Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef X86INSTRUCTIONINFO_H
     15 #define X86INSTRUCTIONINFO_H
     16 
     17 #include "X86.h"
     18 #include "X86RegisterInfo.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 
     22 #define GET_INSTRINFO_HEADER
     23 #include "X86GenInstrInfo.inc"
     24 
     25 namespace llvm {
     26   class X86RegisterInfo;
     27   class X86TargetMachine;
     28 
     29 namespace X86 {
     30   // X86 specific condition code. These correspond to X86_*_COND in
     31   // X86InstrInfo.td. They must be kept in synch.
     32   enum CondCode {
     33     COND_A  = 0,
     34     COND_AE = 1,
     35     COND_B  = 2,
     36     COND_BE = 3,
     37     COND_E  = 4,
     38     COND_G  = 5,
     39     COND_GE = 6,
     40     COND_L  = 7,
     41     COND_LE = 8,
     42     COND_NE = 9,
     43     COND_NO = 10,
     44     COND_NP = 11,
     45     COND_NS = 12,
     46     COND_O  = 13,
     47     COND_P  = 14,
     48     COND_S  = 15,
     49 
     50     // Artificial condition codes. These are used by AnalyzeBranch
     51     // to indicate a block terminated with two conditional branches to
     52     // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
     53     // which can't be represented on x86 with a single condition. These
     54     // are never used in MachineInstrs.
     55     COND_NE_OR_P,
     56     COND_NP_OR_E,
     57 
     58     COND_INVALID
     59   };
     60 
     61   // Turn condition code into conditional branch opcode.
     62   unsigned GetCondBranchFromCond(CondCode CC);
     63 
     64   // Turn CMov opcode into condition code.
     65   CondCode getCondFromCMovOpc(unsigned Opc);
     66 
     67   /// GetOppositeBranchCondition - Return the inverse of the specified cond,
     68   /// e.g. turning COND_E to COND_NE.
     69   CondCode GetOppositeBranchCondition(X86::CondCode CC);
     70 }  // end namespace X86;
     71 
     72 
     73 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
     74 /// a reference to a stub for a global, not the global itself.
     75 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
     76   switch (TargetFlag) {
     77   case X86II::MO_DLLIMPORT: // dllimport stub.
     78   case X86II::MO_GOTPCREL:  // rip-relative GOT reference.
     79   case X86II::MO_GOT:       // normal GOT reference.
     80   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Normal $non_lazy_ptr ref.
     81   case X86II::MO_DARWIN_NONLAZY:                 // Normal $non_lazy_ptr ref.
     82   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
     83     return true;
     84   default:
     85     return false;
     86   }
     87 }
     88 
     89 /// isGlobalRelativeToPICBase - Return true if the specified global value
     90 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
     91 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
     92 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
     93   switch (TargetFlag) {
     94   case X86II::MO_GOTOFF:                         // isPICStyleGOT: local global.
     95   case X86II::MO_GOT:                            // isPICStyleGOT: other global.
     96   case X86II::MO_PIC_BASE_OFFSET:                // Darwin local global.
     97   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:        // Darwin/32 external global.
     98   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
     99   case X86II::MO_TLVP:                           // ??? Pretty sure..
    100     return true;
    101   default:
    102     return false;
    103   }
    104 }
    105 
    106 inline static bool isScale(const MachineOperand &MO) {
    107   return MO.isImm() &&
    108     (MO.getImm() == 1 || MO.getImm() == 2 ||
    109      MO.getImm() == 4 || MO.getImm() == 8);
    110 }
    111 
    112 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
    113   if (MI->getOperand(Op).isFI()) return true;
    114   return Op+4 <= MI->getNumOperands() &&
    115     MI->getOperand(Op  ).isReg() && isScale(MI->getOperand(Op+1)) &&
    116     MI->getOperand(Op+2).isReg() &&
    117     (MI->getOperand(Op+3).isImm() ||
    118      MI->getOperand(Op+3).isGlobal() ||
    119      MI->getOperand(Op+3).isCPI() ||
    120      MI->getOperand(Op+3).isJTI());
    121 }
    122 
    123 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
    124   if (MI->getOperand(Op).isFI()) return true;
    125   return Op+5 <= MI->getNumOperands() &&
    126     MI->getOperand(Op+4).isReg() &&
    127     isLeaMem(MI, Op);
    128 }
    129 
    130 class X86InstrInfo : public X86GenInstrInfo {
    131   X86TargetMachine &TM;
    132   const X86RegisterInfo RI;
    133 
    134   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
    135   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
    136   ///
    137   typedef DenseMap<unsigned,
    138                    std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
    139   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
    140   RegOp2MemOpTableType RegOp2MemOpTable0;
    141   RegOp2MemOpTableType RegOp2MemOpTable1;
    142   RegOp2MemOpTableType RegOp2MemOpTable2;
    143   RegOp2MemOpTableType RegOp2MemOpTable3;
    144 
    145   /// MemOp2RegOpTable - Load / store unfolding opcode map.
