1 /* 2 * Copyright 2013 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkDither.h" 9 #include "SkPerlinNoiseShader.h" 10 #include "SkColorFilter.h" 11 #include "SkFlattenableBuffers.h" 12 #include "SkShader.h" 13 #include "SkUnPreMultiply.h" 14 #include "SkString.h" 15 16 #if SK_SUPPORT_GPU 17 #include "GrContext.h" 18 #include "GrCoordTransform.h" 19 #include "gl/GrGLEffect.h" 20 #include "GrTBackendEffectFactory.h" 21 #include "SkGr.h" 22 #endif 23 24 static const int kBlockSize = 256; 25 static const int kBlockMask = kBlockSize - 1; 26 static const int kPerlinNoise = 4096; 27 static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 28 29 namespace { 30 31 // noiseValue is the color component's value (or color) 32 // limitValue is the maximum perlin noise array index value allowed 33 // newValue is the current noise dimension (either width or height) 34 inline int checkNoise(int noiseValue, int limitValue, int newValue) { 35 // If the noise value would bring us out of bounds of the current noise array while we are 36 // stiching noise tiles together, wrap the noise around the current dimension of the noise to 37 // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) 38 if (noiseValue >= limitValue) { 39 noiseValue -= newValue; 40 } 41 if (noiseValue >= limitValue - 1) { 42 noiseValue -= newValue - 1; 43 } 44 return noiseValue; 45 } 46 47 inline SkScalar smoothCurve(SkScalar t) { 48 static const SkScalar SK_Scalar3 = 3.0f; 49 50 // returns t * t * (3 - 2 * t) 51 return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t); 52 } 53 54 bool perlin_noise_type_is_valid(SkPerlinNoiseShader::Type type) { 55 return (SkPerlinNoiseShader::kFractalNoise_Type == type) || 56 (SkPerlinNoiseShader::kTurbulence_Type == type); 57 } 58 59 } // end namespace 60 61 struct SkPerlinNoiseShader::StitchData { 62 StitchData() 63 : fWidth(0) 64 , fWrapX(0) 65 , fHeight(0) 66 , fWrapY(0) 67 {} 68 69 bool operator==(const StitchData& other) const { 70 return fWidth == other.fWidth && 71 fWrapX == other.fWrapX && 72 fHeight == other.fHeight && 73 fWrapY == other.fWrapY; 74 } 75 76 int fWidth; // How much to subtract to wrap for stitching. 77 int fWrapX; // Minimum value to wrap. 78 int fHeight; 79 int fWrapY; 80 }; 81 82 struct SkPerlinNoiseShader::PaintingData { 83 PaintingData(const SkISize& tileSize) 84 : fSeed(0) 85 , fTileSize(tileSize) 86 , fPermutationsBitmap(NULL) 87 , fNoiseBitmap(NULL) 88 {} 89 90 ~PaintingData() 91 { 92 SkDELETE(fPermutationsBitmap); 93 SkDELETE(fNoiseBitmap); 94 } 95 96 int fSeed; 97 uint8_t fLatticeSelector[kBlockSize]; 98 uint16_t fNoise[4][kBlockSize][2]; 99 SkPoint fGradient[4][kBlockSize]; 100 SkISize fTileSize; 101 SkVector fBaseFrequency; 102 StitchData fStitchDataInit; 103 104 private: 105 106 SkBitmap* fPermutationsBitmap; 107 SkBitmap* fNoiseBitmap; 108 109 public: 110 111 inline int random() { 112 static const int gRandAmplitude = 16807; // 7**5; primitive root of m 113 static const int gRandQ = 127773; // m / a 114 static const int gRandR = 2836; // m % a 115 116 int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ); 117 if (result <= 0) 118 result += kRandMaximum; 119 fSeed = result; 120 return result; 121 } 122 123 void init(SkScalar seed) 124 { 125 static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize)); 126 127 // The seed value clamp to the range [1, kRandMaximum - 1]. 128 fSeed = SkScalarRoundToInt(seed); 129 if (fSeed <= 0) { 130 fSeed = -(fSeed % (kRandMaximum - 1)) + 1; 131 } 132 if (fSeed > kRandMaximum - 1) { 133 fSeed = kRandMaximum - 1; 134 } 135 for (int channel = 0; channel < 4; ++channel) { 136 for (int i = 0; i < kBlockSize; ++i) { 137 fLatticeSelector[i] = i; 138 fNoise[channel][i][0] = (random() % (2 * kBlockSize)); 139 fNoise[channel][i][1] = (random() % (2 * kBlockSize)); 140 } 141 } 142 for (int i = kBlockSize - 1; i > 0; --i) { 143 int k = fLatticeSelector[i]; 144 int j = random() % kBlockSize; 145 SkASSERT(j >= 0); 146 SkASSERT(j < kBlockSize); 147 fLatticeSelector[i] = fLatticeSelector[j]; 148 fLatticeSelector[j] = k; 149 } 150 151 // Perform the permutations now 152 { 153 // Copy noise data 154 uint16_t noise[4][kBlockSize][2]; 155 for (int i = 0; i < kBlockSize; ++i) { 156 for (int channel = 0; channel < 4; ++channel) { 157 for (int j = 0; j < 2; ++j) { 158 noise[channel][i][j] = fNoise[channel][i][j]; 159 } 160 } 161 } 162 // Do permutations on noise data 163 for (int i = 0; i < kBlockSize; ++i) { 164 for (int channel = 0; channel < 4; ++channel) { 165 for (int j = 0; j < 2; ++j) { 166 fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; 167 } 168 } 169 } 170 } 171 172 // Half of the largest possible value for 16 bit unsigned int 173 static const SkScalar gHalfMax16bits = 32767.5f; 174 175 // Compute gradients from permutated noise data 176 for (int channel = 0; channel < 4; ++channel) { 177 for (int i = 0; i < kBlockSize; ++i) { 178 fGradient[channel][i] = SkPoint::Make( 179 SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize), 180 gInvBlockSizef), 181 SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize), 182 gInvBlockSizef)); 183 fGradient[channel][i].normalize(); 184 // Put the normalized gradient back into the noise data 185 fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul( 186 fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits)); 187 fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul( 188 fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits)); 189 } 190 } 191 192 // Invalidate bitmaps 193 SkDELETE(fPermutationsBitmap); 194 fPermutationsBitmap = NULL; 195 SkDELETE(fNoiseBitmap); 196 fNoiseBitmap = NULL; 197 } 198 199 void stitch() { 200 SkScalar tileWidth = SkIntToScalar(fTileSize.width()); 201 SkScalar tileHeight = SkIntToScalar(fTileSize.height()); 202 SkASSERT(tileWidth > 0 && tileHeight > 0); 203 // When stitching tiled turbulence, the frequencies must be adjusted 204 // so that the tile borders will be continuous. 205 if (fBaseFrequency.fX) { 206 SkScalar lowFrequencx = SkScalarDiv( 207 SkScalarMulFloor(tileWidth, fBaseFrequency.fX), tileWidth); 208 SkScalar highFrequencx = SkScalarDiv( 209 SkScalarMulCeil(tileWidth, fBaseFrequency.fX), tileWidth); 210 // BaseFrequency should be non-negative according to the standard. 