Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMISelLowering.h"
     16 #include "ARMCallingConv.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMPerfectShuffle.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMTargetObjectFile.h"
     23 #include "MCTargetDesc/ARMAddressingModes.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/CodeGen/CallingConvLower.h"
     27 #include "llvm/CodeGen/IntrinsicLowering.h"
     28 #include "llvm/CodeGen/MachineBasicBlock.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineFunction.h"
     31 #include "llvm/CodeGen/MachineInstrBuilder.h"
     32 #include "llvm/CodeGen/MachineModuleInfo.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/SelectionDAG.h"
     35 #include "llvm/IR/CallingConv.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/GlobalValue.h"
     39 #include "llvm/IR/IRBuilder.h"
     40 #include "llvm/IR/Instruction.h"
     41 #include "llvm/IR/Instructions.h"
     42 #include "llvm/IR/Intrinsics.h"
     43 #include "llvm/IR/Type.h"
     44 #include "llvm/MC/MCSectionMachO.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/MathExtras.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 #include <utility>
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "arm-isel"
     54 
     55 STATISTIC(NumTailCalls, "Number of tail calls");
     56 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     57 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
     58 
     59 cl::opt<bool>
     60 EnableARMLongCalls("arm-long-calls", cl::Hidden,
     61   cl::desc("Generate calls via indirect call instructions"),
     62   cl::init(false));
     63 
     64 static cl::opt<bool>
     65 ARMInterworking("arm-interworking", cl::Hidden,
     66   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     67   cl::init(true));
     68 
     69 namespace {
     70   class ARMCCState : public CCState {
     71   public:
     72     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     73                const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
     74                LLVMContext &C, ParmContext PC)
     75         : CCState(CC, isVarArg, MF, TM, locs, C) {
     76       assert(((PC == Call) || (PC == Prologue)) &&
     77              "ARMCCState users must specify whether their context is call"
     78              "or prologue generation.");
     79       CallOrPrologue = PC;
     80     }
     81   };
     82 }
     83 
     84 // The APCS parameter registers.
     85 static const MCPhysReg GPRArgRegs[] = {
     86   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     87 };
     88 
     89 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
     90                                        MVT PromotedBitwiseVT) {
     91   if (VT != PromotedLdStVT) {
     92     setOperationAction(ISD::LOAD, VT, Promote);
     93     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
     94 
     95     setOperationAction(ISD::STORE, VT, Promote);
     96     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
     97   }
     98 
     99   MVT ElemTy = VT.getVectorElementType();
    100   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    101     setOperationAction(ISD::SETCC, VT, Custom);
    102   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    103   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    104   if (ElemTy == MVT::i32) {
    105     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    106     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    107     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    108     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    109   } else {
    110     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    111     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    112     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    113     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    114   }
    115   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    116   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    117   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    118   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    119   setOperationAction(ISD::SELECT,            VT, Expand);
    120   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    121   setOperationAction(ISD::VSELECT,           VT, Expand);
    122   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    123   if (VT.isInteger()) {
    124     setOperationAction(ISD::SHL, VT, Custom);
    125     setOperationAction(ISD::SRA, VT, Custom);
    126     setOperationAction(ISD::SRL, VT, Custom);
    127   }
    128 
    129   // Promote all bit-wise operations.
    130   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    131     setOperationAction(ISD::AND, VT, Promote);
    132     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    133     setOperationAction(ISD::OR,  VT, Promote);
    134     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    135     setOperationAction(ISD::XOR, VT, Promote);
    136     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    137   }
    138 
    139   // Neon does not support vector divide/remainder operations.
    140   setOperationAction(ISD::SDIV, VT, Expand);
    141   setOperationAction(ISD::UDIV, VT, Expand);
    142   setOperationAction(ISD::FDIV, VT, Expand);
    143   setOperationAction(ISD::SREM, VT, Expand);
    144   setOperationAction(ISD::UREM, VT, Expand);
    145   setOperationAction(ISD::FREM, VT, Expand);
    146 }
    147 
    148 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    149   addRegisterClass(VT, &ARM::DPRRegClass);
    150   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    151 }
    152 
    153 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    154   addRegisterClass(VT, &ARM::DPairRegClass);
    155   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    156 }
    157 
    158 static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
    159   if (TT.isOSBinFormatMachO())
    160     return new TargetLoweringObjectFileMachO();
    161   if (TT.isOSWindows())
    162     return new TargetLoweringObjectFileCOFF();
    163   return new ARMElfTargetObjectFile();
    164 }
    165 
    166 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
    167     : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
    168   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    169   RegInfo = TM.getRegisterInfo();
    170   Itins = TM.getInstrItineraryData();
    171 
    172   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    173 
    174   if (Subtarget->isTargetMachO()) {
    175     // Uses VFP for Thumb libfuncs if available.
    176     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
    177         Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
    178       // Single-precision floating-point arithmetic.
    179       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
    180       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
    181       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
    182       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
    183 
    184       // Double-precision floating-point arithmetic.
    185       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
    186       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
    187       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
    188       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
    189 
    190       // Single-precision comparisons.
    191       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
    192       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
    193       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
    194       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
    195       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
    196       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
    197       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
    198       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
    199 
    200       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    201       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
    202       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    203       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    204       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    205       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    206       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    207       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    208 
    209       // Double-precision comparisons.
    210       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
    211       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
    212       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
    213       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
    214       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
    215       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
    216       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
    217       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
    218 
    219       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    220       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
    221       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    222       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    223       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    224       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    225       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    226       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    227 
    228       // Floating-point to integer conversions.
    229       // i64 conversions are done via library routines even when generating VFP
    230       // instructions, so use the same ones.
    231       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
    232       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
    233       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
    234       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
    235 
    236       // Conversions between floating types.
    237       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
    238       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
    239 
    240       // Integer to floating-point conversions.
    241       // i64 conversions are done via library routines even when generating VFP
    242       // instructions, so use the same ones.
    243       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    244       // e.g., __floatunsidf vs. __floatunssidfvfp.
    245       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
    246       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
    247       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
    248       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
    249     }
    250   }
    251 
    252   // These libcalls are not available in 32-bit.
    253   setLibcallName(RTLIB::SHL_I128, nullptr);
    254   setLibcallName(RTLIB::SRL_I128, nullptr);
    255   setLibcallName(RTLIB::SRA_I128, nullptr);
    256 
    257   if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
    258       !Subtarget->isTargetWindows()) {
    259     static const struct {
    260       const RTLIB::Libcall Op;
    261       const char * const Name;
    262       const CallingConv::ID CC;
    263       const ISD::CondCode Cond;
    264     } LibraryCalls[] = {
    265       // Double-precision floating-point arithmetic helper functions
    266       // RTABI chapter 4.1.2, Table 2
    267       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    268       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    269       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    270       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    271 
    272       // Double-precision floating-point comparison helper functions
    273       // RTABI chapter 4.1.2, Table 3
    274       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    275       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    276       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    277       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    278       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    279       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    280       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    281       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    282 
    283       // Single-precision floating-point arithmetic helper functions
    284       // RTABI chapter 4.1.2, Table 4
    285       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    286       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    287       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    288       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    289 
    290       // Single-precision floating-point comparison helper functions
    291       // RTABI chapter 4.1.2, Table 5
    292       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    293       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    294       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    295       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    296       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    297       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    298       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    299       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    300 
    301       // Floating-point to integer conversions.
    302       // RTABI chapter 4.1.2, Table 6
    303       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    304       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    305       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    306       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    307       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    308       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    309       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    310       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    311 
    312       // Conversions between floating types.
    313       // RTABI chapter 4.1.2, Table 7
    314       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    316 
    317       // Integer to floating-point conversions.
    318       // RTABI chapter 4.1.2, Table 8
    319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    327 
    328       // Long long helper functions
    329       // RTABI chapter 4.2, Table 9
    330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    334 
    335       // Integer division functions
    336       // RTABI chapter 4.3.1
    337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    345 
    346       // Memory operations
    347       // RTABI chapter 4.3.4
    348       { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    349       { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    350       { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    351     };
    352 
    353     for (const auto &LC : LibraryCalls) {
    354       setLibcallName(LC.Op, LC.Name);
    355       setLibcallCallingConv(LC.Op, LC.CC);
    356       if (LC.Cond != ISD::SETCC_INVALID)
    357         setCmpLibcallCC(LC.Op, LC.Cond);
    358     }
    359   }
    360 
    361   if (Subtarget->isTargetWindows()) {
    362     static const struct {
    363       const RTLIB::Libcall Op;
    364       const char * const Name;
    365       const CallingConv::ID CC;
    366     } LibraryCalls[] = {
    367       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
    368       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
    369       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
    370       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
    371       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
    372       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
    373       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
    374       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    375     };
    376 
    377     for (const auto &LC : LibraryCalls) {
    378       setLibcallName(LC.Op, LC.Name);
    379       setLibcallCallingConv(LC.Op, LC.CC);
    380     }
    381   }
    382 
    383   // Use divmod compiler-rt calls for iOS 5.0 and later.
    384   if (Subtarget->getTargetTriple().isiOS() &&
    385       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
    386     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    387     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    388   }
    389 
    390   if (Subtarget->isThumb1Only())
    391     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    392   else
    393     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    394   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    395       !Subtarget->isThumb1Only()) {
    396     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    397     if (!Subtarget->isFPOnlySP())
    398       addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    399 
    400     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    401   }
    402 
    403   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    404        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    405     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    406          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    407       setTruncStoreAction((MVT::SimpleValueType)VT,
    408                           (MVT::SimpleValueType)InnerVT, Expand);
    409     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    410     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    411     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    412 
    413     setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
    414     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    415     setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
    416     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    417 
    418     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    419   }
    420 
    421   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    422   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
    423 
    424   if (Subtarget->hasNEON()) {
    425     addDRTypeForNEON(MVT::v2f32);
    426     addDRTypeForNEON(MVT::v8i8);
    427     addDRTypeForNEON(MVT::v4i16);
    428     addDRTypeForNEON(MVT::v2i32);
    429     addDRTypeForNEON(MVT::v1i64);
    430 
    431     addQRTypeForNEON(MVT::v4f32);
    432     addQRTypeForNEON(MVT::v2f64);
    433     addQRTypeForNEON(MVT::v16i8);
    434     addQRTypeForNEON(MVT::v8i16);
    435     addQRTypeForNEON(MVT::v4i32);
    436     addQRTypeForNEON(MVT::v2i64);
    437 
    438     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    439     // neither Neon nor VFP support any arithmetic operations on it.
    440     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    441     // supported for v4f32.
    442     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    443     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    444     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    445     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    446     // ARMTargetLowering::addTypeForNEON method for details.
    447     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    448     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    449     // FIXME: Create unittest.
    450     // In another words, find a way when "copysign" appears in DAG with vector
    451     // operands.
    452     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    453     // FIXME: Code duplication: SETCC has custom operation action, see
    454     // ARMTargetLowering::addTypeForNEON method for details.
    455     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    456     // FIXME: Create unittest for FNEG and for FABS.
    457     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    458     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    459     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    460     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    461     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    462     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    463     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    464     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    465     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    466     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    467     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    468     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    469     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    470     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    471     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    472     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    473     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    474     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    475     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
    476 
    477     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    478     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    479     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    480     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    481     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    482     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    483     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    484     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    485     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    486     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    487     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    488     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    489     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    490     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    491     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    492 
    493     // Mark v2f32 intrinsics.
    494     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    495     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    496     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    497     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
    498     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    499     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    500     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    501     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    502     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    503     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    504     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    505     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    506     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    507     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    508     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
    509 
    510     // Neon does not support some operations on v1i64 and v2i64 types.
    511     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    512     // Custom handling for some quad-vector types to detect VMULL.
    513     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    514     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    515     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    516     // Custom handling for some vector types to avoid expensive expansions
    517     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    518     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    519     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    520     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    521     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    522     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    523     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    524     // a destination type that is wider than the source, and nor does
    525     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    526     // source.
    527     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    528     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    529     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    530     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    531 
    532     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    533     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
    534 
    535     // NEON does not have single instruction CTPOP for vectors with element
    536     // types wider than 8-bits.  However, custom lowering can leverage the
    537     // v8i8/v16i8 vcnt instruction.
    538     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    539     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    540     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    541     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    542 
    543     // NEON only has FMA instructions as of VFP4.
    544     if (!Subtarget->hasVFP4()) {
    545       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
    546       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    547     }
    548 
    549     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    550     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    551     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    552     setTargetDAGCombine(ISD::SHL);
    553     setTargetDAGCombine(ISD::SRL);
    554     setTargetDAGCombine(ISD::SRA);
    555     setTargetDAGCombine(ISD::SIGN_EXTEND);
    556     setTargetDAGCombine(ISD::ZERO_EXTEND);
    557     setTargetDAGCombine(ISD::ANY_EXTEND);
    558     setTargetDAGCombine(ISD::SELECT_CC);
    559     setTargetDAGCombine(ISD::BUILD_VECTOR);
    560     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    561     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    562     setTargetDAGCombine(ISD::STORE);
    563     setTargetDAGCombine(ISD::FP_TO_SINT);
    564     setTargetDAGCombine(ISD::FP_TO_UINT);
    565     setTargetDAGCombine(ISD::FDIV);
    566 
    567     // It is legal to extload from v4i8 to v4i16 or v4i32.
    568     MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
    569                   MVT::v4i16, MVT::v2i16,
    570                   MVT::v2i32};
    571     for (unsigned i = 0; i < 6; ++i) {
    572       setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
    573       setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
    574       setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
    575     }
    576   }
    577 
    578   // ARM and Thumb2 support UMLAL/SMLAL.
    579   if (!Subtarget->isThumb1Only())
    580     setTargetDAGCombine(ISD::ADDC);
    581 
    582 
    583   computeRegisterProperties();
    584 
    585   // ARM does not have f32 extending load.
    586   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    587 
    588   // ARM does not have i1 sign extending load.
    589   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    590 
    591   // ARM supports all 4 flavors of integer indexed load / store.
    592   if (!Subtarget->isThumb1Only()) {
    593     for (unsigned im = (unsigned)ISD::PRE_INC;
    594          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    595       setIndexedLoadAction(im,  MVT::i1,  Legal);
    596       setIndexedLoadAction(im,  MVT::i8,  Legal);
    597       setIndexedLoadAction(im,  MVT::i16, Legal);
    598       setIndexedLoadAction(im,  MVT::i32, Legal);
    599       setIndexedStoreAction(im, MVT::i1,  Legal);
    600       setIndexedStoreAction(im, MVT::i8,  Legal);
    601       setIndexedStoreAction(im, MVT::i16, Legal);
    602       setIndexedStoreAction(im, MVT::i32, Legal);
    603     }
    604   }
    605 
    606   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    607   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    608   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    609   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    610 
    611   // i64 operation support.
    612   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    613   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    614   if (Subtarget->isThumb1Only()) {
    615     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    616     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    617   }
    618   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    619       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
    620     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    621 
    622   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    623   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    624   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    625   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    626   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    627 
    628   if (!Subtarget->isThumb1Only()) {
    629     // FIXME: We should do this for Thumb1 as well.
    630     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    631     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    632     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    633     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    634   }
    635 
    636   // ARM does not have ROTL.
    637   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
    638   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    639   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    640   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    641     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    642 
    643   // These just redirect to CTTZ and CTLZ on ARM.
    644   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
    645   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
    646 
    647   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
    648 
    649   // Only ARMv6 has BSWAP.
    650   if (!Subtarget->hasV6Ops())
    651     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    652 
    653   if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
    654       !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
    655     // These are expanded into libcalls if the cpu doesn't have HW divider.
    656     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    657     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
    658   }
    659 
    660   // FIXME: Also set divmod for SREM on EABI
    661   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    662   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    663   // Register based DivRem for AEABI (RTABI 4.2)
    664   if (Subtarget->isTargetAEABI()) {
    665     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
    666     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
    667     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
    668     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
    669     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
    670     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
    671     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
    672     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
    673 
    674     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
    675     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
    676     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
    677     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
    678     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
    679     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
    680     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
    681     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
    682 
    683     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    684     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    685   } else {
    686     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    687     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    688   }
    689 
    690   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    691   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    692   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
    693   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    694   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    695 
    696   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    697 
    698   // Use the default implementation.
    699   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    700   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    701   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    702   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    703   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    704   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    705 
    706   if (!Subtarget->isTargetMachO()) {
    707     // Non-MachO platforms may return values in these registers via the
    708     // personality function.
    709     setExceptionPointerRegister(ARM::R0);
    710     setExceptionSelectorRegister(ARM::R1);
    711   }
    712 
    713   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
    714     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    715   else
    716     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    717 
    718   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    719   // the default expansion.
    720   if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
    721     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    722     // to ldrex/strex loops already.
    723     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    724 
    725     // On v8, we have particularly efficient implementations of atomic fences
    726     // if they can be combined with nearby atomic loads and stores.
    727     if (!Subtarget->hasV8Ops()) {
    728       // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
    729       setInsertFencesForAtomic(true);
    730     }
    731   } else {
    732     // If there's anything we can use as a barrier, go through custom lowering
    733     // for ATOMIC_FENCE.
    734     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
    735                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
    736 
    737     // Set them all for expansion, which will force libcalls.
    738     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    739     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    740     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    741     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    742     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    743     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    744     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    745     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    746     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    747     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    748     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    749     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    750     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    751     // Unordered/Monotonic case.
    752     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    753     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    754   }
    755 
    756   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    757 
    758   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    759   if (!Subtarget->hasV6Ops()) {
    760     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    761     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    762   }
    763   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    764 
    765   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    766       !Subtarget->isThumb1Only()) {
    767     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    768     // iff target supports vfp2.
    769     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    770     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    771   }
    772 
    773   // We want to custom lower some of our intrinsics.
    774   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    775   if (Subtarget->isTargetDarwin()) {
    776     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    777     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    778     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    779   }
    780 
    781   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    782   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    783   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    784   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    785   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    786   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    787   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    788   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    789   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    790 
    791   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    792   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    793   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    794   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    795   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    796 
    797   // We don't support sin/cos/fmod/copysign/pow
    798   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    799   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    800   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    801   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    802   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
    803   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
    804   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    805   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    806   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    807       !Subtarget->isThumb1Only()) {
    808     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    809     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    810   }
    811   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    812   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    813 
    814   if (!Subtarget->hasVFP4()) {
    815     setOperationAction(ISD::FMA, MVT::f64, Expand);
    816     setOperationAction(ISD::FMA, MVT::f32, Expand);
    817   }
    818 
    819   // Various VFP goodness
    820   if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
    821     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
    822     if (Subtarget->hasVFP2()) {
    823       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    824       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    825       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    826       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    827     }
    828     // Special handling for half-precision FP.
    829     if (!Subtarget->hasFP16()) {
    830       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
    831       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
    832     }
    833   }
    834 
    835   // Combine sin / cos into one node or libcall if possible.
    836   if (Subtarget->hasSinCos()) {
    837     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    838     setLibcallName(RTLIB::SINCOS_F64, "sincos");
    839     if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
    840       // For iOS, we don't want to the normal expansion of a libcall to
    841       // sincos. We want to issue a libcall to __sincos_stret.
    842       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    843       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
    844     }
    845   }
    846 
    847   // We have target-specific dag combine patterns for the following nodes:
    848   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
    849   setTargetDAGCombine(ISD::ADD);
    850   setTargetDAGCombine(ISD::SUB);
    851   setTargetDAGCombine(ISD::MUL);
    852   setTargetDAGCombine(ISD::AND);
    853   setTargetDAGCombine(ISD::OR);
    854   setTargetDAGCombine(ISD::XOR);
    855 
    856   if (Subtarget->hasV6Ops())
    857     setTargetDAGCombine(ISD::SRL);
    858 
    859   setStackPointerRegisterToSaveRestore(ARM::SP);
    860 
    861   if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
    862       !Subtarget->hasVFP2())
    863     setSchedulingPreference(Sched::RegPressure);
    864   else
    865     setSchedulingPreference(Sched::Hybrid);
    866 
    867   //// temporary - rewrite interface to use type
    868   MaxStoresPerMemset = 8;
    869   MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
    870   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
    871   MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
    872   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
    873   MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
    874 
    875   // On ARM arguments smaller than 4 bytes are extended, so all arguments
    876   // are at least 4 bytes aligned.
    877   setMinStackArgumentAlignment(4);
    878 
    879   // Prefer likely predicted branches to selects on out-of-order cores.
    880   PredictableSelectIsExpensive = Subtarget->isLikeA9();
    881 
    882   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
    883 }
    884 
    885 // FIXME: It might make sense to define the representative register class as the
    886 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
    887 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
    888 // SPR's representative would be DPR_VFP2. This should work well if register
    889 // pressure tracking were modified such that a register use would increment the
    890 // pressure of the register class's representative and all of it's super
    891 // classes' representatives transitively. We have not implemented this because
    892 // of the difficulty prior to coalescing of modeling operand register classes
    893 // due to the common occurrence of cross class copies and subregister insertions
    894 // and extractions.
    895 std::pair<const TargetRegisterClass*, uint8_t>
    896 ARMTargetLowering::findRepresentativeClass(MVT VT) const{
    897   const TargetRegisterClass *RRC = nullptr;
    898   uint8_t Cost = 1;
    899   switch (VT.SimpleTy) {
    900   default:
    901     return TargetLowering::findRepresentativeClass(VT);
    902   // Use DPR as representative register class for all floating point
    903   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
    904   // the cost is 1 for both f32 and f64.
    905   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
    906   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    907     RRC = &ARM::DPRRegClass;
    908     // When NEON is used for SP, only half of the register file is available
    909     // because operations that define both SP and DP results will be constrained
    910     // to the VFP2 class (D0-D15). We currently model this constraint prior to
    911     // coalescing by double-counting the SP regs. See the FIXME above.
    912     if (Subtarget->useNEONForSinglePrecisionFP())
    913       Cost = 2;
    914     break;
    915   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
    916   case MVT::v4f32: case MVT::v2f64:
    917     RRC = &ARM::DPRRegClass;
    918     Cost = 2;
    919     break;
    920   case MVT::v4i64:
    921     RRC = &ARM::DPRRegClass;
    922     Cost = 4;
    923     break;
    924   case MVT::v8i64:
    925     RRC = &ARM::DPRRegClass;
    926     Cost = 8;
    927     break;
    928   }
    929   return std::make_pair(RRC, Cost);
    930 }
    931 
    932 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
    933   switch (Opcode) {
    934   default: return nullptr;
    935   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
    936   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
    937   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
    938   case ARMISD::CALL:          return "ARMISD::CALL";
    939   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
    940   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
    941   case ARMISD::tCALL:         return "ARMISD::tCALL";
    942   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
    943   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
    944   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
    945   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
    946   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
    947   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
    948   case ARMISD::CMP:           return "ARMISD::CMP";
    949   case ARMISD::CMN:           return "ARMISD::CMN";
    950   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
    951   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
    952   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
    953   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
    954   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
    955 
    956   case ARMISD::CMOV:          return "ARMISD::CMOV";
    957 
    958   case ARMISD::RBIT:          return "ARMISD::RBIT";
    959 
    960   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
    961   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
    962   case ARMISD::SITOF:         return "ARMISD::SITOF";
    963   case ARMISD::UITOF:         return "ARMISD::UITOF";
    964 
    965   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
    966   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
    967   case ARMISD::RRX:           return "ARMISD::RRX";
    968 
    969   case ARMISD::ADDC:          return "ARMISD::ADDC";
    970   case ARMISD::ADDE:          return "ARMISD::ADDE";
    971   case ARMISD::SUBC:          return "ARMISD::SUBC";
    972   case ARMISD::SUBE:          return "ARMISD::SUBE";
    973 
    974   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
    975   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
    976 
    977   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
    978   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
    979 
    980   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
    981 
    982   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
    983 
    984   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
    985 
    986   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
    987 
    988   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
    989 
    990   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
    991 
    992   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
    993   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
    994   case ARMISD::VCGE:          return "ARMISD::VCGE";
    995   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
    996   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
    997   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
    998   case ARMISD::VCGT:          return "ARMISD::VCGT";
    999   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
   1000   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
   1001   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
   1002   case ARMISD::VTST:          return "ARMISD::VTST";
   1003 
   1004   case ARMISD::VSHL:          return "ARMISD::VSHL";
   1005   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
   1006   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
   1007   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
   1008   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
   1009   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
   1010   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
   1011   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
   1012   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
   1013   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
   1014   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
   1015   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
   1016   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
   1017   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
   1018   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
   1019   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
   1020   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
   1021   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
   1022   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
   1023   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
   1024   case ARMISD::VDUP:          return "ARMISD::VDUP";
   1025   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
   1026   case ARMISD::VEXT:          return "ARMISD::VEXT";
   1027   case ARMISD::VREV64:        return "ARMISD::VREV64";
   1028   case ARMISD::VREV32:        return "ARMISD::VREV32";
   1029   case ARMISD::VREV16:        return "ARMISD::VREV16";
   1030   case ARMISD::VZIP:          return "ARMISD::VZIP";
   1031   case ARMISD::VUZP:          return "ARMISD::VUZP";
   1032   case ARMISD::VTRN:          return "ARMISD::VTRN";
   1033   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
   1034   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
   1035   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
   1036   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
   1037   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
   1038   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
   1039   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
   1040   case ARMISD::FMAX:          return "ARMISD::FMAX";
   1041   case ARMISD::FMIN:          return "ARMISD::FMIN";
   1042   case ARMISD::VMAXNM:        return "ARMISD::VMAX";
   1043   case ARMISD::VMINNM:        return "ARMISD::VMIN";
   1044   case ARMISD::BFI:           return "ARMISD::BFI";
   1045   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
   1046   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
   1047   case ARMISD::VBSL:          return "ARMISD::VBSL";
   1048   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
   1049   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
   1050   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
   1051   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1052   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1053   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1054   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1055   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1056   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1057   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1058   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1059   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1060   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1061   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1062   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1063   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1064   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1065   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1066   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1067   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1068   }
   1069 }
   1070 
   1071 EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
   1072   if (!VT.isVector()) return getPointerTy();
   1073   return VT.changeVectorElementTypeToInteger();
   1074 }
   1075 
   1076 /// getRegClassFor - Return the register class that should be used for the
   1077 /// specified value type.
   1078 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
   1079   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1080   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1081   // load / store 4 to 8 consecutive D registers.
   1082   if (Subtarget->hasNEON()) {
   1083     if (VT == MVT::v4i64)
   1084       return &ARM::QQPRRegClass;
   1085     if (VT == MVT::v8i64)
   1086       return &ARM::QQQQPRRegClass;
   1087   }
   1088   return TargetLowering::getRegClassFor(VT);
   1089 }
   1090 
   1091 // Create a fast isel object.
   1092 FastISel *
   1093 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1094                                   const TargetLibraryInfo *libInfo) const {
   1095   return ARM::createFastISel(funcInfo, libInfo);
   1096 }
   1097 
   1098 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
   1099 /// be used for loads / stores from the global.
   1100 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
   1101   return (Subtarget->isThumb1Only() ? 127 : 4095);
   1102 }
   1103 
   1104 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1105   unsigned NumVals = N->getNumValues();
   1106   if (!NumVals)
   1107     return Sched::RegPressure;
   1108 
   1109   for (unsigned i = 0; i != NumVals; ++i) {
   1110     EVT VT = N->getValueType(i);
   1111     if (VT == MVT::Glue || VT == MVT::Other)
   1112       continue;
   1113     if (VT.isFloatingPoint() || VT.isVector())
   1114       return Sched::ILP;
   1115   }
   1116 
   1117   if (!N->isMachineOpcode())
   1118     return Sched::RegPressure;
   1119 
   1120   // Load are scheduled for latency even if there instruction itinerary
   1121   // is not available.
   1122   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1123   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1124 
   1125   if (MCID.getNumDefs() == 0)
   1126     return Sched::RegPressure;
   1127   if (!Itins->isEmpty() &&
   1128       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1129     return Sched::ILP;
   1130 
   1131   return Sched::RegPressure;
   1132 }
   1133 
   1134 //===----------------------------------------------------------------------===//
   1135 // Lowering Code
   1136 //===----------------------------------------------------------------------===//
   1137 
   1138 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1139 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1140   switch (CC) {
   1141   default: llvm_unreachable("Unknown condition code!");
   1142   case ISD::SETNE:  return ARMCC::NE;
   1143   case ISD::SETEQ:  return ARMCC::EQ;
   1144   case ISD::SETGT:  return ARMCC::GT;
   1145   case ISD::SETGE:  return ARMCC::GE;
   1146   case ISD::SETLT:  return ARMCC::LT;
   1147   case ISD::SETLE:  return ARMCC::LE;
   1148   case ISD::SETUGT: return ARMCC::HI;
   1149   case ISD::SETUGE: return ARMCC::HS;
   1150   case ISD::SETULT: return ARMCC::LO;
   1151   case ISD::SETULE: return ARMCC::LS;
   1152   }
   1153 }
   1154 
   1155 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1156 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1157                         ARMCC::CondCodes &CondCode2) {
   1158   CondCode2 = ARMCC::AL;
   1159   switch (CC) {
   1160   default: llvm_unreachable("Unknown FP condition!");
   1161   case ISD::SETEQ:
   1162   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1163   case ISD::SETGT:
   1164   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1165   case ISD::SETGE:
   1166   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1167   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1168   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1169   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1170   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1171   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1172   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1173   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1174   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1175   case ISD::SETLT:
   1176   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1177   case ISD::SETLE:
   1178   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1179   case ISD::SETNE:
   1180   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1181   }
   1182 }
   1183 
   1184 //===----------------------------------------------------------------------===//
   1185 //                      Calling Convention Implementation
   1186 //===----------------------------------------------------------------------===//
   1187 
   1188 #include "ARMGenCallingConv.inc"
   1189 
   1190 /// getEffectiveCallingConv - Get the effective calling convention, taking into
   1191 /// account presence of floating point hardware and calling convention
   1192 /// limitations, such as support for variadic functions.
   1193 CallingConv::ID
   1194 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
   1195                                            bool isVarArg) const {
   1196   switch (CC) {
   1197   default:
   1198     llvm_unreachable("Unsupported calling convention");
   1199   case CallingConv::ARM_AAPCS:
   1200   case CallingConv::ARM_APCS:
   1201   case CallingConv::GHC:
   1202     return CC;
   1203   case CallingConv::ARM_AAPCS_VFP:
   1204     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
   1205   case CallingConv::C:
   1206     if (!Subtarget->isAAPCS_ABI())
   1207       return CallingConv::ARM_APCS;
   1208     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
   1209              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1210              !isVarArg)
   1211       return CallingConv::ARM_AAPCS_VFP;
   1212     else
   1213       return CallingConv::ARM_AAPCS;
   1214   case CallingConv::Fast:
   1215     if (!Subtarget->isAAPCS_ABI()) {
   1216       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1217         return CallingConv::Fast;
   1218       return CallingConv::ARM_APCS;
   1219     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1220       return CallingConv::ARM_AAPCS_VFP;
   1221     else
   1222       return CallingConv::ARM_AAPCS;
   1223   }
   1224 }
   1225 
   1226 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
   1227 /// CallingConvention.
   1228 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1229                                                  bool Return,
   1230                                                  bool isVarArg) const {
   1231   switch (getEffectiveCallingConv(CC, isVarArg)) {
   1232   default:
   1233     llvm_unreachable("Unsupported calling convention");
   1234   case CallingConv::ARM_APCS:
   1235     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1236   case CallingConv::ARM_AAPCS:
   1237     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1238   case CallingConv::ARM_AAPCS_VFP:
   1239     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1240   case CallingConv::Fast:
   1241     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1242   case CallingConv::GHC:
   1243     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1244   }
   1245 }
   1246 
   1247 /// LowerCallResult - Lower the result values of a call into the
   1248 /// appropriate copies out of appropriate physical registers.
   1249 SDValue
   1250 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1251                                    CallingConv::ID CallConv, bool isVarArg,
   1252                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1253                                    SDLoc dl, SelectionDAG &DAG,
   1254                                    SmallVectorImpl<SDValue> &InVals,
   1255                                    bool isThisReturn, SDValue ThisVal) const {
   1256 
   1257   // Assign locations to each value returned by this call.
   1258   SmallVector<CCValAssign, 16> RVLocs;
   1259   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1260                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1261   CCInfo.AnalyzeCallResult(Ins,
   1262                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1263                                              isVarArg));
   1264 
   1265   // Copy all of the result registers out of their specified physreg.
   1266   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1267     CCValAssign VA = RVLocs[i];
   1268 
   1269     // Pass 'this' value directly from the argument to return value, to avoid
   1270     // reg unit interference
   1271     if (i == 0 && isThisReturn) {
   1272       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
   1273              "unexpected return calling convention register assignment");
   1274       InVals.push_back(ThisVal);
   1275       continue;
   1276     }
   1277 
   1278     SDValue Val;
   1279     if (VA.needsCustom()) {
   1280       // Handle f64 or half of a v2f64.
   1281       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1282                                       InFlag);
   1283       Chain = Lo.getValue(1);
   1284       InFlag = Lo.getValue(2);
   1285       VA = RVLocs[++i]; // skip ahead to next loc
   1286       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1287                                       InFlag);
   1288       Chain = Hi.getValue(1);
   1289       InFlag = Hi.getValue(2);
   1290       if (!Subtarget->isLittle())
   1291         std::swap (Lo, Hi);
   1292       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1293 
   1294       if (VA.getLocVT() == MVT::v2f64) {
   1295         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1296         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1297                           DAG.getConstant(0, MVT::i32));
   1298 
   1299         VA = RVLocs[++i]; // skip ahead to next loc
   1300         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1301         Chain = Lo.getValue(1);
   1302         InFlag = Lo.getValue(2);
   1303         VA = RVLocs[++i]; // skip ahead to next loc
   1304         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1305         Chain = Hi.getValue(1);
   1306         InFlag = Hi.getValue(2);
   1307         if (!Subtarget->isLittle())
   1308           std::swap (Lo, Hi);
   1309         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1310         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1311                           DAG.getConstant(1, MVT::i32));
   1312       }
   1313     } else {
   1314       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1315                                InFlag);
   1316       Chain = Val.getValue(1);
   1317       InFlag = Val.getValue(2);
   1318     }
   1319 
   1320     switch (VA.getLocInfo()) {
   1321     default: llvm_unreachable("Unknown loc info!");
   1322     case CCValAssign::Full: break;
   1323     case CCValAssign::BCvt:
   1324       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1325       break;
   1326     }
   1327 
   1328     InVals.push_back(Val);
   1329   }
   1330 
   1331   return Chain;
   1332 }
   1333 
   1334 /// LowerMemOpCallTo - Store the argument to the stack.
   1335 SDValue
   1336 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1337                                     SDValue StackPtr, SDValue Arg,
   1338                                     SDLoc dl, SelectionDAG &DAG,
   1339                                     const CCValAssign &VA,
   1340                                     ISD::ArgFlagsTy Flags) const {
   1341   unsigned LocMemOffset = VA.getLocMemOffset();
   1342   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1343   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1344   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1345                       MachinePointerInfo::getStack(LocMemOffset),
   1346                       false, false, 0);
   1347 }
   1348 
   1349 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
   1350                                          SDValue Chain, SDValue &Arg,
   1351                                          RegsToPassVector &RegsToPass,
   1352                                          CCValAssign &VA, CCValAssign &NextVA,
   1353                                          SDValue &StackPtr,
   1354                                          SmallVectorImpl<SDValue> &MemOpChains,
   1355                                          ISD::ArgFlagsTy Flags) const {
   1356 
   1357   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1358                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1359   unsigned id = Subtarget->isLittle() ? 0 : 1;
   1360   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
   1361 
   1362   if (NextVA.isRegLoc())
   1363     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
   1364   else {
   1365     assert(NextVA.isMemLoc());
   1366     if (!StackPtr.getNode())
   1367       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1368 
   1369     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
   1370                                            dl, DAG, NextVA,
   1371                                            Flags));
   1372   }
   1373 }
   1374 
   1375 /// LowerCall - Lowering a call into a callseq_start <-
   1376 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1377 /// nodes.
   1378 SDValue
   1379 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1380                              SmallVectorImpl<SDValue> &InVals) const {
   1381   SelectionDAG &DAG                     = CLI.DAG;
   1382   SDLoc &dl                          = CLI.DL;
   1383   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1384   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1385   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1386   SDValue Chain                         = CLI.Chain;
   1387   SDValue Callee                        = CLI.Callee;
   1388   bool &isTailCall                      = CLI.IsTailCall;
   1389   CallingConv::ID CallConv              = CLI.CallConv;
   1390   bool doesNotRet                       = CLI.DoesNotReturn;
   1391   bool isVarArg                         = CLI.IsVarArg;
   1392 
   1393   MachineFunction &MF = DAG.getMachineFunction();
   1394   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1395   bool isThisReturn   = false;
   1396   bool isSibCall      = false;
   1397 
   1398   // Disable tail calls if they're not supported.
   1399   if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
   1400     isTailCall = false;
   1401 
   1402   if (isTailCall) {
   1403     // Check if it's really possible to do a tail call.
   1404     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1405                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
   1406                                                    Outs, OutVals, Ins, DAG);
   1407     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
   1408       report_fatal_error("failed to perform tail call elimination on a call "
   1409                          "site marked musttail");
   1410     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1411     // detected sibcalls.
   1412     if (isTailCall) {
   1413       ++NumTailCalls;
   1414       isSibCall = true;
   1415     }
   1416   }
   1417 
   1418   // Analyze operands of the call, assigning locations to each operand.
   1419   SmallVector<CCValAssign, 16> ArgLocs;
   1420   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1421                  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1422   CCInfo.AnalyzeCallOperands(Outs,
   1423                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1424                                                isVarArg));
   1425 
   1426   // Get a count of how many bytes are to be pushed on the stack.
   1427   unsigned NumBytes = CCInfo.getNextStackOffset();
   1428 
   1429   // For tail calls, memory operands are available in our caller's stack.
   1430   if (isSibCall)
   1431     NumBytes = 0;
   1432 
   1433   // Adjust the stack pointer for the new arguments...
   1434   // These operations are automatically eliminated by the prolog/epilog pass
   1435   if (!isSibCall)
   1436     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1437                                  dl);
   1438 
   1439   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1440 
   1441   RegsToPassVector RegsToPass;
   1442   SmallVector<SDValue, 8> MemOpChains;
   1443 
   1444   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1445   // of tail call optimization, arguments are handled later.
   1446   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1447        i != e;
   1448        ++i, ++realArgIdx) {
   1449     CCValAssign &VA = ArgLocs[i];
   1450     SDValue Arg = OutVals[realArgIdx];
   1451     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1452     bool isByVal = Flags.isByVal();
   1453 
   1454     // Promote the value if needed.
   1455     switch (VA.getLocInfo()) {
   1456     default: llvm_unreachable("Unknown loc info!");
   1457     case CCValAssign::Full: break;
   1458     case CCValAssign::SExt:
   1459       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1460       break;
   1461     case CCValAssign::ZExt:
   1462       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1463       break;
   1464     case CCValAssign::AExt:
   1465       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1466       break;
   1467     case CCValAssign::BCvt:
   1468       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1469       break;
   1470     }
   1471 
   1472     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1473     if (VA.needsCustom()) {
   1474       if (VA.getLocVT() == MVT::v2f64) {
   1475         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1476                                   DAG.getConstant(0, MVT::i32));
   1477         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1478                                   DAG.getConstant(1, MVT::i32));
   1479 
   1480         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1481                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1482 
   1483         VA = ArgLocs[++i]; // skip ahead to next loc
   1484         if (VA.isRegLoc()) {
   1485           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1486                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1487         } else {
   1488           assert(VA.isMemLoc());
   1489 
   1490           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1491                                                  dl, DAG, VA, Flags));
   1492         }
   1493       } else {
   1494         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1495                          StackPtr, MemOpChains, Flags);
   1496       }
   1497     } else if (VA.isRegLoc()) {
   1498       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
   1499         assert(VA.getLocVT() == MVT::i32 &&
   1500                "unexpected calling convention register assignment");
   1501         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
   1502                "unexpected use of 'returned'");
   1503         isThisReturn = true;
   1504       }
   1505       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1506     } else if (isByVal) {
   1507       assert(VA.isMemLoc());
   1508       unsigned offset = 0;
   1509 
   1510       // True if this byval aggregate will be split between registers
   1511       // and memory.
   1512       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
   1513       unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
   1514 
   1515       if (CurByValIdx < ByValArgsCount) {
   1516 
   1517         unsigned RegBegin, RegEnd;
   1518         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
   1519 
   1520         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1521         unsigned int i, j;
   1522         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
   1523           SDValue Const = DAG.getConstant(4*i, MVT::i32);
   1524           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1525           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1526                                      MachinePointerInfo(),
   1527                                      false, false, false,
   1528                                      DAG.InferPtrAlignment(AddArg));
   1529           MemOpChains.push_back(Load.getValue(1));
   1530           RegsToPass.push_back(std::make_pair(j, Load));
   1531         }
   1532 
   1533         // If parameter size outsides register area, "offset" value
   1534         // helps us to calculate stack slot for remained part properly.
   1535         offset = RegEnd - RegBegin;
   1536 
   1537         CCInfo.nextInRegsParam();
   1538       }
   1539 
   1540       if (Flags.getByValSize() > 4*offset) {
   1541         unsigned LocMemOffset = VA.getLocMemOffset();
   1542         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1543         SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
   1544                                   StkPtrOff);
   1545         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
   1546         SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
   1547         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
   1548                                            MVT::i32);
   1549         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
   1550 
   1551         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1552         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1553         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1554                                           Ops));
   1555       }
   1556     } else if (!isSibCall) {
   1557       assert(VA.isMemLoc());
   1558 
   1559       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1560                                              dl, DAG, VA, Flags));
   1561     }
   1562   }
   1563 
   1564   if (!MemOpChains.empty())
   1565     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1566 
   1567   // Build a sequence of copy-to-reg nodes chained together with token chain
   1568   // and flag operands which copy the outgoing args into the appropriate regs.
   1569   SDValue InFlag;
   1570   // Tail call byval lowering might overwrite argument registers so in case of
   1571   // tail call optimization the copies to registers are lowered later.
   1572   if (!isTailCall)
   1573     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1574       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1575                                RegsToPass[i].second, InFlag);
   1576       InFlag = Chain.getValue(1);
   1577     }
   1578 
   1579   // For tail calls lower the arguments to the 'real' stack slot.
   1580   if (isTailCall) {
   1581     // Force all the incoming stack arguments to be loaded from the stack
   1582     // before any new outgoing arguments are stored to the stack, because the
   1583     // outgoing stack slots may alias the incoming argument stack slots, and
   1584     // the alias isn't otherwise explicit. This is slightly more conservative
   1585     // than necessary, because it means that each store effectively depends
   1586     // on every argument instead of just those arguments it would clobber.
   1587 
   1588     // Do not flag preceding copytoreg stuff together with the following stuff.
   1589     InFlag = SDValue();
   1590     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1591       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1592                                RegsToPass[i].second, InFlag);
   1593       InFlag = Chain.getValue(1);
   1594     }
   1595     InFlag = SDValue();
   1596   }
   1597 
   1598   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1599   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1600   // node so that legalize doesn't hack it.
   1601   bool isDirect = false;
   1602   bool isARMFunc = false;
   1603   bool isLocalARMFunc = false;
   1604   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1605 
   1606   if (EnableARMLongCalls) {
   1607     assert((Subtarget->isTargetWindows() ||
   1608             getTargetMachine().getRelocationModel() == Reloc::Static) &&
   1609            "long-calls with non-static relocation model!");
   1610     // Handle a global address or an external symbol. If it's not one of
   1611     // those, the target's already in a register, so we don't need to do
   1612     // anything extra.