    146   ///
    147   typedef DenseMap<unsigned,
    148                    std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
    149   MemOp2RegOpTableType MemOp2RegOpTable;
    150 
    151   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
    152                             MemOp2RegOpTableType &M2RTable,
    153                             unsigned RegOp, unsigned MemOp, unsigned Flags);
    154 
    155 public:
    156   explicit X86InstrInfo(X86TargetMachine &tm);
    157 
    158   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
    159   /// such, whenever a client has an instance of instruction info, it should
    160   /// always be able to get register info as well (through this method).
    161   ///
    162   virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
    163 
    164   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
    165   /// extension instruction. That is, it's like a copy where it's legal for the
    166   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
    167   /// true, then it's expected the pre-extension value is available as a subreg
    168   /// of the result register. This also returns the sub-register index in
    169   /// SubIdx.
    170   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
    171                                      unsigned &SrcReg, unsigned &DstReg,
    172                                      unsigned &SubIdx) const;
    173 
    174   unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    175   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
    176   /// stack locations as well.  This uses a heuristic so it isn't
    177   /// reliable for correctness.
    178   unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
    179                                      int &FrameIndex) const;
    180 
    181   unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
    182   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
    183   /// stack locations as well.  This uses a heuristic so it isn't
    184   /// reliable for correctness.
    185   unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
    186                                     int &FrameIndex) const;
    187 
    188   bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
    189                                          AliasAnalysis *AA) const;
    190   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    191                      unsigned DestReg, unsigned SubIdx,
    192                      const MachineInstr *Orig,
    193                      const TargetRegisterInfo &TRI) const;
    194 
    195   /// Given an operand within a MachineInstr, insert preceding code to put it
    196   /// into the right format for a particular kind of LEA instruction. This may
    197   /// involve using an appropriate super-register instead (with an implicit use
    198   /// of the original) or creating a new virtual register and inserting COPY
    199   /// instructions to get the data into the right class.
    200   ///
    201   /// Reference parameters are set to indicate how caller should add this
    202   /// operand to the LEA instruction.
    203   bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
    204                       unsigned LEAOpcode, bool AllowSP,
    205                       unsigned &NewSrc, bool &isKill,
    206                       bool &isUndef, MachineOperand &ImplicitOp) const;
    207 
    208   /// convertToThreeAddress - This method must be implemented by targets that
    209   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
    210   /// may be able to convert a two-address instruction into a true
    211   /// three-address instruction on demand.  This allows the X86 target (for
    212   /// example) to convert ADD and SHL instructions into LEA instructions if they
    213   /// would require register copies due to two-addressness.
    214   ///
    215   /// This method returns a null pointer if the transformation cannot be
    216   /// performed, otherwise it returns the new instruction.
    217   ///
    218   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
    219                                               MachineBasicBlock::iterator &MBBI,
    220                                               LiveVariables *LV) const;
    221 
    222   /// commuteInstruction - We have a few instructions that must be hacked on to
    223   /// commute them.
    224   ///
    225   virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
    226 
    227   // Branch analysis.
