Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/LiveVariables.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/MC/MCAsmInfo.h"
     30 #include "llvm/MC/MCInst.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetOptions.h"
     36 #include <limits>
     37 
     38 #define GET_INSTRINFO_CTOR
     39 #include "X86GenInstrInfo.inc"
     40 
     41 using namespace llvm;
     42 
     43 static cl::opt<bool>
     44 NoFusing("disable-spill-fusing",
     45          cl::desc("Disable fusing of spill code into instructions"));
     46 static cl::opt<bool>
     47 PrintFailedFusing("print-failed-fuse-candidates",
     48                   cl::desc("Print instructions that the allocator wants to"
     49                            " fuse, but the X86 backend currently can't"),
     50                   cl::Hidden);
     51 static cl::opt<bool>
     52 ReMatPICStubLoad("remat-pic-stub-load",
     53                  cl::desc("Re-materialize load from stub in PIC mode"),
     54                  cl::init(false), cl::Hidden);
     55 
     56 enum {
     57   // Select which memory operand is being unfolded.
     58   // (stored in bits 0 - 3)
     59   TB_INDEX_0    = 0,
     60   TB_INDEX_1    = 1,
     61   TB_INDEX_2    = 2,
     62   TB_INDEX_3    = 3,
     63   TB_INDEX_MASK = 0xf,
     64 
     65   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     66   // This may be needed because there is a many -> one mapping.
     67   TB_NO_REVERSE   = 1 << 4,
     68 
     69   // Do not insert the forward map (RegOp -> MemOp) into the table.
     70   // This is needed for Native Client, which prohibits branch
     71   // instructions from using a memory operand.
     72   TB_NO_FORWARD   = 1 << 5,
     73 
     74   TB_FOLDED_LOAD  = 1 << 6,
     75   TB_FOLDED_STORE = 1 << 7,
     76 
     77   // Minimum alignment required for load/store.
     78   // Used for RegOp->MemOp conversion.
     79   // (stored in bits 8 - 15)
     80   TB_ALIGN_SHIFT = 8,
     81   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
     82   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
     83   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
     84   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
     85 };
     86 
     87 struct X86OpTblEntry {
     88   uint16_t RegOp;
     89   uint16_t MemOp;
     90   uint16_t Flags;
     91 };
     92 
     93 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
     94   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
     95                      ? X86::ADJCALLSTACKDOWN64
     96                      : X86::ADJCALLSTACKDOWN32),
     97                     (tm.getSubtarget<X86Subtarget>().is64Bit()
     98                      ? X86::ADJCALLSTACKUP64
     99                      : X86::ADJCALLSTACKUP32)),
    100     TM(tm), RI(tm) {
    101 
    102   static const X86OpTblEntry OpTbl2Addr[] = {
    103     { X86::ADC32ri,     X86::ADC32mi,    0 },
    104     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    105     { X86::ADC32rr,     X86::ADC32mr,    0 },
    106     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    107     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    108     { X86::ADC64rr,     X86::ADC64mr,    0 },
    109     { X86::ADD16ri,     X86::ADD16mi,    0 },
    110     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    111     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    112     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    113     { X86::ADD16rr,     X86::ADD16mr,    0 },
    114     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    115     { X86::ADD32ri,     X86::ADD32mi,    0 },
    116     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    117     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    118     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    119     { X86::ADD32rr,     X86::ADD32mr,    0 },
    120     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    121     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    122     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    123     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    124     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    125     { X86::ADD64rr,     X86::ADD64mr,    0 },
    126     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    127     { X86::ADD8ri,      X86::ADD8mi,     0 },
    128     { X86::ADD8rr,      X86::ADD8mr,     0 },
    129     { X86::AND16ri,     X86::AND16mi,    0 },
    130     { X86::AND16ri8,    X86::AND16mi8,   0 },
    131     { X86::AND16rr,     X86::AND16mr,    0 },
    132     { X86::AND32ri,     X86::AND32mi,    0 },
    133     { X86::AND32ri8,    X86::AND32mi8,   0 },
    134     { X86::AND32rr,     X86::AND32mr,    0 },
    135     { X86::AND64ri32,   X86::AND64mi32,  0 },
    136     { X86::AND64ri8,    X86::AND64mi8,   0 },
    137     { X86::AND64rr,     X86::AND64mr,    0 },
    138     { X86::AND8ri,      X86::AND8mi,     0 },
    139     { X86::AND8rr,      X86::AND8mr,     0 },
    140     { X86::DEC16r,      X86::DEC16m,     0 },
    141     { X86::DEC32r,      X86::DEC32m,     0 },
    142     { X86::DEC64_16r,   X86::DEC64_16m,  0 },
    143     { X86::DEC64_32r,   X86::DEC64_32m,  0 },
    144     { X86::DEC64r,      X86::DEC64m,     0 },
    145     { X86::DEC8r,       X86::DEC8m,      0 },
    146     { X86::INC16r,      X86::INC16m,     0 },
    147     { X86::INC32r,      X86::INC32m,     0 },
    148     { X86::INC64_16r,   X86::INC64_16m,  0 },
    149     { X86::INC64_32r,   X86::INC64_32m,  0 },
    150     { X86::INC64r,      X86::INC64m,     0 },
    151     { X86::INC8r,       X86::INC8m,      0 },
    152     { X86::NEG16r,      X86::NEG16m,     0 },
    153     { X86::NEG32r,      X86::NEG32m,     0 },
    154     { X86::NEG64r,      X86::NEG64m,     0 },
    155     { X86::NEG8r,       X86::NEG8m,      0 },
    156     { X86::NOT16r,      X86::NOT16m,     0 },
    157     { X86::NOT32r,      X86::NOT32m,     0 },
    158     { X86::NOT64r,      X86::NOT64m,     0 },
    159     { X86::NOT8r,       X86::NOT8m,      0 },
    160     { X86::OR16ri,      X86::OR16mi,     0 },
    161     { X86::OR16ri8,     X86::OR16mi8,    0 },
    162     { X86::OR16rr,      X86::OR16mr,     0 },
    163     { X86::OR32ri,      X86::OR32mi,     0 },
    164     { X86::OR32ri8,     X86::OR32mi8,    0 },
    165     { X86::OR32rr,      X86::OR32mr,     0 },
    166     { X86::OR64ri32,    X86::OR64mi32,   0 },
    167     { X86::OR64ri8,     X86::OR64mi8,    0 },
    168     { X86::OR64rr,      X86::OR64mr,     0 },
    169     { X86::OR8ri,       X86::OR8mi,      0 },
    170     { X86::OR8rr,       X86::OR8mr,      0 },
    171     { X86::ROL16r1,     X86::ROL16m1,    0 },
    172     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    173     { X86::ROL16ri,     X86::ROL16mi,    0 },
    174     { X86::ROL32r1,     X86::ROL32m1,    0 },
    175     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    176     { X86::ROL32ri,     X86::ROL32mi,    0 },
    177     { X86::ROL64r1,     X86::ROL64m1,    0 },
    178     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    179     { X86::ROL64ri,     X86::ROL64mi,    0 },
    180     { X86::ROL8r1,      X86::ROL8m1,     0 },
    181     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    182     { X86::ROL8ri,      X86::ROL8mi,     0 },
    183     { X86::ROR16r1,     X86::ROR16m1,    0 },
    184     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    185     { X86::ROR16ri,     X86::ROR16mi,    0 },
    186     { X86::ROR32r1,     X86::ROR32m1,    0 },
    187     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    188     { X86::ROR32ri,     X86::ROR32mi,    0 },
    189     { X86::ROR64r1,     X86::ROR64m1,    0 },
    190     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    191     { X86::ROR64ri,     X86::ROR64mi,    0 },
    192     { X86::ROR8r1,      X86::ROR8m1,     0 },
    193     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    194     { X86::ROR8ri,      X86::ROR8mi,     0 },
    195     { X86::SAR16r1,     X86::SAR16m1,    0 },
    196     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    197     { X86::SAR16ri,     X86::SAR16mi,    0 },
    198     { X86::SAR32r1,     X86::SAR32m1,    0 },
    199     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    200     { X86::SAR32ri,     X86::SAR32mi,    0 },
    201     { X86::SAR64r1,     X86::SAR64m1,    0 },
    202     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    203     { X86::SAR64ri,     X86::SAR64mi,    0 },
    204     { X86::SAR8r1,      X86::SAR8m1,     0 },
    205     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    206     { X86::SAR8ri,      X86::SAR8mi,     0 },
    207     { X86::SBB32ri,     X86::SBB32mi,    0 },
    208     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    209     { X86::SBB32rr,     X86::SBB32mr,    0 },
    210     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    211     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    212     { X86::SBB64rr,     X86::SBB64mr,    0 },
    213     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    214     { X86::SHL16ri,     X86::SHL16mi,    0 },
    215     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    216     { X86::SHL32ri,     X86::SHL32mi,    0 },
    217     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    218     { X86::SHL64ri,     X86::SHL64mi,    0 },
    219     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    220     { X86::SHL8ri,      X86::SHL8mi,     0 },
    221     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    222     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    223     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    224     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    225     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    226     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    227     { X86::SHR16r1,     X86::SHR16m1,    0 },
    228     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    229     { X86::SHR16ri,     X86::SHR16mi,    0 },
    230     { X86::SHR32r1,     X86::SHR32m1,    0 },
    231     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    232     { X86::SHR32ri,     X86::SHR32mi,    0 },
    233     { X86::SHR64r1,     X86::SHR64m1,    0 },
    234     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    235     { X86::SHR64ri,     X86::SHR64mi,    0 },
    236     { X86::SHR8r1,      X86::SHR8m1,     0 },
    237     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    238     { X86::SHR8ri,      X86::SHR8mi,     0 },
    239     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    240     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    241     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    242     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    243     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    244     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    245     { X86::SUB16ri,     X86::SUB16mi,    0 },
    246     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    247     { X86::SUB16rr,     X86::SUB16mr,    0 },
    248     { X86::SUB32ri,     X86::SUB32mi,    0 },
    249     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    250     { X86::SUB32rr,     X86::SUB32mr,    0 },
    251     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    252     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    253     { X86::SUB64rr,     X86::SUB64mr,    0 },
    254     { X86::SUB8ri,      X86::SUB8mi,     0 },
    255     { X86::SUB8rr,      X86::SUB8mr,     0 },
    256     { X86::XOR16ri,     X86::XOR16mi,    0 },
    257     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    258     { X86::XOR16rr,     X86::XOR16mr,    0 },
    259     { X86::XOR32ri,     X86::XOR32mi,    0 },
    260     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    261     { X86::XOR32rr,     X86::XOR32mr,    0 },
    262     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    263     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    264     { X86::XOR64rr,     X86::XOR64mr,    0 },
    265     { X86::XOR8ri,      X86::XOR8mi,     0 },
    266     { X86::XOR8rr,      X86::XOR8mr,     0 }
    267   };
    268 
    269   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    270     unsigned RegOp = OpTbl2Addr[i].RegOp;
    271     unsigned MemOp = OpTbl2Addr[i].MemOp;
    272     unsigned Flags = OpTbl2Addr[i].Flags;
    273     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    274                   RegOp, MemOp,
    275                   // Index 0, folded load and store, no alignment requirement.
    276                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    277   }
    278 
    279   static const X86OpTblEntry OpTbl0[] = {
    280     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    281     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    282     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    283     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    284     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    285     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    286     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    287     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    288     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    289     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    290     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    291     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    292     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    293     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    294     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    295     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    296     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    297     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    298     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    299     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    300     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
    301     { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    302     { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
    303     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    304     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    305     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    306     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    307     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    308     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    309     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    310     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    311     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    312     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    313     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    314     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    315     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    316     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    317     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    318     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    319     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    320     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    321     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    322     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    323     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    324     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    325     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    326     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    327     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    328     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    329     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    330     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    331     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    332     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    333     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    334     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    335     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    336     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    337     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    338     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    339     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    340     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    341     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    342     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    343     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    344     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    345     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    346     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    347     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    348     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    349     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    350     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    351     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    352     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    353     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    354     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    355     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    356     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    357     // AVX 128-bit versions of foldable instructions
    358     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
    359     { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    360     { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
    361     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    362     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    363     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    364     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    365     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    366     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    367     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    368     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    369     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    370     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    371     // AVX 256-bit foldable instructions
    372     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    373     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    374     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    375     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    376     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    377     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
    378   };
    379 
    380   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    381     unsigned RegOp      = OpTbl0[i].RegOp;
    382     unsigned MemOp      = OpTbl0[i].MemOp;
    383     unsigned Flags      = OpTbl0[i].Flags;
    384     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    385                   RegOp, MemOp, TB_INDEX_0 | Flags);
    386   }
    387 
    388   static const X86OpTblEntry OpTbl1[] = {
    389     { X86::CMP16rr,         X86::CMP16rm,             0 },
    390     { X86::CMP32rr,         X86::CMP32rm,             0 },
    391     { X86::CMP64rr,         X86::CMP64rm,             0 },
    392     { X86::CMP8rr,          X86::CMP8rm,              0 },
    393     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    394     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    395     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    396     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    397     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    398     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    399     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    400     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    401     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    402     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    403     { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
    404     { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
    405     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    406     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    407     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    408     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    409     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    410     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    411     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    412     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    413     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    414     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    415     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
    416     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
    417     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    418     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    419     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    420     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    421     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    422     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    423     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    424     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    425     { X86::MOV16rr,         X86::MOV16rm,             0 },
    426     { X86::MOV32rr,         X86::MOV32rm,             0 },
    427     { X86::MOV64rr,         X86::MOV64rm,             0 },
    428     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    429     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    430     { X86::MOV8rr,          X86::MOV8rm,              0 },
    431     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    432     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    433     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    434     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    435     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    436     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    437     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    438     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    439     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    440     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    441     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    442     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    443     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    444     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    445     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    446     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    447     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
    448     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
    449     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    450     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    451     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    452     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    453     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    454     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    455     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    456     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    457     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    458     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    459     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    460     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    461     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
    462     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    463     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
    464     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    465     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    466     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    467     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    468     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    469     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    470     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    471     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    472     { X86::TEST16rr,        X86::TEST16rm,            0 },
    473     { X86::TEST32rr,        X86::TEST32rm,            0 },
    474     { X86::TEST64rr,        X86::TEST64rm,            0 },
    475     { X86::TEST8rr,         X86::TEST8rm,             0 },
    476     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    477     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    478     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    479     // AVX 128-bit versions of foldable instructions
    480     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    481     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    482     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    483     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    484     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
    485     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
    486     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
    487     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
    488     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
    489     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
    490     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
    491     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
    492     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
    493     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
    494     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
    495     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
    496     { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
    497     { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
    498     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    499     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    500     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    501     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    502     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    503     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    504     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    505     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    506     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
    507     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
    508     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
    509     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    510     { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
    511     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
    512     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    513     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
    514     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
    515     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
    516     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
    517     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
    518     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
    519     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
    520     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
    521     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
    522     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
    523     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
    524     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
    525     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
    526     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
    527     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    528     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    529     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
    530 
    531     // AVX 256-bit foldable instructions
    532     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    533     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    534     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    535     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    536     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    537     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
    538     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
    539 
    540     // AVX2 foldable instructions
    541     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
    542     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
    543     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
    544     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
    545     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
    546     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
    547     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
    548     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
    549     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
    550     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
    551     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
    552     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
    553     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
    554 
    555     // BMI/BMI2/LZCNT/POPCNT foldable instructions
    556     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
    557     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
    558     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
    559     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
    560     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
    561     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
    562     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
    563     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
    564     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
    565     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
    566     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
    567     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
    568     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
    569     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
    570     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
    571     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
    572     { X86::RORX32ri,        X86::RORX32mi,            0 },
    573     { X86::RORX64ri,        X86::RORX64mi,            0 },
    574     { X86::SARX32rr,        X86::SARX32rm,            0 },
    575     { X86::SARX64rr,        X86::SARX64rm,            0 },
    576     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
    577     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
    578     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
    579     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
    580     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
    581     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
    582     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
    583   };
    584 
    585   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    586     unsigned RegOp = OpTbl1[i].RegOp;
    587     unsigned MemOp = OpTbl1[i].MemOp;
    588     unsigned Flags = OpTbl1[i].Flags;
    589     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    590                   RegOp, MemOp,
    591                   // Index 1, folded load
    592                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    593   }
    594 
    595   static const X86OpTblEntry OpTbl2[] = {
    596     { X86::ADC32rr,         X86::ADC32rm,       0 },
    597     { X86::ADC64rr,         X86::ADC64rm,       0 },
    598     { X86::ADD16rr,         X86::ADD16rm,       0 },
    599     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    600     { X86::ADD32rr,         X86::ADD32rm,       0 },
    601     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    602     { X86::ADD64rr,         X86::ADD64rm,       0 },
    603     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    604     { X86::ADD8rr,          X86::ADD8rm,        0 },
    605     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    606     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    607     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    608     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    609     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    610     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    611     { X86::AND16rr,         X86::AND16rm,       0 },
    612     { X86::AND32rr,         X86::AND32rm,       0 },
    613     { X86::AND64rr,         X86::AND64rm,       0 },
    614     { X86::AND8rr,          X86::AND8rm,        0 },
    615     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    616     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    617     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    618     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    619     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    620     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    621     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    622     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    623     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    624     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    625     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    626     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    627     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    628     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    629     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    630     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    631     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    632     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    633     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    634     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    635     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    636     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    637     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    638     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    639     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    640     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    641     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    642     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    643     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    644     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    645     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    646     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    647     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    648     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    649     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    650     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    651     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    652     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    653     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    654     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    655     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    656     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    657     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    658     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    659     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    660     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    661     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    662     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    663     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    664     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    665     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    666     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    667     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    668     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    669     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    670     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    671     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    672     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    673     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    674     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    675     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    676     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    677     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    678     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    679     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
    680     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
    681     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
    682     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
    683     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
    684     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
    685     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
    686     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
    687     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    688     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    689     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    690     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    691     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    692     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    693     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    694     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    695     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
    696     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
    697     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
    698     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
    699     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
    700     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
    701     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
    702     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
    703     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
    704     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
    705     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
    706     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
    707     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
    708     { X86::MINSDrr,         X86::MINSDrm,       0 },
    709     { X86::MINSSrr,         X86::MINSSrm,       0 },
    710     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
    711     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
    712     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
    713     { X86::MULSDrr,         X86::MULSDrm,       0 },
    714     { X86::MULSSrr,         X86::MULSSrm,       0 },
    715     { X86::OR16rr,          X86::OR16rm,        0 },
    716     { X86::OR32rr,          X86::OR32rm,        0 },
    717     { X86::OR64rr,          X86::OR64rm,        0 },
    718     { X86::OR8rr,           X86::OR8rm,         0 },
    719     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
    720     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
    721     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
    722     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
    723     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
    724     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
    725     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
    726     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
    727     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
    728     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
    729     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
    730     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
    731     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
    732     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
    733     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
    734     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
    735     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
    736     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
    737     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
    738     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
    739     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
    740     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
    741     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
    742     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
    743     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
    744     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
    745     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
    746     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
    747     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
    748     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
    749     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
    750     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
    751     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
    752     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
    753     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
    754     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
    755     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
    756     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
    757     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
    758     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
    759     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
    760     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
    761     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
    762     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
    763     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
    764     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
    765     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
    766     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
    767     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
    768     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
    769     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
    770     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
    771     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
    772     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
    773     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
    774     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
    775     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
    776     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
    777     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
    778     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
    779     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
    780     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
    781     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
    782     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
    783     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
    784     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
    785     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
    786     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
    787     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
    788     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
    789     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
    790     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
    791     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
    792     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
    793     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
    794     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
    795     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
    796     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
    797     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
    798     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
    799     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
    800     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
    801     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
    802     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
    803     { X86::SBB32rr,         X86::SBB32rm,       0 },
    804     { X86::SBB64rr,         X86::SBB64rm,       0 },
    805     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
    806     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
    807     { X86::SUB16rr,         X86::SUB16rm,       0 },
    808     { X86::SUB32rr,         X86::SUB32rm,       0 },
    809     { X86::SUB64rr,         X86::SUB64rm,       0 },
    810     { X86::SUB8rr,          X86::SUB8rm,        0 },
    811     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
    812     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
    813     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
    814     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
    815     // FIXME: TEST*rr -> swapped operand of TEST*mr.