211 if (SkScalarDiv(fBaseFrequency.fX, lowFrequencx) < 212 SkScalarDiv(highFrequencx, fBaseFrequency.fX)) { 213 fBaseFrequency.fX = lowFrequencx; 214 } else { 215 fBaseFrequency.fX = highFrequencx; 216 } 217 } 218 if (fBaseFrequency.fY) { 219 SkScalar lowFrequency = SkScalarDiv( 220 SkScalarMulFloor(tileHeight, fBaseFrequency.fY), tileHeight); 221 SkScalar highFrequency = SkScalarDiv( 222 SkScalarMulCeil(tileHeight, fBaseFrequency.fY), tileHeight); 223 if (SkScalarDiv(fBaseFrequency.fY, lowFrequency) < 224 SkScalarDiv(highFrequency, fBaseFrequency.fY)) { 225 fBaseFrequency.fY = lowFrequency; 226 } else { 227 fBaseFrequency.fY = highFrequency; 228 } 229 } 230 // Set up TurbulenceInitial stitch values. 231 fStitchDataInit.fWidth = 232 SkScalarMulRound(tileWidth, fBaseFrequency.fX); 233 fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth; 234 fStitchDataInit.fHeight = 235 SkScalarMulRound(tileHeight, fBaseFrequency.fY); 236 fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight; 237 } 238 239 SkBitmap* getPermutationsBitmap() 240 { 241 if (!fPermutationsBitmap) { 242 fPermutationsBitmap = SkNEW(SkBitmap); 243 fPermutationsBitmap->setConfig(SkBitmap::kA8_Config, kBlockSize, 1); 244 fPermutationsBitmap->allocPixels(); 245 uint8_t* bitmapPixels = fPermutationsBitmap->getAddr8(0, 0); 246 memcpy(bitmapPixels, fLatticeSelector, sizeof(uint8_t) * kBlockSize); 247 } 248 return fPermutationsBitmap; 249 } 250 251 SkBitmap* getNoiseBitmap() 252 { 253 if (!fNoiseBitmap) { 254 fNoiseBitmap = SkNEW(SkBitmap); 255 fNoiseBitmap->setConfig(SkBitmap::kARGB_8888_Config, kBlockSize, 4); 256 fNoiseBitmap->allocPixels(); 257 uint32_t* bitmapPixels = fNoiseBitmap->getAddr32(0, 0); 258 memcpy(bitmapPixels, fNoise[0][0], sizeof(uint16_t) * kBlockSize * 4 * 2); 259 } 260 return fNoiseBitmap; 261 } 262 }; 263 264 SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY, 265 int numOctaves, SkScalar seed, 266 const SkISize* tileSize) { 267 return SkNEW_ARGS(SkPerlinNoiseShader, (kFractalNoise_Type, baseFrequencyX, baseFrequencyY, 268 numOctaves, seed, tileSize)); 269 } 270 271 SkShader* SkPerlinNoiseShader::CreateTubulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY, 272 int numOctaves, SkScalar seed, 273 const SkISize* tileSize) { 274 return SkNEW_ARGS(SkPerlinNoiseShader, (kTurbulence_Type, baseFrequencyX, baseFrequencyY, 275 numOctaves, seed, tileSize)); 276 } 277 278 SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type, 279 SkScalar baseFrequencyX, 280 SkScalar baseFrequencyY, 281 int numOctaves, 282 SkScalar seed, 283 const SkISize* tileSize) 284 : fType(type) 285 , fBaseFrequencyX(baseFrequencyX) 286 , fBaseFrequencyY(baseFrequencyY) 287 , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/) 288 , fSeed(seed) 289 , fStitchTiles((tileSize != NULL) && !tileSize->isEmpty()) 290 , fPaintingData(NULL) 291 { 292 SkASSERT(numOctaves >= 0 && numOctaves < 256); 293 setTileSize(fStitchTiles ? *tileSize : SkISize::Make(0,0)); 294 fMatrix.reset(); 295 } 296 297 SkPerlinNoiseShader::SkPerlinNoiseShader(SkFlattenableReadBuffer& buffer) : 298 INHERITED(buffer), fPaintingData(NULL) { 299 fType = (SkPerlinNoiseShader::Type) buffer.readInt(); 300 fBaseFrequencyX = buffer.readScalar(); 301 fBaseFrequencyY = buffer.readScalar(); 302 fNumOctaves = buffer.readInt(); 303 fSeed = buffer.readScalar(); 304 fStitchTiles = buffer.readBool(); 305 fTileSize.fWidth = buffer.readInt(); 306 fTileSize.fHeight = buffer.readInt(); 307 setTileSize(fTileSize); 308 fMatrix.reset(); 309 buffer.validate(perlin_noise_type_is_valid(fType) && 310 (fNumOctaves >= 0) && (fNumOctaves <= 255)); 311 } 312 313 SkPerlinNoiseShader::~SkPerlinNoiseShader() { 314 // Safety, should have been done in endContext() 315 SkDELETE(fPaintingData); 316 } 317 318 void SkPerlinNoiseShader::flatten(SkFlattenableWriteBuffer& buffer) const { 319 this->INHERITED::flatten(buffer); 320 buffer.writeInt((int) fType); 321 buffer.writeScalar(fBaseFrequencyX); 322 buffer.writeScalar(fBaseFrequencyY); 323 buffer.writeInt(fNumOctaves); 324 buffer.writeScalar(fSeed); 325 buffer.writeBool(fStitchTiles); 326 buffer.writeInt(fTileSize.fWidth); 327 buffer.writeInt(fTileSize.fHeight); 328 } 329 330 void SkPerlinNoiseShader::initPaint(PaintingData& paintingData) 331 { 332 paintingData.init(fSeed); 333 334 // Set frequencies to original values 335 paintingData.fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY); 336 // Adjust frequecies based on size if stitching is enabled 337 if (fStitchTiles) { 338 paintingData.stitch(); 339 } 340 } 341 342 void SkPerlinNoiseShader::setTileSize(const SkISize& tileSize) { 343 fTileSize = tileSize; 344 345 if (NULL == fPaintingData) { 346 fPaintingData = SkNEW_ARGS(PaintingData, (fTileSize)); 347 initPaint(*fPaintingData); 348 } else { 349 // Set Size 350 fPaintingData->fTileSize = fTileSize; 351 // Set frequencies to original values 352 fPaintingData->fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY); 353 // Adjust frequecies based on size if stitching is enabled 354 if (fStitchTiles) { 355 fPaintingData->stitch(); 356 } 357 } 358 } 359 360 SkScalar SkPerlinNoiseShader::noise2D(int channel, const PaintingData& paintingData, 361 const StitchData& stitchData, const SkPoint& noiseVector) 362 { 363 struct Noise { 364 int noisePositionIntegerValue; 365 SkScalar noisePositionFractionValue; 366 Noise(SkScalar component) 367 { 368 SkScalar position = component + kPerlinNoise; 369 noisePositionIntegerValue = SkScalarFloorToInt(position); 370 noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); 371 } 372 }; 373 Noise noiseX(noiseVector.x()); 374 Noise noiseY(noiseVector.y()); 375 SkScalar u, v; 376 // If stitching, adjust lattice points accordingly. 