1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a DAG pattern matching instruction selector for X86, 11 // converting from a legalized dag to a X86 dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "x86-isel" 16 #include "X86.h" 17 #include "X86InstrBuilder.h" 18 #include "X86MachineFunctionInfo.h" 19 #include "X86RegisterInfo.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetMachine.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAGISel.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 40 41 //===----------------------------------------------------------------------===// 42 // Pattern Matcher Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses 47 /// SDValue's instead of register numbers for the leaves of the matched 48 /// tree. 49 struct X86ISelAddressMode { 50 enum { 51 RegBase, 52 FrameIndexBase 53 } BaseType; 54 55 // This is really a union, discriminated by BaseType! 56 SDValue Base_Reg; 57 int Base_FrameIndex; 58 59 unsigned Scale; 60 SDValue IndexReg; 61 int32_t Disp; 62 SDValue Segment; 63 const GlobalValue *GV; 64 const Constant *CP; 65 const BlockAddress *BlockAddr; 66 const char *ES; 67 int JT; 68 unsigned Align; // CP alignment. 69 unsigned char SymbolFlags; // X86II::MO_* 70 71 X86ISelAddressMode() 72 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), 73 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0), 74 SymbolFlags(X86II::MO_NO_FLAG) { 75 } 76 77 bool hasSymbolicDisplacement() const { 78 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0; 79 } 80 81 bool hasBaseOrIndexReg() const { 82 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0; 83 } 84 85 /// isRIPRelative - Return true if this addressing mode is already RIP 86 /// relative. 87 bool isRIPRelative() const { 88 if (BaseType != RegBase) return false; 89 if (RegisterSDNode *RegNode = 90 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 91 return RegNode->getReg() == X86::RIP; 92 return false; 93 } 94 95 void setBaseReg(SDValue Reg) { 96 BaseType = RegBase; 97 Base_Reg = Reg; 98 } 99 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 void dump() { 102 dbgs() << "X86ISelAddressMode " << this << '\n'; 103 dbgs() << "Base_Reg "; 104 if (Base_Reg.getNode() != 0) 105 Base_Reg.getNode()->dump(); 106 else 107 dbgs() << "nul"; 108 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n' 109 << " Scale" << Scale << '\n' 110 << "IndexReg "; 111 if (IndexReg.getNode() != 0) 112 IndexReg.getNode()->dump(); 113 else 114 dbgs() << "nul"; 115 dbgs() << " Disp " << Disp << '\n' 116 << "GV "; 117 if (GV) 118 GV->dump(); 119 else 120 dbgs() << "nul"; 121 dbgs() << " CP "; 122 if (CP) 123 CP->dump(); 124 else 125 dbgs() << "nul"; 126 dbgs() << '\n' 127 << "ES "; 128 if (ES) 129 dbgs() << ES; 130 else 131 dbgs() << "nul"; 132 dbgs() << " JT" << JT << " Align" << Align << '\n'; 133 } 134 #endif 135 }; 136 } 137 138 namespace { 139 //===--------------------------------------------------------------------===// 140 /// ISel - X86 specific code to select X86 machine instructions for 141 /// SelectionDAG operations. 142 /// 143 class X86DAGToDAGISel : public SelectionDAGISel { 144 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 145 /// make the right decision when generating code for different targets. 146 const X86Subtarget *Subtarget; 147 148 /// OptForSize - If true, selector should try to optimize for code size 149 /// instead of performance. 150 bool OptForSize; 151 152 public: 153 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 154 : SelectionDAGISel(tm, OptLevel), 155 Subtarget(&tm.getSubtarget<X86Subtarget>()), 156 OptForSize(false) {} 157 158 virtual const char *getPassName() const { 159 return "X86 DAG->DAG Instruction Selection"; 160 } 161 162 virtual void EmitFunctionEntryCode(); 163 164 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const; 165 166 virtual void PreprocessISelDAG(); 167 168 inline bool immSext8(SDNode *N) const { 169 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue()); 170 } 171 172 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 173 // sign extended field. 174 inline bool i64immSExt32(SDNode *N) const { 175 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue(); 176 return (int64_t)v == (int32_t)v; 177 } 178 179 // Include the pieces autogenerated from the target description. 180 #include "X86GenDAGISel.inc" 181 182 private: 183 SDNode *Select(SDNode *N); 184 SDNode *SelectGather(SDNode *N, unsigned Opc); 185 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); 186 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT); 187 188 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 189 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); 190 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM); 191 bool MatchAddress(SDValue N, X86ISelAddressMode &AM); 192 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 193 unsigned Depth); 194 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM); 195 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 196 SDValue &Scale, SDValue &Index, SDValue &Disp, 197 SDValue &Segment); 198 bool SelectMOV64Imm32(SDValue N, SDValue &Imm); 199 bool SelectLEAAddr(SDValue N, SDValue &Base, 200 SDValue &Scale, SDValue &Index, SDValue &Disp, 201 SDValue &Segment); 202 bool SelectLEA64_32Addr(SDValue N, SDValue &Base, 203 SDValue &Scale, SDValue &Index, SDValue &Disp, 204 SDValue &Segment); 205 bool SelectTLSADDRAddr(SDValue N, SDValue &Base, 206 SDValue &Scale, SDValue &Index, SDValue &Disp, 207 SDValue &Segment); 208 bool SelectScalarSSELoad(SDNode *Root, SDValue N, 209 SDValue &Base, SDValue &Scale, 210 SDValue &Index, SDValue &Disp, 211 SDValue &Segment, 212 SDValue &NodeWithChain); 213 214 bool TryFoldLoad(SDNode *P, SDValue N, 215 SDValue &Base, SDValue &Scale, 216 SDValue &Index, SDValue &Disp, 217 SDValue &Segment); 218 219 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 220 /// inline asm expressions. 221 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, 222 char ConstraintCode, 223 std::vector<SDValue> &OutOps); 224 225 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI); 226 227 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 228 SDValue &Scale, SDValue &Index, 229 SDValue &Disp, SDValue &Segment) { 230 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? 231 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, 232 getTargetLowering()->getPointerTy()) : 233 AM.Base_Reg; 234 Scale = getI8Imm(AM.Scale); 235 Index = AM.IndexReg; 236 // These are 32-bit even in 64-bit mode since RIP relative offset 237 // is 32-bit. 238 if (AM.GV) 239 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), 240 MVT::i32, AM.Disp, 241 AM.SymbolFlags); 242 else if (AM.CP) 243 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, 244 AM.Align, AM.Disp, AM.SymbolFlags); 245 else if (AM.ES) { 246 assert(!AM.Disp && "Non-zero displacement is ignored with ES."); 247 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 248 } else if (AM.JT != -1) { 249 assert(!AM.Disp && "Non-zero displacement is ignored with JT."); 250 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 251 } else if (AM.BlockAddr) 252 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, 253 AM.SymbolFlags); 254 else 255 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32); 256 257 if (AM.Segment.getNode()) 258 Segment = AM.Segment; 259 else 260 Segment = CurDAG->getRegister(0, MVT::i32); 261 } 262 263 /// getI8Imm - Return a target constant with the specified value, of type 264 /// i8. 265 inline SDValue getI8Imm(unsigned Imm) { 266 return CurDAG->getTargetConstant(Imm, MVT::i8); 267 } 268 269 /// getI32Imm - Return a target constant with the specified value, of type 270 /// i32. 271 inline SDValue getI32Imm(unsigned Imm) { 272 return CurDAG->getTargetConstant(Imm, MVT::i32); 273 } 274 275 /// getGlobalBaseReg - Return an SDNode that returns the value of 276 /// the global base register. Output instructions required to 277 /// initialize the global base register, if necessary. 278 /// 279 SDNode *getGlobalBaseReg(); 280 281 /// getTargetMachine - Return a reference to the TargetMachine, casted 282 /// to the target-specific type. 283 const X86TargetMachine &getTargetMachine() const { 284 return static_cast<const X86TargetMachine &>(TM); 285 } 286 287 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted 288 /// to the target-specific type. 289 const X86InstrInfo *getInstrInfo() const { 290 return getTargetMachine().getInstrInfo(); 291 } 292 }; 293 } 294 295 296 bool 297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 298 if (OptLevel == CodeGenOpt::None) return false; 299 300 if (!N.hasOneUse()) 301 return false; 302 303 if (N.getOpcode() != ISD::LOAD) 304 return true; 305 306 // If N is a load, do additional profitability checks. 307 if (U == Root) { 308 switch (U->getOpcode()) { 309 default: break; 310 case X86ISD::ADD: 311 case X86ISD::SUB: 312 case X86ISD::AND: 313 case X86ISD::XOR: 314 case X86ISD::OR: 315 case ISD::ADD: 316 case ISD::ADDC: 317 case ISD::ADDE: 318 case ISD::AND: 319 case ISD::OR: 320 case ISD::XOR: { 321 SDValue Op1 = U->getOperand(1); 322 323 // If the other operand is a 8-bit immediate we should fold the immediate 324 // instead. This reduces code size. 325 // e.g. 326 // movl 4(%esp), %eax 327 // addl $4, %eax 328 // vs. 329 // movl $4, %eax 330 // addl 4(%esp), %eax 331 // The former is 2 bytes shorter. In case where the increment is 1, then 332 // the saving can be 4 bytes (by using incl %eax). 333 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) 334 if (Imm->getAPIntValue().isSignedIntN(8)) 335 return false; 336 337 // If the other operand is a TLS address, we should fold it instead. 338 // This produces 339 // movl %gs:0, %eax 340 // leal i@NTPOFF(%eax), %eax 341 // instead of 342 // movl $i@NTPOFF, %eax 343 // addl %gs:0, %eax 344 // if the block also has an access to a second TLS address this will save 345 // a load. 346 // FIXME: This is probably also true for non TLS addresses. 347 if (Op1.getOpcode() == X86ISD::Wrapper) { 348 SDValue Val = Op1.getOperand(0); 349 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 350 return false; 351 } 352 } 353 } 354 } 355 356 return true; 357 } 358 359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with 360 /// load's chain operand and move load below the call's chain operand. 361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 362 SDValue Call, SDValue OrigChain) { 363 SmallVector<SDValue, 8> Ops; 364 SDValue Chain = OrigChain.getOperand(0); 365 if (Chain.getNode() == Load.getNode()) 366 Ops.push_back(Load.getOperand(0)); 367 else { 368 assert(Chain.getOpcode() == ISD::TokenFactor && 369 "Unexpected chain operand"); 370 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 371 if (Chain.getOperand(i).getNode() == Load.getNode()) 372 Ops.push_back(Load.getOperand(0)); 373 else 374 Ops.push_back(Chain.getOperand(i)); 375 SDValue NewChain = 376 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), 377 MVT::Other, &Ops[0], Ops.size()); 378 Ops.clear(); 379 Ops.push_back(NewChain); 380 } 381 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i) 382 Ops.push_back(OrigChain.getOperand(i)); 383 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size()); 384 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 385 Load.getOperand(1), Load.getOperand(2)); 386 387 unsigned NumOps = Call.getNode()->getNumOperands(); 388 Ops.clear(); 389 Ops.push_back(SDValue(Load.getNode(), 1)); 390 for (unsigned i = 1, e = NumOps; i != e; ++i) 391 Ops.push_back(Call.getOperand(i)); 392 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps); 393 } 394 395 /// isCalleeLoad - Return true if call address is a load and it can be 396 /// moved below CALLSEQ_START and the chains leading up to the call. 397 /// Return the CALLSEQ_START by reference as a second output. 398 /// In the case of a tail call, there isn't a callseq node between the call 399 /// chain and the load. 400 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 401 // The transformation is somewhat dangerous if the call's chain was glued to 402 // the call. After MoveBelowOrigChain the load is moved between the call and 403 // the chain, this can create a cycle if the load is not folded. So it is 404 // *really* important that we are sure the load will be folded. 