   1613     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1614       const GlobalValue *GV = G->getGlobal();
   1615       // Create a constant pool entry for the callee address
   1616       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1617       ARMConstantPoolValue *CPV =
   1618         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1619 
   1620       // Get the address of the callee into a register
   1621       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1622       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1623       Callee = DAG.getLoad(getPointerTy(), dl,
   1624                            DAG.getEntryNode(), CPAddr,
   1625                            MachinePointerInfo::getConstantPool(),
   1626                            false, false, false, 0);
   1627     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1628       const char *Sym = S->getSymbol();
   1629 
   1630       // Create a constant pool entry for the callee address
   1631       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1632       ARMConstantPoolValue *CPV =
   1633         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1634                                       ARMPCLabelIndex, 0);
   1635       // Get the address of the callee into a register
   1636       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1637       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1638       Callee = DAG.getLoad(getPointerTy(), dl,
   1639                            DAG.getEntryNode(), CPAddr,
   1640                            MachinePointerInfo::getConstantPool(),
   1641                            false, false, false, 0);
   1642     }
   1643   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1644     const GlobalValue *GV = G->getGlobal();
   1645     isDirect = true;
   1646     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
   1647     bool isStub = (isExt && Subtarget->isTargetMachO()) &&
   1648                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1649     isARMFunc = !Subtarget->isThumb() || isStub;
   1650     // ARM call to a local ARM function is predicable.
   1651     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
   1652     // tBX takes a register source operand.
   1653     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1654       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
   1655       Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
   1656                            DAG.getTargetGlobalAddress(GV, dl, getPointerTy()));
   1657     } else if (Subtarget->isTargetCOFF()) {
   1658       assert(Subtarget->isTargetWindows() &&
   1659              "Windows is the only supported COFF target");
   1660       unsigned TargetFlags = GV->hasDLLImportStorageClass()
   1661                                  ? ARMII::MO_DLLIMPORT
   1662                                  : ARMII::MO_NO_FLAG;
   1663       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0,
   1664                                           TargetFlags);
   1665       if (GV->hasDLLImportStorageClass())
   1666         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   1667                              DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(),
   1668                                          Callee), MachinePointerInfo::getGOT(),
   1669                              false, false, false, 0);
   1670     } else {
   1671       // On ELF targets for PIC code, direct calls should go through the PLT
   1672       unsigned OpFlags = 0;
   1673       if (Subtarget->isTargetELF() &&
   1674           getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1675         OpFlags = ARMII::MO_PLT;
   1676       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   1677     }
   1678   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1679     isDirect = true;
   1680     bool isStub = Subtarget->isTargetMachO() &&
   1681                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1682     isARMFunc = !Subtarget->isThumb() || isStub;
   1683     // tBX takes a register source operand.
   1684     const char *Sym = S->getSymbol();
   1685     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1686       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1687       ARMConstantPoolValue *CPV =
   1688         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1689                                       ARMPCLabelIndex, 4);
   1690       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1691       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1692       Callee = DAG.getLoad(getPointerTy(), dl,
   1693                            DAG.getEntryNode(), CPAddr,
   1694                            MachinePointerInfo::getConstantPool(),
   1695                            false, false, false, 0);
   1696       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1697       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1698                            getPointerTy(), Callee, PICLabel);
   1699     } else {
   1700       unsigned OpFlags = 0;
   1701       // On ELF targets for PIC code, direct calls should go through the PLT
   1702       if (Subtarget->isTargetELF() &&
   1703                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1704         OpFlags = ARMII::MO_PLT;
   1705       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
   1706     }
   1707   }
   1708 
   1709   // FIXME: handle tail calls differently.
   1710   unsigned CallOpc;
   1711   bool HasMinSizeAttr = MF.getFunction()->getAttributes().hasAttribute(
   1712       AttributeSet::FunctionIndex, Attribute::MinSize);
   1713   if (Subtarget->isThumb()) {
   1714     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1715       CallOpc = ARMISD::CALL_NOLINK;
   1716     else
   1717       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1718   } else {
   1719     if (!isDirect && !Subtarget->hasV5TOps())
   1720       CallOpc = ARMISD::CALL_NOLINK;
   1721     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
   1722                // Emit regular call when code size is the priority
   1723                !HasMinSizeAttr)
   1724       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1725       CallOpc = ARMISD::CALL_NOLINK;
   1726     else
   1727       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1728   }
   1729 
   1730   std::vector<SDValue> Ops;
   1731   Ops.push_back(Chain);
   1732   Ops.push_back(Callee);
   1733 
   1734   // Add argument registers to the end of the list so that they are known live
   1735   // into the call.
   1736   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1737     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1738                                   RegsToPass[i].second.getValueType()));
   1739 
   1740   // Add a register mask operand representing the call-preserved registers.
   1741   if (!isTailCall) {
   1742     const uint32_t *Mask;
   1743     const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   1744     const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
   1745     if (isThisReturn) {
   1746       // For 'this' returns, use the R0-preserving mask if applicable
   1747       Mask = ARI->getThisReturnPreservedMask(CallConv);
   1748       if (!Mask) {
   1749         // Set isThisReturn to false if the calling convention is not one that
   1750         // allows 'returned' to be modeled in this way, so LowerCallResult does
   1751         // not try to pass 'this' straight through
   1752         isThisReturn = false;
   1753         Mask = ARI->getCallPreservedMask(CallConv);
   1754       }
   1755     } else
   1756       Mask = ARI->getCallPreservedMask(CallConv);
   1757 
   1758     assert(Mask && "Missing call preserved mask for calling convention");
   1759     Ops.push_back(DAG.getRegisterMask(Mask));
   1760   }
   1761 
   1762   if (InFlag.getNode())
   1763     Ops.push_back(InFlag);
   1764 
   1765   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1766   if (isTailCall)
   1767     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
   1768 
   1769   // Returns a chain and a flag for retval copy to use.
   1770   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   1771   InFlag = Chain.getValue(1);
   1772 
   1773   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1774                              DAG.getIntPtrConstant(0, true), InFlag, dl);
   1775   if (!Ins.empty())
   1776     InFlag = Chain.getValue(1);
   1777 
   1778   // Handle result values, copying them out of physregs into vregs that we
   1779   // return.
   1780   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
   1781                          InVals, isThisReturn,
   1782                          isThisReturn ? OutVals[0] : SDValue());
   1783 }
   1784 
   1785 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1786 /// on the stack.  Remember the next parameter register to allocate,
   1787 /// and then confiscate the rest of the parameter registers to insure
   1788 /// this.
   1789 void
   1790 ARMTargetLowering::HandleByVal(
   1791     CCState *State, unsigned &size, unsigned Align) const {
   1792   unsigned reg = State->AllocateReg(GPRArgRegs, 4);
   1793   assert((State->getCallOrPrologue() == Prologue ||
   1794           State->getCallOrPrologue() == Call) &&
   1795          "unhandled ParmContext");
   1796 
   1797   if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
   1798     if (Subtarget->isAAPCS_ABI() && Align > 4) {
   1799       unsigned AlignInRegs = Align / 4;
   1800       unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
   1801       for (unsigned i = 0; i < Waste; ++i)
   1802         reg = State->AllocateReg(GPRArgRegs, 4);
   1803     }
   1804     if (reg != 0) {
   1805       unsigned excess = 4 * (ARM::R4 - reg);
   1806 
   1807       // Special case when NSAA != SP and parameter size greater than size of
   1808       // all remained GPR regs. In that case we can't split parameter, we must
   1809       // send it to stack. We also must set NCRN to R4, so waste all
   1810       // remained registers.
   1811       const unsigned NSAAOffset = State->getNextStackOffset();
   1812       if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
   1813         while (State->AllocateReg(GPRArgRegs, 4))
   1814           ;
   1815         return;
   1816       }
   1817 
   1818       // First register for byval parameter is the first register that wasn't
   1819       // allocated before this method call, so it would be "reg".
   1820       // If parameter is small enough to be saved in range [reg, r4), then
   1821       // the end (first after last) register would be reg + param-size-in-regs,
   1822       // else parameter would be splitted between registers and stack,
   1823       // end register would be r4 in this case.
   1824       unsigned ByValRegBegin = reg;
   1825       unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
   1826       State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
   1827       // Note, first register is allocated in the beginning of function already,
   1828       // allocate remained amount of registers we need.
   1829       for (unsigned i = reg+1; i != ByValRegEnd; ++i)
   1830         State->AllocateReg(GPRArgRegs, 4);
   1831       // A byval parameter that is split between registers and memory needs its
   1832       // size truncated here.
   1833       // In the case where the entire structure fits in registers, we set the
   1834       // size in memory to zero.
   1835       if (size < excess)
   1836         size = 0;
   1837       else
   1838         size -= excess;
   1839     }
   1840   }
   1841 }
   1842 
   1843 /// MatchingStackOffset - Return true if the given stack call argument is
   1844 /// already available in the same position (relatively) of the caller's
   1845 /// incoming argument stack.
   1846 static
   1847 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   1848                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   1849                          const TargetInstrInfo *TII) {
   1850   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   1851   int FI = INT_MAX;
   1852   if (Arg.getOpcode() == ISD::CopyFromReg) {
   1853     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   1854     if (!TargetRegisterInfo::isVirtualRegister(VR))
   1855       return false;
   1856     MachineInstr *Def = MRI->getVRegDef(VR);
   1857     if (!Def)
   1858       return false;
   1859     if (!Flags.isByVal()) {
   1860       if (!TII->isLoadFromStackSlot(Def, FI))
   1861         return false;
   1862     } else {
   1863       return false;
   1864     }
   1865   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   1866     if (Flags.isByVal())
   1867       // ByVal argument is passed in as a pointer but it's now being
   1868       // dereferenced. e.g.
   1869       // define @foo(%struct.X* %A) {
   1870       //   tail call @bar(%struct.X* byval %A)
   1871       // }
   1872       return false;
   1873     SDValue Ptr = Ld->getBasePtr();
   1874     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   1875     if (!FINode)
   1876       return false;
   1877     FI = FINode->getIndex();
   1878   } else
   1879     return false;
   1880 
   1881   assert(FI != INT_MAX);
   1882   if (!MFI->isFixedObjectIndex(FI))
   1883     return false;
   1884   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   1885 }
   1886 
   1887 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1888 /// for tail call optimization. Targets which want to do tail call
   1889 /// optimization should implement this function.
   1890 bool
   1891 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   1892                                                      CallingConv::ID CalleeCC,
   1893                                                      bool isVarArg,
   1894                                                      bool isCalleeStructRet,
   1895                                                      bool isCallerStructRet,
   1896                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1897                                     const SmallVectorImpl<SDValue> &OutVals,
   1898                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1899                                                      SelectionDAG& DAG) const {
   1900   const Function *CallerF = DAG.getMachineFunction().getFunction();
   1901   CallingConv::ID CallerCC = CallerF->getCallingConv();
   1902   bool CCMatch = CallerCC == CalleeCC;
   1903 
   1904   // Look for obvious safe cases to perform tail call optimization that do not
   1905   // require ABI changes. This is what gcc calls sibcall.
   1906 
   1907   // Do not sibcall optimize vararg calls unless the call site is not passing
   1908   // any arguments.
   1909   if (isVarArg && !Outs.empty())
   1910     return false;
   1911 
   1912   // Exception-handling functions need a special set of instructions to indicate
   1913   // a return to the hardware. Tail-calling another function would probably
   1914   // break this.
   1915   if (CallerF->hasFnAttribute("interrupt"))
   1916     return false;
   1917 
   1918   // Also avoid sibcall optimization if either caller or callee uses struct
   1919   // return semantics.
   1920   if (isCalleeStructRet || isCallerStructRet)
   1921     return false;
   1922 
   1923   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
   1924   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
   1925   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
   1926   // support in the assembler and linker to be used. This would need to be
   1927   // fixed to fully support tail calls in Thumb1.
   1928   //
   1929   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
   1930   // LR.  This means if we need to reload LR, it takes an extra instructions,
   1931   // which outweighs the value of the tail call; but here we don't know yet
   1932   // whether LR is going to be used.  Probably the right approach is to
   1933   // generate the tail call here and turn it back into CALL/RET in
   1934   // emitEpilogue if LR is used.
   1935 
   1936   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
   1937   // but we need to make sure there are enough registers; the only valid
   1938   // registers are the 4 used for parameters.  We don't currently do this
   1939   // case.
   1940   if (Subtarget->isThumb1Only())
   1941     return false;
   1942 
   1943   // If the calling conventions do not match, then we'd better make sure the
   1944   // results are returned in the same way as what the caller expects.
   1945   if (!CCMatch) {
   1946     SmallVector<CCValAssign, 16> RVLocs1;
   1947     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   1948                        getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
   1949     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   1950 
   1951     SmallVector<CCValAssign, 16> RVLocs2;
   1952     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   1953                        getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
   1954     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   1955 
   1956     if (RVLocs1.size() != RVLocs2.size())
   1957       return false;
   1958     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   1959       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   1960         return false;
   1961       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   1962         return false;
   1963       if (RVLocs1[i].isRegLoc()) {
   1964         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   1965           return false;
   1966       } else {
   1967         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   1968           return false;
   1969       }
   1970     }
   1971   }
   1972 
   1973   // If Caller's vararg or byval argument has been split between registers and
   1974   // stack, do not perform tail call, since part of the argument is in caller's
   1975   // local frame.
   1976   const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
   1977                                       getInfo<ARMFunctionInfo>();
   1978   if (AFI_Caller->getArgRegsSaveSize())
   1979     return false;
   1980 
   1981   // If the callee takes no arguments then go on to check the results of the
   1982   // call.
   1983   if (!Outs.empty()) {
   1984     // Check if stack adjustment is needed. For now, do not do this if any
   1985     // argument is passed on the stack.
   1986     SmallVector<CCValAssign, 16> ArgLocs;
   1987     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   1988                       getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1989     CCInfo.AnalyzeCallOperands(Outs,
   1990                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   1991     if (CCInfo.getNextStackOffset()) {
   1992       MachineFunction &MF = DAG.getMachineFunction();
   1993 
   1994       // Check if the arguments are already laid out in the right way as
   1995       // the caller's fixed stack objects.
   1996       MachineFrameInfo *MFI = MF.getFrameInfo();
   1997       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   1998       const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1999       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   2000            i != e;
   2001            ++i, ++realArgIdx) {
   2002         CCValAssign &VA = ArgLocs[i];
   2003         EVT RegVT = VA.getLocVT();
   2004         SDValue Arg = OutVals[realArgIdx];
   2005         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2006         if (VA.getLocInfo() == CCValAssign::Indirect)
   2007           return false;
   2008         if (VA.needsCustom()) {
   2009           // f64 and vector types are split into multiple registers or
   2010           // register/stack-slot combinations.  The types will not match
   2011           // the registers; give up on memory f64 refs until we figure
   2012           // out what to do about this.
   2013           if (!VA.isRegLoc())
   2014             return false;
   2015           if (!ArgLocs[++i].isRegLoc())
   2016             return false;
   2017           if (RegVT == MVT::v2f64) {
   2018             if (!ArgLocs[++i].isRegLoc())
   2019               return false;
   2020             if (!ArgLocs[++i].isRegLoc())
   2021               return false;
   2022           }
   2023         } else if (!VA.isRegLoc()) {
   2024           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2025                                    MFI, MRI, TII))
   2026             return false;
   2027         }
   2028       }
   2029     }
   2030   }
   2031 
   2032   return true;
   2033 }
   2034 
   2035 bool
   2036 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2037                                   MachineFunction &MF, bool isVarArg,
   2038                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2039                                   LLVMContext &Context) const {
   2040   SmallVector<CCValAssign, 16> RVLocs;
   2041   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
   2042   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
   2043                                                     isVarArg));
   2044 }
   2045 
   2046 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   2047                                     SDLoc DL, SelectionDAG &DAG) {
   2048   const MachineFunction &MF = DAG.getMachineFunction();
   2049   const Function *F = MF.getFunction();
   2050 
   2051   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
   2052 
   2053   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
   2054   // version of the "preferred return address". These offsets affect the return
   2055   // instruction if this is a return from PL1 without hypervisor extensions.
   2056   //    IRQ/FIQ: +4     "subs pc, lr, #4"
   2057   //    SWI:     0      "subs pc, lr, #0"
   2058   //    ABORT:   +4     "subs pc, lr, #4"
   2059   //    UNDEF:   +4/+2  "subs pc, lr, #0"
   2060   // UNDEF varies depending on where the exception came from ARM or Thumb
   2061   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
   2062 
   2063   int64_t LROffset;
   2064   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
   2065       IntKind == "ABORT")
   2066     LROffset = 4;
   2067   else if (IntKind == "SWI" || IntKind == "UNDEF")
   2068     LROffset = 0;
   2069   else
   2070     report_fatal_error("Unsupported interrupt attribute. If present, value "
   2071                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
   2072 
   2073   RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
   2074 
   2075   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
   2076 }
   2077 
   2078 SDValue
   2079 ARMTargetLowering::LowerReturn(SDValue Chain,
   2080                                CallingConv::ID CallConv, bool isVarArg,
   2081                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   2082                                const SmallVectorImpl<SDValue> &OutVals,
   2083                                SDLoc dl, SelectionDAG &DAG) const {
   2084 
   2085   // CCValAssign - represent the assignment of the return value to a location.
   2086   SmallVector<CCValAssign, 16> RVLocs;
   2087 
   2088   // CCState - Info about the registers and stack slots.
   2089   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2090                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   2091 
   2092   // Analyze outgoing return values.
   2093   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   2094                                                isVarArg));
   2095 
   2096   SDValue Flag;
   2097   SmallVector<SDValue, 4> RetOps;
   2098   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2099   bool isLittleEndian = Subtarget->isLittle();
   2100 
   2101   // Copy the result values into the output registers.
   2102   for (unsigned i = 0, realRVLocIdx = 0;
   2103        i != RVLocs.size();
   2104        ++i, ++realRVLocIdx) {
   2105     CCValAssign &VA = RVLocs[i];
   2106     assert(VA.isRegLoc() && "Can only return in registers!");
   2107 
   2108     SDValue Arg = OutVals[realRVLocIdx];
   2109 
   2110     switch (VA.getLocInfo()) {
   2111     default: llvm_unreachable("Unknown loc info!");
   2112     case CCValAssign::Full: break;
   2113     case CCValAssign::BCvt:
   2114       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   2115       break;
   2116     }
   2117 
   2118     if (VA.needsCustom()) {
   2119       if (VA.getLocVT() == MVT::v2f64) {
   2120         // Extract the first half and return it in two registers.
   2121         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2122                                    DAG.getConstant(0, MVT::i32));
   2123         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   2124                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   2125 
   2126         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2127                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
   2128                                  Flag);
   2129         Flag = Chain.getValue(1);
   2130         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2131         VA = RVLocs[++i]; // skip ahead to next loc
   2132         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2133                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
   2134                                  Flag);
   2135         Flag = Chain.getValue(1);
   2136         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2137         VA = RVLocs[++i]; // skip ahead to next loc
   2138 
   2139         // Extract the 2nd half and fall through to handle it as an f64 value.
   2140         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2141                           DAG.getConstant(1, MVT::i32));
   2142       }
   2143       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   2144       // available.
   2145       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   2146                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
   2147       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2148                                fmrrd.getValue(isLittleEndian ? 0 : 1),
   2149                                Flag);
   2150       Flag = Chain.getValue(1);
   2151       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2152       VA = RVLocs[++i]; // skip ahead to next loc
   2153       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2154                                fmrrd.getValue(isLittleEndian ? 1 : 0),
   2155                                Flag);
   2156     } else
   2157       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   2158 
   2159     // Guarantee that all emitted copies are
   2160     // stuck together, avoiding something bad.
   2161     Flag = Chain.getValue(1);
   2162     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2163   }
   2164 
   2165   // Update chain and glue.
   2166   RetOps[0] = Chain;
   2167   if (Flag.getNode())
   2168     RetOps.push_back(Flag);
   2169 
   2170   // CPUs which aren't M-class use a special sequence to return from
   2171   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
   2172   // though we use "subs pc, lr, #N").
   2173   //
   2174   // M-class CPUs actually use a normal return sequence with a special
   2175   // (hardware-provided) value in LR, so the normal code path works.
   2176   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
   2177       !Subtarget->isMClass()) {
   2178     if (Subtarget->isThumb1Only())
   2179       report_fatal_error("interrupt attribute is not supported in Thumb1");
   2180     return LowerInterruptReturn(RetOps, dl, DAG);
   2181   }
   2182 
   2183   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
   2184 }
   2185 
   2186 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   2187   if (N->getNumValues() != 1)
   2188     return false;
   2189   if (!N->hasNUsesOfValue(1, 0))
   2190     return false;
   2191 
   2192   SDValue TCChain = Chain;
   2193   SDNode *Copy = *N->use_begin();
   2194   if (Copy->getOpcode() == ISD::CopyToReg) {
   2195     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2196     // perform a tail call.
   2197     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2198       return false;
   2199     TCChain = Copy->getOperand(0);
   2200   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   2201     SDNode *VMov = Copy;
   2202     // f64 returned in a pair of GPRs.
   2203     SmallPtrSet<SDNode*, 2> Copies;
   2204     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2205          UI != UE; ++UI) {
   2206       if (UI->getOpcode() != ISD::CopyToReg)
   2207         return false;
   2208       Copies.insert(*UI);
   2209     }
   2210     if (Copies.size() > 2)
   2211       return false;
   2212 
   2213     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2214          UI != UE; ++UI) {
   2215       SDValue UseChain = UI->getOperand(0);
   2216       if (Copies.count(UseChain.getNode()))
   2217         // Second CopyToReg
   2218         Copy = *UI;
   2219       else
   2220         // First CopyToReg
   2221         TCChain = UseChain;
   2222     }
   2223   } else if (Copy->getOpcode() == ISD::BITCAST) {
   2224     // f32 returned in a single GPR.
   2225     if (!Copy->hasOneUse())
   2226       return false;
   2227     Copy = *Copy->use_begin();
   2228     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   2229       return false;
   2230     TCChain = Copy->getOperand(0);
   2231   } else {
   2232     return false;
   2233   }
   2234 
   2235   bool HasRet = false;
   2236   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2237        UI != UE; ++UI) {
   2238     if (UI->getOpcode() != ARMISD::RET_FLAG &&
   2239         UI->getOpcode() != ARMISD::INTRET_FLAG)
   2240       return false;
   2241     HasRet = true;
   2242   }
   2243 
   2244   if (!HasRet)
   2245     return false;
   2246 
   2247   Chain = TCChain;
   2248   return true;
   2249 }
   2250 
   2251 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2252   if (!Subtarget->supportsTailCall())
   2253     return false;
   2254 
   2255   if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
   2256     return false;
   2257 
   2258   return !Subtarget->isThumb1Only();
   2259 }
   2260 
   2261 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2262 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2263 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2264 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2265 // be used to form addressing mode. These wrapped nodes will be selected
   2266 // into MOVi.
   2267 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2268   EVT PtrVT = Op.getValueType();
   2269   // FIXME there is no actual debug info here
   2270   SDLoc dl(Op);
   2271   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2272   SDValue Res;
   2273   if (CP->isMachineConstantPoolEntry())
   2274     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2275                                     CP->getAlignment());
   2276   else
   2277     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2278                                     CP->getAlignment());
   2279   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2280 }
   2281 
   2282 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2283   return MachineJumpTableInfo::EK_Inline;
   2284 }
   2285 
   2286 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2287                                              SelectionDAG &DAG) const {
   2288   MachineFunction &MF = DAG.getMachineFunction();
   2289   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2290   unsigned ARMPCLabelIndex = 0;
   2291   SDLoc DL(Op);
   2292   EVT PtrVT = getPointerTy();
   2293   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2294   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2295   SDValue CPAddr;
   2296   if (RelocM == Reloc::Static) {
   2297     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2298   } else {
   2299     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2300     ARMPCLabelIndex = AFI->createPICLabelUId();
   2301     ARMConstantPoolValue *CPV =
   2302       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2303                                       ARMCP::CPBlockAddress, PCAdj);
   2304     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2305   }
   2306   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2307   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2308                                MachinePointerInfo::getConstantPool(),
   2309                                false, false, false, 0);
   2310   if (RelocM == Reloc::Static)
   2311     return Result;
   2312   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2313   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2314 }
   2315 
   2316 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2317 SDValue
   2318 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2319                                                  SelectionDAG &DAG) const {
   2320   SDLoc dl(GA);
   2321   EVT PtrVT = getPointerTy();
   2322   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2323   MachineFunction &MF = DAG.getMachineFunction();
   2324   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2325   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2326   ARMConstantPoolValue *CPV =
   2327     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2328                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2329   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2330   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2331   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2332                          MachinePointerInfo::getConstantPool(),
   2333                          false, false, false, 0);
   2334   SDValue Chain = Argument.getValue(1);
   2335 
   2336   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2337   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2338 
   2339   // call __tls_get_addr.
   2340   ArgListTy Args;
   2341   ArgListEntry Entry;
   2342   Entry.Node = Argument;
   2343   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2344   Args.push_back(Entry);
   2345 
   2346   // FIXME: is there useful debug info available here?
   2347   TargetLowering::CallLoweringInfo CLI(DAG);
   2348   CLI.setDebugLoc(dl).setChain(Chain)
   2349     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
   2350                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
   2351                0);
   2352 
   2353   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2354   return CallResult.first;
   2355 }
   2356 
   2357 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2358 // "local exec" model.
   2359 SDValue
   2360 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2361                                         SelectionDAG &DAG,
   2362                                         TLSModel::Model model) const {
   2363   const GlobalValue *GV = GA->getGlobal();
   2364   SDLoc dl(GA);
   2365   SDValue Offset;
   2366   SDValue Chain = DAG.getEntryNode();
   2367   EVT PtrVT = getPointerTy();
   2368   // Get the Thread Pointer
   2369   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2370 
   2371   if (model == TLSModel::InitialExec) {
   2372     MachineFunction &MF = DAG.getMachineFunction();
   2373     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2374     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2375     // Initial exec model.
   2376     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2377     ARMConstantPoolValue *CPV =
   2378       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2379                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2380                                       true);
   2381     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2382     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2383     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2384                          MachinePointerInfo::getConstantPool(),
   2385                          false, false, false, 0);
   2386     Chain = Offset.getValue(1);
   2387 
   2388     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2389     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2390 
   2391     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2392                          MachinePointerInfo::getConstantPool(),
   2393                          false, false, false, 0);
   2394   } else {
   2395     // local exec model
   2396     assert(model == TLSModel::LocalExec);
   2397     ARMConstantPoolValue *CPV =
   2398       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2399     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2400     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2401     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2402                          MachinePointerInfo::getConstantPool(),
   2403                          false, false, false, 0);
   2404   }
   2405 
   2406   // The address of the thread local variable is the add of the thread
   2407   // pointer with the offset of the variable.
   2408   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2409 }
   2410 
   2411 SDValue
   2412 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2413   // TODO: implement the "local dynamic" model
   2414   assert(Subtarget->isTargetELF() &&
   2415          "TLS not implemented for non-ELF targets");
   2416   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2417 
   2418   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   2419 
   2420   switch (model) {
   2421     case TLSModel::GeneralDynamic:
   2422     case TLSModel::LocalDynamic:
   2423       return LowerToTLSGeneralDynamicModel(GA, DAG);
   2424     case TLSModel::InitialExec:
   2425     case TLSModel::LocalExec:
   2426       return LowerToTLSExecModels(GA, DAG, model);
   2427   }
   2428   llvm_unreachable("bogus TLS model");
   2429 }
   2430 
   2431 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2432                                                  SelectionDAG &DAG) const {
   2433   EVT PtrVT = getPointerTy();
   2434   SDLoc dl(Op);
   2435   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2436   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2437     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2438     ARMConstantPoolValue *CPV =
   2439       ARMConstantPoolConstant::Create(GV,
   2440                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2441     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2442     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2443     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   2444                                  CPAddr,
   2445                                  MachinePointerInfo::getConstantPool(),
   2446                                  false, false, false, 0);
   2447     SDValue Chain = Result.getValue(1);
   2448     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2449     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
   2450     if (!UseGOTOFF)
   2451       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2452                            MachinePointerInfo::getGOT(),
   2453                            false, false, false, 0);
   2454     return Result;
   2455   }
   2456 
   2457   // If we have T2 ops, we can materialize the address directly via movt/movw
   2458   // pair. This is always cheaper.
   2459   if (Subtarget->useMovt(DAG.getMachineFunction())) {
   2460     ++NumMovwMovt;
   2461     // FIXME: Once remat is capable of dealing with instructions with register
   2462     // operands, expand this into two nodes.
   2463     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2464                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2465   } else {
   2466     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2467     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2468     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2469                        MachinePointerInfo::getConstantPool(),
   2470                        false, false, false, 0);
   2471   }
   2472 }
   2473 
   2474 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2475                                                     SelectionDAG &DAG) const {
   2476   EVT PtrVT = getPointerTy();
   2477   SDLoc dl(Op);
   2478   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2479   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2480 
   2481   if (Subtarget->useMovt(DAG.getMachineFunction()))
   2482     ++NumMovwMovt;
   2483 
   2484   // FIXME: Once remat is capable of dealing with instructions with register
   2485   // operands, expand this into multiple nodes
   2486   unsigned Wrapper =
   2487       RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
   2488 
   2489   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
   2490   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
   2491 
   2492   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2493     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2494                          MachinePointerInfo::getGOT(), false, false, false, 0);
   2495   return Result;
   2496 }
   2497 
   2498 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
   2499                                                      SelectionDAG &DAG) const {
   2500   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
   2501   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
   2502          "Windows on ARM expects to use movw/movt");
   2503 
   2504   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2505   const ARMII::TOF TargetFlags =
   2506     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
   2507   EVT PtrVT = getPointerTy();
   2508   SDValue Result;
   2509   SDLoc DL(Op);
   2510 
   2511   ++NumMovwMovt;
   2512 
   2513   // FIXME: Once remat is capable of dealing with instructions with register
   2514   // operands, expand this into two nodes.
   2515   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
   2516                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
   2517                                                   TargetFlags));
   2518   if (GV->hasDLLImportStorageClass())
   2519     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2520                          MachinePointerInfo::getGOT(), false, false, false, 0);
   2521   return Result;
   2522 }
   2523 
   2524 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
   2525                                                     SelectionDAG &DAG) const {
   2526   assert(Subtarget->isTargetELF() &&
   2527          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
   2528   MachineFunction &MF = DAG.getMachineFunction();
   2529   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2530   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2531   EVT PtrVT = getPointerTy();
   2532   SDLoc dl(Op);
   2533   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2534   ARMConstantPoolValue *CPV =
   2535     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
   2536                                   ARMPCLabelIndex, PCAdj);
   2537   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2538   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2539   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2540                                MachinePointerInfo::getConstantPool(),
   2541                                false, false, false, 0);
   2542   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2543   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2544 }
   2545 
   2546 SDValue
   2547 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2548   SDLoc dl(Op);
   2549   SDValue Val = DAG.getConstant(0, MVT::i32);
   2550   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2551                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2552                      Op.getOperand(1), Val);
   2553 }
   2554 
   2555 SDValue
   2556 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2557   SDLoc dl(Op);
   2558   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2559                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
   2560 }
   2561 
   2562 SDValue
   2563 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2564                                           const ARMSubtarget *Subtarget) const {
   2565   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2566   SDLoc dl(Op);
   2567   switch (IntNo) {
   2568   default: return SDValue();    // Don't custom lower most intrinsics.
   2569   case Intrinsic::arm_rbit: {
   2570     assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   2571            "RBIT intrinsic must have i32 type!");
   2572     return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(0));
   2573   }
   2574   case Intrinsic::arm_thread_pointer: {
   2575     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2576     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2577   }
   2578   case Intrinsic::eh_sjlj_lsda: {
   2579     MachineFunction &MF = DAG.getMachineFunction();
   2580     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2581     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2582     EVT PtrVT = getPointerTy();
   2583     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2584     SDValue CPAddr;
   2585     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2586       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2587     ARMConstantPoolValue *CPV =
   2588       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2589                                       ARMCP::CPLSDA, PCAdj);
   2590     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2591     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2592     SDValue Result =
   2593       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2594                   MachinePointerInfo::getConstantPool(),
   2595                   false, false, false, 0);
   2596 
   2597     if (RelocM == Reloc::PIC_) {
   2598       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2599       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2600     }
   2601     return Result;
   2602   }
   2603   case Intrinsic::arm_neon_vmulls:
   2604   case Intrinsic::arm_neon_vmullu: {
   2605     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2606       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2607     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2608                        Op.getOperand(1), Op.getOperand(2));
   2609   }
   2610   }
   2611 }
   2612 
   2613 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2614                                  const ARMSubtarget *Subtarget) {
   2615   // FIXME: handle "fence singlethread" more efficiently.
   2616   SDLoc dl(Op);
   2617   if (!Subtarget->hasDataBarrier()) {
   2618     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2619     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2620     // here.
   2621     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2622            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
   2623     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2624                        DAG.getConstant(0, MVT::i32));
   2625   }
   2626 
   2627   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
   2628   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
   2629   unsigned Domain = ARM_MB::ISH;
   2630   if (Subtarget->isMClass()) {
   2631     // Only a full system barrier exists in the M-class architectures.
   2632     Domain = ARM_MB::SY;
   2633   } else if (Subtarget->isSwift() && Ord == Release) {
   2634     // Swift happens to implement ISHST barriers in a way that's compatible with
   2635     // Release semantics but weaker than ISH so we'd be fools not to use
   2636     // it. Beware: other processors probably don't!
   2637     Domain = ARM_MB::ISHST;
   2638   }
   2639 
   2640   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
   2641                      DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
   2642                      DAG.getConstant(Domain, MVT::i32));
   2643 }
   2644 
   2645 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2646                              const ARMSubtarget *Subtarget) {
   2647   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2648   if (!(Subtarget->isThumb2() ||
   2649         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2650     // Just preserve the chain.
   2651     return Op.getOperand(0);
   2652 
   2653   SDLoc dl(Op);
   2654   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2655   if (!isRead &&
   2656       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2657     // ARMv7 with MP extension has PLDW.
   2658     return Op.getOperand(0);
   2659 
   2660   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2661   if (Subtarget->isThumb()) {
   2662     // Invert the bits.
   2663     isRead = ~isRead & 1;
   2664     isData = ~isData & 1;
   2665   }
   2666 
   2667   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2668                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
   2669                      DAG.getConstant(isData, MVT::i32));
   2670 }
   2671 
   2672 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2673   MachineFunction &MF = DAG.getMachineFunction();
   2674   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2675 
   2676   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2677   // memory location argument.
   2678   SDLoc dl(Op);
   2679   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2680   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2681   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2682   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2683                       MachinePointerInfo(SV), false, false, 0);
   2684 }
   2685 
   2686 SDValue
   2687 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2688                                         SDValue &Root, SelectionDAG &DAG,
   2689                                         SDLoc dl) const {
   2690   MachineFunction &MF = DAG.getMachineFunction();
   2691   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2692 
   2693   const TargetRegisterClass *RC;
   2694   if (AFI->isThumb1OnlyFunction())
   2695     RC = &ARM::tGPRRegClass;
   2696   else
   2697     RC = &ARM::GPRRegClass;
   2698 
   2699   // Transform the arguments stored in physical registers into virtual ones.
   2700   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2701   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2702 
   2703   SDValue ArgValue2;
   2704   if (NextVA.isMemLoc()) {
   2705     MachineFrameInfo *MFI = MF.getFrameInfo();
   2706     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2707 
   2708     // Create load node to retrieve arguments from the stack.
   2709     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2710     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
   2711                             MachinePointerInfo::getFixedStack(FI),
   2712                             false, false, false, 0);
   2713   } else {
   2714     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2715     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2716   }
   2717   if (!Subtarget->isLittle())
   2718     std::swap (ArgValue, ArgValue2);
   2719   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2720 }
   2721 
   2722 void
   2723 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
   2724                                   unsigned InRegsParamRecordIdx,
   2725                                   unsigned ArgSize,
   2726                                   unsigned &ArgRegsSize,
   2727                                   unsigned &ArgRegsSaveSize)
   2728   const {
   2729   unsigned NumGPRs;
   2730   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   2731     unsigned RBegin, REnd;
   2732     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   2733     NumGPRs = REnd - RBegin;
   2734   } else {
   2735     unsigned int firstUnalloced;
   2736     firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
   2737                                                 sizeof(GPRArgRegs) /
   2738                                                 sizeof(GPRArgRegs[0]));
   2739     NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
   2740   }
   2741 
   2742   unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
   2743   ArgRegsSize = NumGPRs * 4;
   2744 
   2745   // If parameter is split between stack and GPRs...
   2746   if (NumGPRs && Align > 4 &&
   2747       (ArgRegsSize < ArgSize ||
   2748         InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
   2749     // Add padding for part of param recovered from GPRs.  For example,
   2750     // if Align == 8, its last byte must be at address K*8 - 1.
   2751     // We need to do it, since remained (stack) part of parameter has
   2752     // stack alignment, and we need to "attach" "GPRs head" without gaps
   2753     // to it:
   2754     // Stack:
   2755     // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
   2756     // [ [padding] [GPRs head] ] [        Tail passed via stack       ....
   2757     //
   2758     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2759     unsigned Padding =
   2760         OffsetToAlignment(ArgRegsSize + AFI->getArgRegsSaveSize(), Align);
   2761     ArgRegsSaveSize = ArgRegsSize + Padding;
   2762   } else
   2763     // We don't need to extend regs save size for byval parameters if they
   2764     // are passed via GPRs only.
   2765     ArgRegsSaveSize = ArgRegsSize;
   2766 }
   2767 
   2768 // The remaining GPRs hold either the beginning of variable-argument
   2769 // data, or the beginning of an aggregate passed by value (usually
   2770 // byval).  Either way, we allocate stack slots adjacent to the data
   2771 // provided by our caller, and store the unallocated registers there.
   2772 // If this is a variadic function, the va_list pointer will begin with
   2773 // these values; otherwise, this reassembles a (byval) structure that
   2774 // was split between registers and memory.
   2775 // Return: The frame index registers were stored into.
   2776 int
   2777 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
   2778                                   SDLoc dl, SDValue &Chain,
   2779                                   const Value *OrigArg,
   2780                                   unsigned InRegsParamRecordIdx,
   2781                                   unsigned OffsetFromOrigArg,
   2782                                   unsigned ArgOffset,
   2783                                   unsigned ArgSize,
   2784                                   bool ForceMutable,
   2785                                   unsigned ByValStoreOffset,
   2786                                   unsigned TotalArgRegsSaveSize) const {
   2787 
   2788   // Currently, two use-cases possible:
   2789   // Case #1. Non-var-args function, and we meet first byval parameter.
   2790   //          Setup first unallocated register as first byval register;
   2791   //          eat all remained registers
   2792   //          (these two actions are performed by HandleByVal method).
   2793   //          Then, here, we initialize stack frame with
   2794   //          "store-reg" instructions.
   2795   // Case #2. Var-args function, that doesn't contain byval parameters.
   2796   //          The same: eat all remained unallocated registers,
   2797   //          initialize stack frame.
   2798 
   2799   MachineFunction &MF = DAG.getMachineFunction();
   2800   MachineFrameInfo *MFI = MF.getFrameInfo();
   2801   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2802   unsigned firstRegToSaveIndex, lastRegToSaveIndex;
   2803   unsigned RBegin, REnd;
   2804   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   2805     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   2806     firstRegToSaveIndex = RBegin - ARM::R0;
   2807     lastRegToSaveIndex = REnd - ARM::R0;
   2808   } else {
   2809     firstRegToSaveIndex = CCInfo.getFirstUnallocated
   2810       (GPRArgRegs, array_lengthof(GPRArgRegs));
   2811     lastRegToSaveIndex = 4;
   2812   }
   2813 
   2814   unsigned ArgRegsSize, ArgRegsSaveSize;
   2815   computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
   2816                  ArgRegsSize, ArgRegsSaveSize);
   2817 
   2818   // Store any by-val regs to their spots on the stack so that they may be
   2819   // loaded by deferencing the result of formal parameter pointer or va_next.
   2820   // Note: once stack area for byval/varargs registers
   2821   // was initialized, it can't be initialized again.
   2822   if (ArgRegsSaveSize) {
   2823     unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
   2824 
   2825     if (Padding) {
   2826       assert(AFI->getStoredByValParamsPadding() == 0 &&
   2827              "The only parameter may be padded.");
   2828       AFI->setStoredByValParamsPadding(Padding);
   2829     }
   2830 
   2831     int FrameIndex = MFI->CreateFixedObject(ArgRegsSaveSize,
   2832                                             Padding +
   2833                                               ByValStoreOffset -
   2834                                               (int64_t)TotalArgRegsSaveSize,
   2835                                             false);
   2836     SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
   2837     if (Padding) {
   2838        MFI->CreateFixedObject(Padding,
   2839                               ArgOffset + ByValStoreOffset -
   2840                                 (int64_t)ArgRegsSaveSize,
   2841                               false);
   2842     }
   2843 
   2844     SmallVector<SDValue, 4> MemOps;
   2845     for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
   2846          ++firstRegToSaveIndex, ++i) {
   2847       const TargetRegisterClass *RC;
   2848       if (AFI->isThumb1OnlyFunction())
   2849         RC = &ARM::tGPRRegClass;
   2850       else
   2851         RC = &ARM::GPRRegClass;
   2852 
   2853       unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
   2854       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2855       SDValue Store =
   2856         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2857                      MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
   2858                      false, false, 0);
   2859       MemOps.push_back(Store);
   2860       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
   2861                         DAG.getConstant(4, getPointerTy()));
   2862     }
   2863 
   2864     AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
   2865 
   2866     if (!MemOps.empty())
   2867       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   2868     return FrameIndex;
   2869   } else {
   2870     if (ArgSize == 0) {
   2871       // We cannot allocate a zero-byte object for the first variadic argument,
   2872       // so just make up a size.
   2873       ArgSize = 4;
   2874     }
   2875     // This will point to the next argument passed via stack.
   2876     return MFI->CreateFixedObject(
   2877       ArgSize, ArgOffset, !ForceMutable);
   2878   }
   2879 }
   2880 
   2881 // Setup stack frame, the va_list pointer will start from.
   2882 void
   2883 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   2884                                         SDLoc dl, SDValue &Chain,
   2885                                         unsigned ArgOffset,
   2886                                         unsigned TotalArgRegsSaveSize,
   2887                                         bool ForceMutable) const {
   2888   MachineFunction &MF = DAG.getMachineFunction();
   2889   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2890 
   2891   // Try to store any remaining integer argument regs
   2892   // to their spots on the stack so that they may be loaded by deferencing
   2893   // the result of va_next.
   2894   // If there is no regs to be stored, just point address after last
   2895   // argument passed via stack.
   2896   int FrameIndex =
   2897     StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
   2898                    CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable,
   2899                    0, TotalArgRegsSaveSize);
   2900 
   2901   AFI->setVarArgsFrameIndex(FrameIndex);
   2902 }
   2903 
   2904 SDValue
   2905 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   2906                                         CallingConv::ID CallConv, bool isVarArg,
   2907                                         const SmallVectorImpl<ISD::InputArg>
   2908                                           &Ins,
   2909                                         SDLoc dl, SelectionDAG &DAG,
   2910                                         SmallVectorImpl<SDValue> &InVals)
   2911                                           const {
   2912   MachineFunction &MF = DAG.getMachineFunction();
   2913   MachineFrameInfo *MFI = MF.getFrameInfo();
   2914 
   2915   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2916 
   2917   // Assign locations to all of the incoming arguments.
   2918   SmallVector<CCValAssign, 16> ArgLocs;
   2919   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2920                     getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
   2921   CCInfo.AnalyzeFormalArguments(Ins,
   2922                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   2923                                                   isVarArg));
   2924 
   2925   SmallVector<SDValue, 16> ArgValues;
   2926   int lastInsIndex = -1;
   2927   SDValue ArgValue;
   2928   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
   2929   unsigned CurArgIdx = 0;
   2930 
   2931   // Initially ArgRegsSaveSize is zero.
   2932   // Then we increase this value each time we meet byval parameter.
   2933   // We also increase this value in case of varargs function.
   2934   AFI->setArgRegsSaveSize(0);
   2935 
   2936   unsigned ByValStoreOffset = 0;
   2937   unsigned TotalArgRegsSaveSize = 0;
   2938   unsigned ArgRegsSaveSizeMaxAlign = 4;
   2939 
   2940   // Calculate the amount of stack space that we need to allocate to store
   2941   // byval and variadic arguments that are passed in registers.
   2942   // We need to know this before we allocate the first byval or variadic
   2943   // argument, as they will be allocated a stack slot below the CFA (Canonical
   2944   // Frame Address, the stack pointer at entry to the function).