    816     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
    817     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
    818     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
    819     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
    820     { X86::XOR16rr,         X86::XOR16rm,       0 },
    821     { X86::XOR32rr,         X86::XOR32rm,       0 },
    822     { X86::XOR64rr,         X86::XOR64rm,       0 },
    823     { X86::XOR8rr,          X86::XOR8rm,        0 },
    824     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
    825     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
    826     // AVX 128-bit versions of foldable instructions
    827     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
    828     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
    829     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
    830     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
    831     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
    832     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
    833     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
    834     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
    835     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
    836     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
    837     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
    838     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
    839     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      0 },
    840     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       0 },
    841     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
    842     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
    843     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
    844     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
    845     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
    846     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
    847     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
    848     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
    849     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
    850     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
    851     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
    852     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
    853     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
    854     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
    855     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
    856     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
    857     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
    858     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
    859     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
    860     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
    861     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
    862     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
    863     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
    864     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
    865     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
    866     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
    867     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
    868     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
    869     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
    870     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
    871     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
    872     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
    873     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
    874     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
    875     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
    876     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
    877     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
    878     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
    879     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
    880     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
    881     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
    882     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
    883     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
    884     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
    885     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
    886     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
    887     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
    888     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
    889     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
    890     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
    891     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
    892     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
    893     { X86::VORPDrr,           X86::VORPDrm,            0 },
    894     { X86::VORPSrr,           X86::VORPSrm,            0 },
    895     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
    896     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
    897     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
    898     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
    899     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
    900     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
    901     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
    902     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
    903     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
    904     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
    905     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
    906     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
    907     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
    908     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
    909     { X86::VPANDrr,           X86::VPANDrm,            0 },
    910     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
    911     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
    912     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
    913     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
    914     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
    915     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
    916     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
    917     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
    918     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
    919     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
    920     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
    921     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
    922     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
    923     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
    924     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
    925     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
    926     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
    927     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
    928     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
    929     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
    930     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
    931     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
    932     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
    933     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
    934     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
    935     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
    936     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
    937     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
    938     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
    939     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
    940     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
    941     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
    942     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
    943     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
    944     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
    945     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
    946     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
    947     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
    948     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
    949     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
    950     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
    951     { X86::VPORrr,            X86::VPORrm,             0 },
    952     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
    953     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
    954     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
    955     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
    956     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
    957     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
    958     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
    959     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
    960     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
    961     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
    962     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
    963     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
    964     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
    965     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
    966     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
    967     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
    968     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
    969     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
    970     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
    971     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
    972     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
    973     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
    974     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
    975     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
    976     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
    977     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
    978     { X86::VPXORrr,           X86::VPXORrm,            0 },
    979     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
    980     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
    981     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
    982     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
    983     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
    984     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
    985     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
    986     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
    987     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
    988     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
    989     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
    990     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
    991     // AVX 256-bit foldable instructions
    992     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
    993     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
    994     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
    995     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
    996     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
    997     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
    998     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
    999     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
   1000     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
   1001     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
   1002     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
   1003     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
   1004     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
   1005     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
   1006     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
   1007     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
   1008     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
   1009     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
   1010     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
   1011     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
   1012     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
   1013     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
   1014     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
   1015     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
   1016     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
   1017     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
   1018     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
   1019     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
   1020     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
   1021     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
   1022     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
   1023     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
   1024     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
   1025     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
   1026     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
   1027     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
   1028     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
   1029     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
   1030     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
   1031     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
   1032     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
   1033     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
   1034     // AVX2 foldable instructions
   1035     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
   1036     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
   1037     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
   1038     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
   1039     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
   1040     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
   1041     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
   1042     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
   1043     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
   1044     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
   1045     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
   1046     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
   1047     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
   1048     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
   1049     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
   1050     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
   1051     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
   1052     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
   1053     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
   1054     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
   1055     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
   1056     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
   1057     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
   1058     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
   1059     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
   1060     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
   1061     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
   1062     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
   1063     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
   1064     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
   1065     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
   1066     { X86::VPERMPDYri,        X86::VPERMPDYmi,         0 },
   1067     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
   1068     { X86::VPERMQYri,         X86::VPERMQYmi,          0 },
   1069     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
   1070     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
   1071     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
   1072     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
   1073     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
   1074     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
   1075     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
   1076     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
   1077     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
   1078     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
   1079     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
   1080     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
   1081     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
   1082     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
   1083     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
   1084     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
   1085     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
   1086     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
   1087     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
   1088     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
   1089     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
   1090     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
   1091     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
   1092     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
   1093     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
   1094     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
   1095     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
   1096     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
   1097     { X86::VPORYrr,           X86::VPORYrm,            0 },
   1098     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
   1099     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
   1100     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
   1101     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
   1102     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
   1103     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
   1104     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
   1105     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
   1106     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
   1107     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
   1108     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
   1109     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
   1110     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
   1111     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
   1112     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
   1113     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
   1114     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
   1115     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
   1116     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
   1117     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
   1118     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
   1119     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
   1120     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
   1121     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
   1122     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
   1123     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
   1124     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
   1125     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
   1126     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
   1127     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
   1128     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
   1129     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
   1130     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
   1131     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
   1132     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
   1133     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
   1134     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
   1135     // FIXME: add AVX 256-bit foldable instructions
   1136 
   1137     // FMA4 foldable patterns
   1138     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0           },
   1139     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0           },
   1140     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        TB_ALIGN_16 },
   1141     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        TB_ALIGN_16 },
   1142     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       TB_ALIGN_32 },
   1143     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       TB_ALIGN_32 },
   1144     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0           },
   1145     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0           },
   1146     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       TB_ALIGN_16 },
   1147     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       TB_ALIGN_16 },
   1148     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      TB_ALIGN_32 },
   1149     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      TB_ALIGN_32 },
   1150     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0           },
   1151     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0           },
   1152     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        TB_ALIGN_16 },
   1153     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        TB_ALIGN_16 },
   1154     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       TB_ALIGN_32 },
   1155     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       TB_ALIGN_32 },
   1156     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0           },
   1157     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0           },
   1158     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       TB_ALIGN_16 },
   1159     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       TB_ALIGN_16 },
   1160     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      TB_ALIGN_32 },
   1161     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      TB_ALIGN_32 },
   1162     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     TB_ALIGN_16 },
   1163     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     TB_ALIGN_16 },
   1164     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    TB_ALIGN_32 },
   1165     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    TB_ALIGN_32 },
   1166     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     TB_ALIGN_16 },
   1167     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     TB_ALIGN_16 },
   1168     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    TB_ALIGN_32 },
   1169     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    TB_ALIGN_32 },
   1170 
   1171     // BMI/BMI2 foldable instructions
   1172     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
   1173     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
   1174     { X86::MULX32rr,          X86::MULX32rm,            0 },
   1175     { X86::MULX64rr,          X86::MULX64rm,            0 },
   1176     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
   1177     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
   1178     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
   1179     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
   1180   };
   1181 
   1182   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
   1183     unsigned RegOp = OpTbl2[i].RegOp;
   1184     unsigned MemOp = OpTbl2[i].MemOp;
   1185     unsigned Flags = OpTbl2[i].Flags;
   1186     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1187                   RegOp, MemOp,
   1188                   // Index 2, folded load
   1189                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1190   }
   1191 
   1192   static const X86OpTblEntry OpTbl3[] = {
   1193     // FMA foldable instructions
   1194     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
   1195     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
   1196     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
   1197     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
   1198     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
   1199     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
   1200     { X86::VFMADDSSr213r_Int,     X86::VFMADDSSr213m_Int,     0 },
   1201     { X86::VFMADDSDr213r_Int,     X86::VFMADDSDr213m_Int,     0 },
   1202 
   1203     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
   1204     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
   1205     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
   1206     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
   1207     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
   1208     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
   1209     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
   1210     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
   1211     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
   1212     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
   1213     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
   1214     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
   1215 
   1216     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
   1217     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
   1218     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
   1219     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
   1220     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
   1221     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
   1222     { X86::VFNMADDSSr213r_Int,    X86::VFNMADDSSr213m_Int,    0 },
   1223     { X86::VFNMADDSDr213r_Int,    X86::VFNMADDSDr213m_Int,    0 },
   1224 
   1225     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
   1226     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
   1227     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
   1228     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
   1229     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
   1230     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
   1231     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
   1232     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
   1233     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
   1234     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
   1235     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
   1236     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
   1237 
   1238     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
   1239     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
   1240     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
   1241     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
   1242     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
   1243     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
   1244     { X86::VFMSUBSSr213r_Int,     X86::VFMSUBSSr213m_Int,     0 },
   1245     { X86::VFMSUBSDr213r_Int,     X86::VFMSUBSDr213m_Int,     0 },
   1246 
   1247     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
   1248     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
   1249     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
   1250     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
   1251     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
   1252     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
   1253     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
   1254     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
   1255     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
   1256     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
   1257     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
   1258     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
   1259 
   1260     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
   1261     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
   1262     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
   1263     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
   1264     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
   1265     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
   1266     { X86::VFNMSUBSSr213r_Int,    X86::VFNMSUBSSr213m_Int,    0 },
   1267     { X86::VFNMSUBSDr213r_Int,    X86::VFNMSUBSDr213m_Int,    0 },
   1268 
   1269     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
   1270     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
   1271     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
   1272     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
   1273     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
   1274     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
   1275     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
   1276     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
   1277     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
   1278     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
   1279     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
   1280     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
   1281 
   1282     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
   1283     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
   1284     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
   1285     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
   1286     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
   1287     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
   1288     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
   1289     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
   1290     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
   1291     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
   1292     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
   1293     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
   1294 
   1295     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
   1296     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
   1297     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
   1298     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
   1299     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
   1300     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
   1301     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
   1302     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
   1303     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
   1304     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
   1305     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
   1306     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
   1307 
   1308     // FMA4 foldable patterns
   1309     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
   1310     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
   1311     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
   1312     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
   1313     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
   1314     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
   1315     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
   1316     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
   1317     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
   1318     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
   1319     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
   1320     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
   1321     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
   1322     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
   1323     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
   1324     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
   1325     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
   1326     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
   1327     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
   1328     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
   1329     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
   1330     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
   1331     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
   1332     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
   1333     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
   1334     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
   1335     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
   1336     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
   1337     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
   1338     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
   1339     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
   1340     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
   1341   };
   1342 
   1343   for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
   1344     unsigned RegOp = OpTbl3[i].RegOp;
   1345     unsigned MemOp = OpTbl3[i].MemOp;
   1346     unsigned Flags = OpTbl3[i].Flags;
   1347     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
   1348                   RegOp, MemOp,
   1349                   // Index 3, folded load
   1350                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
   1351   }
   1352 
   1353 }
   1354 
   1355 void
   1356 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   1357                             MemOp2RegOpTableType &M2RTable,
   1358                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
   1359     if ((Flags & TB_NO_FORWARD) == 0) {
   1360       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   1361       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   1362     }
   1363     if ((Flags & TB_NO_REVERSE) == 0) {
   1364       assert(!M2RTable.count(MemOp) &&
   1365            "Duplicated entries in unfolding maps?");
   1366       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   1367     }
   1368 }
   1369 
   1370 bool
   1371 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   1372                                     unsigned &SrcReg, unsigned &DstReg,
   1373                                     unsigned &SubIdx) const {
   1374   switch (MI.getOpcode()) {
   1375   default: break;
   1376   case X86::MOVSX16rr8:
   1377   case X86::MOVZX16rr8:
   1378   case X86::MOVSX32rr8:
   1379   case X86::MOVZX32rr8:
   1380   case X86::MOVSX64rr8:
   1381     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
   1382       // It's not always legal to reference the low 8-bit of the larger
   1383       // register in 32-bit mode.
   1384       return false;
   1385   case X86::MOVSX32rr16:
   1386   case X86::MOVZX32rr16:
   1387   case X86::MOVSX64rr16:
   1388   case X86::MOVSX64rr32: {
   1389     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   1390       // Be conservative.
   1391       return false;
   1392     SrcReg = MI.getOperand(1).getReg();
   1393     DstReg = MI.getOperand(0).getReg();
   1394     switch (MI.getOpcode()) {
   1395     default: llvm_unreachable("Unreachable!");
   1396     case X86::MOVSX16rr8:
   1397     case X86::MOVZX16rr8:
   1398     case X86::MOVSX32rr8:
   1399     case X86::MOVZX32rr8:
   1400     case X86::MOVSX64rr8:
   1401       SubIdx = X86::sub_8bit;
   1402       break;
   1403     case X86::MOVSX32rr16:
   1404     case X86::MOVZX32rr16:
   1405     case X86::MOVSX64rr16:
   1406       SubIdx = X86::sub_16bit;
   1407       break;
   1408     case X86::MOVSX64rr32:
   1409       SubIdx = X86::sub_32bit;
   1410       break;
   1411     }
   1412     return true;
   1413   }
   1414   }
   1415   return false;
   1416 }
   1417 
   1418 /// isFrameOperand - Return true and the FrameIndex if the specified
   1419 /// operand and follow operands form a reference to the stack frame.
   1420 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
   1421                                   int &FrameIndex) const {
   1422   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
   1423       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
   1424       MI->getOperand(Op+1).getImm() == 1 &&
   1425       MI->getOperand(Op+2).getReg() == 0 &&
   1426       MI->getOperand(Op+3).getImm() == 0) {
   1427     FrameIndex = MI->getOperand(Op).getIndex();
   1428     return true;
   1429   }
   1430   return false;
   1431 }
   1432 
   1433 static bool isFrameLoadOpcode(int Opcode) {
   1434   switch (Opcode) {
   1435   default:
   1436     return false;
   1437   case X86::MOV8rm:
   1438   case X86::MOV16rm:
   1439   case X86::MOV32rm:
   1440   case X86::MOV64rm:
   1441   case X86::LD_Fp64m:
   1442   case X86::MOVSSrm:
   1443   case X86::MOVSDrm:
   1444   case X86::MOVAPSrm:
   1445   case X86::MOVAPDrm:
   1446   case X86::MOVDQArm:
   1447   case X86::VMOVSSrm:
   1448   case X86::VMOVSDrm:
   1449   case X86::VMOVAPSrm:
   1450   case X86::VMOVAPDrm:
   1451   case X86::VMOVDQArm:
   1452   case X86::VMOVAPSYrm:
   1453   case X86::VMOVAPDYrm:
   1454   case X86::VMOVDQAYrm:
   1455   case X86::MMX_MOVD64rm:
   1456   case X86::MMX_MOVQ64rm:
   1457     return true;
   1458   }
   1459 }
   1460 
   1461 static bool isFrameStoreOpcode(int Opcode) {
   1462   switch (Opcode) {
   1463   default: break;
   1464   case X86::MOV8mr:
   1465   case X86::MOV16mr:
   1466   case X86::MOV32mr:
   1467   case X86::MOV64mr:
   1468   case X86::ST_FpP64m:
   1469   case X86::MOVSSmr:
   1470   case X86::MOVSDmr:
   1471   case X86::MOVAPSmr:
   1472   case X86::MOVAPDmr:
   1473   case X86::MOVDQAmr:
   1474   case X86::VMOVSSmr:
   1475   case X86::VMOVSDmr:
   1476   case X86::VMOVAPSmr:
   1477   case X86::VMOVAPDmr:
   1478   case X86::VMOVDQAmr:
   1479   case X86::VMOVAPSYmr:
   1480   case X86::VMOVAPDYmr:
   1481   case X86::VMOVDQAYmr:
   1482   case X86::MMX_MOVD64mr:
   1483   case X86::MMX_MOVQ64mr:
   1484   case X86::MMX_MOVNTQmr:
   1485     return true;
   1486   }
   1487   return false;
   1488 }
   1489 
   1490 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1491                                            int &FrameIndex) const {
   1492   if (isFrameLoadOpcode(MI->getOpcode()))
   1493     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   1494       return MI->getOperand(0).getReg();
   1495   return 0;
   1496 }
   1497 
   1498 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1499                                                  int &FrameIndex) const {
   1500   if (isFrameLoadOpcode(MI->getOpcode())) {
   1501     unsigned Reg;
   1502     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   1503       return Reg;
   1504     // Check for post-frame index elimination operations
   1505     const MachineMemOperand *Dummy;
   1506     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1507   }
   1508   return 0;
   1509 }
   1510 
   1511 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   1512                                           int &FrameIndex) const {
   1513   if (isFrameStoreOpcode(MI->getOpcode()))
   1514     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   1515         isFrameOperand(MI, 0, FrameIndex))
   1516       return MI->getOperand(X86::AddrNumOperands).getReg();
   1517   return 0;
   1518 }
   1519 
   1520 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
   1521                                                 int &FrameIndex) const {
   1522   if (isFrameStoreOpcode(MI->getOpcode())) {
   1523     unsigned Reg;
   1524     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   1525       return Reg;
   1526     // Check for post-frame index elimination operations
   1527     const MachineMemOperand *Dummy;
   1528     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   1529   }
   1530   return 0;
   1531 }
   1532 
   1533 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
   1534 /// X86::MOVPC32r.
   1535 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   1536   // Don't waste compile time scanning use-def chains of physregs.
   1537   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
   1538     return false;
   1539   bool isPICBase = false;
   1540   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
   1541          E = MRI.def_end(); I != E; ++I) {
   1542     MachineInstr *DefMI = I.getOperand().getParent();
   1543     if (DefMI->getOpcode() != X86::MOVPC32r)
   1544       return false;
   1545     assert(!isPICBase && "More than one PIC base?");
   1546     isPICBase = true;
   1547   }
   1548   return isPICBase;
   1549 }
   1550 
   1551 bool
   1552 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   1553                                                 AliasAnalysis *AA) const {
   1554   switch (MI->getOpcode()) {
   1555   default: break;
   1556   case X86::MOV8rm:
   1557   case X86::MOV16rm:
   1558   case X86::MOV32rm:
   1559   case X86::MOV64rm:
   1560   case X86::LD_Fp64m:
   1561   case X86::MOVSSrm:
   1562   case X86::MOVSDrm:
   1563   case X86::MOVAPSrm:
   1564   case X86::MOVUPSrm:
   1565   case X86::MOVAPDrm:
   1566   case X86::MOVDQArm:
   1567   case X86::MOVDQUrm:
   1568   case X86::VMOVSSrm:
   1569   case X86::VMOVSDrm:
   1570   case X86::VMOVAPSrm:
   1571   case X86::VMOVUPSrm:
   1572   case X86::VMOVAPDrm:
   1573   case X86::VMOVDQArm:
   1574   case X86::VMOVDQUrm:
   1575   case X86::VMOVAPSYrm:
   1576   case X86::VMOVUPSYrm:
   1577   case X86::VMOVAPDYrm:
   1578   case X86::VMOVDQAYrm:
   1579   case X86::VMOVDQUYrm:
   1580   case X86::MMX_MOVD64rm:
   1581   case X86::MMX_MOVQ64rm:
   1582   case X86::FsVMOVAPSrm:
   1583   case X86::FsVMOVAPDrm:
   1584   case X86::FsMOVAPSrm:
   1585   case X86::FsMOVAPDrm: {
   1586     // Loads from constant pools are trivially rematerializable.
   1587     if (MI->getOperand(1).isReg() &&
   1588         MI->getOperand(2).isImm() &&
   1589         MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1590         MI->isInvariantLoad(AA)) {
   1591       unsigned BaseReg = MI->getOperand(1).getReg();
   1592       if (BaseReg == 0 || BaseReg == X86::RIP)
   1593         return true;
   1594       // Allow re-materialization of PIC load.
   1595       if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
   1596         return false;
   1597       const MachineFunction &MF = *MI->getParent()->getParent();
   1598       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1599       return regIsPICBase(BaseReg, MRI);
   1600     }
   1601     return false;
   1602   }
   1603 
   1604   case X86::LEA32r:
   1605   case X86::LEA64r: {
   1606     if (MI->getOperand(2).isImm() &&
   1607         MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
   1608         !MI->getOperand(4).isReg()) {
   1609       // lea fi#, lea GV, etc. are all rematerializable.
   1610       if (!MI->getOperand(1).isReg())
   1611         return true;
   1612       unsigned BaseReg = MI->getOperand(1).getReg();
   1613       if (BaseReg == 0)
   1614         return true;
   1615       // Allow re-materialization of lea PICBase + x.
   1616       const MachineFunction &MF = *MI->getParent()->getParent();
   1617       const MachineRegisterInfo &MRI = MF.getRegInfo();
   1618       return regIsPICBase(BaseReg, MRI);
   1619     }
   1620     return false;
   1621   }
   1622   }
   1623 
   1624   // All other instructions marked M_REMATERIALIZABLE are always trivially
   1625   // rematerializable.
   1626   return true;
   1627 }
   1628 
   1629 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
   1630 /// would clobber the EFLAGS condition register. Note the result may be
   1631 /// conservative. If it cannot definitely determine the safety after visiting
   1632 /// a few instructions in each direction it assumes it's not safe.
