValue(1)) {
   1961     ChainCheck = true;
   1962     InputChain = LoadNode->getChain();
   1963   } else if (Chain.getOpcode() == ISD::TokenFactor) {
   1964     SmallVector<SDValue, 4> ChainOps;
   1965     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
   1966       SDValue Op = Chain.getOperand(i);
   1967       if (Op == Load.getValue(1)) {
   1968         ChainCheck = true;
   1969         continue;
   1970       }
   1971 
   1972       // Make sure using Op as part of the chain would not cause a cycle here.
   1973       // In theory, we could check whether the chain node is a predecessor of
   1974       // the load. But that can be very expensive. Instead visit the uses and
   1975       // make sure they all have smaller node id than the load.
   1976       int LoadId = LoadNode->getNodeId();
   1977       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   1978              UE = UI->use_end(); UI != UE; ++UI) {
   1979         if (UI.getUse().getResNo() != 0)
   1980           continue;
   1981         if (UI->getNodeId() > LoadId)
   1982           return false;
   1983       }
   1984 
   1985       ChainOps.push_back(Op);
   1986     }
   1987 
   1988     if (ChainCheck)
   1989       // Make a new TokenFactor with all the other input chains except
   1990       // for the load.
   1991       InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
   1992                                    MVT::Other, &ChainOps[0], ChainOps.size());
   1993   }
   1994   if (!ChainCheck)
   1995     return false;
   1996 
   1997   return true;
   1998 }
   1999 
   2000 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
   2001 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
   2002 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
   2003   if (Opc == X86ISD::DEC) {
   2004     if (LdVT == MVT::i64) return X86::DEC64m;
   2005     if (LdVT == MVT::i32) return X86::DEC32m;
   2006     if (LdVT == MVT::i16) return X86::DEC16m;
   2007     if (LdVT == MVT::i8)  return X86::DEC8m;
   2008   } else {
   2009     assert(Opc == X86ISD::INC && "unrecognized opcode");
   2010     if (LdVT == MVT::i64) return X86::INC64m;
   2011     if (LdVT == MVT::i32) return X86::INC32m;
   2012     if (LdVT == MVT::i16) return X86::INC16m;
   2013     if (LdVT == MVT::i8)  return X86::INC8m;
   2014   }
   2015   llvm_unreachable("unrecognized size for LdVT");
   2016 }
   2017 
   2018 /// SelectGather - Customized ISel for GATHER operations.
   2019 ///
   2020 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
   2021   // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
   2022   SDValue Chain = Node->getOperand(0);
   2023   SDValue VSrc = Node->getOperand(2);
   2024   SDValue Base = Node->getOperand(3);
   2025   SDValue VIdx = Node->getOperand(4);
   2026   SDValue VMask = Node->getOperand(5);
   2027   ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
   2028   if (!Scale)
   2029     return 0;
   2030 
   2031   SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
   2032                                    MVT::Other);
   2033 
   2034   // Memory Operands: Base, Scale, Index, Disp, Segment
   2035   SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
   2036   SDValue Segment = CurDAG->getRegister(0, MVT::i32);
   2037   const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
   2038                           Disp, Segment, VMask, Chain};
   2039   SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
   2040   // Node has 2 outputs: VDst and MVT::Other.
   2041   // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
   2042   // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
   2043   // of ResNode.
   2044   ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
   2045   ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
   2046   return ResNode;
   2047 }
   2048 
   2049 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
   2050   EVT NVT = Node->getValueType(0);
   2051   unsigned Opc, MOpc;
   2052   unsigned Opcode = Node->getOpcode();
   2053   SDLoc dl(Node);
   2054 
   2055   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
   2056 
   2057   if (Node->isMachineOpcode()) {
   2058     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
   2059     return NULL;   // Already selected.