405 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 406 return false; 407 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 408 if (!LD || 409 LD->isVolatile() || 410 LD->getAddressingMode() != ISD::UNINDEXED || 411 LD->getExtensionType() != ISD::NON_EXTLOAD) 412 return false; 413 414 // Now let's find the callseq_start. 415 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 416 if (!Chain.hasOneUse()) 417 return false; 418 Chain = Chain.getOperand(0); 419 } 420 421 if (!Chain.getNumOperands()) 422 return false; 423 // Since we are not checking for AA here, conservatively abort if the chain 424 // writes to memory. It's not safe to move the callee (a load) across a store. 425 if (isa<MemSDNode>(Chain.getNode()) && 426 cast<MemSDNode>(Chain.getNode())->writeMem()) 427 return false; 428 if (Chain.getOperand(0).getNode() == Callee.getNode()) 429 return true; 430 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 431 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 432 Callee.getValue(1).hasOneUse()) 433 return true; 434 return false; 435 } 436 437 void X86DAGToDAGISel::PreprocessISelDAG() { 438 // OptForSize is used in pattern predicates that isel is matching. 439 OptForSize = MF->getFunction()->getAttributes(). 440 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); 441 442 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 443 E = CurDAG->allnodes_end(); I != E; ) { 444 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. 445 446 if (OptLevel != CodeGenOpt::None && 447 // Only does this when target favors doesn't favor register indirect 448 // call. 449 ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) || 450 (N->getOpcode() == X86ISD::TC_RETURN && 451 // Only does this if load can be folded into TC_RETURN. 452 (Subtarget->is64Bit() || 453 getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { 454 /// Also try moving call address load from outside callseq_start to just 455 /// before the call to allow it to be folded. 456 /// 457 /// [Load chain] 458 /// ^ 459 /// | 460 /// [Load] 461 /// ^ ^ 462 /// | | 463 /// / \-- 464 /// / | 465 ///[CALLSEQ_START] | 466 /// ^ | 467 /// | | 468 /// [LOAD/C2Reg] | 469 /// | | 470 /// \ / 471 /// \ / 472 /// [CALL] 473 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 474 SDValue Chain = N->getOperand(0); 475 SDValue Load = N->getOperand(1); 476 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 477 continue; 478 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 479 ++NumLoadMoved; 480 continue; 481 } 482 483 // Lower fpround and fpextend nodes that target the FP stack to be store and 484 // load to the stack. This is a gross hack. We would like to simply mark 485 // these as being illegal, but when we do that, legalize produces these when 486 // it expands calls, then expands these in the same legalize pass. We would 487 // like dag combine to be able to hack on these between the call expansion 488 // and the node legalization. As such this pass basically does "really 489 // late" legalization of these inline with the X86 isel pass. 490 // FIXME: This should only happen when not compiled with -O0. 491 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) 492 continue; 493 494 EVT SrcVT = N->getOperand(0).getValueType(); 495 EVT DstVT = N->getValueType(0); 496 497 // If any of the sources are vectors, no fp stack involved. 498 if (SrcVT.isVector() || DstVT.isVector()) 499 continue; 500 501 // If the source and destination are SSE registers, then this is a legal 502 // conversion that should not be lowered. 503 const X86TargetLowering *X86Lowering = 504 static_cast<const X86TargetLowering *>(getTargetLowering()); 505 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 506 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 507 if (SrcIsSSE && DstIsSSE) 508 continue; 509 510 if (!SrcIsSSE && !DstIsSSE) { 511 // If this is an FPStack extension, it is a noop. 512 if (N->getOpcode() == ISD::FP_EXTEND) 513 continue; 514 // If this is a value-preserving FPStack truncation, it is a noop. 515 if (N->getConstantOperandVal(1)) 516 continue; 517 } 518 519 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 520 // FPStack has extload and truncstore. SSE can fold direct loads into other 521 // operations. Based on this, decide what we want to do. 522 EVT MemVT; 523 if (N->getOpcode() == ISD::FP_ROUND) 524 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. 525 else 526 MemVT = SrcIsSSE ? SrcVT : DstVT; 527 528 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 529 SDLoc dl(N); 530 531 // FIXME: optimize the case where the src/dest is a load or store? 532 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, 533 N->getOperand(0), 534 MemTmp, MachinePointerInfo(), MemVT, 535 false, false, 0); 536 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, 537 MachinePointerInfo(), 538 MemVT, false, false, 0); 539 540 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 541 // extload we created. This will cause general havok on the dag because 542 // anything below the conversion could be folded into other existing nodes. 543 // To avoid invalidating 'I', back it up to the convert node. 544 --I; 545 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 546 547 // Now that we did that, the node is dead. Increment the iterator to the 548 // next node to process, then delete N. 549 ++I; 550 CurDAG->DeleteNode(N); 551 } 552 } 553 554 555 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in 556 /// the main function. 557 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB, 558 MachineFrameInfo *MFI) { 559 const TargetInstrInfo *TII = TM.getInstrInfo(); 560 if (Subtarget->isTargetCygMing()) { 561 unsigned CallOp = 562 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; 563 BuildMI(BB, DebugLoc(), 564 TII->get(CallOp)).addExternalSymbol("__main"); 565 } 566 } 567 568 void X86DAGToDAGISel::EmitFunctionEntryCode() { 569 // If this is main, emit special code for main. 570 if (const Function *Fn = MF->getFunction()) 571 if (Fn->hasExternalLinkage() && Fn->getName() == "main") 572 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo()); 573 } 574 575 static bool isDispSafeForFrameIndex(int64_t Val) { 576 // On 64-bit platforms, we can run into an issue where a frame index 577 // includes a displacement that, when added to the explicit displacement, 578 // will overflow the displacement field. Assuming that the frame index 579 // displacement fits into a 31-bit integer (which is only slightly more 580 // aggressive than the current fundamental assumption that it fits into 581 // a 32-bit integer), a 31-bit disp should always be safe. 582 return isInt<31>(Val); 583 } 584 585 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset, 586 X86ISelAddressMode &AM) { 587 int64_t Val = AM.Disp + Offset; 588 CodeModel::Model M = TM.getCodeModel(); 589 if (Subtarget->is64Bit()) { 590 if (!X86::isOffsetSuitableForCodeModel(Val, M, 591 AM.hasSymbolicDisplacement())) 592 return true; 593 // In addition to the checks required for a register base, check that 594 // we do not try to use an unsafe Disp with a frame index. 595 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 596 !isDispSafeForFrameIndex(Val)) 597 return true; 598 } 599 AM.Disp = Val; 600 return false; 601 602 } 603 604 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ 605 SDValue Address = N->getOperand(1); 606 607 // load gs:0 -> GS segment register. 608 // load fs:0 -> FS segment register. 609 // 610 // This optimization is valid because the GNU TLS model defines that 611 // gs:0 (or fs:0 on X86-64) contains its own address. 612 // For more information see http://people.redhat.com/drepper/tls.pdf 613 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) 614 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 && 615 Subtarget->isTargetLinux()) 616 switch (N->getPointerInfo().getAddrSpace()) { 617 case 256: 618 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 619 return false; 620 case 257: 621 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 622 return false; 623 } 624 625 return true; 626 } 627 628 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes 629 /// into an addressing mode. These wrap things that will resolve down into a 630 /// symbol reference. If no match is possible, this returns true, otherwise it 631 /// returns false. 632 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) { 633 // If the addressing mode already has a symbol as the displacement, we can 634 // never match another symbol. 635 if (AM.hasSymbolicDisplacement()) 636 return true; 637 638 SDValue N0 = N.getOperand(0); 639 CodeModel::Model M = TM.getCodeModel(); 640 641 // Handle X86-64 rip-relative addresses. We check this before checking direct 642 // folding because RIP is preferable to non-RIP accesses. 643 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP && 644 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so 645 // they cannot be folded into immediate fields. 646 // FIXME: This can be improved for kernel and other models? 647 (M == CodeModel::Small || M == CodeModel::Kernel)) { 648 // Base and index reg must be 0 in order to use %rip as base. 649 if (AM.hasBaseOrIndexReg()) 650 return true; 651 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 652 X86ISelAddressMode Backup = AM; 653 AM.GV = G->getGlobal(); 654 AM.SymbolFlags = G->getTargetFlags(); 655 if (FoldOffsetIntoAddress(G->getOffset(), AM)) { 656 AM = Backup; 657 return true; 658 } 659 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 660 X86ISelAddressMode Backup = AM; 661 AM.CP = CP->getConstVal(); 662 AM.Align = CP->getAlignment(); 663 AM.SymbolFlags = CP->getTargetFlags(); 664 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) { 665 AM = Backup; 666 return true; 667 } 668 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 669 AM.ES = S->getSymbol(); 670 AM.SymbolFlags = S->getTargetFlags(); 671 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 672 AM.JT = J->getIndex(); 673 AM.SymbolFlags = J->getTargetFlags(); 674 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 675 X86ISelAddressMode Backup = AM; 676 AM.BlockAddr = BA->getBlockAddress(); 677 AM.SymbolFlags = BA->getTargetFlags(); 678 if (FoldOffsetIntoAddress(BA->getOffset(), AM)) { 679 AM = Backup; 680 return true; 681 } 682 } else 683 llvm_unreachable("Unhandled symbol reference node."); 684 685 if (N.getOpcode() == X86ISD::WrapperRIP) 686 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 687 return false; 688 } 689 690 // Handle the case when globals fit in our immediate field: This is true for 691 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit 692 // mode, this only applies to a non-RIP-relative computation. 693 if (!Subtarget->is64Bit() || 694 M == CodeModel::Small || M == CodeModel::Kernel) { 695 assert(N.getOpcode() != X86ISD::WrapperRIP && 696 "RIP-relative addressing already handled"); 697 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 698 AM.GV = G->getGlobal(); 699 AM.Disp += G->getOffset(); 700 AM.SymbolFlags = G->getTargetFlags(); 701 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 702 AM.CP = CP->getConstVal(); 703 AM.Align = CP->getAlignment(); 704 AM.Disp += CP->getOffset(); 705 AM.SymbolFlags = CP->getTargetFlags(); 706 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 707 AM.ES = S->getSymbol(); 708 AM.SymbolFlags = S->getTargetFlags(); 709 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 710 AM.JT = J->getIndex(); 711 AM.SymbolFlags = J->getTargetFlags(); 712 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 713 AM.BlockAddr = BA->getBlockAddress(); 714 AM.Disp += BA->getOffset(); 715 AM.SymbolFlags = BA->getTargetFlags(); 716 } else 717 llvm_unreachable("Unhandled symbol reference node."); 718 return false; 719 } 720 721 return true; 722 } 723 724 /// MatchAddress - Add the specified node to the specified addressing mode, 725 /// returning true if it cannot be done. This just pattern matches for the 726 /// addressing mode. 727 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) { 728 if (MatchAddressRecursively(N, AM, 0)) 729 return true; 730 731 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 732 // a smaller encoding and avoids a scaled-index. 