1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef X86INSTRUCTIONINFO_H 15 #define X86INSTRUCTIONINFO_H 16 17 #include "X86.h" 18 #include "X86RegisterInfo.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/Target/TargetInstrInfo.h" 21 22 #define GET_INSTRINFO_HEADER 23 #include "X86GenInstrInfo.inc" 24 25 namespace llvm { 26 class X86RegisterInfo; 27 class X86TargetMachine; 28 29 namespace X86 { 30 // X86 specific condition code. These correspond to X86_*_COND in 31 // X86InstrInfo.td. They must be kept in synch. 32 enum CondCode { 33 COND_A = 0, 34 COND_AE = 1, 35 COND_B = 2, 36 COND_BE = 3, 37 COND_E = 4, 38 COND_G = 5, 39 COND_GE = 6, 40 COND_L = 7, 41 COND_LE = 8, 42 COND_NE = 9, 43 COND_NO = 10, 44 COND_NP = 11, 45 COND_NS = 12, 46 COND_O = 13, 47 COND_P = 14, 48 COND_S = 15, 49 50 // Artificial condition codes. These are used by AnalyzeBranch 51 // to indicate a block terminated with two conditional branches to 52 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, 53 // which can't be represented on x86 with a single condition. These 54 // are never used in MachineInstrs. 55 COND_NE_OR_P, 56 COND_NP_OR_E, 57 58 COND_INVALID 59 }; 60 61 // Turn condition code into conditional branch opcode. 62 unsigned GetCondBranchFromCond(CondCode CC); 63 64 // Turn CMov opcode into condition code. 65 CondCode getCondFromCMovOpc(unsigned Opc); 66 67 /// GetOppositeBranchCondition - Return the inverse of the specified cond, 68 /// e.g. turning COND_E to COND_NE. 69 CondCode GetOppositeBranchCondition(X86::CondCode CC); 70 } // end namespace X86; 71 72 73 /// isGlobalStubReference - Return true if the specified TargetFlag operand is 74 /// a reference to a stub for a global, not the global itself. 75 inline static bool isGlobalStubReference(unsigned char TargetFlag) { 76 switch (TargetFlag) { 77 case X86II::MO_DLLIMPORT: // dllimport stub. 78 case X86II::MO_GOTPCREL: // rip-relative GOT reference. 79 case X86II::MO_GOT: // normal GOT reference. 80 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. 81 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. 82 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. 83 return true; 84 default: 85 return false; 86 } 87 } 88 89 /// isGlobalRelativeToPICBase - Return true if the specified global value 90 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this 91 /// is true, the addressing mode has the PIC base register added in (e.g. EBX). 92 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { 93 switch (TargetFlag) { 94 case X86II::MO_GOTOFF: // isPICStyleGOT: local global. 95 case X86II::MO_GOT: // isPICStyleGOT: other global. 96 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. 97 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. 98 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. 99 case X86II::MO_TLVP: // ??? Pretty sure.. 100 return true; 101 default: 102 return false; 103 } 104 } 105 106 inline static bool isScale(const MachineOperand &MO) { 107 return MO.isImm() && 108 (MO.getImm() == 1 || MO.getImm() == 2 || 109 MO.getImm() == 4 || MO.getImm() == 8); 110 } 111 112 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { 113 if (MI->getOperand(Op).isFI()) return true; 114 return Op+4 <= MI->getNumOperands() && 115 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && 116 MI->getOperand(Op+2).isReg() && 117 (MI->getOperand(Op+3).isImm() || 118 MI->getOperand(Op+3).isGlobal() || 119 MI->getOperand(Op+3).isCPI() || 120 MI->getOperand(Op+3).isJTI()); 121 } 122 123 inline static bool isMem(const MachineInstr *MI, unsigned Op) { 124 if (MI->getOperand(Op).isFI()) return true; 125 return Op+5 <= MI->getNumOperands() && 126 MI->getOperand(Op+4).isReg() && 127 isLeaMem(MI, Op); 128 } 129 130 class X86InstrInfo : public X86GenInstrInfo { 131 X86TargetMachine &TM; 132 const X86RegisterInfo RI; 133 134 /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, 135 /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps. 136 /// 137 typedef DenseMap<unsigned, 138 std::pair<unsigned, unsigned> > RegOp2MemOpTableType; 139 RegOp2MemOpTableType RegOp2MemOpTable2Addr; 140 RegOp2MemOpTableType RegOp2MemOpTable0; 141 RegOp2MemOpTableType RegOp2MemOpTable1; 142 RegOp2MemOpTableType RegOp2MemOpTable2; 143 