   1633 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   1634                                   MachineBasicBlock::iterator I) {
   1635   MachineBasicBlock::iterator E = MBB.end();
   1636 
   1637   // For compile time consideration, if we are not able to determine the
   1638   // safety after visiting 4 instructions in each direction, we will assume
   1639   // it's not safe.
   1640   MachineBasicBlock::iterator Iter = I;
   1641   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   1642     bool SeenDef = false;
   1643     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1644       MachineOperand &MO = Iter->getOperand(j);
   1645       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1646         SeenDef = true;
   1647       if (!MO.isReg())
   1648         continue;
   1649       if (MO.getReg() == X86::EFLAGS) {
   1650         if (MO.isUse())
   1651           return false;
   1652         SeenDef = true;
   1653       }
   1654     }
   1655 
   1656     if (SeenDef)
   1657       // This instruction defines EFLAGS, no need to look any further.
   1658       return true;
   1659     ++Iter;
   1660     // Skip over DBG_VALUE.
   1661     while (Iter != E && Iter->isDebugValue())
   1662       ++Iter;
   1663   }
   1664 
   1665   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   1666   // live in.
   1667   if (Iter == E) {
   1668     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
   1669            SE = MBB.succ_end(); SI != SE; ++SI)
   1670       if ((*SI)->isLiveIn(X86::EFLAGS))
   1671         return false;
   1672     return true;
   1673   }
   1674 
   1675   MachineBasicBlock::iterator B = MBB.begin();
   1676   Iter = I;
   1677   for (unsigned i = 0; i < 4; ++i) {
   1678     // If we make it to the beginning of the block, it's safe to clobber
   1679     // EFLAGS iff EFLAGS is not live-in.
   1680     if (Iter == B)
   1681       return !MBB.isLiveIn(X86::EFLAGS);
   1682 
   1683     --Iter;
   1684     // Skip over DBG_VALUE.
   1685     while (Iter != B && Iter->isDebugValue())
   1686       --Iter;
   1687 
   1688     bool SawKill = false;
   1689     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   1690       MachineOperand &MO = Iter->getOperand(j);
   1691       // A register mask may clobber EFLAGS, but we should still look for a
   1692       // live EFLAGS def.
   1693       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   1694         SawKill = true;
   1695       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   1696         if (MO.isDef()) return MO.isDead();
   1697         if (MO.isKill()) SawKill = true;
   1698       }
   1699     }
   1700 
   1701     if (SawKill)
   1702       // This instruction kills EFLAGS and doesn't redefine it, so
   1703       // there's no need to look further.
   1704       return true;
   1705   }
   1706 
   1707   // Conservative answer.
   1708   return false;
   1709 }
   1710 
   1711 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   1712                                  MachineBasicBlock::iterator I,
   1713                                  unsigned DestReg, unsigned SubIdx,
   1714                                  const MachineInstr *Orig,
   1715                                  const TargetRegisterInfo &TRI) const {
   1716   // MOV32r0 is implemented with a xor which clobbers condition code.
   1717   // Re-materialize it as movri instructions to avoid side effects.
   1718   unsigned Opc = Orig->getOpcode();
   1719   if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
   1720     DebugLoc DL = Orig->getDebugLoc();
   1721     BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
   1722       .addImm(0);
   1723   } else {
   1724     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1725     MBB.insert(I, MI);
   1726   }
   1727 
   1728   MachineInstr *NewMI = prior(I);
   1729   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1730 }
   1731 
   1732 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
   1733 /// is not marked dead.
   1734 static bool hasLiveCondCodeDef(MachineInstr *MI) {
   1735   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1736     MachineOperand &MO = MI->getOperand(i);
   1737     if (MO.isReg() && MO.isDef() &&
   1738         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   1739       return true;
   1740     }
   1741   }
   1742   return false;
   1743 }
   1744 
   1745 /// getTruncatedShiftCount - check whether the shift count for a machine operand
   1746 /// is non-zero.
   1747 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
   1748                                               unsigned ShiftAmtOperandIdx) {
   1749   // The shift count is six bits with the REX.W prefix and five bits without.
   1750   unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
   1751   unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
   1752   return Imm & ShiftCountMask;
   1753 }
   1754 
   1755 /// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate
   1756 /// can be represented by a LEA instruction.
   1757 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
   1758   // Left shift instructions can be transformed into load-effective-address
   1759   // instructions if we can encode them appropriately.
   1760   // A LEA instruction utilizes a SIB byte to encode it's scale factor.
   1761   // The SIB.scale field is two bits wide which means that we can encode any
   1762   // shift amount less than 4.
   1763   return ShAmt < 4 && ShAmt > 0;
   1764 }
   1765 
   1766 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
   1767                                   unsigned Opc, bool AllowSP,
   1768                                   unsigned &NewSrc, bool &isKill, bool &isUndef,
   1769                                   MachineOperand &ImplicitOp) const {
   1770   MachineFunction &MF = *MI->getParent()->getParent();
   1771   const TargetRegisterClass *RC;
   1772   if (AllowSP) {
   1773     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
   1774   } else {
   1775     RC = Opc != X86::LEA32r ?
   1776       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
   1777   }
   1778   unsigned SrcReg = Src.getReg();
   1779 
   1780   // For both LEA64 and LEA32 the register already has essentially the right
   1781   // type (32-bit or 64-bit) we may just need to forbid SP.
   1782   if (Opc != X86::LEA64_32r) {
   1783     NewSrc = SrcReg;
   1784     isKill = Src.isKill();
   1785     isUndef = Src.isUndef();
   1786 
   1787     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
   1788         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
   1789       return false;
   1790 
   1791     return true;
   1792   }
   1793 
   1794   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
   1795   // another we need to add 64-bit registers to the final MI.
   1796   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   1797     ImplicitOp = Src;
   1798     ImplicitOp.setImplicit();
   1799 
   1800     NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
   1801     MachineBasicBlock::LivenessQueryResult LQR =
   1802       MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
   1803 
   1804     switch (LQR) {
   1805     case MachineBasicBlock::LQR_Unknown:
   1806       // We can't give sane liveness flags to the instruction, abandon LEA
   1807       // formation.
   1808       return false;
   1809     case MachineBasicBlock::LQR_Live:
   1810       isKill = MI->killsRegister(SrcReg);
   1811       isUndef = false;
   1812       break;
   1813     default:
   1814       // The physreg itself is dead, so we have to use it as an <undef>.
   1815       isKill = false;
   1816       isUndef = true;
   1817       break;
   1818     }
   1819   } else {
   1820     // Virtual register of the wrong class, we have to create a temporary 64-bit
   1821     // vreg to feed into the LEA.
   1822     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
   1823     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1824             get(TargetOpcode::COPY))
   1825       .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
   1826         .addOperand(Src);
   1827 
   1828     // Which is obviously going to be dead after we're done with it.
   1829     isKill = true;
   1830     isUndef = false;
   1831   }
   1832 
   1833   // We've set all the parameters without issue.
   1834   return true;
   1835 }
   1836 
   1837 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
   1838 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
   1839 /// to a 32-bit superregister and then truncating back down to a 16-bit
   1840 /// subregister.
   1841 MachineInstr *
   1842 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   1843                                            MachineFunction::iterator &MFI,
   1844                                            MachineBasicBlock::iterator &MBBI,
   1845                                            LiveVariables *LV) const {
   1846   MachineInstr *MI = MBBI;
   1847   unsigned Dest = MI->getOperand(0).getReg();
   1848   unsigned Src = MI->getOperand(1).getReg();
   1849   bool isDead = MI->getOperand(0).isDead();
   1850   bool isKill = MI->getOperand(1).isKill();
   1851 
   1852   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   1853   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   1854   unsigned Opc, leaInReg;
   1855   if (TM.getSubtarget<X86Subtarget>().is64Bit()) {
   1856     Opc = X86::LEA64_32r;
   1857     leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   1858   } else {
   1859     Opc = X86::LEA32r;
   1860     leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1861   }
   1862 
   1863   // Build and insert into an implicit UNDEF value. This is OK because
   1864   // well be shifting and then extracting the lower 16-bits.
   1865   // This has the potential to cause partial register stall. e.g.
   1866   //   movw    (%rbp,%rcx,2), %dx
   1867   //   leal    -65(%rdx), %esi
   1868   // But testing has shown this *does* help performance in 64-bit mode (at
   1869   // least on modern x86 machines).
   1870   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   1871   MachineInstr *InsMI =
   1872     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1873     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   1874     .addReg(Src, getKillRegState(isKill));
   1875 
   1876   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
   1877                                     get(Opc), leaOutReg);
   1878   switch (MIOpc) {
   1879   default: llvm_unreachable("Unreachable!");
   1880   case X86::SHL16ri: {
   1881     unsigned ShAmt = MI->getOperand(2).getImm();
   1882     MIB.addReg(0).addImm(1 << ShAmt)
   1883        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   1884     break;
   1885   }
   1886   case X86::INC16r:
   1887   case X86::INC64_16r:
   1888     addRegOffset(MIB, leaInReg, true, 1);
   1889     break;
   1890   case X86::DEC16r:
   1891   case X86::DEC64_16r:
   1892     addRegOffset(MIB, leaInReg, true, -1);
   1893     break;
   1894   case X86::ADD16ri:
   1895   case X86::ADD16ri8:
   1896   case X86::ADD16ri_DB:
   1897   case X86::ADD16ri8_DB:
   1898     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
   1899     break;
   1900   case X86::ADD16rr:
   1901   case X86::ADD16rr_DB: {
   1902     unsigned Src2 = MI->getOperand(2).getReg();
   1903     bool isKill2 = MI->getOperand(2).isKill();
   1904     unsigned leaInReg2 = 0;
   1905     MachineInstr *InsMI2 = 0;
   1906     if (Src == Src2) {
   1907       // ADD16rr %reg1028<kill>, %reg1028
   1908       // just a single insert_subreg.
   1909       addRegReg(MIB, leaInReg, true, leaInReg, false);
   1910     } else {
   1911       if (TM.getSubtarget<X86Subtarget>().is64Bit())
   1912         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   1913       else
   1914         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   1915       // Build and insert into an implicit UNDEF value. This is OK because
   1916       // well be shifting and then extracting the lower 16-bits.
   1917       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
   1918       InsMI2 =
   1919         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1920         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   1921         .addReg(Src2, getKillRegState(isKill2));
   1922       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   1923     }
   1924     if (LV && isKill2 && InsMI2)
   1925       LV->replaceKillInstruction(Src2, MI, InsMI2);
   1926     break;
   1927   }
   1928   }
   1929 
   1930   MachineInstr *NewMI = MIB;
   1931   MachineInstr *ExtMI =
   1932     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   1933     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   1934     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   1935 
   1936   if (LV) {
   1937     // Update live variables
   1938     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   1939     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   1940     if (isKill)
   1941       LV->replaceKillInstruction(Src, MI, InsMI);
   1942     if (isDead)
   1943       LV->replaceKillInstruction(Dest, MI, ExtMI);
   1944   }
   1945 
   1946   return ExtMI;
   1947 }
   1948 
   1949 /// convertToThreeAddress - This method must be implemented by targets that
   1950 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   1951 /// may be able to convert a two-address instruction into a true
   1952 /// three-address instruction on demand.  This allows the X86 target (for
   1953 /// example) to convert ADD and SHL instructions into LEA instructions if they
   1954 /// would require register copies due to two-addressness.
   1955 ///
   1956 /// This method returns a null pointer if the transformation cannot be
   1957 /// performed, otherwise it returns the new instruction.
   1958 ///
   1959 MachineInstr *
   1960 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   1961                                     MachineBasicBlock::iterator &MBBI,
   1962                                     LiveVariables *LV) const {
   1963   MachineInstr *MI = MBBI;
   1964 
   1965   // The following opcodes also sets the condition code register(s). Only
   1966   // convert them to equivalent lea if the condition code register def's
   1967   // are dead!
   1968   if (hasLiveCondCodeDef(MI))
   1969     return 0;
   1970 
   1971   MachineFunction &MF = *MI->getParent()->getParent();
   1972   // All instructions input are two-addr instructions.  Get the known operands.
   1973   const MachineOperand &Dest = MI->getOperand(0);
   1974   const MachineOperand &Src = MI->getOperand(1);
   1975 
   1976   MachineInstr *NewMI = NULL;
   1977   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   1978   // we have better subtarget support, enable the 16-bit LEA generation here.
   1979   // 16-bit LEA is also slow on Core2.
   1980   bool DisableLEA16 = true;
   1981   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
   1982 
   1983   unsigned MIOpc = MI->getOpcode();
   1984   switch (MIOpc) {
   1985   case X86::SHUFPSrri: {
   1986     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
   1987     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   1988 
   1989     unsigned B = MI->getOperand(1).getReg();
   1990     unsigned C = MI->getOperand(2).getReg();
   1991     if (B != C) return 0;
   1992     unsigned M = MI->getOperand(3).getImm();
   1993     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   1994       .addOperand(Dest).addOperand(Src).addImm(M);
   1995     break;
   1996   }
   1997   case X86::SHUFPDrri: {
   1998     assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
   1999     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
   2000 
   2001     unsigned B = MI->getOperand(1).getReg();
   2002     unsigned C = MI->getOperand(2).getReg();
   2003     if (B != C) return 0;
   2004     unsigned M = MI->getOperand(3).getImm();
   2005 
   2006     // Convert to PSHUFD mask.
   2007     M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
   2008 
   2009     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
   2010       .addOperand(Dest).addOperand(Src).addImm(M);
   2011     break;
   2012   }
   2013   case X86::SHL64ri: {
   2014     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2015     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2016     if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
   2017 
   2018     // LEA can't handle RSP.
   2019     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2020         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   2021                                            &X86::GR64_NOSPRegClass))
   2022       return 0;
   2023 
   2024     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2025       .addOperand(Dest)
   2026       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2027     break;
   2028   }
   2029   case X86::SHL32ri: {
   2030     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2031     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2032     if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
   2033 
   2034     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2035 
   2036     // LEA can't handle ESP.
   2037     bool isKill, isUndef;
   2038     unsigned SrcReg;
   2039     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2040     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2041                         SrcReg, isKill, isUndef, ImplicitOp))
   2042       return 0;
   2043 
   2044     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2045       .addOperand(Dest)
   2046       .addReg(0).addImm(1 << ShAmt)
   2047       .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
   2048       .addImm(0).addReg(0);
   2049     if (ImplicitOp.getReg() != 0)
   2050       MIB.addOperand(ImplicitOp);
   2051     NewMI = MIB;
   2052 
   2053     break;
   2054   }
   2055   case X86::SHL16ri: {
   2056     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2057     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2058     if (!isTruncatedShiftCountForLEA(ShAmt)) return 0;
   2059 
   2060     if (DisableLEA16)
   2061       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2062     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2063       .addOperand(Dest)
   2064       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2065     break;
   2066   }
   2067   default: {
   2068 
   2069     switch (MIOpc) {
   2070     default: return 0;
   2071     case X86::INC64r:
   2072     case X86::INC32r:
   2073     case X86::INC64_32r: {
   2074       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2075       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   2076         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2077       bool isKill, isUndef;
   2078       unsigned SrcReg;
   2079       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2080       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2081                           SrcReg, isKill, isUndef, ImplicitOp))
   2082         return 0;
   2083 
   2084       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2085           .addOperand(Dest)
   2086           .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
   2087       if (ImplicitOp.getReg() != 0)
   2088         MIB.addOperand(ImplicitOp);
   2089 
   2090       NewMI = addOffset(MIB, 1);
   2091       break;
   2092     }
   2093     case X86::INC16r:
   2094     case X86::INC64_16r:
   2095       if (DisableLEA16)
   2096         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2097       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2098       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2099                         .addOperand(Dest).addOperand(Src), 1);
   2100       break;
   2101     case X86::DEC64r:
   2102     case X86::DEC32r:
   2103     case X86::DEC64_32r: {
   2104       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2105       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   2106         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2107 
   2108       bool isKill, isUndef;
   2109       unsigned SrcReg;
   2110       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2111       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2112                           SrcReg, isKill, isUndef, ImplicitOp))
   2113         return 0;
   2114 
   2115       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2116           .addOperand(Dest)
   2117           .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2118       if (ImplicitOp.getReg() != 0)
   2119         MIB.addOperand(ImplicitOp);
   2120 
   2121       NewMI = addOffset(MIB, -1);
   2122 
   2123       break;
   2124     }
   2125     case X86::DEC16r:
   2126     case X86::DEC64_16r:
   2127       if (DisableLEA16)
   2128         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2129       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2130       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2131                         .addOperand(Dest).addOperand(Src), -1);
   2132       break;
   2133     case X86::ADD64rr:
   2134     case X86::ADD64rr_DB:
   2135     case X86::ADD32rr:
   2136     case X86::ADD32rr_DB: {
   2137       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2138       unsigned Opc;
   2139       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
   2140         Opc = X86::LEA64r;
   2141       else
   2142         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2143 
   2144       bool isKill, isUndef;
   2145       unsigned SrcReg;
   2146       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2147       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2148                           SrcReg, isKill, isUndef, ImplicitOp))
   2149         return 0;
   2150 
   2151       const MachineOperand &Src2 = MI->getOperand(2);
   2152       bool isKill2, isUndef2;
   2153       unsigned SrcReg2;
   2154       MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
   2155       if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
   2156                           SrcReg2, isKill2, isUndef2, ImplicitOp2))
   2157         return 0;
   2158 
   2159       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2160         .addOperand(Dest);
   2161       if (ImplicitOp.getReg() != 0)
   2162         MIB.addOperand(ImplicitOp);
   2163       if (ImplicitOp2.getReg() != 0)
   2164         MIB.addOperand(ImplicitOp2);
   2165 
   2166       NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
   2167 
   2168       // Preserve undefness of the operands.
   2169       NewMI->getOperand(1).setIsUndef(isUndef);
   2170       NewMI->getOperand(3).setIsUndef(isUndef2);
   2171 
   2172       if (LV && Src2.isKill())
   2173         LV->replaceKillInstruction(SrcReg2, MI, NewMI);
   2174       break;
   2175     }
   2176     case X86::ADD16rr:
   2177     case X86::ADD16rr_DB: {
   2178       if (DisableLEA16)
   2179         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2180       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2181       unsigned Src2 = MI->getOperand(2).getReg();
   2182       bool isKill2 = MI->getOperand(2).isKill();
   2183       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2184                         .addOperand(Dest),
   2185                         Src.getReg(), Src.isKill(), Src2, isKill2);
   2186 
   2187       // Preserve undefness of the operands.
   2188       bool isUndef = MI->getOperand(1).isUndef();
   2189       bool isUndef2 = MI->getOperand(2).isUndef();
   2190       NewMI->getOperand(1).setIsUndef(isUndef);
   2191       NewMI->getOperand(3).setIsUndef(isUndef2);
   2192 
   2193       if (LV && isKill2)
   2194         LV->replaceKillInstruction(Src2, MI, NewMI);
   2195       break;
   2196     }
   2197     case X86::ADD64ri32:
   2198     case X86::ADD64ri8:
   2199     case X86::ADD64ri32_DB:
   2200     case X86::ADD64ri8_DB:
   2201       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2202       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2203                         .addOperand(Dest).addOperand(Src),
   2204                         MI->getOperand(2).getImm());
   2205       break;
   2206     case X86::ADD32ri:
   2207     case X86::ADD32ri8:
   2208     case X86::ADD32ri_DB:
   2209     case X86::ADD32ri8_DB: {
   2210       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2211       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2212 
   2213       bool isKill, isUndef;
   2214       unsigned SrcReg;
   2215       MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2216       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2217                           SrcReg, isKill, isUndef, ImplicitOp))
   2218         return 0;
   2219 
   2220       MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2221           .addOperand(Dest)
   2222           .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2223       if (ImplicitOp.getReg() != 0)
   2224         MIB.addOperand(ImplicitOp);
   2225 
   2226       NewMI = addOffset(MIB, MI->getOperand(2).getImm());
   2227       break;
   2228     }
   2229     case X86::ADD16ri:
   2230     case X86::ADD16ri8:
   2231     case X86::ADD16ri_DB:
   2232     case X86::ADD16ri8_DB:
   2233       if (DisableLEA16)
   2234         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
   2235       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2236       NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2237                         .addOperand(Dest).addOperand(Src),
   2238                         MI->getOperand(2).getImm());
   2239       break;
   2240     }
   2241   }
   2242   }
   2243 
   2244   if (!NewMI) return 0;
   2245 
   2246   if (LV) {  // Update live variables
   2247     if (Src.isKill())
   2248       LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
   2249     if (Dest.isDead())
   2250       LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
   2251   }
   2252 
   2253   MFI->insert(MBBI, NewMI);          // Insert the new inst
   2254   return NewMI;
   2255 }
   2256 
   2257 /// commuteInstruction - We have a few instructions that must be hacked on to
   2258 /// commute them.