733 if (AM.Scale == 2 && 734 AM.BaseType == X86ISelAddressMode::RegBase && 735 AM.Base_Reg.getNode() == 0) { 736 AM.Base_Reg = AM.IndexReg; 737 AM.Scale = 1; 738 } 739 740 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 741 // because it has a smaller encoding. 742 // TODO: Which other code models can use this? 743 if (TM.getCodeModel() == CodeModel::Small && 744 Subtarget->is64Bit() && 745 AM.Scale == 1 && 746 AM.BaseType == X86ISelAddressMode::RegBase && 747 AM.Base_Reg.getNode() == 0 && 748 AM.IndexReg.getNode() == 0 && 749 AM.SymbolFlags == X86II::MO_NO_FLAG && 750 AM.hasSymbolicDisplacement()) 751 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 752 753 return false; 754 } 755 756 // Insert a node into the DAG at least before the Pos node's position. This 757 // will reposition the node as needed, and will assign it a node ID that is <= 758 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node 759 // IDs! The selection DAG must no longer depend on their uniqueness when this 760 // is used. 761 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 762 if (N.getNode()->getNodeId() == -1 || 763 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) { 764 DAG.RepositionNode(Pos.getNode(), N.getNode()); 765 N.getNode()->setNodeId(Pos.getNode()->getNodeId()); 766 } 767 } 768 769 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This 770 // allows us to convert the shift and and into an h-register extract and 771 // a scaled index. Returns false if the simplification is performed. 772 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 773 uint64_t Mask, 774 SDValue Shift, SDValue X, 775 X86ISelAddressMode &AM) { 776 if (Shift.getOpcode() != ISD::SRL || 777 !isa<ConstantSDNode>(Shift.getOperand(1)) || 778 !Shift.hasOneUse()) 779 return true; 780 781 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 782 if (ScaleLog <= 0 || ScaleLog >= 4 || 783 Mask != (0xffu << ScaleLog)) 784 return true; 785 786 EVT VT = N.getValueType(); 787 SDLoc DL(N); 788 SDValue Eight = DAG.getConstant(8, MVT::i8); 789 SDValue NewMask = DAG.getConstant(0xff, VT); 790 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 791 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 792 SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8); 793 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 794 795 // Insert the new nodes into the topological ordering. We must do this in 796 // a valid topological ordering as nothing is going to go back and re-sort 797 // these nodes. We continually insert before 'N' in sequence as this is 798 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 799 // hierarchy left to express. 800 InsertDAGNode(DAG, N, Eight); 801 InsertDAGNode(DAG, N, Srl); 802 InsertDAGNode(DAG, N, NewMask); 803 InsertDAGNode(DAG, N, And); 804 InsertDAGNode(DAG, N, ShlCount); 805 InsertDAGNode(DAG, N, Shl); 806 DAG.ReplaceAllUsesWith(N, Shl); 807 AM.IndexReg = And; 808 AM.Scale = (1 << ScaleLog); 809 return false; 810 } 811 812 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 813 // allows us to fold the shift into this addressing mode. Returns false if the 814 // transform succeeded. 815 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 816 uint64_t Mask, 817 SDValue Shift, SDValue X, 818 X86ISelAddressMode &AM) { 819 if (Shift.getOpcode() != ISD::SHL || 820 !isa<ConstantSDNode>(Shift.getOperand(1))) 821 return true; 822 823 // Not likely to be profitable if either the AND or SHIFT node has more 824 // than one use (unless all uses are for address computation). Besides, 825 // isel mechanism requires their node ids to be reused. 826 if (!N.hasOneUse() || !Shift.hasOneUse()) 827 return true; 828 829 // Verify that the shift amount is something we can fold. 830 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 831 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 832 return true; 833 834 EVT VT = N.getValueType(); 835 SDLoc DL(N); 836 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT); 837 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 838 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 839 840 // Insert the new nodes into the topological ordering. We must do this in 841 // a valid topological ordering as nothing is going to go back and re-sort 842 // these nodes. We continually insert before 'N' in sequence as this is 843 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 844 // hierarchy left to express. 845 InsertDAGNode(DAG, N, NewMask); 846 InsertDAGNode(DAG, N, NewAnd); 847 InsertDAGNode(DAG, N, NewShift); 848 DAG.ReplaceAllUsesWith(N, NewShift); 849 850 AM.Scale = 1 << ShiftAmt; 851 AM.IndexReg = NewAnd; 852 return false; 853 } 854 855 // Implement some heroics to detect shifts of masked values where the mask can 856 // be replaced by extending the shift and undoing that in the addressing mode 857 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 858 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 859 // the addressing mode. This results in code such as: 860 // 861 // int f(short *y, int *lookup_table) { 862 // ... 863 // return *y + lookup_table[*y >> 11]; 864 // } 865 // 866 // Turning into: 867 // movzwl (%rdi), %eax 868 // movl %eax, %ecx 869 // shrl $11, %ecx 870 // addl (%rsi,%rcx,4), %eax 871 // 872 // Instead of: 873 // movzwl (%rdi), %eax 874 // movl %eax, %ecx 875 // shrl $9, %ecx 876 // andl $124, %rcx 877 // addl (%rsi,%rcx), %eax 878 // 879 // Note that this function assumes the mask is provided as a mask *after* the 880 // value is shifted. The input chain may or may not match that, but computing 881 // such a mask is trivial. 882 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 883 uint64_t Mask, 884 SDValue Shift, SDValue X, 885 X86ISelAddressMode &AM) { 886 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 887 !isa<ConstantSDNode>(Shift.getOperand(1))) 888 return true; 889 890 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 891 unsigned MaskLZ = countLeadingZeros(Mask); 892 unsigned MaskTZ = countTrailingZeros(Mask); 893 894 // The amount of shift we're trying to fit into the addressing mode is taken 895 // from the trailing zeros of the mask. 896 unsigned AMShiftAmt = MaskTZ; 897 898 // There is nothing we can do here unless the mask is removing some bits. 899 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 900 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; 901 902 // We also need to ensure that mask is a continuous run of bits. 903 if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 904 905 // Scale the leading zero count down based on the actual size of the value. 906 // Also scale it down based on the size of the shift. 907 MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt; 908 909 // The final check is to ensure that any masked out high bits of X are 910 // already known to be zero. Otherwise, the mask has a semantic impact 911 // other than masking out a couple of low bits. Unfortunately, because of 912 // the mask, zero extensions will be removed from operands in some cases. 913 // This code works extra hard to look through extensions because we can 914 // replace them with zero extensions cheaply if necessary. 915 bool ReplacingAnyExtend = false; 916 if (X.getOpcode() == ISD::ANY_EXTEND) { 917 unsigned ExtendBits = 918 X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits(); 919 // Assume that we'll replace the any-extend with a zero-extend, and 920 // narrow the search to the extended value. 921 X = X.getOperand(0); 922 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 923 ReplacingAnyExtend = true; 924 } 925 APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(), 926 MaskLZ); 927 APInt KnownZero, KnownOne; 928 DAG.ComputeMaskedBits(X, KnownZero, KnownOne); 929 if (MaskedHighBits != KnownZero) return true; 930 931 // We've identified a pattern that can be transformed into a single shift 932 // and an addressing mode. Make it so. 933 EVT VT = N.getValueType(); 934 if (ReplacingAnyExtend) { 935 assert(X.getValueType() != VT); 936 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 937 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); 938 InsertDAGNode(DAG, N, NewX); 939 X = NewX; 940 } 941 SDLoc DL(N); 942 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8); 943 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 944 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8); 945 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 946 947 // Insert the new nodes into the topological ordering. We must do this in 948 // a valid topological ordering as nothing is going to go back and re-sort 949 // these nodes. We continually insert before 'N' in sequence as this is 950 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 951 // hierarchy left to express. 952 InsertDAGNode(DAG, N, NewSRLAmt); 953 InsertDAGNode(DAG, N, NewSRL); 954 InsertDAGNode(DAG, N, NewSHLAmt); 955 InsertDAGNode(DAG, N, NewSHL); 956 DAG.ReplaceAllUsesWith(N, NewSHL); 957 958 AM.Scale = 1 << AMShiftAmt; 959 AM.IndexReg = NewSRL; 960 return false; 961 } 962 963 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 964 unsigned Depth) { 965 SDLoc dl(N); 966 DEBUG({ 967 dbgs() << "MatchAddress: "; 968 AM.dump(); 969 }); 970 // Limit recursion. 971 if (Depth > 5) 972 return MatchAddressBase(N, AM); 973 974 // If this is already a %rip relative address, we can only merge immediates 975 // into it. Instead of handling this in every case, we handle it here. 976 // RIP relative addressing: %rip + 32-bit displacement! 977 if (AM.isRIPRelative()) { 978 // FIXME: JumpTable and ExternalSymbol address currently don't like 979 // displacements. It isn't very important, but this should be fixed for 980 // consistency. 981 if (!AM.ES && AM.JT != -1) return true; 982 983 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 984 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM)) 985 return false; 986 return true; 987 } 988 989 switch (N.getOpcode()) { 990 default: break; 991 case ISD::Constant: { 992 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 993 if (!FoldOffsetIntoAddress(Val, AM)) 994 return false; 995 break; 996 } 997 998 case X86ISD::Wrapper: 999 case X86ISD::WrapperRIP: 1000 if (!MatchWrapper(N, AM)) 1001 return false; 1002 break; 1003 1004 case ISD::LOAD: 1005 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM)) 1006 return false; 1007 break; 1008 1009 case ISD::FrameIndex: 1010 if (AM.BaseType == X86ISelAddressMode::RegBase && 1011 AM.Base_Reg.getNode() == 0 && 1012 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 1013 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 1014 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 1015 return false; 1016 } 1017 break; 1018 1019 case ISD::SHL: 1020 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) 1021 break; 1022 1023 if (ConstantSDNode 1024 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) { 1025 unsigned Val = CN->getZExtValue(); 1026 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 1027 // that the base operand remains free for further matching. If 1028 // the base doesn't end up getting used, a post-processing step 1029 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 1030 if (Val == 1 || Val == 2 || Val == 3) { 1031 AM.Scale = 1 << Val; 1032 SDValue ShVal = N.getNode()->getOperand(0); 1033 1034 // Okay, we know that we have a scale by now. However, if the scaled 1035 // value is an add of something and a constant, we can fold the 1036 // constant into the disp field here. 1037 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 1038 AM.IndexReg = ShVal.getNode()->getOperand(0); 1039 ConstantSDNode *AddVal = 1040 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1)); 1041 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; 1042 if (!FoldOffsetIntoAddress(Disp, AM)) 1043 return false; 1044 } 1045 1046 AM.IndexReg = ShVal; 1047 return false; 1048 } 1049 } 1050 break; 1051 1052 case ISD::SRL: { 1053 // Scale must not be used already. 1054 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1055 1056 SDValue And = N.getOperand(0); 1057 if (And.getOpcode() != ISD::AND) break; 1058 SDValue X = And.getOperand(0); 1059 1060 // We only handle up to 64-bit values here as those are what matter for 1061 // addressing mode optimizations. 