377 if (fStitchTiles) { 378 noiseX.noisePositionIntegerValue = 379 checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); 380 noiseY.noisePositionIntegerValue = 381 checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); 382 } 383 noiseX.noisePositionIntegerValue &= kBlockMask; 384 noiseY.noisePositionIntegerValue &= kBlockMask; 385 int latticeIndex = 386 paintingData.fLatticeSelector[noiseX.noisePositionIntegerValue] + 387 noiseY.noisePositionIntegerValue; 388 int nextLatticeIndex = 389 paintingData.fLatticeSelector[(noiseX.noisePositionIntegerValue + 1) & kBlockMask] + 390 noiseY.noisePositionIntegerValue; 391 SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); 392 SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); 393 // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement 394 SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, 395 noiseY.noisePositionFractionValue); // Offset (0,0) 396 u = paintingData.fGradient[channel][latticeIndex & kBlockMask].dot(fractionValue); 397 fractionValue.fX -= SK_Scalar1; // Offset (-1,0) 398 v = paintingData.fGradient[channel][nextLatticeIndex & kBlockMask].dot(fractionValue); 399 SkScalar a = SkScalarInterp(u, v, sx); 400 fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) 401 v = paintingData.fGradient[channel][(nextLatticeIndex + 1) & kBlockMask].dot(fractionValue); 402 fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) 403 u = paintingData.fGradient[channel][(latticeIndex + 1) & kBlockMask].dot(fractionValue); 404 SkScalar b = SkScalarInterp(u, v, sx); 405 return SkScalarInterp(a, b, sy); 406 } 407 408 SkScalar SkPerlinNoiseShader::calculateTurbulenceValueForPoint( 409 int channel, const PaintingData& paintingData, StitchData& stitchData, const SkPoint& point) 410 { 411 if (fStitchTiles) { 412 // Set up TurbulenceInitial stitch values. 413 stitchData = paintingData.fStitchDataInit; 414 } 415 SkScalar turbulenceFunctionResult = 0; 416 SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), paintingData.fBaseFrequency.fX), 417 SkScalarMul(point.y(), paintingData.fBaseFrequency.fY))); 418 SkScalar ratio = SK_Scalar1; 419 for (int octave = 0; octave < fNumOctaves; ++octave) { 420 SkScalar noise = noise2D(channel, paintingData, stitchData, noiseVector); 421 turbulenceFunctionResult += SkScalarDiv( 422 (fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise), ratio); 423 noiseVector.fX *= 2; 424 noiseVector.fY *= 2; 425 ratio *= 2; 426 if (fStitchTiles) { 427 // Update stitch values 428 stitchData.fWidth *= 2; 429 stitchData.fWrapX = stitchData.fWidth + kPerlinNoise; 430 stitchData.fHeight *= 2; 431 stitchData.fWrapY = stitchData.fHeight + kPerlinNoise; 432 } 433 } 434 435 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 436 // by fractalNoise and (turbulenceFunctionResult) by turbulence. 437 if (fType == kFractalNoise_Type) { 438 turbulenceFunctionResult = 439 SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf; 440 } 441 442 if (channel == 3) { // Scale alpha by paint value 443 turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult, 444 SkScalarDiv(SkIntToScalar(getPaintAlpha()), SkIntToScalar(255))); 445 } 446 447 // Clamp result 448 return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1); 449 } 450 451 SkPMColor SkPerlinNoiseShader::shade(const SkPoint& point, StitchData& stitchData) { 452 SkMatrix matrix = fMatrix; 453 SkMatrix invMatrix; 454 if (!matrix.invert(&invMatrix)) { 455 invMatrix.reset(); 456 } else { 457 invMatrix.postConcat(invMatrix); // Square the matrix 458 } 459 // This (1,1) translation is due to WebKit's 1 based coordinates for the noise 460 // (as opposed to 0 based, usually). The same adjustment is in the setData() function. 461 matrix.postTranslate(SK_Scalar1, SK_Scalar1); 462 SkPoint newPoint; 463 matrix.mapPoints(&newPoint, &point, 1); 464 invMatrix.mapPoints(&newPoint, &newPoint, 1); 465 newPoint.fX = SkScalarRoundToScalar(newPoint.fX); 466 newPoint.fY = SkScalarRoundToScalar(newPoint.fY); 467 468 U8CPU rgba[4]; 469 for (int channel = 3; channel >= 0; --channel) { 470 rgba[channel] = SkScalarFloorToInt(255 * 471 calculateTurbulenceValueForPoint(channel, *fPaintingData, stitchData, newPoint)); 472 } 473 return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); 474 } 475 476 bool SkPerlinNoiseShader::setContext(const SkBitmap& device, const SkPaint& paint, 477 const SkMatrix& matrix) { 478 fMatrix = matrix; 479 return INHERITED::setContext(device, paint, matrix); 480 } 481 482 void SkPerlinNoiseShader::shadeSpan(int x, int y, SkPMColor result[], int count) { 483 SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); 484 StitchData stitchData; 485 for (int i = 0; i < count; ++i) { 486 result[i] = shade(point, stitchData); 487 point.fX += SK_Scalar1; 488 } 489 } 490 491 void SkPerlinNoiseShader::shadeSpan16(int x, int y, uint16_t result[], int count) { 492 SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); 493 StitchData stitchData; 494 DITHER_565_SCAN(y); 495 for (int i = 0; i < count; ++i) { 496 unsigned dither = DITHER_VALUE(x); 497 result[i] = SkDitherRGB32To565(shade(point, stitchData), dither); 498 DITHER_INC_X(x); 499 point.fX += SK_Scalar1; 500 } 501 } 502 503 ///////////////////////////////////////////////////////////////////// 504 505 #if SK_SUPPORT_GPU 506 507 #include "GrTBackendEffectFactory.h" 508 509 class GrGLNoise : public GrGLEffect { 510 public: 511 GrGLNoise(const GrBackendEffectFactory& factory, 512 const GrDrawEffect& drawEffect); 513 virtual ~GrGLNoise() {} 514 515 static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&); 516 517 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; 518 519 protected: 520 SkPerlinNoiseShader::Type fType; 521 bool fStitchTiles; 522 int fNumOctaves; 523 GrGLUniformManager::UniformHandle fBaseFrequencyUni; 524 GrGLUniformManager::UniformHandle fAlphaUni; 525 GrGLUniformManager::UniformHandle fInvMatrixUni; 526 527 private: 528 typedef GrGLEffect INHERITED; 529 }; 530 531 class GrGLPerlinNoise : public GrGLNoise { 532 public: 533 GrGLPerlinNoise(const GrBackendEffectFactory& factory, 534 const GrDrawEffect& drawEffect) 535 : GrGLNoise(factory, drawEffect) {} 536 virtual ~GrGLPerlinNoise() {} 537 538 virtual void emitCode(GrGLShaderBuilder*, 539 const GrDrawEffect&, 540 EffectKey, 541 const char* outputColor, 542 const char* inputColor, 543 const TransformedCoordsArray&, 544 const TextureSamplerArray&) SK_OVERRIDE; 545 546 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; 547 548 private: 549 GrGLUniformManager::UniformHandle fStitchDataUni; 550 551 typedef GrGLNoise INHERITED; 552 }; 553 554 class GrGLSimplexNoise : public GrGLNoise { 555 // Note : This is for reference only. GrGLPerlinNoise is used for processing. 