    228   virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
    229   virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
    230                              MachineBasicBlock *&FBB,
    231                              SmallVectorImpl<MachineOperand> &Cond,
    232                              bool AllowModify) const;
    233   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
    234   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    235                                 MachineBasicBlock *FBB,
    236                                 const SmallVectorImpl<MachineOperand> &Cond,
    237                                 DebugLoc DL) const;
    238   virtual bool canInsertSelect(const MachineBasicBlock&,
    239                                const SmallVectorImpl<MachineOperand> &Cond,
    240                                unsigned, unsigned, int&, int&, int&) const;
    241   virtual void insertSelect(MachineBasicBlock &MBB,
    242                             MachineBasicBlock::iterator MI, DebugLoc DL,
    243                             unsigned DstReg,
    244                             const SmallVectorImpl<MachineOperand> &Cond,
    245                             unsigned TrueReg, unsigned FalseReg) const;
    246   virtual void copyPhysReg(MachineBasicBlock &MBB,
    247                            MachineBasicBlock::iterator MI, DebugLoc DL,
    248                            unsigned DestReg, unsigned SrcReg,
    249                            bool KillSrc) const;
    250   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
    251                                    MachineBasicBlock::iterator MI,
    252                                    unsigned SrcReg, bool isKill, int FrameIndex,
    253                                    const TargetRegisterClass *RC,
    254                                    const TargetRegisterInfo *TRI) const;
    255 
    256   virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
    257                               SmallVectorImpl<MachineOperand> &Addr,
    258                               const TargetRegisterClass *RC,
    259                               MachineInstr::mmo_iterator MMOBegin,
    260                               MachineInstr::mmo_iterator MMOEnd,
    261                               SmallVectorImpl<MachineInstr*> &NewMIs) const;
    262 
    263   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
    264                                     MachineBasicBlock::iterator MI,
    265                                     unsigned DestReg, int FrameIndex,
    266                                     const TargetRegisterClass *RC,
    267                                     const TargetRegisterInfo *TRI) const;
    268 
    269   virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    270                                SmallVectorImpl<MachineOperand> &Addr,
    271                                const TargetRegisterClass *RC,
    272                                MachineInstr::mmo_iterator MMOBegin,
    273                                MachineInstr::mmo_iterator MMOEnd,
    274                                SmallVectorImpl<MachineInstr*> &NewMIs) const;
    275 
    276   virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const;
    277 
    278   /// foldMemoryOperand - If this target supports it, fold a load or store of
    279   /// the specified stack slot into the specified machine instruction for the
    280   /// specified operand(s).  If this is possible, the target should perform the
    281   /// folding and return true, otherwise it should return false.  If it folds
    282   /// the instruction, it is likely that the MachineInstruction the iterator
    283   /// references has been changed.
    284   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    285                                               MachineInstr* MI,
    286                                            const SmallVectorImpl<unsigned> &Ops,
    287                                               int FrameIndex) const;
    288 
    289   /// foldMemoryOperand - Same as the previous version except it allows folding
    290   /// of any load and store from / to any address, not just from a specific
    291   /// stack slot.
    292   virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    293                                               MachineInstr* MI,
    294                                            const SmallVectorImpl<unsigned> &Ops,
    295                                               MachineInstr* LoadMI) const;
    296 
    297   /// canFoldMemoryOperand - Returns true if the specified load / store is
    298   /// folding is possible.
    299   virtual bool canFoldMemoryOperand(const MachineInstr*,
    300                                     const SmallVectorImpl<unsigned> &) const;
    301 
    302   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
    303   /// a store or a load and a store into two or more instruction. If this is
    304   /// possible, returns true as well as the new instructions by reference.
    305   virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
    306                            unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
    307                            SmallVectorImpl<MachineInstr*> &NewMIs) const;
    308 
    309   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
    310                            SmallVectorImpl<SDNode*> &NewNodes) const;
    311 
    312   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
    313   /// instruction after load / store are unfolded from an instruction of the
    314   /// specified opcode. It returns zero if the specified unfolding is not
    315   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
    316   /// index of the operand which will hold the register holding the loaded
    317   /// value.
    318   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
    319                                       bool UnfoldLoad, bool UnfoldStore,
    320                                       unsigned *LoadRegIndex = 0) const;
    321 
    322   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
    323   /// to determine if two loads are loading from the same base address. It
    324   /// should only return true if the base pointers are the same and the
    325   /// only differences between the two addresses are the offset. It also returns
    326   /// the offsets by reference.