1062 if (X.getValueSizeInBits() > 64) break; 1063 1064 // The mask used for the transform is expected to be post-shift, but we 1065 // found the shift first so just apply the shift to the mask before passing 1066 // it down. 1067 if (!isa<ConstantSDNode>(N.getOperand(1)) || 1068 !isa<ConstantSDNode>(And.getOperand(1))) 1069 break; 1070 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 1071 1072 // Try to fold the mask and shift into the scale, and return false if we 1073 // succeed. 1074 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 1075 return false; 1076 break; 1077 } 1078 1079 case ISD::SMUL_LOHI: 1080 case ISD::UMUL_LOHI: 1081 // A mul_lohi where we need the low part can be folded as a plain multiply. 1082 if (N.getResNo() != 0) break; 1083 // FALL THROUGH 1084 case ISD::MUL: 1085 case X86ISD::MUL_IMM: 1086 // X*[3,5,9] -> X+X*[2,4,8] 1087 if (AM.BaseType == X86ISelAddressMode::RegBase && 1088 AM.Base_Reg.getNode() == 0 && 1089 AM.IndexReg.getNode() == 0) { 1090 if (ConstantSDNode 1091 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) 1092 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 1093 CN->getZExtValue() == 9) { 1094 AM.Scale = unsigned(CN->getZExtValue())-1; 1095 1096 SDValue MulVal = N.getNode()->getOperand(0); 1097 SDValue Reg; 1098 1099 // Okay, we know that we have a scale by now. However, if the scaled 1100 // value is an add of something and a constant, we can fold the 1101 // constant into the disp field here. 1102 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 1103 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) { 1104 Reg = MulVal.getNode()->getOperand(0); 1105 ConstantSDNode *AddVal = 1106 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1)); 1107 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 1108 if (FoldOffsetIntoAddress(Disp, AM)) 1109 Reg = N.getNode()->getOperand(0); 1110 } else { 1111 Reg = N.getNode()->getOperand(0); 1112 } 1113 1114 AM.IndexReg = AM.Base_Reg = Reg; 1115 return false; 1116 } 1117 } 1118 break; 1119 1120 case ISD::SUB: { 1121 // Given A-B, if A can be completely folded into the address and 1122 // the index field with the index field unused, use -B as the index. 1123 // This is a win if a has multiple parts that can be folded into 1124 // the address. Also, this saves a mov if the base register has 1125 // other uses, since it avoids a two-address sub instruction, however 1126 // it costs an additional mov if the index register has other uses. 1127 1128 // Add an artificial use to this node so that we can keep track of 1129 // it if it gets CSE'd with a different node. 1130 HandleSDNode Handle(N); 1131 1132 // Test if the LHS of the sub can be folded. 1133 X86ISelAddressMode Backup = AM; 1134 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) { 1135 AM = Backup; 1136 break; 1137 } 1138 // Test if the index field is free for use. 1139 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 1140 AM = Backup; 1141 break; 1142 } 1143 1144 int Cost = 0; 1145 SDValue RHS = Handle.getValue().getNode()->getOperand(1); 1146 // If the RHS involves a register with multiple uses, this 1147 // transformation incurs an extra mov, due to the neg instruction 1148 // clobbering its operand. 1149 if (!RHS.getNode()->hasOneUse() || 1150 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 1151 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 1152 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 1153 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 1154 RHS.getNode()->getOperand(0).getValueType() == MVT::i32)) 1155 ++Cost; 1156 // If the base is a register with multiple uses, this 1157 // transformation may save a mov. 1158 if ((AM.BaseType == X86ISelAddressMode::RegBase && 1159 AM.Base_Reg.getNode() && 1160 !AM.Base_Reg.getNode()->hasOneUse()) || 1161 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1162 --Cost; 1163 // If the folded LHS was interesting, this transformation saves 1164 // address arithmetic. 1165 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 1166 ((AM.Disp != 0) && (Backup.Disp == 0)) + 1167 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 1168 --Cost; 1169 // If it doesn't look like it may be an overall win, don't do it. 1170 if (Cost >= 0) { 1171 AM = Backup; 1172 break; 1173 } 1174 1175 // Ok, the transformation is legal and appears profitable. Go for it. 1176 SDValue Zero = CurDAG->getConstant(0, N.getValueType()); 1177 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); 1178 AM.IndexReg = Neg; 1179 AM.Scale = 1; 1180 1181 // Insert the new nodes into the topological ordering. 1182 InsertDAGNode(*CurDAG, N, Zero); 1183 InsertDAGNode(*CurDAG, N, Neg); 1184 return false; 1185 } 1186 1187 case ISD::ADD: { 1188 // Add an artificial use to this node so that we can keep track of 1189 // it if it gets CSE'd with a different node. 1190 HandleSDNode Handle(N); 1191 1192 X86ISelAddressMode Backup = AM; 1193 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1194 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 1195 return false; 1196 AM = Backup; 1197 1198 // Try again after commuting the operands. 1199 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&& 1200 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) 1201 return false; 1202 AM = Backup; 1203 1204 // If we couldn't fold both operands into the address at the same time, 1205 // see if we can just put each operand into a register and fold at least 1206 // the add. 1207 if (AM.BaseType == X86ISelAddressMode::RegBase && 1208 !AM.Base_Reg.getNode() && 1209 !AM.IndexReg.getNode()) { 1210 N = Handle.getValue(); 1211 AM.Base_Reg = N.getOperand(0); 1212 AM.IndexReg = N.getOperand(1); 1213 AM.Scale = 1; 1214 return false; 1215 } 1216 N = Handle.getValue(); 1217 break; 1218 } 1219 1220 case ISD::OR: 1221 // Handle "X | C" as "X + C" iff X is known to have C bits clear. 1222 if (CurDAG->isBaseWithConstantOffset(N)) { 1223 X86ISelAddressMode Backup = AM; 1224 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1)); 1225 1226 // Start with the LHS as an addr mode. 1227 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1228 !FoldOffsetIntoAddress(CN->getSExtValue(), AM)) 1229 return false; 1230 AM = Backup; 1231 } 1232 break; 1233 1234 case ISD::AND: { 1235 // Perform some heroic transforms on an and of a constant-count shift 1236 // with a constant to enable use of the scaled offset field. 1237 1238 // Scale must not be used already. 1239 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break; 1240 1241 SDValue Shift = N.getOperand(0); 1242 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; 1243 SDValue X = Shift.getOperand(0); 1244 1245 // We only handle up to 64-bit values here as those are what matter for 1246 // addressing mode optimizations. 1247 if (X.getValueSizeInBits() > 64) break; 1248 1249 if (!isa<ConstantSDNode>(N.getOperand(1))) 1250 break; 1251 uint64_t Mask = N.getConstantOperandVal(1); 1252 1253 // Try to fold the mask and shift into an extract and scale. 1254 if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 1255 return false; 1256 1257 // Try to fold the mask and shift directly into the scale. 1258 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 1259 return false; 1260 1261 // Try to swap the mask and shift to place shifts which can be done as 1262 // a scale on the outside of the mask. 1263 if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) 1264 return false; 1265 break; 1266 } 1267 } 1268 1269 return MatchAddressBase(N, AM); 1270 } 1271 1272 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the 1273 /// specified addressing mode without any further recursion. 1274 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) { 1275 // Is the base register already occupied? 1276 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 1277 // If so, check to see if the scale index register is set. 1278 if (AM.IndexReg.getNode() == 0) { 1279 AM.IndexReg = N; 1280 AM.Scale = 1; 1281 return false; 1282 } 1283 1284 // Otherwise, we cannot select it. 1285 return true; 1286 } 1287 1288 // Default, generate it as a register. 1289 AM.BaseType = X86ISelAddressMode::RegBase; 1290 AM.Base_Reg = N; 1291 return false; 1292 } 1293 1294 /// SelectAddr - returns true if it is able pattern match an addressing mode. 1295 /// It returns the operands which make up the maximal addressing mode it can 1296 /// match by reference. 1297 /// 1298 /// Parent is the parent node of the addr operand that is being matched. It 1299 /// is always a load, store, atomic node, or null. It is only null when 1300 /// checking memory operands for inline asm nodes. 1301 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base, 1302 SDValue &Scale, SDValue &Index, 1303 SDValue &Disp, SDValue &Segment) { 1304 X86ISelAddressMode AM; 1305 1306 if (Parent && 1307 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 1308 // that are not a MemSDNode, and thus don't have proper addrspace info. 1309 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 1310 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 1311 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme 1312 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp 1313 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp 1314 unsigned AddrSpace = 1315 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 1316 // AddrSpace 256 -> GS, 257 -> FS. 1317 if (AddrSpace == 256) 1318 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1319 if (AddrSpace == 257) 1320 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1321 } 1322 1323 if (MatchAddress(N, AM)) 1324 return false; 1325 1326 EVT VT = N.getValueType(); 1327 if (AM.BaseType == X86ISelAddressMode::RegBase) { 1328 if (!AM.Base_Reg.getNode()) 1329 AM.Base_Reg = CurDAG->getRegister(0, VT); 1330 } 1331 1332 if (!AM.IndexReg.getNode()) 1333 AM.IndexReg = CurDAG->getRegister(0, VT); 1334 1335 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1336 return true; 1337 } 1338 1339 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to 1340 /// match a load whose top elements are either undef or zeros. The load flavor 1341 /// is derived from the type of N, which is either v4f32 or v2f64. 1342 /// 1343 /// We also return: 1344 /// PatternChainNode: this is the matched node that has a chain input and 1345 /// output. 1346 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root, 1347 SDValue N, SDValue &Base, 1348 SDValue &Scale, SDValue &Index, 1349 SDValue &Disp, SDValue &Segment, 1350 SDValue &PatternNodeWithChain) { 1351 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) { 1352 PatternNodeWithChain = N.getOperand(0); 1353 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && 1354 PatternNodeWithChain.hasOneUse() && 1355 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1356 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1357 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); 1358 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1359 return false; 1360 return true; 1361 } 1362 } 1363 1364 // Also handle the case where we explicitly require zeros in the top 1365 // elements. This is a vector shuffle from the zero vector. 1366 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && 1367 // Check to see if the top elements are all zeros (or bitcast of zeros). 