   2060   }
   2061 
   2062   switch (Opcode) {
   2063   default: break;
   2064   case ISD::INTRINSIC_W_CHAIN: {
   2065     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
   2066     switch (IntNo) {
   2067     default: break;
   2068     case Intrinsic::x86_avx2_gather_d_pd:
   2069     case Intrinsic::x86_avx2_gather_d_pd_256:
   2070     case Intrinsic::x86_avx2_gather_q_pd:
   2071     case Intrinsic::x86_avx2_gather_q_pd_256:
   2072     case Intrinsic::x86_avx2_gather_d_ps:
   2073     case Intrinsic::x86_avx2_gather_d_ps_256:
   2074     case Intrinsic::x86_avx2_gather_q_ps:
   2075     case Intrinsic::x86_avx2_gather_q_ps_256:
   2076     case Intrinsic::x86_avx2_gather_d_q:
   2077     case Intrinsic::x86_avx2_gather_d_q_256:
   2078     case Intrinsic::x86_avx2_gather_q_q:
   2079     case Intrinsic::x86_avx2_gather_q_q_256:
   2080     case Intrinsic::x86_avx2_gather_d_d:
   2081     case Intrinsic::x86_avx2_gather_d_d_256:
   2082     case Intrinsic::x86_avx2_gather_q_d:
   2083     case Intrinsic::x86_avx2_gather_q_d_256: {
   2084       if (!Subtarget->hasAVX2())
   2085         break;
   2086       unsigned Opc;
   2087       switch (IntNo) {
   2088       default: llvm_unreachable("Impossible intrinsic");
   2089       case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
   2090       case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
   2091       case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
   2092       case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
   2093       case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
   2094       case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
   2095       case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
   2096       case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
   2097       case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
   2098       case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
   2099       case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
   2100       case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
   2101       case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
   2102       case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
   2103       case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
   2104       case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
   2105       }
   2106       SDNode *RetVal = SelectGather(Node, Opc);
   2107       if (RetVal)
   2108         // We already called ReplaceUses inside SelectGather.
   2109         return NULL;
   2110       break;
   2111     }
   2112     }
   2113     break;
   2114   }
   2115   case X86ISD::GlobalBaseReg:
   2116     return getGlobalBaseReg();
   2117 
   2118 
   2119   case X86ISD::ATOMOR64_DAG:
   2120   case X86ISD::ATOMXOR64_DAG:
   2121   case X86ISD::ATOMADD64_DAG:
   2122   case X86ISD::ATOMSUB64_DAG:
   2123   case X86ISD::ATOMNAND64_DAG:
   2124   case X86ISD::ATOMAND64_DAG:
   2125   case X86ISD::ATOMMAX64_DAG:
   2126   case X86ISD::ATOMMIN64_DAG:
   2127   case X86ISD::ATOMUMAX64_DAG:
   2128   case X86ISD::ATOMUMIN64_DAG:
   2129   case X86ISD::ATOMSWAP64_DAG: {
   2130     unsigned Opc;
   2131     switch (Opcode) {
   2132     default: llvm_unreachable("Impossible opcode");
   2133     case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
   2134     case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
   2135     case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
   2136     case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
   2137     case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
   2138     case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
   2139     case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
   2140     case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
   2141     case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
   2142     case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
   2143     case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
   2144     }
   2145     SDNode *RetVal = SelectAtomic64(Node, Opc);
   2146     if (RetVal)
   2147       return RetVal;
   2148     break;
   2149   }
   2150 
   2151   case ISD::ATOMIC_LOAD_XOR:
   2152   case ISD::ATOMIC_LOAD_AND:
   2153   case ISD::ATOMIC_LOAD_OR:
   2154   case ISD::ATOMIC_LOAD_ADD: {
   2155     SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
   2156     if (RetVal)
   2157       return RetVal;
   2158     break;
   2159   }
   2160   case ISD::AND:
   2161   case ISD::OR:
   2162   case ISD::XOR: {
   2163     // For operations of the form (x << C1) op C2, check if we can use a smaller
   2164     // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
   2165     SDValue N0 = Node->getOperand(0);
   2166     SDValue N1 = Node->getOperand(1);
   2167 
   2168     if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
   2169       break;
   2170 
   2171     // i8 is unshrinkable, i16 should be promoted to i32.
   2172     if (NVT != MVT::i32 && NVT != MVT::i64)
   2173       break;
   2174 
   2175     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
   2176     ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
   2177     if (!Cst || !ShlCst)
   2178       break;
   2179 
   2180     int64_t Val = Cst->getSExtValue();
   2181     uint64_t ShlVal = ShlCst->getZExtValue();
   2182 
   2183     // Make sure that we don't change the operation by removing bits.
   2184     // This only matters for OR and XOR, AND is unaffected.