   2259 ///
   2260 MachineInstr *
   2261 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   2262   switch (MI->getOpcode()) {
   2263   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   2264   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   2265   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   2266   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   2267   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   2268   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   2269     unsigned Opc;
   2270     unsigned Size;
   2271     switch (MI->getOpcode()) {
   2272     default: llvm_unreachable("Unreachable!");
   2273     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   2274     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   2275     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   2276     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   2277     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   2278     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   2279     }
   2280     unsigned Amt = MI->getOperand(3).getImm();
   2281     if (NewMI) {
   2282       MachineFunction &MF = *MI->getParent()->getParent();
   2283       MI = MF.CloneMachineInstr(MI);
   2284       NewMI = false;
   2285     }
   2286     MI->setDesc(get(Opc));
   2287     MI->getOperand(3).setImm(Size-Amt);
   2288     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2289   }
   2290   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
   2291   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
   2292   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
   2293   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
   2294   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
   2295   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
   2296   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
   2297   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
   2298   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
   2299   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
   2300   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
   2301   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
   2302   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
   2303   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
   2304   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
   2305   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
   2306     unsigned Opc;
   2307     switch (MI->getOpcode()) {
   2308     default: llvm_unreachable("Unreachable!");
   2309     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   2310     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   2311     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   2312     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   2313     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   2314     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   2315     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   2316     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   2317     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   2318     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   2319     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   2320     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   2321     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   2322     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   2323     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   2324     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   2325     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   2326     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   2327     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   2328     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   2329     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   2330     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   2331     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   2332     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   2333     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   2334     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   2335     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   2336     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   2337     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   2338     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   2339     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   2340     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   2341     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   2342     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   2343     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   2344     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   2345     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   2346     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   2347     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   2348     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   2349     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   2350     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   2351     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   2352     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   2353     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   2354     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   2355     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   2356     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   2357     }
   2358     if (NewMI) {
   2359       MachineFunction &MF = *MI->getParent()->getParent();
   2360       MI = MF.CloneMachineInstr(MI);
   2361       NewMI = false;
   2362     }
   2363     MI->setDesc(get(Opc));
   2364     // Fallthrough intended.
   2365   }
   2366   default:
   2367     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2368   }
   2369 }
   2370 
   2371 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   2372   switch (BrOpc) {
   2373   default: return X86::COND_INVALID;
   2374   case X86::JE_4:  return X86::COND_E;
   2375   case X86::JNE_4: return X86::COND_NE;
   2376   case X86::JL_4:  return X86::COND_L;
   2377   case X86::JLE_4: return X86::COND_LE;
   2378   case X86::JG_4:  return X86::COND_G;
   2379   case X86::JGE_4: return X86::COND_GE;
   2380   case X86::JB_4:  return X86::COND_B;
   2381   case X86::JBE_4: return X86::COND_BE;
   2382   case X86::JA_4:  return X86::COND_A;
   2383   case X86::JAE_4: return X86::COND_AE;
   2384   case X86::JS_4:  return X86::COND_S;
   2385   case X86::JNS_4: return X86::COND_NS;
   2386   case X86::JP_4:  return X86::COND_P;
   2387   case X86::JNP_4: return X86::COND_NP;
   2388   case X86::JO_4:  return X86::COND_O;
   2389   case X86::JNO_4: return X86::COND_NO;
   2390   }
   2391 }
   2392 
   2393 /// getCondFromSETOpc - return condition code of a SET opcode.
   2394 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
   2395   switch (Opc) {
   2396   default: return X86::COND_INVALID;
   2397   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
   2398   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
   2399   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
   2400   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
   2401   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
   2402   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
   2403   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
   2404   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
   2405   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
   2406   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
   2407   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
   2408   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
   2409   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
   2410   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
   2411   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
   2412   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
   2413   }
   2414 }
   2415 
   2416 /// getCondFromCmovOpc - return condition code of a CMov opcode.
   2417 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
   2418   switch (Opc) {
   2419   default: return X86::COND_INVALID;
   2420   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
   2421   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
   2422     return X86::COND_A;
   2423   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
   2424   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
   2425     return X86::COND_AE;
   2426   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
   2427   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
   2428     return X86::COND_B;
   2429   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
   2430   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
   2431     return X86::COND_BE;
   2432   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
   2433   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
   2434     return X86::COND_E;
   2435   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
   2436   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
   2437     return X86::COND_G;
   2438   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
   2439   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
   2440     return X86::COND_GE;
   2441   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
   2442   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
   2443     return X86::COND_L;
   2444   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
   2445   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
   2446     return X86::COND_LE;
   2447   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
   2448   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
   2449     return X86::COND_NE;
   2450   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
   2451   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
   2452     return X86::COND_NO;
   2453   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
   2454   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
   2455     return X86::COND_NP;
   2456   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
   2457   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
   2458     return X86::COND_NS;
   2459   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
   2460   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
   2461     return X86::COND_O;
   2462   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
   2463   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
   2464     return X86::COND_P;
   2465   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
   2466   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
   2467     return X86::COND_S;
   2468   }
   2469 }
   2470 
   2471 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   2472   switch (CC) {
   2473   default: llvm_unreachable("Illegal condition code!");
   2474   case X86::COND_E:  return X86::JE_4;
   2475   case X86::COND_NE: return X86::JNE_4;
   2476   case X86::COND_L:  return X86::JL_4;
   2477   case X86::COND_LE: return X86::JLE_4;
   2478   case X86::COND_G:  return X86::JG_4;
   2479   case X86::COND_GE: return X86::JGE_4;
   2480   case X86::COND_B:  return X86::JB_4;
   2481   case X86::COND_BE: return X86::JBE_4;
   2482   case X86::COND_A:  return X86::JA_4;
   2483   case X86::COND_AE: return X86::JAE_4;
   2484   case X86::COND_S:  return X86::JS_4;
   2485   case X86::COND_NS: return X86::JNS_4;
   2486   case X86::COND_P:  return X86::JP_4;
   2487   case X86::COND_NP: return X86::JNP_4;
   2488   case X86::COND_O:  return X86::JO_4;
   2489   case X86::COND_NO: return X86::JNO_4;
   2490   }
   2491 }
   2492 
   2493 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
   2494 /// e.g. turning COND_E to COND_NE.
   2495 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   2496   switch (CC) {
   2497   default: llvm_unreachable("Illegal condition code!");
   2498   case X86::COND_E:  return X86::COND_NE;
   2499   case X86::COND_NE: return X86::COND_E;
   2500   case X86::COND_L:  return X86::COND_GE;
   2501   case X86::COND_LE: return X86::COND_G;
   2502   case X86::COND_G:  return X86::COND_LE;
   2503   case X86::COND_GE: return X86::COND_L;
   2504   case X86::COND_B:  return X86::COND_AE;
   2505   case X86::COND_BE: return X86::COND_A;
   2506   case X86::COND_A:  return X86::COND_BE;
   2507   case X86::COND_AE: return X86::COND_B;
   2508   case X86::COND_S:  return X86::COND_NS;
   2509   case X86::COND_NS: return X86::COND_S;
   2510   case X86::COND_P:  return X86::COND_NP;
   2511   case X86::COND_NP: return X86::COND_P;
   2512   case X86::COND_O:  return X86::COND_NO;
   2513   case X86::COND_NO: return X86::COND_O;
   2514   }
   2515 }
   2516 
   2517 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2518 /// the condition code if we modify the instructions such that flags are
   2519 /// set by MI(b,a).
   2520 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
   2521   switch (CC) {
   2522   default: return X86::COND_INVALID;
   2523   case X86::COND_E:  return X86::COND_E;
   2524   case X86::COND_NE: return X86::COND_NE;
   2525   case X86::COND_L:  return X86::COND_G;
   2526   case X86::COND_LE: return X86::COND_GE;
   2527   case X86::COND_G:  return X86::COND_L;
   2528   case X86::COND_GE: return X86::COND_LE;
   2529   case X86::COND_B:  return X86::COND_A;
   2530   case X86::COND_BE: return X86::COND_AE;
   2531   case X86::COND_A:  return X86::COND_B;
   2532   case X86::COND_AE: return X86::COND_BE;
   2533   }
   2534 }
   2535 
   2536 /// getSETFromCond - Return a set opcode for the given condition and
   2537 /// whether it has memory operand.
   2538 static unsigned getSETFromCond(X86::CondCode CC,
   2539                                bool HasMemoryOperand) {
   2540   static const uint16_t Opc[16][2] = {
   2541     { X86::SETAr,  X86::SETAm  },
   2542     { X86::SETAEr, X86::SETAEm },
   2543     { X86::SETBr,  X86::SETBm  },
   2544     { X86::SETBEr, X86::SETBEm },
   2545     { X86::SETEr,  X86::SETEm  },
   2546     { X86::SETGr,  X86::SETGm  },
   2547     { X86::SETGEr, X86::SETGEm },
   2548     { X86::SETLr,  X86::SETLm  },
   2549     { X86::SETLEr, X86::SETLEm },
   2550     { X86::SETNEr, X86::SETNEm },
   2551     { X86::SETNOr, X86::SETNOm },
   2552     { X86::SETNPr, X86::SETNPm },
   2553     { X86::SETNSr, X86::SETNSm },
   2554     { X86::SETOr,  X86::SETOm  },
   2555     { X86::SETPr,  X86::SETPm  },
   2556     { X86::SETSr,  X86::SETSm  }
   2557   };
   2558 
   2559   assert(CC < 16 && "Can only handle standard cond codes");
   2560   return Opc[CC][HasMemoryOperand ? 1 : 0];
   2561 }
   2562 
   2563 /// getCMovFromCond - Return a cmov opcode for the given condition,
   2564 /// register size in bytes, and operand type.
   2565 static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
   2566                                 bool HasMemoryOperand) {
   2567   static const uint16_t Opc[32][3] = {
   2568     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
   2569     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
   2570     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
   2571     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
   2572     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
   2573     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
   2574     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
   2575     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
   2576     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
   2577     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
   2578     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
   2579     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
   2580     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
   2581     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
   2582     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
   2583     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
   2584     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
   2585     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
   2586     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
   2587     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
   2588     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
   2589     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
   2590     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
   2591     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
   2592     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
   2593     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
   2594     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
   2595     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
   2596     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
   2597     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
   2598     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
   2599     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
   2600   };
   2601 
   2602   assert(CC < 16 && "Can only handle standard cond codes");
   2603   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
   2604   switch(RegBytes) {
   2605   default: llvm_unreachable("Illegal register size!");
   2606   case 2: return Opc[Idx][0];
   2607   case 4: return Opc[Idx][1];
   2608   case 8: return Opc[Idx][2];
   2609   }
   2610 }
   2611 
   2612 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   2613   if (!MI->isTerminator()) return false;
   2614 
   2615   // Conditional branch is a special case.
   2616   if (MI->isBranch() && !MI->isBarrier())
   2617     return true;
   2618   if (!MI->isPredicable())
   2619     return true;
   2620   return !isPredicated(MI);
   2621 }
   2622 
   2623 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   2624                                  MachineBasicBlock *&TBB,
   2625                                  MachineBasicBlock *&FBB,
   2626                                  SmallVectorImpl<MachineOperand> &Cond,
   2627                                  bool AllowModify) const {
   2628   // Start from the bottom of the block and work up, examining the
   2629   // terminator instructions.
   2630   MachineBasicBlock::iterator I = MBB.end();
   2631   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   2632   while (I != MBB.begin()) {
   2633     --I;
   2634     if (I->isDebugValue())
   2635       continue;
   2636 
   2637     // Working from the bottom, when we see a non-terminator instruction, we're
   2638     // done.
   2639     if (!isUnpredicatedTerminator(I))
   2640       break;
   2641 
   2642     // A terminator that isn't a branch can't easily be handled by this
   2643     // analysis.
   2644     if (!I->isBranch())
   2645       return true;
   2646 
   2647     // Handle unconditional branches.
   2648     if (I->getOpcode() == X86::JMP_4) {
   2649       UnCondBrIter = I;
   2650 
   2651       if (!AllowModify) {
   2652         TBB = I->getOperand(0).getMBB();
   2653         continue;
   2654       }
   2655 
   2656       // If the block has any instructions after a JMP, delete them.
   2657       while (llvm::next(I) != MBB.end())
   2658         llvm::next(I)->eraseFromParent();
   2659 
   2660       Cond.clear();
   2661       FBB = 0;
   2662 
   2663       // Delete the JMP if it's equivalent to a fall-through.
   2664       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   2665         TBB = 0;
   2666         I->eraseFromParent();
   2667         I = MBB.end();
   2668         UnCondBrIter = MBB.end();
   2669         continue;
   2670       }
   2671 
   2672       // TBB is used to indicate the unconditional destination.
   2673       TBB = I->getOperand(0).getMBB();
   2674       continue;
   2675     }
   2676 
   2677     // Handle conditional branches.
   2678     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
   2679     if (BranchCode == X86::COND_INVALID)
   2680       return true;  // Can't handle indirect branch.
   2681 
   2682     // Working from the bottom, handle the first conditional branch.
   2683     if (Cond.empty()) {
   2684       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   2685       if (AllowModify && UnCondBrIter != MBB.end() &&
   2686           MBB.isLayoutSuccessor(TargetBB)) {
   2687         // If we can modify the code and it ends in something like:
   2688         //
   2689         //     jCC L1
   2690         //     jmp L2
   2691         //   L1:
   2692         //     ...
   2693         //   L2:
   2694         //
   2695         // Then we can change this to:
   2696         //
   2697         //     jnCC L2
   2698         //   L1:
   2699         //     ...
   2700         //   L2:
   2701         //
   2702         // Which is a bit more efficient.
   2703         // We conditionally jump to the fall-through block.
   2704         BranchCode = GetOppositeBranchCondition(BranchCode);
   2705         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   2706         MachineBasicBlock::iterator OldInst = I;
   2707 
   2708         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   2709           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   2710         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
   2711           .addMBB(TargetBB);
   2712 
   2713         OldInst->eraseFromParent();
   2714         UnCondBrIter->eraseFromParent();
   2715 
   2716         // Restart the analysis.
   2717         UnCondBrIter = MBB.end();
   2718         I = MBB.end();
   2719         continue;
   2720       }
   2721 
   2722       FBB = TBB;
   2723       TBB = I->getOperand(0).getMBB();
   2724       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   2725       continue;
   2726     }
   2727 
   2728     // Handle subsequent conditional branches. Only handle the case where all
   2729     // conditional branches branch to the same destination and their condition
   2730     // opcodes fit one of the special multi-branch idioms.
   2731     assert(Cond.size() == 1);
   2732     assert(TBB);
   2733 
   2734     // Only handle the case where all conditional branches branch to the same
   2735     // destination.
   2736     if (TBB != I->getOperand(0).getMBB())
   2737       return true;
   2738 
   2739     // If the conditions are the same, we can leave them alone.
   2740     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   2741     if (OldBranchCode == BranchCode)
   2742       continue;
   2743 
   2744     // If they differ, see if they fit one of the known patterns. Theoretically,
   2745     // we could handle more patterns here, but we shouldn't expect to see them
   2746     // if instruction selection has done a reasonable job.
   2747     if ((OldBranchCode == X86::COND_NP &&
   2748          BranchCode == X86::COND_E) ||
   2749         (OldBranchCode == X86::COND_E &&
   2750          BranchCode == X86::COND_NP))
   2751       BranchCode = X86::COND_NP_OR_E;
   2752     else if ((OldBranchCode == X86::COND_P &&
   2753               BranchCode == X86::COND_NE) ||
   2754              (OldBranchCode == X86::COND_NE &&
   2755               BranchCode == X86::COND_P))
   2756       BranchCode = X86::COND_NE_OR_P;
   2757     else
   2758       return true;
   2759 
   2760     // Update the MachineOperand.
   2761     Cond[0].setImm(BranchCode);
   2762   }
   2763 
   2764   return false;
   2765 }
   2766 
   2767 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   2768   MachineBasicBlock::iterator I = MBB.end();
   2769   unsigned Count = 0;
   2770 
   2771   while (I != MBB.begin()) {
   2772     --I;
   2773     if (I->isDebugValue())
   2774       continue;
   2775     if (I->getOpcode() != X86::JMP_4 &&
   2776         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   2777       break;
   2778     // Remove the branch.
   2779     I->eraseFromParent();
   2780     I = MBB.end();
   2781     ++Count;
   2782   }
   2783 
   2784   return Count;
   2785 }
   2786 
   2787 unsigned
   2788 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
   2789                            MachineBasicBlock *FBB,
   2790                            const SmallVectorImpl<MachineOperand> &Cond,
   2791                            DebugLoc DL) const {
   2792   // Shouldn't be a fall through.
   2793   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   2794   assert((Cond.size() == 1 || Cond.size() == 0) &&
   2795          "X86 branch conditions have one component!");
   2796 
   2797   if (Cond.empty()) {
   2798     // Unconditional branch?
   2799     assert(!FBB && "Unconditional branch with multiple successors!");
   2800     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
   2801     return 1;
   2802   }
   2803 
   2804   // Conditional branch.
   2805   unsigned Count = 0;
   2806   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   2807   switch (CC) {
   2808   case X86::COND_NP_OR_E:
   2809     // Synthesize NP_OR_E with two branches.
   2810     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
   2811     ++Count;
   2812     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
   2813     ++Count;
   2814     break;
   2815   case X86::COND_NE_OR_P:
   2816     // Synthesize NE_OR_P with two branches.
   2817     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
   2818     ++Count;
   2819     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
   2820     ++Count;
   2821     break;
   2822   default: {
   2823     unsigned Opc = GetCondBranchFromCond(CC);
   2824     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   2825     ++Count;
   2826   }
   2827   }
   2828   if (FBB) {
   2829     // Two-way Conditional branch. Insert the second branch.
   2830     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
   2831     ++Count;
   2832   }
   2833   return Count;
   2834 }
   2835 
   2836 bool X86InstrInfo::
   2837 canInsertSelect(const MachineBasicBlock &MBB,
   2838                 const SmallVectorImpl<MachineOperand> &Cond,
   2839                 unsigned TrueReg, unsigned FalseReg,
   2840                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   2841   // Not all subtargets have cmov instructions.
   2842   if (!TM.getSubtarget<X86Subtarget>().hasCMov())
   2843     return false;
   2844   if (Cond.size() != 1)
   2845     return false;
   2846   // We cannot do the composite conditions, at least not in SSA form.
   2847   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
   2848     return false;
   2849 
   2850   // Check register classes.
   2851   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   2852   const TargetRegisterClass *RC =
   2853     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
   2854   if (!RC)
   2855     return false;
   2856 
   2857   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
   2858   if (X86::GR16RegClass.hasSubClassEq(RC) ||
   2859       X86::GR32RegClass.hasSubClassEq(RC) ||
   2860       X86::GR64RegClass.hasSubClassEq(RC)) {
   2861     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
   2862     // Bridge. Probably Ivy Bridge as well.
   2863     CondCycles = 2;
   2864     TrueCycles = 2;
   2865     FalseCycles = 2;
   2866     return true;
   2867   }
   2868 
   2869   // Can't do vectors.
   2870   return false;
   2871 }
   2872 
   2873 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
   2874                                 MachineBasicBlock::iterator I, DebugLoc DL,
   2875                                 unsigned DstReg,
   2876                                 const SmallVectorImpl<MachineOperand> &Cond,
   2877                                 unsigned TrueReg, unsigned FalseReg) const {
   2878    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   2879    assert(Cond.size() == 1 && "Invalid Cond array");
   2880    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
   2881                                   MRI.getRegClass(DstReg)->getSize(),
   2882                                   false/*HasMemoryOperand*/);
   2883    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
   2884 }
   2885 
   2886 /// isHReg - Test if the given register is a physical h register.
   2887 static bool isHReg(unsigned Reg) {
   2888   return X86::GR8_ABCD_HRegClass.contains(Reg);
   2889 }
   2890 
   2891 // Try and copy between VR128/VR64 and GR64 registers.
   2892 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   2893                                         bool HasAVX) {
   2894   // SrcReg(VR128) -> DestReg(GR64)
   2895   // SrcReg(VR64)  -> DestReg(GR64)
   2896   // SrcReg(GR64)  -> DestReg(VR128)
   2897   // SrcReg(GR64)  -> DestReg(VR64)
   2898 
   2899   if (X86::GR64RegClass.contains(DestReg)) {
   2900     if (X86::VR128RegClass.contains(SrcReg))
   2901       // Copy from a VR128 register to a GR64 register.
   2902       return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
   2903     if (X86::VR64RegClass.contains(SrcReg))
   2904       // Copy from a VR64 register to a GR64 register.