1368 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 1369 N.getOperand(0).getNode()->hasOneUse() && 1370 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) && 1371 N.getOperand(0).getOperand(0).hasOneUse() && 1372 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) && 1373 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) { 1374 // Okay, this is a zero extending load. Fold it. 1375 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0)); 1376 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment)) 1377 return false; 1378 PatternNodeWithChain = SDValue(LD, 0); 1379 return true; 1380 } 1381 return false; 1382 } 1383 1384 1385 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) { 1386 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1387 uint64_t ImmVal = CN->getZExtValue(); 1388 if ((uint32_t)ImmVal != (uint64_t)ImmVal) 1389 return false; 1390 1391 Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64); 1392 return true; 1393 } 1394 1395 // In static codegen with small code model, we can get the address of a label 1396 // into a register with 'movl'. TableGen has already made sure we're looking 1397 // at a label of some kind. 1398 assert(N->getOpcode() == X86ISD::Wrapper && 1399 "Unexpected node type for MOV32ri64"); 1400 N = N.getOperand(0); 1401 1402 if (N->getOpcode() != ISD::TargetConstantPool && 1403 N->getOpcode() != ISD::TargetJumpTable && 1404 N->getOpcode() != ISD::TargetGlobalAddress && 1405 N->getOpcode() != ISD::TargetExternalSymbol && 1406 N->getOpcode() != ISD::TargetBlockAddress) 1407 return false; 1408 1409 Imm = N; 1410 return TM.getCodeModel() == CodeModel::Small; 1411 } 1412 1413 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base, 1414 SDValue &Scale, SDValue &Index, 1415 SDValue &Disp, SDValue &Segment) { 1416 if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment)) 1417 return false; 1418 1419 SDLoc DL(N); 1420 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); 1421 if (RN && RN->getReg() == 0) 1422 Base = CurDAG->getRegister(0, MVT::i64); 1423 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) { 1424 // Base could already be %rip, particularly in the x32 ABI. 1425 Base = SDValue(CurDAG->getMachineNode( 1426 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, 1427 CurDAG->getTargetConstant(0, MVT::i64), 1428 Base, 1429 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), 1430 0); 1431 } 1432 1433 RN = dyn_cast<RegisterSDNode>(Index); 1434 if (RN && RN->getReg() == 0) 1435 Index = CurDAG->getRegister(0, MVT::i64); 1436 else { 1437 assert(Index.getValueType() == MVT::i32 && 1438 "Expect to be extending 32-bit registers for use in LEA"); 1439 Index = SDValue(CurDAG->getMachineNode( 1440 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, 1441 CurDAG->getTargetConstant(0, MVT::i64), 1442 Index, 1443 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), 1444 0); 1445 } 1446 1447 return true; 1448 } 1449 1450 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing 1451 /// mode it matches can be cost effectively emitted as an LEA instruction. 1452 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N, 1453 SDValue &Base, SDValue &Scale, 1454 SDValue &Index, SDValue &Disp, 1455 SDValue &Segment) { 1456 X86ISelAddressMode AM; 1457 1458 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 1459 // segments. 1460 SDValue Copy = AM.Segment; 1461 SDValue T = CurDAG->getRegister(0, MVT::i32); 1462 AM.Segment = T; 1463 if (MatchAddress(N, AM)) 1464 return false; 1465 assert (T == AM.Segment); 1466 AM.Segment = Copy; 1467 1468 EVT VT = N.getValueType(); 1469 unsigned Complexity = 0; 1470 if (AM.BaseType == X86ISelAddressMode::RegBase) 1471 if (AM.Base_Reg.getNode()) 1472 Complexity = 1; 1473 else 1474 AM.Base_Reg = CurDAG->getRegister(0, VT); 1475 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 1476 Complexity = 4; 1477 1478 if (AM.IndexReg.getNode()) 1479 Complexity++; 1480 else 1481 AM.IndexReg = CurDAG->getRegister(0, VT); 1482 1483 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 1484 // a simple shift. 1485 if (AM.Scale > 1) 1486 Complexity++; 1487 1488 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 1489 // to a LEA. This is determined with some expermentation but is by no means 1490 // optimal (especially for code size consideration). LEA is nice because of 1491 // its three-address nature. Tweak the cost function again when we can run 1492 // convertToThreeAddress() at register allocation time. 1493 if (AM.hasSymbolicDisplacement()) { 1494 // For X86-64, we should always use lea to materialize RIP relative 1495 // addresses. 1496 if (Subtarget->is64Bit()) 1497 Complexity = 4; 1498 else 1499 Complexity += 2; 1500 } 1501 1502 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) 1503 Complexity++; 1504 1505 // If it isn't worth using an LEA, reject it. 1506 if (Complexity <= 2) 1507 return false; 1508 1509 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1510 return true; 1511 } 1512 1513 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes. 1514 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base, 1515 SDValue &Scale, SDValue &Index, 1516 SDValue &Disp, SDValue &Segment) { 1517 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 1518 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 1519 1520 X86ISelAddressMode AM; 1521 AM.GV = GA->getGlobal(); 1522 AM.Disp += GA->getOffset(); 1523 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); 1524 AM.SymbolFlags = GA->getTargetFlags(); 1525 1526 if (N.getValueType() == MVT::i32) { 1527 AM.Scale = 1; 1528 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 1529 } else { 1530 AM.IndexReg = CurDAG->getRegister(0, MVT::i64); 1531 } 1532 1533 getAddressOperands(AM, Base, Scale, Index, Disp, Segment); 1534 return true; 1535 } 1536 1537 1538 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N, 1539 SDValue &Base, SDValue &Scale, 1540 SDValue &Index, SDValue &Disp, 1541 SDValue &Segment) { 1542 if (!ISD::isNON_EXTLoad(N.getNode()) || 1543 !IsProfitableToFold(N, P, P) || 1544 !IsLegalToFold(N, P, P, OptLevel)) 1545 return false; 1546 1547 return SelectAddr(N.getNode(), 1548 N.getOperand(1), Base, Scale, Index, Disp, Segment); 1549 } 1550 1551 /// getGlobalBaseReg - Return an SDNode that returns the value of 1552 /// the global base register. Output instructions required to 1553 /// initialize the global base register, if necessary. 1554 /// 1555 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 1556 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 1557 return CurDAG->getRegister(GlobalBaseReg, 1558 getTargetLowering()->getPointerTy()).getNode(); 1559 } 1560 1561 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { 1562 SDValue Chain = Node->getOperand(0); 1563 SDValue In1 = Node->getOperand(1); 1564 SDValue In2L = Node->getOperand(2); 1565 SDValue In2H = Node->getOperand(3); 1566 1567 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1568 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1569 return NULL; 1570 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1571 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1572 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain}; 1573 SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), 1574 MVT::i32, MVT::i32, MVT::Other, Ops); 1575 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); 1576 return ResNode; 1577 } 1578 1579 /// Atomic opcode table 1580 /// 1581 enum AtomicOpc { 1582 ADD, 1583 SUB, 1584 INC, 1585 DEC, 1586 OR, 1587 AND, 1588 XOR, 1589 AtomicOpcEnd 1590 }; 1591 1592 enum AtomicSz { 1593 ConstantI8, 1594 I8, 1595 SextConstantI16, 1596 ConstantI16, 1597 I16, 1598 SextConstantI32, 1599 ConstantI32, 1600 I32, 1601 SextConstantI64, 1602 ConstantI64, 1603 I64, 1604 AtomicSzEnd 1605 }; 1606 1607 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = { 1608 { 1609 X86::LOCK_ADD8mi, 1610 X86::LOCK_ADD8mr, 1611 X86::LOCK_ADD16mi8, 1612 X86::LOCK_ADD16mi, 1613 X86::LOCK_ADD16mr, 1614 X86::LOCK_ADD32mi8, 1615 X86::LOCK_ADD32mi, 1616 X86::LOCK_ADD32mr, 1617 X86::LOCK_ADD64mi8, 1618 X86::LOCK_ADD64mi32, 1619 X86::LOCK_ADD64mr, 1620 }, 1621 { 1622 X86::LOCK_SUB8mi, 1623 X86::LOCK_SUB8mr, 1624 X86::LOCK_SUB16mi8, 1625 X86::LOCK_SUB16mi, 1626 X86::LOCK_SUB16mr, 1627 X86::LOCK_SUB32mi8, 1628 X86::LOCK_SUB32mi, 1629 X86::LOCK_SUB32mr, 1630 X86::LOCK_SUB64mi8, 1631 X86::LOCK_SUB64mi32, 1632 X86::LOCK_SUB64mr, 1633 }, 1634 { 1635 0, 1636 X86::LOCK_INC8m, 1637 0, 1638 0, 1639 X86::LOCK_INC16m, 1640 0, 1641 0, 1642 X86::LOCK_INC32m, 1643 0, 1644 0, 1645 X86::LOCK_INC64m, 1646 }, 1647 { 1648 0, 1649 X86::LOCK_DEC8m, 1650 0, 1651 0, 1652 X86::LOCK_DEC16m, 1653 0, 1654 0, 1655 X86::LOCK_DEC32m, 1656 0, 1657 0, 1658 X86::LOCK_DEC64m, 1659 }, 1660 { 1661 X86::LOCK_OR8mi, 1662 X86::LOCK_OR8mr, 1663 X86::LOCK_OR16mi8, 1664 X86::LOCK_OR16mi, 1665 X86::LOCK_OR16mr, 1666 X86::LOCK_OR32mi8, 1667 X86::LOCK_OR32mi, 1668 X86::LOCK_OR32mr, 1669 X86::LOCK_OR64mi8, 1670 X86::LOCK_OR64mi32, 1671 X86::LOCK_OR64mr, 1672 }, 1673 { 1674 X86::LOCK_AND8mi, 1675 X86::LOCK_AND8mr, 1676 X86::LOCK_AND16mi8, 1677 X86::LOCK_AND16mi, 1678 X86::LOCK_AND16mr, 1679 X86::LOCK_AND32mi8, 1680 X86::LOCK_AND32mi, 1681 X86::LOCK_AND32mr, 1682 X86::LOCK_AND64mi8, 1683 X86::LOCK_AND64mi32, 1684 X86::LOCK_AND64mr, 1685 }, 1686 { 1687 X86::LOCK_XOR8mi, 1688 X86::LOCK_XOR8mr, 1689 X86::LOCK_XOR16mi8, 1690 X86::LOCK_XOR16mi, 1691 X86::LOCK_XOR16mr, 1692 X86::LOCK_XOR32mi8, 1693 X86::LOCK_XOR32mi, 1694 X86::LOCK_XOR32mr, 1695 X86::LOCK_XOR64mi8, 1696 X86::LOCK_XOR64mi32, 1697 X86::LOCK_XOR64mr, 1698 } 1699 }; 1700 1701 // Return the target constant operand for atomic-load-op and do simple 1702 // translations, such as from atomic-load-add to lock-sub. The return value is 1703 // one of the following 3 cases: 1704 // + target-constant, the operand could be supported as a target constant. 1705 // + empty, the operand is not needed any more with the new op selected. 1706 // + non-empty, otherwise. 1707 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, 1708 SDLoc dl, 1709 enum AtomicOpc &Op, EVT NVT, 1710 SDValue Val) { 1711 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) { 1712 int64_t CNVal = CN->getSExtValue(); 1713 // Quit if not 32-bit imm. 1714 if ((int32_t)CNVal != CNVal) 1715 return Val; 1716 // For atomic-load-add, we could do some optimizations. 1717 if (Op == ADD) { 1718 // Translate to INC/DEC if ADD by 1 or -1. 1719 if ((CNVal == 1) || (CNVal == -1)) { 1720 Op = (CNVal == 1) ? INC : DEC; 1721 // No more constant operand after being translated into INC/DEC. 1722 return SDValue(); 1723 } 1724 // Translate to SUB if ADD by negative value. 1725 if (CNVal < 0) { 1726 Op = SUB; 1727 CNVal = -CNVal; 1728 } 1729 } 1730 return CurDAG->getTargetConstant(CNVal, NVT); 1731 } 1732 1733 // If the value operand is single-used, try to optimize it. 1734 if (Op == ADD && Val.hasOneUse()) { 1735 // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x). 1736 if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) { 1737 Op = SUB; 1738 return Val.getOperand(1); 1739 } 1740 // A special case for i16, which needs truncating as, in most cases, it's 1741 // promoted to i32. We will translate 1742 // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x)) 1743 if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 && 1744 Val.getOperand(0).getOpcode() == ISD::SUB && 1745 X86::isZeroNode(Val.getOperand(0).getOperand(0))) { 1746 Op = SUB; 1747 Val = Val.getOperand(0); 1748 return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT, 1749 Val.getOperand(1)); 1750 } 1751 } 1752 1753 return Val; 1754 } 1755 1756 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) { 1757 if (Node->hasAnyUseOfValue(0)) 1758 return 0; 1759 1760 SDLoc dl(Node); 1761 1762 // Optimize common patterns for __sync_or_and_fetch and similar arith 1763 // operations where the result is not used. This allows us to use the "lock" 1764 // version of the arithmetic instruction. 1765 SDValue Chain = Node->getOperand(0); 1766 SDValue Ptr = Node->getOperand(1); 1767 SDValue Val = Node->getOperand(2); 1768 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 1769 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) 1770 return 0; 1771 1772 // Which index into the table. 