   2185     uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
   2186     if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
   2187       break;
   2188 
   2189     unsigned ShlOp, Op;
   2190     EVT CstVT = NVT;
   2191 
   2192     // Check the minimum bitwidth for the new constant.
   2193     // TODO: AND32ri is the same as AND64ri32 with zext imm.
   2194     // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
   2195     // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
   2196     if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
   2197       CstVT = MVT::i8;
   2198     else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
   2199       CstVT = MVT::i32;
   2200 
   2201     // Bail if there is no smaller encoding.
   2202     if (NVT == CstVT)
   2203       break;
   2204 
   2205     switch (NVT.getSimpleVT().SimpleTy) {
   2206     default: llvm_unreachable("Unsupported VT!");
   2207     case MVT::i32:
   2208       assert(CstVT == MVT::i8);
   2209       ShlOp = X86::SHL32ri;
   2210 
   2211       switch (Opcode) {
   2212       default: llvm_unreachable("Impossible opcode");
   2213       case ISD::AND: Op = X86::AND32ri8; break;
   2214       case ISD::OR:  Op =  X86::OR32ri8; break;
   2215       case ISD::XOR: Op = X86::XOR32ri8; break;
   2216       }
   2217       break;
   2218     case MVT::i64:
   2219       assert(CstVT == MVT::i8 || CstVT == MVT::i32);
   2220       ShlOp = X86::SHL64ri;
   2221 
   2222       switch (Opcode) {
   2223       default: llvm_unreachable("Impossible opcode");
   2224       case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
   2225       case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
   2226       case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
   2227       }
   2228       break;
   2229     }
   2230 
   2231     // Emit the smaller op and the shift.
   2232     SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
   2233     SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
   2234     return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
   2235                                 getI8Imm(ShlVal));
   2236   }
   2237   case X86ISD::UMUL: {
   2238     SDValue N0 = Node->getOperand(0);
   2239     SDValue N1 = Node->getOperand(1);
   2240 
   2241     unsigned LoReg;
   2242     switch (NVT.getSimpleVT().SimpleTy) {
   2243     default: llvm_unreachable("Unsupported VT!");
   2244     case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
   2245     case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
   2246     case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
   2247     case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
   2248     }
   2249 
   2250     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   2251                                           N0, SDValue()).getValue(1);
   2252 
   2253     SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
   2254     SDValue Ops[] = {N1, InFlag};
   2255     SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
   2256 
   2257     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
   2258     ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
   2259     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
   2260     return NULL;
   2261   }
   2262 
   2263   case ISD::SMUL_LOHI:
   2264   case ISD::UMUL_LOHI: {
   2265     SDValue N0 = Node->getOperand(0);
   2266     SDValue N1 = Node->getOperand(1);
   2267 
   2268     bool isSigned = Opcode == ISD::SMUL_LOHI;
   2269     bool hasBMI2 = Subtarget->hasBMI2();
   2270     if (!isSigned) {
   2271       switch (NVT.getSimpleVT().SimpleTy) {
   2272       default: llvm_unreachable("Unsupported VT!");
   2273       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
   2274       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
   2275       case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
   2276                      MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
   2277       case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
   2278                      MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
   2279       }
   2280     } else {
   2281       switch (NVT.getSimpleVT().SimpleTy) {
   2282       default: llvm_unreachable("Unsupported VT!");
   2283       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
   2284       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
   2285       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
   2286       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
   2287       }
   2288     }
   2289 
   2290     unsigned SrcReg, LoReg, HiReg;
   2291     switch (Opc) {
   2292     default: llvm_unreachable("Unknown MUL opcode!");
   2293     case X86::IMUL8r:
   2294     case X86::MUL8r:
   2295       SrcReg = LoReg = X86::AL; HiReg = X86::AH;
   2296       break;
   2297     case X86::IMUL16r:
   2298     case X86::MUL16r:
   2299       SrcReg = LoReg = X86::AX; HiReg = X86::DX;
   2300       break;
   2301     case X86::IMUL32r:
   2302     case X86::MUL32r:
   2303       SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
   2304       break;
   2305     case X86::IMUL64r:
   2306     case X86::MUL64r:
   2307       SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
   2308       break;
   2309     case X86::MULX32rr:
   2310       SrcReg = X86::EDX; LoReg = HiReg = 0;
   2311       break;
   2312     case X86::MULX64rr:
   2313       SrcReg = X86::RDX; LoReg = HiReg = 0;
   2314       break;
   2315     }
   2316 
   2317     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2318     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2319     // Multiply is commmutative.