   2905       return X86::MOVSDto64rr;
   2906   } else if (X86::GR64RegClass.contains(SrcReg)) {
   2907     // Copy from a GR64 register to a VR128 register.
   2908     if (X86::VR128RegClass.contains(DestReg))
   2909       return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
   2910     // Copy from a GR64 register to a VR64 register.
   2911     if (X86::VR64RegClass.contains(DestReg))
   2912       return X86::MOV64toSDrr;
   2913   }
   2914 
   2915   // SrcReg(FR32) -> DestReg(GR32)
   2916   // SrcReg(GR32) -> DestReg(FR32)
   2917 
   2918   if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
   2919     // Copy from a FR32 register to a GR32 register.
   2920     return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
   2921 
   2922   if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   2923     // Copy from a GR32 register to a FR32 register.
   2924     return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
   2925 
   2926   return 0;
   2927 }
   2928 
   2929 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   2930                                MachineBasicBlock::iterator MI, DebugLoc DL,
   2931                                unsigned DestReg, unsigned SrcReg,
   2932                                bool KillSrc) const {
   2933   // First deal with the normal symmetric copies.
   2934   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   2935   unsigned Opc;
   2936   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   2937     Opc = X86::MOV64rr;
   2938   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   2939     Opc = X86::MOV32rr;
   2940   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   2941     Opc = X86::MOV16rr;
   2942   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   2943     // Copying to or from a physical H register on x86-64 requires a NOREX
   2944     // move.  Otherwise use a normal move.
   2945     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   2946         TM.getSubtarget<X86Subtarget>().is64Bit()) {
   2947       Opc = X86::MOV8rr_NOREX;
   2948       // Both operands must be encodable without an REX prefix.
   2949       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   2950              "8-bit H register can not be copied outside GR8_NOREX");
   2951     } else
   2952       Opc = X86::MOV8rr;
   2953   } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   2954     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   2955   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   2956     Opc = X86::VMOVAPSYrr;
   2957   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   2958     Opc = X86::MMX_MOVQ64rr;
   2959   else
   2960     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
   2961 
   2962   if (Opc) {
   2963     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   2964       .addReg(SrcReg, getKillRegState(KillSrc));
   2965     return;
   2966   }
   2967 
   2968   // Moving EFLAGS to / from another register requires a push and a pop.
   2969   // Notice that we have to adjust the stack if we don't want to clobber the
   2970   // first frame index. See X86FrameLowering.cpp - colobbersTheStack.
   2971   if (SrcReg == X86::EFLAGS) {
   2972     if (X86::GR64RegClass.contains(DestReg)) {
   2973       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
   2974       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
   2975       return;
   2976     }
   2977     if (X86::GR32RegClass.contains(DestReg)) {
   2978       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
   2979       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
   2980       return;
   2981     }
   2982   }
   2983   if (DestReg == X86::EFLAGS) {
   2984     if (X86::GR64RegClass.contains(SrcReg)) {
   2985       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
   2986         .addReg(SrcReg, getKillRegState(KillSrc));
   2987       BuildMI(MBB, MI, DL, get(X86::POPF64));
   2988       return;
   2989     }
   2990     if (X86::GR32RegClass.contains(SrcReg)) {
   2991       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
   2992         .addReg(SrcReg, getKillRegState(KillSrc));
   2993       BuildMI(MBB, MI, DL, get(X86::POPF32));
   2994       return;
   2995     }
   2996   }
   2997 
   2998   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   2999                << " to " << RI.getName(DestReg) << '\n');
   3000   llvm_unreachable("Cannot emit physreg copy instruction");
   3001 }
   3002 
   3003 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   3004                                       const TargetRegisterClass *RC,
   3005                                       bool isStackAligned,
   3006                                       const TargetMachine &TM,
   3007                                       bool load) {
   3008   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   3009   switch (RC->getSize()) {
   3010   default:
   3011     llvm_unreachable("Unknown spill size");
   3012   case 1:
   3013     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   3014     if (TM.getSubtarget<X86Subtarget>().is64Bit())
   3015       // Copying to or from a physical H register on x86-64 requires a NOREX
   3016       // move.  Otherwise use a normal move.
   3017       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   3018         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   3019     return load ? X86::MOV8rm : X86::MOV8mr;
   3020   case 2:
   3021     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   3022     return load ? X86::MOV16rm : X86::MOV16mr;
   3023   case 4:
   3024     if (X86::GR32RegClass.hasSubClassEq(RC))
   3025       return load ? X86::MOV32rm : X86::MOV32mr;
   3026     if (X86::FR32RegClass.hasSubClassEq(RC))
   3027       return load ?
   3028         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   3029         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   3030     if (X86::RFP32RegClass.hasSubClassEq(RC))
   3031       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   3032     llvm_unreachable("Unknown 4-byte regclass");
   3033   case 8:
   3034     if (X86::GR64RegClass.hasSubClassEq(RC))
   3035       return load ? X86::MOV64rm : X86::MOV64mr;
   3036     if (X86::FR64RegClass.hasSubClassEq(RC))
   3037       return load ?
   3038         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   3039         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   3040     if (X86::VR64RegClass.hasSubClassEq(RC))
   3041       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   3042     if (X86::RFP64RegClass.hasSubClassEq(RC))
   3043       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   3044     llvm_unreachable("Unknown 8-byte regclass");
   3045   case 10:
   3046     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   3047     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   3048   case 16: {
   3049     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
   3050     // If stack is realigned we can use aligned stores.
   3051     if (isStackAligned)
   3052       return load ?
   3053         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
   3054         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   3055     else
   3056       return load ?
   3057         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
   3058         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   3059   }
   3060   case 32:
   3061     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
   3062     // If stack is realigned we can use aligned stores.
   3063     if (isStackAligned)
   3064       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   3065     else
   3066       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   3067   }
   3068 }
   3069 
   3070 static unsigned getStoreRegOpcode(unsigned SrcReg,
   3071                                   const TargetRegisterClass *RC,
   3072                                   bool isStackAligned,
   3073                                   TargetMachine &TM) {
   3074   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
   3075 }
   3076 
   3077 
   3078 static unsigned getLoadRegOpcode(unsigned DestReg,
   3079                                  const TargetRegisterClass *RC,
   3080                                  bool isStackAligned,
   3081                                  const TargetMachine &TM) {
   3082   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
   3083 }
   3084 
   3085 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   3086                                        MachineBasicBlock::iterator MI,
   3087                                        unsigned SrcReg, bool isKill, int FrameIdx,
   3088                                        const TargetRegisterClass *RC,
   3089                                        const TargetRegisterInfo *TRI) const {
   3090   const MachineFunction &MF = *MBB.getParent();
   3091   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   3092          "Stack slot too small for store");
   3093   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3094   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   3095     RI.canRealignStack(MF);
   3096   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   3097   DebugLoc DL = MBB.findDebugLoc(MI);
   3098   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   3099     .addReg(SrcReg, getKillRegState(isKill));
   3100 }
   3101 
   3102 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   3103                                   bool isKill,
   3104                                   SmallVectorImpl<MachineOperand> &Addr,
   3105                                   const TargetRegisterClass *RC,
   3106                                   MachineInstr::mmo_iterator MMOBegin,
   3107                                   MachineInstr::mmo_iterator MMOEnd,
   3108                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3109   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3110   bool isAligned = MMOBegin != MMOEnd &&
   3111                    (*MMOBegin)->getAlignment() >= Alignment;
   3112   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
   3113   DebugLoc DL;
   3114   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   3115   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3116     MIB.addOperand(Addr[i]);
   3117   MIB.addReg(SrcReg, getKillRegState(isKill));
   3118   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3119   NewMIs.push_back(MIB);
   3120 }
   3121 
   3122 
   3123 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   3124                                         MachineBasicBlock::iterator MI,
   3125                                         unsigned DestReg, int FrameIdx,
   3126                                         const TargetRegisterClass *RC,
   3127                                         const TargetRegisterInfo *TRI) const {
   3128   const MachineFunction &MF = *MBB.getParent();
   3129   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3130   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
   3131     RI.canRealignStack(MF);
   3132   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   3133   DebugLoc DL = MBB.findDebugLoc(MI);
   3134   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   3135 }
   3136 
   3137 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   3138                                  SmallVectorImpl<MachineOperand> &Addr,
   3139                                  const TargetRegisterClass *RC,
   3140                                  MachineInstr::mmo_iterator MMOBegin,
   3141                                  MachineInstr::mmo_iterator MMOEnd,
   3142                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   3143   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   3144   bool isAligned = MMOBegin != MMOEnd &&
   3145                    (*MMOBegin)->getAlignment() >= Alignment;
   3146   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
   3147   DebugLoc DL;
   3148   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   3149   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   3150     MIB.addOperand(Addr[i]);
   3151   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   3152   NewMIs.push_back(MIB);
   3153 }
   3154 
   3155 bool X86InstrInfo::
   3156 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   3157                int &CmpMask, int &CmpValue) const {
   3158   switch (MI->getOpcode()) {
   3159   default: break;
   3160   case X86::CMP64ri32:
   3161   case X86::CMP64ri8:
   3162   case X86::CMP32ri:
   3163   case X86::CMP32ri8:
   3164   case X86::CMP16ri:
   3165   case X86::CMP16ri8:
   3166   case X86::CMP8ri:
   3167     SrcReg = MI->getOperand(0).getReg();
   3168     SrcReg2 = 0;
   3169     CmpMask = ~0;
   3170     CmpValue = MI->getOperand(1).getImm();
   3171     return true;
   3172   // A SUB can be used to perform comparison.
   3173   case X86::SUB64rm:
   3174   case X86::SUB32rm:
   3175   case X86::SUB16rm:
   3176   case X86::SUB8rm:
   3177     SrcReg = MI->getOperand(1).getReg();
   3178     SrcReg2 = 0;
   3179     CmpMask = ~0;
   3180     CmpValue = 0;
   3181     return true;
   3182   case X86::SUB64rr:
   3183   case X86::SUB32rr:
   3184   case X86::SUB16rr:
   3185   case X86::SUB8rr:
   3186     SrcReg = MI->getOperand(1).getReg();
   3187     SrcReg2 = MI->getOperand(2).getReg();
   3188     CmpMask = ~0;
   3189     CmpValue = 0;
   3190     return true;
   3191   case X86::SUB64ri32:
   3192   case X86::SUB64ri8:
   3193   case X86::SUB32ri:
   3194   case X86::SUB32ri8:
   3195   case X86::SUB16ri:
   3196   case X86::SUB16ri8:
   3197   case X86::SUB8ri:
   3198     SrcReg = MI->getOperand(1).getReg();
   3199     SrcReg2 = 0;
   3200     CmpMask = ~0;
   3201     CmpValue = MI->getOperand(2).getImm();
   3202     return true;
   3203   case X86::CMP64rr:
   3204   case X86::CMP32rr:
   3205   case X86::CMP16rr:
   3206   case X86::CMP8rr:
   3207     SrcReg = MI->getOperand(0).getReg();
   3208     SrcReg2 = MI->getOperand(1).getReg();
   3209     CmpMask = ~0;
   3210     CmpValue = 0;
   3211     return true;
   3212   case X86::TEST8rr:
   3213   case X86::TEST16rr:
   3214   case X86::TEST32rr:
   3215   case X86::TEST64rr:
   3216     SrcReg = MI->getOperand(0).getReg();
   3217     if (MI->getOperand(1).getReg() != SrcReg) return false;
   3218     // Compare against zero.
   3219     SrcReg2 = 0;
   3220     CmpMask = ~0;
   3221     CmpValue = 0;
   3222     return true;
   3223   }
   3224   return false;
   3225 }
   3226 
   3227 /// isRedundantFlagInstr - check whether the first instruction, whose only
   3228 /// purpose is to update flags, can be made redundant.
   3229 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   3230 /// This function can be extended later on.
   3231 /// SrcReg, SrcRegs: register operands for FlagI.
   3232 /// ImmValue: immediate for FlagI if it takes an immediate.
   3233 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
   3234                                         unsigned SrcReg2, int ImmValue,
   3235                                         MachineInstr *OI) {
   3236   if (((FlagI->getOpcode() == X86::CMP64rr &&
   3237         OI->getOpcode() == X86::SUB64rr) ||
   3238        (FlagI->getOpcode() == X86::CMP32rr &&
   3239         OI->getOpcode() == X86::SUB32rr)||
   3240        (FlagI->getOpcode() == X86::CMP16rr &&
   3241         OI->getOpcode() == X86::SUB16rr)||
   3242        (FlagI->getOpcode() == X86::CMP8rr &&
   3243         OI->getOpcode() == X86::SUB8rr)) &&
   3244       ((OI->getOperand(1).getReg() == SrcReg &&
   3245         OI->getOperand(2).getReg() == SrcReg2) ||
   3246        (OI->getOperand(1).getReg() == SrcReg2 &&
   3247         OI->getOperand(2).getReg() == SrcReg)))
   3248     return true;
   3249 
   3250   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
   3251         OI->getOpcode() == X86::SUB64ri32) ||
   3252        (FlagI->getOpcode() == X86::CMP64ri8 &&
   3253         OI->getOpcode() == X86::SUB64ri8) ||
   3254        (FlagI->getOpcode() == X86::CMP32ri &&
   3255         OI->getOpcode() == X86::SUB32ri) ||
   3256        (FlagI->getOpcode() == X86::CMP32ri8 &&
   3257         OI->getOpcode() == X86::SUB32ri8) ||
   3258        (FlagI->getOpcode() == X86::CMP16ri &&
   3259         OI->getOpcode() == X86::SUB16ri) ||
   3260        (FlagI->getOpcode() == X86::CMP16ri8 &&
   3261         OI->getOpcode() == X86::SUB16ri8) ||
   3262        (FlagI->getOpcode() == X86::CMP8ri &&
   3263         OI->getOpcode() == X86::SUB8ri)) &&
   3264       OI->getOperand(1).getReg() == SrcReg &&
   3265       OI->getOperand(2).getImm() == ImmValue)
   3266     return true;
   3267   return false;
   3268 }
   3269 
   3270 /// isDefConvertible - check whether the definition can be converted
   3271 /// to remove a comparison against zero.
   3272 inline static bool isDefConvertible(MachineInstr *MI) {
   3273   switch (MI->getOpcode()) {
   3274   default: return false;
   3275 
   3276   // The shift instructions only modify ZF if their shift count is non-zero.
   3277   // N.B.: The processor truncates the shift count depending on the encoding.
   3278   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
   3279   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
   3280      return getTruncatedShiftCount(MI, 2) != 0;
   3281 
   3282   // Some left shift instructions can be turned into LEA instructions but only
   3283   // if their flags aren't used. Avoid transforming such instructions.
   3284   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
   3285     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   3286     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
   3287     return ShAmt != 0;
   3288   }
   3289 
   3290   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
   3291   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
   3292      return getTruncatedShiftCount(MI, 3) != 0;
   3293 
   3294   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   3295   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   3296   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
   3297   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
   3298   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
   3299   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
   3300   case X86::DEC64_32r: case X86::DEC64_16r:
   3301   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
   3302   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
   3303   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
   3304   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
   3305   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
   3306   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
   3307   case X86::INC64_32r: case X86::INC64_16r:
   3308   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
   3309   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
   3310   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
   3311   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
   3312   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
   3313   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
   3314   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
   3315   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
   3316   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
   3317   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
   3318   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
   3319   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
   3320   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   3321   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   3322   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
   3323   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
   3324   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
   3325   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
   3326   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
   3327   case X86::ADC32ri:   case X86::ADC32ri8:
   3328   case X86::ADC32rr:   case X86::ADC64ri32:
   3329   case X86::ADC64ri8:  case X86::ADC64rr:
   3330   case X86::SBB32ri:   case X86::SBB32ri8:
   3331   case X86::SBB32rr:   case X86::SBB64ri32:
   3332   case X86::SBB64ri8:  case X86::SBB64rr:
   3333   case X86::ANDN32rr:  case X86::ANDN32rm:
   3334   case X86::ANDN64rr:  case X86::ANDN64rm:
   3335   case X86::BEXTR32rr: case X86::BEXTR64rr:
   3336   case X86::BEXTR32rm: case X86::BEXTR64rm:
   3337   case X86::BLSI32rr:  case X86::BLSI32rm:
   3338   case X86::BLSI64rr:  case X86::BLSI64rm:
   3339   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
   3340   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
   3341   case X86::BLSR32rr:  case X86::BLSR32rm:
   3342   case X86::BLSR64rr:  case X86::BLSR64rm:
   3343   case X86::BZHI32rr:  case X86::BZHI32rm:
   3344   case X86::BZHI64rr:  case X86::BZHI64rm:
   3345   case X86::LZCNT16rr: case X86::LZCNT16rm:
   3346   case X86::LZCNT32rr: case X86::LZCNT32rm:
   3347   case X86::LZCNT64rr: case X86::LZCNT64rm:
   3348   case X86::POPCNT16rr:case X86::POPCNT16rm:
   3349   case X86::POPCNT32rr:case X86::POPCNT32rm:
   3350   case X86::POPCNT64rr:case X86::POPCNT64rm:
   3351   case X86::TZCNT16rr: case X86::TZCNT16rm:
   3352   case X86::TZCNT32rr: case X86::TZCNT32rm:
   3353   case X86::TZCNT64rr: case X86::TZCNT64rm:
   3354     return true;
   3355   }
   3356 }
   3357 
   3358 /// optimizeCompareInstr - Check if there exists an earlier instruction that
   3359 /// operates on the same source operands and sets flags in the same way as
   3360 /// Compare; remove Compare if possible.
   3361 bool X86InstrInfo::
   3362 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   3363                      int CmpMask, int CmpValue,
   3364                      const MachineRegisterInfo *MRI) const {
   3365   // Check whether we can replace SUB with CMP.
   3366   unsigned NewOpcode = 0;
   3367   switch (CmpInstr->getOpcode()) {
   3368   default: break;
   3369   case X86::SUB64ri32:
   3370   case X86::SUB64ri8:
   3371   case X86::SUB32ri:
   3372   case X86::SUB32ri8:
   3373   case X86::SUB16ri:
   3374   case X86::SUB16ri8:
   3375   case X86::SUB8ri:
   3376   case X86::SUB64rm:
   3377   case X86::SUB32rm:
   3378   case X86::SUB16rm:
   3379   case X86::SUB8rm:
   3380   case X86::SUB64rr:
   3381   case X86::SUB32rr:
   3382   case X86::SUB16rr:
   3383   case X86::SUB8rr: {
   3384     if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
   3385       return false;
   3386     // There is no use of the destination register, we can replace SUB with CMP.
   3387     switch (CmpInstr->getOpcode()) {
   3388     default: llvm_unreachable("Unreachable!");
   3389     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
   3390     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
   3391     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
   3392     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
   3393     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
   3394     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
   3395     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
   3396     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
   3397     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
   3398     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
   3399     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
   3400     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
   3401     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
   3402     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
   3403     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
   3404     }
   3405     CmpInstr->setDesc(get(NewOpcode));
   3406     CmpInstr->RemoveOperand(0);
   3407     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
   3408     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
   3409         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
   3410       return false;
   3411   }
   3412   }
   3413 
   3414   // Get the unique definition of SrcReg.
   3415   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   3416   if (!MI) return false;
   3417 
   3418   // CmpInstr is the first instruction of the BB.
   3419   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
   3420 
   3421   // If we are comparing against zero, check whether we can use MI to update
   3422   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   3423   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
   3424   if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
   3425       !isDefConvertible(MI)))
   3426     return false;
   3427 
   3428   // We are searching for an earlier instruction that can make CmpInstr
   3429   // redundant and that instruction will be saved in Sub.
   3430   MachineInstr *Sub = NULL;
   3431   const TargetRegisterInfo *TRI = &getRegisterInfo();
   3432 
   3433   // We iterate backward, starting from the instruction before CmpInstr and
   3434   // stop when reaching the definition of a source register or done with the BB.
   3435   // RI points to the instruction before CmpInstr.
   3436   // If the definition is in this basic block, RE points to the definition;
   3437   // otherwise, RE is the rend of the basic block.
   3438   MachineBasicBlock::reverse_iterator
   3439       RI = MachineBasicBlock::reverse_iterator(I),
   3440       RE = CmpInstr->getParent() == MI->getParent() ?
   3441            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
   3442            CmpInstr->getParent()->rend();
   3443   MachineInstr *Movr0Inst = 0;
   3444   for (; RI != RE; ++RI) {
   3445     MachineInstr *Instr = &*RI;
   3446     // Check whether CmpInstr can be made redundant by the current instruction.