RegOp2MemOpTableType RegOp2MemOpTable3; 144 145 /// MemOp2RegOpTable - Load / store unfolding opcode map. 146 /// 147 typedef DenseMap<unsigned, 148 std::pair<unsigned, unsigned> > MemOp2RegOpTableType; 149 MemOp2RegOpTableType MemOp2RegOpTable; 150 151 static void AddTableEntry(RegOp2MemOpTableType &R2MTable, 152 MemOp2RegOpTableType &M2RTable, 153 unsigned RegOp, unsigned MemOp, unsigned Flags); 154 155 public: 156 explicit X86InstrInfo(X86TargetMachine &tm); 157 158 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As 159 /// such, whenever a client has an instance of instruction info, it should 160 /// always be able to get register info as well (through this method). 161 /// 162 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } 163 164 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" 165 /// extension instruction. That is, it's like a copy where it's legal for the 166 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns 167 /// true, then it's expected the pre-extension value is available as a subreg 168 /// of the result register. This also returns the sub-register index in 169 /// SubIdx. 170 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 171 unsigned &SrcReg, unsigned &DstReg, 172 unsigned &SubIdx) const; 173 174 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; 175 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination 176 /// stack locations as well. This uses a heuristic so it isn't 177 /// reliable for correctness. 178 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, 179 int &FrameIndex) const; 180 181 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; 182 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination 183 /// stack locations as well. This uses a heuristic so it isn't 184 /// reliable for correctness. 185 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, 186 int &FrameIndex) const; 187 188 bool isReallyTriviallyReMaterializable(const MachineInstr *MI, 189 AliasAnalysis *AA) const; 190 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 191 unsigned DestReg, unsigned SubIdx, 192 const MachineInstr *Orig, 193 const TargetRegisterInfo &TRI) const; 194 195 /// Given an operand within a MachineInstr, insert preceding code to put it 196 /// into the right format for a particular kind of LEA instruction. This may 197 /// involve using an appropriate super-register instead (with an implicit use 198 /// of the original) or creating a new virtual register and inserting COPY 199 /// instructions to get the data into the right class. 200 /// 201 /// Reference parameters are set to indicate how caller should add this 202 /// operand to the LEA instruction. 203 bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, 204 unsigned LEAOpcode, bool AllowSP, 205 unsigned &NewSrc, bool &isKill, 206 bool &isUndef, MachineOperand &ImplicitOp) const; 207 208 /// convertToThreeAddress - This method must be implemented by targets that 209 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 210 /// may be able to convert a two-address instruction into a true 211 /// three-address instruction on demand. This allows the X86 target (for 212 /// example) to convert ADD and SHL instructions into LEA instructions if they 213 /// would require register copies due to two-addressness. 214 /// 215 /// This method returns a null pointer if the transformation cannot be 216 /// performed, otherwise it returns the new instruction. 217 /// 218 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 219 MachineBasicBlock::iterator &MBBI, 220 LiveVariables *LV) const; 221 222 /// commuteInstruction - We have a few instructions that must be hacked on to 223 /// commute them. 224 /// 225 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; 226 227 // Branch analysis. 