   2320     if (!foldedLoad) {
   2321       foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2322       if (foldedLoad)
   2323         std::swap(N0, N1);
   2324     }
   2325 
   2326     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
   2327                                           N0, SDValue()).getValue(1);
   2328     SDValue ResHi, ResLo;
   2329 
   2330     if (foldedLoad) {
   2331       SDValue Chain;
   2332       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2333                         InFlag };
   2334       if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
   2335         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
   2336         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
   2337         ResHi = SDValue(CNode, 0);
   2338         ResLo = SDValue(CNode, 1);
   2339         Chain = SDValue(CNode, 2);
   2340         InFlag = SDValue(CNode, 3);
   2341       } else {
   2342         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
   2343         SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
   2344         Chain = SDValue(CNode, 0);
   2345         InFlag = SDValue(CNode, 1);
   2346       }
   2347 
   2348       // Update the chain.
   2349       ReplaceUses(N1.getValue(1), Chain);
   2350     } else {
   2351       SDValue Ops[] = { N1, InFlag };
   2352       if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
   2353         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
   2354         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
   2355         ResHi = SDValue(CNode, 0);
   2356         ResLo = SDValue(CNode, 1);
   2357         InFlag = SDValue(CNode, 2);
   2358       } else {
   2359         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
   2360         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
   2361         InFlag = SDValue(CNode, 0);
   2362       }
   2363     }
   2364 
   2365     // Prevent use of AH in a REX instruction by referencing AX instead.
   2366     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2367         !SDValue(Node, 1).use_empty()) {
   2368       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2369                                               X86::AX, MVT::i16, InFlag);
   2370       InFlag = Result.getValue(2);
   2371       // Get the low part if needed. Don't use getCopyFromReg for aliasing
   2372       // registers.
   2373       if (!SDValue(Node, 0).use_empty())
   2374         ReplaceUses(SDValue(Node, 1),
   2375           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2376 
   2377       // Shift AX down 8 bits.
   2378       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2379                                               Result,
   2380                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
   2381       // Then truncate it down to i8.
   2382       ReplaceUses(SDValue(Node, 1),
   2383         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2384     }
   2385     // Copy the low half of the result, if it is needed.
   2386     if (!SDValue(Node, 0).use_empty()) {
   2387       if (ResLo.getNode() == 0) {
   2388         assert(LoReg && "Register for low half is not defined!");
   2389         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
   2390                                        InFlag);
   2391         InFlag = ResLo.getValue(2);
   2392       }
   2393       ReplaceUses(SDValue(Node, 0), ResLo);
   2394       DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
   2395     }
   2396     // Copy the high half of the result, if it is needed.
   2397     if (!SDValue(Node, 1).use_empty()) {
   2398       if (ResHi.getNode() == 0) {
   2399         assert(HiReg && "Register for high half is not defined!");
   2400         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
   2401                                        InFlag);
   2402         InFlag = ResHi.getValue(2);
   2403       }
   2404       ReplaceUses(SDValue(Node, 1), ResHi);
   2405       DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
   2406     }
   2407 
   2408     return NULL;
   2409   }
   2410 
   2411   case ISD::SDIVREM:
   2412   case ISD::UDIVREM: {
   2413     SDValue N0 = Node->getOperand(0);
   2414     SDValue N1 = Node->getOperand(1);
   2415 
   2416     bool isSigned = Opcode == ISD::SDIVREM;
   2417     if (!isSigned) {
   2418       switch (NVT.getSimpleVT().SimpleTy) {
   2419       default: llvm_unreachable("Unsupported VT!");
   2420       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
   2421       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
   2422       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
   2423       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
   2424       }
   2425     } else {
   2426       switch (NVT.getSimpleVT().SimpleTy) {
   2427       default: llvm_unreachable("Unsupported VT!");
   2428       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
   2429       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
   2430       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
   2431       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
   2432       }
   2433     }
   2434 
   2435     unsigned LoReg, HiReg, ClrReg;
   2436     unsigned SExtOpcode;
   2437     switch (NVT.getSimpleVT().SimpleTy) {
   2438     default: llvm_unreachable("Unsupported VT!");
   2439     case MVT::i8:
   2440       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
   2441       SExtOpcode = X86::CBW;
   2442       break;
   2443     case MVT::i16:
   2444       LoReg = X86::AX;  HiReg = X86::DX;
   2445       ClrReg = X86::DX;
   2446       SExtOpcode = X86::CWD;
   2447       break;
   2448     case MVT::i32:
   2449       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
   2450       SExtOpcode = X86::CDQ;
   2451       break;
   2452     case MVT::i64:
   2453       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
   2454       SExtOpcode = X86::CQO;
   2455       break;
   2456     }
   2457 
   2458     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2459     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2460     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
   2461 
   2462     SDValue InFlag;
   2463     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
   2464       // Special case for div8, just use a move with zero extension to AX to
   2465       // clear the upper 8 bits (AH).