   2945   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2946     CCValAssign &VA = ArgLocs[i];
   2947     if (VA.isMemLoc()) {
   2948       int index = VA.getValNo();
   2949       if (index != lastInsIndex) {
   2950         ISD::ArgFlagsTy Flags = Ins[index].Flags;
   2951         if (Flags.isByVal()) {
   2952           unsigned ExtraArgRegsSize;
   2953           unsigned ExtraArgRegsSaveSize;
   2954           computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsProceed(),
   2955                          Flags.getByValSize(),
   2956                          ExtraArgRegsSize, ExtraArgRegsSaveSize);
   2957 
   2958           TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
   2959           if (Flags.getByValAlign() > ArgRegsSaveSizeMaxAlign)
   2960               ArgRegsSaveSizeMaxAlign = Flags.getByValAlign();
   2961           CCInfo.nextInRegsParam();
   2962         }
   2963         lastInsIndex = index;
   2964       }
   2965     }
   2966   }
   2967   CCInfo.rewindByValRegsInfo();
   2968   lastInsIndex = -1;
   2969   if (isVarArg) {
   2970     unsigned ExtraArgRegsSize;
   2971     unsigned ExtraArgRegsSaveSize;
   2972     computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0,
   2973                    ExtraArgRegsSize, ExtraArgRegsSaveSize);
   2974     TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
   2975   }
   2976   // If the arg regs save area contains N-byte aligned values, the
   2977   // bottom of it must be at least N-byte aligned.
   2978   TotalArgRegsSaveSize = RoundUpToAlignment(TotalArgRegsSaveSize, ArgRegsSaveSizeMaxAlign);
   2979   TotalArgRegsSaveSize = std::min(TotalArgRegsSaveSize, 16U);
   2980 
   2981   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2982     CCValAssign &VA = ArgLocs[i];
   2983     std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
   2984     CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
   2985     // Arguments stored in registers.
   2986     if (VA.isRegLoc()) {
   2987       EVT RegVT = VA.getLocVT();
   2988 
   2989       if (VA.needsCustom()) {
   2990         // f64 and vector types are split up into multiple registers or
   2991         // combinations of registers and stack slots.
   2992         if (VA.getLocVT() == MVT::v2f64) {
   2993           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   2994                                                    Chain, DAG, dl);
   2995           VA = ArgLocs[++i]; // skip ahead to next loc
   2996           SDValue ArgValue2;
   2997           if (VA.isMemLoc()) {
   2998             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   2999             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   3000             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   3001                                     MachinePointerInfo::getFixedStack(FI),
   3002                                     false, false, false, 0);
   3003           } else {
   3004             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   3005                                              Chain, DAG, dl);
   3006           }
   3007           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   3008           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3009                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
   3010           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3011                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
   3012         } else
   3013           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   3014 
   3015       } else {
   3016         const TargetRegisterClass *RC;
   3017 
   3018         if (RegVT == MVT::f32)
   3019           RC = &ARM::SPRRegClass;
   3020         else if (RegVT == MVT::f64)
   3021           RC = &ARM::DPRRegClass;
   3022         else if (RegVT == MVT::v2f64)
   3023           RC = &ARM::QPRRegClass;
   3024         else if (RegVT == MVT::i32)
   3025           RC = AFI->isThumb1OnlyFunction() ?
   3026             (const TargetRegisterClass*)&ARM::tGPRRegClass :
   3027             (const TargetRegisterClass*)&ARM::GPRRegClass;
   3028         else
   3029           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3030 
   3031         // Transform the arguments in physical registers into virtual ones.
   3032         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3033         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   3034       }
   3035 
   3036       // If this is an 8 or 16-bit value, it is really passed promoted
   3037       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   3038       // truncate to the right size.
   3039       switch (VA.getLocInfo()) {
   3040       default: llvm_unreachable("Unknown loc info!");
   3041       case CCValAssign::Full: break;
   3042       case CCValAssign::BCvt:
   3043         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   3044         break;
   3045       case CCValAssign::SExt:
   3046         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   3047                                DAG.getValueType(VA.getValVT()));
   3048         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3049         break;
   3050       case CCValAssign::ZExt:
   3051         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   3052                                DAG.getValueType(VA.getValVT()));
   3053         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3054         break;
   3055       }
   3056 
   3057       InVals.push_back(ArgValue);
   3058 
   3059     } else { // VA.isRegLoc()
   3060 
   3061       // sanity check
   3062       assert(VA.isMemLoc());
   3063       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   3064 
   3065       int index = ArgLocs[i].getValNo();
   3066 
   3067       // Some Ins[] entries become multiple ArgLoc[] entries.
   3068       // Process them only once.
   3069       if (index != lastInsIndex)
   3070         {
   3071           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   3072           // FIXME: For now, all byval parameter objects are marked mutable.
   3073           // This can be changed with more analysis.
   3074           // In case of tail call optimization mark all arguments mutable.
   3075           // Since they could be overwritten by lowering of arguments in case of
   3076           // a tail call.
   3077           if (Flags.isByVal()) {
   3078             unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
   3079 
   3080             ByValStoreOffset = RoundUpToAlignment(ByValStoreOffset, Flags.getByValAlign());
   3081             int FrameIndex = StoreByValRegs(
   3082                 CCInfo, DAG, dl, Chain, CurOrigArg,
   3083                 CurByValIndex,
   3084                 Ins[VA.getValNo()].PartOffset,
   3085                 VA.getLocMemOffset(),
   3086                 Flags.getByValSize(),
   3087                 true /*force mutable frames*/,
   3088                 ByValStoreOffset,
   3089                 TotalArgRegsSaveSize);
   3090             ByValStoreOffset += Flags.getByValSize();
   3091             ByValStoreOffset = std::min(ByValStoreOffset, 16U);
   3092             InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
   3093             CCInfo.nextInRegsParam();
   3094           } else {
   3095             unsigned FIOffset = VA.getLocMemOffset();
   3096             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   3097                                             FIOffset, true);
   3098 
   3099             // Create load nodes to retrieve arguments from the stack.
   3100             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   3101             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   3102                                          MachinePointerInfo::getFixedStack(FI),
   3103                                          false, false, false, 0));
   3104           }
   3105           lastInsIndex = index;
   3106         }
   3107     }
   3108   }
   3109 
   3110   // varargs
   3111   if (isVarArg)
   3112     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
   3113                          CCInfo.getNextStackOffset(),
   3114                          TotalArgRegsSaveSize);
   3115 
   3116   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
   3117 
   3118   return Chain;
   3119 }
   3120 
   3121 /// isFloatingPointZero - Return true if this is +0.0.
   3122 static bool isFloatingPointZero(SDValue Op) {
   3123   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   3124     return CFP->getValueAPF().isPosZero();
   3125   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   3126     // Maybe this has already been legalized into the constant pool?
   3127     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   3128       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   3129       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   3130         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   3131           return CFP->getValueAPF().isPosZero();
   3132     }
   3133   }
   3134   return false;
   3135 }
   3136 
   3137 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   3138 /// the given operands.
   3139 SDValue
   3140 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3141                              SDValue &ARMcc, SelectionDAG &DAG,
   3142                              SDLoc dl) const {
   3143   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   3144     unsigned C = RHSC->getZExtValue();
   3145     if (!isLegalICmpImmediate(C)) {
   3146       // Constant does not fit, try adjusting it by one?
   3147       switch (CC) {
   3148       default: break;
   3149       case ISD::SETLT:
   3150       case ISD::SETGE:
   3151         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   3152           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   3153           RHS = DAG.getConstant(C-1, MVT::i32);
   3154         }
   3155         break;
   3156       case ISD::SETULT:
   3157       case ISD::SETUGE:
   3158         if (C != 0 && isLegalICmpImmediate(C-1)) {
   3159           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   3160           RHS = DAG.getConstant(C-1, MVT::i32);
   3161         }
   3162         break;
   3163       case ISD::SETLE:
   3164       case ISD::SETGT:
   3165         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   3166           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   3167           RHS = DAG.getConstant(C+1, MVT::i32);
   3168         }
   3169         break;
   3170       case ISD::SETULE:
   3171       case ISD::SETUGT:
   3172         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   3173           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   3174           RHS = DAG.getConstant(C+1, MVT::i32);
   3175         }
   3176         break;
   3177       }
   3178     }
   3179   }
   3180 
   3181   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3182   ARMISD::NodeType CompareType;
   3183   switch (CondCode) {
   3184   default:
   3185     CompareType = ARMISD::CMP;
   3186     break;
   3187   case ARMCC::EQ:
   3188   case ARMCC::NE:
   3189     // Uses only Z Flag
   3190     CompareType = ARMISD::CMPZ;
   3191     break;
   3192   }
   3193   ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3194   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   3195 }
   3196 
   3197 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   3198 SDValue
   3199 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   3200                              SDLoc dl) const {
   3201   SDValue Cmp;
   3202   if (!isFloatingPointZero(RHS))
   3203     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   3204   else
   3205     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   3206   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   3207 }
   3208 
   3209 /// duplicateCmp - Glue values can have only one use, so this function
   3210 /// duplicates a comparison node.
   3211 SDValue
   3212 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   3213   unsigned Opc = Cmp.getOpcode();
   3214   SDLoc DL(Cmp);
   3215   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   3216     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3217 
   3218   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   3219   Cmp = Cmp.getOperand(0);
   3220   Opc = Cmp.getOpcode();
   3221   if (Opc == ARMISD::CMPFP)
   3222     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3223   else {
   3224     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   3225     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   3226   }
   3227   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   3228 }
   3229 
   3230 std::pair<SDValue, SDValue>
   3231 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
   3232                                  SDValue &ARMcc) const {
   3233   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
   3234 
   3235   SDValue Value, OverflowCmp;
   3236   SDValue LHS = Op.getOperand(0);
   3237   SDValue RHS = Op.getOperand(1);
   3238 
   3239 
   3240   // FIXME: We are currently always generating CMPs because we don't support
   3241   // generating CMN through the backend. This is not as good as the natural
   3242   // CMP case because it causes a register dependency and cannot be folded
   3243   // later.
   3244 
   3245   switch (Op.getOpcode()) {
   3246   default:
   3247     llvm_unreachable("Unknown overflow instruction!");
   3248   case ISD::SADDO:
   3249     ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
   3250     Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3251     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
   3252     break;
   3253   case ISD::UADDO:
   3254     ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
   3255     Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3256     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
   3257     break;
   3258   case ISD::SSUBO:
   3259     ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
   3260     Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3261     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
   3262     break;
   3263   case ISD::USUBO:
   3264     ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
   3265     Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3266     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
   3267     break;
   3268   } // switch (...)
   3269 
   3270   return std::make_pair(Value, OverflowCmp);
   3271 }
   3272 
   3273 
   3274 SDValue
   3275 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   3276   // Let legalize expand this if it isn't a legal type yet.
   3277   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   3278     return SDValue();
   3279 
   3280   SDValue Value, OverflowCmp;
   3281   SDValue ARMcc;
   3282   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
   3283   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3284   // We use 0 and 1 as false and true values.
   3285   SDValue TVal = DAG.getConstant(1, MVT::i32);
   3286   SDValue FVal = DAG.getConstant(0, MVT::i32);
   3287   EVT VT = Op.getValueType();
   3288 
   3289   SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
   3290                                  ARMcc, CCR, OverflowCmp);
   3291 
   3292   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   3293   return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
   3294 }
   3295 
   3296 
   3297 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   3298   SDValue Cond = Op.getOperand(0);
   3299   SDValue SelectTrue = Op.getOperand(1);
   3300   SDValue SelectFalse = Op.getOperand(2);
   3301   SDLoc dl(Op);
   3302   unsigned Opc = Cond.getOpcode();
   3303 
   3304   if (Cond.getResNo() == 1 &&
   3305       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   3306        Opc == ISD::USUBO)) {
   3307     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   3308       return SDValue();
   3309 
   3310     SDValue Value, OverflowCmp;
   3311     SDValue ARMcc;
   3312     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   3313     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3314     EVT VT = Op.getValueType();
   3315 
   3316     return DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, SelectTrue, SelectFalse,
   3317                        ARMcc, CCR, OverflowCmp);
   3318 
   3319   }
   3320 
   3321   // Convert:
   3322   //
   3323   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   3324   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   3325   //
   3326   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   3327     const ConstantSDNode *CMOVTrue =
   3328       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   3329     const ConstantSDNode *CMOVFalse =
   3330       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   3331 
   3332     if (CMOVTrue && CMOVFalse) {
   3333       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   3334       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   3335 
   3336       SDValue True;
   3337       SDValue False;
   3338       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   3339         True = SelectTrue;
   3340         False = SelectFalse;
   3341       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   3342         True = SelectFalse;
   3343         False = SelectTrue;
   3344       }
   3345 
   3346       if (True.getNode() && False.getNode()) {
   3347         EVT VT = Op.getValueType();
   3348         SDValue ARMcc = Cond.getOperand(2);
   3349         SDValue CCR = Cond.getOperand(3);
   3350         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   3351         assert(True.getValueType() == VT);
   3352         return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
   3353       }
   3354     }
   3355   }
   3356 
   3357   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   3358   // undefined bits before doing a full-word comparison with zero.
   3359   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   3360                      DAG.getConstant(1, Cond.getValueType()));
   3361 
   3362   return DAG.getSelectCC(dl, Cond,
   3363                          DAG.getConstant(0, Cond.getValueType()),
   3364                          SelectTrue, SelectFalse, ISD::SETNE);
   3365 }
   3366 
   3367 static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
   3368   if (CC == ISD::SETNE)
   3369     return ISD::SETEQ;
   3370   return ISD::getSetCCInverse(CC, true);
   3371 }
   3372 
   3373 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   3374                                  bool &swpCmpOps, bool &swpVselOps) {
   3375   // Start by selecting the GE condition code for opcodes that return true for
   3376   // 'equality'
   3377   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
   3378       CC == ISD::SETULE)
   3379     CondCode = ARMCC::GE;
   3380 
   3381   // and GT for opcodes that return false for 'equality'.
   3382   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
   3383            CC == ISD::SETULT)
   3384     CondCode = ARMCC::GT;
   3385 
   3386   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
   3387   // to swap the compare operands.
   3388   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
   3389       CC == ISD::SETULT)
   3390     swpCmpOps = true;
   3391 
   3392   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
   3393   // If we have an unordered opcode, we need to swap the operands to the VSEL
   3394   // instruction (effectively negating the condition).
   3395   //
   3396   // This also has the effect of swapping which one of 'less' or 'greater'
   3397   // returns true, so we also swap the compare operands. It also switches
   3398   // whether we return true for 'equality', so we compensate by picking the
   3399   // opposite condition code to our original choice.
   3400   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
   3401       CC == ISD::SETUGT) {
   3402     swpCmpOps = !swpCmpOps;
   3403     swpVselOps = !swpVselOps;
   3404     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
   3405   }
   3406 
   3407   // 'ordered' is 'anything but unordered', so use the VS condition code and
   3408   // swap the VSEL operands.
   3409   if (CC == ISD::SETO) {
   3410     CondCode = ARMCC::VS;
   3411     swpVselOps = true;
   3412   }
   3413 
   3414   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
   3415   // code and swap the VSEL operands.
   3416   if (CC == ISD::SETUNE) {
   3417     CondCode = ARMCC::EQ;
   3418     swpVselOps = true;
   3419   }
   3420 }
   3421 
   3422 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3423   EVT VT = Op.getValueType();
   3424   SDValue LHS = Op.getOperand(0);
   3425   SDValue RHS = Op.getOperand(1);
   3426   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3427   SDValue TrueVal = Op.getOperand(2);
   3428   SDValue FalseVal = Op.getOperand(3);
   3429   SDLoc dl(Op);
   3430 
   3431   if (LHS.getValueType() == MVT::i32) {
   3432     // Try to generate VSEL on ARMv8.
   3433     // The VSEL instruction can't use all the usual ARM condition
   3434     // codes: it only has two bits to select the condition code, so it's
   3435     // constrained to use only GE, GT, VS and EQ.
   3436     //
   3437     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
   3438     // swap the operands of the previous compare instruction (effectively
   3439     // inverting the compare condition, swapping 'less' and 'greater') and
   3440     // sometimes need to swap the operands to the VSEL (which inverts the
   3441     // condition in the sense of firing whenever the previous condition didn't)
   3442     if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3443                                       TrueVal.getValueType() == MVT::f64)) {
   3444       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3445       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
   3446           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
   3447         CC = getInverseCCForVSEL(CC);
   3448         std::swap(TrueVal, FalseVal);
   3449       }
   3450     }
   3451 
   3452     SDValue ARMcc;
   3453     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3454     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3455     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
   3456                        Cmp);
   3457   }
   3458 
   3459   ARMCC::CondCodes CondCode, CondCode2;
   3460   FPCCToARMCC(CC, CondCode, CondCode2);
   3461 
   3462   // Try to generate VSEL on ARMv8.
   3463   if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3464                                     TrueVal.getValueType() == MVT::f64)) {
   3465     // We can select VMAXNM/VMINNM from a compare followed by a select with the
   3466     // same operands, as follows:
   3467     //   c = fcmp [ogt, olt, ugt, ult] a, b
   3468     //   select c, a, b
   3469     // We only do this in unsafe-fp-math, because signed zeros and NaNs are
   3470     // handled differently than the original code sequence.
   3471     if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal &&
   3472         RHS == FalseVal) {
   3473       if (CC == ISD::SETOGT || CC == ISD::SETUGT)
   3474         return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
   3475       if (CC == ISD::SETOLT || CC == ISD::SETULT)
   3476         return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
   3477     }
   3478 
   3479     bool swpCmpOps = false;
   3480     bool swpVselOps = false;
   3481     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
   3482 
   3483     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
   3484         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
   3485       if (swpCmpOps)
   3486         std::swap(LHS, RHS);
   3487       if (swpVselOps)
   3488         std::swap(TrueVal, FalseVal);
   3489     }
   3490   }
   3491 
   3492   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3493   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3494   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3495   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   3496                                ARMcc, CCR, Cmp);
   3497   if (CondCode2 != ARMCC::AL) {
   3498     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
   3499     // FIXME: Needs another CMP because flag can have but one use.
   3500     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   3501     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
   3502                          Result, TrueVal, ARMcc2, CCR, Cmp2);
   3503   }
   3504   return Result;
   3505 }
   3506 
   3507 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   3508 /// to morph to an integer compare sequence.
   3509 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   3510                            const ARMSubtarget *Subtarget) {
   3511   SDNode *N = Op.getNode();
   3512   if (!N->hasOneUse())
   3513     // Otherwise it requires moving the value from fp to integer registers.
   3514     return false;
   3515   if (!N->getNumValues())
   3516     return false;
   3517   EVT VT = Op.getValueType();
   3518   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   3519     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   3520     // vmrs are very slow, e.g. cortex-a8.
   3521     return false;
   3522 
   3523   if (isFloatingPointZero(Op)) {
   3524     SeenZero = true;
   3525     return true;
   3526   }
   3527   return ISD::isNormalLoad(N);
   3528 }
   3529 
   3530 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   3531   if (isFloatingPointZero(Op))
   3532     return DAG.getConstant(0, MVT::i32);
   3533 
   3534   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   3535     return DAG.getLoad(MVT::i32, SDLoc(Op),
   3536                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   3537                        Ld->isVolatile(), Ld->isNonTemporal(),
   3538                        Ld->isInvariant(), Ld->getAlignment());
   3539 
   3540   llvm_unreachable("Unknown VFP cmp argument!");
   3541 }
   3542 
   3543 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   3544                            SDValue &RetVal1, SDValue &RetVal2) {
   3545   if (isFloatingPointZero(Op)) {
   3546     RetVal1 = DAG.getConstant(0, MVT::i32);
   3547     RetVal2 = DAG.getConstant(0, MVT::i32);
   3548     return;
   3549   }
   3550 
   3551   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   3552     SDValue Ptr = Ld->getBasePtr();
   3553     RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
   3554                           Ld->getChain(), Ptr,
   3555                           Ld->getPointerInfo(),
   3556                           Ld->isVolatile(), Ld->isNonTemporal(),
   3557                           Ld->isInvariant(), Ld->getAlignment());
   3558 
   3559     EVT PtrType = Ptr.getValueType();
   3560     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   3561     SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
   3562                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
   3563     RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
   3564                           Ld->getChain(), NewPtr,
   3565                           Ld->getPointerInfo().getWithOffset(4),
   3566                           Ld->isVolatile(), Ld->isNonTemporal(),
   3567                           Ld->isInvariant(), NewAlign);
   3568     return;
   3569   }
   3570 
   3571   llvm_unreachable("Unknown VFP cmp argument!");
   3572 }
   3573 
   3574 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   3575 /// f32 and even f64 comparisons to integer ones.
   3576 SDValue
   3577 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   3578   SDValue Chain = Op.getOperand(0);
   3579   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3580   SDValue LHS = Op.getOperand(2);
   3581   SDValue RHS = Op.getOperand(3);
   3582   SDValue Dest = Op.getOperand(4);
   3583   SDLoc dl(Op);
   3584 
   3585   bool LHSSeenZero = false;
   3586   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   3587   bool RHSSeenZero = false;
   3588   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   3589   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   3590     // If unsafe fp math optimization is enabled and there are no other uses of
   3591     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   3592     // to an integer comparison.
   3593     if (CC == ISD::SETOEQ)
   3594       CC = ISD::SETEQ;
   3595     else if (CC == ISD::SETUNE)
   3596       CC = ISD::SETNE;
   3597 
   3598     SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
   3599     SDValue ARMcc;
   3600     if (LHS.getValueType() == MVT::f32) {
   3601       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3602                         bitcastf32Toi32(LHS, DAG), Mask);
   3603       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3604                         bitcastf32Toi32(RHS, DAG), Mask);
   3605       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3606       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3607       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3608                          Chain, Dest, ARMcc, CCR, Cmp);
   3609     }
   3610 
   3611     SDValue LHS1, LHS2;
   3612     SDValue RHS1, RHS2;
   3613     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   3614     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   3615     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   3616     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   3617     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3618     ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3619     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3620     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   3621     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
   3622   }
   3623 
   3624   return SDValue();
   3625 }
   3626 
   3627 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   3628   SDValue Chain = Op.getOperand(0);
   3629   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3630   SDValue LHS = Op.getOperand(2);
   3631   SDValue RHS = Op.getOperand(3);
   3632   SDValue Dest = Op.getOperand(4);
   3633   SDLoc dl(Op);
   3634 
   3635   if (LHS.getValueType() == MVT::i32) {
   3636     SDValue ARMcc;
   3637     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3638     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3639     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3640                        Chain, Dest, ARMcc, CCR, Cmp);
   3641   }
   3642 
   3643   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   3644 
   3645   if (getTargetMachine().Options.UnsafeFPMath &&
   3646       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   3647        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   3648     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   3649     if (Result.getNode())
   3650       return Result;
   3651   }
   3652 
   3653   ARMCC::CondCodes CondCode, CondCode2;
   3654   FPCCToARMCC(CC, CondCode, CondCode2);
   3655 
   3656   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3657   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3658   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3659   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3660   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   3661   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3662   if (CondCode2 != ARMCC::AL) {
   3663     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
   3664     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   3665     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3666   }
   3667   return Res;
   3668 }
   3669 
   3670 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   3671   SDValue Chain = Op.getOperand(0);
   3672   SDValue Table = Op.getOperand(1);
   3673   SDValue Index = Op.getOperand(2);
   3674   SDLoc dl(Op);
   3675 
   3676   EVT PTy = getPointerTy();
   3677   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   3678   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   3679   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
   3680   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   3681   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
   3682   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
   3683   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3684   if (Subtarget->isThumb2()) {
   3685     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   3686     // which does another jump to the destination. This also makes it easier
   3687     // to translate it to TBB / TBH later.
   3688     // FIXME: This might not work if the function is extremely large.
   3689     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3690                        Addr, Op.getOperand(2), JTI, UId);
   3691   }
   3692   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3693     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3694                        MachinePointerInfo::getJumpTable(),
   3695                        false, false, false, 0);
   3696     Chain = Addr.getValue(1);
   3697     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3698     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3699   } else {
   3700     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
   3701                        MachinePointerInfo::getJumpTable(),
   3702                        false, false, false, 0);
   3703     Chain = Addr.getValue(1);
   3704     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3705   }
   3706 }
   3707 
   3708 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3709   EVT VT = Op.getValueType();
   3710   SDLoc dl(Op);
   3711 
   3712   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   3713     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   3714       return Op;
   3715     return DAG.UnrollVectorOp(Op.getNode());
   3716   }
   3717 
   3718   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   3719          "Invalid type for custom lowering!");
   3720   if (VT != MVT::v4i16)
   3721     return DAG.UnrollVectorOp(Op.getNode());
   3722 
   3723   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   3724   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   3725 }
   3726 
   3727 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3728   EVT VT = Op.getValueType();
   3729   if (VT.isVector())
   3730     return LowerVectorFP_TO_INT(Op, DAG);
   3731 
   3732   SDLoc dl(Op);
   3733   unsigned Opc;
   3734 
   3735   switch (Op.getOpcode()) {
   3736   default: llvm_unreachable("Invalid opcode!");
   3737   case ISD::FP_TO_SINT:
   3738     Opc = ARMISD::FTOSI;
   3739     break;
   3740   case ISD::FP_TO_UINT:
   3741     Opc = ARMISD::FTOUI;
   3742     break;
   3743   }
   3744   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
   3745   return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3746 }
   3747 
   3748 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3749   EVT VT = Op.getValueType();
   3750   SDLoc dl(Op);
   3751 
   3752   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   3753     if (VT.getVectorElementType() == MVT::f32)
   3754       return Op;
   3755     return DAG.UnrollVectorOp(Op.getNode());
   3756   }
   3757 
   3758   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3759          "Invalid type for custom lowering!");
   3760   if (VT != MVT::v4f32)
   3761     return DAG.UnrollVectorOp(Op.getNode());
   3762 
   3763   unsigned CastOpc;
   3764   unsigned Opc;
   3765   switch (Op.getOpcode()) {
   3766   default: llvm_unreachable("Invalid opcode!");
   3767   case ISD::SINT_TO_FP:
   3768     CastOpc = ISD::SIGN_EXTEND;
   3769     Opc = ISD::SINT_TO_FP;
   3770     break;
   3771   case ISD::UINT_TO_FP:
   3772     CastOpc = ISD::ZERO_EXTEND;
   3773     Opc = ISD::UINT_TO_FP;
   3774     break;
   3775   }
   3776 
   3777   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3778   return DAG.getNode(Opc, dl, VT, Op);
   3779 }
   3780 
   3781 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3782   EVT VT = Op.getValueType();
   3783   if (VT.isVector())
   3784     return LowerVectorINT_TO_FP(Op, DAG);
   3785 
   3786   SDLoc dl(Op);
   3787   unsigned Opc;
   3788 
   3789   switch (Op.getOpcode()) {
   3790   default: llvm_unreachable("Invalid opcode!");
   3791   case ISD::SINT_TO_FP:
   3792     Opc = ARMISD::SITOF;
   3793     break;
   3794   case ISD::UINT_TO_FP:
   3795     Opc = ARMISD::UITOF;
   3796     break;
   3797   }
   3798 
   3799   Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
   3800   return DAG.getNode(Opc, dl, VT, Op);
   3801 }
   3802 
   3803 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3804   // Implement fcopysign with a fabs and a conditional fneg.
   3805   SDValue Tmp0 = Op.getOperand(0);
   3806   SDValue Tmp1 = Op.getOperand(1);
   3807   SDLoc dl(Op);
   3808   EVT VT = Op.getValueType();
   3809   EVT SrcVT = Tmp1.getValueType();
   3810   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3811     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3812   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3813 
   3814   if (UseNEON) {
   3815     // Use VBSL to copy the sign bit.
   3816     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3817     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3818                                DAG.getTargetConstant(EncodedVal, MVT::i32));
   3819     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3820     if (VT == MVT::f64)
   3821       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3822                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3823                          DAG.getConstant(32, MVT::i32));
   3824     else /*if (VT == MVT::f32)*/
   3825       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   3826     if (SrcVT == MVT::f32) {
   3827       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   3828       if (VT == MVT::f64)
   3829         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3830                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   3831                            DAG.getConstant(32, MVT::i32));
   3832     } else if (VT == MVT::f32)
   3833       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   3834                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   3835                          DAG.getConstant(32, MVT::i32));
   3836     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   3837     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   3838 
   3839     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   3840                                             MVT::i32);
   3841     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   3842     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   3843                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   3844 
   3845     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   3846                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   3847                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   3848     if (VT == MVT::f32) {
   3849       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   3850       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   3851                         DAG.getConstant(0, MVT::i32));
   3852     } else {
   3853       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   3854     }
   3855 
   3856     return Res;
   3857   }
   3858 
   3859   // Bitcast operand 1 to i32.
   3860   if (SrcVT == MVT::f64)
   3861     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3862                        Tmp1).getValue(1);
   3863   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   3864 
   3865   // Or in the signbit with integer operations.
   3866   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
   3867   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
   3868   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   3869   if (VT == MVT::f32) {
   3870     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   3871                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   3872     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3873                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   3874   }
   3875 
   3876   // f64: Or the high part with signbit and then combine two parts.
   3877   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3878                      Tmp0);
   3879   SDValue Lo = Tmp0.getValue(0);
   3880   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   3881   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   3882   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   3883 }
   3884 
   3885 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   3886   MachineFunction &MF = DAG.getMachineFunction();
   3887   MachineFrameInfo *MFI = MF.getFrameInfo();
   3888   MFI->setReturnAddressIsTaken(true);
   3889 
   3890   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   3891     return SDValue();
   3892 
   3893   EVT VT = Op.getValueType();
   3894   SDLoc dl(Op);
   3895   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3896   if (Depth) {
   3897     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   3898     SDValue Offset = DAG.getConstant(4, MVT::i32);
   3899     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   3900                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   3901                        MachinePointerInfo(), false, false, false, 0);
   3902   }
   3903 
   3904   // Return LR, which contains the return address. Mark it an implicit live-in.
   3905   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   3906   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   3907 }
   3908 
   3909 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   3910   const ARMBaseRegisterInfo &ARI =
   3911     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
   3912   MachineFunction &MF = DAG.getMachineFunction();
   3913   MachineFrameInfo *MFI = MF.getFrameInfo();
   3914   MFI->setFrameAddressIsTaken(true);
   3915 
   3916   EVT VT = Op.getValueType();
   3917   SDLoc dl(Op);  // FIXME probably not meaningful
   3918   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3919   unsigned FrameReg = ARI.getFrameRegister(MF);
   3920   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   3921   while (Depth--)
   3922     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   3923                             MachinePointerInfo(),
   3924                             false, false, false, 0);
   3925   return FrameAddr;
   3926 }
   3927 
   3928 // FIXME? Maybe this could be a TableGen attribute on some registers and
   3929 // this table could be generated automatically from RegInfo.
   3930 unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
   3931                                               EVT VT) const {
   3932   unsigned Reg = StringSwitch<unsigned>(RegName)
   3933                        .Case("sp", ARM::SP)
   3934                        .Default(0);
   3935   if (Reg)
   3936     return Reg;
   3937   report_fatal_error("Invalid register name global variable");
   3938 }
   3939 
   3940 /// ExpandBITCAST - If the target supports VFP, this function is called to
   3941 /// expand a bit convert where either the source or destination type is i64 to
   3942 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   3943 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   3944 /// vectors), since the legalizer won't know what to do with that.
   3945 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   3946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3947   SDLoc dl(N);
   3948   SDValue Op = N->getOperand(0);
   3949 
   3950   // This function is only supposed to be called for i64 types, either as the
   3951   // source or destination of the bit convert.
   3952   EVT SrcVT = Op.getValueType();
   3953   EVT DstVT = N->getValueType(0);
   3954   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   3955          "ExpandBITCAST called for non-i64 type");
   3956 
   3957   // Turn i64->f64 into VMOVDRR.
   3958   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   3959     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3960                              DAG.getConstant(0, MVT::i32));
   3961     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3962                              DAG.getConstant(1, MVT::i32));
   3963     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   3964                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   3965   }
   3966 
   3967   // Turn f64->i64 into VMOVRRD.
   3968   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   3969     SDValue Cvt;
   3970     if (TLI.isBigEndian() && SrcVT.isVector() &&
   3971         SrcVT.getVectorNumElements() > 1)
   3972       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   3973                         DAG.getVTList(MVT::i32, MVT::i32),
   3974                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
   3975     else
   3976       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   3977                         DAG.getVTList(MVT::i32, MVT::i32), Op);
   3978     // Merge the pieces into a single i64 value.
   3979     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   3980   }
   3981 
   3982   return SDValue();
   3983 }
   3984 
   3985 /// getZeroVector - Returns a vector of specified type with all zero elements.
   3986 /// Zero vectors are used to represent vector negation and in those cases
   3987 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   3988 /// not support i64 elements, so sometimes the zero vectors will need to be
   3989 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   3990 /// zero vector.
   3991 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
   3992   assert(VT.isVector() && "Expected a vector type");
   3993   // The canonical modified immediate encoding of a zero vector is....0!
   3994   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
   3995   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   3996   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   3997   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3998 }
   3999 
   4000 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   4001 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4002 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   4003                                                 SelectionDAG &DAG) const {
   4004   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4005   EVT VT = Op.getValueType();
   4006   unsigned VTBits = VT.getSizeInBits();
   4007   SDLoc dl(Op);
   4008   SDValue ShOpLo = Op.getOperand(0);
   4009   SDValue ShOpHi = Op.getOperand(1);
   4010   SDValue ShAmt  = Op.getOperand(2);
   4011   SDValue ARMcc;
   4012   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   4013 
   4014   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   4015 
   4016   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4017                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   4018   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   4019   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4020                                    DAG.getConstant(VTBits, MVT::i32));
   4021   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   4022   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4023   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   4024 
   4025   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4026   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   4027                           ARMcc, DAG, dl);
   4028   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   4029   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   4030                            CCR, Cmp);
   4031 
   4032   SDValue Ops[2] = { Lo, Hi };
   4033   return DAG.getMergeValues(Ops, dl);
   4034 }
   4035 
   4036 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   4037 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4038 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   4039                                                SelectionDAG &DAG) const {
   4040   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4041   EVT VT = Op.getValueType();
   4042   unsigned VTBits = VT.getSizeInBits();
   4043   SDLoc dl(Op);
   4044   SDValue ShOpLo = Op.getOperand(0);
   4045   SDValue ShOpHi = Op.getOperand(1);
   4046   SDValue ShAmt  = Op.getOperand(2);
   4047   SDValue ARMcc;
   4048 
   4049   assert(Op.getOpcode() == ISD::SHL_PARTS);
   4050   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4051                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   4052   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   4053   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4054                                    DAG.getConstant(VTBits, MVT::i32));
   4055   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   4056   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   4057 
   4058   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4059   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4060   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   4061                           ARMcc, DAG, dl);
   4062   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   4063   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   4064                            CCR, Cmp);
   4065 
   4066   SDValue Ops[2] = { Lo, Hi };
   4067   return DAG.getMergeValues(Ops, dl);
   4068 }
   4069 
   4070 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4071                                             SelectionDAG &DAG) const {
   4072   // The rounding mode is in bits 23:22 of the FPSCR.
   4073   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   4074   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   4075   // so that the shift + and get folded into a bitfield extract.
   4076   SDLoc dl(Op);
   4077   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   4078                               DAG.getConstant(Intrinsic::arm_get_fpscr,
   4079                                               MVT::i32));
   4080   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   4081                                   DAG.getConstant(1U << 22, MVT::i32));
   4082   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   4083                               DAG.getConstant(22, MVT::i32));
   4084   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   4085                      DAG.getConstant(3, MVT::i32));
   4086 }
   4087 
   4088 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   4089                          const ARMSubtarget *ST) {
   4090   EVT VT = N->getValueType(0);
   4091   SDLoc dl(N);
   4092 
   4093   if (!ST->hasV6T2Ops())
   4094     return SDValue();
   4095 
   4096   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
   4097   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   4098 }
   4099 
   4100 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
   4101 /// for each 16-bit element from operand, repeated.  The basic idea is to
   4102 /// leverage vcnt to get the 8-bit counts, gather and add the results.
   4103 ///
   4104 /// Trace for v4i16:
   4105 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
   4106 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
   4107 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
   4108 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
   4109 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
   4110 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
   4111 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
   4112 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
   4113 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
   4114   EVT VT = N->getValueType(0);
   4115   SDLoc DL(N);
   4116 
   4117   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4118   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
   4119   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
   4120   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
   4121   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
   4122   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
   4123 }
   4124 
   4125 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
   4126 /// bit-count for each 16-bit element from the operand.  We need slightly
   4127 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
   4128 /// 64/128-bit registers.
   4129 ///
   4130 /// Trace for v4i16:
   4131 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
   4132 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
   4133 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
   4134 /// v4i16:Extracted = [k0    k1    k2    k3    ]
   4135 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
   4136   EVT VT = N->getValueType(0);
   4137   SDLoc DL(N);
   4138 
   4139   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
   4140   if (VT.is64BitVector()) {
   4141     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
   4142     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
   4143                        DAG.getIntPtrConstant(0));
   4144   } else {
   4145     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
   4146                                     BitCounts, DAG.getIntPtrConstant(0));
   4147     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
   4148   }
   4149 }
   4150 
   4151 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
   4152 /// bit-count for each 32-bit element from the operand.  The idea here is
   4153 /// to split the vector into 16-bit elements, leverage the 16-bit count
   4154 /// routine, and then combine the results.
   4155 ///
   4156 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
   4157 /// input    = [v0    v1    ] (vi: 32-bit elements)
   4158 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
   4159 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
   4160 /// vrev: N0 = [k1 k0 k3 k2 ]
   4161 ///            [k0 k1 k2 k3 ]
   4162 ///       N1 =+[k1 k0 k3 k2 ]
   4163 ///            [k0 k2 k1 k3 ]
   4164 ///       N2 =+[k1 k3 k0 k2 ]
   4165 ///            [k0    k2    k1    k3    ]
   4166 /// Extended =+[k1    k3    k0    k2    ]
   4167 ///            [k0    k2    ]
   4168 /// Extracted=+[k1    k3    ]
   4169 ///
   4170 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
   4171   EVT VT = N->getValueType(0);
   4172   SDLoc DL(N);
   4173 
   4174   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4175 
   4176   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
   4177   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
   4178   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
   4179   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
   4180   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
   4181 
   4182   if (VT.is64BitVector()) {
   4183     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
   4184     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
   4185                        DAG.getIntPtrConstant(0));
   4186   } else {
   4187     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
   4188                                     DAG.getIntPtrConstant(0));
   4189     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
   4190   }
   4191 }
   4192 
   4193 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
   4194                           const ARMSubtarget *ST) {
   4195   EVT VT = N->getValueType(0);
   4196 
   4197   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
   4198   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
   4199           VT == MVT::v4i16 || VT == MVT::v8i16) &&
   4200          "Unexpected type for custom ctpop lowering");
   4201 
   4202   if (VT.getVectorElementType() == MVT::i32)
   4203     return lowerCTPOP32BitElements(N, DAG);
   4204   else
   4205     return lowerCTPOP16BitElements(N, DAG);
   4206 }
   4207 
   4208 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   4209                           const ARMSubtarget *ST) {
   4210   EVT VT = N->getValueType(0);
   4211   SDLoc dl(N);
   4212 
   4213   if (!VT.isVector())
   4214     return SDValue();
   4215 
   4216   // Lower vector shifts on NEON to use VSHL.
   4217   assert(ST->hasNEON() && "unexpected vector shift");
   4218 
   4219   // Left shifts translate directly to the vshiftu intrinsic.
   4220   if (N->getOpcode() == ISD::SHL)
   4221     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4222                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
   4223                        N->getOperand(0), N->getOperand(1));
   4224 
   4225   assert((N->getOpcode() == ISD::SRA ||
   4226           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   4227 
   4228   // NEON uses the same intrinsics for both left and right shifts.  For
   4229   // right shifts, the shift amounts are negative, so negate the vector of
   4230   // shift amounts.
   4231   EVT ShiftVT = N->getOperand(1).getValueType();
   4232   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   4233                                      getZeroVector(ShiftVT, DAG, dl),
   4234                                      N->getOperand(1));
   4235   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   4236                              Intrinsic::arm_neon_vshifts :
   4237                              Intrinsic::arm_neon_vshiftu);
   4238   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4239                      DAG.getConstant(vshiftInt, MVT::i32),
   4240                      N->getOperand(0), NegatedCount);
   4241 }
   4242 
   4243 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   4244                                 const ARMSubtarget *ST) {
   4245   EVT VT = N->getValueType(0);
   4246   SDLoc dl(N);
   4247 
   4248   // We can get here for a node like i32 = ISD::SHL i32, i64
   4249   if (VT != MVT::i64)
   4250     return SDValue();
   4251 
   4252   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   4253          "Unknown shift to lower!");
   4254 
   4255   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   4256   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
   4257       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
   4258     return SDValue();
   4259 
   4260   // If we are in thumb mode, we don't have RRX.
   4261   if (ST->isThumb1Only()) return SDValue();
   4262 
   4263   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   4264   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4265                            DAG.getConstant(0, MVT::i32));
   4266   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4267                            DAG.getConstant(1, MVT::i32));
   4268 
   4269   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   4270   // captures the result into a carry flag.
   4271   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   4272   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
   4273 
   4274   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   4275   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   4276 
   4277   // Merge the pieces into a single i64 value.
   4278  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   4279 }
   4280 
   4281 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   4282   SDValue TmpOp0, TmpOp1;
   4283   bool Invert = false;
   4284   bool Swap = false;
   4285   unsigned Opc = 0;
   4286 
   4287   SDValue Op0 = Op.getOperand(0);
   4288   SDValue Op1 = Op.getOperand(1);
   4289   SDValue CC = Op.getOperand(2);
   4290   EVT VT = Op.getValueType();
   4291   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   4292   SDLoc dl(Op);
   4293 
   4294   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
   4295     switch (SetCCOpcode) {
   4296     default: llvm_unreachable("Illegal FP comparison");
   4297     case ISD::SETUNE:
   4298     case ISD::SETNE:  Invert = true; // Fallthrough
   4299     case ISD::SETOEQ:
   4300     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4301     case ISD::SETOLT:
   4302     case ISD::SETLT: Swap = true; // Fallthrough
   4303     case ISD::SETOGT:
   4304     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4305     case ISD::SETOLE:
   4306     case ISD::SETLE:  Swap = true; // Fallthrough
   4307     case ISD::SETOGE:
   4308     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   4309     case ISD::SETUGE: Swap = true; // Fallthrough
   4310     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   4311     case ISD::SETUGT: Swap = true; // Fallthrough
   4312     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   4313     case ISD::SETUEQ: Invert = true; // Fallthrough
   4314     case ISD::SETONE:
   4315       // Expand this to (OLT | OGT).
   4316       TmpOp0 = Op0;
   4317       TmpOp1 = Op1;
   4318       Opc = ISD::OR;
   4319       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   4320       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
   4321       break;
   4322     case ISD::SETUO: Invert = true; // Fallthrough
   4323     case ISD::SETO:
   4324       // Expand this to (OLT | OGE).
   4325       TmpOp0 = Op0;
   4326       TmpOp1 = Op1;
   4327       Opc = ISD::OR;
   4328       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   4329       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
   4330       break;
   4331     }
   4332   } else {
   4333     // Integer comparisons.
   4334     switch (SetCCOpcode) {
   4335     default: llvm_unreachable("Illegal integer comparison");
   4336     case ISD::SETNE:  Invert = true;
   4337     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4338     case ISD::SETLT:  Swap = true;
   4339     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4340     case ISD::SETLE:  Swap = true;
   4341     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   4342     case ISD::SETULT: Swap = true;
   4343     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   4344     case ISD::SETULE: Swap = true;
   4345     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   4346     }
   4347 
   4348     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   4349     if (Opc == ARMISD::VCEQ) {
   4350 
   4351       SDValue AndOp;
   4352       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4353         AndOp = Op0;
   4354       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   4355         AndOp = Op1;
   4356 
   4357       // Ignore bitconvert.
   4358       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   4359         AndOp = AndOp.getOperand(0);
   4360 
   4361       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   4362         Opc = ARMISD::VTST;
   4363         Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
   4364         Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
   4365         Invert = !Invert;
   4366       }
   4367     }
   4368   }
   4369 
   4370   if (Swap)
   4371     std::swap(Op0, Op1);
   4372 
   4373   // If one of the operands is a constant vector zero, attempt to fold the
   4374   // comparison to a specialized compare-against-zero form.