    327   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
    328                                        int64_t &Offset1, int64_t &Offset2) const;
    329 
    330   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
    331   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
    332   /// be scheduled togther. On some targets if two loads are loading from
    333   /// addresses in the same cache line, it's better if they are scheduled
    334   /// together. This function takes two integers that represent the load offsets
    335   /// from the common base address. It returns true if it decides it's desirable
    336   /// to schedule the two loads together. "NumLoads" is the number of loads that
    337   /// have already been scheduled after Load1.
    338   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
    339                                        int64_t Offset1, int64_t Offset2,
    340                                        unsigned NumLoads) const;
    341 
    342   virtual bool shouldScheduleAdjacent(MachineInstr* First,
    343                                       MachineInstr *Second) const LLVM_OVERRIDE;
    344 
    345   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
    346 
    347   virtual
    348   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
    349 
    350   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
    351   /// instruction that defines the specified register class.
    352   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
    353 
    354   static bool isX86_64ExtendedReg(const MachineOperand &MO) {
    355     if (!MO.isReg()) return false;
    356     return X86II::isX86_64ExtendedReg(MO.getReg());
    357   }
    358 
    359   /// getGlobalBaseReg - Return a virtual register initialized with the
    360   /// the global base register value. Output instructions required to
    361   /// initialize the register in the function entry block, if necessary.
    362   ///
    363   unsigned getGlobalBaseReg(MachineFunction *MF) const;
    364 
    365   std::pair<uint16_t, uint16_t>
    366   getExecutionDomain(const MachineInstr *MI) const;
    367 
    368   void setExecutionDomain(MachineInstr *MI, unsigned Domain) const;
    369 
    370   unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
    371                                         const TargetRegisterInfo *TRI) const;
    372   void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
    373                                  const TargetRegisterInfo *TRI) const;
    374 
    375   MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
    376                                       MachineInstr* MI,
    377                                       unsigned OpNum,
    378                                       const SmallVectorImpl<MachineOperand> &MOs,
    379                                       unsigned Size, unsigned Alignment) const;
    380 
    381   bool isHighLatencyDef(int opc) const;
    382 
    383   bool hasHighOperandLatency(const InstrItineraryData *ItinData,
    384                              const MachineRegisterInfo *MRI,
    385                              const MachineInstr *DefMI, unsigned DefIdx,
    386                              const MachineInstr *UseMI, unsigned UseIdx) const;
    387 
    388   /// analyzeCompare - For a comparison instruction, return the source registers
    389   /// in SrcReg and SrcReg2 if having two register operands, and the value it
    390   /// compares against in CmpValue. Return true if the comparison instruction
    391   /// can be analyzed.
    392   virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
    393                               unsigned &SrcReg2,
    394                               int &CmpMask, int &CmpValue) const;
    395 
    396   /// optimizeCompareInstr - Check if there exists an earlier instruction that
    397   /// operates on the same source operands and sets flags in the same way as
    398   /// Compare; remove Compare if possible.
    399   virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
    400                                     unsigned SrcReg2, int CmpMask, int CmpValue,
    401                                     const MachineRegisterInfo *MRI) const;
    402 
    403   /// optimizeLoadInstr - Try to remove the load by folding it to a register
    404   /// operand at the use. We fold the load instructions if and only if the
    405   /// def and use are in the same BB. We only look at one load and see
    406   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
    407   /// defined by the load we are trying to fold. DefMI returns the machine
    408   /// instruction that defines FoldAsLoadDefReg, and the function returns
    409   /// the machine instruction generated due to folding.
    410   virtual MachineInstr* optimizeLoadInstr(MachineInstr *MI,
    411                         const MachineRegisterInfo *MRI,
    412                         unsigned &FoldAsLoadDefReg,
    413                         MachineInstr *&DefMI) const;
    414 
    415 private:
    416   MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
    417                                               MachineFunction::iterator &MFI,
    418                                               MachineBasicBlock::iterator &MBBI,
    419                                               LiveVariables *LV) const;
    420 
    421   /// isFrameOperand - Return true and the FrameIndex if the specified
    422   /// operand and follow operands form a reference to the stack frame.
    423   bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
    424                       int &FrameIndex) const;
    425 };
    426 
    427 } // End llvm namespace
    428 
    429 #endif
    430