1773 enum AtomicOpc Op; 1774 switch (Node->getOpcode()) { 1775 default: 1776 return 0; 1777 case ISD::ATOMIC_LOAD_OR: 1778 Op = OR; 1779 break; 1780 case ISD::ATOMIC_LOAD_AND: 1781 Op = AND; 1782 break; 1783 case ISD::ATOMIC_LOAD_XOR: 1784 Op = XOR; 1785 break; 1786 case ISD::ATOMIC_LOAD_ADD: 1787 Op = ADD; 1788 break; 1789 } 1790 1791 Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val); 1792 bool isUnOp = !Val.getNode(); 1793 bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant); 1794 1795 unsigned Opc = 0; 1796 switch (NVT.getSimpleVT().SimpleTy) { 1797 default: return 0; 1798 case MVT::i8: 1799 if (isCN) 1800 Opc = AtomicOpcTbl[Op][ConstantI8]; 1801 else 1802 Opc = AtomicOpcTbl[Op][I8]; 1803 break; 1804 case MVT::i16: 1805 if (isCN) { 1806 if (immSext8(Val.getNode())) 1807 Opc = AtomicOpcTbl[Op][SextConstantI16]; 1808 else 1809 Opc = AtomicOpcTbl[Op][ConstantI16]; 1810 } else 1811 Opc = AtomicOpcTbl[Op][I16]; 1812 break; 1813 case MVT::i32: 1814 if (isCN) { 1815 if (immSext8(Val.getNode())) 1816 Opc = AtomicOpcTbl[Op][SextConstantI32]; 1817 else 1818 Opc = AtomicOpcTbl[Op][ConstantI32]; 1819 } else 1820 Opc = AtomicOpcTbl[Op][I32]; 1821 break; 1822 case MVT::i64: 1823 Opc = AtomicOpcTbl[Op][I64]; 1824 if (isCN) { 1825 if (immSext8(Val.getNode())) 1826 Opc = AtomicOpcTbl[Op][SextConstantI64]; 1827 else if (i64immSExt32(Val.getNode())) 1828 Opc = AtomicOpcTbl[Op][ConstantI64]; 1829 } 1830 break; 1831 } 1832 1833 assert(Opc != 0 && "Invalid arith lock transform!"); 1834 1835 SDValue Ret; 1836 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 1837 dl, NVT), 0); 1838 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 1839 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); 1840 if (isUnOp) { 1841 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain }; 1842 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); 1843 } else { 1844 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain }; 1845 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0); 1846 } 1847 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); 1848 SDValue RetVals[] = { Undef, Ret }; 1849 return CurDAG->getMergeValues(RetVals, 2, dl).getNode(); 1850 } 1851 1852 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has 1853 /// any uses which require the SF or OF bits to be accurate. 1854 static bool HasNoSignedComparisonUses(SDNode *N) { 1855 // Examine each user of the node. 1856 for (SDNode::use_iterator UI = N->use_begin(), 1857 UE = N->use_end(); UI != UE; ++UI) { 1858 // Only examine CopyToReg uses. 1859 if (UI->getOpcode() != ISD::CopyToReg) 1860 return false; 1861 // Only examine CopyToReg uses that copy to EFLAGS. 1862 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != 1863 X86::EFLAGS) 1864 return false; 1865 // Examine each user of the CopyToReg use. 1866 for (SDNode::use_iterator FlagUI = UI->use_begin(), 1867 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 1868 // Only examine the Flag result. 1869 if (FlagUI.getUse().getResNo() != 1) continue; 1870 // Anything unusual: assume conservatively. 1871 if (!FlagUI->isMachineOpcode()) return false; 1872 // Examine the opcode of the user. 1873 switch (FlagUI->getMachineOpcode()) { 1874 // These comparisons don't treat the most significant bit specially. 1875 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: 1876 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: 1877 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: 1878 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: 1879 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4: 1880 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4: 1881 case X86::CMOVA16rr: case X86::CMOVA16rm: 1882 case X86::CMOVA32rr: case X86::CMOVA32rm: 1883 case X86::CMOVA64rr: case X86::CMOVA64rm: 1884 case X86::CMOVAE16rr: case X86::CMOVAE16rm: 1885 case X86::CMOVAE32rr: case X86::CMOVAE32rm: 1886 case X86::CMOVAE64rr: case X86::CMOVAE64rm: 1887 case X86::CMOVB16rr: case X86::CMOVB16rm: 1888 case X86::CMOVB32rr: case X86::CMOVB32rm: 1889 case X86::CMOVB64rr: case X86::CMOVB64rm: 1890 case X86::CMOVBE16rr: case X86::CMOVBE16rm: 1891 case X86::CMOVBE32rr: case X86::CMOVBE32rm: 1892 case X86::CMOVBE64rr: case X86::CMOVBE64rm: 1893 case X86::CMOVE16rr: case X86::CMOVE16rm: 1894 case X86::CMOVE32rr: case X86::CMOVE32rm: 1895 case X86::CMOVE64rr: case X86::CMOVE64rm: 1896 case X86::CMOVNE16rr: case X86::CMOVNE16rm: 1897 case X86::CMOVNE32rr: case X86::CMOVNE32rm: 1898 case X86::CMOVNE64rr: case X86::CMOVNE64rm: 1899 case X86::CMOVNP16rr: case X86::CMOVNP16rm: 1900 case X86::CMOVNP32rr: case X86::CMOVNP32rm: 1901 case X86::CMOVNP64rr: case X86::CMOVNP64rm: 1902 case X86::CMOVP16rr: case X86::CMOVP16rm: 1903 case X86::CMOVP32rr: case X86::CMOVP32rm: 1904 case X86::CMOVP64rr: case X86::CMOVP64rm: 1905 continue; 1906 // Anything else: assume conservatively. 1907 default: return false; 1908 } 1909 } 1910 } 1911 return true; 1912 } 1913 1914 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode 1915 /// is suitable for doing the {load; increment or decrement; store} to modify 1916 /// transformation. 1917 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, 1918 SDValue StoredVal, SelectionDAG *CurDAG, 1919 LoadSDNode* &LoadNode, SDValue &InputChain) { 1920 1921 // is the value stored the result of a DEC or INC? 1922 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false; 1923 1924 // is the stored value result 0 of the load? 1925 if (StoredVal.getResNo() != 0) return false; 1926 1927 // are there other uses of the loaded value than the inc or dec? 1928 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 1929 1930 // is the store non-extending and non-indexed? 1931 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 1932 return false; 1933 1934 SDValue Load = StoredVal->getOperand(0); 1935 // Is the stored value a non-extending and non-indexed load? 1936 if (!ISD::isNormalLoad(Load.getNode())) return false; 1937 1938 // Return LoadNode by reference. 1939 LoadNode = cast<LoadSDNode>(Load); 1940 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8) 1941 EVT LdVT = LoadNode->getMemoryVT(); 1942 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 && 1943 LdVT != MVT::i8) 1944 return false; 1945 1946 // Is store the only read of the loaded value? 1947 if (!Load.hasOneUse()) 1948 return false; 1949 1950 // Is the address of the store the same as the load? 1951 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 1952 LoadNode->getOffset() != StoreNode->getOffset()) 1953 return false; 1954 1955 // Check if the chain is produced by the load or is a TokenFactor with 1956 // the load output chain as an operand. Return InputChain by reference. 1957 SDValue Chain = StoreNode->getChain(); 1958 1959 bool ChainCheck = false; 1960 if (Chain == Load.getValue(1)) { 1961 ChainCheck = true; 1962 InputChain = LoadNode->getChain(); 1963 } else if (Chain.getOpcode() == ISD::TokenFactor) { 1964 SmallVector<SDValue, 4> ChainOps; 1965 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 1966 SDValue Op = Chain.getOperand(i); 1967 if (Op == Load.getValue(1)) { 1968 ChainCheck = true; 1969 continue; 1970 } 1971 1972 // Make sure using Op as part of the chain would not cause a cycle here. 1973 // In theory, we could check whether the chain node is a predecessor of 1974 // the load. But that can be very expensive. Instead visit the uses and 1975 // make sure they all have smaller node id than the load. 1976 int LoadId = LoadNode->getNodeId(); 1977 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 1978 UE = UI->use_end(); UI != UE; ++UI) { 1979 if (UI.getUse().getResNo() != 0) 1980 continue; 1981 if (UI->getNodeId() > LoadId) 1982 return false; 1983 } 1984 1985 ChainOps.push_back(Op); 1986 } 1987 1988 if (ChainCheck) 1989 // Make a new TokenFactor with all the other input chains except 1990 // for the load. 1991 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), 1992 MVT::Other, &ChainOps[0], ChainOps.size()); 1993 } 1994 if (!ChainCheck) 1995 return false; 1996 1997 return true; 1998 } 1999 2000 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory 2001 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC. 2002 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) { 2003 if (Opc == X86ISD::DEC) { 2004 if (LdVT == MVT::i64) return X86::DEC64m; 2005 if (LdVT == MVT::i32) return X86::DEC32m; 2006 if (LdVT == MVT::i16) return X86::DEC16m; 2007 if (LdVT == MVT::i8) return X86::DEC8m; 2008 } else { 2009 assert(Opc == X86ISD::INC && "unrecognized opcode"); 2010 if (LdVT == MVT::i64) return X86::INC64m; 2011 if (LdVT == MVT::i32) return X86::INC32m; 2012 if (LdVT == MVT::i16) return X86::INC16m; 2013 if (LdVT == MVT::i8) return X86::INC8m; 2014 } 2015 llvm_unreachable("unrecognized size for LdVT"); 2016 } 2017 2018 /// SelectGather - Customized ISel for GATHER operations. 2019 /// 2020 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) { 2021 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale 2022 SDValue Chain = Node->getOperand(0); 2023 SDValue VSrc = Node->getOperand(2); 2024 SDValue Base = Node->getOperand(3); 2025 SDValue VIdx = Node->getOperand(4); 2026 SDValue VMask = Node->getOperand(5); 2027 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6)); 2028 if (!Scale) 2029 return 0; 2030 2031 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(), 2032 MVT::Other); 2033 2034 // Memory Operands: Base, Scale, Index, Disp, Segment 2035 SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32); 2036 SDValue Segment = CurDAG->getRegister(0, MVT::i32); 2037 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx, 2038 Disp, Segment, VMask, Chain}; 2039 SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops); 2040 // Node has 2 outputs: VDst and MVT::Other. 2041 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other. 2042 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other 2043 // of ResNode. 2044 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); 2045 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2)); 2046 return ResNode; 2047 } 2048 2049 SDNode *X86DAGToDAGISel::Select(SDNode *Node) { 2050 EVT NVT = Node->getValueType(0); 2051 unsigned Opc, MOpc; 2052 unsigned Opcode = Node->getOpcode(); 2053 SDLoc dl(Node); 2054 2055 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n'); 2056 2057 if (Node->isMachineOpcode()) { 2058 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 2059 return NULL; // Already selected. 2060 } 2061 2062 switch (Opcode) { 2063 default: break; 2064 case ISD::INTRINSIC_W_CHAIN: { 2065 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 2066 switch (IntNo) { 2067 default: break; 2068 case Intrinsic::x86_avx2_gather_d_pd: 2069 case Intrinsic::x86_avx2_gather_d_pd_256: 2070 case Intrinsic::x86_avx2_gather_q_pd: 2071 case Intrinsic::x86_avx2_gather_q_pd_256: 2072 case Intrinsic::x86_avx2_gather_d_ps: 2073 case Intrinsic::x86_avx2_gather_d_ps_256: 2074 case Intrinsic::x86_avx2_gather_q_ps: 2075 case Intrinsic::x86_avx2_gather_q_ps_256: 2076 case Intrinsic::x86_avx2_gather_d_q: 2077 case Intrinsic::x86_avx2_gather_d_q_256: 2078 case Intrinsic::x86_avx2_gather_q_q: 2079 case Intrinsic::x86_avx2_gather_q_q_256: 2080 case Intrinsic::x86_avx2_gather_d_d: 2081 case Intrinsic::x86_avx2_gather_d_d_256: 2082 case Intrinsic::x86_avx2_gather_q_d: 2083 case Intrinsic::x86_avx2_gather_q_d_256: { 2084 if (!Subtarget->hasAVX2()) 2085 break; 2086 unsigned Opc; 2087 switch (IntNo) { 2088 default: llvm_unreachable("Impossible intrinsic"); 2089 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break; 2090 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break; 2091 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break; 2092 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break; 2093 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break; 2094 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break; 2095 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break; 2096 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break; 2097 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break; 2098 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break; 2099 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break; 2100 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break; 2101 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break; 2102 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break; 2103 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break; 2104 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break; 2105 } 2106 SDNode *RetVal = SelectGather(Node, Opc); 2107 if (RetVal) 2108 // We already called ReplaceUses inside SelectGather. 