   4375   SDValue SingleOp;
   4376   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4377     SingleOp = Op0;
   4378   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   4379     if (Opc == ARMISD::VCGE)
   4380       Opc = ARMISD::VCLEZ;
   4381     else if (Opc == ARMISD::VCGT)
   4382       Opc = ARMISD::VCLTZ;
   4383     SingleOp = Op1;
   4384   }
   4385 
   4386   SDValue Result;
   4387   if (SingleOp.getNode()) {
   4388     switch (Opc) {
   4389     case ARMISD::VCEQ:
   4390       Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
   4391     case ARMISD::VCGE:
   4392       Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
   4393     case ARMISD::VCLEZ:
   4394       Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
   4395     case ARMISD::VCGT:
   4396       Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
   4397     case ARMISD::VCLTZ:
   4398       Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
   4399     default:
   4400       Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   4401     }
   4402   } else {
   4403      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   4404   }
   4405 
   4406   if (Invert)
   4407     Result = DAG.getNOT(dl, Result, VT);
   4408 
   4409   return Result;
   4410 }
   4411 
   4412 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   4413 /// valid vector constant for a NEON instruction with a "modified immediate"
   4414 /// operand (e.g., VMOV).  If so, return the encoded value.
   4415 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   4416                                  unsigned SplatBitSize, SelectionDAG &DAG,
   4417                                  EVT &VT, bool is128Bits, NEONModImmType type) {
   4418   unsigned OpCmode, Imm;
   4419 
   4420   // SplatBitSize is set to the smallest size that splats the vector, so a
   4421   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   4422   // immediate instructions others than VMOV do not support the 8-bit encoding
   4423   // of a zero vector, and the default encoding of zero is supposed to be the
   4424   // 32-bit version.
   4425   if (SplatBits == 0)
   4426     SplatBitSize = 32;
   4427 
   4428   switch (SplatBitSize) {
   4429   case 8:
   4430     if (type != VMOVModImm)
   4431       return SDValue();
   4432     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   4433     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   4434     OpCmode = 0xe;
   4435     Imm = SplatBits;
   4436     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   4437     break;
   4438 
   4439   case 16:
   4440     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   4441     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   4442     if ((SplatBits & ~0xff) == 0) {
   4443       // Value = 0x00nn: Op=x, Cmode=100x.
   4444       OpCmode = 0x8;
   4445       Imm = SplatBits;
   4446       break;
   4447     }
   4448     if ((SplatBits & ~0xff00) == 0) {
   4449       // Value = 0xnn00: Op=x, Cmode=101x.
   4450       OpCmode = 0xa;
   4451       Imm = SplatBits >> 8;
   4452       break;
   4453     }
   4454     return SDValue();
   4455 
   4456   case 32:
   4457     // NEON's 32-bit VMOV supports splat values where:
   4458     // * only one byte is nonzero, or
   4459     // * the least significant byte is 0xff and the second byte is nonzero, or
   4460     // * the least significant 2 bytes are 0xff and the third is nonzero.
   4461     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   4462     if ((SplatBits & ~0xff) == 0) {
   4463       // Value = 0x000000nn: Op=x, Cmode=000x.
   4464       OpCmode = 0;
   4465       Imm = SplatBits;
   4466       break;
   4467     }
   4468     if ((SplatBits & ~0xff00) == 0) {
   4469       // Value = 0x0000nn00: Op=x, Cmode=001x.
   4470       OpCmode = 0x2;
   4471       Imm = SplatBits >> 8;
   4472       break;
   4473     }
   4474     if ((SplatBits & ~0xff0000) == 0) {
   4475       // Value = 0x00nn0000: Op=x, Cmode=010x.
   4476       OpCmode = 0x4;
   4477       Imm = SplatBits >> 16;
   4478       break;
   4479     }
   4480     if ((SplatBits & ~0xff000000) == 0) {
   4481       // Value = 0xnn000000: Op=x, Cmode=011x.
   4482       OpCmode = 0x6;
   4483       Imm = SplatBits >> 24;
   4484       break;
   4485     }
   4486 
   4487     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   4488     if (type == OtherModImm) return SDValue();
   4489 
   4490     if ((SplatBits & ~0xffff) == 0 &&
   4491         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   4492       // Value = 0x0000nnff: Op=x, Cmode=1100.
   4493       OpCmode = 0xc;
   4494       Imm = SplatBits >> 8;
   4495       break;
   4496     }
   4497 
   4498     if ((SplatBits & ~0xffffff) == 0 &&
   4499         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   4500       // Value = 0x00nnffff: Op=x, Cmode=1101.
   4501       OpCmode = 0xd;
   4502       Imm = SplatBits >> 16;
   4503       break;
   4504     }
   4505 
   4506     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   4507     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   4508     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   4509     // and fall through here to test for a valid 64-bit splat.  But, then the
   4510     // caller would also need to check and handle the change in size.
   4511     return SDValue();
   4512 
   4513   case 64: {
   4514     if (type != VMOVModImm)
   4515       return SDValue();
   4516     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   4517     uint64_t BitMask = 0xff;
   4518     uint64_t Val = 0;
   4519     unsigned ImmMask = 1;
   4520     Imm = 0;
   4521     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   4522       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   4523         Val |= BitMask;
   4524         Imm |= ImmMask;
   4525       } else if ((SplatBits & BitMask) != 0) {
   4526         return SDValue();
   4527       }
   4528       BitMask <<= 8;
   4529       ImmMask <<= 1;
   4530     }
   4531 
   4532     if (DAG.getTargetLoweringInfo().isBigEndian())
   4533       // swap higher and lower 32 bit word
   4534       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
   4535 
   4536     // Op=1, Cmode=1110.
   4537     OpCmode = 0x1e;
   4538     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   4539     break;
   4540   }
   4541 
   4542   default:
   4543     llvm_unreachable("unexpected size for isNEONModifiedImm");
   4544   }
   4545 
   4546   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   4547   return DAG.getTargetConstant(EncodedVal, MVT::i32);
   4548 }
   4549 
   4550 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   4551                                            const ARMSubtarget *ST) const {
   4552   if (!ST->hasVFP3())
   4553     return SDValue();
   4554 
   4555   bool IsDouble = Op.getValueType() == MVT::f64;
   4556   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   4557 
   4558   // Try splatting with a VMOV.f32...
   4559   APFloat FPVal = CFP->getValueAPF();
   4560   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
   4561 
   4562   if (ImmVal != -1) {
   4563     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
   4564       // We have code in place to select a valid ConstantFP already, no need to
   4565       // do any mangling.
   4566       return Op;
   4567     }
   4568 
   4569     // It's a float and we are trying to use NEON operations where
   4570     // possible. Lower it to a splat followed by an extract.
   4571     SDLoc DL(Op);
   4572     SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
   4573     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   4574                                       NewVal);
   4575     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   4576                        DAG.getConstant(0, MVT::i32));
   4577   }
   4578 
   4579   // The rest of our options are NEON only, make sure that's allowed before
   4580   // proceeding..
   4581   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
   4582     return SDValue();
   4583 
   4584   EVT VMovVT;
   4585   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
   4586 
   4587   // It wouldn't really be worth bothering for doubles except for one very
   4588   // important value, which does happen to match: 0.0. So make sure we don't do
   4589   // anything stupid.
   4590   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
   4591     return SDValue();
   4592 
   4593   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
   4594   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
   4595                                      false, VMOVModImm);
   4596   if (NewVal != SDValue()) {
   4597     SDLoc DL(Op);
   4598     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   4599                                       NewVal);
   4600     if (IsDouble)
   4601       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4602 
   4603     // It's a float: cast and extract a vector element.
   4604     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4605                                        VecConstant);
   4606     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4607                        DAG.getConstant(0, MVT::i32));
   4608   }
   4609 
   4610   // Finally, try a VMVN.i32
   4611   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
   4612                              false, VMVNModImm);
   4613   if (NewVal != SDValue()) {
   4614     SDLoc DL(Op);
   4615     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   4616 
   4617     if (IsDouble)
   4618       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4619 
   4620     // It's a float: cast and extract a vector element.
   4621     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4622                                        VecConstant);
   4623     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4624                        DAG.getConstant(0, MVT::i32));
   4625   }
   4626 
   4627   return SDValue();
   4628 }
   4629 
   4630 // check if an VEXT instruction can handle the shuffle mask when the
   4631 // vector sources of the shuffle are the same.
   4632 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   4633   unsigned NumElts = VT.getVectorNumElements();
   4634 
   4635   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   4636   if (M[0] < 0)
   4637     return false;
   4638 
   4639   Imm = M[0];
   4640 
   4641   // If this is a VEXT shuffle, the immediate value is the index of the first
   4642   // element.  The other shuffle indices must be the successive elements after
   4643   // the first one.
   4644   unsigned ExpectedElt = Imm;
   4645   for (unsigned i = 1; i < NumElts; ++i) {
   4646     // Increment the expected index.  If it wraps around, just follow it
   4647     // back to index zero and keep going.
   4648     ++ExpectedElt;
   4649     if (ExpectedElt == NumElts)
   4650       ExpectedElt = 0;
   4651 
   4652     if (M[i] < 0) continue; // ignore UNDEF indices
   4653     if (ExpectedElt != static_cast<unsigned>(M[i]))
   4654       return false;
   4655   }
   4656 
   4657   return true;
   4658 }
   4659 
   4660 
   4661 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   4662                        bool &ReverseVEXT, unsigned &Imm) {
   4663   unsigned NumElts = VT.getVectorNumElements();
   4664   ReverseVEXT = false;
   4665 
   4666   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   4667   if (M[0] < 0)
   4668     return false;
   4669 
   4670   Imm = M[0];
   4671 
   4672   // If this is a VEXT shuffle, the immediate value is the index of the first
   4673   // element.  The other shuffle indices must be the successive elements after
   4674   // the first one.
   4675   unsigned ExpectedElt = Imm;
   4676   for (unsigned i = 1; i < NumElts; ++i) {
   4677     // Increment the expected index.  If it wraps around, it may still be
   4678     // a VEXT but the source vectors must be swapped.
   4679     ExpectedElt += 1;
   4680     if (ExpectedElt == NumElts * 2) {
   4681       ExpectedElt = 0;
   4682       ReverseVEXT = true;
   4683     }
   4684 
   4685     if (M[i] < 0) continue; // ignore UNDEF indices
   4686     if (ExpectedElt != static_cast<unsigned>(M[i]))
   4687       return false;
   4688   }
   4689 
   4690   // Adjust the index value if the source operands will be swapped.
   4691   if (ReverseVEXT)
   4692     Imm -= NumElts;
   4693 
   4694   return true;
   4695 }
   4696 
   4697 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   4698 /// instruction with the specified blocksize.  (The order of the elements
   4699 /// within each block of the vector is reversed.)
   4700 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   4701   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   4702          "Only possible block sizes for VREV are: 16, 32, 64");
   4703 
   4704   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4705   if (EltSz == 64)
   4706     return false;
   4707 
   4708   unsigned NumElts = VT.getVectorNumElements();
   4709   unsigned BlockElts = M[0] + 1;
   4710   // If the first shuffle index is UNDEF, be optimistic.
   4711   if (M[0] < 0)
   4712     BlockElts = BlockSize / EltSz;
   4713 
   4714   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   4715     return false;
   4716 
   4717   for (unsigned i = 0; i < NumElts; ++i) {
   4718     if (M[i] < 0) continue; // ignore UNDEF indices
   4719     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   4720       return false;
   4721   }
   4722 
   4723   return true;
   4724 }
   4725 
   4726 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   4727   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   4728   // range, then 0 is placed into the resulting vector. So pretty much any mask
   4729   // of 8 elements can work here.
   4730   return VT == MVT::v8i8 && M.size() == 8;
   4731 }
   4732 
   4733 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4734   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4735   if (EltSz == 64)
   4736     return false;
   4737 
   4738   unsigned NumElts = VT.getVectorNumElements();
   4739   WhichResult = (M[0] == 0 ? 0 : 1);
   4740   for (unsigned i = 0; i < NumElts; i += 2) {
   4741     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   4742         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
   4743       return false;
   4744   }
   4745   return true;
   4746 }
   4747 
   4748 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   4749 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4750 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   4751 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4752   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4753   if (EltSz == 64)
   4754     return false;
   4755 
   4756   unsigned NumElts = VT.getVectorNumElements();
   4757   WhichResult = (M[0] == 0 ? 0 : 1);
   4758   for (unsigned i = 0; i < NumElts; i += 2) {
   4759     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   4760         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
   4761       return false;
   4762   }
   4763   return true;
   4764 }
   4765 
   4766 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4767   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4768   if (EltSz == 64)
   4769     return false;
   4770 
   4771   unsigned NumElts = VT.getVectorNumElements();
   4772   WhichResult = (M[0] == 0 ? 0 : 1);
   4773   for (unsigned i = 0; i != NumElts; ++i) {
   4774     if (M[i] < 0) continue; // ignore UNDEF indices
   4775     if ((unsigned) M[i] != 2 * i + WhichResult)
   4776       return false;
   4777   }
   4778 
   4779   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4780   if (VT.is64BitVector() && EltSz == 32)
   4781     return false;
   4782 
   4783   return true;
   4784 }
   4785 
   4786 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   4787 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4788 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   4789 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4790   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4791   if (EltSz == 64)
   4792     return false;
   4793 
   4794   unsigned Half = VT.getVectorNumElements() / 2;
   4795   WhichResult = (M[0] == 0 ? 0 : 1);
   4796   for (unsigned j = 0; j != 2; ++j) {
   4797     unsigned Idx = WhichResult;
   4798     for (unsigned i = 0; i != Half; ++i) {
   4799       int MIdx = M[i + j * Half];
   4800       if (MIdx >= 0 && (unsigned) MIdx != Idx)
   4801         return false;
   4802       Idx += 2;
   4803     }
   4804   }
   4805 
   4806   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4807   if (VT.is64BitVector() && EltSz == 32)
   4808     return false;
   4809 
   4810   return true;
   4811 }
   4812 
   4813 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4814   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4815   if (EltSz == 64)
   4816     return false;
   4817 
   4818   unsigned NumElts = VT.getVectorNumElements();
   4819   WhichResult = (M[0] == 0 ? 0 : 1);
   4820   unsigned Idx = WhichResult * NumElts / 2;
   4821   for (unsigned i = 0; i != NumElts; i += 2) {
   4822     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4823         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
   4824       return false;
   4825     Idx += 1;
   4826   }
   4827 
   4828   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4829   if (VT.is64BitVector() && EltSz == 32)
   4830     return false;
   4831 
   4832   return true;
   4833 }
   4834 
   4835 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   4836 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4837 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   4838 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4839   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4840   if (EltSz == 64)
   4841     return false;
   4842 
   4843   unsigned NumElts = VT.getVectorNumElements();
   4844   WhichResult = (M[0] == 0 ? 0 : 1);
   4845   unsigned Idx = WhichResult * NumElts / 2;
   4846   for (unsigned i = 0; i != NumElts; i += 2) {
   4847     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4848         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
   4849       return false;
   4850     Idx += 1;
   4851   }
   4852 
   4853   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4854   if (VT.is64BitVector() && EltSz == 32)
   4855     return false;
   4856 
   4857   return true;
   4858 }
   4859 
   4860 /// \return true if this is a reverse operation on an vector.
   4861 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
   4862   unsigned NumElts = VT.getVectorNumElements();
   4863   // Make sure the mask has the right size.
   4864   if (NumElts != M.size())
   4865       return false;
   4866 
   4867   // Look for <15, ..., 3, -1, 1, 0>.
   4868   for (unsigned i = 0; i != NumElts; ++i)
   4869     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
   4870       return false;
   4871 
   4872   return true;
   4873 }
   4874 
   4875 // If N is an integer constant that can be moved into a register in one
   4876 // instruction, return an SDValue of such a constant (will become a MOV
   4877 // instruction).  Otherwise return null.
   4878 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   4879                                      const ARMSubtarget *ST, SDLoc dl) {
   4880   uint64_t Val;
   4881   if (!isa<ConstantSDNode>(N))
   4882     return SDValue();
   4883   Val = cast<ConstantSDNode>(N)->getZExtValue();
   4884 
   4885   if (ST->isThumb1Only()) {
   4886     if (Val <= 255 || ~Val <= 255)
   4887       return DAG.getConstant(Val, MVT::i32);
   4888   } else {
   4889     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   4890       return DAG.getConstant(Val, MVT::i32);
   4891   }
   4892   return SDValue();
   4893 }
   4894 
   4895 // If this is a case we can't handle, return null and let the default
   4896 // expansion code take care of it.
   4897 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   4898                                              const ARMSubtarget *ST) const {
   4899   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4900   SDLoc dl(Op);
   4901   EVT VT = Op.getValueType();
   4902 
   4903   APInt SplatBits, SplatUndef;
   4904   unsigned SplatBitSize;
   4905   bool HasAnyUndefs;
   4906   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   4907     if (SplatBitSize <= 64) {
   4908       // Check if an immediate VMOV works.
   4909       EVT VmovVT;
   4910       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   4911                                       SplatUndef.getZExtValue(), SplatBitSize,
   4912                                       DAG, VmovVT, VT.is128BitVector(),
   4913                                       VMOVModImm);
   4914       if (Val.getNode()) {
   4915         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   4916         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4917       }
   4918 
   4919       // Try an immediate VMVN.
   4920       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   4921       Val = isNEONModifiedImm(NegatedImm,
   4922                                       SplatUndef.getZExtValue(), SplatBitSize,
   4923                                       DAG, VmovVT, VT.is128BitVector(),
   4924                                       VMVNModImm);
   4925       if (Val.getNode()) {
   4926         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   4927         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4928       }
   4929 
   4930       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   4931       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   4932         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   4933         if (ImmVal != -1) {
   4934           SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
   4935           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   4936         }
   4937       }
   4938     }
   4939   }
   4940 
   4941   // Scan through the operands to see if only one value is used.
   4942   //
   4943   // As an optimisation, even if more than one value is used it may be more
   4944   // profitable to splat with one value then change some lanes.
   4945   //
   4946   // Heuristically we decide to do this if the vector has a "dominant" value,
   4947   // defined as splatted to more than half of the lanes.
   4948   unsigned NumElts = VT.getVectorNumElements();
   4949   bool isOnlyLowElement = true;
   4950   bool usesOnlyOneValue = true;
   4951   bool hasDominantValue = false;
   4952   bool isConstant = true;
   4953 
   4954   // Map of the number of times a particular SDValue appears in the
   4955   // element list.
   4956   DenseMap<SDValue, unsigned> ValueCounts;
   4957   SDValue Value;
   4958   for (unsigned i = 0; i < NumElts; ++i) {
   4959     SDValue V = Op.getOperand(i);
   4960     if (V.getOpcode() == ISD::UNDEF)
   4961       continue;
   4962     if (i > 0)
   4963       isOnlyLowElement = false;
   4964     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   4965       isConstant = false;
   4966 
   4967     ValueCounts.insert(std::make_pair(V, 0));
   4968     unsigned &Count = ValueCounts[V];
   4969 
   4970     // Is this value dominant? (takes up more than half of the lanes)
   4971     if (++Count > (NumElts / 2)) {
   4972       hasDominantValue = true;
   4973       Value = V;
   4974     }
   4975   }
   4976   if (ValueCounts.size() != 1)
   4977     usesOnlyOneValue = false;
   4978   if (!Value.getNode() && ValueCounts.size() > 0)
   4979     Value = ValueCounts.begin()->first;
   4980 
   4981   if (ValueCounts.size() == 0)
   4982     return DAG.getUNDEF(VT);
   4983 
   4984   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
   4985   // Keep going if we are hitting this case.
   4986   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
   4987     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   4988 
   4989   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4990 
   4991   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   4992   // i32 and try again.
   4993   if (hasDominantValue && EltSize <= 32) {
   4994     if (!isConstant) {
   4995       SDValue N;
   4996 
   4997       // If we are VDUPing a value that comes directly from a vector, that will
   4998       // cause an unnecessary move to and from a GPR, where instead we could
   4999       // just use VDUPLANE. We can only do this if the lane being extracted
   5000       // is at a constant index, as the VDUP from lane instructions only have
   5001       // constant-index forms.
   5002       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5003           isa<ConstantSDNode>(Value->getOperand(1))) {
   5004         // We need to create a new undef vector to use for the VDUPLANE if the
   5005         // size of the vector from which we get the value is different than the
   5006         // size of the vector that we need to create. We will insert the element
   5007         // such that the register coalescer will remove unnecessary copies.
   5008         if (VT != Value->getOperand(0).getValueType()) {
   5009           ConstantSDNode *constIndex;
   5010           constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
   5011           assert(constIndex && "The index is not a constant!");
   5012           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
   5013                              VT.getVectorNumElements();
   5014           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5015                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
   5016                         Value, DAG.getConstant(index, MVT::i32)),
   5017                            DAG.getConstant(index, MVT::i32));
   5018         } else
   5019           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5020                         Value->getOperand(0), Value->getOperand(1));
   5021       } else
   5022         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   5023 
   5024       if (!usesOnlyOneValue) {
   5025         // The dominant value was splatted as 'N', but we now have to insert
   5026         // all differing elements.
   5027         for (unsigned I = 0; I < NumElts; ++I) {
   5028           if (Op.getOperand(I) == Value)
   5029             continue;
   5030           SmallVector<SDValue, 3> Ops;
   5031           Ops.push_back(N);
   5032           Ops.push_back(Op.getOperand(I));
   5033           Ops.push_back(DAG.getConstant(I, MVT::i32));
   5034           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
   5035         }
   5036       }
   5037       return N;
   5038     }
   5039     if (VT.getVectorElementType().isFloatingPoint()) {
   5040       SmallVector<SDValue, 8> Ops;
   5041       for (unsigned i = 0; i < NumElts; ++i)
   5042         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   5043                                   Op.getOperand(i)));
   5044       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   5045       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
   5046       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   5047       if (Val.getNode())
   5048         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5049     }
   5050     if (usesOnlyOneValue) {
   5051       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   5052       if (isConstant && Val.getNode())
   5053         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   5054     }
   5055   }
   5056 
   5057   // If all elements are constants and the case above didn't get hit, fall back
   5058   // to the default expansion, which will generate a load from the constant
   5059   // pool.
   5060   if (isConstant)
   5061     return SDValue();
   5062 
   5063   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   5064   if (NumElts >= 4) {
   5065     SDValue shuffle = ReconstructShuffle(Op, DAG);
   5066     if (shuffle != SDValue())
   5067       return shuffle;
   5068   }
   5069 
   5070   // Vectors with 32- or 64-bit elements can be built by directly assigning
   5071   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   5072   // will be legalized.
   5073   if (EltSize >= 32) {
   5074     // Do the expansion with floating-point types, since that is what the VFP
   5075     // registers are defined to use, and since i64 is not legal.
   5076     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5077     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5078     SmallVector<SDValue, 8> Ops;
   5079     for (unsigned i = 0; i < NumElts; ++i)
   5080       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   5081     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5082     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5083   }
   5084 
   5085   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   5086   // know the default expansion would otherwise fall back on something even
   5087   // worse. For a vector with one or two non-undef values, that's
   5088   // scalar_to_vector for the elements followed by a shuffle (provided the
   5089   // shuffle is valid for the target) and materialization element by element
   5090   // on the stack followed by a load for everything else.
   5091   if (!isConstant && !usesOnlyOneValue) {
   5092     SDValue Vec = DAG.getUNDEF(VT);
   5093     for (unsigned i = 0 ; i < NumElts; ++i) {
   5094       SDValue V = Op.getOperand(i);
   5095       if (V.getOpcode() == ISD::UNDEF)
   5096         continue;
   5097       SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
   5098       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   5099     }
   5100     return Vec;
   5101   }
   5102 
   5103   return SDValue();
   5104 }
   5105 
   5106 // Gather data to see if the operation can be modelled as a
   5107 // shuffle in combination with VEXTs.
   5108 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   5109                                               SelectionDAG &DAG) const {
   5110   SDLoc dl(Op);
   5111   EVT VT = Op.getValueType();
   5112   unsigned NumElts = VT.getVectorNumElements();
   5113 
   5114   SmallVector<SDValue, 2> SourceVecs;
   5115   SmallVector<unsigned, 2> MinElts;
   5116   SmallVector<unsigned, 2> MaxElts;
   5117 
   5118   for (unsigned i = 0; i < NumElts; ++i) {
   5119     SDValue V = Op.getOperand(i);
   5120     if (V.getOpcode() == ISD::UNDEF)
   5121       continue;
   5122     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   5123       // A shuffle can only come from building a vector from various
   5124       // elements of other vectors.
   5125       return SDValue();
   5126     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
   5127                VT.getVectorElementType()) {
   5128       // This code doesn't know how to handle shuffles where the vector
   5129       // element types do not match (this happens because type legalization
   5130       // promotes the return type of EXTRACT_VECTOR_ELT).
   5131       // FIXME: It might be appropriate to extend this code to handle
   5132       // mismatched types.
   5133       return SDValue();
   5134     }
   5135 
   5136     // Record this extraction against the appropriate vector if possible...
   5137     SDValue SourceVec = V.getOperand(0);
   5138     // If the element number isn't a constant, we can't effectively
   5139     // analyze what's going on.
   5140     if (!isa<ConstantSDNode>(V.getOperand(1)))
   5141       return SDValue();
   5142     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   5143     bool FoundSource = false;
   5144     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
   5145       if (SourceVecs[j] == SourceVec) {
   5146         if (MinElts[j] > EltNo)
   5147           MinElts[j] = EltNo;
   5148         if (MaxElts[j] < EltNo)
   5149           MaxElts[j] = EltNo;
   5150         FoundSource = true;
   5151         break;
   5152       }
   5153     }
   5154 
   5155     // Or record a new source if not...
   5156     if (!FoundSource) {
   5157       SourceVecs.push_back(SourceVec);
   5158       MinElts.push_back(EltNo);
   5159       MaxElts.push_back(EltNo);
   5160     }
   5161   }
   5162 
   5163   // Currently only do something sane when at most two source vectors
   5164   // involved.
   5165   if (SourceVecs.size() > 2)
   5166     return SDValue();
   5167 
   5168   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
   5169   int VEXTOffsets[2] = {0, 0};
   5170 
   5171   // This loop extracts the usage patterns of the source vectors
   5172   // and prepares appropriate SDValues for a shuffle if possible.
   5173   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
   5174     if (SourceVecs[i].getValueType() == VT) {
   5175       // No VEXT necessary
   5176       ShuffleSrcs[i] = SourceVecs[i];
   5177       VEXTOffsets[i] = 0;
   5178       continue;
   5179     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
   5180       // It probably isn't worth padding out a smaller vector just to
   5181       // break it down again in a shuffle.
   5182       return SDValue();
   5183     }
   5184 
   5185     // Since only 64-bit and 128-bit vectors are legal on ARM and
   5186     // we've eliminated the other cases...
   5187     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
   5188            "unexpected vector sizes in ReconstructShuffle");
   5189 
   5190     if (MaxElts[i] - MinElts[i] >= NumElts) {
   5191       // Span too large for a VEXT to cope
   5192       return SDValue();
   5193     }
   5194 
   5195     if (MinElts[i] >= NumElts) {
   5196       // The extraction can just take the second half
   5197       VEXTOffsets[i] = NumElts;
   5198       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5199                                    SourceVecs[i],
   5200                                    DAG.getIntPtrConstant(NumElts));
   5201     } else if (MaxElts[i] < NumElts) {
   5202       // The extraction can just take the first half
   5203       VEXTOffsets[i] = 0;
   5204       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5205                                    SourceVecs[i],
   5206                                    DAG.getIntPtrConstant(0));
   5207     } else {
   5208       // An actual VEXT is needed
   5209       VEXTOffsets[i] = MinElts[i];
   5210       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5211                                      SourceVecs[i],
   5212                                      DAG.getIntPtrConstant(0));
   5213       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5214                                      SourceVecs[i],
   5215                                      DAG.getIntPtrConstant(NumElts));
   5216       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
   5217                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
   5218     }
   5219   }
   5220 
   5221   SmallVector<int, 8> Mask;
   5222 
   5223   for (unsigned i = 0; i < NumElts; ++i) {
   5224     SDValue Entry = Op.getOperand(i);
   5225     if (Entry.getOpcode() == ISD::UNDEF) {
   5226       Mask.push_back(-1);
   5227       continue;
   5228     }
   5229 
   5230     SDValue ExtractVec = Entry.getOperand(0);
   5231     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
   5232                                           .getOperand(1))->getSExtValue();
   5233     if (ExtractVec == SourceVecs[0]) {
   5234       Mask.push_back(ExtractElt - VEXTOffsets[0]);
   5235     } else {
   5236       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
   5237     }
   5238   }
   5239 
   5240   // Final check before we try to produce nonsense...
   5241   if (isShuffleMaskLegal(Mask, VT))
   5242     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
   5243                                 &Mask[0]);
   5244 
   5245   return SDValue();
   5246 }
   5247 
   5248 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   5249 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   5250 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   5251 /// are assumed to be legal.
   5252 bool
   5253 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   5254                                       EVT VT) const {
   5255   if (VT.getVectorNumElements() == 4 &&
   5256       (VT.is128BitVector() || VT.is64BitVector())) {
   5257     unsigned PFIndexes[4];
   5258     for (unsigned i = 0; i != 4; ++i) {
   5259       if (M[i] < 0)
   5260         PFIndexes[i] = 8;
   5261       else
   5262         PFIndexes[i] = M[i];
   5263     }
   5264 
   5265     // Compute the index in the perfect shuffle table.
   5266     unsigned PFTableIndex =
   5267       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5268     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5269     unsigned Cost = (PFEntry >> 30);
   5270 
   5271     if (Cost <= 4)
   5272       return true;
   5273   }
   5274 
   5275   bool ReverseVEXT;
   5276   unsigned Imm, WhichResult;
   5277 
   5278   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5279   return (EltSize >= 32 ||
   5280           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   5281           isVREVMask(M, VT, 64) ||
   5282           isVREVMask(M, VT, 32) ||
   5283           isVREVMask(M, VT, 16) ||
   5284           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   5285           isVTBLMask(M, VT) ||
   5286           isVTRNMask(M, VT, WhichResult) ||
   5287           isVUZPMask(M, VT, WhichResult) ||
   5288           isVZIPMask(M, VT, WhichResult) ||
   5289           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
   5290           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
   5291           isVZIP_v_undef_Mask(M, VT, WhichResult) ||
   5292           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
   5293 }
   5294 
   5295 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5296 /// the specified operations to build the shuffle.
   5297 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5298                                       SDValue RHS, SelectionDAG &DAG,
   5299                                       SDLoc dl) {
   5300   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5301   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5302   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5303 
   5304   enum {
   5305     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5306     OP_VREV,
   5307     OP_VDUP0,
   5308     OP_VDUP1,
   5309     OP_VDUP2,
   5310     OP_VDUP3,
   5311     OP_VEXT1,
   5312     OP_VEXT2,
   5313     OP_VEXT3,
   5314     OP_VUZPL, // VUZP, left result
   5315     OP_VUZPR, // VUZP, right result
   5316     OP_VZIPL, // VZIP, left result
   5317     OP_VZIPR, // VZIP, right result
   5318     OP_VTRNL, // VTRN, left result
   5319     OP_VTRNR  // VTRN, right result
   5320   };
   5321 
   5322   if (OpNum == OP_COPY) {
   5323     if (LHSID == (1*9+2)*9+3) return LHS;
   5324     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5325     return RHS;
   5326   }
   5327 
   5328   SDValue OpLHS, OpRHS;
   5329   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5330   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5331   EVT VT = OpLHS.getValueType();
   5332 
   5333   switch (OpNum) {
   5334   default: llvm_unreachable("Unknown shuffle opcode!");
   5335   case OP_VREV:
   5336     // VREV divides the vector in half and swaps within the half.
   5337     if (VT.getVectorElementType() == MVT::i32 ||
   5338         VT.getVectorElementType() == MVT::f32)
   5339       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   5340     // vrev <4 x i16> -> VREV32
   5341     if (VT.getVectorElementType() == MVT::i16)
   5342       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   5343     // vrev <4 x i8> -> VREV16
   5344     assert(VT.getVectorElementType() == MVT::i8);
   5345     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   5346   case OP_VDUP0:
   5347   case OP_VDUP1:
   5348   case OP_VDUP2:
   5349   case OP_VDUP3:
   5350     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5351                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
   5352   case OP_VEXT1:
   5353   case OP_VEXT2:
   5354   case OP_VEXT3:
   5355     return DAG.getNode(ARMISD::VEXT, dl, VT,
   5356                        OpLHS, OpRHS,
   5357                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
   5358   case OP_VUZPL:
   5359   case OP_VUZPR:
   5360     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5361                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   5362   case OP_VZIPL:
   5363   case OP_VZIPR:
   5364     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5365                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   5366   case OP_VTRNL:
   5367   case OP_VTRNR:
   5368     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5369                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   5370   }
   5371 }
   5372 
   5373 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   5374                                        ArrayRef<int> ShuffleMask,
   5375                                        SelectionDAG &DAG) {
   5376   // Check to see if we can use the VTBL instruction.
   5377   SDValue V1 = Op.getOperand(0);
   5378   SDValue V2 = Op.getOperand(1);
   5379   SDLoc DL(Op);
   5380 
   5381   SmallVector<SDValue, 8> VTBLMask;
   5382   for (ArrayRef<int>::iterator
   5383          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   5384     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
   5385 
   5386   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   5387     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   5388                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5389 
   5390   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   5391                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5392 }
   5393 
   5394 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
   5395                                                       SelectionDAG &DAG) {
   5396   SDLoc DL(Op);
   5397   SDValue OpLHS = Op.getOperand(0);
   5398   EVT VT = OpLHS.getValueType();
   5399 
   5400   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
   5401          "Expect an v8i16/v16i8 type");
   5402   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
   5403   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
   5404   // extract the first 8 bytes into the top double word and the last 8 bytes
   5405   // into the bottom double word. The v8i16 case is similar.
   5406   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
   5407   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
   5408                      DAG.getConstant(ExtractNum, MVT::i32));
   5409 }
   5410 
   5411 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   5412   SDValue V1 = Op.getOperand(0);
   5413   SDValue V2 = Op.getOperand(1);
   5414   SDLoc dl(Op);
   5415   EVT VT = Op.getValueType();
   5416   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   5417 
   5418   // Convert shuffles that are directly supported on NEON to target-specific
   5419   // DAG nodes, instead of keeping them as shuffles and matching them again
   5420   // during code selection.  This is more efficient and avoids the possibility
   5421   // of inconsistencies between legalization and selection.
   5422   // FIXME: floating-point vectors should be canonicalized to integer vectors
   5423   // of the same time so that they get CSEd properly.
   5424   ArrayRef<int> ShuffleMask = SVN->getMask();
   5425 
   5426   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5427   if (EltSize <= 32) {
   5428     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   5429       int Lane = SVN->getSplatIndex();
   5430       // If this is undef splat, generate it via "just" vdup, if possible.
   5431       if (Lane == -1) Lane = 0;
   5432 
   5433       // Test if V1 is a SCALAR_TO_VECTOR.
   5434       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   5435         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5436       }
   5437       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   5438       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   5439       // reaches it).
   5440       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   5441           !isa<ConstantSDNode>(V1.getOperand(0))) {
   5442         bool IsScalarToVector = true;
   5443         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   5444           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
   5445             IsScalarToVector = false;
   5446             break;
   5447           }
   5448         if (IsScalarToVector)
   5449           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5450       }
   5451       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   5452                          DAG.getConstant(Lane, MVT::i32));
   5453     }
   5454 
   5455     bool ReverseVEXT;
   5456     unsigned Imm;
   5457     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   5458       if (ReverseVEXT)
   5459         std::swap(V1, V2);
   5460       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   5461                          DAG.getConstant(Imm, MVT::i32));
   5462     }
   5463 
   5464     if (isVREVMask(ShuffleMask, VT, 64))
   5465       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   5466     if (isVREVMask(ShuffleMask, VT, 32))
   5467       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   5468     if (isVREVMask(ShuffleMask, VT, 16))
   5469       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   5470 
   5471     if (V2->getOpcode() == ISD::UNDEF &&
   5472         isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
   5473       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
   5474                          DAG.getConstant(Imm, MVT::i32));
   5475     }
   5476 
   5477     // Check for Neon shuffles that modify both input vectors in place.
   5478     // If both results are used, i.e., if there are two shuffles with the same
   5479     // source operands and with masks corresponding to both results of one of
   5480     // these operations, DAG memoization will ensure that a single node is
   5481     // used for both shuffles.
   5482     unsigned WhichResult;
   5483     if (isVTRNMask(ShuffleMask, VT, WhichResult))
   5484       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5485                          V1, V2).getValue(WhichResult);
   5486     if (isVUZPMask(ShuffleMask, VT, WhichResult))
   5487       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5488                          V1, V2).getValue(WhichResult);
   5489     if (isVZIPMask(ShuffleMask, VT, WhichResult))
   5490       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5491                          V1, V2).getValue(WhichResult);
   5492 
   5493     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5494       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5495                          V1, V1).getValue(WhichResult);
   5496     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5497       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5498                          V1, V1).getValue(WhichResult);
   5499     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5500       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5501                          V1, V1).getValue(WhichResult);
   5502   }
   5503 
   5504   // If the shuffle is not directly supported and it has 4 elements, use
   5505   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   5506   unsigned NumElts = VT.getVectorNumElements();
   5507   if (NumElts == 4) {
   5508     unsigned PFIndexes[4];
   5509     for (unsigned i = 0; i != 4; ++i) {
   5510       if (ShuffleMask[i] < 0)
   5511         PFIndexes[i] = 8;
   5512       else
   5513         PFIndexes[i] = ShuffleMask[i];
   5514     }
   5515 
   5516     // Compute the index in the perfect shuffle table.
   5517     unsigned PFTableIndex =
   5518       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5519     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5520     unsigned Cost = (PFEntry >> 30);
   5521 
   5522     if (Cost <= 4)
   5523       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   5524   }
   5525 
   5526   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   5527   if (EltSize >= 32) {
   5528     // Do the expansion with floating-point types, since that is what the VFP
   5529     // registers are defined to use, and since i64 is not legal.
   5530     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5531     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5532     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   5533     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   5534     SmallVector<SDValue, 8> Ops;
   5535     for (unsigned i = 0; i < NumElts; ++i) {
   5536       if (ShuffleMask[i] < 0)
   5537         Ops.push_back(DAG.getUNDEF(EltVT));
   5538       else
   5539         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   5540                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   5541                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   5542                                                   MVT::i32)));
   5543     }
   5544     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5545     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5546   }
   5547 
   5548   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
   5549     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
   5550 
   5551   if (VT == MVT::v8i8) {
   5552     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   5553     if (NewOp.getNode())
   5554       return NewOp;
   5555   }
   5556 
   5557   return SDValue();
   5558 }
   5559 
   5560 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   5561   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   5562   SDValue Lane = Op.getOperand(2);
   5563   if (!isa<ConstantSDNode>(Lane))
   5564     return SDValue();
   5565 
   5566   return Op;
   5567 }
   5568 
   5569 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   5570   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   5571   SDValue Lane = Op.getOperand(1);
   5572   if (!isa<ConstantSDNode>(Lane))
   5573     return SDValue();
   5574 
   5575   SDValue Vec = Op.getOperand(0);
   5576   if (Op.getValueType() == MVT::i32 &&
   5577       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   5578     SDLoc dl(Op);
   5579     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   5580   }
   5581 
   5582   return Op;
   5583 }
   5584 
   5585 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5586   // The only time a CONCAT_VECTORS operation can have legal types is when
   5587   // two 64-bit vectors are concatenated to a 128-bit vector.
   5588   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   5589          "unexpected CONCAT_VECTORS");
   5590   SDLoc dl(Op);
   5591   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   5592   SDValue Op0 = Op.getOperand(0);
   5593   SDValue Op1 = Op.getOperand(1);
   5594   if (Op0.getOpcode() != ISD::UNDEF)
   5595     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   5596                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   5597                       DAG.getIntPtrConstant(0));
   5598   if (Op1.getOpcode() != ISD::UNDEF)
   5599     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   5600                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   5601                       DAG.getIntPtrConstant(1));
   5602   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   5603 }
   5604 
   5605 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   5606 /// element has been zero/sign-extended, depending on the isSigned parameter,
   5607 /// from an integer type half its size.
   5608 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   5609                                    bool isSigned) {
   5610   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   5611   EVT VT = N->getValueType(0);
   5612   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   5613     SDNode *BVN = N->getOperand(0).getNode();
   5614     if (BVN->getValueType(0) != MVT::v4i32 ||
   5615         BVN->getOpcode() != ISD::BUILD_VECTOR)
   5616       return false;
   5617     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   5618     unsigned HiElt = 1 - LoElt;
   5619     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   5620     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   5621     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   5622     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   5623     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   5624       return false;
   5625     if (isSigned) {
   5626       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   5627           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   5628         return true;
   5629     } else {
   5630       if (Hi0->isNullValue() && Hi1->isNullValue())
   5631         return true;
   5632     }
   5633     return false;
   5634   }
   5635 
   5636   if (N->getOpcode() != ISD::BUILD_VECTOR)
   5637     return false;
   5638 
   5639   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   5640     SDNode *Elt = N->getOperand(i).getNode();
   5641     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   5642       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5643       unsigned HalfSize = EltSize / 2;
   5644       if (isSigned) {
   5645         if (!isIntN(HalfSize, C->getSExtValue()))
   5646           return false;
   5647       } else {
   5648         if (!isUIntN(HalfSize, C->getZExtValue()))
   5649           return false;
   5650       }
   5651       continue;
   5652     }
   5653     return false;
   5654   }
   5655 
   5656   return true;
   5657 }
   5658 
   5659 /// isSignExtended - Check if a node is a vector value that is sign-extended
   5660 /// or a constant BUILD_VECTOR with sign-extended elements.
   5661 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   5662   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   5663     return true;
   5664   if (isExtendedBUILD_VECTOR(N, DAG, true))
   5665     return true;
   5666   return false;
   5667 }
   5668 
   5669 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   5670 /// or a constant BUILD_VECTOR with zero-extended elements.
   5671 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   5672   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   5673     return true;
   5674   if (isExtendedBUILD_VECTOR(N, DAG, false))
   5675     return true;
   5676   return false;
   5677 }
   5678 
   5679 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   5680   if (OrigVT.getSizeInBits() >= 64)
   5681     return OrigVT;
   5682 
   5683   assert(OrigVT.isSimple() && "Expecting a simple value type");
   5684 
   5685   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   5686   switch (OrigSimpleTy) {
   5687   default: llvm_unreachable("Unexpected Vector Type");
   5688   case MVT::v2i8:
   5689   case MVT::v2i16:
   5690      return MVT::v2i32;
   5691   case MVT::v4i8:
   5692     return  MVT::v4i16;
   5693   }
   5694 }
   5695 
   5696 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
   5697 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
   5698 /// We insert the required extension here to get the vector to fill a D register.
   5699 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
   5700                                             const EVT &OrigTy,
   5701                                             const EVT &ExtTy,
   5702                                             unsigned ExtOpcode) {
   5703   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   5704   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   5705   // 64-bits we need to insert a new extension so that it will be 64-bits.
   5706   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   5707   if (OrigTy.getSizeInBits() >= 64)
   5708     return N;
   5709 
   5710   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   5711   EVT NewVT = getExtensionTo64Bits(OrigTy);
   5712 
   5713   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   5714 }
   5715 
   5716 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
   5717 /// does not do any sign/zero extension. If the original vector is less
   5718 /// than 64 bits, an appropriate extension will be added after the load to
   5719 /// reach a total size of 64 bits. We have to add the extension separately
   5720 /// because ARM does not have a sign/zero extending load for vectors.
   5721 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
   5722   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
   5723 
   5724   // The load already has the right type.
   5725   if (ExtendedTy == LD->getMemoryVT())
   5726     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
   5727                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   5728                 LD->isNonTemporal(), LD->isInvariant(),
   5729                 LD->getAlignment());
   5730 
   5731   // We need to create a zextload/sextload. We cannot just create a load
   5732   // followed by a zext/zext node because LowerMUL is also run during normal
   5733   // operation legalization where we can't create illegal types.