   3447     if (!IsCmpZero &&
   3448         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
   3449       Sub = Instr;
   3450       break;
   3451     }
   3452 
   3453     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
   3454         Instr->readsRegister(X86::EFLAGS, TRI)) {
   3455       // This instruction modifies or uses EFLAGS.
   3456 
   3457       // MOV32r0 etc. are implemented with xor which clobbers condition code.
   3458       // They are safe to move up, if the definition to EFLAGS is dead and
   3459       // earlier instructions do not read or write EFLAGS.
   3460       if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
   3461           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
   3462         Movr0Inst = Instr;
   3463         continue;
   3464       }
   3465 
   3466       // We can't remove CmpInstr.
   3467       return false;
   3468     }
   3469   }
   3470 
   3471   // Return false if no candidates exist.
   3472   if (!IsCmpZero && !Sub)
   3473     return false;
   3474 
   3475   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   3476                     Sub->getOperand(2).getReg() == SrcReg);
   3477 
   3478   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
   3479   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
   3480   // If we are done with the basic block, we need to check whether EFLAGS is
   3481   // live-out.
   3482   bool IsSafe = false;
   3483   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
   3484   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
   3485   for (++I; I != E; ++I) {
   3486     const MachineInstr &Instr = *I;
   3487     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
   3488     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
   3489     // We should check the usage if this instruction uses and updates EFLAGS.
   3490     if (!UseEFLAGS && ModifyEFLAGS) {
   3491       // It is safe to remove CmpInstr if EFLAGS is updated again.
   3492       IsSafe = true;
   3493       break;
   3494     }
   3495     if (!UseEFLAGS && !ModifyEFLAGS)
   3496       continue;
   3497 
   3498     // EFLAGS is used by this instruction.
   3499     X86::CondCode OldCC;
   3500     bool OpcIsSET = false;
   3501     if (IsCmpZero || IsSwapped) {
   3502       // We decode the condition code from opcode.
   3503       if (Instr.isBranch())
   3504         OldCC = getCondFromBranchOpc(Instr.getOpcode());
   3505       else {
   3506         OldCC = getCondFromSETOpc(Instr.getOpcode());
   3507         if (OldCC != X86::COND_INVALID)
   3508           OpcIsSET = true;
   3509         else
   3510           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
   3511       }
   3512       if (OldCC == X86::COND_INVALID) return false;
   3513     }
   3514     if (IsCmpZero) {
   3515       switch (OldCC) {
   3516       default: break;
   3517       case X86::COND_A: case X86::COND_AE:
   3518       case X86::COND_B: case X86::COND_BE:
   3519       case X86::COND_G: case X86::COND_GE:
   3520       case X86::COND_L: case X86::COND_LE:
   3521       case X86::COND_O: case X86::COND_NO:
   3522         // CF and OF are used, we can't perform this optimization.
   3523         return false;
   3524       }
   3525     } else if (IsSwapped) {
   3526       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
   3527       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   3528       // We swap the condition code and synthesize the new opcode.
   3529       X86::CondCode NewCC = getSwappedCondition(OldCC);
   3530       if (NewCC == X86::COND_INVALID) return false;
   3531 
   3532       // Synthesize the new opcode.
   3533       bool HasMemoryOperand = Instr.hasOneMemOperand();
   3534       unsigned NewOpc;
   3535       if (Instr.isBranch())
   3536         NewOpc = GetCondBranchFromCond(NewCC);
   3537       else if(OpcIsSET)
   3538         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
   3539       else {
   3540         unsigned DstReg = Instr.getOperand(0).getReg();
   3541         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
   3542                                  HasMemoryOperand);
   3543       }
   3544 
   3545       // Push the MachineInstr to OpsToUpdate.
   3546       // If it is safe to remove CmpInstr, the condition code of these
   3547       // instructions will be modified.
   3548       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
   3549     }
   3550     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
   3551       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
   3552       IsSafe = true;
   3553       break;
   3554     }
   3555   }
   3556 
   3557   // If EFLAGS is not killed nor re-defined, we should check whether it is
   3558   // live-out. If it is live-out, do not optimize.
   3559   if ((IsCmpZero || IsSwapped) && !IsSafe) {
   3560     MachineBasicBlock *MBB = CmpInstr->getParent();
   3561     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   3562              SE = MBB->succ_end(); SI != SE; ++SI)
   3563       if ((*SI)->isLiveIn(X86::EFLAGS))
   3564         return false;
   3565   }
   3566 
   3567   // The instruction to be updated is either Sub or MI.
   3568   Sub = IsCmpZero ? MI : Sub;
   3569   // Move Movr0Inst to the appropriate place before Sub.
   3570   if (Movr0Inst) {
   3571     // Look backwards until we find a def that doesn't use the current EFLAGS.
   3572     Def = Sub;
   3573     MachineBasicBlock::reverse_iterator
   3574       InsertI = MachineBasicBlock::reverse_iterator(++Def),
   3575                 InsertE = Sub->getParent()->rend();
   3576     for (; InsertI != InsertE; ++InsertI) {
   3577       MachineInstr *Instr = &*InsertI;
   3578       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
   3579           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
   3580         Sub->getParent()->remove(Movr0Inst);
   3581         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
   3582                                    Movr0Inst);
   3583         break;
   3584       }
   3585     }
   3586     if (InsertI == InsertE)
   3587       return false;
   3588   }
   3589 
   3590   // Make sure Sub instruction defines EFLAGS and mark the def live.
   3591   unsigned i = 0, e = Sub->getNumOperands();
   3592   for (; i != e; ++i) {
   3593     MachineOperand &MO = Sub->getOperand(i);
   3594     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
   3595       MO.setIsDead(false);
   3596       break;
   3597     }
   3598   }
   3599   assert(i != e && "Unable to locate a def EFLAGS operand");
   3600 
   3601   CmpInstr->eraseFromParent();
   3602 
   3603   // Modify the condition code of instructions in OpsToUpdate.
   3604   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
   3605     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
   3606   return true;
   3607 }
   3608 
   3609 /// optimizeLoadInstr - Try to remove the load by folding it to a register
   3610 /// operand at the use. We fold the load instructions if load defines a virtual
   3611 /// register, the virtual register is used once in the same BB, and the
   3612 /// instructions in-between do not load or store, and have no side effects.
   3613 MachineInstr* X86InstrInfo::
   3614 optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI,
   3615                   unsigned &FoldAsLoadDefReg,
   3616                   MachineInstr *&DefMI) const {
   3617   if (FoldAsLoadDefReg == 0)
   3618     return 0;
   3619   // To be conservative, if there exists another load, clear the load candidate.
   3620   if (MI->mayLoad()) {
   3621     FoldAsLoadDefReg = 0;
   3622     return 0;
   3623   }
   3624 
   3625   // Check whether we can move DefMI here.
   3626   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   3627   assert(DefMI);
   3628   bool SawStore = false;
   3629   if (!DefMI->isSafeToMove(this, 0, SawStore))
   3630     return 0;
   3631 
   3632   // We try to commute MI if possible.
   3633   unsigned IdxEnd = (MI->isCommutable()) ? 2 : 1;
   3634   for (unsigned Idx = 0; Idx < IdxEnd; Idx++) {
   3635     // Collect information about virtual register operands of MI.
   3636     unsigned SrcOperandId = 0;
   3637     bool FoundSrcOperand = false;
   3638     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   3639       MachineOperand &MO = MI->getOperand(i);
   3640       if (!MO.isReg())
   3641         continue;
   3642       unsigned Reg = MO.getReg();
   3643       if (Reg != FoldAsLoadDefReg)
   3644         continue;
   3645       // Do not fold if we have a subreg use or a def or multiple uses.
   3646       if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
   3647         return 0;
   3648 
   3649       SrcOperandId = i;
   3650       FoundSrcOperand = true;
   3651     }
   3652     if (!FoundSrcOperand) return 0;
   3653 
   3654     // Check whether we can fold the def into SrcOperandId.
   3655     SmallVector<unsigned, 8> Ops;
   3656     Ops.push_back(SrcOperandId);
   3657     MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI);
   3658     if (FoldMI) {
   3659       FoldAsLoadDefReg = 0;
   3660       return FoldMI;
   3661     }
   3662 
   3663     if (Idx == 1) {
   3664       // MI was changed but it didn't help, commute it back!
   3665       commuteInstruction(MI, false);
   3666       return 0;
   3667     }
   3668 
   3669     // Check whether we can commute MI and enable folding.
   3670     if (MI->isCommutable()) {
   3671       MachineInstr *NewMI = commuteInstruction(MI, false);
   3672       // Unable to commute.
   3673       if (!NewMI) return 0;
   3674       if (NewMI != MI) {
   3675         // New instruction. It doesn't need to be kept.
   3676         NewMI->eraseFromParent();
   3677         return 0;
   3678       }
   3679     }
   3680   }
   3681   return 0;
   3682 }
   3683 
   3684 /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
   3685 /// instruction with two undef reads of the register being defined.  This is
   3686 /// used for mapping:
   3687 ///   %xmm4 = V_SET0
   3688 /// to:
   3689 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   3690 ///
   3691 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   3692                              const MCInstrDesc &Desc) {
   3693   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   3694   unsigned Reg = MIB->getOperand(0).getReg();
   3695   MIB->setDesc(Desc);
   3696 
   3697   // MachineInstr::addOperand() will insert explicit operands before any
   3698   // implicit operands.
   3699   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   3700   // But we don't trust that.
   3701   assert(MIB->getOperand(1).getReg() == Reg &&
   3702          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
   3703   return true;
   3704 }
   3705 
   3706 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   3707   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   3708   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   3709   switch (MI->getOpcode()) {
   3710   case X86::SETB_C8r:
   3711     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   3712   case X86::SETB_C16r:
   3713     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
   3714   case X86::SETB_C32r:
   3715     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
   3716   case X86::SETB_C64r:
   3717     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
   3718   case X86::V_SET0:
   3719   case X86::FsFLD0SS:
   3720   case X86::FsFLD0SD:
   3721     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   3722   case X86::AVX_SET0:
   3723     assert(HasAVX && "AVX not supported");
   3724     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
   3725   case X86::V_SETALLONES:
   3726     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   3727   case X86::AVX2_SETALLONES:
   3728     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
   3729   case X86::TEST8ri_NOREX:
   3730     MI->setDesc(get(X86::TEST8ri));
   3731     return true;
   3732   }
   3733   return false;
   3734 }
   3735 
   3736 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   3737                                      const SmallVectorImpl<MachineOperand> &MOs,
   3738                                      MachineInstr *MI,
   3739                                      const TargetInstrInfo &TII) {
   3740   // Create the base instruction with the memory operand as the first part.
   3741   // Omit the implicit operands, something BuildMI can't do.
   3742   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   3743                                               MI->getDebugLoc(), true);
   3744   MachineInstrBuilder MIB(MF, NewMI);
   3745   unsigned NumAddrOps = MOs.size();
   3746   for (unsigned i = 0; i != NumAddrOps; ++i)
   3747     MIB.addOperand(MOs[i]);
   3748   if (NumAddrOps < 4)  // FrameIndex only
   3749     addOffset(MIB, 0);
   3750 
   3751   // Loop over the rest of the ri operands, converting them over.
   3752   unsigned NumOps = MI->getDesc().getNumOperands()-2;
   3753   for (unsigned i = 0; i != NumOps; ++i) {
   3754     MachineOperand &MO = MI->getOperand(i+2);
   3755     MIB.addOperand(MO);
   3756   }
   3757   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
   3758     MachineOperand &MO = MI->getOperand(i);
   3759     MIB.addOperand(MO);
   3760   }
   3761   return MIB;
   3762 }
   3763 
   3764 static MachineInstr *FuseInst(MachineFunction &MF,
   3765                               unsigned Opcode, unsigned OpNo,
   3766                               const SmallVectorImpl<MachineOperand> &MOs,
   3767                               MachineInstr *MI, const TargetInstrInfo &TII) {
   3768   // Omit the implicit operands, something BuildMI can't do.
   3769   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   3770                                               MI->getDebugLoc(), true);
   3771   MachineInstrBuilder MIB(MF, NewMI);
   3772 
   3773   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   3774     MachineOperand &MO = MI->getOperand(i);
   3775     if (i == OpNo) {
   3776       assert(MO.isReg() && "Expected to fold into reg operand!");
   3777       unsigned NumAddrOps = MOs.size();
   3778       for (unsigned i = 0; i != NumAddrOps; ++i)
   3779         MIB.addOperand(MOs[i]);
   3780       if (NumAddrOps < 4)  // FrameIndex only
   3781         addOffset(MIB, 0);
   3782     } else {
   3783       MIB.addOperand(MO);
   3784     }
   3785   }
   3786   return MIB;
   3787 }
   3788 
   3789 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   3790                                 const SmallVectorImpl<MachineOperand> &MOs,
   3791                                 MachineInstr *MI) {
   3792   MachineFunction &MF = *MI->getParent()->getParent();
   3793   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
   3794 
   3795   unsigned NumAddrOps = MOs.size();
   3796   for (unsigned i = 0; i != NumAddrOps; ++i)
   3797     MIB.addOperand(MOs[i]);
   3798   if (NumAddrOps < 4)  // FrameIndex only
   3799     addOffset(MIB, 0);
   3800   return MIB.addImm(0);
   3801 }
   3802 
   3803 MachineInstr*
   3804 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   3805                                     MachineInstr *MI, unsigned i,
   3806                                     const SmallVectorImpl<MachineOperand> &MOs,
   3807                                     unsigned Size, unsigned Align) const {
   3808   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   3809   bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect();
   3810   bool isTwoAddrFold = false;
   3811 
   3812   // Atom favors register form of call. So, we do not fold loads into calls
   3813   // when X86Subtarget is Atom.
   3814   if (isCallRegIndirect &&
   3815     (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) {
   3816     return NULL;
   3817   }
   3818 
   3819   unsigned NumOps = MI->getDesc().getNumOperands();
   3820   bool isTwoAddr = NumOps > 1 &&
   3821     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   3822 
   3823   // FIXME: AsmPrinter doesn't know how to handle
   3824   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   3825   if (MI->getOpcode() == X86::ADD32ri &&
   3826       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   3827     return NULL;
   3828 
   3829   MachineInstr *NewMI = NULL;
   3830   // Folding a memory location into the two-address part of a two-address
   3831   // instruction is different than folding it other places.  It requires
   3832   // replacing the *two* registers with the memory location.
   3833   if (isTwoAddr && NumOps >= 2 && i < 2 &&
   3834       MI->getOperand(0).isReg() &&
   3835       MI->getOperand(1).isReg() &&
   3836       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
   3837     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   3838     isTwoAddrFold = true;
   3839   } else if (i == 0) { // If operand 0
   3840     if (MI->getOpcode() == X86::MOV32r0) {
   3841       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
   3842       if (NewMI)
   3843         return NewMI;
   3844     }
   3845 
   3846     OpcodeTablePtr = &RegOp2MemOpTable0;
   3847   } else if (i == 1) {
   3848     OpcodeTablePtr = &RegOp2MemOpTable1;
   3849   } else if (i == 2) {
   3850     OpcodeTablePtr = &RegOp2MemOpTable2;
   3851   } else if (i == 3) {
   3852     OpcodeTablePtr = &RegOp2MemOpTable3;
   3853   }
   3854 
   3855   // If table selected...
   3856   if (OpcodeTablePtr) {
   3857     // Find the Opcode to fuse
   3858     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   3859       OpcodeTablePtr->find(MI->getOpcode());
   3860     if (I != OpcodeTablePtr->end()) {
   3861       unsigned Opcode = I->second.first;
   3862       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   3863       if (Align < MinAlign)
   3864         return NULL;
   3865       bool NarrowToMOV32rm = false;
   3866       if (Size) {
   3867         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
   3868         if (Size < RCSize) {
   3869           // Check if it's safe to fold the load. If the size of the object is
   3870           // narrower than the load width, then it's not.
   3871           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   3872             return NULL;
   3873           // If this is a 64-bit load, but the spill slot is 32, then we can do
   3874           // a 32-bit load which is implicitly zero-extended. This likely is due
   3875           // to liveintervalanalysis remat'ing a load from stack slot.
   3876           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
   3877             return NULL;
   3878           Opcode = X86::MOV32rm;
   3879           NarrowToMOV32rm = true;
   3880         }
   3881       }
   3882 
   3883       if (isTwoAddrFold)
   3884         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
   3885       else
   3886         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
   3887 
   3888       if (NarrowToMOV32rm) {
   3889         // If this is the special case where we use a MOV32rm to load a 32-bit
   3890         // value and zero-extend the top bits. Change the destination register
   3891         // to a 32-bit one.
   3892         unsigned DstReg = NewMI->getOperand(0).getReg();
   3893         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   3894           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
   3895                                                    X86::sub_32bit));
   3896         else
   3897           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   3898       }
   3899       return NewMI;
   3900     }
   3901   }
   3902 
   3903   // No fusion
   3904   if (PrintFailedFusing && !MI->isCopy())
   3905     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
   3906   return NULL;
   3907 }
   3908 
   3909 /// hasPartialRegUpdate - Return true for all instructions that only update
   3910 /// the first 32 or 64-bits of the destination register and leave the rest
   3911 /// unmodified. This can be used to avoid folding loads if the instructions
   3912 /// only update part of the destination register, and the non-updated part is
   3913 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   3914 /// instructions breaks the partial register dependency and it can improve
   3915 /// performance. e.g.:
   3916 ///
   3917 ///   movss (%rdi), %xmm0
   3918 ///   cvtss2sd %xmm0, %xmm0
   3919 ///
   3920 /// Instead of
   3921 ///   cvtss2sd (%rdi), %xmm0
   3922 ///
   3923 /// FIXME: This should be turned into a TSFlags.
   3924 ///
   3925 static bool hasPartialRegUpdate(unsigned Opcode) {
   3926   switch (Opcode) {
   3927   case X86::CVTSI2SSrr:
   3928   case X86::CVTSI2SS64rr:
   3929   case X86::CVTSI2SDrr:
   3930   case X86::CVTSI2SD64rr:
   3931   case X86::CVTSD2SSrr:
   3932   case X86::Int_CVTSD2SSrr:
   3933   case X86::CVTSS2SDrr:
   3934   case X86::Int_CVTSS2SDrr:
   3935   case X86::RCPSSr:
   3936   case X86::RCPSSr_Int:
   3937   case X86::ROUNDSDr:
   3938   case X86::ROUNDSDr_Int:
   3939   case X86::ROUNDSSr:
   3940   case X86::ROUNDSSr_Int:
   3941   case X86::RSQRTSSr:
   3942   case X86::RSQRTSSr_Int:
   3943   case X86::SQRTSSr:
   3944   case X86::SQRTSSr_Int:
   3945   // AVX encoded versions
   3946   case X86::VCVTSD2SSrr:
   3947   case X86::Int_VCVTSD2SSrr:
   3948   case X86::VCVTSS2SDrr:
   3949   case X86::Int_VCVTSS2SDrr:
   3950   case X86::VRCPSSr:
   3951   case X86::VROUNDSDr:
   3952   case X86::VROUNDSDr_Int:
   3953   case X86::VROUNDSSr:
   3954   case X86::VROUNDSSr_Int:
   3955   case X86::VRSQRTSSr:
   3956   case X86::VSQRTSSr:
   3957     return true;
   3958   }
   3959 
   3960   return false;
   3961 }
   3962 
   3963 /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
   3964 /// instructions we would like before a partial register update.
   3965 unsigned X86InstrInfo::
   3966 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   3967                              const TargetRegisterInfo *TRI) const {
   3968   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
   3969     return 0;
   3970 
   3971   // If MI is marked as reading Reg, the partial register update is wanted.
   3972   const MachineOperand &MO = MI->getOperand(0);
   3973   unsigned Reg = MO.getReg();
   3974   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   3975     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
   3976       return 0;
   3977   } else {
   3978     if (MI->readsRegister(Reg, TRI))
   3979       return 0;
   3980   }
   3981 
   3982   // If any of the preceding 16 instructions are reading Reg, insert a
   3983   // dependency breaking instruction.  The magic number is based on a few
   3984   // Nehalem experiments.
   3985   return 16;
   3986 }
   3987 
   3988 void X86InstrInfo::
   3989 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   3990                           const TargetRegisterInfo *TRI) const {
   3991   unsigned Reg = MI->getOperand(OpNum).getReg();
   3992   if (X86::VR128RegClass.contains(Reg)) {
   3993     // These instructions are all floating point domain, so xorps is the best
   3994     // choice.
   3995     bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
   3996     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
   3997     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
   3998       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   3999   } else if (X86::VR256RegClass.contains(Reg)) {
   4000     // Use vxorps to clear the full ymm register.
   4001     // It wants to read and write the xmm sub-register.