556 public: 557 GrGLSimplexNoise(const GrBackendEffectFactory& factory, 558 const GrDrawEffect& drawEffect) 559 : GrGLNoise(factory, drawEffect) {} 560 561 virtual ~GrGLSimplexNoise() {} 562 563 virtual void emitCode(GrGLShaderBuilder*, 564 const GrDrawEffect&, 565 EffectKey, 566 const char* outputColor, 567 const char* inputColor, 568 const TransformedCoordsArray&, 569 const TextureSamplerArray&) SK_OVERRIDE; 570 571 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; 572 573 private: 574 GrGLUniformManager::UniformHandle fSeedUni; 575 576 typedef GrGLNoise INHERITED; 577 }; 578 579 ///////////////////////////////////////////////////////////////////// 580 581 class GrNoiseEffect : public GrEffect { 582 public: 583 virtual ~GrNoiseEffect() { } 584 585 SkPerlinNoiseShader::Type type() const { return fType; } 586 bool stitchTiles() const { return fStitchTiles; } 587 const SkVector& baseFrequency() const { return fBaseFrequency; } 588 int numOctaves() const { return fNumOctaves; } 589 const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } 590 uint8_t alpha() const { return fAlpha; } 591 592 void getConstantColorComponents(GrColor*, uint32_t* validFlags) const SK_OVERRIDE { 593 *validFlags = 0; // This is noise. Nothing is constant. 594 } 595 596 protected: 597 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { 598 const GrNoiseEffect& s = CastEffect<GrNoiseEffect>(sBase); 599 return fType == s.fType && 600 fBaseFrequency == s.fBaseFrequency && 601 fNumOctaves == s.fNumOctaves && 602 fStitchTiles == s.fStitchTiles && 603 fCoordTransform.getMatrix() == s.fCoordTransform.getMatrix() && 604 fAlpha == s.fAlpha; 605 } 606 607 GrNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, 608 bool stitchTiles, const SkMatrix& matrix, uint8_t alpha) 609 : fType(type) 610 , fBaseFrequency(baseFrequency) 611 , fNumOctaves(numOctaves) 612 , fStitchTiles(stitchTiles) 613 , fMatrix(matrix) 614 , fAlpha(alpha) { 615 // This (1,1) translation is due to WebKit's 1 based coordinates for the noise 616 // (as opposed to 0 based, usually). The same adjustment is in the shadeSpan() functions. 617 SkMatrix m = matrix; 618 m.postTranslate(SK_Scalar1, SK_Scalar1); 619 fCoordTransform.reset(kLocal_GrCoordSet, m); 620 this->addCoordTransform(&fCoordTransform); 621 this->setWillNotUseInputColor(); 622 } 623 624 SkPerlinNoiseShader::Type fType; 625 GrCoordTransform fCoordTransform; 626 SkVector fBaseFrequency; 627 int fNumOctaves; 628 bool fStitchTiles; 629 SkMatrix fMatrix; 630 uint8_t fAlpha; 631 632 private: 633 typedef GrEffect INHERITED; 634 }; 635 636 class GrPerlinNoiseEffect : public GrNoiseEffect { 637 public: 638 static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, 639 int numOctaves, bool stitchTiles, 640 const SkPerlinNoiseShader::StitchData& stitchData, 641 GrTexture* permutationsTexture, GrTexture* noiseTexture, 642 const SkMatrix& matrix, uint8_t alpha) { 643 AutoEffectUnref effect(SkNEW_ARGS(GrPerlinNoiseEffect, (type, baseFrequency, numOctaves, 644 stitchTiles, stitchData, permutationsTexture, noiseTexture, matrix, alpha))); 645 return CreateEffectRef(effect); 646 } 647 648 virtual ~GrPerlinNoiseEffect() { } 649 650 static const char* Name() { return "PerlinNoise"; } 651 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { 652 return GrTBackendEffectFactory<GrPerlinNoiseEffect>::getInstance(); 653 } 654 const SkPerlinNoiseShader::StitchData& stitchData() const { return fStitchData; } 655 656 typedef GrGLPerlinNoise GLEffect; 657 658 private: 659 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { 660 const GrPerlinNoiseEffect& s = CastEffect<GrPerlinNoiseEffect>(sBase); 661 return INHERITED::onIsEqual(sBase) && 662 fPermutationsAccess.getTexture() == s.fPermutationsAccess.getTexture() && 663 fNoiseAccess.getTexture() == s.fNoiseAccess.getTexture() && 664 fStitchData == s.fStitchData; 665 } 666 667 GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, 668 int numOctaves, bool stitchTiles, 669 const SkPerlinNoiseShader::StitchData& stitchData, 670 GrTexture* permutationsTexture, GrTexture* noiseTexture, 671 const SkMatrix& matrix, uint8_t alpha) 672 : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha) 673 , fPermutationsAccess(permutationsTexture) 674 , fNoiseAccess(noiseTexture) 675 , fStitchData(stitchData) { 676 this->addTextureAccess(&fPermutationsAccess); 677 this->addTextureAccess(&fNoiseAccess); 678 } 679 680 GR_DECLARE_EFFECT_TEST; 681 682 GrTextureAccess fPermutationsAccess; 683 GrTextureAccess fNoiseAccess; 684 SkPerlinNoiseShader::StitchData fStitchData; 685 686 typedef GrNoiseEffect INHERITED; 687 }; 688 689 class GrSimplexNoiseEffect : public GrNoiseEffect { 690 // Note : This is for reference only. GrPerlinNoiseEffect is used for processing. 691 public: 692 static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, 693 int numOctaves, bool stitchTiles, const SkScalar seed, 694 const SkMatrix& matrix, uint8_t alpha) { 695 AutoEffectUnref effect(SkNEW_ARGS(GrSimplexNoiseEffect, (type, baseFrequency, numOctaves, 696 stitchTiles, seed, matrix, alpha))); 697 return CreateEffectRef(effect); 698 } 699 700 virtual ~GrSimplexNoiseEffect() { } 701 702 static const char* Name() { return "SimplexNoise"; } 703 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { 704 return GrTBackendEffectFactory<GrSimplexNoiseEffect>::getInstance(); 705 } 706 const SkScalar& seed() const { return fSeed; } 707 708 typedef GrGLSimplexNoise GLEffect; 709 710 private: 711 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { 712 const GrSimplexNoiseEffect& s = CastEffect<GrSimplexNoiseEffect>(sBase); 713 return INHERITED::onIsEqual(sBase) && fSeed == s.fSeed; 714 } 715 716 GrSimplexNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, 717 int numOctaves, bool stitchTiles, const SkScalar seed, 718 const SkMatrix& matrix, uint8_t alpha) 719 : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha) 720 , fSeed(seed) { 721 } 722 723 SkScalar fSeed; 724 725 typedef GrNoiseEffect INHERITED; 726 }; 727 728 ///////////////////////////////////////////////////////////////////// 729 GR_DEFINE_EFFECT_TEST(GrPerlinNoiseEffect); 730 731 GrEffectRef* GrPerlinNoiseEffect::TestCreate(SkRandom* random, 732 GrContext* context, 733 const GrDrawTargetCaps&, 734 GrTexture**) { 735 int numOctaves = random->nextRangeU(2, 10); 736 bool stitchTiles = random->nextBool(); 737 SkScalar seed = SkIntToScalar(random->nextU()); 738 SkISize tileSize = SkISize::Make(random->nextRangeU(4, 4096), random->nextRangeU(4, 4096)); 739 SkScalar baseFrequencyX = random->nextRangeScalar(0.01f, 740 0.99f); 741 SkScalar baseFrequencyY = random->nextRangeScalar(0.01f, 742 0.99f); 743 744 SkShader* shader = random->nextBool() ? 