228 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; 229 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 230 MachineBasicBlock *&FBB, 231 SmallVectorImpl<MachineOperand> &Cond, 232 bool AllowModify) const; 233 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; 234 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 235 MachineBasicBlock *FBB, 236 const SmallVectorImpl<MachineOperand> &Cond, 237 DebugLoc DL) const; 238 virtual bool canInsertSelect(const MachineBasicBlock&, 239 const SmallVectorImpl<MachineOperand> &Cond, 240 unsigned, unsigned, int&, int&, int&) const; 241 virtual void insertSelect(MachineBasicBlock &MBB, 242 MachineBasicBlock::iterator MI, DebugLoc DL, 243 unsigned DstReg, 244 const SmallVectorImpl<MachineOperand> &Cond, 245 unsigned TrueReg, unsigned FalseReg) const; 246 virtual void copyPhysReg(MachineBasicBlock &MBB, 247 MachineBasicBlock::iterator MI, DebugLoc DL, 248 unsigned DestReg, unsigned SrcReg, 249 bool KillSrc) const; 250 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 251 MachineBasicBlock::iterator MI, 252 unsigned SrcReg, bool isKill, int FrameIndex, 253 const TargetRegisterClass *RC, 254 const TargetRegisterInfo *TRI) const; 255 256 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, 257 SmallVectorImpl<MachineOperand> &Addr, 258 const TargetRegisterClass *RC, 259 MachineInstr::mmo_iterator MMOBegin, 260 MachineInstr::mmo_iterator MMOEnd, 261 SmallVectorImpl<MachineInstr*> &NewMIs) const; 262 263 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 264 MachineBasicBlock::iterator MI, 265 unsigned DestReg, int FrameIndex, 266 const TargetRegisterClass *RC, 267 const TargetRegisterInfo *TRI) const; 268 269 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 270 SmallVectorImpl<MachineOperand> &Addr, 271 const TargetRegisterClass *RC, 272 MachineInstr::mmo_iterator MMOBegin, 273 MachineInstr::mmo_iterator MMOEnd, 274 SmallVectorImpl<MachineInstr*> &NewMIs) const; 275 276 virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const; 277 278 /// foldMemoryOperand - If this target supports it, fold a load or store of 279 /// the specified stack slot into the specified machine instruction for the 280 /// specified operand(s). If this is possible, the target should perform the 281 /// folding and return true, otherwise it should return false. If it folds 282 /// the instruction, it is likely that the MachineInstruction the iterator 283 /// references has been changed. 284 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 285 MachineInstr* MI, 286 const SmallVectorImpl<unsigned> &Ops, 287 int FrameIndex) const; 288 289 /// foldMemoryOperand - Same as the previous version except it allows folding 290 /// of any load and store from / to any address, not just from a specific 291 /// stack slot. 292 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 293 MachineInstr* MI, 294 const SmallVectorImpl<unsigned> &Ops, 295 MachineInstr* LoadMI) const; 296 297 /// canFoldMemoryOperand - Returns true if the specified load / store is 298 /// folding is possible. 299 virtual bool canFoldMemoryOperand(const MachineInstr*, 300 const SmallVectorImpl<unsigned> &) const; 301 302 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 303 /// a store or a load and a store into two or more instruction. If this is 304 /// possible, returns true as well as the new instructions by reference. 305 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 306 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 307 SmallVectorImpl<MachineInstr*> &NewMIs) const; 308 309 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 310 SmallVectorImpl<SDNode*> &NewNodes) const; 311 312 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new 313 /// instruction after load / store are unfolded from an instruction of the 314 /// specified opcode. It returns zero if the specified unfolding is not 315 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 316 /// index of the operand which will hold the register holding the loaded 317 /// value. 318 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 319 bool UnfoldLoad, bool UnfoldStore, 320 unsigned *LoadRegIndex = 0) const; 321 322 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler 323 /// to determine if two loads are loading from the same base address. It 324 /// should only return true if the base pointers are the same and the 325 /// only differences between the two addresses are the offset. It also returns 326 /// the offsets by reference. 