2109 return NULL; 2110 break; 2111 } 2112 } 2113 break; 2114 } 2115 case X86ISD::GlobalBaseReg: 2116 return getGlobalBaseReg(); 2117 2118 2119 case X86ISD::ATOMOR64_DAG: 2120 case X86ISD::ATOMXOR64_DAG: 2121 case X86ISD::ATOMADD64_DAG: 2122 case X86ISD::ATOMSUB64_DAG: 2123 case X86ISD::ATOMNAND64_DAG: 2124 case X86ISD::ATOMAND64_DAG: 2125 case X86ISD::ATOMMAX64_DAG: 2126 case X86ISD::ATOMMIN64_DAG: 2127 case X86ISD::ATOMUMAX64_DAG: 2128 case X86ISD::ATOMUMIN64_DAG: 2129 case X86ISD::ATOMSWAP64_DAG: { 2130 unsigned Opc; 2131 switch (Opcode) { 2132 default: llvm_unreachable("Impossible opcode"); 2133 case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break; 2134 case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break; 2135 case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break; 2136 case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break; 2137 case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break; 2138 case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break; 2139 case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break; 2140 case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break; 2141 case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break; 2142 case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break; 2143 case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break; 2144 } 2145 SDNode *RetVal = SelectAtomic64(Node, Opc); 2146 if (RetVal) 2147 return RetVal; 2148 break; 2149 } 2150 2151 case ISD::ATOMIC_LOAD_XOR: 2152 case ISD::ATOMIC_LOAD_AND: 2153 case ISD::ATOMIC_LOAD_OR: 2154 case ISD::ATOMIC_LOAD_ADD: { 2155 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT); 2156 if (RetVal) 2157 return RetVal; 2158 break; 2159 } 2160 case ISD::AND: 2161 case ISD::OR: 2162 case ISD::XOR: { 2163 // For operations of the form (x << C1) op C2, check if we can use a smaller 2164 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 2165 SDValue N0 = Node->getOperand(0); 2166 SDValue N1 = Node->getOperand(1); 2167 2168 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) 2169 break; 2170 2171 // i8 is unshrinkable, i16 should be promoted to i32. 2172 if (NVT != MVT::i32 && NVT != MVT::i64) 2173 break; 2174 2175 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 2176 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 2177 if (!Cst || !ShlCst) 2178 break; 2179 2180 int64_t Val = Cst->getSExtValue(); 2181 uint64_t ShlVal = ShlCst->getZExtValue(); 2182 2183 // Make sure that we don't change the operation by removing bits. 2184 // This only matters for OR and XOR, AND is unaffected. 2185 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; 2186 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) 2187 break; 2188 2189 unsigned ShlOp, Op; 2190 EVT CstVT = NVT; 2191 2192 // Check the minimum bitwidth for the new constant. 2193 // TODO: AND32ri is the same as AND64ri32 with zext imm. 2194 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr 2195 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 2196 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) 2197 CstVT = MVT::i8; 2198 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) 2199 CstVT = MVT::i32; 2200 2201 // Bail if there is no smaller encoding. 2202 if (NVT == CstVT) 2203 break; 2204 2205 switch (NVT.getSimpleVT().SimpleTy) { 2206 default: llvm_unreachable("Unsupported VT!"); 2207 case MVT::i32: 2208 assert(CstVT == MVT::i8); 2209 ShlOp = X86::SHL32ri; 2210 2211 switch (Opcode) { 2212 default: llvm_unreachable("Impossible opcode"); 2213 case ISD::AND: Op = X86::AND32ri8; break; 2214 case ISD::OR: Op = X86::OR32ri8; break; 2215 case ISD::XOR: Op = X86::XOR32ri8; break; 2216 } 2217 break; 2218 case MVT::i64: 2219 assert(CstVT == MVT::i8 || CstVT == MVT::i32); 2220 ShlOp = X86::SHL64ri; 2221 2222 switch (Opcode) { 2223 default: llvm_unreachable("Impossible opcode"); 2224 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; 2225 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; 2226 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; 2227 } 2228 break; 2229 } 2230 2231 // Emit the smaller op and the shift. 2232 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT); 2233 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); 2234 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), 2235 getI8Imm(ShlVal)); 2236 } 2237 case X86ISD::UMUL: { 2238 SDValue N0 = Node->getOperand(0); 2239 SDValue N1 = Node->getOperand(1); 2240 2241 unsigned LoReg; 2242 switch (NVT.getSimpleVT().SimpleTy) { 2243 default: llvm_unreachable("Unsupported VT!"); 2244 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break; 2245 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; 2246 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; 2247 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; 2248 } 2249 2250 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 2251 N0, SDValue()).getValue(1); 2252 2253 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 2254 SDValue Ops[] = {N1, InFlag}; 2255 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2256 2257 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 2258 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1)); 2259 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2)); 2260 return NULL; 2261 } 2262 2263 case ISD::SMUL_LOHI: 2264 case ISD::UMUL_LOHI: { 2265 SDValue N0 = Node->getOperand(0); 2266 SDValue N1 = Node->getOperand(1); 2267 2268 bool isSigned = Opcode == ISD::SMUL_LOHI; 2269 bool hasBMI2 = Subtarget->hasBMI2(); 2270 if (!isSigned) { 2271 switch (NVT.getSimpleVT().SimpleTy) { 2272 default: llvm_unreachable("Unsupported VT!"); 2273 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break; 2274 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break; 2275 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; 2276 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; 2277 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; 2278 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; 2279 } 2280 } else { 2281 switch (NVT.getSimpleVT().SimpleTy) { 2282 default: llvm_unreachable("Unsupported VT!"); 2283 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break; 2284 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break; 2285 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; 2286 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; 2287 } 2288 } 2289 2290 unsigned SrcReg, LoReg, HiReg; 2291 switch (Opc) { 2292 default: llvm_unreachable("Unknown MUL opcode!"); 2293 case X86::IMUL8r: 2294 case X86::MUL8r: 2295 SrcReg = LoReg = X86::AL; HiReg = X86::AH; 2296 break; 2297 case X86::IMUL16r: 2298 case X86::MUL16r: 2299 SrcReg = LoReg = X86::AX; HiReg = X86::DX; 2300 break; 2301 case X86::IMUL32r: 2302 case X86::MUL32r: 2303 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; 2304 break; 2305 case X86::IMUL64r: 2306 case X86::MUL64r: 2307 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; 2308 break; 2309 case X86::MULX32rr: 2310 SrcReg = X86::EDX; LoReg = HiReg = 0; 2311 break; 2312 case X86::MULX64rr: 2313 SrcReg = X86::RDX; LoReg = HiReg = 0; 2314 break; 2315 } 2316 2317 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2318 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2319 // Multiply is commmutative. 2320 if (!foldedLoad) { 2321 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2322 if (foldedLoad) 2323 std::swap(N0, N1); 2324 } 2325 2326 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, 2327 N0, SDValue()).getValue(1); 2328 SDValue ResHi, ResLo; 2329 2330 if (foldedLoad) { 2331 SDValue Chain; 2332 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2333 InFlag }; 2334 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { 2335 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); 2336 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 2337 ResHi = SDValue(CNode, 0); 2338 ResLo = SDValue(CNode, 1); 2339 Chain = SDValue(CNode, 2); 2340 InFlag = SDValue(CNode, 3); 2341 } else { 2342 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 2343 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 2344 Chain = SDValue(CNode, 0); 2345 InFlag = SDValue(CNode, 1); 2346 } 2347 2348 // Update the chain. 2349 ReplaceUses(N1.getValue(1), Chain); 2350 } else { 2351 SDValue Ops[] = { N1, InFlag }; 2352 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { 2353 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); 2354 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2355 ResHi = SDValue(CNode, 0); 2356 ResLo = SDValue(CNode, 1); 2357 InFlag = SDValue(CNode, 2); 2358 } else { 2359 SDVTList VTs = CurDAG->getVTList(MVT::Glue); 2360 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 2361 InFlag = SDValue(CNode, 0); 2362 } 2363 } 2364 2365 // Prevent use of AH in a REX instruction by referencing AX instead. 2366 if (HiReg == X86::AH && Subtarget->is64Bit() && 2367 !SDValue(Node, 1).use_empty()) { 2368 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2369 X86::AX, MVT::i16, InFlag); 2370 InFlag = Result.getValue(2); 2371 // Get the low part if needed. Don't use getCopyFromReg for aliasing 2372 // registers. 2373 if (!SDValue(Node, 0).use_empty()) 2374 ReplaceUses(SDValue(Node, 1), 2375 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2376 2377 // Shift AX down 8 bits. 2378 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2379 Result, 2380 CurDAG->getTargetConstant(8, MVT::i8)), 0); 2381 // Then truncate it down to i8. 2382 ReplaceUses(SDValue(Node, 1), 2383 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2384 } 2385 // Copy the low half of the result, if it is needed. 2386 if (!SDValue(Node, 0).use_empty()) { 2387 if (ResLo.getNode() == 0) { 2388 assert(LoReg && "Register for low half is not defined!"); 2389 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, 2390 InFlag); 2391 InFlag = ResLo.getValue(2); 2392 } 2393 ReplaceUses(SDValue(Node, 0), ResLo); 2394 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); 2395 } 2396 // Copy the high half of the result, if it is needed. 2397 if (!SDValue(Node, 1).use_empty()) { 2398 if (ResHi.getNode() == 0) { 2399 assert(HiReg && "Register for high half is not defined!"); 2400 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, 2401 InFlag); 2402 InFlag = ResHi.getValue(2); 2403 } 2404 ReplaceUses(SDValue(Node, 1), ResHi); 2405 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); 2406 } 2407 2408 return NULL; 2409 } 2410 2411 case ISD::SDIVREM: 2412 case ISD::UDIVREM: { 2413 SDValue N0 = Node->getOperand(0); 2414 SDValue N1 = Node->getOperand(1); 2415 2416 bool isSigned = Opcode == ISD::SDIVREM; 2417 if (!isSigned) { 2418 switch (NVT.getSimpleVT().SimpleTy) { 2419 default: llvm_unreachable("Unsupported VT!"); 2420 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; 2421 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; 2422 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; 2423 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; 2424 } 2425 } else { 2426 switch (NVT.getSimpleVT().SimpleTy) { 2427 default: llvm_unreachable("Unsupported VT!"); 2428 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 2429 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 2430 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 2431 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 2432 } 2433 } 2434 2435 unsigned LoReg, HiReg, ClrReg; 2436 unsigned SExtOpcode; 2437 switch (NVT.getSimpleVT().SimpleTy) { 2438 default: llvm_unreachable("Unsupported VT!"); 2439 case MVT::i8: 2440 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 2441 SExtOpcode = X86::CBW; 2442 break; 2443 case MVT::i16: 2444 LoReg = X86::AX; HiReg = X86::DX; 2445 ClrReg = X86::DX; 2446 SExtOpcode = X86::CWD; 2447 break; 2448 case MVT::i32: 2449 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 2450 SExtOpcode = X86::CDQ; 2451 break; 2452 case MVT::i64: 2453 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 2454 SExtOpcode = X86::CQO; 2455 break; 2456 } 2457 2458 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 2459 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 2460 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 2461 2462 SDValue InFlag; 2463 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { 2464 // Special case for div8, just use a move with zero extension to AX to 2465 // clear the upper 8 bits (AH). 