745 SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, 746 stitchTiles ? &tileSize : NULL) : 747 SkPerlinNoiseShader::CreateTubulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, 748 stitchTiles ? &tileSize : NULL); 749 750 SkPaint paint; 751 GrEffectRef* effect = shader->asNewEffect(context, paint); 752 753 SkDELETE(shader); 754 755 return effect; 756 } 757 758 ///////////////////////////////////////////////////////////////////// 759 760 void GrGLSimplexNoise::emitCode(GrGLShaderBuilder* builder, 761 const GrDrawEffect&, 762 EffectKey key, 763 const char* outputColor, 764 const char* inputColor, 765 const TransformedCoordsArray& coords, 766 const TextureSamplerArray&) { 767 sk_ignore_unused_variable(inputColor); 768 769 SkString vCoords = builder->ensureFSCoords2D(coords, 0); 770 771 fSeedUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 772 kFloat_GrSLType, "seed"); 773 const char* seedUni = builder->getUniformCStr(fSeedUni); 774 fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 775 kMat33f_GrSLType, "invMatrix"); 776 const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni); 777 fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 778 kVec2f_GrSLType, "baseFrequency"); 779 const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni); 780 fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 781 kFloat_GrSLType, "alpha"); 782 const char* alphaUni = builder->getUniformCStr(fAlphaUni); 783 784 // Add vec3 modulo 289 function 785 static const GrGLShaderVar gVec3Args[] = { 786 GrGLShaderVar("x", kVec3f_GrSLType) 787 }; 788 789 SkString mod289_3_funcName; 790 builder->fsEmitFunction(kVec3f_GrSLType, 791 "mod289", SK_ARRAY_COUNT(gVec3Args), gVec3Args, 792 "const vec2 C = vec2(1.0 / 289.0, 289.0);\n" 793 "return x - floor(x * C.xxx) * C.yyy;", &mod289_3_funcName); 794 795 // Add vec4 modulo 289 function 796 static const GrGLShaderVar gVec4Args[] = { 797 GrGLShaderVar("x", kVec4f_GrSLType) 798 }; 799 800 SkString mod289_4_funcName; 801 builder->fsEmitFunction(kVec4f_GrSLType, 802 "mod289", SK_ARRAY_COUNT(gVec4Args), gVec4Args, 803 "const vec2 C = vec2(1.0 / 289.0, 289.0);\n" 804 "return x - floor(x * C.xxxx) * C.yyyy;", &mod289_4_funcName); 805 806 // Add vec4 permute function 807 SkString permuteCode; 808 permuteCode.appendf("const vec2 C = vec2(34.0, 1.0);\n" 809 "return %s(((x * C.xxxx) + C.yyyy) * x);", mod289_4_funcName.c_str()); 810 SkString permuteFuncName; 811 builder->fsEmitFunction(kVec4f_GrSLType, 812 "permute", SK_ARRAY_COUNT(gVec4Args), gVec4Args, 813 permuteCode.c_str(), &permuteFuncName); 814 815 // Add vec4 taylorInvSqrt function 816 SkString taylorInvSqrtFuncName; 817 builder->fsEmitFunction(kVec4f_GrSLType, 818 "taylorInvSqrt", SK_ARRAY_COUNT(gVec4Args), gVec4Args, 819 "const vec2 C = vec2(-0.85373472095314, 1.79284291400159);\n" 820 "return x * C.xxxx + C.yyyy;", &taylorInvSqrtFuncName); 821 822 // Add vec3 noise function 823 static const GrGLShaderVar gNoiseVec3Args[] = { 824 GrGLShaderVar("v", kVec3f_GrSLType) 825 }; 826 827 SkString noiseCode; 828 noiseCode.append( 829 "const vec2 C = vec2(1.0/6.0, 1.0/3.0);\n" 830 "const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n" 831 832 // First corner 833 "vec3 i = floor(v + dot(v, C.yyy));\n" 834 "vec3 x0 = v - i + dot(i, C.xxx);\n" 835 836 // Other corners 837 "vec3 g = step(x0.yzx, x0.xyz);\n" 838 "vec3 l = 1.0 - g;\n" 839 "vec3 i1 = min(g.xyz, l.zxy);\n" 840 "vec3 i2 = max(g.xyz, l.zxy);\n" 841 842 "vec3 x1 = x0 - i1 + C.xxx;\n" 843 "vec3 x2 = x0 - i2 + C.yyy;\n" // 2.0*C.x = 1/3 = C.y 844 "vec3 x3 = x0 - D.yyy;\n" // -1.0+3.0*C.x = -0.5 = -D.y 845 ); 846 847 noiseCode.appendf( 848 // Permutations 849 "i = %s(i);\n" 850 "vec4 p = %s(%s(%s(\n" 851 " i.z + vec4(0.0, i1.z, i2.z, 1.0)) +\n" 852 " i.y + vec4(0.0, i1.y, i2.y, 1.0)) +\n" 853 " i.x + vec4(0.0, i1.x, i2.x, 1.0));\n", 854 mod289_3_funcName.c_str(), permuteFuncName.c_str(), permuteFuncName.c_str(), 855 permuteFuncName.c_str()); 856 857 noiseCode.append( 858 // Gradients: 7x7 points over a square, mapped onto an octahedron. 859 // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) 860 "float n_ = 0.142857142857;\n" // 1.0/7.0 861 "vec3 ns = n_ * D.wyz - D.xzx;\n" 862 863 "vec4 j = p - 49.0 * floor(p * ns.z * ns.z);\n" // mod(p,7*7) 864 865 "vec4 x_ = floor(j * ns.z);\n" 866 "vec4 y_ = floor(j - 7.0 * x_);" // mod(j,N) 867 868 "vec4 x = x_ *ns.x + ns.yyyy;\n" 869 "vec4 y = y_ *ns.x + ns.yyyy;\n" 870 "vec4 h = 1.0 - abs(x) - abs(y);\n" 871 872 "vec4 b0 = vec4(x.xy, y.xy);\n" 873 "vec4 b1 = vec4(x.zw, y.zw);\n" 874 ); 875 876 noiseCode.append( 877 "vec4 s0 = floor(b0) * 2.0 + 1.0;\n" 878 "vec4 s1 = floor(b1) * 2.0 + 1.0;\n" 879 "vec4 sh = -step(h, vec4(0.0));\n" 880 881 "vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;\n" 882 "vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;\n" 883 884 "vec3 p0 = vec3(a0.xy, h.x);\n" 885 "vec3 p1 = vec3(a0.zw, h.y);\n" 886 "vec3 p2 = vec3(a1.xy, h.z);\n" 887 "vec3 p3 = vec3(a1.zw, h.w);\n" 888 ); 889 890 noiseCode.appendf( 891 // Normalise gradients 892 "vec4 norm = %s(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n" 893 "p0 *= norm.x;\n" 894 "p1 *= norm.y;\n" 895 "p2 *= norm.z;\n" 896 "p3 *= norm.w;\n" 897 898 // Mix final noise value 899 "vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n" 900 "m = m * m;\n" 901 "return 42.0 * dot(m*m, vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3)));", 902 taylorInvSqrtFuncName.c_str()); 903 904 SkString noiseFuncName; 905 builder->fsEmitFunction(kFloat_GrSLType, 906 "snoise", SK_ARRAY_COUNT(gNoiseVec3Args), gNoiseVec3Args, 907 noiseCode.c_str(), &noiseFuncName); 908 909 const char* noiseVecIni = "noiseVecIni"; 910 const char* factors = "factors"; 911 const char* sum = "sum"; 912 const char* xOffsets = "xOffsets"; 913 const