   4002     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   4003     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
   4004       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
   4005       .addReg(Reg, RegState::ImplicitDefine);
   4006   } else
   4007     return;
   4008   MI->addRegisterKilled(Reg, TRI, true);
   4009 }
   4010 
   4011 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   4012                                                   MachineInstr *MI,
   4013                                            const SmallVectorImpl<unsigned> &Ops,
   4014                                                   int FrameIndex) const {
   4015   // Check switch flag
   4016   if (NoFusing) return NULL;
   4017 
   4018   // Unless optimizing for size, don't fold to avoid partial
   4019   // register update stalls
   4020   if (!MF.getFunction()->getAttributes().
   4021         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   4022       hasPartialRegUpdate(MI->getOpcode()))
   4023     return 0;
   4024 
   4025   const MachineFrameInfo *MFI = MF.getFrameInfo();
   4026   unsigned Size = MFI->getObjectSize(FrameIndex);
   4027   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   4028   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4029     unsigned NewOpc = 0;
   4030     unsigned RCSize = 0;
   4031     switch (MI->getOpcode()) {
   4032     default: return NULL;
   4033     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   4034     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   4035     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   4036     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   4037     }
   4038     // Check if it's safe to fold the load. If the size of the object is
   4039     // narrower than the load width, then it's not.
   4040     if (Size < RCSize)
   4041       return NULL;
   4042     // Change to CMPXXri r, 0 first.
   4043     MI->setDesc(get(NewOpc));
   4044     MI->getOperand(1).ChangeToImmediate(0);
   4045   } else if (Ops.size() != 1)
   4046     return NULL;
   4047 
   4048   SmallVector<MachineOperand,4> MOs;
   4049   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
   4050   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
   4051 }
   4052 
   4053 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   4054                                                   MachineInstr *MI,
   4055                                            const SmallVectorImpl<unsigned> &Ops,
   4056                                                   MachineInstr *LoadMI) const {
   4057   // Check switch flag
   4058   if (NoFusing) return NULL;
   4059 
   4060   // Unless optimizing for size, don't fold to avoid partial
   4061   // register update stalls
   4062   if (!MF.getFunction()->getAttributes().
   4063         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
   4064       hasPartialRegUpdate(MI->getOpcode()))
   4065     return 0;
   4066 
   4067   // Determine the alignment of the load.
   4068   unsigned Alignment = 0;
   4069   if (LoadMI->hasOneMemOperand())
   4070     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
   4071   else
   4072     switch (LoadMI->getOpcode()) {
   4073     case X86::AVX2_SETALLONES:
   4074     case X86::AVX_SET0:
   4075       Alignment = 32;
   4076       break;
   4077     case X86::V_SET0:
   4078     case X86::V_SETALLONES:
   4079       Alignment = 16;
   4080       break;
   4081     case X86::FsFLD0SD:
   4082       Alignment = 8;
   4083       break;
   4084     case X86::FsFLD0SS:
   4085       Alignment = 4;
   4086       break;
   4087     default:
   4088       return 0;
   4089     }
   4090   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4091     unsigned NewOpc = 0;
   4092     switch (MI->getOpcode()) {
   4093     default: return NULL;
   4094     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   4095     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   4096     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   4097     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   4098     }
   4099     // Change to CMPXXri r, 0 first.
   4100     MI->setDesc(get(NewOpc));
   4101     MI->getOperand(1).ChangeToImmediate(0);
   4102   } else if (Ops.size() != 1)
   4103     return NULL;
   4104 
   4105   // Make sure the subregisters match.
   4106   // Otherwise we risk changing the size of the load.
   4107   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
   4108     return NULL;
   4109 
   4110   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   4111   switch (LoadMI->getOpcode()) {
   4112   case X86::V_SET0:
   4113   case X86::V_SETALLONES:
   4114   case X86::AVX2_SETALLONES:
   4115   case X86::AVX_SET0:
   4116   case X86::FsFLD0SD:
   4117   case X86::FsFLD0SS: {
   4118     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   4119     // Create a constant-pool entry and operands to load from it.
   4120 
   4121     // Medium and large mode can't fold loads this way.
   4122     if (TM.getCodeModel() != CodeModel::Small &&
   4123         TM.getCodeModel() != CodeModel::Kernel)
   4124       return NULL;
   4125 
   4126     // x86-32 PIC requires a PIC base register for constant pools.
   4127     unsigned PICBase = 0;
   4128     if (TM.getRelocationModel() == Reloc::PIC_) {
   4129       if (TM.getSubtarget<X86Subtarget>().is64Bit())
   4130         PICBase = X86::RIP;
   4131       else
   4132         // FIXME: PICBase = getGlobalBaseReg(&MF);
   4133         // This doesn't work for several reasons.
   4134         // 1. GlobalBaseReg may have been spilled.
   4135         // 2. It may not be live at MI.
   4136         return NULL;
   4137     }
   4138 
   4139     // Create a constant-pool entry.
   4140     MachineConstantPool &MCP = *MF.getConstantPool();
   4141     Type *Ty;
   4142     unsigned Opc = LoadMI->getOpcode();
   4143     if (Opc == X86::FsFLD0SS)
   4144       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   4145     else if (Opc == X86::FsFLD0SD)
   4146       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   4147     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
   4148       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   4149     else
   4150       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   4151 
   4152     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
   4153     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   4154                                     Constant::getNullValue(Ty);
   4155     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   4156 
   4157     // Create operands to load from the constant pool entry.
   4158     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   4159     MOs.push_back(MachineOperand::CreateImm(1));
   4160     MOs.push_back(MachineOperand::CreateReg(0, false));
   4161     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   4162     MOs.push_back(MachineOperand::CreateReg(0, false));
   4163     break;
   4164   }
   4165   default: {
   4166     if ((LoadMI->getOpcode() == X86::MOVSSrm ||
   4167          LoadMI->getOpcode() == X86::VMOVSSrm) &&
   4168         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4169           > 4)
   4170       // These instructions only load 32 bits, we can't fold them if the
   4171       // destination register is wider than 32 bits (4 bytes).
   4172       return NULL;
   4173     if ((LoadMI->getOpcode() == X86::MOVSDrm ||
   4174          LoadMI->getOpcode() == X86::VMOVSDrm) &&
   4175         MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize()
   4176           > 8)
   4177       // These instructions only load 64 bits, we can't fold them if the
   4178       // destination register is wider than 64 bits (8 bytes).
   4179       return NULL;
   4180 
   4181     // Folding a normal load. Just copy the load's address operands.
   4182     unsigned NumOps = LoadMI->getDesc().getNumOperands();
   4183     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
   4184       MOs.push_back(LoadMI->getOperand(i));
   4185     break;
   4186   }
   4187   }
   4188   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
   4189 }
   4190 
   4191 
   4192 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   4193                                   const SmallVectorImpl<unsigned> &Ops) const {
   4194   // Check switch flag
   4195   if (NoFusing) return 0;
   4196 
   4197   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   4198     switch (MI->getOpcode()) {
   4199     default: return false;
   4200     case X86::TEST8rr:
   4201     case X86::TEST16rr:
   4202     case X86::TEST32rr:
   4203     case X86::TEST64rr:
   4204       return true;
   4205     case X86::ADD32ri:
   4206       // FIXME: AsmPrinter doesn't know how to handle
   4207       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   4208       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   4209         return false;
   4210       break;
   4211     }
   4212   }
   4213 
   4214   if (Ops.size() != 1)
   4215     return false;
   4216 
   4217   unsigned OpNum = Ops[0];
   4218   unsigned Opc = MI->getOpcode();
   4219   unsigned NumOps = MI->getDesc().getNumOperands();
   4220   bool isTwoAddr = NumOps > 1 &&
   4221     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   4222 
   4223   // Folding a memory location into the two-address part of a two-address
   4224   // instruction is different than folding it other places.  It requires
   4225   // replacing the *two* registers with the memory location.
   4226   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
   4227   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
   4228     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   4229   } else if (OpNum == 0) { // If operand 0
   4230     if (Opc == X86::MOV32r0)
   4231       return true;
   4232 
   4233     OpcodeTablePtr = &RegOp2MemOpTable0;
   4234   } else if (OpNum == 1) {
   4235     OpcodeTablePtr = &RegOp2MemOpTable1;
   4236   } else if (OpNum == 2) {
   4237     OpcodeTablePtr = &RegOp2MemOpTable2;
   4238   } else if (OpNum == 3) {
   4239     OpcodeTablePtr = &RegOp2MemOpTable3;
   4240   }
   4241 
   4242   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
   4243     return true;
   4244   return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
   4245 }
   4246 
   4247 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   4248                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
   4249                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4250   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4251     MemOp2RegOpTable.find(MI->getOpcode());
   4252   if (I == MemOp2RegOpTable.end())
   4253     return false;
   4254   unsigned Opc = I->second.first;
   4255   unsigned Index = I->second.second & TB_INDEX_MASK;
   4256   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4257   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4258   if (UnfoldLoad && !FoldedLoad)
   4259     return false;
   4260   UnfoldLoad &= FoldedLoad;
   4261   if (UnfoldStore && !FoldedStore)
   4262     return false;
   4263   UnfoldStore &= FoldedStore;
   4264 
   4265   const MCInstrDesc &MCID = get(Opc);
   4266   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4267   if (!MI->hasOneMemOperand() &&
   4268       RC == &X86::VR128RegClass &&
   4269       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4270     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   4271     // conservatively assume the address is unaligned. That's bad for
   4272     // performance.
   4273     return false;
   4274   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   4275   SmallVector<MachineOperand,2> BeforeOps;
   4276   SmallVector<MachineOperand,2> AfterOps;
   4277   SmallVector<MachineOperand,4> ImpOps;
   4278   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   4279     MachineOperand &Op = MI->getOperand(i);
   4280     if (i >= Index && i < Index + X86::AddrNumOperands)
   4281       AddrOps.push_back(Op);
   4282     else if (Op.isReg() && Op.isImplicit())
   4283       ImpOps.push_back(Op);
   4284     else if (i < Index)
   4285       BeforeOps.push_back(Op);
   4286     else if (i > Index)
   4287       AfterOps.push_back(Op);
   4288   }
   4289 
   4290   // Emit the load instruction.
   4291   if (UnfoldLoad) {
   4292     std::pair<MachineInstr::mmo_iterator,
   4293               MachineInstr::mmo_iterator> MMOs =
   4294       MF.extractLoadMemRefs(MI->memoperands_begin(),
   4295                             MI->memoperands_end());
   4296     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   4297     if (UnfoldStore) {
   4298       // Address operands cannot be marked isKill.
   4299       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   4300         MachineOperand &MO = NewMIs[0]->getOperand(i);
   4301         if (MO.isReg())
   4302           MO.setIsKill(false);
   4303       }
   4304     }
   4305   }
   4306 
   4307   // Emit the data processing instruction.
   4308   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
   4309   MachineInstrBuilder MIB(MF, DataMI);
   4310 
   4311   if (FoldedStore)
   4312     MIB.addReg(Reg, RegState::Define);
   4313   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
   4314     MIB.addOperand(BeforeOps[i]);
   4315   if (FoldedLoad)
   4316     MIB.addReg(Reg);
   4317   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
   4318     MIB.addOperand(AfterOps[i]);
   4319   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
   4320     MachineOperand &MO = ImpOps[i];
   4321     MIB.addReg(MO.getReg(),
   4322                getDefRegState(MO.isDef()) |
   4323                RegState::Implicit |
   4324                getKillRegState(MO.isKill()) |
   4325                getDeadRegState(MO.isDead()) |
   4326                getUndefRegState(MO.isUndef()));
   4327   }
   4328   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   4329   switch (DataMI->getOpcode()) {
   4330   default: break;
   4331   case X86::CMP64ri32:
   4332   case X86::CMP64ri8:
   4333   case X86::CMP32ri:
   4334   case X86::CMP32ri8:
   4335   case X86::CMP16ri:
   4336   case X86::CMP16ri8:
   4337   case X86::CMP8ri: {
   4338     MachineOperand &MO0 = DataMI->getOperand(0);
   4339     MachineOperand &MO1 = DataMI->getOperand(1);
   4340     if (MO1.getImm() == 0) {
   4341       unsigned NewOpc;
   4342       switch (DataMI->getOpcode()) {
   4343       default: llvm_unreachable("Unreachable!");
   4344       case X86::CMP64ri8:
   4345       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   4346       case X86::CMP32ri8:
   4347       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   4348       case X86::CMP16ri8:
   4349       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   4350       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   4351       }
   4352       DataMI->setDesc(get(NewOpc));
   4353       MO1.ChangeToRegister(MO0.getReg(), false);
   4354     }
   4355   }
   4356   }
   4357   NewMIs.push_back(DataMI);
   4358 
   4359   // Emit the store instruction.
   4360   if (UnfoldStore) {
   4361     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
   4362     std::pair<MachineInstr::mmo_iterator,
   4363               MachineInstr::mmo_iterator> MMOs =
   4364       MF.extractStoreMemRefs(MI->memoperands_begin(),
   4365                              MI->memoperands_end());
   4366     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   4367   }
   4368 
   4369   return true;
   4370 }
   4371 
   4372 bool
   4373 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   4374                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   4375   if (!N->isMachineOpcode())
   4376     return false;
   4377 
   4378   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4379     MemOp2RegOpTable.find(N->getMachineOpcode());
   4380   if (I == MemOp2RegOpTable.end())
   4381     return false;
   4382   unsigned Opc = I->second.first;
   4383   unsigned Index = I->second.second & TB_INDEX_MASK;
   4384   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4385   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4386   const MCInstrDesc &MCID = get(Opc);
   4387   MachineFunction &MF = DAG.getMachineFunction();
   4388   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   4389   unsigned NumDefs = MCID.NumDefs;
   4390   std::vector<SDValue> AddrOps;
   4391   std::vector<SDValue> BeforeOps;
   4392   std::vector<SDValue> AfterOps;
   4393   SDLoc dl(N);
   4394   unsigned NumOps = N->getNumOperands();
   4395   for (unsigned i = 0; i != NumOps-1; ++i) {
   4396     SDValue Op = N->getOperand(i);
   4397     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   4398       AddrOps.push_back(Op);
   4399     else if (i < Index-NumDefs)
   4400       BeforeOps.push_back(Op);
   4401     else if (i > Index-NumDefs)
   4402       AfterOps.push_back(Op);
   4403   }
   4404   SDValue Chain = N->getOperand(NumOps-1);
   4405   AddrOps.push_back(Chain);
   4406 
   4407   // Emit the load instruction.
   4408   SDNode *Load = 0;
   4409   if (FoldedLoad) {
   4410     EVT VT = *RC->vt_begin();
   4411     std::pair<MachineInstr::mmo_iterator,
   4412               MachineInstr::mmo_iterator> MMOs =
   4413       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4414                             cast<MachineSDNode>(N)->memoperands_end());
   4415     if (!(*MMOs.first) &&
   4416         RC == &X86::VR128RegClass &&
   4417         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4418       // Do not introduce a slow unaligned load.
   4419       return false;
   4420     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4421     bool isAligned = (*MMOs.first) &&
   4422                      (*MMOs.first)->getAlignment() >= Alignment;
   4423     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
   4424                               VT, MVT::Other, AddrOps);
   4425     NewNodes.push_back(Load);
   4426 
   4427     // Preserve memory reference information.
   4428     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4429   }
   4430 
   4431   // Emit the data processing instruction.
   4432   std::vector<EVT> VTs;
   4433   const TargetRegisterClass *DstRC = 0;
   4434   if (MCID.getNumDefs() > 0) {
   4435     DstRC = getRegClass(MCID, 0, &RI, MF);
   4436     VTs.push_back(*DstRC->vt_begin());
   4437   }
   4438   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   4439     EVT VT = N->getValueType(i);
   4440     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   4441       VTs.push_back(VT);
   4442   }
   4443   if (Load)
   4444     BeforeOps.push_back(SDValue(Load, 0));
   4445   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
   4446   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
   4447   NewNodes.push_back(NewNode);
   4448 
   4449   // Emit the store instruction.
   4450   if (FoldedStore) {
   4451     AddrOps.pop_back();
   4452     AddrOps.push_back(SDValue(NewNode, 0));
   4453     AddrOps.push_back(Chain);
   4454     std::pair<MachineInstr::mmo_iterator,
   4455               MachineInstr::mmo_iterator> MMOs =
   4456       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   4457                              cast<MachineSDNode>(N)->memoperands_end());
   4458     if (!(*MMOs.first) &&
   4459         RC == &X86::VR128RegClass &&
   4460         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
   4461       // Do not introduce a slow unaligned store.
   4462       return false;
   4463     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   4464     bool isAligned = (*MMOs.first) &&
   4465                      (*MMOs.first)->getAlignment() >= Alignment;
   4466     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
   4467                                                          isAligned, TM),
   4468                                        dl, MVT::Other, AddrOps);
   4469     NewNodes.push_back(Store);
   4470 
   4471     // Preserve memory reference information.
   4472     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   4473   }
   4474 
   4475   return true;
   4476 }
   4477 
   4478 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   4479                                       bool UnfoldLoad, bool UnfoldStore,
   4480                                       unsigned *LoadRegIndex) const {
   4481   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4482     MemOp2RegOpTable.find(Opc);
   4483   if (I == MemOp2RegOpTable.end())
   4484     return 0;
   4485   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   4486   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   4487   if (UnfoldLoad && !FoldedLoad)
   4488     return 0;
   4489   if (UnfoldStore && !FoldedStore)
   4490     return 0;
   4491   if (LoadRegIndex)
   4492     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   4493   return I->second.first;
   4494 }
   4495 
   4496 bool
   4497 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   4498                                      int64_t &Offset1, int64_t &Offset2) const {
   4499   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   4500     return false;
   4501   unsigned Opc1 = Load1->getMachineOpcode();
   4502   unsigned Opc2 = Load2->getMachineOpcode();
   4503   switch (Opc1) {
   4504   default: return false;
   4505   case X86::MOV8rm:
   4506   case X86::MOV16rm:
   4507   case X86::MOV32rm:
   4508   case X86::MOV64rm:
   4509   case X86::LD_Fp32m:
   4510   case X86::LD_Fp64m:
   4511   case X86::LD_Fp80m:
   4512   case X86::MOVSSrm:
   4513   case X86::MOVSDrm:
   4514   case X86::MMX_MOVD64rm:
   4515   case X86::MMX_MOVQ64rm:
   4516   case X86::FsMOVAPSrm:
   4517   case X86::FsMOVAPDrm:
   4518   case X86::MOVAPSrm:
   4519   case X86::MOVUPSrm:
   4520   case X86::MOVAPDrm:
   4521   case X86::MOVDQArm:
   4522   case X86::MOVDQUrm:
   4523   // AVX load instructions
   4524   case X86::VMOVSSrm:
   4525   case X86::VMOVSDrm:
   4526   case X86::FsVMOVAPSrm:
   4527   case X86::FsVMOVAPDrm:
   4528   case X86::VMOVAPSrm:
   4529   case X86::VMOVUPSrm:
   4530   case X86::VMOVAPDrm:
   4531   case X86::VMOVDQArm:
   4532   case X86::VMOVDQUrm:
   4533   case X86::VMOVAPSYrm:
   4534   case X86::VMOVUPSYrm:
   4535   case X86::VMOVAPDYrm:
   4536   case X86::VMOVDQAYrm:
   4537   case X86::VMOVDQUYrm:
   4538     break;
   4539   }
   4540   switch (Opc2) {
   4541   default: return false;
   4542   case X86::MOV8rm:
   4543   case X86::MOV16rm:
   4544   case X86::MOV32rm:
   4545   case X86::MOV64rm:
   4546   case X86::LD_Fp32m:
   4547   case X86::LD_Fp64m:
   4548   case X86::LD_Fp80m:
   4549   case X86::MOVSSrm:
   4550   case X86::MOVSDrm:
   4551   case X86::MMX_MOVD64rm:
   4552   case X86::MMX_MOVQ64rm:
   4553   case X86::FsMOVAPSrm:
   4554   case X86::FsMOVAPDrm:
   4555   case X86::MOVAPSrm:
   4556   case X86::MOVUPSrm:
   4557   case X86::MOVAPDrm:
   4558   case X86::MOVDQArm:
   4559   case X86::MOVDQUrm:
   4560   // AVX load instructions
   4561   case X86::VMOVSSrm:
   4562   case X86::VMOVSDrm:
   4563   case X86::FsVMOVAPSrm:
   4564   case X86::FsVMOVAPDrm:
   4565   case X86::VMOVAPSrm:
   4566   case X86::VMOVUPSrm:
   4567   case X86::VMOVAPDrm:
   4568   case X86::VMOVDQArm:
   4569   case X86::VMOVDQUrm:
   4570   case X86::VMOVAPSYrm:
   4571   case X86::VMOVUPSYrm:
   4572   case X86::VMOVAPDYrm:
   4573   case X86::VMOVDQAYrm:
   4574   case X86::VMOVDQUYrm:
   4575     break;
   4576   }
   4577 
   4578   // Check if chain operands and base addresses match.