   5734   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
   5735                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
   5736                         LD->getMemoryVT(), LD->isVolatile(),
   5737                         LD->isNonTemporal(), LD->getAlignment());
   5738 }
   5739 
   5740 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
   5741 /// extending load, or BUILD_VECTOR with extended elements, return the
   5742 /// unextended value. The unextended vector should be 64 bits so that it can
   5743 /// be used as an operand to a VMULL instruction. If the original vector size
   5744 /// before extension is less than 64 bits we add a an extension to resize
   5745 /// the vector to 64 bits.
   5746 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
   5747   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   5748     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
   5749                                         N->getOperand(0)->getValueType(0),
   5750                                         N->getValueType(0),
   5751                                         N->getOpcode());
   5752 
   5753   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   5754     return SkipLoadExtensionForVMULL(LD, DAG);
   5755 
   5756   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   5757   // have been legalized as a BITCAST from v4i32.
   5758   if (N->getOpcode() == ISD::BITCAST) {
   5759     SDNode *BVN = N->getOperand(0).getNode();
   5760     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   5761            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   5762     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   5763     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
   5764                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   5765   }
   5766   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   5767   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   5768   EVT VT = N->getValueType(0);
   5769   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   5770   unsigned NumElts = VT.getVectorNumElements();
   5771   MVT TruncVT = MVT::getIntegerVT(EltSize);
   5772   SmallVector<SDValue, 8> Ops;
   5773   for (unsigned i = 0; i != NumElts; ++i) {
   5774     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   5775     const APInt &CInt = C->getAPIntValue();
   5776     // Element types smaller than 32 bits are not legal, so use i32 elements.
   5777     // The values are implicitly truncated so sext vs. zext doesn't matter.
   5778     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
   5779   }
   5780   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
   5781                      MVT::getVectorVT(TruncVT, NumElts), Ops);
   5782 }
   5783 
   5784 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   5785   unsigned Opcode = N->getOpcode();
   5786   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   5787     SDNode *N0 = N->getOperand(0).getNode();
   5788     SDNode *N1 = N->getOperand(1).getNode();
   5789     return N0->hasOneUse() && N1->hasOneUse() &&
   5790       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   5791   }
   5792   return false;
   5793 }
   5794 
   5795 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   5796   unsigned Opcode = N->getOpcode();
   5797   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   5798     SDNode *N0 = N->getOperand(0).getNode();
   5799     SDNode *N1 = N->getOperand(1).getNode();
   5800     return N0->hasOneUse() && N1->hasOneUse() &&
   5801       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   5802   }
   5803   return false;
   5804 }
   5805 
   5806 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   5807   // Multiplications are only custom-lowered for 128-bit vectors so that
   5808   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   5809   EVT VT = Op.getValueType();
   5810   assert(VT.is128BitVector() && VT.isInteger() &&
   5811          "unexpected type for custom-lowering ISD::MUL");
   5812   SDNode *N0 = Op.getOperand(0).getNode();
   5813   SDNode *N1 = Op.getOperand(1).getNode();
   5814   unsigned NewOpc = 0;
   5815   bool isMLA = false;
   5816   bool isN0SExt = isSignExtended(N0, DAG);
   5817   bool isN1SExt = isSignExtended(N1, DAG);
   5818   if (isN0SExt && isN1SExt)
   5819     NewOpc = ARMISD::VMULLs;
   5820   else {
   5821     bool isN0ZExt = isZeroExtended(N0, DAG);
   5822     bool isN1ZExt = isZeroExtended(N1, DAG);
   5823     if (isN0ZExt && isN1ZExt)
   5824       NewOpc = ARMISD::VMULLu;
   5825     else if (isN1SExt || isN1ZExt) {
   5826       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   5827       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   5828       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   5829         NewOpc = ARMISD::VMULLs;
   5830         isMLA = true;
   5831       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   5832         NewOpc = ARMISD::VMULLu;
   5833         isMLA = true;
   5834       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   5835         std::swap(N0, N1);
   5836         NewOpc = ARMISD::VMULLu;
   5837         isMLA = true;
   5838       }
   5839     }
   5840 
   5841     if (!NewOpc) {
   5842       if (VT == MVT::v2i64)
   5843         // Fall through to expand this.  It is not legal.
   5844         return SDValue();
   5845       else
   5846         // Other vector multiplications are legal.
   5847         return Op;
   5848     }
   5849   }
   5850 
   5851   // Legalize to a VMULL instruction.
   5852   SDLoc DL(Op);
   5853   SDValue Op0;
   5854   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
   5855   if (!isMLA) {
   5856     Op0 = SkipExtensionForVMULL(N0, DAG);
   5857     assert(Op0.getValueType().is64BitVector() &&
   5858            Op1.getValueType().is64BitVector() &&
   5859            "unexpected types for extended operands to VMULL");
   5860     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   5861   }
   5862 
   5863   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   5864   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   5865   //   vmull q0, d4, d6
   5866   //   vmlal q0, d5, d6
   5867   // is faster than
   5868   //   vaddl q0, d4, d5
   5869   //   vmovl q1, d6
   5870   //   vmul  q0, q0, q1
   5871   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
   5872   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
   5873   EVT Op1VT = Op1.getValueType();
   5874   return DAG.getNode(N0->getOpcode(), DL, VT,
   5875                      DAG.getNode(NewOpc, DL, VT,
   5876                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   5877                      DAG.getNode(NewOpc, DL, VT,
   5878                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   5879 }
   5880 
   5881 static SDValue
   5882 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
   5883   // Convert to float
   5884   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   5885   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   5886   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   5887   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   5888   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   5889   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   5890   // Get reciprocal estimate.
   5891   // float4 recip = vrecpeq_f32(yf);
   5892   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5893                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
   5894   // Because char has a smaller range than uchar, we can actually get away
   5895   // without any newton steps.  This requires that we use a weird bias
   5896   // of 0xb000, however (again, this has been exhaustively tested).
   5897   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   5898   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   5899   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   5900   Y = DAG.getConstant(0xb000, MVT::i32);
   5901   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   5902   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   5903   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   5904   // Convert back to short.
   5905   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   5906   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   5907   return X;
   5908 }
   5909 
   5910 static SDValue
   5911 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
   5912   SDValue N2;
   5913   // Convert to float.
   5914   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   5915   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   5916   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   5917   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   5918   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   5919   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   5920 
   5921   // Use reciprocal estimate and one refinement step.
   5922   // float4 recip = vrecpeq_f32(yf);
   5923   // recip *= vrecpsq_f32(yf, recip);
   5924   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5925                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
   5926   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5927                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   5928                    N1, N2);
   5929   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   5930   // Because short has a smaller range than ushort, we can actually get away
   5931   // with only a single newton step.  This requires that we use a weird bias
   5932   // of 89, however (again, this has been exhaustively tested).
   5933   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   5934   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   5935   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   5936   N1 = DAG.getConstant(0x89, MVT::i32);
   5937   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   5938   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   5939   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   5940   // Convert back to integer and return.
   5941   // return vmovn_s32(vcvt_s32_f32(result));
   5942   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   5943   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   5944   return N0;
   5945 }
   5946 
   5947 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   5948   EVT VT = Op.getValueType();
   5949   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   5950          "unexpected type for custom-lowering ISD::SDIV");
   5951 
   5952   SDLoc dl(Op);
   5953   SDValue N0 = Op.getOperand(0);
   5954   SDValue N1 = Op.getOperand(1);
   5955   SDValue N2, N3;
   5956 
   5957   if (VT == MVT::v8i8) {
   5958     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   5959     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   5960 
   5961     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5962                      DAG.getIntPtrConstant(4));
   5963     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5964                      DAG.getIntPtrConstant(4));
   5965     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5966                      DAG.getIntPtrConstant(0));
   5967     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5968                      DAG.getIntPtrConstant(0));
   5969 
   5970     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   5971     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   5972 
   5973     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   5974     N0 = LowerCONCAT_VECTORS(N0, DAG);
   5975 
   5976     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   5977     return N0;
   5978   }
   5979   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   5980 }
   5981 
   5982 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   5983   EVT VT = Op.getValueType();
   5984   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   5985          "unexpected type for custom-lowering ISD::UDIV");
   5986 
   5987   SDLoc dl(Op);
   5988   SDValue N0 = Op.getOperand(0);
   5989   SDValue N1 = Op.getOperand(1);
   5990   SDValue N2, N3;
   5991 
   5992   if (VT == MVT::v8i8) {
   5993     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   5994     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   5995 
   5996     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   5997                      DAG.getIntPtrConstant(4));
   5998     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   5999                      DAG.getIntPtrConstant(4));
   6000     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6001                      DAG.getIntPtrConstant(0));
   6002     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6003                      DAG.getIntPtrConstant(0));
   6004 
   6005     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   6006     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   6007 
   6008     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6009     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6010 
   6011     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   6012                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
   6013                      N0);
   6014     return N0;
   6015   }
   6016 
   6017   // v4i16 sdiv ... Convert to float.
   6018   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   6019   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   6020   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   6021   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   6022   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6023   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6024 
   6025   // Use reciprocal estimate and two refinement steps.
   6026   // float4 recip = vrecpeq_f32(yf);
   6027   // recip *= vrecpsq_f32(yf, recip);
   6028   // recip *= vrecpsq_f32(yf, recip);
   6029   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6030                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
   6031   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6032                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   6033                    BN1, N2);
   6034   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6035   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6036                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   6037                    BN1, N2);
   6038   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6039   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   6040   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   6041   // and that it will never cause us to return an answer too large).
   6042   // float4 result = as_float4(as_int4(xf*recip) + 2);
   6043   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6044   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6045   N1 = DAG.getConstant(2, MVT::i32);
   6046   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   6047   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6048   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6049   // Convert back to integer and return.
   6050   // return vmovn_u32(vcvt_s32_f32(result));
   6051   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6052   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6053   return N0;
   6054 }
   6055 
   6056 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   6057   EVT VT = Op.getNode()->getValueType(0);
   6058   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   6059 
   6060   unsigned Opc;
   6061   bool ExtraOp = false;
   6062   switch (Op.getOpcode()) {
   6063   default: llvm_unreachable("Invalid code");
   6064   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   6065   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   6066   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   6067   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   6068   }
   6069 
   6070   if (!ExtraOp)
   6071     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6072                        Op.getOperand(1));
   6073   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6074                      Op.getOperand(1), Op.getOperand(2));
   6075 }
   6076 
   6077 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   6078   assert(Subtarget->isTargetDarwin());
   6079 
   6080   // For iOS, we want to call an alternative entry point: __sincos_stret,
   6081   // return values are passed via sret.
   6082   SDLoc dl(Op);
   6083   SDValue Arg = Op.getOperand(0);
   6084   EVT ArgVT = Arg.getValueType();
   6085   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   6086 
   6087   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6088   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6089 
   6090   // Pair of floats / doubles used to pass the result.
   6091   StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
   6092 
   6093   // Create stack object for sret.
   6094   const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
   6095   const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
   6096   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
   6097   SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
   6098 
   6099   ArgListTy Args;
   6100   ArgListEntry Entry;
   6101 
   6102   Entry.Node = SRet;
   6103   Entry.Ty = RetTy->getPointerTo();
   6104   Entry.isSExt = false;
   6105   Entry.isZExt = false;
   6106   Entry.isSRet = true;
   6107   Args.push_back(Entry);
   6108 
   6109   Entry.Node = Arg;
   6110   Entry.Ty = ArgTy;
   6111   Entry.isSExt = false;
   6112   Entry.isZExt = false;
   6113   Args.push_back(Entry);
   6114 
   6115   const char *LibcallName  = (ArgVT == MVT::f64)
   6116   ? "__sincos_stret" : "__sincosf_stret";
   6117   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
   6118 
   6119   TargetLowering::CallLoweringInfo CLI(DAG);
   6120   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
   6121     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
   6122                std::move(Args), 0)
   6123     .setDiscardResult();
   6124 
   6125   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   6126 
   6127   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
   6128                                 MachinePointerInfo(), false, false, false, 0);
   6129 
   6130   // Address of cos field.
   6131   SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
   6132                             DAG.getIntPtrConstant(ArgVT.getStoreSize()));
   6133   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
   6134                                 MachinePointerInfo(), false, false, false, 0);
   6135 
   6136   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   6137   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
   6138                      LoadSin.getValue(0), LoadCos.getValue(0));
   6139 }
   6140 
   6141 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   6142   // Monotonic load/store is legal for all targets
   6143   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   6144     return Op;
   6145 
   6146   // Acquire/Release load/store is not legal for targets without a
   6147   // dmb or equivalent available.
   6148   return SDValue();
   6149 }
   6150 
   6151 static void ReplaceREADCYCLECOUNTER(SDNode *N,
   6152                                     SmallVectorImpl<SDValue> &Results,
   6153                                     SelectionDAG &DAG,
   6154                                     const ARMSubtarget *Subtarget) {
   6155   SDLoc DL(N);
   6156   SDValue Cycles32, OutChain;
   6157 
   6158   if (Subtarget->hasPerfMon()) {
   6159     // Under Power Management extensions, the cycle-count is:
   6160     //    mrc p15, #0, <Rt>, c9, c13, #0
   6161     SDValue Ops[] = { N->getOperand(0), // Chain
   6162                       DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
   6163                       DAG.getConstant(15, MVT::i32),
   6164                       DAG.getConstant(0, MVT::i32),
   6165                       DAG.getConstant(9, MVT::i32),
   6166                       DAG.getConstant(13, MVT::i32),
   6167                       DAG.getConstant(0, MVT::i32)
   6168     };
   6169 
   6170     Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   6171                            DAG.getVTList(MVT::i32, MVT::Other), Ops);
   6172     OutChain = Cycles32.getValue(1);
   6173   } else {
   6174     // Intrinsic is defined to return 0 on unsupported platforms. Technically
   6175     // there are older ARM CPUs that have implementation-specific ways of
   6176     // obtaining this information (FIXME!).
   6177     Cycles32 = DAG.getConstant(0, MVT::i32);
   6178     OutChain = DAG.getEntryNode();
   6179   }
   6180 
   6181 
   6182   SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
   6183                                  Cycles32, DAG.getConstant(0, MVT::i32));
   6184   Results.push_back(Cycles64);
   6185   Results.push_back(OutChain);
   6186 }
   6187 
   6188 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6189   switch (Op.getOpcode()) {
   6190   default: llvm_unreachable("Don't know how to custom lower this!");
   6191   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   6192   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   6193   case ISD::GlobalAddress:
   6194     switch (Subtarget->getTargetTriple().getObjectFormat()) {
   6195     default: llvm_unreachable("unknown object format");
   6196     case Triple::COFF:
   6197       return LowerGlobalAddressWindows(Op, DAG);
   6198     case Triple::ELF:
   6199       return LowerGlobalAddressELF(Op, DAG);
   6200     case Triple::MachO:
   6201       return LowerGlobalAddressDarwin(Op, DAG);
   6202     }
   6203   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   6204   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   6205   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   6206   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   6207   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   6208   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   6209   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   6210   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   6211   case ISD::SINT_TO_FP:
   6212   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   6213   case ISD::FP_TO_SINT:
   6214   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   6215   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   6216   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   6217   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   6218   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
   6219   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   6220   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   6221   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   6222                                                                Subtarget);
   6223   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   6224   case ISD::SHL:
   6225   case ISD::SRL:
   6226   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   6227   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   6228   case ISD::SRL_PARTS:
   6229   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   6230   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   6231   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
   6232   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   6233   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   6234   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   6235   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   6236   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   6237   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   6238   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   6239   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   6240   case ISD::MUL:           return LowerMUL(Op, DAG);
   6241   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   6242   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   6243   case ISD::ADDC:
   6244   case ISD::ADDE:
   6245   case ISD::SUBC:
   6246   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   6247   case ISD::SADDO:
   6248   case ISD::UADDO:
   6249   case ISD::SSUBO:
   6250   case ISD::USUBO:
   6251     return LowerXALUO(Op, DAG);
   6252   case ISD::ATOMIC_LOAD:
   6253   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   6254   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
   6255   case ISD::SDIVREM:
   6256   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
   6257   case ISD::DYNAMIC_STACKALLOC:
   6258     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
   6259       return LowerDYNAMIC_STACKALLOC(Op, DAG);
   6260     llvm_unreachable("Don't know how to custom lower this!");
   6261   }
   6262 }
   6263 
   6264 /// ReplaceNodeResults - Replace the results of node with an illegal result
   6265 /// type with new values built out of custom code.
   6266 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   6267                                            SmallVectorImpl<SDValue>&Results,
   6268                                            SelectionDAG &DAG) const {
   6269   SDValue Res;
   6270   switch (N->getOpcode()) {
   6271   default:
   6272     llvm_unreachable("Don't know how to custom expand this!");
   6273   case ISD::BITCAST:
   6274     Res = ExpandBITCAST(N, DAG);
   6275     break;
   6276   case ISD::SRL:
   6277   case ISD::SRA:
   6278     Res = Expand64BitShift(N, DAG, Subtarget);
   6279     break;
   6280   case ISD::READCYCLECOUNTER:
   6281     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
   6282     return;
   6283   }
   6284   if (Res.getNode())
   6285     Results.push_back(Res);
   6286 }
   6287 
   6288 //===----------------------------------------------------------------------===//
   6289 //                           ARM Scheduler Hooks
   6290 //===----------------------------------------------------------------------===//
   6291 
   6292 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   6293 /// registers the function context.
   6294 void ARMTargetLowering::
   6295 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   6296                        MachineBasicBlock *DispatchBB, int FI) const {
   6297   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6298   DebugLoc dl = MI->getDebugLoc();
   6299   MachineFunction *MF = MBB->getParent();
   6300   MachineRegisterInfo *MRI = &MF->getRegInfo();
   6301   MachineConstantPool *MCP = MF->getConstantPool();
   6302   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   6303   const Function *F = MF->getFunction();
   6304 
   6305   bool isThumb = Subtarget->isThumb();
   6306   bool isThumb2 = Subtarget->isThumb2();
   6307 
   6308   unsigned PCLabelId = AFI->createPICLabelUId();
   6309   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   6310   ARMConstantPoolValue *CPV =
   6311     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   6312   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   6313 
   6314   const TargetRegisterClass *TRC = isThumb ?
   6315     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   6316     (const TargetRegisterClass*)&ARM::GPRRegClass;
   6317 
   6318   // Grab constant pool and fixed stack memory operands.
   6319   MachineMemOperand *CPMMO =
   6320     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
   6321                              MachineMemOperand::MOLoad, 4, 4);
   6322 
   6323   MachineMemOperand *FIMMOSt =
   6324     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   6325                              MachineMemOperand::MOStore, 4, 4);
   6326 
   6327   // Load the address of the dispatch MBB into the jump buffer.
   6328   if (isThumb2) {
   6329     // Incoming value: jbuf
   6330     //   ldr.n  r5, LCPI1_1
   6331     //   orr    r5, r5, #1
   6332     //   add    r5, pc
   6333     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   6334     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6335     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   6336                    .addConstantPoolIndex(CPI)
   6337                    .addMemOperand(CPMMO));
   6338     // Set the low bit because of thumb mode.
   6339     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6340     AddDefaultCC(
   6341       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   6342                      .addReg(NewVReg1, RegState::Kill)
   6343                      .addImm(0x01)));
   6344     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6345     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   6346       .addReg(NewVReg2, RegState::Kill)
   6347       .addImm(PCLabelId);
   6348     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   6349                    .addReg(NewVReg3, RegState::Kill)
   6350                    .addFrameIndex(FI)
   6351                    .addImm(36)  // &jbuf[1] :: pc
   6352                    .addMemOperand(FIMMOSt));
   6353   } else if (isThumb) {
   6354     // Incoming value: jbuf
   6355     //   ldr.n  r1, LCPI1_4
   6356     //   add    r1, pc
   6357     //   mov    r2, #1
   6358     //   orrs   r1, r2
   6359     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   6360     //   str    r1, [r2]
   6361     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6362     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   6363                    .addConstantPoolIndex(CPI)
   6364                    .addMemOperand(CPMMO));
   6365     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6366     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   6367       .addReg(NewVReg1, RegState::Kill)
   6368       .addImm(PCLabelId);
   6369     // Set the low bit because of thumb mode.
   6370     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6371     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   6372                    .addReg(ARM::CPSR, RegState::Define)
   6373                    .addImm(1));
   6374     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6375     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   6376                    .addReg(ARM::CPSR, RegState::Define)
   6377                    .addReg(NewVReg2, RegState::Kill)
   6378                    .addReg(NewVReg3, RegState::Kill));
   6379     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6380     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
   6381                    .addFrameIndex(FI)
   6382                    .addImm(36)); // &jbuf[1] :: pc
   6383     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   6384                    .addReg(NewVReg4, RegState::Kill)
   6385                    .addReg(NewVReg5, RegState::Kill)
   6386                    .addImm(0)
   6387                    .addMemOperand(FIMMOSt));
   6388   } else {
   6389     // Incoming value: jbuf
   6390     //   ldr  r1, LCPI1_1
   6391     //   add  r1, pc, r1
   6392     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   6393     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6394     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   6395                    .addConstantPoolIndex(CPI)
   6396                    .addImm(0)
   6397                    .addMemOperand(CPMMO));
   6398     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6399     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   6400                    .addReg(NewVReg1, RegState::Kill)
   6401                    .addImm(PCLabelId));
   6402     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   6403                    .addReg(NewVReg2, RegState::Kill)
   6404                    .addFrameIndex(FI)
   6405                    .addImm(36)  // &jbuf[1] :: pc
   6406                    .addMemOperand(FIMMOSt));
   6407   }
   6408 }
   6409 
   6410 MachineBasicBlock *ARMTargetLowering::
   6411 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
   6412   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6413   DebugLoc dl = MI->getDebugLoc();
   6414   MachineFunction *MF = MBB->getParent();
   6415   MachineRegisterInfo *MRI = &MF->getRegInfo();
   6416   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   6417   MachineFrameInfo *MFI = MF->getFrameInfo();
   6418   int FI = MFI->getFunctionContextIndex();
   6419 
   6420   const TargetRegisterClass *TRC = Subtarget->isThumb() ?
   6421     (const TargetRegisterClass*)&ARM::tGPRRegClass :
   6422     (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
   6423 
   6424   // Get a mapping of the call site numbers to all of the landing pads they're
   6425   // associated with.
   6426   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   6427   unsigned MaxCSNum = 0;
   6428   MachineModuleInfo &MMI = MF->getMMI();
   6429   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   6430        ++BB) {
   6431     if (!BB->isLandingPad()) continue;
   6432 
   6433     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   6434     // pad.
   6435     for (MachineBasicBlock::iterator
   6436            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   6437       if (!II->isEHLabel()) continue;
   6438 
   6439       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   6440       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   6441 
   6442       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   6443       for (SmallVectorImpl<unsigned>::iterator
   6444              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   6445            CSI != CSE; ++CSI) {
   6446         CallSiteNumToLPad[*CSI].push_back(BB);
   6447         MaxCSNum = std::max(MaxCSNum, *CSI);
   6448       }
   6449       break;
   6450     }
   6451   }
   6452 
   6453   // Get an ordered list of the machine basic blocks for the jump table.
   6454   std::vector<MachineBasicBlock*> LPadList;
   6455   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   6456   LPadList.reserve(CallSiteNumToLPad.size());
   6457   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   6458     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   6459     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6460            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   6461       LPadList.push_back(*II);
   6462       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   6463     }
   6464   }
   6465 
   6466   assert(!LPadList.empty() &&
   6467          "No landing pad destinations for the dispatch jump table!");
   6468 
   6469   // Create the jump table and associated information.
   6470   MachineJumpTableInfo *JTI =
   6471     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   6472   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   6473   unsigned UId = AFI->createJumpTableUId();
   6474   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   6475 
   6476   // Create the MBBs for the dispatch code.
   6477 
   6478   // Shove the dispatch's address into the return slot in the function context.
   6479   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   6480   DispatchBB->setIsLandingPad();
   6481 
   6482   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   6483   unsigned trap_opcode;
   6484   if (Subtarget->isThumb())
   6485     trap_opcode = ARM::tTRAP;
   6486   else
   6487     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
   6488 
   6489   BuildMI(TrapBB, dl, TII->get(trap_opcode));
   6490   DispatchBB->addSuccessor(TrapBB);
   6491 
   6492   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   6493   DispatchBB->addSuccessor(DispContBB);
   6494 
   6495   // Insert and MBBs.
   6496   MF->insert(MF->end(), DispatchBB);
   6497   MF->insert(MF->end(), DispContBB);
   6498   MF->insert(MF->end(), TrapBB);
   6499 
   6500   // Insert code into the entry block that creates and registers the function
   6501   // context.
   6502   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   6503 
   6504   MachineMemOperand *FIMMOLd =
   6505     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   6506                              MachineMemOperand::MOLoad |
   6507                              MachineMemOperand::MOVolatile, 4, 4);
   6508 
   6509   MachineInstrBuilder MIB;
   6510   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   6511 
   6512   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   6513   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   6514 
   6515   // Add a register mask with no preserved registers.  This results in all
   6516   // registers being marked as clobbered.
   6517   MIB.addRegMask(RI.getNoPreservedMask());
   6518 
   6519   unsigned NumLPads = LPadList.size();
   6520   if (Subtarget->isThumb2()) {
   6521     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6522     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   6523                    .addFrameIndex(FI)
   6524                    .addImm(4)
   6525                    .addMemOperand(FIMMOLd));
   6526 
   6527     if (NumLPads < 256) {
   6528       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   6529                      .addReg(NewVReg1)
   6530                      .addImm(LPadList.size()));
   6531     } else {
   6532       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6533       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   6534                      .addImm(NumLPads & 0xFFFF));
   6535 
   6536       unsigned VReg2 = VReg1;
   6537       if ((NumLPads & 0xFFFF0000) != 0) {
   6538         VReg2 = MRI->createVirtualRegister(TRC);
   6539         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   6540                        .addReg(VReg1)
   6541                        .addImm(NumLPads >> 16));
   6542       }
   6543 
   6544       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   6545                      .addReg(NewVReg1)
   6546                      .addReg(VReg2));
   6547     }
   6548 
   6549     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   6550       .addMBB(TrapBB)
   6551       .addImm(ARMCC::HI)
   6552       .addReg(ARM::CPSR);
   6553 
   6554     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6555     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   6556                    .addJumpTableIndex(MJTI)
   6557                    .addImm(UId));
   6558 
   6559     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6560     AddDefaultCC(
   6561       AddDefaultPred(
   6562         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   6563         .addReg(NewVReg3, RegState::Kill)
   6564         .addReg(NewVReg1)
   6565         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6566 
   6567     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   6568       .addReg(NewVReg4, RegState::Kill)
   6569       .addReg(NewVReg1)
   6570       .addJumpTableIndex(MJTI)
   6571       .addImm(UId);
   6572   } else if (Subtarget->isThumb()) {
   6573     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6574     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   6575                    .addFrameIndex(FI)
   6576                    .addImm(1)
   6577                    .addMemOperand(FIMMOLd));
   6578 
   6579     if (NumLPads < 256) {
   6580       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   6581                      .addReg(NewVReg1)
   6582                      .addImm(NumLPads));
   6583     } else {
   6584       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6585       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6586       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6587 
   6588       // MachineConstantPool wants an explicit alignment.
   6589       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   6590       if (Align == 0)
   6591         Align = getDataLayout()->getTypeAllocSize(C->getType());
   6592       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6593 
   6594       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6595       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   6596                      .addReg(VReg1, RegState::Define)
   6597                      .addConstantPoolIndex(Idx));
   6598       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   6599                      .addReg(NewVReg1)
   6600                      .addReg(VReg1));
   6601     }
   6602 
   6603     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   6604       .addMBB(TrapBB)
   6605       .addImm(ARMCC::HI)
   6606       .addReg(ARM::CPSR);
   6607 
   6608     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6609     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   6610                    .addReg(ARM::CPSR, RegState::Define)
   6611                    .addReg(NewVReg1)
   6612                    .addImm(2));
   6613 
   6614     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6615     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   6616                    .addJumpTableIndex(MJTI)
   6617                    .addImm(UId));
   6618 
   6619     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6620     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   6621                    .addReg(ARM::CPSR, RegState::Define)
   6622                    .addReg(NewVReg2, RegState::Kill)
   6623                    .addReg(NewVReg3));
   6624 
   6625     MachineMemOperand *JTMMOLd =
   6626       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6627                                MachineMemOperand::MOLoad, 4, 4);
   6628 
   6629     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6630     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   6631                    .addReg(NewVReg4, RegState::Kill)
   6632                    .addImm(0)
   6633                    .addMemOperand(JTMMOLd));
   6634 
   6635     unsigned NewVReg6 = NewVReg5;
   6636     if (RelocM == Reloc::PIC_) {
   6637       NewVReg6 = MRI->createVirtualRegister(TRC);
   6638       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   6639                      .addReg(ARM::CPSR, RegState::Define)
   6640                      .addReg(NewVReg5, RegState::Kill)
   6641                      .addReg(NewVReg3));
   6642     }
   6643 
   6644     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   6645       .addReg(NewVReg6, RegState::Kill)
   6646       .addJumpTableIndex(MJTI)
   6647       .addImm(UId);
   6648   } else {
   6649     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6650     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   6651                    .addFrameIndex(FI)
   6652                    .addImm(4)
   6653                    .addMemOperand(FIMMOLd));
   6654 
   6655     if (NumLPads < 256) {
   6656       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   6657                      .addReg(NewVReg1)
   6658                      .addImm(NumLPads));
   6659     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   6660       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6661       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   6662                      .addImm(NumLPads & 0xFFFF));
   6663 
   6664       unsigned VReg2 = VReg1;
   6665       if ((NumLPads & 0xFFFF0000) != 0) {
   6666         VReg2 = MRI->createVirtualRegister(TRC);
   6667         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   6668                        .addReg(VReg1)
   6669                        .addImm(NumLPads >> 16));
   6670       }
   6671 
   6672       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6673                      .addReg(NewVReg1)
   6674                      .addReg(VReg2));
   6675     } else {
   6676       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6677       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6678       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6679 
   6680       // MachineConstantPool wants an explicit alignment.
   6681       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   6682       if (Align == 0)
   6683         Align = getDataLayout()->getTypeAllocSize(C->getType());
   6684       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6685 
   6686       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6687       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   6688                      .addReg(VReg1, RegState::Define)
   6689                      .addConstantPoolIndex(Idx)
   6690                      .addImm(0));
   6691       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6692                      .addReg(NewVReg1)
   6693                      .addReg(VReg1, RegState::Kill));
   6694     }
   6695 
   6696     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   6697       .addMBB(TrapBB)
   6698       .addImm(ARMCC::HI)
   6699       .addReg(ARM::CPSR);
   6700 
   6701     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6702     AddDefaultCC(
   6703       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   6704                      .addReg(NewVReg1)
   6705                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6706     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6707     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   6708                    .addJumpTableIndex(MJTI)
   6709                    .addImm(UId));
   6710 
   6711     MachineMemOperand *JTMMOLd =
   6712       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6713                                MachineMemOperand::MOLoad, 4, 4);
   6714     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6715     AddDefaultPred(
   6716       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   6717       .addReg(NewVReg3, RegState::Kill)
   6718       .addReg(NewVReg4)
   6719       .addImm(0)
   6720       .addMemOperand(JTMMOLd));
   6721 
   6722     if (RelocM == Reloc::PIC_) {
   6723       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   6724         .addReg(NewVReg5, RegState::Kill)
   6725         .addReg(NewVReg4)
   6726         .addJumpTableIndex(MJTI)
   6727         .addImm(UId);
   6728     } else {
   6729       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
   6730         .addReg(NewVReg5, RegState::Kill)
   6731         .addJumpTableIndex(MJTI)
   6732         .addImm(UId);
   6733     }
   6734   }
   6735 
   6736   // Add the jump table entries as successors to the MBB.
   6737   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   6738   for (std::vector<MachineBasicBlock*>::iterator
   6739          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   6740     MachineBasicBlock *CurMBB = *I;
   6741     if (SeenMBBs.insert(CurMBB))
   6742       DispContBB->addSuccessor(CurMBB);
   6743   }
   6744 
   6745   // N.B. the order the invoke BBs are processed in doesn't matter here.
   6746   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
   6747   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   6748   for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
   6749          I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
   6750     MachineBasicBlock *BB = *I;
   6751 
   6752     // Remove the landing pad successor from the invoke block and replace it
   6753     // with the new dispatch block.
   6754     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   6755                                                   BB->succ_end());
   6756     while (!Successors.empty()) {
   6757       MachineBasicBlock *SMBB = Successors.pop_back_val();
   6758       if (SMBB->isLandingPad()) {
   6759         BB->removeSuccessor(SMBB);
   6760         MBBLPads.push_back(SMBB);
   6761       }
   6762     }
   6763 
   6764     BB->addSuccessor(DispatchBB);
   6765 
   6766     // Find the invoke call and mark all of the callee-saved registers as
   6767     // 'implicit defined' so that they're spilled. This prevents code from
   6768     // moving instructions to before the EH block, where they will never be
   6769     // executed.
   6770     for (MachineBasicBlock::reverse_iterator
   6771            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   6772       if (!II->isCall()) continue;
   6773 
   6774       DenseMap<unsigned, bool> DefRegs;
   6775       for (MachineInstr::mop_iterator
   6776              OI = II->operands_begin(), OE = II->operands_end();
   6777            OI != OE; ++OI) {
   6778         if (!OI->isReg()) continue;
   6779         DefRegs[OI->getReg()] = true;
   6780       }
   6781 
   6782       MachineInstrBuilder MIB(*MF, &*II);
   6783 
   6784       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   6785         unsigned Reg = SavedRegs[i];
   6786         if (Subtarget->isThumb2() &&
   6787             !ARM::tGPRRegClass.contains(Reg) &&
   6788             !ARM::hGPRRegClass.contains(Reg))
   6789           continue;
   6790         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   6791           continue;
   6792         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   6793           continue;
   6794         if (!DefRegs[Reg])
   6795           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   6796       }
   6797 
   6798       break;
   6799     }
   6800   }
   6801 
   6802   // Mark all former landing pads as non-landing pads. The dispatch is the only
   6803   // landing pad now.
   6804   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6805          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   6806     (*I)->setIsLandingPad(false);
   6807 
   6808   // The instruction is gone now.
   6809   MI->eraseFromParent();
   6810 
   6811   return MBB;
   6812 }
   6813 
   6814 static
   6815 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   6816   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   6817        E = MBB->succ_end(); I != E; ++I)
   6818     if (*I != Succ)
   6819       return *I;
   6820   llvm_unreachable("Expecting a BB with two successors!");
   6821 }
   6822 
   6823 /// Return the load opcode for a given load size. If load size >= 8,
   6824 /// neon opcode will be returned.
   6825 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
   6826   if (LdSize >= 8)
   6827     return LdSize == 16 ? ARM::VLD1q32wb_fixed
   6828                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
   6829   if (IsThumb1)
   6830     return LdSize == 4 ? ARM::tLDRi
   6831                        : LdSize == 2 ? ARM::tLDRHi
   6832                                      : LdSize == 1 ? ARM::tLDRBi : 0;
   6833   if (IsThumb2)
   6834     return LdSize == 4 ? ARM::t2LDR_POST
   6835                        : LdSize == 2 ? ARM::t2LDRH_POST
   6836                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
   6837   return LdSize == 4 ? ARM::LDR_POST_IMM
   6838                      : LdSize == 2 ? ARM::LDRH_POST
   6839                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
   6840 }
   6841 
   6842 /// Return the store opcode for a given store size. If store size >= 8,
   6843 /// neon opcode will be returned.
   6844 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
   6845   if (StSize >= 8)
   6846     return StSize == 16 ? ARM::VST1q32wb_fixed
   6847                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
   6848   if (IsThumb1)
   6849     return StSize == 4 ? ARM::tSTRi
   6850                        : StSize == 2 ? ARM::tSTRHi
   6851                                      : StSize == 1 ? ARM::tSTRBi : 0;
   6852   if (IsThumb2)
   6853     return StSize == 4 ? ARM::t2STR_POST
   6854                        : StSize == 2 ? ARM::t2STRH_POST
   6855                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
   6856   return StSize == 4 ? ARM::STR_POST_IMM
   6857                      : StSize == 2 ? ARM::STRH_POST
   6858                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
   6859 }
   6860 
   6861 /// Emit a post-increment load operation with given size. The instructions
   6862 /// will be added to BB at Pos.
   6863 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
   6864                        const TargetInstrInfo *TII, DebugLoc dl,
   6865                        unsigned LdSize, unsigned Data, unsigned AddrIn,
   6866                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   6867   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
   6868   assert(LdOpc != 0 && "Should have a load opcode");
   6869   if (LdSize >= 8) {
   6870     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6871                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6872                        .addImm(0));
   6873   } else if (IsThumb1) {
   6874     // load + update AddrIn
   6875     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6876                        .addReg(AddrIn).addImm(0));
   6877     MachineInstrBuilder MIB =
   6878         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   6879     MIB = AddDefaultT1CC(MIB);
   6880     MIB.addReg(AddrIn).addImm(LdSize);
   6881     AddDefaultPred(MIB);
   6882   } else if (IsThumb2) {
   6883     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6884                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6885                        .addImm(LdSize));
   6886   } else { // arm
   6887     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6888                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6889                        .addReg(0).addImm(LdSize));
   6890   }
   6891 }
   6892 
   6893 /// Emit a post-increment store operation with given size. The instructions
   6894 /// will be added to BB at Pos.
   6895 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
   6896                        const TargetInstrInfo *TII, DebugLoc dl,
   6897                        unsigned StSize, unsigned Data, unsigned AddrIn,
   6898                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   6899   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
   6900   assert(StOpc != 0 && "Should have a store opcode");
   6901   if (StSize >= 8) {
   6902     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6903                        .addReg(AddrIn).addImm(0).addReg(Data));
   6904   } else if (IsThumb1) {
   6905     // store + update AddrIn
   6906     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
   6907                        .addReg(AddrIn).addImm(0));
   6908     MachineInstrBuilder MIB =
   6909         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   6910     MIB = AddDefaultT1CC(MIB);
   6911     MIB.addReg(AddrIn).addImm(StSize);
   6912     AddDefaultPred(MIB);
   6913   } else if (IsThumb2) {
   6914     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6915                        .addReg(Data).addReg(AddrIn).addImm(StSize));
   6916   } else { // arm
   6917     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6918                        .addReg(Data).addReg(AddrIn).addReg(0)
   6919                        .addImm(StSize));
   6920   }
   6921 }
   6922 
   6923 MachineBasicBlock *
   6924 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
   6925                                    MachineBasicBlock *BB) const {
   6926   // This pseudo instruction has 3 operands: dst, src, size
   6927   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   6928   // Otherwise, we will generate unrolled scalar copies.
   6929   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6930   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6931   MachineFunction::iterator It = BB;
   6932   ++It;
   6933 
   6934   unsigned dest = MI->getOperand(0).getReg();
   6935   unsigned src = MI->getOperand(1).getReg();
   6936   unsigned SizeVal = MI->getOperand(2).getImm();
   6937   unsigned Align = MI->getOperand(3).getImm();
   6938   DebugLoc dl = MI->getDebugLoc();
   6939 
   6940   MachineFunction *MF = BB->getParent();
   6941   MachineRegisterInfo &MRI = MF->getRegInfo();
   6942   unsigned UnitSize = 0;
   6943   const TargetRegisterClass *TRC = nullptr;
   6944   const TargetRegisterClass *VecTRC = nullptr;
   6945 
   6946   bool IsThumb1 = Subtarget->isThumb1Only();
   6947   bool IsThumb2 = Subtarget->isThumb2();
   6948 
   6949   if (Align & 1) {
   6950     UnitSize = 1;
   6951   } else if (Align & 2) {
   6952     UnitSize = 2;
   6953   } else {
   6954     // Check whether we can use NEON instructions.
   6955     if (!MF->getFunction()->getAttributes().
   6956           hasAttribute(AttributeSet::FunctionIndex,
   6957                        Attribute::NoImplicitFloat) &&
   6958         Subtarget->hasNEON()) {
   6959       if ((Align % 16 == 0) && SizeVal >= 16)
   6960         UnitSize = 16;
   6961       else if ((Align % 8 == 0) && SizeVal >= 8)
   6962         UnitSize = 8;
   6963     }
   6964     // Can't use NEON instructions.
   6965     if (UnitSize == 0)
   6966       UnitSize = 4;
   6967   }
   6968 
   6969   // Select the correct opcode and register class for unit size load/store
   6970   bool IsNeon = UnitSize >= 8;
   6971   TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass
   6972                                : (const TargetRegisterClass *)&ARM::GPRRegClass;
   6973   if (IsNeon)
   6974     VecTRC = UnitSize == 16
   6975                  ? (const TargetRegisterClass *)&ARM::DPairRegClass
   6976                  : UnitSize == 8
   6977                        ? (const TargetRegisterClass *)&ARM::DPRRegClass
   6978                        : nullptr;
   6979 
   6980   unsigned BytesLeft = SizeVal % UnitSize;
   6981   unsigned LoopSize = SizeVal - BytesLeft;
   6982 
   6983   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   6984     // Use LDR and STR to copy.
   6985     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   6986     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   6987     unsigned srcIn = src;
   6988     unsigned destIn = dest;
   6989     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   6990       unsigned srcOut = MRI.createVirtualRegister(TRC);
   6991       unsigned destOut = MRI.createVirtualRegister(TRC);
   6992       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   6993       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
   6994                  IsThumb1, IsThumb2);
   6995       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
   6996                  IsThumb1, IsThumb2);
   6997       srcIn = srcOut;
   6998       destIn = destOut;
   6999     }
   7000 
   7001     // Handle the leftover bytes with LDRB and STRB.
   7002     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   7003     // [destOut] = STRB_POST(scratch, destIn, 1)
   7004     for (unsigned i = 0; i < BytesLeft; i++) {
   7005       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7006       unsigned destOut = MRI.createVirtualRegister(TRC);
   7007       unsigned scratch = MRI.createVirtualRegister(TRC);
   7008       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
   7009                  IsThumb1, IsThumb2);
   7010       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
   7011                  IsThumb1, IsThumb2);
   7012       srcIn = srcOut;
   7013       destIn = destOut;
   7014     }
   7015     MI->eraseFromParent();   // The instruction is gone now.
   7016     return BB;
   7017   }
   7018 
   7019   // Expand the pseudo op to a loop.
   7020   // thisMBB:
   7021   //   ...
   7022   //   movw varEnd, # --> with thumb2
   7023   //   movt varEnd, #
   7024   //   ldrcp varEnd, idx --> without thumb2
   7025   //   fallthrough --> loopMBB
   7026   // loopMBB:
   7027   //   PHI varPhi, varEnd, varLoop
   7028   //   PHI srcPhi, src, srcLoop
   7029   //   PHI destPhi, dst, destLoop
   7030   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7031   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   7032   //   subs varLoop, varPhi, #UnitSize
   7033   //   bne loopMBB
   7034   //   fallthrough --> exitMBB
   7035   // exitMBB:
   7036   //   epilogue to handle left-over bytes
   7037   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7038   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7039   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7040   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7041   MF->insert(It, loopMBB);
   7042   MF->insert(It, exitMBB);
   7043 
   7044   // Transfer the remainder of BB and its successor edges to exitMBB.
   7045   exitMBB->splice(exitMBB->begin(), BB,
   7046                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7047   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   7048 
   7049   // Load an immediate to varEnd.
   7050   unsigned varEnd = MRI.createVirtualRegister(TRC);
   7051   if (IsThumb2) {
   7052     unsigned Vtmp = varEnd;
   7053     if ((LoopSize & 0xFFFF0000) != 0)
   7054       Vtmp = MRI.createVirtualRegister(TRC);
   7055     AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp)
   7056                        .addImm(LoopSize & 0xFFFF));
   7057 
   7058     if ((LoopSize & 0xFFFF0000) != 0)
   7059       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
   7060                          .addReg(Vtmp).addImm(LoopSize >> 16));
   7061   } else {
   7062     MachineConstantPool *ConstantPool = MF->getConstantPool();
   7063     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7064     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   7065 
   7066     // MachineConstantPool wants an explicit alignment.