char* yOffsets = "yOffsets"; 914 const char* channel = "channel"; 915 916 // Fill with some prime numbers 917 builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(13.0, 53.0, 101.0, 151.0);\n", xOffsets); 918 builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(109.0, 167.0, 23.0, 67.0);\n", yOffsets); 919 920 // There are rounding errors if the floor operation is not performed here 921 builder->fsCodeAppendf( 922 "\t\tvec3 %s = vec3(floor((%s*vec3(%s, 1.0)).xy) * vec2(0.66) * %s, 0.0);\n", 923 noiseVecIni, invMatrixUni, vCoords.c_str(), baseFrequencyUni); 924 925 // Perturb the texcoords with three components of noise 926 builder->fsCodeAppendf("\t\t%s += 0.1 * vec3(%s(%s + vec3( 0.0, 0.0, %s))," 927 "%s(%s + vec3( 43.0, 17.0, %s))," 928 "%s(%s + vec3(-17.0, -43.0, %s)));\n", 929 noiseVecIni, noiseFuncName.c_str(), noiseVecIni, seedUni, 930 noiseFuncName.c_str(), noiseVecIni, seedUni, 931 noiseFuncName.c_str(), noiseVecIni, seedUni); 932 933 builder->fsCodeAppendf("\t\t%s = vec4(0.0);\n", outputColor); 934 935 builder->fsCodeAppendf("\t\tvec3 %s = vec3(1.0);\n", factors); 936 builder->fsCodeAppendf("\t\tfloat %s = 0.0;\n", sum); 937 938 // Loop over all octaves 939 builder->fsCodeAppendf("\t\tfor (int octave = 0; octave < %d; ++octave) {\n", fNumOctaves); 940 941 // Loop over the 4 channels 942 builder->fsCodeAppendf("\t\t\tfor (int %s = 3; %s >= 0; --%s) {\n", channel, channel, channel); 943 944 builder->fsCodeAppendf( 945 "\t\t\t\t%s[channel] += %s.x * %s(%s * %s.yyy - vec3(%s[%s], %s[%s], %s * %s.z));\n", 946 outputColor, factors, noiseFuncName.c_str(), noiseVecIni, factors, xOffsets, channel, 947 yOffsets, channel, seedUni, factors); 948 949 builder->fsCodeAppend("\t\t\t}\n"); // end of the for loop on channels 950 951 builder->fsCodeAppendf("\t\t\t%s += %s.x;\n", sum, factors); 952 builder->fsCodeAppendf("\t\t\t%s *= vec3(0.5, 2.0, 0.75);\n", factors); 953 954 builder->fsCodeAppend("\t\t}\n"); // end of the for loop on octaves 955 956 if (fType == SkPerlinNoiseShader::kFractalNoise_Type) { 957 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 958 // by fractalNoise and (turbulenceFunctionResult) by turbulence. 959 builder->fsCodeAppendf("\t\t%s = %s * vec4(0.5 / %s) + vec4(0.5);\n", 960 outputColor, outputColor, sum); 961 } else { 962 builder->fsCodeAppendf("\t\t%s = abs(%s / vec4(%s));\n", 963 outputColor, outputColor, sum); 964 } 965 966 builder->fsCodeAppendf("\t\t%s.a *= %s;\n", outputColor, alphaUni); 967 968 // Clamp values 969 builder->fsCodeAppendf("\t\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor); 970 971 // Pre-multiply the result 972 builder->fsCodeAppendf("\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", 973 outputColor, outputColor, outputColor, outputColor); 974 } 975 976 void GrGLPerlinNoise::emitCode(GrGLShaderBuilder* builder, 977 const GrDrawEffect&, 978 EffectKey key, 979 const char* outputColor, 980 const char* inputColor, 981 const TransformedCoordsArray& coords, 982 const TextureSamplerArray& samplers) { 983 sk_ignore_unused_variable(inputColor); 984 985 SkString vCoords = builder->ensureFSCoords2D(coords, 0); 986 987 fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 988 kMat33f_GrSLType, "invMatrix"); 989 const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni); 990 fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 991 kVec2f_GrSLType, "baseFrequency"); 992 const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni); 993 fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 994 kFloat_GrSLType, "alpha"); 995 const char* alphaUni = builder->getUniformCStr(fAlphaUni); 996 997 const char* stitchDataUni = NULL; 998 if (fStitchTiles) { 999 fStitchDataUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, 1000 kVec2f_GrSLType, "stitchData"); 1001 stitchDataUni = builder->getUniformCStr(fStitchDataUni); 1002 } 1003 1004 // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 1005 const char* chanCoordR = "0.125"; 1006 const char* chanCoordG = "0.375"; 1007 const char* chanCoordB = "0.625"; 1008 const char* chanCoordA = "0.875"; 1009 const char* chanCoord = "chanCoord"; 1010 const char* stitchData = "stitchData"; 1011 const char* ratio = "ratio"; 1012 const char* noiseXY = "noiseXY"; 1013 const char* noiseVec = "noiseVec"; 1014 const char* noiseSmooth = "noiseSmooth"; 1015 const char* fractVal = "fractVal"; 1016 const char* uv = "uv"; 1017 const char* ab = "ab"; 1018 const char* latticeIdx = "latticeIdx"; 1019 const char* lattice = "lattice"; 1020 const char* inc8bit = "0.00390625"; // 1.0 / 256.0 1021 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a 1022 // [-1,1] vector and perform a dot product between that vector and the provided vector. 1023 const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);"; 1024 1025 // Add noise function 1026 static const GrGLShaderVar gPerlinNoiseArgs[] = { 1027 GrGLShaderVar(chanCoord, kFloat_GrSLType), 1028 GrGLShaderVar(noiseVec, kVec2f_GrSLType) 1029 }; 1030 1031 static const GrGLShaderVar gPerlinNoiseStitchArgs[] = { 1032 GrGLShaderVar(chanCoord, kFloat_GrSLType), 1033 GrGLShaderVar(noiseVec, kVec2f_GrSLType), 1034 GrGLShaderVar(stitchData, kVec2f_GrSLType) 1035 }; 1036 1037 SkString noiseCode; 1038 1039 noiseCode.appendf("\tvec4 %s = vec4(floor(%s), fract(%s));", noiseXY, noiseVec, noiseVec); 1040 1041 // smooth curve : t * t * (3 - 2 * t) 1042 noiseCode.appendf("\n\tvec2 %s = %s.zw * %s.zw * (vec2(3.0) - vec2(2.0) * %s.zw);", 1043 noiseSmooth, noiseXY, noiseXY, noiseXY); 1044 1045 // Adjust frequencies if we're stitching tiles 1046 if (fStitchTiles) { 1047 noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", 1048 noiseXY, stitchData, noiseXY, stitchData); 1049 noiseCode.appendf("\n\tif(%s.x >= (%s.x - 1.0)) { %s.x -= (%s.x - 1.0); }", 1050 noiseXY, stitchData, noiseXY, stitchData); 1051 noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", 1052 noiseXY, stitchData, noiseXY, stitchData); 1053 noiseCode.appendf("\n\tif(%s.y >= (%s.y - 1.0)) { %s.y -= (%s.y - 1.0); }", 1054 noiseXY, stitchData, noiseXY, stitchData); 1055 } 1056 1057 // Get texture coordinates and normalize 1058 noiseCode.appendf("\n\t%s.xy = fract(floor(mod(%s.xy, 256.0)) / vec2(256.0));\n", 1059 noiseXY, noiseXY); 1060 1061 // Get permutation for x 1062 { 1063 SkString xCoords(""); 1064 xCoords.appendf("vec2(%s.x, 0.5)", noiseXY); 1065 1066 noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); 1067 builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType); 1068 noiseCode.append(".r;"); 1069 } 1070 1071 // Get permutation for x + 1 1072 { 1073 SkString xCoords(""); 1074 xCoords.appendf("vec2(fract(%s.x + %s), 0.5)", noiseXY, inc8bit); 1075 1076 noiseCode.appendf("\n\t%s.y = ", latticeIdx); 1077 builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType); 1078 noiseCode.append(".r;"); 1079 } 1080 1081 #if defined(SK_BUILD_FOR_ANDROID) 1082 // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). 