   4579   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   4580       Load1->getOperand(5) != Load2->getOperand(5))
   4581     return false;
   4582   // Segment operands should match as well.
   4583   if (Load1->getOperand(4) != Load2->getOperand(4))
   4584     return false;
   4585   // Scale should be 1, Index should be Reg0.
   4586   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   4587       Load1->getOperand(2) == Load2->getOperand(2)) {
   4588     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   4589       return false;
   4590 
   4591     // Now let's examine the displacements.
   4592     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   4593         isa<ConstantSDNode>(Load2->getOperand(3))) {
   4594       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   4595       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   4596       return true;
   4597     }
   4598   }
   4599   return false;
   4600 }
   4601 
   4602 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   4603                                            int64_t Offset1, int64_t Offset2,
   4604                                            unsigned NumLoads) const {
   4605   assert(Offset2 > Offset1);
   4606   if ((Offset2 - Offset1) / 8 > 64)
   4607     return false;
   4608 
   4609   unsigned Opc1 = Load1->getMachineOpcode();
   4610   unsigned Opc2 = Load2->getMachineOpcode();
   4611   if (Opc1 != Opc2)
   4612     return false;  // FIXME: overly conservative?
   4613 
   4614   switch (Opc1) {
   4615   default: break;
   4616   case X86::LD_Fp32m:
   4617   case X86::LD_Fp64m:
   4618   case X86::LD_Fp80m:
   4619   case X86::MMX_MOVD64rm:
   4620   case X86::MMX_MOVQ64rm:
   4621     return false;
   4622   }
   4623 
   4624   EVT VT = Load1->getValueType(0);
   4625   switch (VT.getSimpleVT().SimpleTy) {
   4626   default:
   4627     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   4628     // have 16 of them to play with.
   4629     if (TM.getSubtargetImpl()->is64Bit()) {
   4630       if (NumLoads >= 3)
   4631         return false;
   4632     } else if (NumLoads) {
   4633       return false;
   4634     }
   4635     break;
   4636   case MVT::i8:
   4637   case MVT::i16:
   4638   case MVT::i32:
   4639   case MVT::i64:
   4640   case MVT::f32:
   4641   case MVT::f64:
   4642     if (NumLoads)
   4643       return false;
   4644     break;
   4645   }
   4646 
   4647   return true;
   4648 }
   4649 
   4650 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
   4651                                           MachineInstr *Second) const {
   4652   // Check if this processor supports macro-fusion. Since this is a minor
   4653   // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
   4654   // proxy for SandyBridge+.
   4655   if (!TM.getSubtarget<X86Subtarget>().hasAVX())
   4656     return false;
   4657 
   4658   enum {
   4659     FuseTest,
   4660     FuseCmp,
   4661     FuseInc
   4662   } FuseKind;
   4663 
   4664   switch(Second->getOpcode()) {
   4665   default:
   4666     return false;
   4667   case X86::JE_4:
   4668   case X86::JNE_4:
   4669   case X86::JL_4:
   4670   case X86::JLE_4:
   4671   case X86::JG_4:
   4672   case X86::JGE_4:
   4673     FuseKind = FuseInc;
   4674     break;
   4675   case X86::JB_4:
   4676   case X86::JBE_4:
   4677   case X86::JA_4:
   4678   case X86::JAE_4:
   4679     FuseKind = FuseCmp;
   4680     break;
   4681   case X86::JS_4:
   4682   case X86::JNS_4:
   4683   case X86::JP_4:
   4684   case X86::JNP_4:
   4685   case X86::JO_4:
   4686   case X86::JNO_4:
   4687     FuseKind = FuseTest;
   4688     break;
   4689   }
   4690   switch (First->getOpcode()) {
   4691   default:
   4692     return false;
   4693   case X86::TEST8rr:
   4694   case X86::TEST16rr:
   4695   case X86::TEST32rr:
   4696   case X86::TEST64rr:
   4697   case X86::TEST8ri:
   4698   case X86::TEST16ri:
   4699   case X86::TEST32ri:
   4700   case X86::TEST32i32:
   4701   case X86::TEST64i32:
   4702   case X86::TEST64ri32:
   4703   case X86::TEST8rm:
   4704   case X86::TEST16rm:
   4705   case X86::TEST32rm:
   4706   case X86::TEST64rm:
   4707   case X86::AND16i16:
   4708   case X86::AND16ri:
   4709   case X86::AND16ri8:
   4710   case X86::AND16rm:
   4711   case X86::AND16rr:
   4712   case X86::AND32i32:
   4713   case X86::AND32ri:
   4714   case X86::AND32ri8:
   4715   case X86::AND32rm:
   4716   case X86::AND32rr:
   4717   case X86::AND64i32:
   4718   case X86::AND64ri32:
   4719   case X86::AND64ri8:
   4720   case X86::AND64rm:
   4721   case X86::AND64rr:
   4722   case X86::AND8i8:
   4723   case X86::AND8ri:
   4724   case X86::AND8rm:
   4725   case X86::AND8rr:
   4726     return true;
   4727   case X86::CMP16i16:
   4728   case X86::CMP16ri:
   4729   case X86::CMP16ri8:
   4730   case X86::CMP16rm:
   4731   case X86::CMP16rr:
   4732   case X86::CMP32i32:
   4733   case X86::CMP32ri:
   4734   case X86::CMP32ri8:
   4735   case X86::CMP32rm:
   4736   case X86::CMP32rr:
   4737   case X86::CMP64i32:
   4738   case X86::CMP64ri32:
   4739   case X86::CMP64ri8:
   4740   case X86::CMP64rm:
   4741   case X86::CMP64rr:
   4742   case X86::CMP8i8:
   4743   case X86::CMP8ri:
   4744   case X86::CMP8rm:
   4745   case X86::CMP8rr:
   4746   case X86::ADD16i16:
   4747   case X86::ADD16ri:
   4748   case X86::ADD16ri8:
   4749   case X86::ADD16ri8_DB:
   4750   case X86::ADD16ri_DB:
   4751   case X86::ADD16rm:
   4752   case X86::ADD16rr:
   4753   case X86::ADD16rr_DB:
   4754   case X86::ADD32i32:
   4755   case X86::ADD32ri:
   4756   case X86::ADD32ri8:
   4757   case X86::ADD32ri8_DB:
   4758   case X86::ADD32ri_DB:
   4759   case X86::ADD32rm:
   4760   case X86::ADD32rr:
   4761   case X86::ADD32rr_DB:
   4762   case X86::ADD64i32:
   4763   case X86::ADD64ri32:
   4764   case X86::ADD64ri32_DB:
   4765   case X86::ADD64ri8:
   4766   case X86::ADD64ri8_DB:
   4767   case X86::ADD64rm:
   4768   case X86::ADD64rr:
   4769   case X86::ADD64rr_DB:
   4770   case X86::ADD8i8:
   4771   case X86::ADD8mi:
   4772   case X86::ADD8mr:
   4773   case X86::ADD8ri:
   4774   case X86::ADD8rm:
   4775   case X86::ADD8rr:
   4776   case X86::SUB16i16:
   4777   case X86::SUB16ri:
   4778   case X86::SUB16ri8:
   4779   case X86::SUB16rm:
   4780   case X86::SUB16rr:
   4781   case X86::SUB32i32:
   4782   case X86::SUB32ri:
   4783   case X86::SUB32ri8:
   4784   case X86::SUB32rm:
   4785   case X86::SUB32rr:
   4786   case X86::SUB64i32:
   4787   case X86::SUB64ri32:
   4788   case X86::SUB64ri8:
   4789   case X86::SUB64rm:
   4790   case X86::SUB64rr:
   4791   case X86::SUB8i8:
   4792   case X86::SUB8ri:
   4793   case X86::SUB8rm:
   4794   case X86::SUB8rr:
   4795     return FuseKind == FuseCmp || FuseKind == FuseInc;
   4796   case X86::INC16r:
   4797   case X86::INC32r:
   4798   case X86::INC64_16r:
   4799   case X86::INC64_32r:
   4800   case X86::INC64r:
   4801   case X86::INC8r:
   4802   case X86::DEC16r:
   4803   case X86::DEC32r:
   4804   case X86::DEC64_16r:
   4805   case X86::DEC64_32r:
   4806   case X86::DEC64r:
   4807   case X86::DEC8r:
   4808     return FuseKind == FuseInc;
   4809   }
   4810 }
   4811 
   4812 bool X86InstrInfo::
   4813 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   4814   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   4815   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   4816   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
   4817     return true;
   4818   Cond[0].setImm(GetOppositeBranchCondition(CC));
   4819   return false;
   4820 }
   4821 
   4822 bool X86InstrInfo::
   4823 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   4824   // FIXME: Return false for x87 stack register classes for now. We can't
   4825   // allow any loads of these registers before FpGet_ST0_80.
   4826   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   4827            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   4828 }
   4829 
   4830 /// getGlobalBaseReg - Return a virtual register initialized with the
   4831 /// the global base register value. Output instructions required to
   4832 /// initialize the register in the function entry block, if necessary.
   4833 ///
   4834 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   4835 ///
   4836 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   4837   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
   4838          "X86-64 PIC uses RIP relative addressing");
   4839 
   4840   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   4841   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   4842   if (GlobalBaseReg != 0)
   4843     return GlobalBaseReg;
   4844 
   4845   // Create the register. The code to initialize it is inserted
   4846   // later, by the CGBR pass (below).
   4847   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   4848   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   4849   X86FI->setGlobalBaseReg(GlobalBaseReg);
   4850   return GlobalBaseReg;
   4851 }
   4852 
   4853 // These are the replaceable SSE instructions. Some of these have Int variants
   4854 // that we don't include here. We don't want to replace instructions selected
   4855 // by intrinsics.
   4856 static const uint16_t ReplaceableInstrs[][3] = {
   4857   //PackedSingle     PackedDouble    PackedInt
   4858   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   4859   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   4860   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   4861   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   4862   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   4863   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   4864   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   4865   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   4866   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   4867   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   4868   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   4869   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   4870   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   4871   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   4872   // AVX 128-bit support
   4873   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   4874   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   4875   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   4876   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   4877   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   4878   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   4879   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   4880   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   4881   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   4882   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   4883   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   4884   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   4885   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   4886   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   4887   // AVX 256-bit support
   4888   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   4889   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   4890   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   4891   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   4892   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   4893   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   4894 };
   4895 
   4896 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   4897   //PackedSingle       PackedDouble       PackedInt
   4898   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   4899   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   4900   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   4901   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   4902   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   4903   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   4904   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   4905   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   4906   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   4907   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   4908   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   4909   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   4910   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   4911   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
   4912 };
   4913 
   4914 // FIXME: Some shuffle and unpack instructions have equivalents in different
   4915 // domains, but they require a bit more work than just switching opcodes.
   4916 
   4917 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   4918   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
   4919     if (ReplaceableInstrs[i][domain-1] == opcode)
   4920       return ReplaceableInstrs[i];
   4921   return 0;
   4922 }
   4923 
   4924 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   4925   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
   4926     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
   4927       return ReplaceableInstrsAVX2[i];
   4928   return 0;
   4929 }
   4930 
   4931 std::pair<uint16_t, uint16_t>
   4932 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   4933   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   4934   bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
   4935   uint16_t validDomains = 0;
   4936   if (domain && lookup(MI->getOpcode(), domain))
   4937     validDomains = 0xe;
   4938   else if (domain && lookupAVX2(MI->getOpcode(), domain))
   4939     validDomains = hasAVX2 ? 0xe : 0x6;
   4940   return std::make_pair(domain, validDomains);
   4941 }
   4942 
   4943 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   4944   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   4945   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   4946   assert(dom && "Not an SSE instruction");
   4947   const uint16_t *table = lookup(MI->getOpcode(), dom);
   4948   if (!table) { // try the other table
   4949     assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
   4950            "256-bit vector operations only available in AVX2");
   4951     table = lookupAVX2(MI->getOpcode(), dom);
   4952   }
   4953   assert(table && "Cannot change domain");
   4954   MI->setDesc(get(table[Domain-1]));
   4955 }
   4956 
   4957 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
   4958 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   4959   NopInst.setOpcode(X86::NOOP);
   4960 }
   4961 
   4962 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   4963   switch (opc) {
   4964   default: return false;
   4965   case X86::DIVSDrm:
   4966   case X86::DIVSDrm_Int:
   4967   case X86::DIVSDrr:
   4968   case X86::DIVSDrr_Int:
   4969   case X86::DIVSSrm:
   4970   case X86::DIVSSrm_Int:
   4971   case X86::DIVSSrr:
   4972   case X86::DIVSSrr_Int:
   4973   case X86::SQRTPDm:
   4974   case X86::SQRTPDr:
   4975   case X86::SQRTPSm:
   4976   case X86::SQRTPSr:
   4977   case X86::SQRTSDm:
   4978   case X86::SQRTSDm_Int:
   4979   case X86::SQRTSDr:
   4980   case X86::SQRTSDr_Int:
   4981   case X86::SQRTSSm:
   4982   case X86::SQRTSSm_Int:
   4983   case X86::SQRTSSr:
   4984   case X86::SQRTSSr_Int:
   4985   // AVX instructions with high latency
   4986   case X86::VDIVSDrm:
   4987   case X86::VDIVSDrm_Int:
   4988   case X86::VDIVSDrr:
   4989   case X86::VDIVSDrr_Int:
   4990   case X86::VDIVSSrm:
   4991   case X86::VDIVSSrm_Int:
   4992   case X86::VDIVSSrr:
   4993   case X86::VDIVSSrr_Int:
   4994   case X86::VSQRTPDm:
   4995   case X86::VSQRTPDr:
   4996   case X86::VSQRTPSm:
   4997   case X86::VSQRTPSr:
   4998   case X86::VSQRTSDm:
   4999   case X86::VSQRTSDm_Int:
   5000   case X86::VSQRTSDr:
   5001   case X86::VSQRTSSm:
   5002   case X86::VSQRTSSm_Int:
   5003   case X86::VSQRTSSr:
   5004     return true;
   5005   }
   5006 }
   5007 
   5008 bool X86InstrInfo::
   5009 hasHighOperandLatency(const InstrItineraryData *ItinData,
   5010                       const MachineRegisterInfo *MRI,
   5011                       const MachineInstr *DefMI, unsigned DefIdx,
   5012                       const MachineInstr *UseMI, unsigned UseIdx) const {
   5013   return isHighLatencyDef(DefMI->getOpcode());
   5014 }
   5015 
   5016 namespace {
   5017   /// CGBR - Create Global Base Reg pass. This initializes the PIC
   5018   /// global base register for x86-32.
   5019   struct CGBR : public MachineFunctionPass {
   5020     static char ID;
   5021     CGBR() : MachineFunctionPass(ID) {}
   5022 
   5023     virtual bool runOnMachineFunction(MachineFunction &MF) {
   5024       const X86TargetMachine *TM =
   5025         static_cast<const X86TargetMachine *>(&MF.getTarget());
   5026 
   5027       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
   5028              "X86-64 PIC uses RIP relative addressing");
   5029 
   5030       // Only emit a global base reg in PIC mode.
   5031       if (TM->getRelocationModel() != Reloc::PIC_)
   5032         return false;
   5033 
   5034       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   5035       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   5036 
   5037       // If we didn't need a GlobalBaseReg, don't insert code.
   5038       if (GlobalBaseReg == 0)
   5039         return false;
   5040 
   5041       // Insert the set of GlobalBaseReg into the first MBB of the function
   5042       MachineBasicBlock &FirstMBB = MF.front();
   5043       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   5044       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   5045       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   5046       const X86InstrInfo *TII = TM->getInstrInfo();
   5047 
   5048       unsigned PC;
   5049       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
   5050         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   5051       else
   5052         PC = GlobalBaseReg;
   5053 
   5054       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   5055       // only used in JIT code emission as displacement to pc.
   5056       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   5057 
   5058       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   5059       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   5060       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
   5061         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   5062         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   5063           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   5064                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   5065       }
   5066 
   5067       return true;
   5068     }
   5069 
   5070     virtual const char *getPassName() const {
   5071       return "X86 PIC Global Base Reg Initialization";
   5072     }
   5073 
   5074     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   5075       AU.setPreservesCFG();
   5076       MachineFunctionPass::getAnalysisUsage(AU);
   5077     }
   5078   };
   5079 }
   5080 
   5081 char CGBR::ID = 0;
   5082 FunctionPass*
   5083 llvm::createGlobalBaseRegPass() { return new CGBR(); }
   5084 
   5085 namespace {
   5086   struct LDTLSCleanup : public MachineFunctionPass {
   5087     static char ID;
   5088     LDTLSCleanup() : MachineFunctionPass(ID) {}
   5089 
   5090     virtual bool runOnMachineFunction(MachineFunction &MF) {
   5091       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
   5092       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
   5093         // No point folding accesses if there isn't at least two.
   5094         return false;
   5095       }
   5096 
   5097       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
   5098       return VisitNode(DT->getRootNode(), 0);
   5099     }
   5100 
   5101     // Visit the dominator subtree rooted at Node in pre-order.
   5102     // If TLSBaseAddrReg is non-null, then use that to replace any
   5103     // TLS_base_addr instructions. Otherwise, create the register
   5104     // when the first such instruction is seen, and then use it
   5105     // as we encounter more instructions.
   5106     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
   5107       MachineBasicBlock *BB = Node->getBlock();
   5108       bool Changed = false;
   5109 
   5110       // Traverse the current block.
   5111       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
   5112            ++I) {
   5113         switch (I->getOpcode()) {
   5114           case X86::TLS_base_addr32:
   5115           case X86::TLS_base_addr64:
   5116             if (TLSBaseAddrReg)
   5117               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
   5118             else
   5119               I = SetRegister(I, &TLSBaseAddrReg);
   5120             Changed = true;
   5121             break;
   5122           default:
   5123             break;
   5124         }
   5125       }
   5126 
   5127       // Visit the children of this block in the dominator tree.
   5128       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
   5129            I != E; ++I) {
   5130         Changed |= VisitNode(*I, TLSBaseAddrReg);
   5131       }
   5132 
   5133       return Changed;
   5134     }
   5135 
   5136     // Replace the TLS_base_addr instruction I with a copy from
   5137     // TLSBaseAddrReg, returning the new instruction.
   5138     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
   5139                                          unsigned TLSBaseAddrReg) {
   5140       MachineFunction *MF = I->getParent()->getParent();
   5141       const X86TargetMachine *TM =
   5142           static_cast<const X86TargetMachine *>(&MF->getTarget());
   5143       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   5144       const X86InstrInfo *TII = TM->getInstrInfo();
   5145 
   5146       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
   5147       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
   5148                                    TII->get(TargetOpcode::COPY),
   5149                                    is64Bit ? X86::RAX : X86::EAX)
   5150                                    .addReg(TLSBaseAddrReg);
   5151 
   5152       // Erase the TLS_base_addr instruction.
   5153       I->eraseFromParent();
   5154 
   5155       return Copy;
   5156     }
   5157 
   5158     // Create a virtal register in *TLSBaseAddrReg, and populate it by
   5159     // inserting a copy instruction after I. Returns the new instruction.
   5160     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
   5161       MachineFunction *MF = I->getParent()->getParent();
   5162       const X86TargetMachine *TM =
   5163           static_cast<const X86TargetMachine *>(&MF->getTarget());
   5164       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
   5165       const X86InstrInfo *TII = TM->getInstrInfo();
   5166 
   5167       // Create a virtual register for the TLS base address.
   5168       MachineRegisterInfo &RegInfo = MF->getRegInfo();
   5169       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
   5170                                                       ? &X86::GR64RegClass
   5171                                                       : &X86::GR32RegClass);
   5172 
   5173       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
   5174       MachineInstr *Next = I->getNextNode();
   5175       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
   5176                                    TII->get(TargetOpcode::COPY),
   5177                                    *TLSBaseAddrReg)
   5178                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
   5179 
   5180       return Copy;
   5181     }
   5182 
   5183     virtual const char *getPassName() const {
   5184       return "Local Dynamic TLS Access Clean-up";
   5185     }
   5186 
   5187     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   5188       AU.setPreservesCFG();
   5189       AU.addRequired<MachineDominatorTree>();
   5190       MachineFunctionPass::getAnalysisUsage(AU);
   5191     }
   5192   };
   5193 }
   5194 
   5195 char LDTLSCleanup::ID = 0;
   5196 FunctionPass*
   5197 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
   5198