   7067     unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   7068     if (Align == 0)
   7069       Align = getDataLayout()->getTypeAllocSize(C->getType());
   7070     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7071 
   7072     if (IsThumb1)
   7073       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
   7074           varEnd, RegState::Define).addConstantPoolIndex(Idx));
   7075     else
   7076       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
   7077           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
   7078   }
   7079   BB->addSuccessor(loopMBB);
   7080 
   7081   // Generate the loop body:
   7082   //   varPhi = PHI(varLoop, varEnd)
   7083   //   srcPhi = PHI(srcLoop, src)
   7084   //   destPhi = PHI(destLoop, dst)
   7085   MachineBasicBlock *entryBB = BB;
   7086   BB = loopMBB;
   7087   unsigned varLoop = MRI.createVirtualRegister(TRC);
   7088   unsigned varPhi = MRI.createVirtualRegister(TRC);
   7089   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   7090   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   7091   unsigned destLoop = MRI.createVirtualRegister(TRC);
   7092   unsigned destPhi = MRI.createVirtualRegister(TRC);
   7093 
   7094   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   7095     .addReg(varLoop).addMBB(loopMBB)
   7096     .addReg(varEnd).addMBB(entryBB);
   7097   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   7098     .addReg(srcLoop).addMBB(loopMBB)
   7099     .addReg(src).addMBB(entryBB);
   7100   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   7101     .addReg(destLoop).addMBB(loopMBB)
   7102     .addReg(dest).addMBB(entryBB);
   7103 
   7104   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7105   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   7106   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7107   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
   7108              IsThumb1, IsThumb2);
   7109   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
   7110              IsThumb1, IsThumb2);
   7111 
   7112   // Decrement loop variable by UnitSize.
   7113   if (IsThumb1) {
   7114     MachineInstrBuilder MIB =
   7115         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
   7116     MIB = AddDefaultT1CC(MIB);
   7117     MIB.addReg(varPhi).addImm(UnitSize);
   7118     AddDefaultPred(MIB);
   7119   } else {
   7120     MachineInstrBuilder MIB =
   7121         BuildMI(*BB, BB->end(), dl,
   7122                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   7123     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
   7124     MIB->getOperand(5).setReg(ARM::CPSR);
   7125     MIB->getOperand(5).setIsDef(true);
   7126   }
   7127   BuildMI(*BB, BB->end(), dl,
   7128           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
   7129       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   7130 
   7131   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   7132   BB->addSuccessor(loopMBB);
   7133   BB->addSuccessor(exitMBB);
   7134 
   7135   // Add epilogue to handle BytesLeft.
   7136   BB = exitMBB;
   7137   MachineInstr *StartOfExit = exitMBB->begin();
   7138 
   7139   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7140   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7141   unsigned srcIn = srcLoop;
   7142   unsigned destIn = destLoop;
   7143   for (unsigned i = 0; i < BytesLeft; i++) {
   7144     unsigned srcOut = MRI.createVirtualRegister(TRC);
   7145     unsigned destOut = MRI.createVirtualRegister(TRC);
   7146     unsigned scratch = MRI.createVirtualRegister(TRC);
   7147     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
   7148                IsThumb1, IsThumb2);
   7149     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
   7150                IsThumb1, IsThumb2);
   7151     srcIn = srcOut;
   7152     destIn = destOut;
   7153   }
   7154 
   7155   MI->eraseFromParent();   // The instruction is gone now.
   7156   return BB;
   7157 }
   7158 
   7159 MachineBasicBlock *
   7160 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
   7161                                        MachineBasicBlock *MBB) const {
   7162   const TargetMachine &TM = getTargetMachine();
   7163   const TargetInstrInfo &TII = *TM.getInstrInfo();
   7164   DebugLoc DL = MI->getDebugLoc();
   7165 
   7166   assert(Subtarget->isTargetWindows() &&
   7167          "__chkstk is only supported on Windows");
   7168   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
   7169 
   7170   // __chkstk takes the number of words to allocate on the stack in R4, and
   7171   // returns the stack adjustment in number of bytes in R4.  This will not
   7172   // clober any other registers (other than the obvious lr).
   7173   //
   7174   // Although, technically, IP should be considered a register which may be
   7175   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
   7176   // thumb-2 environment, so there is no interworking required.  As a result, we
   7177   // do not expect a veneer to be emitted by the linker, clobbering IP.
   7178   //
   7179   // Each module receives its own copy of __chkstk, so no import thunk is
   7180   // required, again, ensuring that IP is not clobbered.
   7181   //
   7182   // Finally, although some linkers may theoretically provide a trampoline for
   7183   // out of range calls (which is quite common due to a 32M range limitation of
   7184   // branches for Thumb), we can generate the long-call version via
   7185   // -mcmodel=large, alleviating the need for the trampoline which may clobber
   7186   // IP.
   7187 
   7188   switch (TM.getCodeModel()) {
   7189   case CodeModel::Small:
   7190   case CodeModel::Medium:
   7191   case CodeModel::Default:
   7192   case CodeModel::Kernel:
   7193     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
   7194       .addImm((unsigned)ARMCC::AL).addReg(0)
   7195       .addExternalSymbol("__chkstk")
   7196       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7197       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7198       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7199     break;
   7200   case CodeModel::Large:
   7201   case CodeModel::JITDefault: {
   7202     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   7203     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
   7204 
   7205     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
   7206       .addExternalSymbol("__chkstk");
   7207     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
   7208       .addImm((unsigned)ARMCC::AL).addReg(0)
   7209       .addReg(Reg, RegState::Kill)
   7210       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7211       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7212       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7213     break;
   7214   }
   7215   }
   7216 
   7217   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
   7218                                       ARM::SP)
   7219                               .addReg(ARM::SP, RegState::Define)
   7220                               .addReg(ARM::R4, RegState::Kill)));
   7221 
   7222   MI->eraseFromParent();
   7223   return MBB;
   7224 }
   7225 
   7226 MachineBasicBlock *
   7227 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   7228                                                MachineBasicBlock *BB) const {
   7229   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   7230   DebugLoc dl = MI->getDebugLoc();
   7231   bool isThumb2 = Subtarget->isThumb2();
   7232   switch (MI->getOpcode()) {
   7233   default: {
   7234     MI->dump();
   7235     llvm_unreachable("Unexpected instr type to insert");
   7236   }
   7237   // The Thumb2 pre-indexed stores have the same MI operands, they just
   7238   // define them differently in the .td files from the isel patterns, so
   7239   // they need pseudos.
   7240   case ARM::t2STR_preidx:
   7241     MI->setDesc(TII->get(ARM::t2STR_PRE));
   7242     return BB;
   7243   case ARM::t2STRB_preidx:
   7244     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   7245     return BB;
   7246   case ARM::t2STRH_preidx:
   7247     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   7248     return BB;
   7249 
   7250   case ARM::STRi_preidx:
   7251   case ARM::STRBi_preidx: {
   7252     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   7253       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   7254     // Decode the offset.
   7255     unsigned Offset = MI->getOperand(4).getImm();
   7256     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   7257     Offset = ARM_AM::getAM2Offset(Offset);
   7258     if (isSub)
   7259       Offset = -Offset;
   7260 
   7261     MachineMemOperand *MMO = *MI->memoperands_begin();
   7262     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   7263       .addOperand(MI->getOperand(0))  // Rn_wb
   7264       .addOperand(MI->getOperand(1))  // Rt
   7265       .addOperand(MI->getOperand(2))  // Rn
   7266       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   7267       .addOperand(MI->getOperand(5))  // pred
   7268       .addOperand(MI->getOperand(6))
   7269       .addMemOperand(MMO);
   7270     MI->eraseFromParent();
   7271     return BB;
   7272   }
   7273   case ARM::STRr_preidx:
   7274   case ARM::STRBr_preidx:
   7275   case ARM::STRH_preidx: {
   7276     unsigned NewOpc;
   7277     switch (MI->getOpcode()) {
   7278     default: llvm_unreachable("unexpected opcode!");
   7279     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   7280     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   7281     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   7282     }
   7283     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   7284     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   7285       MIB.addOperand(MI->getOperand(i));
   7286     MI->eraseFromParent();
   7287     return BB;
   7288   }
   7289 
   7290   case ARM::tMOVCCr_pseudo: {
   7291     // To "insert" a SELECT_CC instruction, we actually have to insert the
   7292     // diamond control-flow pattern.  The incoming instruction knows the
   7293     // destination vreg to set, the condition code register to branch on, the
   7294     // true/false values to select between, and a branch opcode to use.
   7295     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7296     MachineFunction::iterator It = BB;
   7297     ++It;
   7298 
   7299     //  thisMBB:
   7300     //  ...
   7301     //   TrueVal = ...
   7302     //   cmpTY ccX, r1, r2
   7303     //   bCC copy1MBB
   7304     //   fallthrough --> copy0MBB
   7305     MachineBasicBlock *thisMBB  = BB;
   7306     MachineFunction *F = BB->getParent();
   7307     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   7308     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   7309     F->insert(It, copy0MBB);
   7310     F->insert(It, sinkMBB);
   7311 
   7312     // Transfer the remainder of BB and its successor edges to sinkMBB.
   7313     sinkMBB->splice(sinkMBB->begin(), BB,
   7314                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7315     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   7316 
   7317     BB->addSuccessor(copy0MBB);
   7318     BB->addSuccessor(sinkMBB);
   7319 
   7320     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   7321       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   7322 
   7323     //  copy0MBB:
   7324     //   %FalseValue = ...
   7325     //   # fallthrough to sinkMBB
   7326     BB = copy0MBB;
   7327 
   7328     // Update machine-CFG edges
   7329     BB->addSuccessor(sinkMBB);
   7330 
   7331     //  sinkMBB:
   7332     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   7333     //  ...
   7334     BB = sinkMBB;
   7335     BuildMI(*BB, BB->begin(), dl,
   7336             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   7337       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   7338       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   7339 
   7340     MI->eraseFromParent();   // The pseudo instruction is gone now.
   7341     return BB;
   7342   }
   7343 
   7344   case ARM::BCCi64:
   7345   case ARM::BCCZi64: {
   7346     // If there is an unconditional branch to the other successor, remove it.
   7347     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7348 
   7349     // Compare both parts that make up the double comparison separately for
   7350     // equality.
   7351     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   7352 
   7353     unsigned LHS1 = MI->getOperand(1).getReg();
   7354     unsigned LHS2 = MI->getOperand(2).getReg();
   7355     if (RHSisZero) {
   7356       AddDefaultPred(BuildMI(BB, dl,
   7357                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7358                      .addReg(LHS1).addImm(0));
   7359       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7360         .addReg(LHS2).addImm(0)
   7361         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7362     } else {
   7363       unsigned RHS1 = MI->getOperand(3).getReg();
   7364       unsigned RHS2 = MI->getOperand(4).getReg();
   7365       AddDefaultPred(BuildMI(BB, dl,
   7366                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   7367                      .addReg(LHS1).addReg(RHS1));
   7368       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   7369         .addReg(LHS2).addReg(RHS2)
   7370         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7371     }
   7372 
   7373     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   7374     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   7375     if (MI->getOperand(0).getImm() == ARMCC::NE)
   7376       std::swap(destMBB, exitMBB);
   7377 
   7378     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   7379       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7380     if (isThumb2)
   7381       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   7382     else
   7383       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   7384 
   7385     MI->eraseFromParent();   // The pseudo instruction is gone now.
   7386     return BB;
   7387   }
   7388 
   7389   case ARM::Int_eh_sjlj_setjmp:
   7390   case ARM::Int_eh_sjlj_setjmp_nofp:
   7391   case ARM::tInt_eh_sjlj_setjmp:
   7392   case ARM::t2Int_eh_sjlj_setjmp:
   7393   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   7394     EmitSjLjDispatchBlock(MI, BB);
   7395     return BB;
   7396 
   7397   case ARM::ABS:
   7398   case ARM::t2ABS: {
   7399     // To insert an ABS instruction, we have to insert the
   7400     // diamond control-flow pattern.  The incoming instruction knows the
   7401     // source vreg to test against 0, the destination vreg to set,
   7402     // the condition code register to branch on, the
   7403     // true/false values to select between, and a branch opcode to use.
   7404     // It transforms
   7405     //     V1 = ABS V0
   7406     // into
   7407     //     V2 = MOVS V0
   7408     //     BCC                      (branch to SinkBB if V0 >= 0)
   7409     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   7410     //     SinkBB: V1 = PHI(V2, V3)
   7411     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7412     MachineFunction::iterator BBI = BB;
   7413     ++BBI;
   7414     MachineFunction *Fn = BB->getParent();
   7415     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   7416     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   7417     Fn->insert(BBI, RSBBB);
   7418     Fn->insert(BBI, SinkBB);
   7419 
   7420     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   7421     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   7422     bool isThumb2 = Subtarget->isThumb2();
   7423     MachineRegisterInfo &MRI = Fn->getRegInfo();
   7424     // In Thumb mode S must not be specified if source register is the SP or
   7425     // PC and if destination register is the SP, so restrict register class
   7426     unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
   7427       (const TargetRegisterClass*)&ARM::rGPRRegClass :
   7428       (const TargetRegisterClass*)&ARM::GPRRegClass);
   7429 
   7430     // Transfer the remainder of BB and its successor edges to sinkMBB.
   7431     SinkBB->splice(SinkBB->begin(), BB,
   7432                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7433     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   7434 
   7435     BB->addSuccessor(RSBBB);
   7436     BB->addSuccessor(SinkBB);
   7437 
   7438     // fall through to SinkMBB
   7439     RSBBB->addSuccessor(SinkBB);
   7440 
   7441     // insert a cmp at the end of BB
   7442     AddDefaultPred(BuildMI(BB, dl,
   7443                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7444                    .addReg(ABSSrcReg).addImm(0));
   7445 
   7446     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   7447     BuildMI(BB, dl,
   7448       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   7449       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   7450 
   7451     // insert rsbri in RSBBB
   7452     // Note: BCC and rsbri will be converted into predicated rsbmi
   7453     // by if-conversion pass
   7454     BuildMI(*RSBBB, RSBBB->begin(), dl,
   7455       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   7456       .addReg(ABSSrcReg, RegState::Kill)
   7457       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   7458 
   7459     // insert PHI in SinkBB,
   7460     // reuse ABSDstReg to not change uses of ABS instruction
   7461     BuildMI(*SinkBB, SinkBB->begin(), dl,
   7462       TII->get(ARM::PHI), ABSDstReg)
   7463       .addReg(NewRsbDstReg).addMBB(RSBBB)
   7464       .addReg(ABSSrcReg).addMBB(BB);
   7465 
   7466     // remove ABS instruction
   7467     MI->eraseFromParent();
   7468 
   7469     // return last added BB
   7470     return SinkBB;
   7471   }
   7472   case ARM::COPY_STRUCT_BYVAL_I32:
   7473     ++NumLoopByVals;
   7474     return EmitStructByval(MI, BB);
   7475   case ARM::WIN__CHKSTK:
   7476     return EmitLowered__chkstk(MI, BB);
   7477   }
   7478 }
   7479 
   7480 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   7481                                                       SDNode *Node) const {
   7482   if (!MI->hasPostISelHook()) {
   7483     assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   7484            "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
   7485     return;
   7486   }
   7487 
   7488   const MCInstrDesc *MCID = &MI->getDesc();
   7489   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   7490   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   7491   // operand is still set to noreg. If needed, set the optional operand's
   7492   // register to CPSR, and remove the redundant implicit def.
   7493   //
   7494   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   7495 
   7496   // Rename pseudo opcodes.
   7497   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   7498   if (NewOpc) {
   7499     const ARMBaseInstrInfo *TII =
   7500       static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
   7501     MCID = &TII->get(NewOpc);
   7502 
   7503     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   7504            "converted opcode should be the same except for cc_out");
   7505 
   7506     MI->setDesc(*MCID);
   7507 
   7508     // Add the optional cc_out operand
   7509     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   7510   }
   7511   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   7512 
   7513   // Any ARM instruction that sets the 's' bit should specify an optional
   7514   // "cc_out" operand in the last operand position.
   7515   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   7516     assert(!NewOpc && "Optional cc_out operand required");
   7517     return;
   7518   }
   7519   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   7520   // since we already have an optional CPSR def.
   7521   bool definesCPSR = false;
   7522   bool deadCPSR = false;
   7523   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   7524        i != e; ++i) {
   7525     const MachineOperand &MO = MI->getOperand(i);
   7526     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   7527       definesCPSR = true;
   7528       if (MO.isDead())
   7529         deadCPSR = true;
   7530       MI->RemoveOperand(i);
   7531       break;
   7532     }
   7533   }
   7534   if (!definesCPSR) {
   7535     assert(!NewOpc && "Optional cc_out operand required");
   7536     return;
   7537   }
   7538   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   7539   if (deadCPSR) {
   7540     assert(!MI->getOperand(ccOutIdx).getReg() &&
   7541            "expect uninitialized optional cc_out operand");
   7542     return;
   7543   }
   7544 
   7545   // If this instruction was defined with an optional CPSR def and its dag node
   7546   // had a live implicit CPSR def, then activate the optional CPSR def.
   7547   MachineOperand &MO = MI->getOperand(ccOutIdx);
   7548   MO.setReg(ARM::CPSR);
   7549   MO.setIsDef(true);
   7550 }
   7551 
   7552 //===----------------------------------------------------------------------===//
   7553 //                           ARM Optimization Hooks
   7554 //===----------------------------------------------------------------------===//
   7555 
   7556 // Helper function that checks if N is a null or all ones constant.
   7557 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   7558   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   7559   if (!C)
   7560     return false;
   7561   return AllOnes ? C->isAllOnesValue() : C->isNullValue();
   7562 }
   7563 
   7564 // Return true if N is conditionally 0 or all ones.
   7565 // Detects these expressions where cc is an i1 value:
   7566 //
   7567 //   (select cc 0, y)   [AllOnes=0]
   7568 //   (select cc y, 0)   [AllOnes=0]
   7569 //   (zext cc)          [AllOnes=0]
   7570 //   (sext cc)          [AllOnes=0/1]
   7571 //   (select cc -1, y)  [AllOnes=1]
   7572 //   (select cc y, -1)  [AllOnes=1]
   7573 //
   7574 // Invert is set when N is the null/all ones constant when CC is false.
   7575 // OtherOp is set to the alternative value of N.
   7576 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   7577                                        SDValue &CC, bool &Invert,
   7578                                        SDValue &OtherOp,
   7579                                        SelectionDAG &DAG) {
   7580   switch (N->getOpcode()) {
   7581   default: return false;
   7582   case ISD::SELECT: {
   7583     CC = N->getOperand(0);
   7584     SDValue N1 = N->getOperand(1);
   7585     SDValue N2 = N->getOperand(2);
   7586     if (isZeroOrAllOnes(N1, AllOnes)) {
   7587       Invert = false;
   7588       OtherOp = N2;
   7589       return true;
   7590     }
   7591     if (isZeroOrAllOnes(N2, AllOnes)) {
   7592       Invert = true;
   7593       OtherOp = N1;
   7594       return true;
   7595     }
   7596     return false;
   7597   }
   7598   case ISD::ZERO_EXTEND:
   7599     // (zext cc) can never be the all ones value.
   7600     if (AllOnes)
   7601       return false;
   7602     // Fall through.
   7603   case ISD::SIGN_EXTEND: {
   7604     EVT VT = N->getValueType(0);
   7605     CC = N->getOperand(0);
   7606     if (CC.getValueType() != MVT::i1)
   7607       return false;
   7608     Invert = !AllOnes;
   7609     if (AllOnes)
   7610       // When looking for an AllOnes constant, N is an sext, and the 'other'
   7611       // value is 0.
   7612       OtherOp = DAG.getConstant(0, VT);
   7613     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   7614       // When looking for a 0 constant, N can be zext or sext.
   7615       OtherOp = DAG.getConstant(1, VT);
   7616     else
   7617       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
   7618     return true;
   7619   }
   7620   }
   7621 }
   7622 
   7623 // Combine a constant select operand into its use:
   7624 //
   7625 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   7626 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   7627 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   7628 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   7629 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   7630 //
   7631 // The transform is rejected if the select doesn't have a constant operand that
   7632 // is null, or all ones when AllOnes is set.
   7633 //
   7634 // Also recognize sext/zext from i1:
   7635 //
   7636 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   7637 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   7638 //
   7639 // These transformations eventually create predicated instructions.
   7640 //
   7641 // @param N       The node to transform.
   7642 // @param Slct    The N operand that is a select.
   7643 // @param OtherOp The other N operand (x above).
   7644 // @param DCI     Context.
   7645 // @param AllOnes Require the select constant to be all ones instead of null.
   7646 // @returns The new node, or SDValue() on failure.
   7647 static
   7648 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   7649                             TargetLowering::DAGCombinerInfo &DCI,
   7650                             bool AllOnes = false) {
   7651   SelectionDAG &DAG = DCI.DAG;
   7652   EVT VT = N->getValueType(0);
   7653   SDValue NonConstantVal;
   7654   SDValue CCOp;
   7655   bool SwapSelectOps;
   7656   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   7657                                   NonConstantVal, DAG))
   7658     return SDValue();
   7659 
   7660   // Slct is now know to be the desired identity constant when CC is true.
   7661   SDValue TrueVal = OtherOp;
   7662   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
   7663                                  OtherOp, NonConstantVal);
   7664   // Unless SwapSelectOps says CC should be false.
   7665   if (SwapSelectOps)
   7666     std::swap(TrueVal, FalseVal);
   7667 
   7668   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
   7669                      CCOp, TrueVal, FalseVal);
   7670 }
   7671 
   7672 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   7673 static
   7674 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   7675                                        TargetLowering::DAGCombinerInfo &DCI) {
   7676   SDValue N0 = N->getOperand(0);
   7677   SDValue N1 = N->getOperand(1);
   7678   if (N0.getNode()->hasOneUse()) {
   7679     SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
   7680     if (Result.getNode())
   7681       return Result;
   7682   }
   7683   if (N1.getNode()->hasOneUse()) {
   7684     SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
   7685     if (Result.getNode())
   7686       return Result;
   7687   }
   7688   return SDValue();
   7689 }
   7690 
   7691 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   7692 // (only after legalization).
   7693 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   7694                                  TargetLowering::DAGCombinerInfo &DCI,
   7695                                  const ARMSubtarget *Subtarget) {
   7696 
   7697   // Only perform optimization if after legalize, and if NEON is available. We
   7698   // also expected both operands to be BUILD_VECTORs.
   7699   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   7700       || N0.getOpcode() != ISD::BUILD_VECTOR
   7701       || N1.getOpcode() != ISD::BUILD_VECTOR)
   7702     return SDValue();
   7703 
   7704   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   7705   EVT VT = N->getValueType(0);
   7706   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   7707     return SDValue();
   7708 
   7709   // Check that the vector operands are of the right form.
   7710   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   7711   // operands, where N is the size of the formed vector.
   7712   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   7713   // index such that we have a pair wise add pattern.
   7714 
   7715   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   7716   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7717     return SDValue();
   7718   SDValue Vec = N0->getOperand(0)->getOperand(0);
   7719   SDNode *V = Vec.getNode();
   7720   unsigned nextIndex = 0;
   7721 
   7722   // For each operands to the ADD which are BUILD_VECTORs,
   7723   // check to see if each of their operands are an EXTRACT_VECTOR with
   7724   // the same vector and appropriate index.
   7725   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   7726     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   7727         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   7728 
   7729       SDValue ExtVec0 = N0->getOperand(i);
   7730       SDValue ExtVec1 = N1->getOperand(i);
   7731 
   7732       // First operand is the vector, verify its the same.
   7733       if (V != ExtVec0->getOperand(0).getNode() ||
   7734           V != ExtVec1->getOperand(0).getNode())
   7735         return SDValue();
   7736 
   7737       // Second is the constant, verify its correct.
   7738       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   7739       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   7740 
   7741       // For the constant, we want to see all the even or all the odd.
   7742       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   7743           || C1->getZExtValue() != nextIndex+1)
   7744         return SDValue();
   7745 
   7746       // Increment index.
   7747       nextIndex+=2;
   7748     } else
   7749       return SDValue();
   7750   }
   7751 
   7752   // Create VPADDL node.
   7753   SelectionDAG &DAG = DCI.DAG;
   7754   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7755 
   7756   // Build operand list.
   7757   SmallVector<SDValue, 8> Ops;
   7758   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
   7759                                 TLI.getPointerTy()));
   7760 
   7761   // Input is the vector.
   7762   Ops.push_back(Vec);
   7763 
   7764   // Get widened type and narrowed type.
   7765   MVT widenType;
   7766   unsigned numElem = VT.getVectorNumElements();
   7767 
   7768   EVT inputLaneType = Vec.getValueType().getVectorElementType();
   7769   switch (inputLaneType.getSimpleVT().SimpleTy) {
   7770     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   7771     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   7772     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   7773     default:
   7774       llvm_unreachable("Invalid vector element type for padd optimization.");
   7775   }
   7776 
   7777   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
   7778   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
   7779   return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
   7780 }
   7781 
   7782 static SDValue findMUL_LOHI(SDValue V) {
   7783   if (V->getOpcode() == ISD::UMUL_LOHI ||
   7784       V->getOpcode() == ISD::SMUL_LOHI)
   7785     return V;
   7786   return SDValue();
   7787 }
   7788 
   7789 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
   7790                                      TargetLowering::DAGCombinerInfo &DCI,
   7791                                      const ARMSubtarget *Subtarget) {
   7792 
   7793   if (Subtarget->isThumb1Only()) return SDValue();
   7794 
   7795   // Only perform the checks after legalize when the pattern is available.
   7796   if (DCI.isBeforeLegalize()) return SDValue();
   7797 
   7798   // Look for multiply add opportunities.
   7799   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   7800   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   7801   // a glue link from the first add to the second add.
   7802   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   7803   // a S/UMLAL instruction.
   7804   //          loAdd   UMUL_LOHI
   7805   //            \    / :lo    \ :hi
   7806   //             \  /          \          [no multiline comment]
   7807   //              ADDC         |  hiAdd
   7808   //                 \ :glue  /  /
   7809   //                  \      /  /
   7810   //                    ADDE
   7811   //
   7812   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
   7813   SDValue AddcOp0 = AddcNode->getOperand(0);
   7814   SDValue AddcOp1 = AddcNode->getOperand(1);
   7815 
   7816   // Check if the two operands are from the same mul_lohi node.
   7817   if (AddcOp0.getNode() == AddcOp1.getNode())
   7818     return SDValue();
   7819 
   7820   assert(AddcNode->getNumValues() == 2 &&
   7821          AddcNode->getValueType(0) == MVT::i32 &&
   7822          "Expect ADDC with two result values. First: i32");
   7823 
   7824   // Check that we have a glued ADDC node.
   7825   if (AddcNode->getValueType(1) != MVT::Glue)
   7826     return SDValue();
   7827 
   7828   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
   7829   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
   7830       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
   7831       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
   7832       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
   7833     return SDValue();
   7834 
   7835   // Look for the glued ADDE.
   7836   SDNode* AddeNode = AddcNode->getGluedUser();
   7837   if (!AddeNode)
   7838     return SDValue();
   7839 
   7840   // Make sure it is really an ADDE.
   7841   if (AddeNode->getOpcode() != ISD::ADDE)
   7842     return SDValue();
   7843 
   7844   assert(AddeNode->getNumOperands() == 3 &&
   7845          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
   7846          "ADDE node has the wrong inputs");
   7847 
   7848   // Check for the triangle shape.
   7849   SDValue AddeOp0 = AddeNode->getOperand(0);
   7850   SDValue AddeOp1 = AddeNode->getOperand(1);
   7851 
   7852   // Make sure that the ADDE operands are not coming from the same node.
   7853   if (AddeOp0.getNode() == AddeOp1.getNode())
   7854     return SDValue();
   7855 
   7856   // Find the MUL_LOHI node walking up ADDE's operands.
   7857   bool IsLeftOperandMUL = false;
   7858   SDValue MULOp = findMUL_LOHI(AddeOp0);
   7859   if (MULOp == SDValue())
   7860    MULOp = findMUL_LOHI(AddeOp1);
   7861   else
   7862     IsLeftOperandMUL = true;
   7863   if (MULOp == SDValue())
   7864      return SDValue();
   7865 
   7866   // Figure out the right opcode.
   7867   unsigned Opc = MULOp->getOpcode();
   7868   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   7869 
   7870   // Figure out the high and low input values to the MLAL node.
   7871   SDValue* HiMul = &MULOp;
   7872   SDValue* HiAdd = nullptr;
   7873   SDValue* LoMul = nullptr;
   7874   SDValue* LowAdd = nullptr;
   7875 
   7876   if (IsLeftOperandMUL)
   7877     HiAdd = &AddeOp1;
   7878   else
   7879     HiAdd = &AddeOp0;
   7880 
   7881 
   7882   if (AddcOp0->getOpcode() == Opc) {
   7883     LoMul = &AddcOp0;
   7884     LowAdd = &AddcOp1;
   7885   }
   7886   if (AddcOp1->getOpcode() == Opc) {
   7887     LoMul = &AddcOp1;
   7888     LowAdd = &AddcOp0;
   7889   }
   7890 
   7891   if (!LoMul)
   7892     return SDValue();
   7893 
   7894   if (LoMul->getNode() != HiMul->getNode())
   7895     return SDValue();
   7896 
   7897   // Create the merged node.
   7898   SelectionDAG &DAG = DCI.DAG;
   7899 
   7900   // Build operand list.
   7901   SmallVector<SDValue, 8> Ops;
   7902   Ops.push_back(LoMul->getOperand(0));
   7903   Ops.push_back(LoMul->getOperand(1));
   7904   Ops.push_back(*LowAdd);
   7905   Ops.push_back(*HiAdd);
   7906 
   7907   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
   7908                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   7909 
   7910   // Replace the ADDs' nodes uses by the MLA node's values.
   7911   SDValue HiMLALResult(MLALNode.getNode(), 1);
   7912   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   7913 
   7914   SDValue LoMLALResult(MLALNode.getNode(), 0);
   7915   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   7916 
   7917   // Return original node to notify the driver to stop replacing.
   7918   SDValue resNode(AddcNode, 0);
   7919   return resNode;
   7920 }
   7921 
   7922 /// PerformADDCCombine - Target-specific dag combine transform from
   7923 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
   7924 static SDValue PerformADDCCombine(SDNode *N,
   7925                                  TargetLowering::DAGCombinerInfo &DCI,
   7926                                  const ARMSubtarget *Subtarget) {
   7927 
   7928   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
   7929 
   7930 }
   7931 
   7932 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   7933 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   7934 /// called with the default operands, and if that fails, with commuted
   7935 /// operands.
   7936 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   7937                                           TargetLowering::DAGCombinerInfo &DCI,
   7938                                           const ARMSubtarget *Subtarget){
   7939 
   7940   // Attempt to create vpaddl for this add.
   7941   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   7942   if (Result.getNode())
   7943     return Result;
   7944 
   7945   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   7946   if (N0.getNode()->hasOneUse()) {
   7947     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   7948     if (Result.getNode()) return Result;
   7949   }
   7950   return SDValue();
   7951 }
   7952 
   7953 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   7954 ///
   7955 static SDValue PerformADDCombine(SDNode *N,
   7956                                  TargetLowering::DAGCombinerInfo &DCI,
   7957                                  const ARMSubtarget *Subtarget) {
   7958   SDValue N0 = N->getOperand(0);
   7959   SDValue N1 = N->getOperand(1);
   7960 
   7961   // First try with the default operand order.
   7962   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   7963   if (Result.getNode())
   7964     return Result;
   7965 
   7966   // If that didn't work, try again with the operands commuted.
   7967   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   7968 }
   7969 
   7970 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   7971 ///
   7972 static SDValue PerformSUBCombine(SDNode *N,
   7973                                  TargetLowering::DAGCombinerInfo &DCI) {
   7974   SDValue N0 = N->getOperand(0);
   7975   SDValue N1 = N->getOperand(1);
   7976 
   7977   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   7978   if (N1.getNode()->hasOneUse()) {
   7979     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   7980     if (Result.getNode()) return Result;
   7981   }
   7982 
   7983   return SDValue();
   7984 }
   7985 
   7986 /// PerformVMULCombine
   7987 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   7988 /// special multiplier accumulator forwarding.
   7989 ///   vmul d3, d0, d2
   7990 ///   vmla d3, d1, d2
   7991 /// is faster than
   7992 ///   vadd d3, d0, d1
   7993 ///   vmul d3, d3, d2
   7994 //  However, for (A + B) * (A + B),
   7995 //    vadd d2, d0, d1
   7996 //    vmul d3, d0, d2
   7997 //    vmla d3, d1, d2
   7998 //  is slower than
   7999 //    vadd d2, d0, d1
   8000 //    vmul d3, d2, d2
   8001 static SDValue PerformVMULCombine(SDNode *N,
   8002                                   TargetLowering::DAGCombinerInfo &DCI,
   8003                                   const ARMSubtarget *Subtarget) {
   8004   if (!Subtarget->hasVMLxForwarding())
   8005     return SDValue();
   8006 
   8007   SelectionDAG &DAG = DCI.DAG;
   8008   SDValue N0 = N->getOperand(0);
   8009   SDValue N1 = N->getOperand(1);
   8010   unsigned Opcode = N0.getOpcode();
   8011   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8012       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   8013     Opcode = N1.getOpcode();
   8014     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8015         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   8016       return SDValue();
   8017     std::swap(N0, N1);
   8018   }
   8019 
   8020   if (N0 == N1)
   8021     return SDValue();
   8022 
   8023   EVT VT = N->getValueType(0);
   8024   SDLoc DL(N);
   8025   SDValue N00 = N0->getOperand(0);
   8026   SDValue N01 = N0->getOperand(1);
   8027   return DAG.getNode(Opcode, DL, VT,
   8028                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   8029                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   8030 }
   8031 
   8032 static SDValue PerformMULCombine(SDNode *N,
   8033                                  TargetLowering::DAGCombinerInfo &DCI,
   8034                                  const ARMSubtarget *Subtarget) {
   8035   SelectionDAG &DAG = DCI.DAG;
   8036 
   8037   if (Subtarget->isThumb1Only())
   8038     return SDValue();
   8039 
   8040   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8041     return SDValue();
   8042 
   8043   EVT VT = N->getValueType(0);
   8044   if (VT.is64BitVector() || VT.is128BitVector())
   8045     return PerformVMULCombine(N, DCI, Subtarget);
   8046   if (VT != MVT::i32)
   8047     return SDValue();
   8048 
   8049   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   8050   if (!C)
   8051     return SDValue();
   8052 
   8053   int64_t MulAmt = C->getSExtValue();
   8054   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
   8055 
   8056   ShiftAmt = ShiftAmt & (32 - 1);
   8057   SDValue V = N->getOperand(0);
   8058   SDLoc DL(N);
   8059 
   8060   SDValue Res;
   8061   MulAmt >>= ShiftAmt;
   8062 
   8063   if (MulAmt >= 0) {
   8064     if (isPowerOf2_32(MulAmt - 1)) {
   8065       // (mul x, 2^N + 1) => (add (shl x, N), x)
   8066       Res = DAG.getNode(ISD::ADD, DL, VT,
   8067                         V,
   8068                         DAG.getNode(ISD::SHL, DL, VT,
   8069                                     V,
   8070                                     DAG.getConstant(Log2_32(MulAmt - 1),
   8071                                                     MVT::i32)));
   8072     } else if (isPowerOf2_32(MulAmt + 1)) {
   8073       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   8074       Res = DAG.getNode(ISD::SUB, DL, VT,
   8075                         DAG.getNode(ISD::SHL, DL, VT,
   8076                                     V,
   8077                                     DAG.getConstant(Log2_32(MulAmt + 1),
   8078                                                     MVT::i32)),
   8079                         V);
   8080     } else
   8081       return SDValue();
   8082   } else {
   8083     uint64_t MulAmtAbs = -MulAmt;
   8084     if (isPowerOf2_32(MulAmtAbs + 1)) {
   8085       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   8086       Res = DAG.getNode(ISD::SUB, DL, VT,
   8087                         V,
   8088                         DAG.getNode(ISD::SHL, DL, VT,
   8089                                     V,
   8090                                     DAG.getConstant(Log2_32(MulAmtAbs + 1),
   8091                                                     MVT::i32)));
   8092     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   8093       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   8094       Res = DAG.getNode(ISD::ADD, DL, VT,
   8095                         V,
   8096                         DAG.getNode(ISD::SHL, DL, VT,
   8097                                     V,
   8098                                     DAG.getConstant(Log2_32(MulAmtAbs-1),
   8099                                                     MVT::i32)));
   8100       Res = DAG.getNode(ISD::SUB, DL, VT,
   8101                         DAG.getConstant(0, MVT::i32),Res);
   8102 
   8103     } else
   8104       return SDValue();
   8105   }
   8106 
   8107   if (ShiftAmt != 0)
   8108     Res = DAG.getNode(ISD::SHL, DL, VT,
   8109                       Res, DAG.getConstant(ShiftAmt, MVT::i32));
   8110 
   8111   // Do not add new nodes to DAG combiner worklist.
   8112   DCI.CombineTo(N, Res, false);
   8113   return SDValue();
   8114 }
   8115 
   8116 static SDValue PerformANDCombine(SDNode *N,
   8117                                  TargetLowering::DAGCombinerInfo &DCI,
   8118                                  const ARMSubtarget *Subtarget) {
   8119 
   8120   // Attempt to use immediate-form VBIC
   8121   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8122   SDLoc dl(N);
   8123   EVT VT = N->getValueType(0);
   8124   SelectionDAG &DAG = DCI.DAG;
   8125 
   8126   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8127     return SDValue();
   8128 
   8129   APInt SplatBits, SplatUndef;
   8130   unsigned SplatBitSize;
   8131   bool HasAnyUndefs;
   8132   if (BVN &&
   8133       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8134     if (SplatBitSize <= 64) {
   8135       EVT VbicVT;
   8136       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   8137                                       SplatUndef.getZExtValue(), SplatBitSize,
   8138                                       DAG, VbicVT, VT.is128BitVector(),
   8139                                       OtherModImm);
   8140       if (Val.getNode()) {
   8141         SDValue Input =
   8142           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   8143         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   8144         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   8145       }
   8146     }
   8147   }
   8148 
   8149   if (!Subtarget->isThumb1Only()) {
   8150     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   8151     SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
   8152     if (Result.getNode())
   8153       return Result;
   8154   }
   8155 
   8156   return SDValue();
   8157 }
   8158 
   8159 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   8160 static SDValue PerformORCombine(SDNode *N,
   8161                                 TargetLowering::DAGCombinerInfo &DCI,
   8162                                 const ARMSubtarget *Subtarget) {
   8163   // Attempt to use immediate-form VORR
   8164   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8165   SDLoc dl(N);
   8166   EVT VT = N->getValueType(0);
   8167   SelectionDAG &DAG = DCI.DAG;
   8168 
   8169   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8170     return SDValue();
   8171 
   8172   APInt SplatBits, SplatUndef;
   8173   unsigned SplatBitSize;
   8174   bool HasAnyUndefs;
   8175   if (BVN && Subtarget->hasNEON() &&
   8176       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8177     if (SplatBitSize <= 64) {
   8178       EVT VorrVT;
   8179       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   8180                                       SplatUndef.getZExtValue(), SplatBitSize,
   8181                                       DAG, VorrVT, VT.is128BitVector(),
   8182                                       OtherModImm);
   8183       if (Val.getNode()) {
   8184         SDValue Input =
   8185           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   8186         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   8187         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   8188       }
   8189     }
   8190   }
   8191 
   8192   if (!Subtarget->isThumb1Only()) {
   8193     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   8194     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   8195     if (Result.getNode())
   8196       return Result;
   8197   }
   8198 
   8199   // The code below optimizes (or (and X, Y), Z).
   8200   // The AND operand needs to have a single user to make these optimizations
   8201   // profitable.
   8202   SDValue N0 = N->getOperand(0);
   8203   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   8204     return SDValue();
   8205   SDValue N1 = N->getOperand(1);
   8206 
   8207   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   8208   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   8209       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   8210     APInt SplatUndef;
   8211     unsigned SplatBitSize;
   8212     bool HasAnyUndefs;
   8213 
   8214     APInt SplatBits0, SplatBits1;
   8215     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   8216     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   8217     // Ensure that the second operand of both ands are constants
   8218     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   8219                                       HasAnyUndefs) && !HasAnyUndefs) {
   8220         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   8221                                           HasAnyUndefs) && !HasAnyUndefs) {
   8222             // Ensure that the bit width of the constants are the same and that
   8223             // the splat arguments are logical inverses as per the pattern we
   8224             // are trying to simplify.
   8225             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
   8226                 SplatBits0 == ~SplatBits1) {
   8227                 // Canonicalize the vector type to make instruction selection
   8228                 // simpler.
   8229                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   8230                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   8231                                              N0->getOperand(1),
   8232                                              N0->getOperand(0),
   8233                                              N1->getOperand(0));
   8234                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   8235             }
   8236         }
   8237     }
   8238   }
   8239 
   8240   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   8241   // reasonable.
   8242 
   8243   // BFI is only available on V6T2+
   8244   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   8245     return SDValue();
   8246 
   8247   SDLoc DL(N);
   8248   // 1) or (and A, mask), val => ARMbfi A, val, mask
   8249   //      iff (val & mask) == val
   8250   //
   8251   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8252   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   8253   //          && mask == ~mask2
   8254   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   8255   //          && ~mask == mask2
   8256   //  (i.e., copy a bitfield value into another bitfield of the same width)
   8257 
   8258   if (VT != MVT::i32)
   8259     return SDValue();
   8260 
   8261   SDValue N00 = N0.getOperand(0);
   8262 
   8263   // The value and the mask need to be constants so we can verify this is
   8264   // actually a bitfield set. If the mask is 0xffff, we can do better
   8265   // via a movt instruction, so don't use BFI in that case.
   8266   SDValue MaskOp = N0.getOperand(1);
   8267   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   8268   if (!MaskC)
   8269     return SDValue();
   8270   unsigned Mask = MaskC->getZExtValue();
   8271   if (Mask == 0xffff)
   8272     return SDValue();
   8273   SDValue Res;
   8274   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   8275   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   8276   if (N1C) {
   8277     unsigned Val = N1C->getZExtValue();
   8278     if ((Val & ~Mask) != Val)
   8279       return SDValue();
   8280 
   8281     if (ARM::isBitFieldInvertedMask(Mask)) {
   8282       Val >>= countTrailingZeros(~Mask);
   8283 
   8284       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   8285                         DAG.getConstant(Val, MVT::i32),
   8286                         DAG.getConstant(Mask, MVT::i32));
   8287 
   8288       // Do not add new nodes to DAG combiner worklist.
   8289       DCI.CombineTo(N, Res, false);
   8290       return SDValue();
   8291     }
   8292   } else if (N1.getOpcode() == ISD::AND) {
   8293     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8294     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   8295     if (!N11C)
   8296       return SDValue();
   8297     unsigned Mask2 = N11C->getZExtValue();
   8298 
   8299     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   8300     // as is to match.
   8301     if (ARM::isBitFieldInvertedMask(Mask) &&
   8302         (Mask == ~Mask2)) {
   8303       // The pack halfword instruction works better for masks that fit it,
   8304       // so use that when it's available.
   8305       if (Subtarget->hasT2ExtractPack() &&
   8306           (Mask == 0xffff || Mask == 0xffff0000))
   8307         return SDValue();
   8308       // 2a
   8309       unsigned amt = countTrailingZeros(Mask2);
   8310       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   8311                         DAG.getConstant(amt, MVT::i32));
   8312       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   8313                         DAG.getConstant(Mask, MVT::i32));
   8314       // Do not add new nodes to DAG combiner worklist.
   8315       DCI.CombineTo(N, Res, false);
   8316       return SDValue();
   8317     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   8318                (~Mask == Mask2)) {
   8319       // The pack halfword instruction works better for masks that fit it,
   8320       // so use that when it's available.
   8321       if (Subtarget->hasT2ExtractPack() &&
   8322           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   8323         return SDValue();
   8324       // 2b
   8325       unsigned lsb = countTrailingZeros(Mask);
   8326       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   8327                         DAG.getConstant(lsb, MVT::i32));
   8328       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   8329                         DAG.getConstant(Mask2, MVT::i32));
   8330       // Do not add new nodes to DAG combiner worklist.
   8331       DCI.CombineTo(N, Res, false);
   8332       return SDValue();
   8333     }
   8334   }
   8335 
   8336   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   8337       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   8338       ARM::isBitFieldInvertedMask(~Mask)) {
   8339     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   8340     // where lsb(mask) == #shamt and masked bits of B are known zero.