1083 // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit 1084 // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 1085 // (or 0.484368 here). The following rounding operation prevents these precision issues from 1086 // affecting the result of the noise by making sure that we only have multiples of 1/255. 1087 // (Note that 1/255 is about 0.003921569, which is the value used here). 1088 noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);", 1089 latticeIdx, latticeIdx); 1090 #endif 1091 1092 // Get (x,y) coordinates with the permutated x 1093 noiseCode.appendf("\n\t%s = fract(%s + %s.yy);", latticeIdx, latticeIdx, noiseXY); 1094 1095 noiseCode.appendf("\n\tvec2 %s = %s.zw;", fractVal, noiseXY); 1096 1097 noiseCode.appendf("\n\n\tvec2 %s;", uv); 1098 // Compute u, at offset (0,0) 1099 { 1100 SkString latticeCoords(""); 1101 latticeCoords.appendf("vec2(%s.x, %s)", latticeIdx, chanCoord); 1102 noiseCode.appendf("\n\tvec4 %s = ", lattice); 1103 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), 1104 kVec2f_GrSLType); 1105 noiseCode.appendf(".bgra;\n\t%s.x = ", uv); 1106 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); 1107 } 1108 1109 noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); 1110 // Compute v, at offset (-1,0) 1111 { 1112 SkString latticeCoords(""); 1113 latticeCoords.appendf("vec2(%s.y, %s)", latticeIdx, chanCoord); 1114 noiseCode.append("\n\tlattice = "); 1115 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), 1116 kVec2f_GrSLType); 1117 noiseCode.appendf(".bgra;\n\t%s.y = ", uv); 1118 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); 1119 } 1120 1121 // Compute 'a' as a linear interpolation of 'u' and 'v' 1122 noiseCode.appendf("\n\tvec2 %s;", ab); 1123 noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); 1124 1125 noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); 1126 // Compute v, at offset (-1,-1) 1127 { 1128 SkString latticeCoords(""); 1129 latticeCoords.appendf("vec2(fract(%s.y + %s), %s)", latticeIdx, inc8bit, chanCoord); 1130 noiseCode.append("\n\tlattice = "); 1131 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), 1132 kVec2f_GrSLType); 1133 noiseCode.appendf(".bgra;\n\t%s.y = ", uv); 1134 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); 1135 } 1136 1137 noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); 1138 // Compute u, at offset (0,-1) 1139 { 1140 SkString latticeCoords(""); 1141 latticeCoords.appendf("vec2(fract(%s.x + %s), %s)", latticeIdx, inc8bit, chanCoord); 1142 noiseCode.append("\n\tlattice = "); 1143 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), 1144 kVec2f_GrSLType); 1145 noiseCode.appendf(".bgra;\n\t%s.x = ", uv); 1146 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); 1147 } 1148 1149 // Compute 'b' as a linear interpolation of 'u' and 'v' 1150 noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); 1151 // Compute the noise as a linear interpolation of 'a' and 'b' 1152 noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); 1153 1154 SkString noiseFuncName; 1155 if (fStitchTiles) { 1156 builder->fsEmitFunction(kFloat_GrSLType, 1157 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), 1158 gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); 1159 } else { 1160 builder->fsEmitFunction(kFloat_GrSLType, 1161 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), 1162 gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); 1163 } 1164 1165 // There are rounding errors if the floor operation is not performed here 1166 builder->fsCodeAppendf("\n\t\tvec2 %s = floor((%s * vec3(%s, 1.0)).xy) * %s;", 1167 noiseVec, invMatrixUni, vCoords.c_str(), baseFrequencyUni); 1168 1169 // Clear the color accumulator 1170 builder->fsCodeAppendf("\n\t\t%s = vec4(0.0);", outputColor); 1171 1172 if (fStitchTiles) { 1173 // Set up TurbulenceInitial stitch values. 1174 builder->fsCodeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni); 1175 } 1176 1177 builder->fsCodeAppendf("\n\t\tfloat %s = 1.0;", ratio); 1178 1179 // Loop over all octaves 1180 builder->fsCodeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves); 1181 1182 builder->fsCodeAppendf("\n\t\t\t%s += ", outputColor); 1183 if (fType != SkPerlinNoiseShader::kFractalNoise_Type) { 1184 builder->fsCodeAppend("abs("); 1185 } 1186 if (fStitchTiles) { 1187 builder->fsCodeAppendf( 1188 "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," 1189 "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", 1190 noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, 1191 noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, 1192 noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, 1193 noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); 1194 } else { 1195 builder->fsCodeAppendf( 1196 "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," 1197 "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", 1198 noiseFuncName.c_str(), chanCoordR, noiseVec, 1199 noiseFuncName.c_str(), chanCoordG, noiseVec, 1200 noiseFuncName.c_str(), chanCoordB, noiseVec, 1201 noiseFuncName.c_str(), chanCoordA, noiseVec); 1202 } 1203 if (fType != SkPerlinNoiseShader::kFractalNoise_Type) { 1204 builder->fsCodeAppendf(")"); // end of "abs(" 1205 } 1206 builder->fsCodeAppendf(" * %s;", ratio); 1207 1208 builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec); 1209 builder->fsCodeAppendf("\n\t\t\t%s *= 0.5;", ratio); 1210 1211 if (fStitchTiles) { 1212 builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData); 1213 } 1214 builder->fsCodeAppend("\n\t\t}"); // end of the for loop on octaves 1215 1216 if (fType == SkPerlinNoiseShader::kFractalNoise_Type) { 1217 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 1218 // by fractalNoise and (turbulenceFunctionResult) by turbulence. 