2466 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; 2467 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 2468 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 2469 Move = 2470 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, 2471 MVT::Other, Ops), 0); 2472 Chain = Move.getValue(1); 2473 ReplaceUses(N0.getValue(1), Chain); 2474 } else { 2475 Move = 2476 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); 2477 Chain = CurDAG->getEntryNode(); 2478 } 2479 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); 2480 InFlag = Chain.getValue(1); 2481 } else { 2482 InFlag = 2483 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 2484 LoReg, N0, SDValue()).getValue(1); 2485 if (isSigned && !signBitIsZero) { 2486 // Sign extend the low part into the high part. 2487 InFlag = 2488 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 2489 } else { 2490 // Zero out the high part, effectively zero extending the input. 2491 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); 2492 switch (NVT.getSimpleVT().SimpleTy) { 2493 case MVT::i16: 2494 ClrNode = 2495 SDValue(CurDAG->getMachineNode( 2496 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, 2497 CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)), 2498 0); 2499 break; 2500 case MVT::i32: 2501 break; 2502 case MVT::i64: 2503 ClrNode = 2504 SDValue(CurDAG->getMachineNode( 2505 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 2506 CurDAG->getTargetConstant(0, MVT::i64), ClrNode, 2507 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)), 2508 0); 2509 break; 2510 default: 2511 llvm_unreachable("Unexpected division source"); 2512 } 2513 2514 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 2515 ClrNode, InFlag).getValue(1); 2516 } 2517 } 2518 2519 if (foldedLoad) { 2520 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 2521 InFlag }; 2522 SDNode *CNode = 2523 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); 2524 InFlag = SDValue(CNode, 1); 2525 // Update the chain. 2526 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 2527 } else { 2528 InFlag = 2529 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); 2530 } 2531 2532 // Prevent use of AH in a REX instruction by referencing AX instead. 2533 // Shift it down 8 bits. 2534 // 2535 // The current assumption of the register allocator is that isel 2536 // won't generate explicit references to the GPR8_NOREX registers. If 2537 // the allocator and/or the backend get enhanced to be more robust in 2538 // that regard, this can be, and should be, removed. 2539 if (HiReg == X86::AH && Subtarget->is64Bit() && 2540 !SDValue(Node, 1).use_empty()) { 2541 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2542 X86::AX, MVT::i16, InFlag); 2543 InFlag = Result.getValue(2); 2544 2545 // If we also need AL (the quotient), get it by extracting a subreg from 2546 // Result. The fast register allocator does not like multiple CopyFromReg 2547 // nodes using aliasing registers. 2548 if (!SDValue(Node, 0).use_empty()) 2549 ReplaceUses(SDValue(Node, 0), 2550 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2551 2552 // Shift AX right by 8 bits instead of using AH. 2553 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16, 2554 Result, 2555 CurDAG->getTargetConstant(8, MVT::i8)), 2556 0); 2557 ReplaceUses(SDValue(Node, 1), 2558 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result)); 2559 } 2560 // Copy the division (low) result, if it is needed. 2561 if (!SDValue(Node, 0).use_empty()) { 2562 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2563 LoReg, NVT, InFlag); 2564 InFlag = Result.getValue(2); 2565 ReplaceUses(SDValue(Node, 0), Result); 2566 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2567 } 2568 // Copy the remainder (high) result, if it is needed. 2569 if (!SDValue(Node, 1).use_empty()) { 2570 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 2571 HiReg, NVT, InFlag); 2572 InFlag = Result.getValue(2); 2573 ReplaceUses(SDValue(Node, 1), Result); 2574 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); 2575 } 2576 return NULL; 2577 } 2578 2579 case X86ISD::CMP: 2580 case X86ISD::SUB: { 2581 // Sometimes a SUB is used to perform comparison. 2582 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0)) 2583 // This node is not a CMP. 2584 break; 2585 SDValue N0 = Node->getOperand(0); 2586 SDValue N1 = Node->getOperand(1); 2587 2588 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 2589 // use a smaller encoding. 2590 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && 2591 HasNoSignedComparisonUses(Node)) 2592 // Look past the truncate if CMP is the only use of it. 2593 N0 = N0.getOperand(0); 2594 if ((N0.getNode()->getOpcode() == ISD::AND || 2595 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) && 2596 N0.getNode()->hasOneUse() && 2597 N0.getValueType() != MVT::i8 && 2598 X86::isZeroNode(N1)) { 2599 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1)); 2600 if (!C) break; 2601 2602 // For example, convert "testl %eax, $8" to "testb %al, $8" 2603 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 && 2604 (!(C->getZExtValue() & 0x80) || 2605 HasNoSignedComparisonUses(Node))) { 2606 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8); 2607 SDValue Reg = N0.getNode()->getOperand(0); 2608 2609 // On x86-32, only the ABCD registers have 8-bit subregisters. 2610 if (!Subtarget->is64Bit()) { 2611 const TargetRegisterClass *TRC; 2612 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2613 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2614 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2615 default: llvm_unreachable("Unsupported TEST operand type!"); 2616 } 2617 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2618 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2619 Reg.getValueType(), Reg, RC), 0); 2620 } 2621 2622 // Extract the l-register. 2623 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, 2624 MVT::i8, Reg); 2625 2626 // Emit a testb. 2627 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, 2628 Subreg, Imm); 2629 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2630 // one, do not call ReplaceAllUsesWith. 2631 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2632 SDValue(NewNode, 0)); 2633 return NULL; 2634 } 2635 2636 // For example, "testl %eax, $2048" to "testb %ah, $8". 2637 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 && 2638 (!(C->getZExtValue() & 0x8000) || 2639 HasNoSignedComparisonUses(Node))) { 2640 // Shift the immediate right by 8 bits. 2641 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8, 2642 MVT::i8); 2643 SDValue Reg = N0.getNode()->getOperand(0); 2644 2645 // Put the value in an ABCD register. 2646 const TargetRegisterClass *TRC; 2647 switch (N0.getValueType().getSimpleVT().SimpleTy) { 2648 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break; 2649 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break; 2650 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break; 2651 default: llvm_unreachable("Unsupported TEST operand type!"); 2652 } 2653 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 2654 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl, 2655 Reg.getValueType(), Reg, RC), 0); 2656 2657 // Extract the h-register. 2658 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, 2659 MVT::i8, Reg); 2660 2661 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only 2662 // target GR8_NOREX registers, so make sure the register class is 2663 // forced. 2664 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, 2665 MVT::i32, Subreg, ShiftedImm); 2666 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2667 // one, do not call ReplaceAllUsesWith. 2668 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2669 SDValue(NewNode, 0)); 2670 return NULL; 2671 } 2672 2673 // For example, "testl %eax, $32776" to "testw %ax, $32776". 2674 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 && 2675 N0.getValueType() != MVT::i16 && 2676 (!(C->getZExtValue() & 0x8000) || 2677 HasNoSignedComparisonUses(Node))) { 2678 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16); 2679 SDValue Reg = N0.getNode()->getOperand(0); 2680 2681 // Extract the 16-bit subregister. 2682 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, 2683 MVT::i16, Reg); 2684 2685 // Emit a testw. 2686 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, 2687 Subreg, Imm); 2688 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2689 // one, do not call ReplaceAllUsesWith. 2690 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2691 SDValue(NewNode, 0)); 2692 return NULL; 2693 } 2694 2695 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 2696 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 && 2697 N0.getValueType() == MVT::i64 && 2698 (!(C->getZExtValue() & 0x80000000) || 2699 HasNoSignedComparisonUses(Node))) { 2700 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); 2701 SDValue Reg = N0.getNode()->getOperand(0); 2702 2703 // Extract the 32-bit subregister. 2704 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl, 2705 MVT::i32, Reg); 2706 2707 // Emit a testl. 2708 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, 2709 Subreg, Imm); 2710 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has 2711 // one, do not call ReplaceAllUsesWith. 2712 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)), 2713 SDValue(NewNode, 0)); 2714 return NULL; 2715 } 2716 } 2717 break; 2718 } 2719 case ISD::STORE: { 2720 // Change a chain of {load; incr or dec; store} of the same value into 2721 // a simple increment or decrement through memory of that value, if the 2722 // uses of the modified value and its address are suitable. 2723 // The DEC64m tablegen pattern is currently not able to match the case where 2724 // the EFLAGS on the original DEC are used. (This also applies to 2725 // {INC,DEC}X{64,32,16,8}.) 2726 // We'll need to improve tablegen to allow flags to be transferred from a 2727 // node in the pattern to the result node. probably with a new keyword 2728 // for example, we have this 2729 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2730 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2731 // (implicit EFLAGS)]>; 2732 // but maybe need something like this 2733 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 2734 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 2735 // (transferrable EFLAGS)]>; 2736 2737 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 2738 SDValue StoredVal = StoreNode->getOperand(1); 2739 unsigned Opc = StoredVal->getOpcode(); 2740 2741 LoadSDNode *LoadNode = 0; 2742 SDValue InputChain; 2743 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG, 2744 LoadNode, InputChain)) 2745 break; 2746 2747 SDValue Base, Scale, Index, Disp, Segment; 2748 if (!SelectAddr(LoadNode, LoadNode->getBasePtr(), 2749 Base, Scale, Index, Disp, Segment)) 2750 break; 2751 2752 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); 2753 MemOp[0] = StoreNode->getMemOperand(); 2754 MemOp[1] = LoadNode->getMemOperand(); 2755 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain }; 2756 EVT LdVT = LoadNode->getMemoryVT(); 2757 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc); 2758 MachineSDNode *Result = CurDAG->getMachineNode(newOpc, 2759 SDLoc(Node), 2760 MVT::i32, MVT::Other, Ops); 2761 Result->setMemRefs(MemOp, MemOp + 2); 2762 2763 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 2764 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 2765 2766 return Result; 2767 } 2768 } 2769 2770 SDNode *ResNode = SelectCode(Node); 2771 2772 DEBUG(dbgs() << "=> "; 2773 if (ResNode == NULL || ResNode == Node) 2774 Node->dump(CurDAG); 2775 else 2776 ResNode->dump(CurDAG); 2777 dbgs() << '\n'); 2778 2779 return ResNode; 2780 } 2781 2782 bool X86DAGToDAGISel:: 2783 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, 2784 std::vector<SDValue> &OutOps) { 2785 SDValue Op0, Op1, Op2, Op3, Op4; 2786 switch (ConstraintCode) { 2787 case 'o': // offsetable ?? 2788 case 'v': // not offsetable ?? 2789 default: return true; 2790 case 'm': // memory 2791 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4)) 2792 return true; 2793 break; 2794 } 2795 2796 OutOps.push_back(Op0); 2797 OutOps.push_back(Op1); 2798 OutOps.push_back(Op2); 2799 OutOps.push_back(Op3); 2800 OutOps.push_back(Op4); 2801 return false; 2802 } 2803 2804 /// createX86ISelDag - This pass converts a legalized DAG into a 2805 /// X86-specific DAG, ready for instruction scheduling. 2806 /// 2807 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 2808 CodeGenOpt::Level OptLevel) { 2809 return new X86DAGToDAGISel(TM, OptLevel); 2810 } 2811