   8341     SDValue ShAmt = N00.getOperand(1);
   8342     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   8343     unsigned LSB = countTrailingZeros(Mask);
   8344     if (ShAmtC != LSB)
   8345       return SDValue();
   8346 
   8347     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   8348                       DAG.getConstant(~Mask, MVT::i32));
   8349 
   8350     // Do not add new nodes to DAG combiner worklist.
   8351     DCI.CombineTo(N, Res, false);
   8352   }
   8353 
   8354   return SDValue();
   8355 }
   8356 
   8357 static SDValue PerformXORCombine(SDNode *N,
   8358                                  TargetLowering::DAGCombinerInfo &DCI,
   8359                                  const ARMSubtarget *Subtarget) {
   8360   EVT VT = N->getValueType(0);
   8361   SelectionDAG &DAG = DCI.DAG;
   8362 
   8363   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8364     return SDValue();
   8365 
   8366   if (!Subtarget->isThumb1Only()) {
   8367     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   8368     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   8369     if (Result.getNode())
   8370       return Result;
   8371   }
   8372 
   8373   return SDValue();
   8374 }
   8375 
   8376 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   8377 /// the bits being cleared by the AND are not demanded by the BFI.
   8378 static SDValue PerformBFICombine(SDNode *N,
   8379                                  TargetLowering::DAGCombinerInfo &DCI) {
   8380   SDValue N1 = N->getOperand(1);
   8381   if (N1.getOpcode() == ISD::AND) {
   8382     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   8383     if (!N11C)
   8384       return SDValue();
   8385     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   8386     unsigned LSB = countTrailingZeros(~InvMask);
   8387     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
   8388     unsigned Mask = (1 << Width)-1;
   8389     unsigned Mask2 = N11C->getZExtValue();
   8390     if ((Mask & (~Mask2)) == 0)
   8391       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
   8392                              N->getOperand(0), N1.getOperand(0),
   8393                              N->getOperand(2));
   8394   }
   8395   return SDValue();
   8396 }
   8397 
   8398 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   8399 /// ARMISD::VMOVRRD.
   8400 static SDValue PerformVMOVRRDCombine(SDNode *N,
   8401                                      TargetLowering::DAGCombinerInfo &DCI) {
   8402   // vmovrrd(vmovdrr x, y) -> x,y
   8403   SDValue InDouble = N->getOperand(0);
   8404   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
   8405     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   8406 
   8407   // vmovrrd(load f64) -> (load i32), (load i32)
   8408   SDNode *InNode = InDouble.getNode();
   8409   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   8410       InNode->getValueType(0) == MVT::f64 &&
   8411       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   8412       !cast<LoadSDNode>(InNode)->isVolatile()) {
   8413     // TODO: Should this be done for non-FrameIndex operands?
   8414     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   8415 
   8416     SelectionDAG &DAG = DCI.DAG;
   8417     SDLoc DL(LD);
   8418     SDValue BasePtr = LD->getBasePtr();
   8419     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   8420                                  LD->getPointerInfo(), LD->isVolatile(),
   8421                                  LD->isNonTemporal(), LD->isInvariant(),
   8422                                  LD->getAlignment());
   8423 
   8424     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   8425                                     DAG.getConstant(4, MVT::i32));
   8426     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   8427                                  LD->getPointerInfo(), LD->isVolatile(),
   8428                                  LD->isNonTemporal(), LD->isInvariant(),
   8429                                  std::min(4U, LD->getAlignment() / 2));
   8430 
   8431     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   8432     if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
   8433       std::swap (NewLD1, NewLD2);
   8434     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   8435     DCI.RemoveFromWorklist(LD);
   8436     DAG.DeleteNode(LD);
   8437     return Result;
   8438   }
   8439 
   8440   return SDValue();
   8441 }
   8442 
   8443 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   8444 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   8445 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   8446   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   8447   SDValue Op0 = N->getOperand(0);
   8448   SDValue Op1 = N->getOperand(1);
   8449   if (Op0.getOpcode() == ISD::BITCAST)
   8450     Op0 = Op0.getOperand(0);
   8451   if (Op1.getOpcode() == ISD::BITCAST)
   8452     Op1 = Op1.getOperand(0);
   8453   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   8454       Op0.getNode() == Op1.getNode() &&
   8455       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   8456     return DAG.getNode(ISD::BITCAST, SDLoc(N),
   8457                        N->getValueType(0), Op0.getOperand(0));
   8458   return SDValue();
   8459 }
   8460 
   8461 /// PerformSTORECombine - Target-specific dag combine xforms for
   8462 /// ISD::STORE.
   8463 static SDValue PerformSTORECombine(SDNode *N,
   8464                                    TargetLowering::DAGCombinerInfo &DCI) {
   8465   StoreSDNode *St = cast<StoreSDNode>(N);
   8466   if (St->isVolatile())
   8467     return SDValue();
   8468 
   8469   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   8470   // pack all of the elements in one place.  Next, store to memory in fewer
   8471   // chunks.
   8472   SDValue StVal = St->getValue();
   8473   EVT VT = StVal.getValueType();
   8474   if (St->isTruncatingStore() && VT.isVector()) {
   8475     SelectionDAG &DAG = DCI.DAG;
   8476     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8477     EVT StVT = St->getMemoryVT();
   8478     unsigned NumElems = VT.getVectorNumElements();
   8479     assert(StVT != VT && "Cannot truncate to the same type");
   8480     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   8481     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   8482 
   8483     // From, To sizes and ElemCount must be pow of two
   8484     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   8485 
   8486     // We are going to use the original vector elt for storing.
   8487     // Accumulated smaller vector elements must be a multiple of the store size.
   8488     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   8489 
   8490     unsigned SizeRatio  = FromEltSz / ToEltSz;
   8491     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   8492 
   8493     // Create a type on which we perform the shuffle.
   8494     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   8495                                      NumElems*SizeRatio);
   8496     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   8497 
   8498     SDLoc DL(St);
   8499     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   8500     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   8501     for (unsigned i = 0; i < NumElems; ++i)
   8502       ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
   8503 
   8504     // Can't shuffle using an illegal type.
   8505     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   8506 
   8507     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   8508                                 DAG.getUNDEF(WideVec.getValueType()),
   8509                                 ShuffleVec.data());
   8510     // At this point all of the data is stored at the bottom of the
   8511     // register. We now need to save it to mem.
   8512 
   8513     // Find the largest store unit
   8514     MVT StoreType = MVT::i8;
   8515     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   8516          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   8517       MVT Tp = (MVT::SimpleValueType)tp;
   8518       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   8519         StoreType = Tp;
   8520     }
   8521     // Didn't find a legal store type.
   8522     if (!TLI.isTypeLegal(StoreType))
   8523       return SDValue();
   8524 
   8525     // Bitcast the original vector into a vector of store-size units
   8526     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   8527             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   8528     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   8529     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   8530     SmallVector<SDValue, 8> Chains;
   8531     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   8532                                         TLI.getPointerTy());
   8533     SDValue BasePtr = St->getBasePtr();
   8534 
   8535     // Perform one or more big stores into memory.
   8536     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   8537     for (unsigned I = 0; I < E; I++) {
   8538       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   8539                                    StoreType, ShuffWide,
   8540                                    DAG.getIntPtrConstant(I));
   8541       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   8542                                 St->getPointerInfo(), St->isVolatile(),
   8543                                 St->isNonTemporal(), St->getAlignment());
   8544       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   8545                             Increment);
   8546       Chains.push_back(Ch);
   8547     }
   8548     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   8549   }
   8550 
   8551   if (!ISD::isNormalStore(St))
   8552     return SDValue();
   8553 
   8554   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   8555   // ARM stores of arguments in the same cache line.
   8556   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   8557       StVal.getNode()->hasOneUse()) {
   8558     SelectionDAG  &DAG = DCI.DAG;
   8559     bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
   8560     SDLoc DL(St);
   8561     SDValue BasePtr = St->getBasePtr();
   8562     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   8563                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
   8564                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
   8565                                   St->isNonTemporal(), St->getAlignment());
   8566 
   8567     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   8568                                     DAG.getConstant(4, MVT::i32));
   8569     return DAG.getStore(NewST1.getValue(0), DL,
   8570                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
   8571                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   8572                         St->isNonTemporal(),
   8573                         std::min(4U, St->getAlignment() / 2));
   8574   }
   8575 
   8576   if (StVal.getValueType() != MVT::i64 ||
   8577       StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   8578     return SDValue();
   8579 
   8580   // Bitcast an i64 store extracted from a vector to f64.
   8581   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   8582   SelectionDAG &DAG = DCI.DAG;
   8583   SDLoc dl(StVal);
   8584   SDValue IntVec = StVal.getOperand(0);
   8585   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   8586                                  IntVec.getValueType().getVectorNumElements());
   8587   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   8588   SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   8589                                Vec, StVal.getOperand(1));
   8590   dl = SDLoc(N);
   8591   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   8592   // Make the DAGCombiner fold the bitcasts.
   8593   DCI.AddToWorklist(Vec.getNode());
   8594   DCI.AddToWorklist(ExtElt.getNode());
   8595   DCI.AddToWorklist(V.getNode());
   8596   return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   8597                       St->getPointerInfo(), St->isVolatile(),
   8598                       St->isNonTemporal(), St->getAlignment(),
   8599                       St->getTBAAInfo());
   8600 }
   8601 
   8602 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   8603 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   8604 /// i64 vector to have f64 elements, since the value can then be loaded
   8605 /// directly into a VFP register.
   8606 static bool hasNormalLoadOperand(SDNode *N) {
   8607   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   8608   for (unsigned i = 0; i < NumElts; ++i) {
   8609     SDNode *Elt = N->getOperand(i).getNode();
   8610     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   8611       return true;
   8612   }
   8613   return false;
   8614 }
   8615 
   8616 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   8617 /// ISD::BUILD_VECTOR.
   8618 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   8619                                           TargetLowering::DAGCombinerInfo &DCI){
   8620   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   8621   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   8622   // into a pair of GPRs, which is fine when the value is used as a scalar,
   8623   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   8624   SelectionDAG &DAG = DCI.DAG;
   8625   if (N->getNumOperands() == 2) {
   8626     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   8627     if (RV.getNode())
   8628       return RV;
   8629   }
   8630 
   8631   // Load i64 elements as f64 values so that type legalization does not split
   8632   // them up into i32 values.
   8633   EVT VT = N->getValueType(0);
   8634   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   8635     return SDValue();
   8636   SDLoc dl(N);
   8637   SmallVector<SDValue, 8> Ops;
   8638   unsigned NumElts = VT.getVectorNumElements();
   8639   for (unsigned i = 0; i < NumElts; ++i) {
   8640     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   8641     Ops.push_back(V);
   8642     // Make the DAGCombiner fold the bitcast.
   8643     DCI.AddToWorklist(V.getNode());
   8644   }
   8645   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   8646   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
   8647   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   8648 }
   8649 
   8650 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
   8651 static SDValue
   8652 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   8653   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
   8654   // At that time, we may have inserted bitcasts from integer to float.
   8655   // If these bitcasts have survived DAGCombine, change the lowering of this
   8656   // BUILD_VECTOR in something more vector friendly, i.e., that does not
   8657   // force to use floating point types.
   8658 
   8659   // Make sure we can change the type of the vector.
   8660   // This is possible iff:
   8661   // 1. The vector is only used in a bitcast to a integer type. I.e.,
   8662   //    1.1. Vector is used only once.
   8663   //    1.2. Use is a bit convert to an integer type.
   8664   // 2. The size of its operands are 32-bits (64-bits are not legal).
   8665   EVT VT = N->getValueType(0);
   8666   EVT EltVT = VT.getVectorElementType();
   8667 
   8668   // Check 1.1. and 2.
   8669   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
   8670     return SDValue();
   8671 
   8672   // By construction, the input type must be float.
   8673   assert(EltVT == MVT::f32 && "Unexpected type!");
   8674 
   8675   // Check 1.2.
   8676   SDNode *Use = *N->use_begin();
   8677   if (Use->getOpcode() != ISD::BITCAST ||
   8678       Use->getValueType(0).isFloatingPoint())
   8679     return SDValue();
   8680 
   8681   // Check profitability.
   8682   // Model is, if more than half of the relevant operands are bitcast from
   8683   // i32, turn the build_vector into a sequence of insert_vector_elt.
   8684   // Relevant operands are everything that is not statically
   8685   // (i.e., at compile time) bitcasted.
   8686   unsigned NumOfBitCastedElts = 0;
   8687   unsigned NumElts = VT.getVectorNumElements();
   8688   unsigned NumOfRelevantElts = NumElts;
   8689   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
   8690     SDValue Elt = N->getOperand(Idx);
   8691     if (Elt->getOpcode() == ISD::BITCAST) {
   8692       // Assume only bit cast to i32 will go away.
   8693       if (Elt->getOperand(0).getValueType() == MVT::i32)
   8694         ++NumOfBitCastedElts;
   8695     } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
   8696       // Constants are statically casted, thus do not count them as
   8697       // relevant operands.
   8698       --NumOfRelevantElts;
   8699   }
   8700 
   8701   // Check if more than half of the elements require a non-free bitcast.
   8702   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
   8703     return SDValue();
   8704 
   8705   SelectionDAG &DAG = DCI.DAG;
   8706   // Create the new vector type.
   8707   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   8708   // Check if the type is legal.
   8709   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8710   if (!TLI.isTypeLegal(VecVT))
   8711     return SDValue();
   8712 
   8713   // Combine:
   8714   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
   8715   // => BITCAST INSERT_VECTOR_ELT
   8716   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
   8717   //                      (BITCAST EN), N.
   8718   SDValue Vec = DAG.getUNDEF(VecVT);
   8719   SDLoc dl(N);
   8720   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
   8721     SDValue V = N->getOperand(Idx);
   8722     if (V.getOpcode() == ISD::UNDEF)
   8723       continue;
   8724     if (V.getOpcode() == ISD::BITCAST &&
   8725         V->getOperand(0).getValueType() == MVT::i32)
   8726       // Fold obvious case.
   8727       V = V.getOperand(0);
   8728     else {
   8729       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
   8730       // Make the DAGCombiner fold the bitcasts.
   8731       DCI.AddToWorklist(V.getNode());
   8732     }
   8733     SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
   8734     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
   8735   }
   8736   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   8737   // Make the DAGCombiner fold the bitcasts.
   8738   DCI.AddToWorklist(Vec.getNode());
   8739   return Vec;
   8740 }
   8741 
   8742 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   8743 /// ISD::INSERT_VECTOR_ELT.
   8744 static SDValue PerformInsertEltCombine(SDNode *N,
   8745                                        TargetLowering::DAGCombinerInfo &DCI) {
   8746   // Bitcast an i64 load inserted into a vector to f64.
   8747   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   8748   EVT VT = N->getValueType(0);
   8749   SDNode *Elt = N->getOperand(1).getNode();
   8750   if (VT.getVectorElementType() != MVT::i64 ||
   8751       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   8752     return SDValue();
   8753 
   8754   SelectionDAG &DAG = DCI.DAG;
   8755   SDLoc dl(N);
   8756   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   8757                                  VT.getVectorNumElements());
   8758   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   8759   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   8760   // Make the DAGCombiner fold the bitcasts.
   8761   DCI.AddToWorklist(Vec.getNode());
   8762   DCI.AddToWorklist(V.getNode());
   8763   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   8764                                Vec, V, N->getOperand(2));
   8765   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   8766 }
   8767 
   8768 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   8769 /// ISD::VECTOR_SHUFFLE.
   8770 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   8771   // The LLVM shufflevector instruction does not require the shuffle mask
   8772   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   8773   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   8774   // operands do not match the mask length, they are extended by concatenating
   8775   // them with undef vectors.  That is probably the right thing for other
   8776   // targets, but for NEON it is better to concatenate two double-register
   8777   // size vector operands into a single quad-register size vector.  Do that
   8778   // transformation here:
   8779   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   8780   //   shuffle(concat(v1, v2), undef)
   8781   SDValue Op0 = N->getOperand(0);
   8782   SDValue Op1 = N->getOperand(1);
   8783   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   8784       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   8785       Op0.getNumOperands() != 2 ||
   8786       Op1.getNumOperands() != 2)
   8787     return SDValue();
   8788   SDValue Concat0Op1 = Op0.getOperand(1);
   8789   SDValue Concat1Op1 = Op1.getOperand(1);
   8790   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   8791       Concat1Op1.getOpcode() != ISD::UNDEF)
   8792     return SDValue();
   8793   // Skip the transformation if any of the types are illegal.
   8794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8795   EVT VT = N->getValueType(0);
   8796   if (!TLI.isTypeLegal(VT) ||
   8797       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   8798       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   8799     return SDValue();
   8800 
   8801   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
   8802                                   Op0.getOperand(0), Op1.getOperand(0));
   8803   // Translate the shuffle mask.
   8804   SmallVector<int, 16> NewMask;
   8805   unsigned NumElts = VT.getVectorNumElements();
   8806   unsigned HalfElts = NumElts/2;
   8807   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   8808   for (unsigned n = 0; n < NumElts; ++n) {
   8809     int MaskElt = SVN->getMaskElt(n);
   8810     int NewElt = -1;
   8811     if (MaskElt < (int)HalfElts)
   8812       NewElt = MaskElt;
   8813     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   8814       NewElt = HalfElts + MaskElt - NumElts;
   8815     NewMask.push_back(NewElt);
   8816   }
   8817   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
   8818                               DAG.getUNDEF(VT), NewMask.data());
   8819 }
   8820 
   8821 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
   8822 /// NEON load/store intrinsics to merge base address updates.
   8823 static SDValue CombineBaseUpdate(SDNode *N,
   8824                                  TargetLowering::DAGCombinerInfo &DCI) {
   8825   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8826     return SDValue();
   8827 
   8828   SelectionDAG &DAG = DCI.DAG;
   8829   bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   8830                       N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   8831   unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
   8832   SDValue Addr = N->getOperand(AddrOpIdx);
   8833 
   8834   // Search for a use of the address operand that is an increment.
   8835   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   8836          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   8837     SDNode *User = *UI;
   8838     if (User->getOpcode() != ISD::ADD ||
   8839         UI.getUse().getResNo() != Addr.getResNo())
   8840       continue;
   8841 
   8842     // Check that the add is independent of the load/store.  Otherwise, folding
   8843     // it would create a cycle.
   8844     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   8845       continue;
   8846 
   8847     // Find the new opcode for the updating load/store.
   8848     bool isLoad = true;
   8849     bool isLaneOp = false;
   8850     unsigned NewOpc = 0;
   8851     unsigned NumVecs = 0;
   8852     if (isIntrinsic) {
   8853       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   8854       switch (IntNo) {
   8855       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   8856       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   8857         NumVecs = 1; break;
   8858       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   8859         NumVecs = 2; break;
   8860       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   8861         NumVecs = 3; break;
   8862       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   8863         NumVecs = 4; break;
   8864       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   8865         NumVecs = 2; isLaneOp = true; break;
   8866       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   8867         NumVecs = 3; isLaneOp = true; break;
   8868       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   8869         NumVecs = 4; isLaneOp = true; break;
   8870       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   8871         NumVecs = 1; isLoad = false; break;
   8872       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   8873         NumVecs = 2; isLoad = false; break;
   8874       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   8875         NumVecs = 3; isLoad = false; break;
   8876       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   8877         NumVecs = 4; isLoad = false; break;
   8878       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   8879         NumVecs = 2; isLoad = false; isLaneOp = true; break;
   8880       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   8881         NumVecs = 3; isLoad = false; isLaneOp = true; break;
   8882       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   8883         NumVecs = 4; isLoad = false; isLaneOp = true; break;
   8884       }
   8885     } else {
   8886       isLaneOp = true;
   8887       switch (N->getOpcode()) {
   8888       default: llvm_unreachable("unexpected opcode for Neon base update");
   8889       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   8890       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   8891       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   8892       }
   8893     }
   8894 
   8895     // Find the size of memory referenced by the load/store.
   8896     EVT VecTy;
   8897     if (isLoad)
   8898       VecTy = N->getValueType(0);
   8899     else
   8900       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   8901     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   8902     if (isLaneOp)
   8903       NumBytes /= VecTy.getVectorNumElements();
   8904 
   8905     // If the increment is a constant, it must match the memory ref size.
   8906     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   8907     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   8908       uint64_t IncVal = CInc->getZExtValue();
   8909       if (IncVal != NumBytes)
   8910         continue;
   8911     } else if (NumBytes >= 3 * 16) {
   8912       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   8913       // separate instructions that make it harder to use a non-constant update.
   8914       continue;
   8915     }
   8916 
   8917     // Create the new updating load/store node.
   8918     EVT Tys[6];
   8919     unsigned NumResultVecs = (isLoad ? NumVecs : 0);
   8920     unsigned n;
   8921     for (n = 0; n < NumResultVecs; ++n)
   8922       Tys[n] = VecTy;
   8923     Tys[n++] = MVT::i32;
   8924     Tys[n] = MVT::Other;
   8925     SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs+2));
   8926     SmallVector<SDValue, 8> Ops;
   8927     Ops.push_back(N->getOperand(0)); // incoming chain
   8928     Ops.push_back(N->getOperand(AddrOpIdx));
   8929     Ops.push_back(Inc);
   8930     for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
   8931       Ops.push_back(N->getOperand(i));
   8932     }
   8933     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
   8934     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
   8935                                            Ops, MemInt->getMemoryVT(),
   8936                                            MemInt->getMemOperand());
   8937 
   8938     // Update the uses.
   8939     std::vector<SDValue> NewResults;
   8940     for (unsigned i = 0; i < NumResultVecs; ++i) {
   8941       NewResults.push_back(SDValue(UpdN.getNode(), i));
   8942     }
   8943     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   8944     DCI.CombineTo(N, NewResults);
   8945     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   8946 
   8947     break;
   8948   }
   8949   return SDValue();
   8950 }
   8951 
   8952 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   8953 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   8954 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   8955 /// return true.
   8956 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   8957   SelectionDAG &DAG = DCI.DAG;
   8958   EVT VT = N->getValueType(0);
   8959   // vldN-dup instructions only support 64-bit vectors for N > 1.
   8960   if (!VT.is64BitVector())
   8961     return false;
   8962 
   8963   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   8964   SDNode *VLD = N->getOperand(0).getNode();
   8965   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   8966     return false;
   8967   unsigned NumVecs = 0;
   8968   unsigned NewOpc = 0;
   8969   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   8970   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   8971     NumVecs = 2;
   8972     NewOpc = ARMISD::VLD2DUP;
   8973   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   8974     NumVecs = 3;
   8975     NewOpc = ARMISD::VLD3DUP;
   8976   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   8977     NumVecs = 4;
   8978     NewOpc = ARMISD::VLD4DUP;
   8979   } else {
   8980     return false;
   8981   }
   8982 
   8983   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   8984   // numbers match the load.
   8985   unsigned VLDLaneNo =
   8986     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   8987   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   8988        UI != UE; ++UI) {
   8989     // Ignore uses of the chain result.
   8990     if (UI.getUse().getResNo() == NumVecs)
   8991       continue;
   8992     SDNode *User = *UI;
   8993     if (User->getOpcode() != ARMISD::VDUPLANE ||
   8994         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   8995       return false;
   8996   }
   8997 
   8998   // Create the vldN-dup node.
   8999   EVT Tys[5];
   9000   unsigned n;
   9001   for (n = 0; n < NumVecs; ++n)
   9002     Tys[n] = VT;
   9003   Tys[n] = MVT::Other;
   9004   SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs+1));
   9005   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   9006   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   9007   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
   9008                                            Ops, VLDMemInt->getMemoryVT(),
   9009                                            VLDMemInt->getMemOperand());
   9010 
   9011   // Update the uses.
   9012   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   9013        UI != UE; ++UI) {
   9014     unsigned ResNo = UI.getUse().getResNo();
   9015     // Ignore uses of the chain result.
   9016     if (ResNo == NumVecs)
   9017       continue;
   9018     SDNode *User = *UI;
   9019     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   9020   }
   9021 
   9022   // Now the vldN-lane intrinsic is dead except for its chain result.
   9023   // Update uses of the chain.
   9024   std::vector<SDValue> VLDDupResults;
   9025   for (unsigned n = 0; n < NumVecs; ++n)
   9026     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   9027   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   9028   DCI.CombineTo(VLD, VLDDupResults);
   9029 
   9030   return true;
   9031 }
   9032 
   9033 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   9034 /// ARMISD::VDUPLANE.
   9035 static SDValue PerformVDUPLANECombine(SDNode *N,
   9036                                       TargetLowering::DAGCombinerInfo &DCI) {
   9037   SDValue Op = N->getOperand(0);
   9038 
   9039   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   9040   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   9041   if (CombineVLDDUP(N, DCI))
   9042     return SDValue(N, 0);
   9043 
   9044   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   9045   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   9046   while (Op.getOpcode() == ISD::BITCAST)
   9047     Op = Op.getOperand(0);
   9048   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   9049     return SDValue();
   9050 
   9051   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   9052   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   9053   // The canonical VMOV for a zero vector uses a 32-bit element size.
   9054   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9055   unsigned EltBits;
   9056   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   9057     EltSize = 8;
   9058   EVT VT = N->getValueType(0);
   9059   if (EltSize > VT.getVectorElementType().getSizeInBits())
   9060     return SDValue();
   9061 
   9062   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   9063 }
   9064 
   9065 // isConstVecPow2 - Return true if each vector element is a power of 2, all
   9066 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
   9067 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
   9068 {
   9069   integerPart cN;
   9070   integerPart c0 = 0;
   9071   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
   9072        I != E; I++) {
   9073     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
   9074     if (!C)
   9075       return false;
   9076 
   9077     bool isExact;
   9078     APFloat APF = C->getValueAPF();
   9079     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
   9080         != APFloat::opOK || !isExact)
   9081       return false;
   9082 
   9083     c0 = (I == 0) ? cN : c0;
   9084     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
   9085       return false;
   9086   }
   9087   C = c0;
   9088   return true;
   9089 }
   9090 
   9091 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   9092 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   9093 /// when the VMUL has a constant operand that is a power of 2.
   9094 ///
   9095 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   9096 ///  vmul.f32        d16, d17, d16
   9097 ///  vcvt.s32.f32    d16, d16
   9098 /// becomes:
   9099 ///  vcvt.s32.f32    d16, d16, #3
   9100 static SDValue PerformVCVTCombine(SDNode *N,
   9101                                   TargetLowering::DAGCombinerInfo &DCI,
   9102                                   const ARMSubtarget *Subtarget) {
   9103   SelectionDAG &DAG = DCI.DAG;
   9104   SDValue Op = N->getOperand(0);
   9105 
   9106   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
   9107       Op.getOpcode() != ISD::FMUL)
   9108     return SDValue();
   9109 
   9110   uint64_t C;
   9111   SDValue N0 = Op->getOperand(0);
   9112   SDValue ConstVec = Op->getOperand(1);
   9113   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   9114 
   9115   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   9116       !isConstVecPow2(ConstVec, isSigned, C))
   9117     return SDValue();
   9118 
   9119   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   9120   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   9121   if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
   9122     // These instructions only exist converting from f32 to i32. We can handle
   9123     // smaller integers by generating an extra truncate, but larger ones would
   9124     // be lossy.
   9125     return SDValue();
   9126   }
   9127 
   9128   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   9129     Intrinsic::arm_neon_vcvtfp2fxu;
   9130   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   9131   SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
   9132                                  NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   9133                                  DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
   9134                                  DAG.getConstant(Log2_64(C), MVT::i32));
   9135 
   9136   if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
   9137     FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
   9138 
   9139   return FixConv;
   9140 }
   9141 
   9142 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   9143 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   9144 /// when the VDIV has a constant operand that is a power of 2.
   9145 ///
   9146 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   9147 ///  vcvt.f32.s32    d16, d16
   9148 ///  vdiv.f32        d16, d17, d16
   9149 /// becomes:
   9150 ///  vcvt.f32.s32    d16, d16, #3
   9151 static SDValue PerformVDIVCombine(SDNode *N,
   9152                                   TargetLowering::DAGCombinerInfo &DCI,
   9153                                   const ARMSubtarget *Subtarget) {
   9154   SelectionDAG &DAG = DCI.DAG;
   9155   SDValue Op = N->getOperand(0);
   9156   unsigned OpOpcode = Op.getNode()->getOpcode();
   9157 
   9158   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
   9159       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   9160     return SDValue();
   9161 
   9162   uint64_t C;
   9163   SDValue ConstVec = N->getOperand(1);
   9164   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   9165 
   9166   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   9167       !isConstVecPow2(ConstVec, isSigned, C))
   9168     return SDValue();
   9169 
   9170   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   9171   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   9172   if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
   9173     // These instructions only exist converting from i32 to f32. We can handle
   9174     // smaller integers by generating an extra extend, but larger ones would
   9175     // be lossy.
   9176     return SDValue();
   9177   }
   9178 
   9179   SDValue ConvInput = Op.getOperand(0);
   9180   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   9181   if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
   9182     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   9183                             SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   9184                             ConvInput);
   9185 
   9186   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   9187     Intrinsic::arm_neon_vcvtfxu2fp;
   9188   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
   9189                      Op.getValueType(),
   9190                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
   9191                      ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
   9192 }
   9193 
   9194 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   9195 /// operand of a vector shift operation, where all the elements of the
   9196 /// build_vector must have the same constant integer value.
   9197 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   9198   // Ignore bit_converts.
   9199   while (Op.getOpcode() == ISD::BITCAST)
   9200     Op = Op.getOperand(0);
   9201   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   9202   APInt SplatBits, SplatUndef;
   9203   unsigned SplatBitSize;
   9204   bool HasAnyUndefs;
   9205   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   9206                                       HasAnyUndefs, ElementBits) ||
   9207       SplatBitSize > ElementBits)
   9208     return false;
   9209   Cnt = SplatBits.getSExtValue();
   9210   return true;
   9211 }
   9212 
   9213 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   9214 /// operand of a vector shift left operation.  That value must be in the range:
   9215 ///   0 <= Value < ElementBits for a left shift; or
   9216 ///   0 <= Value <= ElementBits for a long left shift.
   9217 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   9218   assert(VT.isVector() && "vector shift count is not a vector type");
   9219   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   9220   if (! getVShiftImm(Op, ElementBits, Cnt))
   9221     return false;
   9222   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   9223 }
   9224 
   9225 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   9226 /// operand of a vector shift right operation.  For a shift opcode, the value
   9227 /// is positive, but for an intrinsic the value count must be negative. The
   9228 /// absolute value must be in the range:
   9229 ///   1 <= |Value| <= ElementBits for a right shift; or
   9230 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   9231 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   9232                          int64_t &Cnt) {
   9233   assert(VT.isVector() && "vector shift count is not a vector type");
   9234   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   9235   if (! getVShiftImm(Op, ElementBits, Cnt))
   9236     return false;
   9237   if (isIntrinsic)
   9238     Cnt = -Cnt;
   9239   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   9240 }
   9241 
   9242 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   9243 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   9244   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   9245   switch (IntNo) {
   9246   default:
   9247     // Don't do anything for most intrinsics.
   9248     break;
   9249 
   9250   // Vector shifts: check for immediate versions and lower them.
   9251   // Note: This is done during DAG combining instead of DAG legalizing because
   9252   // the build_vectors for 64-bit vector element shift counts are generally
   9253   // not legal, and it is hard to see their values after they get legalized to
   9254   // loads from a constant pool.
   9255   case Intrinsic::arm_neon_vshifts:
   9256   case Intrinsic::arm_neon_vshiftu:
   9257   case Intrinsic::arm_neon_vrshifts:
   9258   case Intrinsic::arm_neon_vrshiftu:
   9259   case Intrinsic::arm_neon_vrshiftn:
   9260   case Intrinsic::arm_neon_vqshifts:
   9261   case Intrinsic::arm_neon_vqshiftu:
   9262   case Intrinsic::arm_neon_vqshiftsu:
   9263   case Intrinsic::arm_neon_vqshiftns:
   9264   case Intrinsic::arm_neon_vqshiftnu:
   9265   case Intrinsic::arm_neon_vqshiftnsu:
   9266   case Intrinsic::arm_neon_vqrshiftns:
   9267   case Intrinsic::arm_neon_vqrshiftnu:
   9268   case Intrinsic::arm_neon_vqrshiftnsu: {
   9269     EVT VT = N->getOperand(1).getValueType();
   9270     int64_t Cnt;
   9271     unsigned VShiftOpc = 0;
   9272 
   9273     switch (IntNo) {
   9274     case Intrinsic::arm_neon_vshifts:
   9275     case Intrinsic::arm_neon_vshiftu:
   9276       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   9277         VShiftOpc = ARMISD::VSHL;
   9278         break;
   9279       }
   9280       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   9281         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   9282                      ARMISD::VSHRs : ARMISD::VSHRu);
   9283         break;
   9284       }
   9285       return SDValue();
   9286 
   9287     case Intrinsic::arm_neon_vrshifts:
   9288     case Intrinsic::arm_neon_vrshiftu:
   9289       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   9290         break;
   9291       return SDValue();
   9292 
   9293     case Intrinsic::arm_neon_vqshifts:
   9294     case Intrinsic::arm_neon_vqshiftu:
   9295       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   9296         break;
   9297       return SDValue();
   9298 
   9299     case Intrinsic::arm_neon_vqshiftsu:
   9300       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   9301         break;
   9302       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   9303 
   9304     case Intrinsic::arm_neon_vrshiftn:
   9305     case Intrinsic::arm_neon_vqshiftns:
   9306     case Intrinsic::arm_neon_vqshiftnu:
   9307     case Intrinsic::arm_neon_vqshiftnsu:
   9308     case Intrinsic::arm_neon_vqrshiftns:
   9309     case Intrinsic::arm_neon_vqrshiftnu:
   9310     case Intrinsic::arm_neon_vqrshiftnsu:
   9311       // Narrowing shifts require an immediate right shift.
   9312       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   9313         break;
   9314       llvm_unreachable("invalid shift count for narrowing vector shift "
   9315                        "intrinsic");
   9316 
   9317     default:
   9318       llvm_unreachable("unhandled vector shift");
   9319     }
   9320 
   9321     switch (IntNo) {
   9322     case Intrinsic::arm_neon_vshifts:
   9323     case Intrinsic::arm_neon_vshiftu:
   9324       // Opcode already set above.
   9325       break;
   9326     case Intrinsic::arm_neon_vrshifts:
   9327       VShiftOpc = ARMISD::VRSHRs; break;
   9328     case Intrinsic::arm_neon_vrshiftu:
   9329       VShiftOpc = ARMISD::VRSHRu; break;
   9330     case Intrinsic::arm_neon_vrshiftn:
   9331       VShiftOpc = ARMISD::VRSHRN; break;
   9332     case Intrinsic::arm_neon_vqshifts:
   9333       VShiftOpc = ARMISD::VQSHLs; break;
   9334     case Intrinsic::arm_neon_vqshiftu:
   9335       VShiftOpc = ARMISD::VQSHLu; break;
   9336     case Intrinsic::arm_neon_vqshiftsu:
   9337       VShiftOpc = ARMISD::VQSHLsu; break;
   9338     case Intrinsic::arm_neon_vqshiftns:
   9339       VShiftOpc = ARMISD::VQSHRNs; break;
   9340     case Intrinsic::arm_neon_vqshiftnu:
   9341       VShiftOpc = ARMISD::VQSHRNu; break;
   9342     case Intrinsic::arm_neon_vqshiftnsu:
   9343       VShiftOpc = ARMISD::VQSHRNsu; break;
   9344     case Intrinsic::arm_neon_vqrshiftns:
   9345       VShiftOpc = ARMISD::VQRSHRNs; break;
   9346     case Intrinsic::arm_neon_vqrshiftnu:
   9347       VShiftOpc = ARMISD::VQRSHRNu; break;
   9348     case Intrinsic::arm_neon_vqrshiftnsu:
   9349       VShiftOpc = ARMISD::VQRSHRNsu; break;
   9350     }
   9351 
   9352     return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
   9353                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
   9354   }
   9355 
   9356   case Intrinsic::arm_neon_vshiftins: {
   9357     EVT VT = N->getOperand(1).getValueType();
   9358     int64_t Cnt;
   9359     unsigned VShiftOpc = 0;
   9360 
   9361     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   9362       VShiftOpc = ARMISD::VSLI;
   9363     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   9364       VShiftOpc = ARMISD::VSRI;
   9365     else {
   9366       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   9367     }
   9368 
   9369     return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
   9370                        N->getOperand(1), N->getOperand(2),
   9371                        DAG.getConstant(Cnt, MVT::i32));
   9372   }
   9373 
   9374   case Intrinsic::arm_neon_vqrshifts:
   9375   case Intrinsic::arm_neon_vqrshiftu:
   9376     // No immediate versions of these to check for.
   9377     break;
   9378   }
   9379 
   9380   return SDValue();
   9381 }
   9382 
   9383 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   9384 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   9385 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   9386 /// vector element shift counts are generally not legal, and it is hard to see
   9387 /// their values after they get legalized to loads from a constant pool.
   9388 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   9389                                    const ARMSubtarget *ST) {
   9390   EVT VT = N->getValueType(0);
   9391   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   9392     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   9393     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   9394     SDValue N1 = N->getOperand(1);
   9395     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   9396       SDValue N0 = N->getOperand(0);
   9397       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   9398           DAG.MaskedValueIsZero(N0.getOperand(0),
   9399                                 APInt::getHighBitsSet(32, 16)))
   9400         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
   9401     }
   9402   }
   9403 
   9404   // Nothing to be done for scalar shifts.
   9405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9406   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   9407     return SDValue();
   9408 
   9409   assert(ST->hasNEON() && "unexpected vector shift");
   9410   int64_t Cnt;
   9411 
   9412   switch (N->getOpcode()) {
   9413   default: llvm_unreachable("unexpected shift opcode");
   9414 
   9415   case ISD::SHL:
   9416     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
   9417       return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
   9418                          DAG.getConstant(Cnt, MVT::i32));
   9419     break;
   9420 
   9421   case ISD::SRA:
   9422   case ISD::SRL:
   9423     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   9424       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   9425                             ARMISD::VSHRs : ARMISD::VSHRu);
   9426       return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
   9427                          DAG.getConstant(Cnt, MVT::i32));
   9428     }
   9429   }
   9430   return SDValue();
   9431 }
   9432 
   9433 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   9434 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   9435 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   9436                                     const ARMSubtarget *ST) {
   9437   SDValue N0 = N->getOperand(0);
   9438 
   9439   // Check for sign- and zero-extensions of vector extract operations of 8-
   9440   // and 16-bit vector elements.  NEON supports these directly.  They are
   9441   // handled during DAG combining because type legalization will promote them
   9442   // to 32-bit types and it is messy to recognize the operations after that.
   9443   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9444     SDValue Vec = N0.getOperand(0);
   9445     SDValue Lane = N0.getOperand(1);
   9446     EVT VT = N->getValueType(0);
   9447     EVT EltVT = N0.getValueType();
   9448     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9449 
   9450     if (VT == MVT::i32 &&
   9451         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   9452         TLI.isTypeLegal(Vec.getValueType()) &&
   9453         isa<ConstantSDNode>(Lane)) {
   9454 
   9455       unsigned Opc = 0;
   9456       switch (N->getOpcode()) {
   9457       default: llvm_unreachable("unexpected opcode");
   9458       case ISD::SIGN_EXTEND:
   9459         Opc = ARMISD::VGETLANEs;
   9460         break;
   9461       case ISD::ZERO_EXTEND:
   9462       case ISD::ANY_EXTEND:
   9463         Opc = ARMISD::VGETLANEu;
   9464         break;
   9465       }
   9466       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
   9467     }
   9468   }
   9469 
   9470   return SDValue();
   9471 }
   9472 
   9473 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
   9474 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
   9475 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
   9476                                        const ARMSubtarget *ST) {
   9477   // If the target supports NEON, try to use vmax/vmin instructions for f32
   9478   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
   9479   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
   9480   // a NaN; only do the transformation when it matches that behavior.
   9481 
   9482   // For now only do this when using NEON for FP operations; if using VFP, it
   9483   // is not obvious that the benefit outweighs the cost of switching to the
   9484   // NEON pipeline.
   9485   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
   9486       N->getValueType(0) != MVT::f32)
   9487     return SDValue();
   9488 
   9489   SDValue CondLHS = N->getOperand(0);
   9490   SDValue CondRHS = N->getOperand(1);
   9491   SDValue LHS = N->getOperand(2);
   9492   SDValue RHS = N->getOperand(3);
   9493   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   9494 
   9495   unsigned Opcode = 0;
   9496   bool IsReversed;
   9497   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
   9498     IsReversed = false; // x CC y ? x : y
   9499   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
   9500     IsReversed = true ; // x CC y ? y : x
   9501   } else {
   9502     return SDValue();
   9503   }
   9504 
   9505   bool IsUnordered;
   9506   switch (CC) {
   9507   default: break;
   9508   case ISD::SETOLT:
   9509   case ISD::SETOLE:
   9510   case ISD::SETLT:
   9511   case ISD::SETLE:
   9512   case ISD::SETULT:
   9513   case ISD::SETULE:
   9514     // If LHS is NaN, an ordered comparison will be false and the result will
   9515     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
   9516     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   9517     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
   9518     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   9519       break;
   9520     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
   9521     // will return -0, so vmin can only be used for unsafe math or if one of
   9522     // the operands is known to be nonzero.
   9523     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
   9524         !DAG.getTarget().Options.UnsafeFPMath &&
   9525         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   9526       break;
   9527     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
   9528     break;
   9529 
   9530   case ISD::SETOGT:
   9531   case ISD::SETOGE:
   9532   case ISD::SETGT:
   9533   case ISD::SETGE:
   9534   case ISD::SETUGT:
   9535   case ISD::SETUGE:
   9536     // If LHS is NaN, an ordered comparison will be false and the result will
   9537     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
   9538     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   9539     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
   9540     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   9541       break;
   9542     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
   9543     // will return +0, so vmax can only be used for unsafe math or if one of
   9544     // the operands is known to be nonzero.
   9545     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
   9546         !DAG.getTarget().Options.UnsafeFPMath &&
   9547         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   9548       break;
   9549     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
   9550     break;
   9551   }
   9552 
   9553   if (!Opcode)
   9554     return SDValue();
   9555   return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
   9556 }
   9557 
   9558 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   9559 SDValue
   9560 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   9561   SDValue Cmp = N->getOperand(4);
   9562   if (Cmp.getOpcode() != ARMISD::CMPZ)
   9563     // Only looking at EQ and NE cases.
   9564     return SDValue();
   9565 
   9566   EVT VT = N->getValueType(0);
   9567   SDLoc dl(N);
   9568   SDValue LHS = Cmp.getOperand(0);
   9569   SDValue RHS = Cmp.getOperand(1);
   9570   SDValue FalseVal = N->getOperand(0);
   9571   SDValue TrueVal = N->getOperand(1);
   9572   SDValue ARMcc = N->getOperand(2);
   9573   ARMCC::CondCodes CC =
   9574     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   9575 
   9576   // Simplify
   9577   //   mov     r1, r0
   9578   //   cmp     r1, x
   9579   //   mov     r0, y
   9580   //   moveq   r0, x
   9581   // to
   9582   //   cmp     r0, x
   9583   //   movne   r0, y
   9584   //
   9585   //   mov     r1, r0
   9586   //   cmp     r1, x
   9587   //   mov     r0, x
   9588   //   movne   r0, y
   9589   // to
   9590   //   cmp     r0, x
   9591   //   movne   r0, y
   9592   /// FIXME: Turn this into a target neutral optimization?
   9593   SDValue Res;
   9594   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   9595     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   9596                       N->getOperand(3), Cmp);
   9597   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   9598     SDValue ARMcc;
   9599     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   9600     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   9601                       N->getOperand(3), NewCmp);
   9602   }
   9603 
   9604   if (Res.getNode()) {
   9605     APInt KnownZero, KnownOne;
   9606     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
   9607     // Capture demanded bits information that would be otherwise lost.