   2466       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
   2467       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
   2468         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
   2469         Move =
   2470           SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
   2471                                          MVT::Other, Ops), 0);
   2472         Chain = Move.getValue(1);
   2473         ReplaceUses(N0.getValue(1), Chain);
   2474       } else {
   2475         Move =
   2476           SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
   2477         Chain = CurDAG->getEntryNode();
   2478       }
   2479       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
   2480       InFlag = Chain.getValue(1);
   2481     } else {
   2482       InFlag =
   2483         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
   2484                              LoReg, N0, SDValue()).getValue(1);
   2485       if (isSigned && !signBitIsZero) {
   2486         // Sign extend the low part into the high part.
   2487         InFlag =
   2488           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
   2489       } else {
   2490         // Zero out the high part, effectively zero extending the input.
   2491         SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
   2492         switch (NVT.getSimpleVT().SimpleTy) {
   2493         case MVT::i16:
   2494           ClrNode =
   2495               SDValue(CurDAG->getMachineNode(
   2496                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
   2497                           CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
   2498                       0);
   2499           break;
   2500         case MVT::i32:
   2501           break;
   2502         case MVT::i64:
   2503           ClrNode =
   2504               SDValue(CurDAG->getMachineNode(
   2505                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
   2506                           CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
   2507                           CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
   2508                       0);
   2509           break;
   2510         default:
   2511           llvm_unreachable("Unexpected division source");
   2512         }
   2513 
   2514         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
   2515                                       ClrNode, InFlag).getValue(1);
   2516       }
   2517     }
   2518 
   2519     if (foldedLoad) {
   2520       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2521                         InFlag };
   2522       SDNode *CNode =
   2523         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
   2524       InFlag = SDValue(CNode, 1);
   2525       // Update the chain.
   2526       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   2527     } else {
   2528       InFlag =
   2529         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
   2530     }
   2531 
   2532     // Prevent use of AH in a REX instruction by referencing AX instead.
   2533     // Shift it down 8 bits.
   2534     //
   2535     // The current assumption of the register allocator is that isel
   2536     // won't generate explicit references to the GPR8_NOREX registers. If
   2537     // the allocator and/or the backend get enhanced to be more robust in
   2538     // that regard, this can be, and should be, removed.
   2539     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2540         !SDValue(Node, 1).use_empty()) {
   2541       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2542                                               X86::AX, MVT::i16, InFlag);
   2543       InFlag = Result.getValue(2);
   2544 
   2545       // If we also need AL (the quotient), get it by extracting a subreg from
   2546       // Result. The fast register allocator does not like multiple CopyFromReg
   2547       // nodes using aliasing registers.
   2548       if (!SDValue(Node, 0).use_empty())
   2549         ReplaceUses(SDValue(Node, 0),
   2550           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2551 
   2552       // Shift AX right by 8 bits instead of using AH.
   2553       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2554                                          Result,
   2555                                          CurDAG->getTargetConstant(8, MVT::i8)),
   2556                        0);
   2557       ReplaceUses(SDValue(Node, 1),
   2558         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2559     }
   2560     // Copy the division (low) result, if it is needed.
   2561     if (!SDValue(Node, 0).use_empty()) {
   2562       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2563                                                 LoReg, NVT, InFlag);
   2564       InFlag = Result.getValue(2);
   2565       ReplaceUses(SDValue(Node, 0), Result);
   2566       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2567     }
   2568     // Copy the remainder (high) result, if it is needed.