327 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 328 int64_t &Offset1, int64_t &Offset2) const; 329 330 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 331 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 332 /// be scheduled togther. On some targets if two loads are loading from 333 /// addresses in the same cache line, it's better if they are scheduled 334 /// together. This function takes two integers that represent the load offsets 335 /// from the common base address. It returns true if it decides it's desirable 336 /// to schedule the two loads together. "NumLoads" is the number of loads that 337 /// have already been scheduled after Load1. 338 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 339 int64_t Offset1, int64_t Offset2, 340 unsigned NumLoads) const; 341 342 virtual bool shouldScheduleAdjacent(MachineInstr* First, 343 MachineInstr *Second) const LLVM_OVERRIDE; 344 345 virtual void getNoopForMachoTarget(MCInst &NopInst) const; 346 347 virtual 348 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; 349 350 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine 351 /// instruction that defines the specified register class. 352 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; 353 354 static bool isX86_64ExtendedReg(const MachineOperand &MO) { 355 if (!MO.isReg()) return false; 356 return X86II::isX86_64ExtendedReg(MO.getReg()); 357 } 358 359 /// getGlobalBaseReg - Return a virtual register initialized with the 360 /// the global base register value. Output instructions required to 361 /// initialize the register in the function entry block, if necessary. 362 /// 363 unsigned getGlobalBaseReg(MachineFunction *MF) const; 364 365 std::pair<uint16_t, uint16_t> 366 getExecutionDomain(const MachineInstr *MI) const; 367 368 void setExecutionDomain(MachineInstr *MI, unsigned Domain) const; 369 370 unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, 371 const TargetRegisterInfo *TRI) const; 372 void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, 373 const TargetRegisterInfo *TRI) const; 374 375 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, 376 MachineInstr* MI, 377 unsigned OpNum, 378 const SmallVectorImpl<MachineOperand> &MOs, 379 unsigned Size, unsigned Alignment) const; 380 381 bool isHighLatencyDef(int opc) const; 382 383 bool hasHighOperandLatency(const InstrItineraryData *ItinData, 384 const MachineRegisterInfo *MRI, 385 const MachineInstr *DefMI, unsigned DefIdx, 386 const MachineInstr *UseMI, unsigned UseIdx) const; 387 388 /// analyzeCompare - For a comparison instruction, return the source registers 389 /// in SrcReg and SrcReg2 if having two register operands, and the value it 390 /// compares against in CmpValue. Return true if the comparison instruction 391 /// can be analyzed. 392 virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, 393 unsigned &SrcReg2, 394 int &CmpMask, int &CmpValue) const; 395 396 /// optimizeCompareInstr - Check if there exists an earlier instruction that 397 /// operates on the same source operands and sets flags in the same way as 398 /// Compare; remove Compare if possible. 399 virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, 400 unsigned SrcReg2, int CmpMask, int CmpValue, 401 const MachineRegisterInfo *MRI) const; 402 403 /// optimizeLoadInstr - Try to remove the load by folding it to a register 404 /// operand at the use. We fold the load instructions if and only if the 405 /// def and use are in the same BB. We only look at one load and see 406 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 407 /// defined by the load we are trying to fold. DefMI returns the machine 408 /// instruction that defines FoldAsLoadDefReg, and the function returns 409 /// the machine instruction generated due to folding. 410 virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI, 411 const MachineRegisterInfo *MRI, 412 unsigned &FoldAsLoadDefReg, 413 MachineInstr *&DefMI) const; 414 415 private: 416 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, 417 MachineFunction::iterator &MFI, 418 MachineBasicBlock::iterator &MBBI, 419 LiveVariables *LV) const; 420 421 /// isFrameOperand - Return true and the FrameIndex if the specified 422 /// operand and follow operands form a reference to the stack frame. 423 bool isFrameOperand(const MachineInstr *MI, unsigned int Op, 424 int &FrameIndex) const; 425 }; 426 427 } // End llvm namespace 428 429 #endif 430