   9608     if (KnownZero == 0xfffffffe)
   9609       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9610                         DAG.getValueType(MVT::i1));
   9611     else if (KnownZero == 0xffffff00)
   9612       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9613                         DAG.getValueType(MVT::i8));
   9614     else if (KnownZero == 0xffff0000)
   9615       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9616                         DAG.getValueType(MVT::i16));
   9617   }
   9618 
   9619   return Res;
   9620 }
   9621 
   9622 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   9623                                              DAGCombinerInfo &DCI) const {
   9624   switch (N->getOpcode()) {
   9625   default: break;
   9626   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
   9627   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   9628   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   9629   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   9630   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   9631   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   9632   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   9633   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   9634   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
   9635   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   9636   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   9637   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
   9638   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   9639   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   9640   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   9641   case ISD::FP_TO_SINT:
   9642   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
   9643   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
   9644   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   9645   case ISD::SHL:
   9646   case ISD::SRA:
   9647   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   9648   case ISD::SIGN_EXTEND:
   9649   case ISD::ZERO_EXTEND:
   9650   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   9651   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
   9652   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   9653   case ARMISD::VLD2DUP:
   9654   case ARMISD::VLD3DUP:
   9655   case ARMISD::VLD4DUP:
   9656     return CombineBaseUpdate(N, DCI);
   9657   case ARMISD::BUILD_VECTOR:
   9658     return PerformARMBUILD_VECTORCombine(N, DCI);
   9659   case ISD::INTRINSIC_VOID:
   9660   case ISD::INTRINSIC_W_CHAIN:
   9661     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9662     case Intrinsic::arm_neon_vld1:
   9663     case Intrinsic::arm_neon_vld2:
   9664     case Intrinsic::arm_neon_vld3:
   9665     case Intrinsic::arm_neon_vld4:
   9666     case Intrinsic::arm_neon_vld2lane:
   9667     case Intrinsic::arm_neon_vld3lane:
   9668     case Intrinsic::arm_neon_vld4lane:
   9669     case Intrinsic::arm_neon_vst1:
   9670     case Intrinsic::arm_neon_vst2:
   9671     case Intrinsic::arm_neon_vst3:
   9672     case Intrinsic::arm_neon_vst4:
   9673     case Intrinsic::arm_neon_vst2lane:
   9674     case Intrinsic::arm_neon_vst3lane:
   9675     case Intrinsic::arm_neon_vst4lane:
   9676       return CombineBaseUpdate(N, DCI);
   9677     default: break;
   9678     }
   9679     break;
   9680   }
   9681   return SDValue();
   9682 }
   9683 
   9684 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   9685                                                           EVT VT) const {
   9686   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   9687 }
   9688 
   9689 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, unsigned,
   9690                                                       bool *Fast) const {
   9691   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
   9692   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
   9693 
   9694   switch (VT.getSimpleVT().SimpleTy) {
   9695   default:
   9696     return false;
   9697   case MVT::i8:
   9698   case MVT::i16:
   9699   case MVT::i32: {
   9700     // Unaligned access can use (for example) LRDB, LRDH, LDR
   9701     if (AllowsUnaligned) {
   9702       if (Fast)
   9703         *Fast = Subtarget->hasV7Ops();
   9704       return true;
   9705     }
   9706     return false;
   9707   }
   9708   case MVT::f64:
   9709   case MVT::v2f64: {
   9710     // For any little-endian targets with neon, we can support unaligned ld/st
   9711     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
   9712     // A big-endian target may also explicitly support unaligned accesses
   9713     if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
   9714       if (Fast)
   9715         *Fast = true;
   9716       return true;
   9717     }
   9718     return false;
   9719   }
   9720   }
   9721 }
   9722 
   9723 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   9724                        unsigned AlignCheck) {
   9725   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   9726           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   9727 }
   9728 
   9729 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   9730                                            unsigned DstAlign, unsigned SrcAlign,
   9731                                            bool IsMemset, bool ZeroMemset,
   9732                                            bool MemcpyStrSrc,
   9733                                            MachineFunction &MF) const {
   9734   const Function *F = MF.getFunction();
   9735 
   9736   // See if we can use NEON instructions for this...
   9737   if ((!IsMemset || ZeroMemset) &&
   9738       Subtarget->hasNEON() &&
   9739       !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   9740                                        Attribute::NoImplicitFloat)) {
   9741     bool Fast;
   9742     if (Size >= 16 &&
   9743         (memOpAlign(SrcAlign, DstAlign, 16) ||
   9744          (allowsUnalignedMemoryAccesses(MVT::v2f64, 0, &Fast) && Fast))) {
   9745       return MVT::v2f64;
   9746     } else if (Size >= 8 &&
   9747                (memOpAlign(SrcAlign, DstAlign, 8) ||
   9748                 (allowsUnalignedMemoryAccesses(MVT::f64, 0, &Fast) && Fast))) {
   9749       return MVT::f64;
   9750     }
   9751   }
   9752 
   9753   // Lowering to i32/i16 if the size permits.
   9754   if (Size >= 4)
   9755     return MVT::i32;
   9756   else if (Size >= 2)
   9757     return MVT::i16;
   9758 
   9759   // Let the target-independent logic figure it out.
   9760   return MVT::Other;
   9761 }
   9762 
   9763 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   9764   if (Val.getOpcode() != ISD::LOAD)
   9765     return false;
   9766 
   9767   EVT VT1 = Val.getValueType();
   9768   if (!VT1.isSimple() || !VT1.isInteger() ||
   9769       !VT2.isSimple() || !VT2.isInteger())
   9770     return false;
   9771 
   9772   switch (VT1.getSimpleVT().SimpleTy) {
   9773   default: break;
   9774   case MVT::i1:
   9775   case MVT::i8:
   9776   case MVT::i16:
   9777     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
   9778     return true;
   9779   }
   9780 
   9781   return false;
   9782 }
   9783 
   9784 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   9785   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   9786     return false;
   9787 
   9788   if (!isTypeLegal(EVT::getEVT(Ty1)))
   9789     return false;
   9790 
   9791   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   9792 
   9793   // Assuming the caller doesn't have a zeroext or signext return parameter,
   9794   // truncation all the way down to i1 is valid.
   9795   return true;
   9796 }
   9797 
   9798 
   9799 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   9800   if (V < 0)
   9801     return false;
   9802 
   9803   unsigned Scale = 1;
   9804   switch (VT.getSimpleVT().SimpleTy) {
   9805   default: return false;
   9806   case MVT::i1:
   9807   case MVT::i8:
   9808     // Scale == 1;
   9809     break;
   9810   case MVT::i16:
   9811     // Scale == 2;
   9812     Scale = 2;
   9813     break;
   9814   case MVT::i32:
   9815     // Scale == 4;
   9816     Scale = 4;
   9817     break;
   9818   }
   9819 
   9820   if ((V & (Scale - 1)) != 0)
   9821     return false;
   9822   V /= Scale;
   9823   return V == (V & ((1LL << 5) - 1));
   9824 }
   9825 
   9826 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   9827                                       const ARMSubtarget *Subtarget) {
   9828   bool isNeg = false;
   9829   if (V < 0) {
   9830     isNeg = true;
   9831     V = - V;
   9832   }
   9833 
   9834   switch (VT.getSimpleVT().SimpleTy) {
   9835   default: return false;
   9836   case MVT::i1:
   9837   case MVT::i8:
   9838   case MVT::i16:
   9839   case MVT::i32:
   9840     // + imm12 or - imm8
   9841     if (isNeg)
   9842       return V == (V & ((1LL << 8) - 1));
   9843     return V == (V & ((1LL << 12) - 1));
   9844   case MVT::f32:
   9845   case MVT::f64:
   9846     // Same as ARM mode. FIXME: NEON?
   9847     if (!Subtarget->hasVFP2())
   9848       return false;
   9849     if ((V & 3) != 0)
   9850       return false;
   9851     V >>= 2;
   9852     return V == (V & ((1LL << 8) - 1));
   9853   }
   9854 }
   9855 
   9856 /// isLegalAddressImmediate - Return true if the integer value can be used
   9857 /// as the offset of the target addressing mode for load / store of the
   9858 /// given type.
   9859 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   9860                                     const ARMSubtarget *Subtarget) {
   9861   if (V == 0)
   9862     return true;
   9863 
   9864   if (!VT.isSimple())
   9865     return false;
   9866 
   9867   if (Subtarget->isThumb1Only())
   9868     return isLegalT1AddressImmediate(V, VT);
   9869   else if (Subtarget->isThumb2())
   9870     return isLegalT2AddressImmediate(V, VT, Subtarget);
   9871 
   9872   // ARM mode.
   9873   if (V < 0)
   9874     V = - V;
   9875   switch (VT.getSimpleVT().SimpleTy) {
   9876   default: return false;
   9877   case MVT::i1:
   9878   case MVT::i8:
   9879   case MVT::i32:
   9880     // +- imm12
   9881     return V == (V & ((1LL << 12) - 1));
   9882   case MVT::i16:
   9883     // +- imm8
   9884     return V == (V & ((1LL << 8) - 1));
   9885   case MVT::f32:
   9886   case MVT::f64:
   9887     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   9888       return false;
   9889     if ((V & 3) != 0)
   9890       return false;
   9891     V >>= 2;
   9892     return V == (V & ((1LL << 8) - 1));
   9893   }
   9894 }
   9895 
   9896 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   9897                                                       EVT VT) const {
   9898   int Scale = AM.Scale;
   9899   if (Scale < 0)
   9900     return false;
   9901 
   9902   switch (VT.getSimpleVT().SimpleTy) {
   9903   default: return false;
   9904   case MVT::i1:
   9905   case MVT::i8:
   9906   case MVT::i16:
   9907   case MVT::i32:
   9908     if (Scale == 1)
   9909       return true;
   9910     // r + r << imm
   9911     Scale = Scale & ~1;
   9912     return Scale == 2 || Scale == 4 || Scale == 8;
   9913   case MVT::i64:
   9914     // r + r
   9915     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   9916       return true;
   9917     return false;
   9918   case MVT::isVoid:
   9919     // Note, we allow "void" uses (basically, uses that aren't loads or
   9920     // stores), because arm allows folding a scale into many arithmetic
   9921     // operations.  This should be made more precise and revisited later.
   9922 
   9923     // Allow r << imm, but the imm has to be a multiple of two.
   9924     if (Scale & 1) return false;
   9925     return isPowerOf2_32(Scale);
   9926   }
   9927 }
   9928 
   9929 /// isLegalAddressingMode - Return true if the addressing mode represented
   9930 /// by AM is legal for this target, for a load/store of the specified type.
   9931 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   9932                                               Type *Ty) const {
   9933   EVT VT = getValueType(Ty, true);
   9934   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   9935     return false;
   9936 
   9937   // Can never fold addr of global into load/store.
   9938   if (AM.BaseGV)
   9939     return false;
   9940 
   9941   switch (AM.Scale) {
   9942   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   9943     break;
   9944   case 1:
   9945     if (Subtarget->isThumb1Only())
   9946       return false;
   9947     // FALL THROUGH.
   9948   default:
   9949     // ARM doesn't support any R+R*scale+imm addr modes.
   9950     if (AM.BaseOffs)
   9951       return false;
   9952 
   9953     if (!VT.isSimple())
   9954       return false;
   9955 
   9956     if (Subtarget->isThumb2())
   9957       return isLegalT2ScaledAddressingMode(AM, VT);
   9958 
   9959     int Scale = AM.Scale;
   9960     switch (VT.getSimpleVT().SimpleTy) {
   9961     default: return false;
   9962     case MVT::i1:
   9963     case MVT::i8:
   9964     case MVT::i32:
   9965       if (Scale < 0) Scale = -Scale;
   9966       if (Scale == 1)
   9967         return true;
   9968       // r + r << imm
   9969       return isPowerOf2_32(Scale & ~1);
   9970     case MVT::i16:
   9971     case MVT::i64:
   9972       // r + r
   9973       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   9974         return true;
   9975       return false;
   9976 
   9977     case MVT::isVoid:
   9978       // Note, we allow "void" uses (basically, uses that aren't loads or
   9979       // stores), because arm allows folding a scale into many arithmetic
   9980       // operations.  This should be made more precise and revisited later.
   9981 
   9982       // Allow r << imm, but the imm has to be a multiple of two.
   9983       if (Scale & 1) return false;
   9984       return isPowerOf2_32(Scale);
   9985     }
   9986   }
   9987   return true;
   9988 }
   9989 
   9990 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   9991 /// icmp immediate, that is the target has icmp instructions which can compare
   9992 /// a register against the immediate without having to materialize the
   9993 /// immediate into a register.
   9994 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   9995   // Thumb2 and ARM modes can use cmn for negative immediates.
   9996   if (!Subtarget->isThumb())
   9997     return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
   9998   if (Subtarget->isThumb2())
   9999     return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
   10000   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   10001   return Imm >= 0 && Imm <= 255;
   10002 }
   10003 
   10004 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   10005 /// *or sub* immediate, that is the target has add or sub instructions which can
   10006 /// add a register with the immediate without having to materialize the
   10007 /// immediate into a register.
   10008 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   10009   // Same encoding for add/sub, just flip the sign.
   10010   int64_t AbsImm = llvm::abs64(Imm);
   10011   if (!Subtarget->isThumb())
   10012     return ARM_AM::getSOImmVal(AbsImm) != -1;
   10013   if (Subtarget->isThumb2())
   10014     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   10015   // Thumb1 only has 8-bit unsigned immediate.
   10016   return AbsImm >= 0 && AbsImm <= 255;
   10017 }
   10018 
   10019 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   10020                                       bool isSEXTLoad, SDValue &Base,
   10021                                       SDValue &Offset, bool &isInc,
   10022                                       SelectionDAG &DAG) {
   10023   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   10024     return false;
   10025 
   10026   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   10027     // AddressingMode 3
   10028     Base = Ptr->getOperand(0);
   10029     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10030       int RHSC = (int)RHS->getZExtValue();
   10031       if (RHSC < 0 && RHSC > -256) {
   10032         assert(Ptr->getOpcode() == ISD::ADD);
   10033         isInc = false;
   10034         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10035         return true;
   10036       }
   10037     }
   10038     isInc = (Ptr->getOpcode() == ISD::ADD);
   10039     Offset = Ptr->getOperand(1);
   10040     return true;
   10041   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   10042     // AddressingMode 2
   10043     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10044       int RHSC = (int)RHS->getZExtValue();
   10045       if (RHSC < 0 && RHSC > -0x1000) {
   10046         assert(Ptr->getOpcode() == ISD::ADD);
   10047         isInc = false;
   10048         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10049         Base = Ptr->getOperand(0);
   10050         return true;
   10051       }
   10052     }
   10053 
   10054     if (Ptr->getOpcode() == ISD::ADD) {
   10055       isInc = true;
   10056       ARM_AM::ShiftOpc ShOpcVal=
   10057         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   10058       if (ShOpcVal != ARM_AM::no_shift) {
   10059         Base = Ptr->getOperand(1);
   10060         Offset = Ptr->getOperand(0);
   10061       } else {
   10062         Base = Ptr->getOperand(0);
   10063         Offset = Ptr->getOperand(1);
   10064       }
   10065       return true;
   10066     }
   10067 
   10068     isInc = (Ptr->getOpcode() == ISD::ADD);
   10069     Base = Ptr->getOperand(0);
   10070     Offset = Ptr->getOperand(1);
   10071     return true;
   10072   }
   10073 
   10074   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   10075   return false;
   10076 }
   10077 
   10078 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   10079                                      bool isSEXTLoad, SDValue &Base,
   10080                                      SDValue &Offset, bool &isInc,
   10081                                      SelectionDAG &DAG) {
   10082   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   10083     return false;
   10084 
   10085   Base = Ptr->getOperand(0);
   10086   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10087     int RHSC = (int)RHS->getZExtValue();
   10088     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   10089       assert(Ptr->getOpcode() == ISD::ADD);
   10090       isInc = false;
   10091       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10092       return true;
   10093     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   10094       isInc = Ptr->getOpcode() == ISD::ADD;
   10095       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
   10096       return true;
   10097     }
   10098   }
   10099 
   10100   return false;
   10101 }
   10102 
   10103 /// getPreIndexedAddressParts - returns true by value, base pointer and
   10104 /// offset pointer and addressing mode by reference if the node's address
   10105 /// can be legally represented as pre-indexed load / store address.
   10106 bool
   10107 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   10108                                              SDValue &Offset,
   10109                                              ISD::MemIndexedMode &AM,
   10110                                              SelectionDAG &DAG) const {
   10111   if (Subtarget->isThumb1Only())
   10112     return false;
   10113 
   10114   EVT VT;
   10115   SDValue Ptr;
   10116   bool isSEXTLoad = false;
   10117   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   10118     Ptr = LD->getBasePtr();
   10119     VT  = LD->getMemoryVT();
   10120     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   10121   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   10122     Ptr = ST->getBasePtr();
   10123     VT  = ST->getMemoryVT();
   10124   } else
   10125     return false;
   10126 
   10127   bool isInc;
   10128   bool isLegal = false;
   10129   if (Subtarget->isThumb2())
   10130     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   10131                                        Offset, isInc, DAG);
   10132   else
   10133     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   10134                                         Offset, isInc, DAG);
   10135   if (!isLegal)
   10136     return false;
   10137 
   10138   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   10139   return true;
   10140 }
   10141 
   10142 /// getPostIndexedAddressParts - returns true by value, base pointer and
   10143 /// offset pointer and addressing mode by reference if this node can be
   10144 /// combined with a load / store to form a post-indexed load / store.
   10145 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   10146                                                    SDValue &Base,
   10147                                                    SDValue &Offset,
   10148                                                    ISD::MemIndexedMode &AM,
   10149                                                    SelectionDAG &DAG) const {
   10150   if (Subtarget->isThumb1Only())
   10151     return false;
   10152 
   10153   EVT VT;
   10154   SDValue Ptr;
   10155   bool isSEXTLoad = false;
   10156   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   10157     VT  = LD->getMemoryVT();
   10158     Ptr = LD->getBasePtr();
   10159     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   10160   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   10161     VT  = ST->getMemoryVT();
   10162     Ptr = ST->getBasePtr();
   10163   } else
   10164     return false;
   10165 
   10166   bool isInc;
   10167   bool isLegal = false;
   10168   if (Subtarget->isThumb2())
   10169     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   10170                                        isInc, DAG);
   10171   else
   10172     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   10173                                         isInc, DAG);
   10174   if (!isLegal)
   10175     return false;
   10176 
   10177   if (Ptr != Base) {
   10178     // Swap base ptr and offset to catch more post-index load / store when
   10179     // it's legal. In Thumb2 mode, offset must be an immediate.
   10180     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   10181         !Subtarget->isThumb2())
   10182       std::swap(Base, Offset);
   10183 
   10184     // Post-indexed load / store update the base pointer.
   10185     if (Ptr != Base)
   10186       return false;
   10187   }
   10188 
   10189   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   10190   return true;
   10191 }
   10192 
   10193 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   10194                                                       APInt &KnownZero,
   10195                                                       APInt &KnownOne,
   10196                                                       const SelectionDAG &DAG,
   10197                                                       unsigned Depth) const {
   10198   unsigned BitWidth = KnownOne.getBitWidth();
   10199   KnownZero = KnownOne = APInt(BitWidth, 0);
   10200   switch (Op.getOpcode()) {
   10201   default: break;
   10202   case ARMISD::ADDC:
   10203   case ARMISD::ADDE:
   10204   case ARMISD::SUBC:
   10205   case ARMISD::SUBE:
   10206     // These nodes' second result is a boolean
   10207     if (Op.getResNo() == 0)
   10208       break;
   10209     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   10210     break;
   10211   case ARMISD::CMOV: {
   10212     // Bits are known zero/one if known on the LHS and RHS.
   10213     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   10214     if (KnownZero == 0 && KnownOne == 0) return;
   10215 
   10216     APInt KnownZeroRHS, KnownOneRHS;
   10217     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   10218     KnownZero &= KnownZeroRHS;
   10219     KnownOne  &= KnownOneRHS;
   10220     return;
   10221   }
   10222   case ISD::INTRINSIC_W_CHAIN: {
   10223     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   10224     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   10225     switch (IntID) {
   10226     default: return;
   10227     case Intrinsic::arm_ldaex:
   10228     case Intrinsic::arm_ldrex: {
   10229       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   10230       unsigned MemBits = VT.getScalarType().getSizeInBits();
   10231       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   10232       return;
   10233     }
   10234     }
   10235   }
   10236   }
   10237 }
   10238 
   10239 //===----------------------------------------------------------------------===//
   10240 //                           ARM Inline Assembly Support
   10241 //===----------------------------------------------------------------------===//
   10242 
   10243 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   10244   // Looking for "rev" which is V6+.
   10245   if (!Subtarget->hasV6Ops())
   10246     return false;
   10247 
   10248   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   10249   std::string AsmStr = IA->getAsmString();
   10250   SmallVector<StringRef, 4> AsmPieces;
   10251   SplitString(AsmStr, AsmPieces, ";\n");
   10252 
   10253   switch (AsmPieces.size()) {
   10254   default: return false;
   10255   case 1:
   10256     AsmStr = AsmPieces[0];
   10257     AsmPieces.clear();
   10258     SplitString(AsmStr, AsmPieces, " \t,");
   10259 
   10260     // rev $0, $1
   10261     if (AsmPieces.size() == 3 &&
   10262         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   10263         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   10264       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   10265       if (Ty && Ty->getBitWidth() == 32)
   10266         return IntrinsicLowering::LowerToByteSwap(CI);
   10267     }
   10268     break;
   10269   }
   10270 
   10271   return false;
   10272 }
   10273 
   10274 /// getConstraintType - Given a constraint letter, return the type of
   10275 /// constraint it is for this target.
   10276 ARMTargetLowering::ConstraintType
   10277 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
   10278   if (Constraint.size() == 1) {
   10279     switch (Constraint[0]) {
   10280     default:  break;
   10281     case 'l': return C_RegisterClass;
   10282     case 'w': return C_RegisterClass;
   10283     case 'h': return C_RegisterClass;
   10284     case 'x': return C_RegisterClass;
   10285     case 't': return C_RegisterClass;
   10286     case 'j': return C_Other; // Constant for movw.
   10287       // An address with a single base register. Due to the way we
   10288       // currently handle addresses it is the same as an 'r' memory constraint.
   10289     case 'Q': return C_Memory;
   10290     }
   10291   } else if (Constraint.size() == 2) {
   10292     switch (Constraint[0]) {
   10293     default: break;
   10294     // All 'U+' constraints are addresses.
   10295     case 'U': return C_Memory;
   10296     }
   10297   }
   10298   return TargetLowering::getConstraintType(Constraint);
   10299 }
   10300 
   10301 /// Examine constraint type and operand type and determine a weight value.
   10302 /// This object must already have been set up with the operand type
   10303 /// and the current alternative constraint selected.
   10304 TargetLowering::ConstraintWeight
   10305 ARMTargetLowering::getSingleConstraintMatchWeight(
   10306     AsmOperandInfo &info, const char *constraint) const {
   10307   ConstraintWeight weight = CW_Invalid;
   10308   Value *CallOperandVal = info.CallOperandVal;
   10309     // If we don't have a value, we can't do a match,
   10310     // but allow it at the lowest weight.
   10311   if (!CallOperandVal)
   10312     return CW_Default;
   10313   Type *type = CallOperandVal->getType();
   10314   // Look at the constraint type.
   10315   switch (*constraint) {
   10316   default:
   10317     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   10318     break;
   10319   case 'l':
   10320     if (type->isIntegerTy()) {
   10321       if (Subtarget->isThumb())
   10322         weight = CW_SpecificReg;
   10323       else
   10324         weight = CW_Register;
   10325     }
   10326     break;
   10327   case 'w':
   10328     if (type->isFloatingPointTy())
   10329       weight = CW_Register;
   10330     break;
   10331   }
   10332   return weight;
   10333 }
   10334 
   10335 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   10336 RCPair
   10337 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   10338                                                 MVT VT) const {
   10339   if (Constraint.size() == 1) {
   10340     // GCC ARM Constraint Letters
   10341     switch (Constraint[0]) {
   10342     case 'l': // Low regs or general regs.
   10343       if (Subtarget->isThumb())
   10344         return RCPair(0U, &ARM::tGPRRegClass);
   10345       return RCPair(0U, &ARM::GPRRegClass);
   10346     case 'h': // High regs or no regs.
   10347       if (Subtarget->isThumb())
   10348         return RCPair(0U, &ARM::hGPRRegClass);
   10349       break;
   10350     case 'r':
   10351       return RCPair(0U, &ARM::GPRRegClass);
   10352     case 'w':
   10353       if (VT == MVT::Other)
   10354         break;
   10355       if (VT == MVT::f32)
   10356         return RCPair(0U, &ARM::SPRRegClass);
   10357       if (VT.getSizeInBits() == 64)
   10358         return RCPair(0U, &ARM::DPRRegClass);
   10359       if (VT.getSizeInBits() == 128)
   10360         return RCPair(0U, &ARM::QPRRegClass);
   10361       break;
   10362     case 'x':
   10363       if (VT == MVT::Other)
   10364         break;
   10365       if (VT == MVT::f32)
   10366         return RCPair(0U, &ARM::SPR_8RegClass);
   10367       if (VT.getSizeInBits() == 64)
   10368         return RCPair(0U, &ARM::DPR_8RegClass);
   10369       if (VT.getSizeInBits() == 128)
   10370         return RCPair(0U, &ARM::QPR_8RegClass);
   10371       break;
   10372     case 't':
   10373       if (VT == MVT::f32)
   10374         return RCPair(0U, &ARM::SPRRegClass);
   10375       break;
   10376     }
   10377   }
   10378   if (StringRef("{cc}").equals_lower(Constraint))
   10379     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   10380 
   10381   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   10382 }
   10383 
   10384 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   10385 /// vector.  If it is invalid, don't add anything to Ops.
   10386 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   10387                                                      std::string &Constraint,
   10388                                                      std::vector<SDValue>&Ops,
   10389                                                      SelectionDAG &DAG) const {
   10390   SDValue Result;
   10391 
   10392   // Currently only support length 1 constraints.
   10393   if (Constraint.length() != 1) return;
   10394 
   10395   char ConstraintLetter = Constraint[0];
   10396   switch (ConstraintLetter) {
   10397   default: break;
   10398   case 'j':
   10399   case 'I': case 'J': case 'K': case 'L':
   10400   case 'M': case 'N': case 'O':
   10401     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   10402     if (!C)
   10403       return;
   10404 
   10405     int64_t CVal64 = C->getSExtValue();
   10406     int CVal = (int) CVal64;
   10407     // None of these constraints allow values larger than 32 bits.  Check
   10408     // that the value fits in an int.
   10409     if (CVal != CVal64)
   10410       return;
   10411 
   10412     switch (ConstraintLetter) {
   10413       case 'j':
   10414         // Constant suitable for movw, must be between 0 and
   10415         // 65535.
   10416         if (Subtarget->hasV6T2Ops())
   10417           if (CVal >= 0 && CVal <= 65535)
   10418             break;
   10419         return;
   10420       case 'I':
   10421         if (Subtarget->isThumb1Only()) {
   10422           // This must be a constant between 0 and 255, for ADD
   10423           // immediates.
   10424           if (CVal >= 0 && CVal <= 255)
   10425             break;
   10426         } else if (Subtarget->isThumb2()) {
   10427           // A constant that can be used as an immediate value in a
   10428           // data-processing instruction.
   10429           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   10430             break;
   10431         } else {
   10432           // A constant that can be used as an immediate value in a
   10433           // data-processing instruction.
   10434           if (ARM_AM::getSOImmVal(CVal) != -1)
   10435             break;
   10436         }
   10437         return;
   10438 
   10439       case 'J':
   10440         if (Subtarget->isThumb()) {  // FIXME thumb2
   10441           // This must be a constant between -255 and -1, for negated ADD
   10442           // immediates. This can be used in GCC with an "n" modifier that
   10443           // prints the negated value, for use with SUB instructions. It is
   10444           // not useful otherwise but is implemented for compatibility.
   10445           if (CVal >= -255 && CVal <= -1)
   10446             break;
   10447         } else {
   10448           // This must be a constant between -4095 and 4095. It is not clear
   10449           // what this constraint is intended for. Implemented for
   10450           // compatibility with GCC.
   10451           if (CVal >= -4095 && CVal <= 4095)
   10452             break;
   10453         }
   10454         return;
   10455 
   10456       case 'K':
   10457         if (Subtarget->isThumb1Only()) {
   10458           // A 32-bit value where only one byte has a nonzero value. Exclude
   10459           // zero to match GCC. This constraint is used by GCC internally for
   10460           // constants that can be loaded with a move/shift combination.
   10461           // It is not useful otherwise but is implemented for compatibility.
   10462           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   10463             break;
   10464         } else if (Subtarget->isThumb2()) {
   10465           // A constant whose bitwise inverse can be used as an immediate
   10466           // value in a data-processing instruction. This can be used in GCC
   10467           // with a "B" modifier that prints the inverted value, for use with
   10468           // BIC and MVN instructions. It is not useful otherwise but is
   10469           // implemented for compatibility.
   10470           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   10471             break;
   10472         } else {
   10473           // A constant whose bitwise inverse can be used as an immediate
   10474           // value in a data-processing instruction. This can be used in GCC
   10475           // with a "B" modifier that prints the inverted value, for use with
   10476           // BIC and MVN instructions. It is not useful otherwise but is
   10477           // implemented for compatibility.
   10478           if (ARM_AM::getSOImmVal(~CVal) != -1)
   10479             break;
   10480         }
   10481         return;
   10482 
   10483       case 'L':
   10484         if (Subtarget->isThumb1Only()) {
   10485           // This must be a constant between -7 and 7,
   10486           // for 3-operand ADD/SUB immediate instructions.
   10487           if (CVal >= -7 && CVal < 7)
   10488             break;
   10489         } else if (Subtarget->isThumb2()) {
   10490           // A constant whose negation can be used as an immediate value in a
   10491           // data-processing instruction. This can be used in GCC with an "n"
   10492           // modifier that prints the negated value, for use with SUB
   10493           // instructions. It is not useful otherwise but is implemented for
   10494           // compatibility.
   10495           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   10496             break;
   10497         } else {
   10498           // A constant whose negation can be used as an immediate value in a
   10499           // data-processing instruction. This can be used in GCC with an "n"
   10500           // modifier that prints the negated value, for use with SUB
   10501           // instructions. It is not useful otherwise but is implemented for
   10502           // compatibility.
   10503           if (ARM_AM::getSOImmVal(-CVal) != -1)
   10504             break;
   10505         }
   10506         return;
   10507 
   10508       case 'M':
   10509         if (Subtarget->isThumb()) { // FIXME thumb2
   10510           // This must be a multiple of 4 between 0 and 1020, for
   10511           // ADD sp + immediate.
   10512           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   10513             break;
   10514         } else {
   10515           // A power of two or a constant between 0 and 32.  This is used in
   10516           // GCC for the shift amount on shifted register operands, but it is
   10517           // useful in general for any shift amounts.
   10518           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   10519             break;
   10520         }
   10521         return;
   10522 
   10523       case 'N':
   10524         if (Subtarget->isThumb()) {  // FIXME thumb2
   10525           // This must be a constant between 0 and 31, for shift amounts.
   10526           if (CVal >= 0 && CVal <= 31)
   10527             break;
   10528         }
   10529         return;
   10530 
   10531       case 'O':
   10532         if (Subtarget->isThumb()) {  // FIXME thumb2
   10533           // This must be a multiple of 4 between -508 and 508, for
   10534           // ADD/SUB sp = sp + immediate.
   10535           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   10536             break;
   10537         }
   10538         return;
   10539     }
   10540     Result = DAG.getTargetConstant(CVal, Op.getValueType());
   10541     break;
   10542   }
   10543 
   10544   if (Result.getNode()) {
   10545     Ops.push_back(Result);
   10546     return;
   10547   }
   10548   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   10549 }
   10550 
   10551 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
   10552   assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
   10553   unsigned Opcode = Op->getOpcode();
   10554   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
   10555       "Invalid opcode for Div/Rem lowering");
   10556   bool isSigned = (Opcode == ISD::SDIVREM);
   10557   EVT VT = Op->getValueType(0);
   10558   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
   10559 
   10560   RTLIB::Libcall LC;
   10561   switch (VT.getSimpleVT().SimpleTy) {
   10562   default: llvm_unreachable("Unexpected request for libcall!");
   10563   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   10564   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   10565   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   10566   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   10567   }
   10568 
   10569   SDValue InChain = DAG.getEntryNode();
   10570 
   10571   TargetLowering::ArgListTy Args;
   10572   TargetLowering::ArgListEntry Entry;
   10573   for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
   10574     EVT ArgVT = Op->getOperand(i).getValueType();
   10575     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   10576     Entry.Node = Op->getOperand(i);
   10577     Entry.Ty = ArgTy;
   10578     Entry.isSExt = isSigned;
   10579     Entry.isZExt = !isSigned;
   10580     Args.push_back(Entry);
   10581   }
   10582 
   10583   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   10584                                          getPointerTy());
   10585 
   10586   Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
   10587 
   10588   SDLoc dl(Op);
   10589   TargetLowering::CallLoweringInfo CLI(DAG);
   10590   CLI.setDebugLoc(dl).setChain(InChain)
   10591     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   10592     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
   10593 
   10594   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
   10595   return CallInfo.first;
   10596 }
   10597 
   10598 SDValue
   10599 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   10600   assert(Subtarget->isTargetWindows() && "unsupported target platform");
   10601   SDLoc DL(Op);
   10602 
   10603   // Get the inputs.
   10604   SDValue Chain = Op.getOperand(0);
   10605   SDValue Size  = Op.getOperand(1);
   10606 
   10607   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
   10608                               DAG.getConstant(2, MVT::i32));
   10609 
   10610   SDValue Flag;
   10611   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
   10612   Flag = Chain.getValue(1);
   10613 
   10614   SDVTList NodeTys = DAG.getVTList(MVT::i32, MVT::Glue);
   10615   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
   10616 
   10617   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   10618   Chain = NewSP.getValue(1);
   10619 
   10620   SDValue Ops[2] = { NewSP, Chain };
   10621   return DAG.getMergeValues(Ops, DL);
   10622 }
   10623 
   10624 bool
   10625 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   10626   // The ARM target isn't yet aware of offsets.
   10627   return false;
   10628 }
   10629 
   10630 bool ARM::isBitFieldInvertedMask(unsigned v) {
   10631   if (v == 0xffffffff)
   10632     return false;
   10633 
   10634   // there can be 1's on either or both "outsides", all the "inside"
   10635   // bits must be 0's
   10636   unsigned TO = CountTrailingOnes_32(v);
   10637   unsigned LO = CountLeadingOnes_32(v);
   10638   v = (v >> TO) << TO;
   10639   v = (v << LO) >> LO;
   10640   return v == 0;
   10641 }
   10642 
   10643 /// isFPImmLegal - Returns true if the target can instruction select the
   10644 /// specified FP immediate natively. If false, the legalizer will
   10645 /// materialize the FP immediate as a load from a constant pool.
   10646 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   10647   if (!Subtarget->hasVFP3())
   10648     return false;
   10649   if (VT == MVT::f32)
   10650     return ARM_AM::getFP32Imm(Imm) != -1;
   10651   if (VT == MVT::f64)
   10652     return ARM_AM::getFP64Imm(Imm) != -1;
   10653   return false;
   10654 }
   10655 
   10656 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   10657 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   10658 /// specified in the intrinsic calls.
   10659 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   10660                                            const CallInst &I,
   10661                                            unsigned Intrinsic) const {
   10662   switch (Intrinsic) {
   10663   case Intrinsic::arm_neon_vld1:
   10664   case Intrinsic::arm_neon_vld2:
   10665   case Intrinsic::arm_neon_vld3:
   10666   case Intrinsic::arm_neon_vld4:
   10667   case Intrinsic::arm_neon_vld2lane:
   10668   case Intrinsic::arm_neon_vld3lane:
   10669   case Intrinsic::arm_neon_vld4lane: {
   10670     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10671     // Conservatively set memVT to the entire set of vectors loaded.
   10672     uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
   10673     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   10674     Info.ptrVal = I.getArgOperand(0);
   10675     Info.offset = 0;
   10676     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   10677     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   10678     Info.vol = false; // volatile loads with NEON intrinsics not supported
   10679     Info.readMem = true;
   10680     Info.writeMem = false;
   10681     return true;
   10682   }
   10683   case Intrinsic::arm_neon_vst1:
   10684   case Intrinsic::arm_neon_vst2:
   10685   case Intrinsic::arm_neon_vst3:
   10686   case Intrinsic::arm_neon_vst4:
   10687   case Intrinsic::arm_neon_vst2lane:
   10688   case Intrinsic::arm_neon_vst3lane:
   10689   case Intrinsic::arm_neon_vst4lane: {
   10690     Info.opc = ISD::INTRINSIC_VOID;
   10691     // Conservatively set memVT to the entire set of vectors stored.
   10692     unsigned NumElts = 0;
   10693     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   10694       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   10695       if (!ArgTy->isVectorTy())
   10696         break;
   10697       NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
   10698     }
   10699     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   10700     Info.ptrVal = I.getArgOperand(0);
   10701     Info.offset = 0;
   10702     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   10703     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   10704     Info.vol = false; // volatile stores with NEON intrinsics not supported
   10705     Info.readMem = false;
   10706     Info.writeMem = true;
   10707     return true;
   10708   }
   10709   case Intrinsic::arm_ldaex:
   10710   case Intrinsic::arm_ldrex: {
   10711     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   10712     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10713     Info.memVT = MVT::getVT(PtrTy->getElementType());
   10714     Info.ptrVal = I.getArgOperand(0);
   10715     Info.offset = 0;
   10716     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
   10717     Info.vol = true;
   10718     Info.readMem = true;
   10719     Info.writeMem = false;
   10720     return true;
   10721   }
   10722   case Intrinsic::arm_stlex:
   10723   case Intrinsic::arm_strex: {
   10724     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   10725     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10726     Info.memVT = MVT::getVT(PtrTy->getElementType());
   10727     Info.ptrVal = I.getArgOperand(1);
   10728     Info.offset = 0;
   10729     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
   10730     Info.vol = true;
   10731     Info.readMem = false;
   10732     Info.writeMem = true;
   10733     return true;
   10734   }
   10735   case Intrinsic::arm_stlexd:
   10736   case Intrinsic::arm_strexd: {
   10737     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10738     Info.memVT = MVT::i64;
   10739     Info.ptrVal = I.getArgOperand(2);
   10740     Info.offset = 0;
   10741     Info.align = 8;
   10742     Info.vol = true;
   10743     Info.readMem = false;
   10744     Info.writeMem = true;
   10745     return true;
   10746   }
   10747   case Intrinsic::arm_ldaexd:
   10748   case Intrinsic::arm_ldrexd: {
   10749     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10750     Info.memVT = MVT::i64;
   10751     Info.ptrVal = I.getArgOperand(0);
   10752     Info.offset = 0;
   10753     Info.align = 8;
   10754     Info.vol = true;
   10755     Info.readMem = true;
   10756     Info.writeMem = false;
   10757     return true;
   10758   }
   10759   default:
   10760     break;
   10761   }
   10762 
   10763   return false;
   10764 }
   10765 
   10766 /// \brief Returns true if it is beneficial to convert a load of a constant
   10767 /// to just the constant itself.
   10768 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   10769                                                           Type *Ty) const {
   10770   assert(Ty->isIntegerTy());
   10771 
   10772   unsigned Bits = Ty->getPrimitiveSizeInBits();
   10773   if (Bits == 0 || Bits > 32)
   10774     return false;
   10775   return true;
   10776 }
   10777 
   10778 bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
   10779   // Loads and stores less than 64-bits are already atomic; ones above that
   10780   // are doomed anyway, so defer to the default libcall and blame the OS when
   10781   // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   10782   // anything for those.
   10783   bool IsMClass = Subtarget->isMClass();
   10784   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   10785     unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   10786     return Size == 64 && !IsMClass;
   10787   } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
   10788     return LI->getType()->getPrimitiveSizeInBits() == 64 && !IsMClass;
   10789   }
   10790 
   10791   // For the real atomic operations, we have ldrex/strex up to 32 bits,
   10792   // and up to 64 bits on the non-M profiles
   10793   unsigned AtomicLimit = IsMClass ? 32 : 64;
   10794   return Inst->getType()->getPrimitiveSizeInBits() <= AtomicLimit;
   10795 }
   10796 
   10797 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   10798                                          AtomicOrdering Ord) const {
   10799   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   10800   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   10801   bool IsAcquire =
   10802       Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
   10803 
   10804   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
   10805   // intrinsic must return {i32, i32} and we have to recombine them into a
   10806   // single i64 here.
   10807   if (ValTy->getPrimitiveSizeInBits() == 64) {
   10808     Intrinsic::ID Int =
   10809         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
   10810     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
   10811 
   10812     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   10813     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
   10814 
   10815     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   10816     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   10817     if (!Subtarget->isLittle())
   10818       std::swap (Lo, Hi);
   10819     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   10820     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   10821     return Builder.CreateOr(
   10822         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
   10823   }
   10824 
   10825   Type *Tys[] = { Addr->getType() };
   10826   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
   10827   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
   10828 
   10829   return Builder.CreateTruncOrBitCast(
   10830       Builder.CreateCall(Ldrex, Addr),
   10831       cast<PointerType>(Addr->getType())->getElementType());
   10832 }
   10833 
   10834 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   10835                                                Value *Addr,
   10836                                                AtomicOrdering Ord) const {
   10837   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   10838   bool IsRelease =
   10839       Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
   10840 
   10841   // Since the intrinsics must have legal type, the i64 intrinsics take two
   10842   // parameters: "i32, i32". We must marshal Val into the appropriate form
   10843   // before the call.
   10844   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
   10845     Intrinsic::ID Int =
   10846         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
   10847     Function *Strex = Intrinsic::getDeclaration(M, Int);
   10848     Type *Int32Ty = Type::getInt32Ty(M->getContext());
   10849 
   10850     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
   10851     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
   10852     if (!Subtarget->isLittle())
   10853       std::swap (Lo, Hi);
   10854     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   10855     return Builder.CreateCall3(Strex, Lo, Hi, Addr);
   10856   }
   10857 
   10858   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
   10859   Type *Tys[] = { Addr->getType() };
   10860   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
   10861 
   10862   return Builder.CreateCall2(
   10863       Strex, Builder.CreateZExtOrBitCast(
   10864                  Val, Strex->getFunctionType()->getParamType(0)),
   10865       Addr);
   10866 }
   10867 
   10868 enum HABaseType {
   10869   HA_UNKNOWN = 0,
   10870   HA_FLOAT,
   10871   HA_DOUBLE,
   10872   HA_VECT64,
   10873   HA_VECT128
   10874 };
   10875 
   10876 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
   10877                                    uint64_t &Members) {
   10878   if (const StructType *ST = dyn_cast<StructType>(Ty)) {
   10879     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
   10880       uint64_t SubMembers = 0;
   10881       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
   10882         return false;
   10883       Members += SubMembers;
   10884     }
   10885   } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
   10886     uint64_t SubMembers = 0;
   10887     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
   10888       return false;
   10889     Members += SubMembers * AT->getNumElements();
   10890   } else if (Ty->isFloatTy()) {
   10891     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
   10892       return false;
   10893     Members = 1;
   10894     Base = HA_FLOAT;
   10895   } else if (Ty->isDoubleTy()) {
   10896     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
   10897       return false;
   10898     Members = 1;
   10899     Base = HA_DOUBLE;
   10900   } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
   10901     Members = 1;
   10902     switch (Base) {
   10903     case HA_FLOAT:
   10904     case HA_DOUBLE:
   10905       return false;
   10906     case HA_VECT64:
   10907       return VT->getBitWidth() == 64;
   10908     case HA_VECT128:
   10909       return VT->getBitWidth() == 128;
   10910     case HA_UNKNOWN:
   10911       switch (VT->getBitWidth()) {
   10912       case 64:
   10913         Base = HA_VECT64;
   10914         return true;
   10915       case 128:
   10916         Base = HA_VECT128;
   10917         return true;
   10918       default:
   10919         return false;
   10920       }
   10921     }
   10922   }
   10923 
   10924   return (Members > 0 && Members <= 4);
   10925 }
   10926 
   10927 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
   10928 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
   10929     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   10930   if (getEffectiveCallingConv(CallConv, isVarArg) !=
   10931       CallingConv::ARM_AAPCS_VFP)
   10932     return false;
   10933 
   10934   HABaseType Base = HA_UNKNOWN;
   10935   uint64_t Members = 0;
   10936   bool result = isHomogeneousAggregate(Ty, Base, Members);
   10937   DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump(); dbgs() << "\n");
   10938   return result;
   10939 }
   10940