   2569     if (!SDValue(Node, 1).use_empty()) {
   2570       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2571                                               HiReg, NVT, InFlag);
   2572       InFlag = Result.getValue(2);
   2573       ReplaceUses(SDValue(Node, 1), Result);
   2574       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2575     }
   2576     return NULL;
   2577   }
   2578 
   2579   case X86ISD::CMP:
   2580   case X86ISD::SUB: {
   2581     // Sometimes a SUB is used to perform comparison.
   2582     if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
   2583       // This node is not a CMP.
   2584       break;
   2585     SDValue N0 = Node->getOperand(0);
   2586     SDValue N1 = Node->getOperand(1);
   2587 
   2588     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
   2589     // use a smaller encoding.
   2590     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
   2591         HasNoSignedComparisonUses(Node))
   2592       // Look past the truncate if CMP is the only use of it.
   2593       N0 = N0.getOperand(0);
   2594     if ((N0.getNode()->getOpcode() == ISD::AND ||
   2595          (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
   2596         N0.getNode()->hasOneUse() &&
   2597         N0.getValueType() != MVT::i8 &&
   2598         X86::isZeroNode(N1)) {
   2599       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
   2600       if (!C) break;
   2601 
   2602       // For example, convert "testl %eax, $8" to "testb %al, $8"
   2603       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
   2604           (!(C->getZExtValue() & 0x80) ||
   2605            HasNoSignedComparisonUses(Node))) {
   2606         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
   2607         SDValue Reg = N0.getNode()->getOperand(0);
   2608 
   2609         // On x86-32, only the ABCD registers have 8-bit subregisters.
   2610         if (!Subtarget->is64Bit()) {
   2611           const TargetRegisterClass *TRC;
   2612           switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2613           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2614           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2615           default: llvm_unreachable("Unsupported TEST operand type!");
   2616           }
   2617           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2618           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2619                                                Reg.getValueType(), Reg, RC), 0);
   2620         }
   2621 
   2622         // Extract the l-register.
   2623         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
   2624                                                         MVT::i8, Reg);
   2625 
   2626         // Emit a testb.
   2627         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
   2628                                                  Subreg, Imm);
   2629         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2630         // one, do not call ReplaceAllUsesWith.
   2631         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2632                     SDValue(NewNode, 0));
   2633         return NULL;
   2634       }
   2635 
   2636       // For example, "testl %eax, $2048" to "testb %ah, $8".
   2637       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
   2638           (!(C->getZExtValue() & 0x8000) ||
   2639            HasNoSignedComparisonUses(Node))) {
   2640         // Shift the immediate right by 8 bits.
   2641         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
   2642                                                        MVT::i8);
   2643         SDValue Reg = N0.getNode()->getOperand(0);
   2644 
   2645         // Put the value in an ABCD register.
   2646         const TargetRegisterClass *TRC;
   2647         switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2648         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
   2649         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2650         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2651         default: llvm_unreachable("Unsupported TEST operand type!");
   2652         }
   2653         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2654         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2655                                              Reg.getValueType(), Reg, RC), 0);
   2656 
   2657         // Extract the h-register.
   2658         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
   2659                                                         MVT::i8, Reg);
   2660 
   2661         // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
   2662         // target GR8_NOREX registers, so make sure the register class is
   2663         // forced.
   2664         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
   2665                                                  MVT::i32, Subreg, ShiftedImm);
   2666         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2667         // one, do not call ReplaceAllUsesWith.
   2668         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2669                     SDValue(NewNode, 0));
   2670         return NULL;
   2671       }
   2672 
   2673       // For example, "testl %eax, $32776" to "testw %ax, $32776".
   2674       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
   2675           N0.getValueType() != MVT::i16 &&
   2676           (!(C->getZExtValue() & 0x8000) ||
   2677            HasNoSignedComparisonUses(Node))) {
   2678         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
   2679         SDValue Reg = N0.getNode()->getOperand(0);
   2680 
   2681         // Extract the 16-bit subregister.
   2682         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
   2683                                                         MVT::i16, Reg);
   2684 
   2685         // Emit a testw.
   2686         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
   2687                                                  Subreg, Imm);
   2688         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2689         // one, do not call ReplaceAllUsesWith.