1219 builder->fsCodeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", outputColor, outputColor); 1220 } 1221 1222 builder->fsCodeAppendf("\n\t\t%s.a *= %s;", outputColor, alphaUni); 1223 1224 // Clamp values 1225 builder->fsCodeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", outputColor, outputColor); 1226 1227 // Pre-multiply the result 1228 builder->fsCodeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", 1229 outputColor, outputColor, outputColor, outputColor); 1230 } 1231 1232 GrGLNoise::GrGLNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) 1233 : INHERITED (factory) 1234 , fType(drawEffect.castEffect<GrPerlinNoiseEffect>().type()) 1235 , fStitchTiles(drawEffect.castEffect<GrPerlinNoiseEffect>().stitchTiles()) 1236 , fNumOctaves(drawEffect.castEffect<GrPerlinNoiseEffect>().numOctaves()) { 1237 } 1238 1239 GrGLEffect::EffectKey GrGLNoise::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { 1240 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); 1241 1242 EffectKey key = turbulence.numOctaves(); 1243 1244 key = key << 3; // Make room for next 3 bits 1245 1246 switch (turbulence.type()) { 1247 case SkPerlinNoiseShader::kFractalNoise_Type: 1248 key |= 0x1; 1249 break; 1250 case SkPerlinNoiseShader::kTurbulence_Type: 1251 key |= 0x2; 1252 break; 1253 default: 1254 // leave key at 0 1255 break; 1256 } 1257 1258 if (turbulence.stitchTiles()) { 1259 key |= 0x4; // Flip the 3rd bit if tile stitching is on 1260 } 1261 1262 return key; 1263 } 1264 1265 void GrGLNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { 1266 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); 1267 1268 const SkVector& baseFrequency = turbulence.baseFrequency(); 1269 uman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); 1270 uman.set1f(fAlphaUni, SkScalarDiv(SkIntToScalar(turbulence.alpha()), SkIntToScalar(255))); 1271 1272 SkMatrix m = turbulence.matrix(); 1273 m.postTranslate(-SK_Scalar1, -SK_Scalar1); 1274 SkMatrix invM; 1275 if (!m.invert(&invM)) { 1276 invM.reset(); 1277 } else { 1278 invM.postConcat(invM); // Square the matrix 1279 } 1280 uman.setSkMatrix(fInvMatrixUni, invM); 1281 } 1282 1283 void GrGLPerlinNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { 1284 INHERITED::setData(uman, drawEffect); 1285 1286 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); 1287 if (turbulence.stitchTiles()) { 1288 const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData(); 1289 uman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth), 1290 SkIntToScalar(stitchData.fHeight)); 1291 } 1292 } 1293 1294 void GrGLSimplexNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { 1295 INHERITED::setData(uman, drawEffect); 1296 1297 const GrSimplexNoiseEffect& turbulence = drawEffect.castEffect<GrSimplexNoiseEffect>(); 1298 uman.set1f(fSeedUni, turbulence.seed()); 1299 } 1300 1301 ///////////////////////////////////////////////////////////////////// 1302 1303 GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext* context, const SkPaint& paint) const { 1304 SkASSERT(NULL != context); 1305 1306 if (0 == fNumOctaves) { 1307 SkColor clearColor = 0; 1308 if (kFractalNoise_Type == fType) { 1309 clearColor = SkColorSetARGB(paint.getAlpha() / 2, 127, 127, 127); 1310 } 1311 SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter( 1312 clearColor, SkXfermode::kSrc_Mode)); 1313 return cf->asNewEffect(context); 1314 } 1315 1316 // Either we don't stitch tiles, either we have a valid tile size 1317 SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); 1318 1319 #ifdef SK_USE_SIMPLEX_NOISE 1320 // Simplex noise is currently disabled but can be enabled by defining SK_USE_SIMPLEX_NOISE 1321 sk_ignore_unused_variable(context); 1322 GrEffectRef* effect = 1323 GrSimplexNoiseEffect::Create(fType, fPaintingData->fBaseFrequency, 1324 fNumOctaves, fStitchTiles, fSeed, 1325 this->getLocalMatrix(), paint.getAlpha()); 1326 #else 1327 GrTexture* permutationsTexture = GrLockAndRefCachedBitmapTexture( 1328 context, *fPaintingData->getPermutationsBitmap(), NULL); 1329 GrTexture* noiseTexture = GrLockAndRefCachedBitmapTexture( 1330 context, *fPaintingData->getNoiseBitmap(), NULL); 1331 1332 GrEffectRef* effect = (NULL != permutationsTexture) && (NULL != noiseTexture) ? 1333 GrPerlinNoiseEffect::Create(fType, fPaintingData->fBaseFrequency, 1334 fNumOctaves, fStitchTiles, 1335 fPaintingData->fStitchDataInit, 1336 permutationsTexture, noiseTexture, 1337 this->getLocalMatrix(), paint.getAlpha()) : 1338 NULL; 1339 1340 // Unlock immediately, this is not great, but we don't have a way of 1341 // knowing when else to unlock it currently. TODO: Remove this when 1342 // unref becomes the unlock replacement for all types of textures. 1343 if (NULL != permutationsTexture) { 1344 GrUnlockAndUnrefCachedBitmapTexture(permutationsTexture); 1345 } 1346 if (NULL != noiseTexture) { 1347 GrUnlockAndUnrefCachedBitmapTexture(noiseTexture); 1348 } 1349 #endif 1350 1351 return effect; 1352 } 1353 1354 #else 1355 1356 GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext*, const SkPaint&) const { 1357 SkDEBUGFAIL("Should not call in GPU-less build"); 1358 return NULL; 1359 } 1360 1361 #endif 1362 1363 #ifdef SK_DEVELOPER 1364 void SkPerlinNoiseShader::toString(SkString* str) const { 1365 str->append("SkPerlinNoiseShader: ("); 1366 1367 str->append("type: "); 1368 switch (fType) { 1369 case kFractalNoise_Type: 1370 str->append("\"fractal noise\""); 1371 break; 1372 case kTurbulence_Type: 1373 str->append("\"turbulence\""); 1374 break; 1375 default: 1376 str->append("\"unknown\""); 1377 break; 1378 } 1379 str->append(" base frequency: ("); 1380 str->appendScalar(fBaseFrequencyX); 1381 str->append(", "); 1382 str->appendScalar(fBaseFrequencyY); 1383 str->append(") number of octaves: "); 1384 str->appendS32(fNumOctaves); 1385 str->append(" seed: "); 1386 str->appendScalar(fSeed); 1387 str->append(" stitch tiles: "); 1388 str->append(fStitchTiles ? "true " : "false "); 1389 1390 this->INHERITED::toString(str); 1391 1392 str->append(")"); 1393 } 1394 #endif 1395