   2690         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2691                     SDValue(NewNode, 0));
   2692         return NULL;
   2693       }
   2694 
   2695       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
   2696       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
   2697           N0.getValueType() == MVT::i64 &&
   2698           (!(C->getZExtValue() & 0x80000000) ||
   2699            HasNoSignedComparisonUses(Node))) {
   2700         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
   2701         SDValue Reg = N0.getNode()->getOperand(0);
   2702 
   2703         // Extract the 32-bit subregister.
   2704         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
   2705                                                         MVT::i32, Reg);
   2706 
   2707         // Emit a testl.
   2708         SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
   2709                                                  Subreg, Imm);
   2710         // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
   2711         // one, do not call ReplaceAllUsesWith.
   2712         ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
   2713                     SDValue(NewNode, 0));
   2714         return NULL;
   2715       }
   2716     }
   2717     break;
   2718   }
   2719   case ISD::STORE: {
   2720     // Change a chain of {load; incr or dec; store} of the same value into
   2721     // a simple increment or decrement through memory of that value, if the
   2722     // uses of the modified value and its address are suitable.
   2723     // The DEC64m tablegen pattern is currently not able to match the case where
   2724     // the EFLAGS on the original DEC are used. (This also applies to
   2725     // {INC,DEC}X{64,32,16,8}.)
   2726     // We'll need to improve tablegen to allow flags to be transferred from a
   2727     // node in the pattern to the result node.  probably with a new keyword
   2728     // for example, we have this
   2729     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
   2730     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
   2731     //   (implicit EFLAGS)]>;
   2732     // but maybe need something like this
   2733     // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
   2734     //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
   2735     //   (transferrable EFLAGS)]>;
   2736 
   2737     StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
   2738     SDValue StoredVal = StoreNode->getOperand(1);
   2739     unsigned Opc = StoredVal->getOpcode();
   2740 
   2741     LoadSDNode *LoadNode = 0;
   2742     SDValue InputChain;
   2743     if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
   2744                              LoadNode, InputChain))
   2745       break;
   2746 
   2747     SDValue Base, Scale, Index, Disp, Segment;
   2748     if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
   2749                     Base, Scale, Index, Disp, Segment))
   2750       break;
   2751 
   2752     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
   2753     MemOp[0] = StoreNode->getMemOperand();
   2754     MemOp[1] = LoadNode->getMemOperand();
   2755     const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
   2756     EVT LdVT = LoadNode->getMemoryVT();
   2757     unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
   2758     MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
   2759                                                    SDLoc(Node),
   2760                                                    MVT::i32, MVT::Other, Ops);
   2761     Result->setMemRefs(MemOp, MemOp + 2);
   2762 
   2763     ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
   2764     ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
   2765 
   2766     return Result;
   2767   }
   2768   }
   2769 
   2770   SDNode *ResNode = SelectCode(Node);
   2771 
   2772   DEBUG(dbgs() << "=> ";
   2773         if (ResNode == NULL || ResNode == Node)
   2774           Node->dump(CurDAG);
   2775         else
   2776           ResNode->dump(CurDAG);
   2777         dbgs() << '\n');
   2778 
   2779   return ResNode;
   2780 }
   2781 
   2782 bool X86DAGToDAGISel::
   2783 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   2784                              std::vector<SDValue> &OutOps) {
   2785   SDValue Op0, Op1, Op2, Op3, Op4;
   2786   switch (ConstraintCode) {
   2787   case 'o':   // offsetable        ??
   2788   case 'v':   // not offsetable    ??
   2789   default: return true;
   2790   case 'm':   // memory
   2791     if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
   2792       return true;
   2793     break;
   2794   }
   2795 
   2796   OutOps.push_back(Op0);
   2797   OutOps.push_back(Op1);
   2798   OutOps.push_back(Op2);
   2799   OutOps.push_back(Op3);
   2800   OutOps.push_back(Op4);
   2801   return false;
   2802 }
   2803 
   2804 /// createX86ISelDag - This pass converts a legalized DAG into a
   2805 /// X86-specific DAG, ready for instruction scheduling.
   2806 ///
   2807 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
   2808                                      CodeGenOpt::Level OptLevel) {
   2809   return new X86DAGToDAGISel(TM, OptLevel);
   2810 }
   2811